The remote controlling technique based on the serial port for SR-620 universal counter
NASA Astrophysics Data System (ADS)
Su, Jian-Feng; Chen, Shu-Fang; Li, Xiao-Hui; Wu, Hai-Tao; Bian, Yu-Jing
2004-12-01
The function of SR-620 universal counter and the remote work mode are introduced, and the remote controlling technique for the counter is analysed. A method to realize the remote controlling via the serial port for the counter is demonstrated, in which an ActiveX control is used. Besides, some points for attention in debugging are discussed based on the experience, and a case of program running for measuring time-delay is presented.
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Deets, D. A.
1975-01-01
A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.
A Web-Based Remote Access Laboratory Using SCADA
ERIC Educational Resources Information Center
Aydogmus, Z.; Aydogmus, O.
2009-01-01
The Internet provides an opportunity for students to access laboratories from outside the campus. This paper presents a Web-based remote access real-time laboratory using SCADA (supervisory control and data acquisition) control. The control of an induction motor is used as an example to demonstrate the effectiveness of this remote laboratory,…
The remote infrared remote control system based on LPC1114
NASA Astrophysics Data System (ADS)
Ren, Yingjie; Guo, Kai; Xu, Xinni; Sun, Dayu; Wang, Li
2018-05-01
In view of the shortcomings such as the short control distance of the traditional air conditioner remote controller on the market nowadays and combining with the current smart home new mode "Cloud+ Terminal" mode, a smart home system based on internet is designed and designed to be fully applied to the simple and reliable features of the LPC1114 chip. The controller is added with temperature control module, timing module and other modules. Through the actual test, it achieved remote control air conditioning, with reliability and stability and brought great convenience to people's lives.
Remote telescope control of site testing with ASCOM
NASA Astrophysics Data System (ADS)
Ji, Kaifan; Liang, Bo; Peng, Yajie; Wang, Feng
2012-04-01
Remote telescope control is significant important for the astronomical site testing. Basing on ASCOM standard, a prototype of remote telescope control system has been implemented. In this paper, the details of the system design, both server end and client end, are introduced. We tested the prototype on a narrow-band dial-up networking and controlled a real remote telescope successfully. The result indicates that it is effective to control remote telescope and other devices with ASCOM.
Remote control of microcontroller-based infant stimulating system.
Burunkaya, M; Güler, I
2000-04-01
In this paper, a remote-controlled and microcontroller-based cradle is designed and constructed. This system is also called Remote Control of Microcontroller-Based Infant Stimulation System or the RECOMBIS System. Cradle is an infant stimulating system that provides relaxation and sleeping for the baby. RECOMBIS system is designed for healthy full-term newborns to provide safe infant care and provide relaxation and sleeping for the baby. A microcontroller-based electronic circuit was designed and implemented for RECOMBIS system. Electromagnets were controlled by 8-bit PIC16F84 microcontroller, which is programmed using MPASM package. The system works by entering preset values from the keyboard, or pulse code modulated radio frequency remote control system. The control of the system and the motion range were tested. The test results showed that the system provided a good performance.
Development of wide area environment accelerator operation and diagnostics method
NASA Astrophysics Data System (ADS)
Uchiyama, Akito; Furukawa, Kazuro
2015-08-01
Remote operation and diagnostic systems for particle accelerators have been developed for beam operation and maintenance in various situations. Even though fully remote experiments are not necessary, the remote diagnosis and maintenance of the accelerator is required. Considering remote-operation operator interfaces (OPIs), the use of standard protocols such as the hypertext transfer protocol (HTTP) is advantageous, because system-dependent protocols are unnecessary between the remote client and the on-site server. Here, we have developed a client system based on WebSocket, which is a new protocol provided by the Internet Engineering Task Force for Web-based systems, as a next-generation Web-based OPI using the Experimental Physics and Industrial Control System Channel Access protocol. As a result of this implementation, WebSocket-based client systems have become available for remote operation. Also, as regards practical application, the remote operation of an accelerator via a wide area network (WAN) faces a number of challenges, e.g., the accelerator has both experimental device and radiation generator characteristics. Any error in remote control system operation could result in an immediate breakdown. Therefore, we propose the implementation of an operator intervention system for remote accelerator diagnostics and support that can obviate any differences between the local control room and remote locations. Here, remote-operation Web-based OPIs, which resolve security issues, are developed.
NASA Astrophysics Data System (ADS)
Tan, Xiangli; Yang, Jungang; Deng, Xinpu
2018-04-01
In the process of geometric correction of remote sensing image, occasionally, a large number of redundant control points may result in low correction accuracy. In order to solve this problem, a control points filtering algorithm based on RANdom SAmple Consensus (RANSAC) was proposed. The basic idea of the RANSAC algorithm is that using the smallest data set possible to estimate the model parameters and then enlarge this set with consistent data points. In this paper, unlike traditional methods of geometric correction using Ground Control Points (GCPs), the simulation experiments are carried out to correct remote sensing images, which using visible stars as control points. In addition, the accuracy of geometric correction without Star Control Points (SCPs) optimization is also shown. The experimental results show that the SCPs's filtering method based on RANSAC algorithm has a great improvement on the accuracy of remote sensing image correction.
Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science
NASA Astrophysics Data System (ADS)
Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.
2017-09-01
Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.
Light-switchable systems for remotely controlled drug delivery.
Shim, Gayong; Ko, Seungbeom; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Lee, Jaiwoo; Kwon, Taekhyun; Choi, Han-Gon; Kim, Young Bong; Oh, Yu-Kyoung
2017-12-10
Light-switchable systems have recently received attention as a new mode of remotely controlled drug delivery. In the past, a multitude of nanomedicine studies have sought to enhance the specificity of drug delivery to target sites by focusing on receptors overexpressed on malignant cells or environmental features of diseases sites. Despite these immense efforts, however, there are few clinically available nanomedicines. We need a paradigm shift in drug delivery. One strategy that may overcome the limitations of pathophysiology-based drug delivery is the use of remotely controlled delivery technology. Unlike pathophysiology-based active drug targeting strategies, light-switchable systems are not affected by the heterogeneity of cells, tissue types, and/or microenvironments. Instead, they are triggered by remote light (i.e., near-infrared) stimuli, which are absorbed by photoresponsive molecules or three-dimensional nanostructures. The sequential conversion of light to heat or reactive oxygen species can activate drug release and allow it to be spatio-temporally controlled. Light-switchable systems have been used to activate endosomal drug escape, modulate the release of chemical and biological drugs, and alter nanoparticle structures to control the release rates of drugs. This review will address the limitations of pathophysiology-based drug delivery systems, the current status of light-based remote-switch systems, and future directions in the application of light-switchable systems for remotely controlled drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
Cloud-based robot remote control system for smart factory
NASA Astrophysics Data System (ADS)
Wu, Zhiming; Li, Lianzhong; Xu, Yang; Zhai, Jingmei
2015-12-01
With the development of internet technologies and the wide application of robots, there is a prospect (trend/tendency) of integration between network and robots. A cloud-based robot remote control system over networks for smart factory is proposed, which enables remote users to control robots and then realize intelligent production. To achieve it, a three-layer system architecture is designed including user layer, service layer and physical layer. Remote control applications running on the cloud server is developed on Microsoft Azure. Moreover, DIV+ CSS technologies are used to design human-machine interface to lower maintenance cost and improve development efficiency. Finally, an experiment is implemented to verify the feasibility of the program.
Cooperative remote sensing and actuation using networked unmanned vehicles
NASA Astrophysics Data System (ADS)
Chao, Haiyang
This dissertation focuses on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes in the current information-rich world. The target scenarios are environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks, etc. AggieAir, a small and low-cost unmanned aircraft system, is designed based on the remote sensing requirements from environmental monitoring missions. The state estimation problem and the advanced lateral flight controller design problem are further attacked focusing on the small unmanned aerial vehicle (UAV) platform. Then the UAV-based remote sensing problem is focused with further flight test results. Given the measurements from unmanned vehicles, the actuation algorithms are needed for missions like the diffusion control. A consensus-based central Voronoi tessellation (CVT) algorithm is proposed for better control of the diffusion process. Finally, the dissertation conclusion and some new research suggestions are presented.
An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes
NASA Astrophysics Data System (ADS)
Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei
2016-01-01
For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.
Remote monitoring and fault recovery for FPGA-based field controllers of telescope and instruments
NASA Astrophysics Data System (ADS)
Zhu, Yuhua; Zhu, Dan; Wang, Jianing
2012-09-01
As the increasing size and more and more functions, modern telescopes have widely used the control architecture, i.e. central control unit plus field controller. FPGA-based field controller has the advantages of field programmable, which provide a great convenience for modifying software and hardware of control system. It also gives a good platform for implementation of the new control scheme. Because of multi-controlled nodes and poor working environment in scattered locations, reliability and stability of the field controller should be fully concerned. This paper mainly describes how we use the FPGA-based field controller and Ethernet remote to construct monitoring system with multi-nodes. When failure appearing, the new FPGA chip does self-recovery first in accordance with prerecovery strategies. In case of accident, remote reconstruction for the field controller can be done through network intervention if the chip is not being restored. This paper also introduces the network remote reconstruction solutions of controller, the system structure and transport protocol as well as the implementation methods. The idea of hardware and software design is given based on the FPGA. After actual operation on the large telescopes, desired results have been achieved. The improvement increases system reliability and reduces workload of maintenance, showing good application and popularization.
Remote Learning for the Manipulation and Control of Robotic Cells
ERIC Educational Resources Information Center
Goldstain, Ofir; Ben-Gal, Irad; Bukchin, Yossi
2007-01-01
This work proposes an approach to remote learning of robotic cells based on internet and simulation tools. The proposed approach, which integrates remote-learning and tele-operation into a generic scheme, is designed to enable students and developers to set-up and manipulate a robotic cell remotely. Its implementation is based on a dedicated…
Development and Evaluation of Mechatronics Learning System in a Web-Based Environment
ERIC Educational Resources Information Center
Shyr, Wen-Jye
2011-01-01
The development of remote laboratory suitable for the reinforcement of undergraduate level teaching of mechatronics is important. For the reason, a Web-based mechatronics learning system, called the RECOLAB (REmote COntrol LABoratory), for remote learning in engineering education has been developed in this study. The web-based environment is an…
ERIC Educational Resources Information Center
Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol
2011-01-01
The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)
Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane
NASA Technical Reports Server (NTRS)
Kempel, R. W.; Horton, T. W.
1985-01-01
A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Kurien, James; Rajan, Kanna
1999-01-01
We describe the computer demonstration of the Remote Agent Experiment (RAX). The Remote Agent is a high-level, model-based, autonomous control agent being validated on the NASA Deep Space 1 spacecraft.
Design of temperature monitoring system based on CAN bus
NASA Astrophysics Data System (ADS)
Zhang, Li
2017-10-01
The remote temperature monitoring system based on the Controller Area Network (CAN) bus is designed to collect the multi-node remote temperature. By using the STM32F103 as main controller and multiple DS18B20s as temperature sensors, the system achieves a master-slave node data acquisition and transmission based on the CAN bus protocol. And making use of the serial port communication technology to communicate with the host computer, the system achieves the function of remote temperature storage, historical data show and the temperature waveform display.
Development of wireless vehicle remote control for fuel lid operation
NASA Astrophysics Data System (ADS)
Sulaiman, N.; Jadin, M. S.; Najib, M. S.; Mustafa, M.; Azmi, S. N. F.
2018-04-01
Nowadays, the evolution of the vehicle technology had made the vehicle especially car to be equipped with a remote control to control the operation of the locking and unlocking system of the car’s door and rear’s bonnet. However, for the fuel or petrol lid, it merely can be opened from inside the car’s cabin by handling the fuel level inside the car’s cabin to open the fuel lid. The petrol lid can be closed by pushing the lid by hand. Due to the high usage of using fuel lever to open the fuel lid when refilling the fuel, the car driver might encounter the malfunction of fuel lid (fail to open) when pushing or pulling the fuel lever. Thus, the main aim of the research is to enhance the operation of an existing car remote control where the car fuel lid can be controlled using two techniques; remote control-based and smartphone-based. The remote control is constructed using Arduino microcontroller, wireless sensors and XCTU software to set the transmitting and receiving parameters. Meanwhile, the smartphone can control the operation of the fuel lid by communicating with Arduino microcontroller which is attached to the fuel lid using Bluetooth sensor to open the petrol lid. In order to avoid the conflict of instruction between wireless systems with the existing mechanical-based system, the servo motor will be employed to release the fuel lid merely after receiving the instruction from Arduino microcontroller and smartphone. As a conclusion, the prototype of the multipurpose vehicle remote control is successfully invented, constructed and tested. The car fuel lid can be opened either using remote control or smartphone in a sequential manner. Therefore, the outcome of the project can be used to serve as an alternative solution to solve the car fuel lid problem even though the problem rarely occurred.
Flight test experience and controlled impact of a remotely piloted jet transport aircraft
NASA Technical Reports Server (NTRS)
Horton, Timothy W.; Kempel, Robert W.
1988-01-01
The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.
An intelligent remote control system for ECEI on EAST
NASA Astrophysics Data System (ADS)
Chen, Dongxu; Zhu, Yilun; Zhao, Zhenling; Qu, Chengming; Liao, Wang; Xie, Jinlin; Liu, Wandong
2017-08-01
An intelligent remote control system based on a power distribution unit (PDU) and Arduino has been designed for the electron cyclotron emission imaging (ECEI) system on Experimental Advanced Superconducting Tokamak (EAST). This intelligent system has three major functions: ECEI system reboot, measurement region adjustment and signal amplitude optimization. The observation region of ECEI can be modified for different physics proposals by remotely tuning the optical and electronics systems. Via the remote adjustment of the attenuation level, the ECEI intermediate frequency signal amplitude can be efficiently optimized. The remote control system provides a feasible and reliable solution for the improvement of signal quality and the efficiency of the ECEI diagnostic system, which is also valuable for other diagnostic systems.
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2011-06-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2013-01-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557
System architecture for asynchronous multi-processor robotic control system
NASA Technical Reports Server (NTRS)
Steele, Robert D.; Long, Mark; Backes, Paul
1993-01-01
The architecture for the Modular Telerobot Task Execution System (MOTES) as implemented in the Supervisory Telerobotics (STELER) Laboratory is described. MOTES is the software component of the remote site of a local-remote telerobotic system which is being developed for NASA for space applications, in particular Space Station Freedom applications. The system is being developed to provide control and supervised autonomous control to support both space based operation and ground-remote control with time delay. The local-remote architecture places task planning responsibilities at the local site and task execution responsibilities at the remote site. This separation allows the remote site to be designed to optimize task execution capability within a limited computational environment such as is expected in flight systems. The local site task planning system could be placed on the ground where few computational limitations are expected. MOTES is written in the Ada programming language for a multiprocessor environment.
An Approach of Registration between Remote Sensing Image and Electronic Chart Based on Coastal Line
NASA Astrophysics Data System (ADS)
Li, Ying; Yu, Shuiming; Li, Chuanlong
Remote sensing plays an important role marine oil spill emergency. In order to implement a timely and effective countermeasure, it is important to provide exact position of oil spills. Therefore it is necessary to match remote sensing image and electronic chart properly. Variance ordinarily exists between oil spill image and electronic chart, although geometric correction is applied to remote sensing image. It is difficult to find the steady control points on sea to make exact rectification of remote sensing image. An improved relaxation algorithm was developed for finding the control points along the coastline since oil spills occurs generally near the coast. A conversion function is created with the least square, and remote sensing image can be registered with the vector map based on this function. SAR image was used as the remote sensing data and shape format map as the electronic chart data. The results show that this approach can guarantee the precision of the registration, which is essential for oil spill monitoring.
NASA Technical Reports Server (NTRS)
Ifju, Peter
2002-01-01
Micro Air Vehicles (MAVs) will be developed for tracking individuals, locating terrorist threats, and delivering remote sensors, for surveillance and chemical/biological agent detection. The tasks are: (1) Develop robust MAV platform capable of carrying sensor payload. (2) Develop fully autonomous capabilities for delivery of sensors to remote and distant locations. The current capabilities and accomplishments are: (1) Operational electric (inaudible) 6-inch MAVs with novel flexible wing, providing superior aerodynamic efficiency and control. (2) Vision-based flight stability and control (from on-board cameras).
Remotely piloted vehicles. Citations from the International Aerospace abstracts data base
NASA Technical Reports Server (NTRS)
Mauk, S. C.
1980-01-01
These citations from the international literature cover various aspects of remotely piloted vehicles. Included are articles concerning aircraft design, flight tests, aircraft control, cost effectiveness, automatic flight control, automatic pilots, and data links. Civil aviation applications are included, although military uses of remotely piloted vehicles are stressed. This updated bibliography contains 224 citations, 43 of which are new additions to the previous edition.
Remote Control Laboratory Using EJS Applets and TwinCAT Programmable Logic Controllers
ERIC Educational Resources Information Center
Besada-Portas, E.; Lopez-Orozco, J. A.; de la Torre, L.; de la Cruz, J. M.
2013-01-01
This paper presents a new methodology to develop remote laboratories for systems engineering and automation control courses, based on the combined use of TwinCAT, a laboratory Java server application, and Easy Java Simulations (EJS). The TwinCAT system is used to close the control loop for the selected plants by means of programmable logic…
A multi-mode manipulator display system for controlling remote robotic systems
NASA Technical Reports Server (NTRS)
Massimino, Michael J.; Meschler, Michael F.; Rodriguez, Alberto A.
1994-01-01
The objective and contribution of the research presented in this paper is to provide a Multi-Mode Manipulator Display System (MMDS) to assist a human operator with the control of remote manipulator systems. Such systems include space based manipulators such as the space shuttle remote manipulator system (SRMS) and future ground controlled teleoperated and telescience space systems. The MMDS contains a number of display modes and submodes which display position control cues position data in graphical formats, based primarily on manipulator position and joint angle data. Therefore the MMDS is not dependent on visual information for input and can assist the operator especially when visual feedback is inadequate. This paper provides descriptions of the new modes and experiment results to date.
General-Purpose Serial Interface For Remote Control
NASA Technical Reports Server (NTRS)
Busquets, Anthony M.; Gupton, Lawrence E.
1990-01-01
Computer controls remote television camera. General-purpose controller developed to serve as interface between host computer and pan/tilt/zoom/focus functions on series of automated video cameras. Interface port based on 8251 programmable communications-interface circuit configured for tristated outputs, and connects controller system to any host computer with RS-232 input/output (I/O) port. Accepts byte-coded data from host, compares them with prestored codes in read-only memory (ROM), and closes or opens appropriate switches. Six output ports control opening and closing of as many as 48 switches. Operator controls remote television camera by speaking commands, in system including general-purpose controller.
[Remote Slit Lamp Microscope Consultation System Based on Web].
Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping
2015-11-01
To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.
An object-based storage model for distributed remote sensing images
NASA Astrophysics Data System (ADS)
Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng
2006-10-01
It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.
Leccese, Fabio; Cagnetti, Marco; Trinca, Daniele
2014-01-01
A smart city application has been realized and tested. It is a fully remote controlled isle of lamp posts based on new technologies. It has been designed and organized in different hierarchical layers, which perform local activities to physically control the lamp posts and transmit information with another for remote control. Locally, each lamp post uses an electronic card for management and a ZigBee tlc network transmits data to a central control unit, which manages the whole isle. The central unit is realized with a Raspberry-Pi control card due to its good computing performance at very low price. Finally, a WiMAX connection was tested and used to remotely control the smart grid, thus overcoming the distance limitations of commercial Wi-Fi networks. The isle has been realized and tested for some months in the field. PMID:25529206
Leccese, Fabio; Cagnetti, Marco; Trinca, Daniele
2014-12-18
A smart city application has been realized and tested. It is a fully remote controlled isle of lamp posts based on new technologies. It has been designed and organized in different hierarchical layers, which perform local activities to physically control the lamp posts and transmit information with another for remote control. Locally, each lamp post uses an electronic card for management and a ZigBee tlc network transmits data to a central control unit, which manages the whole isle. The central unit is realized with a Raspberry-Pi control card due to its good computing performance at very low price. Finally, a WiMAX connection was tested and used to remotely control the smart grid, thus overcoming the distance limitations of commercial Wi-Fi networks. The isle has been realized and tested for some months in the field.
Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade
NASA Astrophysics Data System (ADS)
Graça, S.; Santos, J.; Manso, M. E.
2004-10-01
The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut für Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusão Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls.
Event-Based Sensing and Control for Remote Robot Guidance: An Experimental Case
Santos, Carlos; Martínez-Rey, Miguel; Santiso, Enrique
2017-01-01
This paper describes the theoretical and practical foundations for remote control of a mobile robot for nonlinear trajectory tracking using an external localisation sensor. It constitutes a classical networked control system, whereby event-based techniques for both control and state estimation contribute to efficient use of communications and reduce sensor activity. Measurement requests are dictated by an event-based state estimator by setting an upper bound to the estimation error covariance matrix. The rest of the time, state prediction is carried out with the Unscented transformation. This prediction method makes it possible to select the appropriate instants at which to perform actuations on the robot so that guidance performance does not degrade below a certain threshold. Ultimately, we obtained a combined event-based control and estimation solution that drastically reduces communication accesses. The magnitude of this reduction is set according to the tracking error margin of a P3-DX robot following a nonlinear trajectory, remotely controlled with a mini PC and whose pose is detected by a camera sensor. PMID:28878144
Design and development of an IoT-based web application for an intelligent remote SCADA system
NASA Astrophysics Data System (ADS)
Kao, Kuang-Chi; Chieng, Wei-Hua; Jeng, Shyr-Long
2018-03-01
This paper presents a design of an intelligent remote electrical power supervisory control and data acquisition (SCADA) system based on the Internet of Things (IoT), with Internet Information Services (IIS) for setting up web servers, an ASP.NET model-view- controller (MVC) for establishing a remote electrical power monitoring and control system by using responsive web design (RWD), and a Microsoft SQL Server as the database. With the web browser connected to the Internet, the sensing data is sent to the client by using the TCP/IP protocol, which supports mobile devices with different screen sizes. The users can provide instructions immediately without being present to check the conditions, which considerably reduces labor and time costs. The developed system incorporates a remote measuring function by using a wireless sensor network and utilizes a visual interface to make the human-machine interface (HMI) more instinctive. Moreover, it contains an analog input/output and a basic digital input/output that can be applied to a motor driver and an inverter for integration with a remote SCADA system based on IoT, and thus achieve efficient power management.
NASA Technical Reports Server (NTRS)
Kingsbury, Brent K.
1986-01-01
Described is the implementation of a networked, UNIX based queueing system developed on contract for NASA. The system discussed supports both batch and device requests, and provides the facilities of remote queueing, request routing, remote status, queue access controls, batch request resource quota limits, and remote output return.
Google glass-based remote control of a mobile robot
NASA Astrophysics Data System (ADS)
Yu, Song; Wen, Xi; Li, Wei; Chen, Genshe
2016-05-01
In this paper, we present an approach to remote control of a mobile robot via a Google Glass with the multi-function and compact size. This wearable device provides a new human-machine interface (HMI) to control a robot without need for a regular computer monitor because the Google Glass micro projector is able to display live videos around robot environments. In doing it, we first develop a protocol to establish WI-FI connection between Google Glass and a robot and then implement five types of robot behaviors: Moving Forward, Turning Left, Turning Right, Taking Pause, and Moving Backward, which are controlled by sliding and clicking the touchpad located on the right side of the temple. In order to demonstrate the effectiveness of the proposed Google Glass-based remote control system, we navigate a virtual Surveyor robot to pass a maze. Experimental results demonstrate that the proposed control system achieves the desired performance.
Remote presence proctoring by using a wireless remote-control videoconferencing system.
Smith, C Daniel; Skandalakis, John E
2005-06-01
Remote presence in an operating room to allow an experienced surgeon to proctor a surgeon has been promised through robotics and telesurgery solutions. Although several such systems have been developed and commercialized, little progress has been made using telesurgery for anything more than live demonstrations of surgery. This pilot project explored the use of a new videoconferencing capability to determine if it offers advantages over existing systems. The video conferencing system used is a PC-based system with a flat screen monitor and an attached camera that is then mounted on a remotely controlled platform. This device is controlled from a remotely placed PC-based videoconferencing system computer outfitted with a joystick. Using the public Internet and a wireless router at the client site, a surgeon at the control station can manipulate the videoconferencing system. Controls include navigating the unit around the room and moving the flat screen/camera portion like a head looking up/down and right/left. This system (InTouch Medical, Santa Barbara, CA) was used to proctor medical students during an anatomy class cadaver dissection. The ability of the remote surgeon to effectively monitor the students' dissections and direct their activities was assessed subjectively by students and surgeon. This device was very effective at providing a controllable and interactive presence in the anatomy lab. Students felt they were interacting with a person rather than a video screen and quickly forgot that the surgeon was not in the room. The ability to move the device within the environment rather than just observe the environment from multiple fixed camera angles gave the surgeon a similar feel of true presence. A remote-controlled videoconferencing system provides a more real experience for both student and proctor. Future development of such a device could greatly facilitate progress in implementation of remote presence proctoring.
Designing minimal space telerobotics systems for maximum performance
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Long, Mark K.; Steele, Robert D.
1992-01-01
The design of the remote site of a local-remote telerobot control system is described which addresses the constraints of limited computational power available at the remote site control system while providing a large range of control capabilities. The Modular Telerobot Task Execution System (MOTES) provides supervised autonomous control, shared control and teleoperation for a redundant manipulator. The system is capable of nominal task execution as well as monitoring and reflex motion. The MOTES system is minimized while providing a large capability by limiting its functionality to only that which is necessary at the remote site and by utilizing a unified multi-sensor based impedance control scheme. A command interpreter similar to one used on robotic spacecraft is used to interpret commands received from the local site. The system is written in Ada and runs in a VME environment on 68020 processors and initially controls a Robotics Research K1207 7 degree of freedom manipulator.
Daylighting Digital Dimmer SBIR Phase 2 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Morgan
The primary focus of the Phase II Development is the implementation of two key technologies, Task To Wall (TTW) Control, and Wand Gesture light dimming control into an easy to use remote for SSL light control, the MoJo Remote. The MoJo Remote product family includes a battery powered wireless remote, a WiFi gateway as well as Mobile Applications for iOS and Android. Specific accomplishments during the second reporting period include: 1. Finalization and implementation of MoJo Remote Accelerometer and capacitive-touch based UI/UX, referred to as the Wand Gesture UI. 2. Issuance of Patent for Wand Gesture UI. 3. Industrial andmore » Mechanical Design for MoJo Remote and MoJo Gateway. 4. Task To Wall implementation and testing in MoJo Remote. 5. Zooming User Interface (ZUI) for the Mobile App implemented on both iOS and Andriod. 6. iOS Mobile app developed to beta level functionality. 7. Initial Development of the Android Mobile Application. 8. Closed loop color control at task (demonstrated at 2016 SSL R&D Workshop). 9. Task To Wall extended to Color Control, working in simulation. 10. Beta testing begun in Late 2017/Early 2018. The MoJo Remote integrates the Patented TTW Control and the Wand Gesture innovative User Interface, and is currently in Beta testing and on the path to commercialization.« less
NASA Technical Reports Server (NTRS)
Kiang, R.; Adimi, F.; Nigro, J.
2007-01-01
Meteorological and environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. These parameters can most conveniently be obtained using remote sensing. Selected provinces and districts in Thailand and Indonesia are used to illustrate how remotely sensed meteorological and environmental parameters may enhance the capabilities for malaria surveillance and control. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruff, T.M.
1992-01-01
A prototype mucking machine designed to operate in narrow vein stopes was developed by Foster-Miller, Inc., Waltham, MA, under contract with the U.S. Bureau of Mines. The machine, called a compact loader/trammer, or minimucker, was designed to replace slusher muckers in narrow-vein underground mines. The minimucker is a six-wheel-drive, skid-steered, load-haul-dump machine that loads muck at the front with a novel slide-bucket system and ejects it out the rear so that the machine does not have to be turned around. To correct deficiencies of the tether remote control system, a computer-based, radio remote control was retrofitted to the minimucker. Initialmore » tests indicated a need to assist the operator in guiding the machine in narrow stopes and an automatic guidance system that used ultrasonic ranging sensors and a wall-following algorithm was installed. Additional tests in a simulated test stope showed that these changes improved the operation of the minimucker. The design and functions of the minimucker and its computer-based, remote control system are reviewed, and an ultrasonic, sensor-based guidance system is described.« less
Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377
Design and implementation of a wireless sensor network-based remote water-level monitoring system.
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).
Remote Authentication: The Obvia Solution.
ERIC Educational Resources Information Center
Eckley, Tami-Jo
1999-01-01
This article focuses on Obvia Corporation, a New York-based company that offers remote data access (RDA) through a server software system allowing for an easy, controllable, cost-effective management solution to the remote access problem. Using Obvia's RDA service, librarians can focus on administrative and professional decisions and spend more…
NASA Technical Reports Server (NTRS)
Backes, Paul G. (Inventor); Tso, Kam S. (Inventor)
1993-01-01
This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.
Remote control of an impact demonstration vehicle
NASA Technical Reports Server (NTRS)
Harney, P. F.; Craft, J. B., Jr.; Johnson, R. G.
1985-01-01
Uplink and downlink telemetry systems were installed in a Boeing 720 aircraft that was remotely flown from Rogers Dry Lake at Edwards Air Force Base and impacted into a designated crash site on the lake bed. The controlled impact demonstration (CID) program was a joint venture by the National Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) to test passenger survivability using antimisting kerosene (AMK) to inhibit postcrash fires, improve passenger seats and restraints, and improve fire-retardent materials. The uplink telemetry system was used to remotely control the aircraft and activate onboard systems from takeoff until after impact. Aircraft systems for remote control, aircraft structural response, passenger seat and restraint systems, and anthropomorphic dummy responses were recorded and displayed by the downlink stems. The instrumentation uplink and downlink systems are described.
Gritzo, R.E.
1985-09-12
A remote reset circuit acts as a stand-along monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients. 4 figs.
Gritzo, Russell E.
1987-01-01
A remote reset circuit acts as a stand-alone monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients.
Wireless, Web-Based Interactive Control of Optical Coherence Tomography with Mobile Devices.
Mehta, Rajvi; Nankivil, Derek; Zielinski, David J; Waterman, Gar; Keller, Brenton; Limkakeng, Alexander T; Kopper, Regis; Izatt, Joseph A; Kuo, Anthony N
2017-01-01
Optical coherence tomography (OCT) is widely used in ophthalmology clinics and has potential for more general medical settings and remote diagnostics. In anticipation of remote applications, we developed wireless interactive control of an OCT system using mobile devices. A web-based user interface (WebUI) was developed to interact with a handheld OCT system. The WebUI consisted of key OCT displays and controls ported to a webpage using HTML and JavaScript. Client-server relationships were created between the WebUI and the OCT system computer. The WebUI was accessed on a cellular phone mounted to the handheld OCT probe to wirelessly control the OCT system. Twenty subjects were imaged using the WebUI to assess the system. System latency was measured using different connection types (wireless 802.11n only, wireless to remote virtual private network [VPN], and cellular). Using a cellular phone, the WebUI was successfully used to capture posterior eye OCT images in all subjects. Simultaneous interactivity by a remote user on a laptop was also demonstrated. On average, use of the WebUI added only 58, 95, and 170 ms to the system latency using wireless only, wireless to VPN, and cellular connections, respectively. Qualitatively, operator usage was not affected. Using a WebUI, we demonstrated wireless and remote control of an OCT system with mobile devices. The web and open source software tools used in this project make it possible for any mobile device to potentially control an OCT system through a WebUI. This platform can be a basis for remote, teleophthalmology applications using OCT.
Remote Operation of the ExoGeoLab Lander at ESTEC and Lunares Base
NASA Astrophysics Data System (ADS)
Lillo, A.; Foing, B. H.; Evellin, P.; Kołodziejczyk, A.; Jonglez, C.; Heinicke, C.; Harasymczuk, M.; Authier, L.; Blanc, A.; Chahla, C.; Tomic, A.; Mirino, M.; Schlacht, I.; Hettrich, S.; Pacher, T.
2017-10-01
The ExoGeoLab Lander is a prototype developed to demonstrate joint use of remote operation and EVA astronaut work in analogue lunar environment. It was recently deployed in the new analogue base Lunares in Poland and controlled from ESA ESTEC center.
A teleoperated system for remote site characterization
NASA Technical Reports Server (NTRS)
Sandness, Gerald A.; Richardson, Bradley S.; Pence, Jon
1994-01-01
The detection and characterization of buried objects and materials is an important step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. By performing these tasks with remotely controlled sensors, it is possible to obtain improved data quality and consistency as well as enhanced safety for on-site workers. Therefore, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by a radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS).
ERIC Educational Resources Information Center
Henderson, Jeffrey A.; Chubak, Jessica; O'Connell, Joan; Ramos, Maria C.; Jensen, Julie; Jobe, Jared B.
2012-01-01
We describe a randomized controlled trial, the Lakota Oyate Wicozani Pi Kte (LOWPK) trial, which was designed to determine whether a Web-based diabetes and nutritional intervention can improve risk factors related to cardiovascular disease (CVD) among a group of remote reservation-dwelling adult American Indian men and women with type 2 diabetes…
González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel
2016-10-31
In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented.
González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel
2016-01-01
In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented. PMID:27809229
A low cost, high performance remotely controlled backhoe/excavator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, J.
1995-12-31
This paper addresses a state of the art, low cost, remotely controlled backhoe/excavator system for remediation use at hazardous waste sites. The all weather, all terrain, Remote Dig-It is based on a simple, proven construction platform and incorporates state of the art sensors, control, telemetry and other subsystems derived from advanced underwater remotely operated vehicle systems. The system can be towed to a site without the use of a trailer, manually operated by an on board operator or operated via a fiber optic or optional RF communications link by a remotely positioned operator. A proportional control system is piggy backedmore » onto the standard manual control system. The control system improves manual operation, allows rapid manual/remote mode selection and provides fine manual or remote control of all functions. The system incorporates up to 4 separate video links, acoustic obstacle proximity sensors, and stereo audio pickups and an optional differential GPS navigation. Video system options include electronic panning and tilting within a distortion-corrected wide angle field of view. The backhoe/excavator subsystem has a quick disconnect interface feature which allows its use as a manipulator with a wide variety of end effectors and tools. The Remote Dig-It was developed to respond to the need for a low-cost, effective remediation system for use at sites containing hazardous materials. The prototype system was independently evaluated for this purpose by the Army at the Jefferson Proving Ground where it surpassed all performance goals. At the time of this writing, the Remote Dig-It system is currently the only backhoe/excavator which met the Army`s goals for remediation systems for use at hazardous waste sites and it costs a fraction of any known competing offerings.« less
Mixing console design for telematic applications in live performance and remote recording
NASA Astrophysics Data System (ADS)
Samson, David J.
The development of a telematic mixing console addresses audio engineers' need for a fully integrated system architecture that improves efficiency and control for applications such as distributed performance and remote recording. Current systems used in state of the art telematic performance rely on software-based interconnections with complex routing schemes that offer minimal flexibility or control over key parameters needed to achieve a professional workflow. The lack of hardware-based control in the current model limits the full potential of both the engineer and the system. The new architecture provides a full-featured platform that, alongside customary features, integrates (1) surround panning capability for motorized, binaural manikin heads, as well as all sources in the included auralization module, (2) self-labelling channel strips, responsive to change at all remote sites, (3) onboard roundtrip latency monitoring, (4) synchronized remote audio recording and monitoring, and (5) flexible routing. These features combined with robust parameter automation and precise analog control will raise the standard for telematic systems as well as advance the development of networked audio systems for both research and professional audio markets.
Secure distribution for high resolution remote sensing images
NASA Astrophysics Data System (ADS)
Liu, Jin; Sun, Jing; Xu, Zheng Q.
2010-09-01
The use of remote sensing images collected by space platforms is becoming more and more widespread. The increasing value of space data and its use in critical scenarios call for adoption of proper security measures to protect these data against unauthorized access and fraudulent use. In this paper, based on the characteristics of remote sensing image data and application requirements on secure distribution, a secure distribution method is proposed, including users and regions classification, hierarchical control and keys generation, and multi-level encryption based on regions. The combination of the three parts can make that the same remote sensing images after multi-level encryption processing are distributed to different permission users through multicast, but different permission users can obtain different degree information after decryption through their own decryption keys. It well meets user access control and security needs in the process of high resolution remote sensing image distribution. The experimental results prove the effectiveness of the proposed method which is suitable for practical use in the secure transmission of remote sensing images including confidential information over internet.
Remote Labs and Game-Based Learning for Process Control
ERIC Educational Resources Information Center
Zualkernan, Imran A.; Husseini, Ghaleb A.; Loughlin, Kevin F.; Mohebzada, Jamshaid G.; El Gaml, Moataz
2013-01-01
Social networking platforms and computer games represent a natural informal learning environment for the current generation of learners in higher education. This paper explores the use of game-based learning in the context of an undergraduate chemical engineering remote laboratory. Specifically, students are allowed to manipulate chemical…
Remotely Accessed Vehicle Traffic Management System
NASA Astrophysics Data System (ADS)
Al-Alawi, Raida
2010-06-01
The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.
Designing communication and remote controlling of virtual instrument network system
NASA Astrophysics Data System (ADS)
Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian
2005-01-01
In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.
Research of remote control for Chinese Antarctica Telescope based on iridium satellite communication
NASA Astrophysics Data System (ADS)
Xu, Lingzhe; Yang, Shihai
2010-07-01
Astronomers are ever dreaming of sites with best seeing on the Earth surface for celestial observation, and the Antarctica is one of a few such sites only left owing to the global air pollution. However, Antarctica region is largely unaccessible for human being due to lacking of fundamental living conditions, travel facilities and effective ways of communication. Worst of all, the popular internet source as a general way of communication scarcely exists there. Facing such a dilemma and as a solution remote control and data transmission for telescopes through iridium satellite communication has been put forward for the Chinese network Antarctic Schmidt Telescopes 3 (AST3), which is currently under all round research and development. This paper presents iridium satellite-based remote control application adapted to telescope control. The pioneer work in China involves hardware and software configuration utilizing techniques for reliable and secure communication, which is outlined in the paper too.
Rawstorn, Jonathan C; Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph
2016-06-24
Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients' exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial.
Evolving technologies for Space Station Freedom computer-based workstations
NASA Technical Reports Server (NTRS)
Jensen, Dean G.; Rudisill, Marianne
1990-01-01
Viewgraphs on evolving technologies for Space Station Freedom computer-based workstations are presented. The human-computer computer software environment modules are described. The following topics are addressed: command and control workstation concept; cupola workstation concept; Japanese experiment module RMS workstation concept; remote devices controlled from workstations; orbital maneuvering vehicle free flyer; remote manipulator system; Japanese experiment module exposed facility; Japanese experiment module small fine arm; flight telerobotic servicer; human-computer interaction; and workstation/robotics related activities.
Wireless, Web-Based Interactive Control of Optical Coherence Tomography with Mobile Devices
Mehta, Rajvi; Nankivil, Derek; Zielinski, David J.; Waterman, Gar; Keller, Brenton; Limkakeng, Alexander T.; Kopper, Regis; Izatt, Joseph A.; Kuo, Anthony N.
2017-01-01
Purpose Optical coherence tomography (OCT) is widely used in ophthalmology clinics and has potential for more general medical settings and remote diagnostics. In anticipation of remote applications, we developed wireless interactive control of an OCT system using mobile devices. Methods A web-based user interface (WebUI) was developed to interact with a handheld OCT system. The WebUI consisted of key OCT displays and controls ported to a webpage using HTML and JavaScript. Client–server relationships were created between the WebUI and the OCT system computer. The WebUI was accessed on a cellular phone mounted to the handheld OCT probe to wirelessly control the OCT system. Twenty subjects were imaged using the WebUI to assess the system. System latency was measured using different connection types (wireless 802.11n only, wireless to remote virtual private network [VPN], and cellular). Results Using a cellular phone, the WebUI was successfully used to capture posterior eye OCT images in all subjects. Simultaneous interactivity by a remote user on a laptop was also demonstrated. On average, use of the WebUI added only 58, 95, and 170 ms to the system latency using wireless only, wireless to VPN, and cellular connections, respectively. Qualitatively, operator usage was not affected. Conclusions Using a WebUI, we demonstrated wireless and remote control of an OCT system with mobile devices. Translational Relevance The web and open source software tools used in this project make it possible for any mobile device to potentially control an OCT system through a WebUI. This platform can be a basis for remote, teleophthalmology applications using OCT. PMID:28138415
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Sanderson, A. C.
1994-01-01
Robot coordination and control systems for remote teleoperation applications are by necessity implemented on distributed computers. Modeling and performance analysis of these distributed robotic systems is difficult, but important for economic system design. Performance analysis methods originally developed for conventional distributed computer systems are often unsatisfactory for evaluating real-time systems. The paper introduces a formal model of distributed robotic control systems; and a performance analysis method, based on scheduling theory, which can handle concurrent hard-real-time response specifications. Use of the method is illustrated by a case of remote teleoperation which assesses the effect of communication delays and the allocation of robot control functions on control system hardware requirements.
The ACE multi-user web-based Robotic Observatory Control System
NASA Astrophysics Data System (ADS)
Mack, P.
2003-05-01
We have developed an observatory control system that can be operated in interactive, remote or robotic modes. In interactive and remote mode the observer typically acquires the first object then creates a script through a window interface to complete observations for the rest of the night. The system closes early in the event of bad weather. In robotic mode observations are submitted ahead of time through a web-based interface. We present observations made with a 1.0-m telescope using these methods.
Flight-test experience in digital control of a remotely piloted vehicle.
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1972-01-01
The development of a remotely piloted vehicle system consisting of a remote pilot cockpit and a ground-based digital computer coupled to the aircraft through telemetry data links is described. The feedback control laws are implemented in a FORTRAN program. Flight-test experience involving high feedback gain limits for attitude and attitude rate feedback variables, filtering of sampled data, and system operation during intermittent telemetry data link loss is discussed. Comparisons of closed-loop flight tests with analytical calculations, and pilot comments on system operation are included.
The EPICS-based remote control system for muon beam line devices at J-PARC MUSE
NASA Astrophysics Data System (ADS)
Ito, T. U.; Nakahara, K.; Kawase, M.; Fujimori, H.; Kobayashi, Y.; Higemoto, W.; Miyake, Y.
2010-04-01
The remote control system for muon beam line devices of J-PARC MUSE has been developed with the Experimental Physics and Industrial Control System (EPICS). The EPICS input/output controller was installed in standard Linux PCs for slow control of the devices. Power supplies for 21 magnetic elements and four slit controllers for the decay-surface muon beam line in the Materials and Life Science Experimental Facility are now accessible via Ethernet from a graphical user interface which has been composed using the Motif Editor and Display Manger.
Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph
2016-01-01
Background Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. Objective We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. Methods An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. Results The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients’ exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. Conclusions The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial. PMID:27342791
Virtual Machine Language Controls Remote Devices
NASA Technical Reports Server (NTRS)
2014-01-01
Kennedy Space Center worked with Blue Sun Enterprises, based in Boulder, Colorado, to enhance the company's virtual machine language (VML) to control the instruments on the Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction mission. Now the NASA-improved VML is available for crewed and uncrewed spacecraft, and has potential applications on remote systems such as weather balloons, unmanned aerial vehicles, and submarines.
Cybersecurity for aerospace autonomous systems
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2015-05-01
High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.
An IBeacon-Based Location System for Smart Home Control.
Liu, Qinghe; Yang, Xinshuang; Deng, Lizhen
2018-06-11
Indoor location and intelligent control system can bring convenience to people’s daily life. In this paper, an indoor control system is designed to achieve equipment remote control by using low-energy Bluetooth (BLE) beacon and Internet of Things (IoT) technology. The proposed system consists of five parts: web server, home gateway, smart terminal, smartphone app and BLE beacons. In the web server, fingerprint matching based on RSSI stochastic characteristic and posture recognition model based on geomagnetic sensing are used to establish a more efficient equipment control system, combined with Pedestrian Dead Reckoning (PDR) technology to improve the accuracy of location. A personalized menu of remote “one-click” control is finally offered to users in a smartphone app. This smart home control system has been implemented by hardware, and precision and stability tests have been conducted, which proved the practicability and good user experience of this solution.
Full-scale Transport Controlled Impact Demonstration Program
NASA Technical Reports Server (NTRS)
1987-01-01
The Federal Aviation Administration (FAA) and NASA conducted a full-scale air-to-surface impact-survivable impact demonstration with a remotely piloted transport aircraft on 1 December 1984, at Edwards Air Force Base, California. The test article consisted of experiments, special equipment, and supporting systems, such as antimisting kerosene (AMK), crashworthiness structural/restraint, analytical modeling, cabin fire safety, flight data recorders, post-impact investigation, instrumentation/data acquisition systems, remotely piloted vehicle/flight control systems, range and flight safety provisions, etc. This report describes the aircraft, experiments, systems, activities, and events which lead up to the Controlled Impact Demonstration (CID). An overview of the final unmanned remote control flight and sequence of impact events are delineated. Preliminary post CID observations are presented.
Studies to design and develop improved remote manipulator systems
NASA Technical Reports Server (NTRS)
Hill, J. W.; Sword, A. J.
1973-01-01
Remote manipulator control considered is based on several levels of automatic supervision which derives manipulator commands from an analysis of sensor states and task requirements. Principle sensors are manipulator joint position, tactile, and currents. The tactile sensor states can be displayed visually in perspective or replicated in the operator's control handle of perceived by the automatic supervisor. Studies are reported on control organization, operator performance and system performance measures. Unusual hardware and software details are described.
Distributed Transforms for Efficient Data Gathering in Sensor Networks
NASA Technical Reports Server (NTRS)
Ortega, Antonio (Inventor); Shen, Godwin (Inventor); Narang, Sunil K. (Inventor); Perez-Trufero, Javier (Inventor)
2014-01-01
Devices, systems, and techniques for data collecting network such as wireless sensors are disclosed. A described technique includes detecting one or more remote nodes included in the wireless sensor network using a local power level that controls a radio range of the local node. The technique includes transmitting a local outdegree. The local outdegree can be based on a quantity of the one or more remote nodes. The technique includes receiving one or more remote outdegrees from the one or more remote nodes. The technique includes determining a local node type of the local node based on detecting a node type of the one or more remote nodes, using the one or more remote outdegrees, and using the local outdegree. The technique includes adjusting characteristics, including an energy usage characteristic and a data compression characteristic, of the wireless sensor network by selectively modifying the local power level and selectively changing the local node type.
Research on optimal path planning algorithm of task-oriented optical remote sensing satellites
NASA Astrophysics Data System (ADS)
Liu, Yunhe; Xu, Shengli; Liu, Fengjing; Yuan, Jingpeng
2015-08-01
GEO task-oriented optical remote sensing satellite, is very suitable for long-term continuous monitoring and quick access to imaging. With the development of high resolution optical payload technology and satellite attitude control technology, GEO optical remote sensing satellites will become an important developing trend for aerospace remote sensing satellite in the near future. In the paper, we focused on GEO optical remote sensing satellite plane array stare imaging characteristics and real-time leading mission of earth observation mode, targeted on satisfying needs of the user with the minimum cost of maneuver, and put forward the optimal path planning algorithm centered on transformation from geographic coordinate space to Field of plane, and finally reduced the burden of the control system. In this algorithm, bounded irregular closed area on the ground would be transformed based on coordinate transformation relations in to the reference plane for field of the satellite payload, and then using the branch and bound method to search for feasible solutions, cutting off the non-feasible solution in the solution space based on pruning strategy; and finally trimming some suboptimal feasible solutions based on the optimization index until a feasible solution for the global optimum. Simulation and visualization presentation software testing results verified the feasibility and effectiveness of the strategy.
Minefield reconnaissance and detector system
Butler, M.T.; Cave, S.P.; Creager, J.D.; Johnson, C.M.; Mathes, J.B.; Smith, K.J.
1994-04-26
A multi-sensor system is described for detecting the presence of objects on the surface of the ground or buried just under the surface, such as anti-personnel or anti-tank mines or the like. A remote sensor platform has a plurality of metal detector sensors and a plurality of short pulse radar sensors. The remote sensor platform is remotely controlled from a processing and control unit and signals from the remote sensor platform are sent to the processing and control unit where they are individually evaluated in separate data analysis subprocess steps to obtain a probability score for each of the pluralities of sensors. These probability scores are combined in a fusion subprocess step by comparing score sets to a probability table which is derived based upon the historical incidence of object present conditions given that score set. A decision making rule is applied to provide an output which is optionally provided to a marker subprocess for controlling a marker device to mark the location of found objects. 7 figures.
Portable Laser Spectrometer for Airborne and Ground-Based Remote Sensing of Geological CO2 Emissions
NASA Technical Reports Server (NTRS)
Queisser, Manuel; Burton, Mike; Allan, Graham R.; Chiarugi, Antonio
2017-01-01
A 24 kilogram, suitcase-sized, CW (Continuous Wave) Laser Remote Sensing Spectrometer (LARSS) with an approximately 2-kilometer range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online-offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.
Queisser, Manuel; Burton, Mike; Allan, Graham R; Chiarugi, Antonio
2017-07-15
A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.
A Remote PLC Laboratory (RLab) for Distance Practical Work of Industrial Automation
NASA Astrophysics Data System (ADS)
Haritman, E.; Somantri, Y.; Wahyudin, D.; Mulyana, E.
2018-02-01
A laboratory is an essential equipment for engineering students to do a useful practical work. Therefore, universities should provide an adequate facility for practical work. On the other hand, industrial automation laboratory would offer students beneficial experience by using various educational PLC kits. This paper describes the development of Web-based Programmable Logic Controller (PLC) remote laboratory called RLab. It provides an environment for learners to study PLC application to control the level of the non-interacting tank. The RLab architecture is based on a Moodle and Remote Desktop, which also manages the booking system of the schedule of practical work in the laboratory. The RLab equipped by USB cameras providing a real-time view of PLC environment. To provide a secured system, the RLab combines Moodle and Remote Desktop application for the authentication system and management of remote users. Moodle will send PartnerID and password to connect to TeamViewer. It has been examined that the laboratory requirement, time and flexibility restrictions constitute a significant obstacle facing traditional students desiring to finish the course. A remote access laboratory can be eliminating time and flexibility restrictions. The preliminary study of RLab usability proved that such system is adequate to give the learners a distance practical work environment.
Hadfield works robotic controls in the Cupola Module
2013-01-10
ISS034-E-027317 (10 Jan. 2013) --- In the Cupola aboard the Earth-orbiting International Space Station, Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, works the controls at the Robotic workstation to maneuver the Space Station Remote Manipulator System (SSRMS) or CanadArm2 from its parked position to grapple the Mobile Remote Servicer (MRS) Base System (MBS) Power and Data Grapple Fixture 4 (PDGF-4).
Remote observing with NASA's Deep Space Network
NASA Astrophysics Data System (ADS)
Kuiper, T. B. H.; Majid, W. A.; Martinez, S.; Garcia-Miro, C.; Rizzo, J. R.
2012-09-01
The Deep Space Network (DSN) communicates with spacecraft as far away as the boundary between the Solar System and the interstellar medium. To make this possible, large sensitive antennas at Canberra, Australia, Goldstone, California, and Madrid, Spain, provide for constant communication with interplanetary missions. We describe the procedures for radioastronomical observations using this network. Remote access to science monitor and control computers by authorized observers is provided by two-factor authentication through a gateway at the Jet Propulsion Laboratory (JPL) in Pasadena. To make such observations practical, we have devised schemes based on SSH tunnels and distributed computing. At the very minimum, one can use SSH tunnels and VNC (Virtual Network Computing, a remote desktop software suite) to control the science hosts within the DSN Flight Operations network. In this way we have controlled up to three telescopes simultaneously. However, X-window updates can be slow and there are issues involving incompatible screen sizes and multi-screen displays. Consequently, we are now developing SSH tunnel-based schemes in which instrument control and monitoring, and intense data processing, are done on-site by the remote DSN hosts while data manipulation and graphical display are done at the observer's host. We describe our approaches to various challenges, our experience with what worked well and lessons learned, and directions for future development.
Realizable optimal control for a remotely piloted research vehicle. [stability augmentation
NASA Technical Reports Server (NTRS)
Dunn, H. J.
1980-01-01
The design of a control system using the linear-quadratic regulator (LQR) control law theory for time invariant systems in conjunction with an incremental gradient procedure is presented. The incremental gradient technique reduces the full-state feedback controller design, generated by the LQR algorithm, to a realizable design. With a realizable controller, the feedback gains are based only on the available system outputs instead of being based on the full-state outputs. The design is for a remotely piloted research vehicle (RPRV) stability augmentation system. The design includes methods for accounting for noisy measurements, discrete controls with zero-order-hold outputs, and computational delay errors. Results from simulation studies of the response of the RPRV to a step in the elevator and frequency analysis techniques are included to illustrate these abnormalities and their influence on the controller design.
NASA Astrophysics Data System (ADS)
Krause, H. F.; Deveney, E. F.; Jones, N. L.; Vane, C. R.; Datz, S.; Knudsen, H.; Grafström, P.; Schuch, R.
1997-04-01
Recent atomic physics studies involving ultrarelativistic Pb ions required solid target positioners, scintillators, and a sophisticated data acquisition and control system placed in a remote location at the CERN Super Proton Synchrotron near Geneva, Switzerland. The apparatus, installed in a high-radiation zone underground, had to (i) function for months, (ii) automatically respond to failures such as power outages and particle-induced computer upsets, and (iii) communicate with the outside world via a telephone line. The heart of the apparatus developed was an Apple Macintosh-based CAMAC system that answered the telephone and interpreted and executed remote control commands that (i) sensed and set targets, (ii) controlled voltages and discriminator levels for scintillators, (iii) modified data acquisition hardware logic, (iv) reported control information, and (v) automatically synchronized data acquisition to the CERN spill cycle via a modem signal and transmitted experimental data to a remote computer. No problems were experienced using intercontinental telephone connections at 1200 baud. Our successful "virtual laboratory" approach that uses off-the-shelf electronics is generally adaptable to more conventional bench-type experiments.
Johnston, Vanessa; Thomas, David P
2010-04-01
To explore the perceptions of remote Indigenous community members and health staff regarding the acceptability and effectiveness of different tobacco control health promotion interventions. Qualitative methods were used for this exploratory study, including interviews with remote Indigenous community members and health staff, as well as observations of the delivery of different tobacco control activities in three remote communities in the Northern Territory (NT). Several tobacco control interventions for which there is strong evidence in other settings were generally perceived as acceptable and efficacious in the remote Indigenous setting. Primary care interventions, such as brief advice and pharmaceutical quitting aids, when available and accessible, were perceived as important and effective strategies to help people quit, as were the promotion of smokefree areas. By contrast unmodified Quit programs were perceived to have questionable application in this context and there were conflicting findings regarding taxation increases on tobacco and social marketing campaigns. Several evidence-based 'mainstream' activities are perceived to be acceptable to this population, but we may also need to address the concerns raised by health staff and community members about the acceptability of some unmodified activities. Additionally, organisational barriers within the health system may be contributing to the reduced effectiveness of tobacco control in this setting.
Implementation of the Web-based laboratory
NASA Astrophysics Data System (ADS)
Ying, Liu; Li, Xunbo
2005-12-01
With the rapid developments of Internet technologies, remote access and control via Internet is becoming a reality. A realization of the web-based laboratory (the W-LAB) was presented. The main target of the W-LAB was to allow users to easily access and conduct experiments via the Internet. While realizing the remote communication, a system, which adopted the double client-server architecture, was introduced. It ensures the system better security and higher functionality. The experimental environment implemented in the W-Lab was integrated by both virtual lab and remote lab. The embedded technology in the W-LAB system as an economical and efficient way to build the distributed infrastructural network was introduced. Furthermore, by introducing the user authentication mechanism in the system, it effectively secures the remote communication.
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Liston, Dorion B.
2011-01-01
Visual motion and other visual cues are used by tower controllers to provide important support for their control tasks at and near airports. These cues are particularly important for anticipated separation. Some of them, which we call visual features, have been identified from structured interviews and discussions with 24 active air traffic controllers or supervisors. The visual information that these features provide has been analyzed with respect to possible ways it could be presented at a remote tower that does not allow a direct view of the airport. Two types of remote towers are possible. One could be based on a plan-view, map-like computer-generated display of the airport and its immediate surroundings. An alternative would present a composite perspective view of the airport and its surroundings, possibly provided by an array of radially mounted cameras positioned at the airport in lieu of a tower. An initial more detailed analyses of one of the specific landing cues identified by the controllers, landing deceleration, is provided as a basis for evaluating how controllers might detect and use it. Understanding other such cues will help identify the information that may be degraded or lost in a remote or virtual tower not located at the airport. Some initial suggestions how some of the lost visual information may be presented in displays are mentioned. Many of the cues considered involve visual motion, though some important static cues are also discussed.
A Network of Automatic Control Web-Based Laboratories
ERIC Educational Resources Information Center
Vargas, Hector; Sanchez Moreno, J.; Jara, Carlos A.; Candelas, F. A.; Torres, Fernando; Dormido, Sebastian
2011-01-01
This article presents an innovative project in the context of remote experimentation applied to control engineering education. Specifically, the authors describe their experience regarding the analysis, design, development, and exploitation of web-based technologies within the scope of automatic control. This work is part of an inter-university…
The development of a tele-monitoring system for physiological parameters based on the B/S model.
Shuicai, Wu; Peijie, Jiang; Chunlan, Yang; Haomin, Li; Yanping, Bai
2010-01-01
The development of a new physiological multi-parameter remote monitoring system is based on the B/S model. The system consists of a server monitoring center, Internet network and PC-based multi-parameter monitors. Using the B/S model, the clients can browse web pages via the server monitoring center and download and install ActiveX controls. The physiological multi-parameters are collected, displayed and remotely transmitted. The experimental results show that the system is stable, reliable and operates in real time. The system is suitable for use in physiological multi-parameter remote monitoring for family and community healthcare. Copyright © 2010 Elsevier Ltd. All rights reserved.
Instrument Remote Control via the Astronomical Instrument Markup Language
NASA Technical Reports Server (NTRS)
Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard
1998-01-01
The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.
Leccese, Fabio; Cagnetti, Marco; Calogero, Andrea; Trinca, Daniele; di Pasquale, Stefano; Giarnetti, Sabino; Cozzella, Lorenzo
2014-05-23
A new acquisition system for remote control of wall paintings has been realized and tested in the field. The system measures temperature and atmospheric pressure in an archeological site where a fresco has been put under control. The measuring chain has been designed to be used in unfavorable environments where neither electric power nor telecommunication infrastructures are available. The environmental parameters obtained from the local monitoring are then transferred remotely allowing an easier management by experts in the field of conservation of cultural heritage. The local acquisition system uses an electronic card based on microcontrollers and sends the data to a central unit realized with a Raspberry-Pi. The latter manages a high quality camera to pick up pictures of the fresco. Finally, to realize the remote control at a site not reached by internet signals, a WiMAX connection based on different communication technologies such as WiMAX, Ethernet, GPRS and Satellite, has been set up.
Designed cell consortia as fragrance-programmable analog-to-digital converters.
Müller, Marius; Ausländer, Simon; Spinnler, Andrea; Ausländer, David; Sikorski, Julian; Folcher, Marc; Fussenegger, Martin
2017-03-01
Synthetic biology advances the rational engineering of mammalian cells to achieve cell-based therapy goals. Synthetic gene networks have nearly reached the complexity of digital electronic circuits and enable single cells to perform programmable arithmetic calculations or to provide dynamic remote control of transgenes through electromagnetic waves. We designed a synthetic multilayered gaseous-fragrance-programmable analog-to-digital converter (ADC) allowing for remote control of digital gene expression with 2-bit AND-, OR- and NOR-gate logic in synchronized cell consortia. The ADC consists of multiple sampling-and-quantization modules sensing analog gaseous fragrance inputs; a gas-to-liquid transducer converting fragrance intensity into diffusible cell-to-cell signaling compounds; a digitization unit with a genetic amplifier circuit to improve the signal-to-noise ratio; and recombinase-based digital expression switches enabling 2-bit processing of logic gates. Synthetic ADCs that can remotely control cellular activities with digital precision may enable the development of novel biosensors and may provide bioelectronic interfaces synchronizing analog metabolic pathways with digital electronics.
Leccese, Fabio; Cagnetti, Marco; Calogero, Andrea; Trinca, Daniele; di Pasquale, Stefano; Giarnetti, Sabino; Cozzella, Lorenzo
2014-01-01
A new acquisition system for remote control of wall paintings has been realized and tested in the field. The system measures temperature and atmospheric pressure in an archeological site where a fresco has been put under control. The measuring chain has been designed to be used in unfavorable environments where neither electric power nor telecommunication infrastructures are available. The environmental parameters obtained from the local monitoring are then transferred remotely allowing an easier management by experts in the field of conservation of cultural heritage. The local acquisition system uses an electronic card based on microcontrollers and sends the data to a central unit realized with a Raspberry-Pi. The latter manages a high quality camera to pick up pictures of the fresco. Finally, to realize the remote control at a site not reached by internet signals, a WiMAX connection based on different communication technologies such as WiMAX, Ethernet, GPRS and Satellite, has been set up. PMID:24859030
Lightweight monitoring and control system for coal mine safety using REST style.
Cheng, Bo; Cheng, Xin; Chen, Junliang
2015-01-01
The complex environment of a coal mine requires the underground environment, devices and miners to be constantly monitored to ensure safe coal production. However, existing coal mines do not meet these coverage requirements because blind spots occur when using a wired network. In this paper, we develop a Web-based, lightweight remote monitoring and control platform using a wireless sensor network (WSN) with the REST style to collect temperature, humidity and methane concentration data in a coal mine using sensor nodes. This platform also collects information on personnel positions inside the mine. We implement a RESTful application programming interface (API) that provides access to underground sensors and instruments through the Web such that underground coal mine physical devices can be easily interfaced to remote monitoring and control applications. We also implement three different scenarios for Web-based, lightweight remote monitoring and control of coal mine safety and measure and analyze the system performance. Finally, we present the conclusions from this study and discuss future work. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Information management system breadboard data acquisition and control system.
NASA Technical Reports Server (NTRS)
Mallary, W. E.
1972-01-01
Description of a breadboard configuration of an advanced information management system based on requirements for high data rates and local and centralized computation for subsystems and experiments to be housed on a space station. The system is to contain a 10-megabit-per-second digital data bus, remote terminals with preprocessor capabilities, and a central multiprocessor. A concept definition is presented for the data acquisition and control system breadboard, and a detailed account is given of the operation of the bus control unit, the bus itself, and the remote acquisition and control unit. The data bus control unit is capable of operating under control of both its own test panel and the test processor. In either mode it is capable of both single- and multiple-message operation in that it can accept a block of data requests or update commands for transmission to the remote acquisition and control unit, which in turn is capable of three levels of data-handling complexity.
Single-channel ground airborne radio system (SINCGARS) based remote control for the M1 Abrahms
NASA Astrophysics Data System (ADS)
Urda, Joseph R.
1995-04-01
Remote control of the Ml Abrahms Main Battle Tank through a minefield breach operation will remove the vehicle crew from the inherent hazard. A successful remote control system will provide automotive control yet not impair normal operation. This requires a minimum of physical parts, and an unobtrusive installation. Most importantly, a system failure must not impair the regular operation as a manned system. The system itself need not be complex. A minefield breach only requires simple control of automotive function and a mine plow interface. Control hardware for the Ml-Al can be reduced to two linear actuators, an electrical interface for the engine control unit, an interface for the mine plow, and the associated cables. Communication between vehicle control and operator control takes place over the vehicles organic radio (typically SINCGARS). This helps reduce the number of special purpose components for the remote control device. The device is currently awaiting an automotive safety test to prepare for its safety release. Because of the specific nature of the MDL-STD 1553-B data bus the device will not control an M1-A2 Main Battle Tank. The architecture will allow control of the M1-A2 through the 1553-B data bus however the physical hardware has not been constructed. The control scheme will not change. The communication interface will provide greater flexibility when interfacing to the vehicle tactical radio. Operational utility will be determined by U.S. Army Training and Doctrine Command personnel. The obvious benefit is that if a remote tank is lost during a minefield breach the crew is saved.
Intelligent model-based diagnostics for vehicle health management
NASA Astrophysics Data System (ADS)
Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki
2003-08-01
The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.
Performance improvement in remote manipulation with time delay by means of a learning system.
NASA Technical Reports Server (NTRS)
Freedy, A.; Weltman, G.
1973-01-01
A teleoperating system is presented that involves shared control between a human operator and a general-purpose computer-based learning machine. This setup features a trainable control network termed the autonomous control subsystem (ACS) which is able to observe the operator's control actions, learn the task at hand, and take appropriate control actions. A working ACS system is described that has been put in operation for the purpose of exploring the uses of a remote intelligence of this type. The expansion of the present system into a multifunctional learning machine capable of a greater degree of autonomy is also discussed.
24-channel dual microcontroller-based voltage controller for ion optics remote control
NASA Astrophysics Data System (ADS)
Bengtsson, L.
2018-05-01
The design of a 24-channel voltage control instrument for Wenzel Elektronik N1130 NIM modules is described. This instrument is remote controlled from a LabVIEW GUI on a host Windows computer and is intended for ion optics control in electron affinity measurements on negative ions at the CERN-ISOLDE facility. Each channel has a resolution of 12 bits and has a normally distributed noise with a standard deviation of <1 mV. The instrument is designed as a standard 2-unit NIM module where the electronic hardware consists of a printed circuit board with two asynchronously operating microcontrollers.
Minefield reconnaissance and detector system
Butler, Millard T.; Cave, Steven P.; Creager, James D.; Johnson, Charles M.; Mathes, John B.; Smith, Kirk J.
1994-01-01
A multi-sensor system (10) for detecting the presence of objects on the surface of the ground or buried just under the surface, such as anti-personnel or anti-tank mines or the like. A remote sensor platform (12) has a plurality of metal detector sensors (22) and a plurality of short pulse radar sensors (24). The remote sensor platform (12) is remotely controlled from a processing and control unit (14) and signals from the remote sensor platform (12) are sent to the processing and control unit (14) where they are individually evaluated in separate data analysis subprocess steps (34, 36) to obtain a probability "score" for each of the pluralities of sensors (22, 24). These probability scores are combined in a fusion subprocess step (38) by comparing score sets to a probability table (130) which is derived based upon the historical incidence of object present conditions given that score set. A decision making rule is applied to provide an output which is optionally provided to a marker subprocess (40) for controlling a marker device (76) to mark the location of found objects.
Online Remote Sensing Interface
NASA Technical Reports Server (NTRS)
Lawhead, Joel
2007-01-01
BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.
Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E.; Yang, Miaomiao; Brenckle, Mark A.; Kim, Stanley; Kaplan, David L.; Rogers, John A.; Omenetto, Fiorenzo G.
2014-01-01
A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period. PMID:25422476
Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E; Yang, Miaomiao; Brenckle, Mark A; Kim, Stanley; Kaplan, David L; Rogers, John A; Omenetto, Fiorenzo G
2014-12-09
A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period.
Remote Control and Data Acquisition: A Case Study
NASA Technical Reports Server (NTRS)
DeGennaro, Alfred J.; Wilkinson, R. Allen
2000-01-01
This paper details software tools developed to remotely command experimental apparatus, and to acquire and visualize the associated data in soft real time. The work was undertaken because commercial products failed to meet the needs. This work has identified six key factors intrinsic to development of quality research laboratory software. Capabilities include access to all new instrument functions without any programming or dependence on others to write drivers or virtual instruments, simple full screen text-based experiment configuration and control user interface, months of continuous experiment run-times, order of 1% CPU load for condensed matter physics experiment described here, very little imposition of software tool choices on remote users, and total remote control from anywhere in the world over the Internet or from home on a 56 Kb modem as if the user is sitting in the laboratory. This work yielded a set of simple robust tools that are highly reliable, resource conserving, extensible, and versatile, with a uniform simple interface.
ChickScope: An Interactive MRI Classroom Curriculum Innovation for K-12.
ERIC Educational Resources Information Center
Bruce, B. C.; Carragher, B. O.; Damon, B. M.; Dawson, M. J.; Eurell, J. A.; Gregory, C. D.; Lauterbur, P. C.; Marjanovic, M. M.; Mason-Fossum, B.; Morris, H. D.; Potter, C. S.; Thakkar, U.
1997-01-01
Describes ChickScope, a 21-day chick embryonic development project, to demonstrate the remote control of a magnetic resonance imaging (MRI) instrument through the World Wide Web. Topics include remote instrumentation and the Web, teacher-based implementation, impact in elementary and secondary school classrooms, and future directions. (Author/LRW)
On the Integration of Remote Experimentation into Undergraduate Laboratories--Pedagogical Approach
ERIC Educational Resources Information Center
Esche, Sven K.
2005-01-01
This paper presents an Internet-based open approach to laboratory instruction. In this article, the author talks about an open laboratory approach using a multi-user multi-device remote facility. This approach involves both the direct contact with the computer-controlled laboratory setup of interest with the students present in the laboratory…
Design of Remote GPRS-based Gas Data Monitoring System
NASA Astrophysics Data System (ADS)
Yan, Xiyue; Yang, Jianhua; Lu, Wei
2018-01-01
In order to solve the problem of remote data transmission of gas flowmeter, and realize unattended operation on the spot, an unattended remote monitoring system based on GPRS for gas data is designed in this paper. The slave computer of this system adopts embedded microprocessor to read data of gas flowmeter through rs-232 bus and transfers it to the host computer through DTU. In the host computer, the VB program dynamically binds the Winsock control to receive and parse data. By using dynamic data exchange, the Kingview configuration software realizes history trend curve, real time trend curve, alarm, print, web browsing and other functions.
NASA Astrophysics Data System (ADS)
de Kok, R.; WeŻyk, P.; PapieŻ, M.; Migo, L.
2017-10-01
To convince new users of the advantages of the Sentinel_2 sensor, a simplification of classic remote sensing tools allows to create a platform of communication among domain specialists of agricultural analysis, visual image interpreters and remote sensing programmers. An index value, known in the remote sensing user domain as "Zabud" was selected to represent, in color, the essentials of a time series analysis. The color index used in a color atlas offers a working platform for an agricultural field control. This creates a database of test and training areas that enables rapid anomaly detection in the agricultural domain. The use cases and simplifications now function as an introduction to Sentinel_2 based remote sensing, in an area that before relies on VHR imagery and aerial data, to serve mainly the visual interpretation. The database extension with detected anomalies allows developers of open source software to design solutions for further agricultural control with remote sensing.
Remote Observations in the Near Infrared
NASA Astrophysics Data System (ADS)
Gavryusev, V.; Baffa, C.; Giani, E.
We present our experiences in remote observations in Near Infrared bands operating a bidimensional instrument ARNICA. ARNICA, an infrared CCD detector operating at a telescope (TIRGO, Gornergrat, Switzerland) was controlled by an observer from Firenze, Italy. Despite the rather slow Internet link available, we were able to perform the observations in quite an acceptable way. The user interface process (a widget based X11 client) was executed locally on a Sun workstation. All processes responsible for hardware support (initialization of devices and their dynamic control and data acquisition itself) were executed remotely under DESQview/X on a PC dedicated to the control of ARNICA. The traffic was reduced to a minimum due to the truly distributed software used. In normal conditions this is just an exchange of short primitives which describe the task to be performed and of informative messages. There is also the possibility of a continuous display of the obtained images, with flexible control of display parameters.
Designing of smart home automation system based on Raspberry Pi
NASA Astrophysics Data System (ADS)
Saini, Ravi Prakash; Singh, Bhanu Pratap; Sharma, Mahesh Kumar; Wattanawisuth, Nattapol; Leeprechanon, Nopbhorn
2016-03-01
Locally networked or remotely controlled home automation system becomes a popular paradigm because of the numerous advantages and is suitable for academic research. This paper proposes a method for an implementation of Raspberry Pi based home automation system presented with an android phone access interface. The power consumption profile across the connected load is measured accurately through programming. Users can access the graph of total power consumption with respect to time worldwide using their Dropbox account. An android application has been developed to channelize the monitoring and controlling operation of home appliances remotely. This application facilitates controlling of operating pins of Raspberry Pi by pressing the corresponding key for turning "on" and "off" of any desired appliance. Systems can range from the simple room lighting control to smart microcontroller based hybrid systems incorporating several other additional features. Smart home automation systems are being adopted to achieve flexibility, scalability, security in the sense of data protection through the cloud-based data storage protocol, reliability, energy efficiency, etc.
Designing of smart home automation system based on Raspberry Pi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saini, Ravi Prakash; Singh, Bhanu Pratap; Sharma, Mahesh Kumar
Locally networked or remotely controlled home automation system becomes a popular paradigm because of the numerous advantages and is suitable for academic research. This paper proposes a method for an implementation of Raspberry Pi based home automation system presented with an android phone access interface. The power consumption profile across the connected load is measured accurately through programming. Users can access the graph of total power consumption with respect to time worldwide using their Dropbox account. An android application has been developed to channelize the monitoring and controlling operation of home appliances remotely. This application facilitates controlling of operating pinsmore » of Raspberry Pi by pressing the corresponding key for turning “on” and “off” of any desired appliance. Systems can range from the simple room lighting control to smart microcontroller based hybrid systems incorporating several other additional features. Smart home automation systems are being adopted to achieve flexibility, scalability, security in the sense of data protection through the cloud-based data storage protocol, reliability, energy efficiency, etc.« less
Reliable and Fault-Tolerant Software-Defined Network Operations Scheme for Remote 3D Printing
NASA Astrophysics Data System (ADS)
Kim, Dongkyun; Gil, Joon-Min
2015-03-01
The recent wide expansion of applicable three-dimensional (3D) printing and software-defined networking (SDN) technologies has led to a great deal of attention being focused on efficient remote control of manufacturing processes. SDN is a renowned paradigm for network softwarization, which has helped facilitate remote manufacturing in association with high network performance, since SDN is designed to control network paths and traffic flows, guaranteeing improved quality of services by obtaining network requests from end-applications on demand through the separated SDN controller or control plane. However, current SDN approaches are generally focused on the controls and automation of the networks, which indicates that there is a lack of management plane development designed for a reliable and fault-tolerant SDN environment. Therefore, in addition to the inherent advantage of SDN, this paper proposes a new software-defined network operations center (SD-NOC) architecture to strengthen the reliability and fault-tolerance of SDN in terms of network operations and management in particular. The cooperation and orchestration between SDN and SD-NOC are also introduced for the SDN failover processes based on four principal SDN breakdown scenarios derived from the failures of the controller, SDN nodes, and connected links. The abovementioned SDN troubles significantly reduce the network reachability to remote devices (e.g., 3D printers, super high-definition cameras, etc.) and the reliability of relevant control processes. Our performance consideration and analysis results show that the proposed scheme can shrink operations and management overheads of SDN, which leads to the enhancement of responsiveness and reliability of SDN for remote 3D printing and control processes.
Modular separation-based fiber-optic sensors for remote in situ monitoring.
Dickens, J; Sepaniak, M
2000-02-01
A modular separation-based fiber-optic sensor (SBFOS) with an integrated electronically controlled injection device is described for potential use in remote environmental monitoring. An SBFOS is a chemical monitor that integrates the separation selectivity and versatility afforded by capillary electrophoresis with the remote and high sensitivity capabilities of fiber-optic-based laser-induced fluorescence sensing. The detection module of the SBFOS accommodates all essential sensing components for dual-optical fiber, on-capillary fluorescence detection. An injection module, similar to injection platforms on micro-analysis chips, is also integrated to the SBFOS. The injection module allows for electronically controlled injection of the sample onto the separation capillary. The design and operational characteristics of the modular SBFOS are discussed in this paper. A micellar electrokinetic capillary chromatography mode of separation is employed to evaluate the potential of the sensor for in situ monitoring of neutral toxins (aflatoxins). The analytical figures of merit for the modular SBFOS include analysis times of between 5 and 10 min, separation efficiencies of approximately 10(4) theoretical plates, detection limits for aflatoxins in the mid-to-low nanomolar range, and controllable operation that results in sensor performance that is largely immune to sample matrix effects.
Advanced Electric Distribution, Switching, and Conversion Technology for Power Control
NASA Technical Reports Server (NTRS)
Soltis, James V.
1998-01-01
The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.
A Feasibility Study of Real-Time Remote CT Reading for Suspected Acute Appendicitis Using an iPhone.
Kim, Changsun; Kang, Bossng; Choi, Hyuk Joong; Park, Joon Bum
2015-08-01
We aimed to evaluate the feasibility of an iPhone-based remote control system as a real-time remote computed tomography (CT) reading tool for suspected appendicitis using a third-generation (3G) network under suboptimal illumination. One hundred twenty abdominal CT scans were selected; 60 had no signs of appendicitis, whereas the remaining 60 had signs of appendicitis. The 16 raters reviewed the images using the liquid crystal display (LCD) monitor of a picture archiving and communication system (PACS) workstation, as well as using an iPhone connected to the PACS workstation via a remote control system. We graded the probability of the presence of acute appendicitis for each examination using a five-point Likert scale. The overall sensitivity and specificity for the diagnosis of suspected appendicitis using the iPhone and the LCD monitor were high, and they were not significantly different (sensitivity P = 1.00, specificity P = 0.14). The average areas under the receiver operating characteristic curves for all CT readings with the iPhone and LCD monitor were 0.978 (confidence interval 0.965-0.991) and 0.974 (0.960-0.988), respectively, and the two devices did not have significantly different diagnostic performances (P = 0.55). The inter-rater agreement for both devices was very good; the kappa value for the iPhone was 0.809 (0.793-0.826), and that for the LCD monitor was 0.817 (0.801-0.834). Each rater had moderate-to-very good intra-observer agreement between the two devices. We verified the feasibility of an iPhone-based remote control system as a real-time remote CT reading tool for identifying suspected appendicitis using a 3G network and suboptimal illumination.
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
2010-04-01
failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE APR 2010 2. REPORT...The second is a ‘mechanical’ part that is controlled by circuit boards and is accessible by the technician via the serial console and running...was the use of conventional remote access solution designed for telecommuters or teleworkers in the Information Technology (IT) world, such as a
Remote control for motor vehicle
NASA Technical Reports Server (NTRS)
Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)
1984-01-01
A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.
Unidirectional Quantum Remote Control: Teleportation of Control-State
NASA Astrophysics Data System (ADS)
Zheng, Yi-Zhuang; Gu, Yong-Jian; Wu, Gui-Chu; Guo, Guang-Can
2003-08-01
We investigate the problem of teleportation of unitary operations by unidirectional control-state teleportation and propose a scheme called unidirectional quantum remote control. The scheme is based on the isomorphism between operation and state. It allows us to store a unitary operation in a control state, thereby teleportation of the unitary operation can be implemented by unidirectional teleportation of the control-state. We find that the probability of success for implementing an arbitrary unitary operation on arbitrary M-qubit state by unidirectional control-state teleportation is 4-M, and 2M ebits and 4M cbits are consumed in each teleportation. The project supported by the National Fundamental Research Programme (2001CB309300) and the Zhejiang Provincial Natural Science Foundation of China under Grant No. 102068
Remote control of the dissociative ionization of H2 based on electron-H2 + entanglement
NASA Astrophysics Data System (ADS)
Wang, Jun-Ping; He, Feng
2018-04-01
The single ionization of H2 in strong laser fields creates the correlated electron-H2 + pair. Based on such a correlation, we conceive a strategy to control the energy spectra of the freed electron or dissociative fragments by simulating the time-dependent Schrödinger equation. Two attosecond pulses in a train produce the replica of electron-H2 + pairs, which are to be steered by a time-delayed phase-stabilized (mid)infrared laser pulse. By controlling the behavior of the freed electron, the dissociation of H2 + can be controlled even though there is no direct laser-H2 + coupling. On the other hand, the photoelectron energy spectra can be manipulated via laser-H2 + coupling. This study demonstrates the entanglement of molecular quantum wave packets, and affords a route to remotely control molecular dissociative ionization.
RTS2: a powerful robotic observatory manager
NASA Astrophysics Data System (ADS)
Kubánek, Petr; Jelínek, Martin; Vítek, Stanislav; de Ugarte Postigo, Antonio; Nekola, Martin; French, John
2006-06-01
RTS2, or Remote Telescope System, 2nd Version, is an integrated package for remote telescope control under the Linux operating system. It is designed to run in fully autonomous mode, picking targets from a database table, storing image meta data to the database, processing images and storing their WCS coordinates in the database and offering Virtual-Observatory enabled access to them. It is currently running on various telescope setups world-wide. For control of devices from various manufacturers we developed an abstract device layer, enabling control of all possible combinations of mounts, CCDs, photometers, roof and cupola controllers. We describe the evolution of RTS2 from Python-based RTS to C and later C++ based RTS2, focusing on the problems we faced during development. The internal structure of RTS2, focusing on object layering, which is used to uniformly control various devices and provides uniform reporting layer, is also discussed.
Mobile based Appliances switching using Bluetooth
NASA Astrophysics Data System (ADS)
Gupta, Sureshchandra J., Dr; Desai, Kalp; Gaikawad, Deepak; Pawar, Vijay N.; Gangal, Devendranath R.
2008-04-01
How many times do you have to get up from your desk to switch on your Air conditioner or fan when you are completely into your table work? How many times do you feel lazy to get off your comfort to switch on/off your home appliances in different rooms? How much energy do you lose in a day for operating your appliances? The solution is either a large amount of manual work—or the idea that is presented over here: APP-CON (APP-CON stands for appliances control). Here the ordinary cell phone with bluetooth capability acts as remote designed in such a manner that it acts as a helping hand to human by reducing its manual work and therefore saving human energy. The cell phone control of APP-CON units lets you access many of your home appliances situated in different rooms by using just a single remote from distance. Electronics hobbyists would love to make such a remote control themselves. But they find it difficult due to complex circuitry rather than the high cost because of using a number of frequency counting techniques and decade counters. The APP-CON system given here overcomes the aforesaid problems by using a single microcontroller and moreover a simple program or software for bluetooth enabled cell phone and employing simple coding and decoding of remote signals. Here the mobile based remote control is used to operate a number of home appliances basically consists of Bluetooth technology. The unit consists of a transmitter and a receiver consisting of a microcontroller. The importance of bluetooth technology is that the signal to be transmitted from transmitter to the receiver is done without requiring line of sight.
Aydın, Eda Akman; Bay, Ömer Faruk; Güler, İnan
2016-01-01
Brain Computer Interface (BCI) based environment control systems could facilitate life of people with neuromuscular diseases, reduces dependence on their caregivers, and improves their quality of life. As well as easy usage, low-cost, and robust system performance, mobility is an important functionality expected from a practical BCI system in real life. In this study, in order to enhance users' mobility, we propose internet based wireless communication between BCI system and home environment. We designed and implemented a prototype of an embedded low-cost, low power, easy to use web server which is employed in internet based wireless control of a BCI based home environment. The embedded web server provides remote access to the environmental control module through BCI and web interfaces. While the proposed system offers to BCI users enhanced mobility, it also provides remote control of the home environment by caregivers as well as the individuals in initial stages of neuromuscular disease. The input of BCI system is P300 potentials. We used Region Based Paradigm (RBP) as stimulus interface. Performance of the BCI system is evaluated on data recorded from 8 non-disabled subjects. The experimental results indicate that the proposed web server enables internet based wireless control of electrical home appliances successfully through BCIs.
Virtual instrument: remote control and monitoring of an artificial heart driver
NASA Astrophysics Data System (ADS)
Nguyen, An H.; Farrar, David
1993-07-01
A development of a virtual instrument based on the top-down model approach for an artificial heart driver is presented. Driver parameters and status were being dynamically updated on the virtual system at the remote station. The virtual system allowed the remote operator to interact with the physical heart driver as if he/she were at the local station. Besides use as an effective training tool, the system permits an expert operator to monitor and also control the Thoratec heart driver from a distant location. We believe that the virtual instrument for biomedical devices in general and for the Thoratec heart driver in particular, not only improves system reliability but also opens up a real possibility in reducing medical cost. Utilizing the top-down scheme developed recently for telerobotics, realtime operation in both instrument display and remote communication were possible via a low bandwidth telephone medium.
Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology
NASA Astrophysics Data System (ADS)
Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao
2018-03-01
To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.
NASA Astrophysics Data System (ADS)
Iwatsuki, Masami; Kato, Yoriyuki; Yonekawa, Akira
State-of-the-art Internet technologies allow us to provide advanced and interactive distance education services. However, we could not help but gather students for experiments and exercises in an education for engineering because large-scale equipments and expensive software are required. On the other hand, teleoperation systems with robot manipulator or vehicle via Internet have been developed in the field of robotics. By fusing these two techniques, we can realize remote experiment and exercise systems for the engineering education based on World Wide Web. This paper presents how to construct the remote environment that allows students to take courses on experiment and exercise independently of their locations. By using the proposed system, users can exercise and practice remotely about control of a manipulator and a robot vehicle and programming of image processing.
NASA Technical Reports Server (NTRS)
Ross, A.; Richards, A.; Keith, K.; Frew, C.; Boseck, J.; Sutton, S.; Watts, C.; Rickman, D.
2007-01-01
This project focused on a comprehensive utilization of air quality model products as decision support tools (DST) needed for public health applications. A review of past and future air quality measurement methods and their uncertainty, along with the relationship of air quality to national and global public health, is vital. This project described current and future NASA satellite remote sensing and ground sensing capabilities and the potential for using these sensors to enhance the prediction, prevention, and control of public health effects that result from poor air quality. The qualitative uncertainty of current satellite remotely sensed air quality, the ground-based remotely sensed air quality, the air quality/public health model, and the decision making process is evaluated in this study. Current peer-reviewed literature suggests that remotely sensed air quality parameters correlate well with ground-based sensor data. A satellite remote-sensed and ground-sensed data complement is needed to enhance the models/tools used by policy makers for the protection of national and global public health communities
46 CFR 111.54-3 - Remote control.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Remote control. 111.54-3 Section 111.54-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Circuit Breakers § 111.54-3 Remote control. Remotely controlled circuit breakers must have local...
46 CFR 111.54-3 - Remote control.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Remote control. 111.54-3 Section 111.54-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Circuit Breakers § 111.54-3 Remote control. Remotely controlled circuit breakers must have local...
46 CFR 111.54-3 - Remote control.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Remote control. 111.54-3 Section 111.54-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Circuit Breakers § 111.54-3 Remote control. Remotely controlled circuit breakers must have local...
46 CFR 111.54-3 - Remote control.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Remote control. 111.54-3 Section 111.54-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Circuit Breakers § 111.54-3 Remote control. Remotely controlled circuit breakers must have local...
46 CFR 111.54-3 - Remote control.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Remote control. 111.54-3 Section 111.54-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Circuit Breakers § 111.54-3 Remote control. Remotely controlled circuit breakers must have local...
An easy-to-build remote laboratory with data transfer using the Internet School Experimental System
NASA Astrophysics Data System (ADS)
Schauer, František; Lustig, František; Dvořák, Jiří; Ožvoldová, Miroslava
2008-07-01
The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global features, based on experiment and experimentation. We name this strategy integrated e-learning, and remote experiments across the Internet are the foundation for this strategy. We present both pedagogical and technical reasoning for the remote experiments and outline a simple system based on a server-client approach, and on web services and Java applets. We give here an outline of the prospective remote laboratory system with data transfer using the Internet School Experimental System (ISES) as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, using a paste and copy approach with typical prebuilt blocks such as a camera view, controls, graphs, displays, etc. We have set up and operate at present seven experiments, running round the clock, with more than 12 000 connections since 2005. The experiments are widely used in practical teaching of both university and secondary level physics. The recording of the detailed steps the experimentor takes during the measurement enables detailed study of the psychological aspects of running the experiments. The system is ready for a network of universities to start covering the basic set of physics experiments. In conclusion we summarize the results achieved and experiences of using remote experiments built on the ISES hardware system.
49 CFR 218.77 - Remotely controlled switches.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Remotely controlled switches. 218.77 Section 218....77 Remotely controlled switches. (a) After the operator of the remotely controlled switch is notified that a camp car is to be placed on a particular track, he shall line such switch against movement to...
49 CFR 218.77 - Remotely controlled switches.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Remotely controlled switches. 218.77 Section 218....77 Remotely controlled switches. (a) After the operator of the remotely controlled switch is notified that a camp car is to be placed on a particular track, he shall line such switch against movement to...
49 CFR 218.77 - Remotely controlled switches.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Remotely controlled switches. 218.77 Section 218....77 Remotely controlled switches. (a) After the operator of the remotely controlled switch is notified that a camp car is to be placed on a particular track, he shall line such switch against movement to...
49 CFR 218.77 - Remotely controlled switches.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Remotely controlled switches. 218.77 Section 218....77 Remotely controlled switches. (a) After the operator of the remotely controlled switch is notified that a camp car is to be placed on a particular track, he shall line such switch against movement to...
49 CFR 218.77 - Remotely controlled switches.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Remotely controlled switches. 218.77 Section 218....77 Remotely controlled switches. (a) After the operator of the remotely controlled switch is notified that a camp car is to be placed on a particular track, he shall line such switch against movement to...
Neural joint control for Space Shuttle Remote Manipulator System
NASA Technical Reports Server (NTRS)
Atkins, Mark A.; Cox, Chadwick J.; Lothers, Michael D.; Pap, Robert M.; Thomas, Charles R.
1992-01-01
Neural networks are being used to control a robot arm in a telerobotic operation. The concept uses neural networks for both joint and inverse kinematics in a robotic control application. An upper level neural network is trained to learn inverse kinematic mappings. The output, a trajectory, is then fed to the Decentralized Adaptive Joint Controllers. This neural network implementation has shown that the controlled arm recovers from unexpected payload changes while following the reference trajectory. The neural network-based decentralized joint controller is faster, more robust and efficient than conventional approaches. Implementations of this architecture are discussed that would relax assumptions about dynamics, obstacles, and heavy loads. This system is being developed to use with the Space Shuttle Remote Manipulator System.
Remote Control and Monitoring of VLBI Experiments by Smartphones
NASA Astrophysics Data System (ADS)
Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.
2012-12-01
For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.
Grönlund, Rasmus; Lundqvist, Mats; Svanberg, Sune
2006-08-01
A mobile lidar system was used in remote imaging laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) experiments. Also, computer-controlled remote ablation of a chosen area was demonstrated, relevant to cleaning of cultural heritage items. Nanosecond frequency-tripled Nd:YAG laser pulses at 355 nm were employed in experiments with a stand-off distance of 60 meters using pulse energies of up to 170 mJ. By coaxial transmission and common folding of the transmission and reception optical paths using a large computer-controlled mirror, full elemental imaging capability was achieved on composite targets. Different spectral identification algorithms were compared in producing thematic data based on plasma or fluorescence light.
A web service framework for astronomical remote observation in Antarctica by using satellite link
NASA Astrophysics Data System (ADS)
Jia, M.-h.; Chen, Y.-q.; Zhang, G.-y.; Jiang, P.; Zhang, H.; Wang, J.
2018-07-01
Many telescopes are deployed in Antarctica as it offers excellent astronomical observation conditions. However, because Antarctica's environment is harsh to humans, remote operation of telescope is necessary for observation. Furthermore, communication to devices in Antarctica through satellite link with low bandwidth and high latency limits the effectiveness of remote observation. This paper introduces a web service framework for remote astronomical observation in Antarctica. The framework is based on Python Tornado. RTS2-HTTPD and REDIS are used as the access interface to the telescope control system in Antarctica. The web service provides real-time updates through WebSocket. To improve user experience and control effectiveness under the poor satellite link condition, an agent server is deployed in the mainland to synchronize the Antarctic server's data and send it to domestic users in China. The agent server will forward the request of domestic users to the Antarctic master server. The web service was deployed and tested on Bright Star Survey Telescope (BSST) in Antarctica. Results show that the service meets the demands of real-time, multiuser remote observation and domestic users have a better experience of remote operation.
The Wettzell System Monitoring Concept and First Realizations
NASA Technical Reports Server (NTRS)
Ettl, Martin; Neidhardt, Alexander; Muehlbauer, Matthias; Ploetz, Christian; Beaudoin, Christopher
2010-01-01
Automated monitoring of operational system parameters for the geodetic space techniques is becoming more important in order to improve the geodetic data and to ensure the safety and stability of automatic and remote-controlled observations. Therefore, the Wettzell group has developed the system monitoring software, SysMon, which is based on a reliable, remotely-controllable hardware/software realization. A multi-layered data logging system based on a fanless, robust industrial PC with an internal database system is used to collect data from several external, serial, bus, or PCI-based sensors. The internal communication is realized with Remote Procedure Calls (RPC) and uses generative programming with the interface software generator idl2rpc.pl developed at Wettzell. Each data monitoring stream can be configured individually via configuration files to define the logging rates or analog-digital-conversion parameters. First realizations are currently installed at the new laser ranging system at Wettzell to address safety issues and at the VLBI station O Higgins as a meteorological data logger. The system monitoring concept should be realized for the Wettzell radio telescope in the near future.
Alternative Fuels Data Center: Students Power Remote-Controlled Cars With
Biodiesel Students Power Remote-Controlled Cars With Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Students Power Remote-Controlled Cars With Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Students Power Remote-Controlled Cars With Biodiesel on Twitter Bookmark
Combating Terrorism Technical Support Office. 2008 Review
2009-01-15
threat object displayed at the operator control unit of the robotic platform. Remote Utility Conversion Kit The Remote Utility Conversion Kit (RUCK) is a...three- dimensional and isometric simulations and games. Develop crowd models, adversarial behavior models, network-based simulations, mini-simulations...Craft-Littoral The modular unmanned surface craft-littoral ( MUSCL ) is a spin- off of EOD/LIC’s Unmanned Reconnaissance Observation Craft, developed
USDA-ARS?s Scientific Manuscript database
A radio-controlled unmanned helicopter-based LARS (Low-Altitude Remote Sensing) platform was used to acquire quality images of high spatial and temporal resolution, in order to estimate yield and total biomass of a rice crop (Oriza Sativa, L.). Fifteen rice field plots with five N-treatments (0, 33,...
Remote-controlled vision-guided mobile robot system
NASA Astrophysics Data System (ADS)
Ande, Raymond; Samu, Tayib; Hall, Ernest L.
1997-09-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of the remote controlled emergency stop and vision systems for an autonomous mobile robot. The remote control provides human supervision and emergency stop capabilities for the autonomous vehicle. The vision guidance provides automatic operation. A mobile robot test-bed has been constructed using a golf cart base. The mobile robot (Bearcat) was built for the Association for Unmanned Vehicle Systems (AUVS) 1997 competition. The mobile robot has full speed control with guidance provided by a vision system and an obstacle avoidance system using ultrasonic sensors systems. Vision guidance is accomplished using two CCD cameras with zoom lenses. The vision data is processed by a high speed tracking device, communicating with the computer the X, Y coordinates of blobs along the lane markers. The system also has three emergency stop switches and a remote controlled emergency stop switch that can disable the traction motor and set the brake. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles.
Multiple node remote messaging
Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Ohmacht, Martin; Salapura, Valentina; Steinmacher-Burow, Burkhard; Vranas, Pavlos
2010-08-31
A method for passing remote messages in a parallel computer system formed as a network of interconnected compute nodes includes that a first compute node (A) sends a single remote message to a remote second compute node (B) in order to control the remote second compute node (B) to send at least one remote message. The method includes various steps including controlling a DMA engine at first compute node (A) to prepare the single remote message to include a first message descriptor and at least one remote message descriptor for controlling the remote second compute node (B) to send at least one remote message, including putting the first message descriptor into an injection FIFO at the first compute node (A) and sending the single remote message and the at least one remote message descriptor to the second compute node (B).
Serial Interface through Stream Protocol on EPICS Platform for Distributed Control and Monitoring
NASA Astrophysics Data System (ADS)
Das Gupta, Arnab; Srivastava, Amit K.; Sunil, S.; Khan, Ziauddin
2017-04-01
Remote operation of any equipment or device is implemented in distributed systems in order to control and proper monitoring of process values. For such remote operations, Experimental Physics and Industrial Control System (EPICS) is used as one of the important software tool for control and monitoring of a wide range of scientific parameters. A hardware interface is developed for implementation of EPICS software so that different equipment such as data converters, power supplies, pump controllers etc. could be remotely operated through stream protocol. EPICS base was setup on windows as well as Linux operating system for control and monitoring while EPICS modules such as asyn and stream device were used to interface the equipment with standard RS-232/RS-485 protocol. Stream Device protocol communicates with the serial line with an interface to asyn drivers. Graphical user interface and alarm handling were implemented with Motif Editor and Display Manager (MEDM) and Alarm Handler (ALH) command line channel access utility tools. This paper will describe the developed application which was tested with different equipment and devices serially interfaced to the PCs on a distributed network.
Kinesthetic coupling between operator and remote manipulator
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Salisbury, J. K., Jr.
1980-01-01
A universal force-reflecting hand controller has been developed which allows the establishment of a kinesthetic coupling between the operator and a remote manipulator. The six-degree-of-freedom controller was designed to generate forces and torques on its three positional and three rotational axes in order to permit the operator to accurately feel the forces encountered by the manipulator and be as transparent to operate as possible. The universal controller has been used in an application involving a six-degree-of-freedom mechanical arm equipped with a six-dimensional force-torque sensor at its base. In this application, the hand controller acts as a position control input device to the arm, while forces and torques sensed at the base of the mechanical hand back drive the hand controller. The positional control relation and the back driving of the controller according to inputs experienced by the force-torque sensor are established through complex mathematical transformations performed by a minicomputer. The hand controller is intended as a development tool for investigating force-reflecting master-slave manipulator control technology.
2013-01-01
Background Despite two decades of interventions, rates of sexually transmissible infections (STI) in remote Australian Aboriginal communities remain unacceptably high. Routine notifications data from 2011 indicate rates of chlamydia and gonorrhoea among Aboriginal people in remote settings were 8 and 61 times higher respectively than in the non-Indigenous population. Methods/design STRIVE is a stepped-wedge cluster randomised trial designed to compare a sexual health quality improvement program (SHQIP) to usual STI clinical care delivered in remote primary health care services. The SHQIP is a multifaceted intervention comprising annual assessments of sexual health service delivery, implementation of a sexual health action plan, six-monthly clinical service activity data reports, regular feedback meetings with a regional coordinator, training and financial incentive payments. The trial clusters comprise either a single community or several communities grouped together based on geographic proximity and cultural ties. The primary outcomes are: prevalence of chlamydia, gonorrhoea and trichomonas in Aboriginal residents aged 16–34 years, and performance in clinical management of STIs based on best practice indicators. STRIVE will be conducted over five years comprising one and a half years of trial initiation and community consultation, three years of trial conditions, and a half year of data analysis. The trial was initiated in 68 remote Aboriginal health services in the Northern Territory, Queensland and Western Australia. Discussion STRIVE is the first cluster randomised trial in STI care in remote Aboriginal health services. The trial will provide evidence to inform future culturally appropriate STI clinical care and control strategies in communities with high STI rates. Trial registration Australian and New Zealand Clinical Trials Registry ACTRN12610000358044 PMID:24016143
Development of land based radar polarimeter processor system
NASA Technical Reports Server (NTRS)
Kronke, C. W.; Blanchard, A. J.
1983-01-01
The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended.
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; Xu, Fuxiang; Song, Debin; Zheng, Xiangyu; Chen, Maosi
2017-09-01
This paper conducted dynamic monitoring over the green tide (large green alga—Ulva prolifera) occurred in the Yellow Sea in 2014 to 2016 by the use of multi-source remote sensing data, including GF-1 WFV, HJ-1A/1B CCD, CBERS-04 WFI, Landsat-7 ETM+ and Landsta-8 OLI, and by the combination of VB-FAH (index of Virtual-Baseline Floating macroAlgae Height) with manual assisted interpretation based on remote sensing and geographic information system technologies. The result shows that unmanned aerial vehicle (UAV) and shipborne platform could accurately monitor the distribution of Ulva prolifera in small spaces, and therefore provide validation data for the result of remote sensing monitoring over Ulva prolifera. The result of this research can provide effective information support for the prevention and control of Ulva prolifera.
Higgins, William J; Luczynski, Kevin C; Carroll, Regina A; Fisher, Wayne W; Mudford, Oliver C
2017-04-01
Recent advancements in telecommunication technologies make it possible to conduct a variety of healthcare services remotely (e.g., behavioral-analytic intervention services), thereby bridging the gap between qualified providers and consumers in isolated locations. In this study, web-based telehealth technologies were used to remotely train direct-care staff to conduct a multiple-stimulus-without-replacement preference assessment. The training package included three components: (a) a multimedia presentation; (b) descriptive feedback from previously recorded baseline sessions; and (c) scripted role-play with immediate feedback. A nonconcurrent, multiple-baseline-across-participants design was used to demonstrate experimental control. Training resulted in robust and immediate improvements, and these effects maintained during 1- to 2-month follow-up observations. In addition, participants expressed high satisfaction with the web-based materials and the overall remote-training experience. © 2017 Society for the Experimental Analysis of Behavior.
Remote optical stethoscope and optomyography sensing device
NASA Astrophysics Data System (ADS)
Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev
2017-02-01
In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... requests to assign rights granted by the authorization or to transfer control of entities holding... in the station's authorization or rules. Control station. A fixed station, the transmissions of which are used to control automatically the emissions or operations of a radio station, or a remote base...
Adaptive supervisory control of remote manipulation
NASA Technical Reports Server (NTRS)
Ferrell, W. R.
1977-01-01
The command language by which an operator exerts supervisory control over a general purpose remote manipulator should be designed to accommodate certain characteristics of human performance if there is to be effective communication between the operator and the machine. Some of the ways in which people formulate tasks, use language, learn and make errors are discussed and design implications are drawn. A general approach to command language design is suggested, based on the notion matching the operator's current task schema or context by appropriate program structures or 'frames' in the machine.
NASA Astrophysics Data System (ADS)
Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting
2010-11-01
An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.
Remotely controlled fusion of selected vesicles and living cells: a key issue review
NASA Astrophysics Data System (ADS)
Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.
2018-03-01
Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.
Virtual collaborative environments: programming and controlling robotic devices remotely
NASA Astrophysics Data System (ADS)
Davies, Brady R.; McDonald, Michael J., Jr.; Harrigan, Raymond W.
1995-12-01
This paper describes a technology for remote sharing of intelligent electro-mechanical devices. An architecture and actual system have been developed and tested, based on the proposed National Information Infrastructure (NII) or Information Highway, to facilitate programming and control of intelligent programmable machines (like robots, machine tools, etc.). Using appropriate geometric models, integrated sensors, video systems, and computing hardware; computer controlled resources owned and operated by different (in a geographic sense as well as legal sense) entities can be individually or simultaneously programmed and controlled from one or more remote locations. Remote programming and control of intelligent machines will create significant opportunities for sharing of expensive capital equipment. Using the technology described in this paper, university researchers, manufacturing entities, automation consultants, design entities, and others can directly access robotic and machining facilities located across the country. Disparate electro-mechanical resources will be shared in a manner similar to the way supercomputers are accessed by multiple users. Using this technology, it will be possible for researchers developing new robot control algorithms to validate models and algorithms right from their university labs without ever owning a robot. Manufacturers will be able to model, simulate, and measure the performance of prospective robots before selecting robot hardware optimally suited for their intended application. Designers will be able to access CNC machining centers across the country to fabricate prototypic parts during product design validation. An existing prototype architecture and system has been developed and proven. Programming and control of a large gantry robot located at Sandia National Laboratories in Albuquerque, New Mexico, was demonstrated from such remote locations as Washington D.C., Washington State, and Southern California.
Design of remote car anti-theft system based on ZigBee
NASA Astrophysics Data System (ADS)
Fang, Hong; Yan, GangFeng; Li, Hong Lian
2015-12-01
A set of remote car anti-theft system based on ZigBee and GPRS with ARM11 built-in chip S3C6410 as the controller is designed. This system can detect the alarm information of the car with vibration sensor, pyroelectric sensor and infrared sensor. When the sensor detects any alarm signal, the ZigBee node in sleep will be awakened and then directly send the alarm signal to the microcontroller chip S3C6410 in the control room of the parking lot through ZigBee wireless transceiver module. After S3C6410 processes and analyzes the alarm signal, when any two sensors of the three collect the alarm signal, the LCD will display and generate an alarm and meanwhile it will send the alarm signal to the phone of the user in a wireless manner through the form of short message through GPRS module. Thus, the wireless remote monitoring of the system is realized.
NASA Astrophysics Data System (ADS)
Cong, Chao; Liu, Dingsheng; Zhao, Lingjun
2008-12-01
This paper discusses a new method for the automatic matching of ground control points (GCPs) between satellite remote sensing Image and digital raster graphic (DRG) in urban areas. The key of this method is to automatically extract tie point pairs according to geographic characters from such heterogeneous images. Since there are big differences between such heterogeneous images respect to texture and corner features, more detail analyzations are performed to find similarities and differences between high resolution remote sensing Image and (DRG). Furthermore a new algorithms based on the fuzzy-c means (FCM) method is proposed to extract linear feature in remote sensing Image. Based on linear feature, crossings and corners extracted from these features are chosen as GCPs. On the other hand, similar method was used to find same features from DRGs. Finally, Hausdorff Distance was adopted to pick matching GCPs from above two GCP groups. Experiences shown the method can extract GCPs from such images with a reasonable RMS error.
A Generic Communication Protocol for Remote Laboratories: an Implementation on e-lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henriques, Rafael B.; Fernandes, H.; Duarte, Andre S.
2015-07-01
The remote laboratories at IST (Instituto Superior Tecnico), e-lab, serve as a valuable tool for education and training based on remote control technologies. Due to the high number and increase of remotely operated experiments a generic protocol was developed to perform the communication between the software driver and the respective experimental setup in an easier and more unified way. The training in these fields of students and personnel can take advantage of such infrastructure with the purpose of deploying new experiments in a faster way. More than 10 experiments using the generic protocol are available on-line in a 24 xmore » 7 way. (authors)« less
Distributed data collection and supervision based on web sensor
NASA Astrophysics Data System (ADS)
He, Pengju; Dai, Guanzhong; Fu, Lei; Li, Xiangjun
2006-11-01
As a node in Internet/Intranet, web sensor has been promoted in recent years and wildly applied in remote manufactory, workshop measurement and control field. However, the conventional scheme can only support HTTP protocol, and the remote users supervise and control the collected data published by web in the standard browser because of the limited resource of the microprocessor in the sensor; moreover, only one node of data acquirement can be supervised and controlled in one instant therefore the requirement of centralized remote supervision, control and data process can not be satisfied in some fields. In this paper, the centralized remote supervision, control and data process by the web sensor are proposed and implemented by the principle of device driver program. The useless information of the every collected web page embedded in the sensor is filtered and the useful data is transmitted to the real-time database in the workstation, and different filter algorithms are designed for different sensors possessing independent web pages. Every sensor node has its own filter program of web, called "web data collection driver program", the collecting details are shielded, and the supervision, control and configuration software can be implemented by the call of web data collection driver program just like the use of the I/O driver program. The proposed technology can be applied in the data acquirement where relative low real-time is required.
2007-11-01
accuracy. FPGA ADC data acquisition is controlled by distributed Java -based software. Java -based server application sits on each of the acquisition...JNI ( Java Native Interface) is used to allow Java indirect control of the USB driver. Fig. 5. Photograph of mobile electronics rack...supplies with the monitor and keyboard. The server application on each of these machines is controlled by a remote client Java -based application
CSI computer system/remote interface unit acceptance test results
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.
1992-01-01
The validation tests conducted on the Control/Structures Interaction (CSI) Computer System (CCS)/Remote Interface Unit (RIU) is discussed. The CCS/RIU consists of a commercially available, Langley Research Center (LaRC) programmed, space flight qualified computer and a flight data acquisition and filtering computer, developed at LaRC. The tests were performed in the Space Structures Research Laboratory (SSRL) and included open loop excitation, closed loop control, safing, RIU digital filtering, and RIU stand alone testing with the CSI Evolutionary Model (CEM) Phase-0 testbed. The test results indicated that the CCS/RIU system is comparable to ground based systems in performing real-time control-structure experiments.
NASA Technical Reports Server (NTRS)
Demeo, Martha E.
1990-01-01
The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).
Mobile Telemetry Van Remote Control Upgrade
2012-05-17
Advantages of Remote Control System Upgrade • Summary Overview • Remote control of Telemetry Mobile Ground Support ( TMGS ) Van proposed to allow...NWC) personnel provided valuable data for full-function remote control of telemetry tracking vans Background • TMGS Vans support Flight Test...control capability from main TM site at Building 5790 currently allows support via TMGS Van at nearby C- 15 Site, Plant 42 in Palmdale, and as far
NASA Technical Reports Server (NTRS)
Stevens, H. D.; Miles, E. S.; Rock, S. J.; Cannon, R. H.
1994-01-01
Expanding man's presence in space requires capable, dexterous robots capable of being controlled from the Earth. Traditional 'hand-in-glove' control paradigms require the human operator to directly control virtually every aspect of the robot's operation. While the human provides excellent judgment and perception, human interaction is limited by low bandwidth, delayed communications. These delays make 'hand-in-glove' operation from Earth impractical. In order to alleviate many of the problems inherent to remote operation, Stanford University's Aerospace Robotics Laboratory (ARL) has developed the Object-Based Task-Level Control architecture. Object-Based Task-Level Control (OBTLC) removes the burden of teleoperation from the human operator and enables execution of tasks not possible with current techniques. OBTLC is a hierarchical approach to control where the human operator is able to specify high-level, object-related tasks through an intuitive graphical user interface. Infrequent task-level command replace constant joystick operations, eliminating communications bandwidth and time delay problems. The details of robot control and task execution are handled entirely by the robot and computer control system. The ARL has implemented the OBTLC architecture on a set of Free-Flying Space Robots. The capability of the OBTLC architecture has been demonstrated by controlling the ARL Free-Flying Space Robots from NASA Ames Research Center.
HTTP-based remote operational options for the Vacuum Tower Telescope, Tenerife
NASA Astrophysics Data System (ADS)
Staiger, J.
2012-09-01
We are currently developing network based tools for the Vacuum Tower Telescope (VTT), Tenerife which will allow to operate the telescope together with the newly developed 2D-spectrometer HELLRIDE under remote control conditions. The computational configuration can be viewed as a distributed system linking hardware components of various functionality from different locations. We have developed a communication protocol which is basically an extension of the HTTP standard. It will serve as a carrier for command- and data-transfers. The server-client software is based on Berkley-Unix sockets in a C++ programming environment. A customized CMS will allow to create browser accessible information on-the-fly. Java-based applet pages have been tested as optional user access GUI's. An access tool has been implemented to download near-realtime, web-based target information from NASA/SDO. Latency tests have been carried out at the VTT and the Swedish STT at La Palma for concept verification. Short response times indicate that under favorable network conditions remote interactive telescope handling may be possible. The scientific focus of possible future remote operations will be set on the helioseismology of the solar atmosphere, the monitoring of flares and the footpoint analysis of coronal loops and chromospheric events.
1984-08-01
and FPS-60 -’ vacuum-tube radars. There will be remote control interface units ( RCIU ) for tube-type radars, and an ARSR-3 relocation and RIH package...Facility RCE Remote Control Equipment; Radio Control Equipment RCIU Remote Control Interface Units RCO Remote Communications Outlet RDCC Research
PCDAS Version 2. 2: Remote network control and data acquisition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishbaugher, M.J.
1987-09-01
This manual is intended for both technical and non-technical people who want to use the PCDAS remote network control and data acquisition software. If you are unfamiliar with remote data collection hardware systems designed at Pacific Northwest Laboratory (PNL), this introduction should answer your basic questions. Even if you have some experience with the PNL-designed Field Data Acquisition Systems (FDAS), it would be wise to review this material before attempting to set up a network. This manual was written based on the assumption that you have a rudimentary understanding of personal computer (PC) operations using Disk Operating System (DOS) versionmore » 2.0 or greater (IBM 1984). You should know how to create subdirectories and get around the subdirectory tree.« less
Wireless Control of Miniaturized Mobile Vehicle for Indoor Surveillance
NASA Astrophysics Data System (ADS)
Taha Saquib, Syed M.; Hameed, Sarmad; Usman Ali, Syed M.; Jafri, Raza; Amin, Imran
2013-12-01
This work is based upon electronic automation and Smart Control techniques, which constitute the basis of Control Area Network (CAN) and Personal Area Network (PAN). Bluetooth technology has been interfaced with a programmable controller to provide multi-dimensional vehicle control. A network is proposed which contains a remote, mobile host controller and an android operating system based mobile set (Client). The client communicates with a host controller through a Bluetooth device. The system incorporates duplex communication after successful confirmation between the host and the client; the android based mobile unit controls the vehicle through the Bluetooth module.
Software Development for Remote Control and Firing Room Displays
NASA Technical Reports Server (NTRS)
Zambrano Pena, Jessica
2014-01-01
The Launch Control System (LCS) developed at NASA's Kennedy Space Center (KSC) will be used to launch future spacecraft. Two of the many components of this system are the Application Control Language (ACL) and remote displays. ACL is a high level domain specific language that is used to write remote control applications for LCS. Remote displays are graphical user interfaces (GUIs) developed to display vehicle and Ground Support Equipment (GSE) data, they also provide the ability to send commands to control GSE and the vehicle. The remote displays and the control applications have many facets and this internship experience dealt with several of them.
Web/smart phone based control and feedback systems for irrigation systems
USDA-ARS?s Scientific Manuscript database
The role of the internet and mobile devices in the control and feedback of irrigation systems is reviewed. This role is placed in the larger context of four distinct components required for irrigation management, including 1. the control panel; 2. remote control; 3. soil, plant, and weather (SPW) se...
Amor, Antonio J; Ríos, Paola A; Graupera, Iolanda; Conget, Ignacio; Esmatjes, Enric; Comallonga, Teresa; Vidal, Josep
2014-05-06
The management of hyperglycemia in conventional wards is suboptimal. The objective of our study was to evaluate the efficacy of a proactive intervention supported by point-of-care system with remote viewing of capillary blood glucose (CBG) on glycemic control as compared to usual care in non-critical surgical patients. Two sequential periods of 2 months were defined. In the first phase (control, CPh), in which the surgical team was in charge of glycemic control, capillary glucose levels were recorded by StatStrip(®) system, and endocrinological support was provided upon surgeons request. In a second phase (intervention, IPh), the endocrinologist proceeded based on remotely-viewed CBG values. We compared the use of basal-bolus therapy and the degree of glycemic control between the 2 study periods. The IPh was associated with greater use of basal-bolus regimens (21.4 vs. 58.3%; P=.003). The average CBG during the CPh was 161 ± 64 vs. 142 ± 48 mg/dL during the IPh (P<.001). The IPh was associated with an increased frequency of CBG determinations between 70-140 mg/dL (CPh: 41.8 vs. IPh: 52.5%; P<.001), lower frequency of ≥ 250 mg/dL CBG determinations (CPh: 9 vs. IPh: 3.5%; P<.001), with no increase in the frequency of hypoglycemia (CPh: 3 vs. IPh: 3.7%; P=.39). A proactive endocrine intervention facilitated by a point-of-care system with remote viewing of CBG is associated with improved glycemic control in non-critical patients, without any further increase in the number of hypoglycaemic recordings. Copyright © 2012 Elsevier España, S.L. All rights reserved.
49 CFR 218.99 - Shoving or pushing movements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (ii) Giving signals or instructions necessary to control the movement. (c) Additional requirements for remote control movements. All remote control movements are considered shoving or pushing movements, except when the remote control operator controlling the movement is riding the leading end of the leading...
Virtual Reality Robotic Operation Simulations Using MEMICA Haptic System
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Mavroidis, C.; Bouzit, M.; Dolgin, B.; Harm, D. L.; Kopchok, G. E.; White, R.
2000-01-01
There is an increasing realization that some tasks can be performed significantly better by humans than robots but, due to associated hazards, distance, etc., only a robot can be employed. Telemedicine is one area where remotely controlled robots can have a major impact by providing urgent care at remote sites. In recent years, remotely controlled robotics has been greatly advanced. The robotic astronaut, "Robonaut," at NASA Johnson Space Center is one such example. Unfortunately, due to the unavailability of force and tactile feedback capability the operator must determine the required action using only visual feedback from the remote site, which limits the tasks that Robonaut can perform. There is a great need for dexterous, fast, accurate teleoperated robots with the operator?s ability to "feel" the environment at the robot's field. Recently, we conceived a haptic mechanism called MEMICA (Remote MEchanical MIrroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace system. Our team is developing novel MEMICA gloves and virtual reality models to allow the simulation of telesurgery and other applications. The MEMICA gloves are designed to have a high dexterity, rapid response, and large workspace and intuitively mirror the conditions at a virtual site where a robot is simulating the presence of the human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and Electrically Controlled Force and Stiffness (ECFS) actuators that are based on the sue of Electro-Rheological Fluids (ERF). In this paper the design of the MEMICA system and initial experimental results are presented.
Impact of Shutting Down En Route Primary Radars within CONUS Interior
1993-06-01
Remote Control Interface Unit ( RCIU ) RMS software for the primary radar will be deleted. Any dependency of the secondary radar on the primary radar data...Generators RCIU Remote Control and Interface Unit RMM Remote Monitoring and Maintenance RMMS Remote Maintenance Monitoring System RMS Remote Maintenance
International Co-Operation in Control Engineering Education Using Online Experiments
ERIC Educational Resources Information Center
Henry, Jim; Schaedel, Herbert M.
2005-01-01
This paper describes the international co-operation experience in teaching control engineering with laboratories being conducted remotely by students via the Internet. This paper describes how the students ran the experiments and their personal experiences with the laboratory. A tool for process identification and controller tuning based on…
Data Quality Screening Service
NASA Technical Reports Server (NTRS)
Strub, Richard; Lynnes, Christopher; Hearty, Thomas; Won, Young-In; Fox, Peter; Zednik, Stephan
2013-01-01
A report describes the Data Quality Screening Service (DQSS), which is designed to help automate the filtering of remote sensing data on behalf of science users. Whereas this process often involves much research through quality documents followed by laborious coding, the DQSS is a Web Service that provides data users with data pre-filtered to their particular criteria, while at the same time guiding the user with filtering recommendations of the cognizant data experts. The DQSS design is based on a formal semantic Web ontology that describes data fields and the quality fields for applying quality control within a data product. The accompanying code base handles several remote sensing datasets and quality control schemes for data products stored in Hierarchical Data Format (HDF), a common format for NASA remote sensing data. Together, the ontology and code support a variety of quality control schemes through the implementation of the Boolean expression with simple, reusable conditional expressions as operands. Additional datasets are added to the DQSS simply by registering instances in the ontology if they follow a quality scheme that is already modeled in the ontology. New quality schemes are added by extending the ontology and adding code for each new scheme.
Evaluating impact of clinical guidelines using a realist evaluation framework.
Reddy, Sandeep; Wakerman, John; Westhorp, Gill; Herring, Sally
2015-12-01
The Remote Primary Health Care Manuals (RPHCM) project team manages the development and publication of clinical protocols and procedures for primary care clinicians practicing in remote Australia. The Central Australian Rural Practitioners Association Standard Treatment Manual, the flagship manual of the RPHCM suite, has been evaluated for accessibility and acceptability in remote clinics three times in its 20-year history. These evaluations did not consider a theory-based framework or a programme theory, resulting in some limitations with the evaluation findings. With the RPHCM having an aim of enabling evidence-based practice in remote clinics and anecdotally reported to do so, testing this empirically for the full suite is vital for both stakeholders and future editions of the RPHCM. The project team utilized a realist evaluation framework to assess how, why and for what the RPHCM were being used by remote practitioners. A theory regarding the circumstances in which the manuals have and have not enabled evidence-based practice in the remote clinical context was tested. The project assessed this theory for all the manuals in the RPHCM suite, across government and aboriginal community-controlled clinics, in three regions of Australia. Implementing a realist evaluation framework to generate robust findings in this context has required innovation in the evaluation design and adaptation by researchers. This article captures the RPHCM team's experience in designing this evaluation. © 2015 John Wiley & Sons, Ltd.
Network-based production quality control
NASA Astrophysics Data System (ADS)
Kwon, Yongjin; Tseng, Bill; Chiou, Richard
2007-09-01
This study investigates the feasibility of remote quality control using a host of advanced automation equipment with Internet accessibility. Recent emphasis on product quality and reduction of waste stems from the dynamic, globalized and customer-driven market, which brings opportunities and threats to companies, depending on the response speed and production strategies. The current trends in industry also include a wide spread of distributed manufacturing systems, where design, production, and management facilities are geographically dispersed. This situation mandates not only the accessibility to remotely located production equipment for monitoring and control, but efficient means of responding to changing environment to counter process variations and diverse customer demands. To compete under such an environment, companies are striving to achieve 100%, sensor-based, automated inspection for zero-defect manufacturing. In this study, the Internet-based quality control scheme is referred to as "E-Quality for Manufacturing" or "EQM" for short. By its definition, EQM refers to a holistic approach to design and to embed efficient quality control functions in the context of network integrated manufacturing systems. Such system let designers located far away from the production facility to monitor, control and adjust the quality inspection processes as production design evolves.
Nicklen, Peter; Keating, Jenny L; Paynter, Sophie; Storr, Michael; Maloney, Stephen
2016-01-01
Case-based learning (CBL) is an educational approach where students work in small, collaborative groups to solve problems. Computer assisted learning (CAL) is the implementation of computer technology in education. The purpose of this study was to compare the effects of a remote-online CBL (RO-CBL) with traditional face-to-face CBL on learning the outcomes of undergraduate physiotherapy students. Participants were randomized to either the control (face-to-face CBL) or to the CAL intervention (RO-CBL). The entire 3rd year physiotherapy cohort (n = 41) at Monash University, Victoria, Australia, were invited to participate in the randomized controlled trial. Outcomes included a postintervention multiple-choice test evaluating the knowledge gained from the CBL, a self-assessment of learning based on examinable learning objectives and student satisfaction with the CBL. In addition, a focus group was conducted investigating perceptions and responses to the online format. Thirty-eight students (control n = 19, intervention n = 19) participated in two CBL sessions and completed the outcome assessments. CBL median scores for the postintervention multiple-choice test were comparable (Wilcoxon rank sum P = 0.61) (median/10 [range] intervention group: 9 [8-10] control group: 10 [7-10]). Of the 15 examinable learning objectives, eight were significantly in favor of the control group, suggesting a greater perceived depth of learning. Eighty-four percent of students (16/19) disagreed with the statement "I enjoyed the method of CBL delivery." Key themes identified from the focus group included risks associated with the implementation of, challenges of communicating in, and flexibility offered, by web-based programs. RO-CBL appears to provide students with a comparable learning experience to traditional CBL. Procedural and infrastructure factors need to be addressed in future studies to counter student dissatisfaction and decreased perceived depth of learning.
Woolf, Celia; Caute, Anna; Haigh, Zula; Galliers, Julia; Wilson, Stephanie; Kessie, Awurabena; Hirani, Shashi; Hegarty, Barbara; Marshall, Jane
2016-04-01
To test the feasibility of a randomised controlled trial comparing face to face and remotely delivered word finding therapy for people with aphasia. A quasi-randomised controlled feasibility study comparing remote therapy delivered from a University lab, remote therapy delivered from a clinical site, face to face therapy and an attention control condition. A University lab and NHS outpatient service. Twenty-one people with aphasia following left hemisphere stroke. Eight sessions of word finding therapy, delivered either face to face or remotely, were compared to an attention control condition comprising eight sessions of remotely delivered supported conversation. The remote conditions used mainstream video conferencing technology. Feasibility was assessed by recruitment and attrition rates, participant observations and interviews, and treatment fidelity checking. Effects of therapy on word retrieval were assessed by tests of picture naming and naming in conversation. Twenty-one participants were recruited over 17 months, with one lost at baseline. Compliance and satisfaction with the intervention was good. Treatment fidelity was high for both remote and face to face delivery (1251/1421 therapist behaviours were compliant with the protocol). Participants who received therapy improved on picture naming significantly more than controls (mean numerical gains: 20.2 (remote from University); 41 (remote from clinical site); 30.8 (face to face); 5.8 (attention control); P <.001). There were no significant differences between groups in the assessment of conversation. Word finding therapy can be delivered via mainstream internet video conferencing. Therapy improved picture naming, but not naming in conversation. © The Author(s) 2015.
Kirkpatrick, Andrew W; McKee, Ian; McKee, Jessica L; Ma, Irene; McBeth, Paul B; Roberts, Derek J; Wurster, Charles L; Parfitt, Robbie; Ball, Chad G; Oberg, Scott; Sevcik, William; Hamilton, Douglas R
2016-05-01
Remote-telementored ultrasound involves novice examiners being remotely guided by experts using informatic-technologies. However, requiring a novice to perform ultrasound is a cognitively demanding task exacerbated by unfamiliarity with ultrasound-machine controls. We incorporated a randomized evaluation of using remote control of the ultrasound functionality (knobology) within a study in which the images generated by distant naive examiners were viewed on an ultrasound graphic user interface (GUI) display viewed on laptop computers by mentors in different cities. Fire-fighters in Edmonton (101) were remotely mentored from Calgary (n = 65), Nanaimo (n = 19), and Memphis (n = 17) to examine an ultrasound phantom randomized to contain free fluid or not. Remote mentors (2 surgeons, 1 internist, and 1 ED physician) were randomly assigned to use GUI knobology control during mentoring (GUIK+/GUIK-). Remote-telementored ultrasound was feasible in all cases. Overall accuracy for fluid detection was 97% (confidence interval = 91 to 99%) with 3 false negatives (FNs). Positive/negative likelihood ratios were infinity/0.0625. One FN occurred with the GUIK+ and 2 without (GUIK-). There were no statistical test performance differences in either group (GUIK+ and GUIK-). Ultrasound-naive 1st responders can be remotely mentored with high accuracy, although providing basic remote control of the knobology did not affect outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Remote sensing for control of tsetse flies
NASA Technical Reports Server (NTRS)
Giddings, L. E.
1976-01-01
Remotely sensed information is discussed which has potential for aiding in the control or eradication of tsetse flies. Data are available from earth resources meteorological, and manned satellites, from airborne sensors, and possibly from data collection platforms. A new zone discrimination technique, based on data from meteorological satellites may also allow the identification of zones hospitable to one or another species of tsetse. For background, a review is presented of the vegetation of Tanzania and Zanzibar, and illustrations presented of automatic processing of data from these areas. In addition, a review is presented of the applicability of temperature data to tsetse areas.
This group view shows propellant preparation buidling 4241/E42, 4242/E43, and ...
This group view shows propellant preparation buidling 4241/E-42, 4242/E-43, and northwest (314 degrees). Note warning lights at the extreme left of the view, and the use of lightning rods on structures. Building 4241/E-42 housed solid rocket motors after they were cast and awaiting curing. Building 4241/E-42 was the Preparation Control center which housed remote controls for operations in the other two buildings. Building 4243/E-44 housed a remotely controlled mandrel puller for pulling mandrels (casting cores) from cured grain, and a vertical lathe for trimming grain to shape and size. - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
Application of Aquaculture Monitoring System Based on CC2530
NASA Astrophysics Data System (ADS)
Chen, H. L.; Liu, X. Q.
In order to improve the intelligent level of aquaculture technology, this paper puts forward a remote wireless monitoring system based on ZigBee technology, GPRS technology and Android mobile phone platform. The system is composed of wireless sensor network (WSN), GPRS module, PC server, and Android client. The WSN was set up by CC2530 chips based on ZigBee protocol, to realize the collection of water quality parameters such as the water level, temperature, PH and dissolved oxygen. The GPRS module realizes remote communication between WSN and PC server. Android client communicates with server to monitor the level of water quality. The PID (proportion, integration, differentiation) control is adopted in the control part, the control commands from the android mobile phone is sent to the server, the server again send it to the lower machine to control the water level regulating valve and increasing oxygen pump. After practical testing to the system in Liyang, Jiangsu province, China, temperature measurement accuracy reaches 0.5°C, PH measurement accuracy reaches 0.3, water level control precision can be controlled within ± 3cm, dissolved oxygen control precision can be controlled within ±0.3 mg/L, all the indexes can meet the requirements, this system is very suitable for aquaculture.
NASA Astrophysics Data System (ADS)
Dehkordi, N. Mahdian; Sadati, N.; Hamzeh, M.
2017-09-01
This paper presents a robust dc-link voltage as well as a current control strategy for a bidirectional interlink converter (BIC) in a hybrid ac/dc microgrid. To enhance the dc-bus voltage control, conventional methods strive to measure and feedforward the load or source power in the dc-bus control scheme. However, the conventional feedforward-based approaches require remote measurement with communications. Moreover, conventional methods suffer from stability and performance issues, mainly due to the use of the small-signal-based control design method. To overcome these issues, in this paper, the power from DG units of the dc subgrid imposed on the BIC is considered an unmeasurable disturbance signal. In the proposed method, in contrast to existing methods, using the nonlinear model of BIC, a robust controller that does not need the remote measurement with communications effectively rejects the impact of the disturbance signal imposed on the BIC's dc-link voltage. To avoid communication links, the robust controller has a plug-and-play feature that makes it possible to add a DG/load to or remove it from the dc subgrid without distorting the hybrid microgrid stability. Finally, Monte Carlo simulations are conducted to confirm the effectiveness of the proposed control strategy in MATLAB/SimPowerSystems software environment.
Design of the smart home system based on the optimal routing algorithm and ZigBee network.
Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.
Towards multi-platform software architecture for Collaborative Teleoperation
NASA Astrophysics Data System (ADS)
Domingues, Christophe; Otmane, Samir; Davesne, Frederic; Mallem, Malik
2009-03-01
Augmented Reality (AR) can provide to a Human Operator (HO) a real help in achieving complex tasks, such as remote control of robots and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robot simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on the use of different Virtual Reality platforms and different Mobile platforms to control one or many robots.
Design of the smart home system based on the optimal routing algorithm and ZigBee network
Xie, Xiaoxia
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system. PMID:29131868
Towards multi-platform software architecture for Collaborative Teleoperation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domingues, Christophe; Otmane, Samir; Davesne, Frederic
2009-03-05
Augmented Reality (AR) can provide to a Human Operator (HO) a real help in achieving complex tasks, such as remote control of robots and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robotmore » simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on the use of different Virtual Reality platforms and different Mobile platforms to control one or many robots.« less
NASA Astrophysics Data System (ADS)
Lemon, M. G.; Keim, R.
2017-12-01
Although specific controls are not well understood, the phenology of temperate forests is generally thought to be controlled by photoperiod and temperature, although recent research suggests that soil moisture may also be important. The phenological controls of forested wetlands have not been thoroughly studied, and may be more controlled by site hydrology than other forests. For this study, remotely sensed vegetation indices were used to investigate hydrological controls on start-of-season timing, growing season length, and end-of-season timing at five floodplains in Louisiana, Arkansas, and Texas. A simple spring green-up model was used to determine the null spring start of season time for each site as a function of land surface temperature and photoperiod, or two remotely sensed indices: MODIS phenology data product and the MODIS Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance (NBAR) product. Preliminary results indicate that topographically lower areas within the floodplain with higher flood frequency experience later start-of-season timing. In addition, start-of-season is delayed in wet years relative to predicted timing based solely on temperature and photoperiod. The consequences for these controls unclear, but results suggest hydrological controls on floodplain ecosystem structure and carbon budgets are likely at least partially expressed by variations in growing season length.
6 CFR 27.230 - Risk-based performance standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... countersurveillance, frustration of opportunity to observe potential targets, surveillance and sensing systems, and..., including by preventing unauthorized onsite or remote access to critical process controls, such as...
6 CFR 27.230 - Risk-based performance standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... countersurveillance, frustration of opportunity to observe potential targets, surveillance and sensing systems, and..., including by preventing unauthorized onsite or remote access to critical process controls, such as...
6 CFR 27.230 - Risk-based performance standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... countersurveillance, frustration of opportunity to observe potential targets, surveillance and sensing systems, and..., including by preventing unauthorized onsite or remote access to critical process controls, such as...
6 CFR 27.230 - Risk-based performance standards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... countersurveillance, frustration of opportunity to observe potential targets, surveillance and sensing systems, and..., including by preventing unauthorized onsite or remote access to critical process controls, such as...
6 CFR 27.230 - Risk-based performance standards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... countersurveillance, frustration of opportunity to observe potential targets, surveillance and sensing systems, and..., including by preventing unauthorized onsite or remote access to critical process controls, such as...
NASA Astrophysics Data System (ADS)
Aoki, K.; Ohuchi, N.; Zong, Z.; Arimoto, Y.; Wang, X.; Yamaoka, H.; Kawai, M.; Kondou, Y.; Makida, Y.; Hirose, M.; Endou, T.; Iwasaki, M.; Nakamura, T.
2017-12-01
A remote monitoring system was developed based on the software infrastructure of the Experimental Physics and Industrial Control System (EPICS) for the cryogenic system of superconducting magnets in the interaction region of the SuperKEKB accelerator. The SuperKEKB has been constructed to conduct high-energy physics experiments at KEK. These superconducting magnets consist of three apparatuses, the Belle II detector solenoid, and QCSL and QCSR accelerator magnets. They are each contained in three cryostats cooled by dedicated helium cryogenic systems. The monitoring system was developed to read data of the EX-8000, which is an integrated instrumentation system to control all cryogenic components. The monitoring system uses the I/O control tools of EPICS software for TCP/IP, archiving techniques using a relational database, and easy human-computer interface. Using this monitoring system, it is possible to remotely monitor all real-time data of the superconducting magnets and cryogenic systems. It is also convenient to share data among multiple groups.
Encryption for Remote Control via Internet or Intranet
NASA Technical Reports Server (NTRS)
Lineberger, Lewis
2005-01-01
A data-communication protocol has been devised to enable secure, reliable remote control of processes and equipment via a collision-based network, while using minimal bandwidth and computation. The network could be the Internet or an intranet. Control is made secure by use of both a password and a dynamic key, which is sent transparently to a remote user by the controlled computer (that is, the computer, located at the site of the equipment or process to be controlled, that exerts direct control over the process). The protocol functions in the presence of network latency, overcomes errors caused by missed dynamic keys, and defeats attempts by unauthorized remote users to gain control. The protocol is not suitable for real-time control, but is well suited for applications in which control latencies up to about 0.5 second are acceptable. The encryption scheme involves the use of both a dynamic and a private key, without any additional overhead that would degrade performance. The dynamic key is embedded in the equipment- or process-monitor data packets sent out by the controlled computer: in other words, the dynamic key is a subset of the data in each such data packet. The controlled computer maintains a history of the last 3 to 5 data packets for use in decrypting incoming control commands. In addition, the controlled computer records a private key (password) that is given to the remote computer. The encrypted incoming command is permuted by both the dynamic and private key. A person who records the command data in a given packet for hostile purposes cannot use that packet after the public key expires (typically within 3 seconds). Even a person in possession of an unauthorized copy of the command/remote-display software cannot use that software in the absence of the password. The use of a dynamic key embedded in the outgoing data makes the central-processing unit overhead very small. The use of a National Instruments DataSocket(TradeMark) (or equivalent) protocol or the User Datagram Protocol makes it possible to obtain reasonably short response times: Typical response times in event-driven control, using packets sized .300 bytes, are <0.2 second for commands issued from locations anywhere on Earth. The protocol requires that control commands represent absolute values of controlled parameters (e.g., a specified temperature), as distinguished from changes in values of controlled parameters (e.g., a specified increment of temperature). Each command is issued three or more times to ensure delivery in crowded networks. The use of absolute-value commands prevents additional (redundant) commands from causing trouble. Because a remote controlling computer receives "talkback" in the form of data packets from the controlled computer, typically within a time interval < or =1 s, the controlling computer can re-issue a command if network failure has occurred. The controlled computer, the process or equipment that it controls, and any human operator(s) at the site of the controlled equipment or process should be equipped with safety measures to prevent damage to equipment or injury to humans. These features could be a combination of software, external hardware, and intervention by the human operator(s). The protocol is not fail-safe, but by adopting these safety measures as part of the protocol, one makes the protocol a robust means of controlling remote processes and equipment by use of typical office computers via intranets and/or the Internet.
NASA Astrophysics Data System (ADS)
Pricop, Emil; Zamfir, Florin; Paraschiv, Nicolae
2015-11-01
Process control is a challenging research topic for both academia and industry for a long time. Controllers evolved from the classical SISO approach to modern fuzzy or neuro-fuzzy embedded devices with networking capabilities, however PID algorithms are still used in the most industrial control loops. In this paper, we focus on the implementation of a PID controller using mbed NXP LPC1768 development board. This board integrates a powerful ARM Cortex- M3 core and has networking capabilities. The implemented controller can be remotely operated by using an Internet connection and a standard Web browser. The main advantages of the proposed embedded system are customizability, easy operation and very low power consumption. The experimental results obtained by using a simulated process are analysed and shows that the implementation can be done with success in industrial applications.
Fiber optically isolated and remotely stabilized data transmission system
Nelson, Melvin A.
1992-01-01
A fiber optically isolated and remotely stabilized data transmission system s described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber.
Fiber optically isolated and remotely stabilized data transmission system
Nelson, M.A.
1992-11-10
A fiber optically isolated and remotely stabilized data transmission systems described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber. 3 figs.
NASA Astrophysics Data System (ADS)
Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir
2014-06-01
This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.
Kumamoto, Etsuko; Takahashi, Akihiro; Matsuoka, Yuichiro; Morita, Yoshinori; Kutsumi, Hiromu; Azuma, Takeshi; Kuroda, Kagayaki
2013-01-01
The MR-endoscope system can perform magnetic resonance (MR) imaging during endoscopy and show the images obtained by using endoscope and MR. The MR-endoscope system can acquire a high-spatial resolution MR image with an intraluminal radiofrequency (RF) coil, and the navigation system shows the scope's location and orientation inside the human body and indicates MR images with a scope view. In order to conveniently perform an endoscopy and MR procedure, the design of the user interface is very important because it provides useful information. In this study, we propose a navigation system using a wireless accelerometer-based controller with Bluetooth technology and a navigation technique to set the intraluminal RF coil using the navigation system. The feasibility of using this wireless controller in the MR shield room was validated via phantom examinations of the influence on MR procedures and navigation accuracy. In vitro examinations using an isolated porcine stomach demonstrated the effectiveness of the navigation technique using a wireless remote-control device.
Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noakes, Mark W; Burgess, Thomas W; Rowe, John C
2011-01-01
Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created what is believed to be the first microcomputer-based implementation of dual-arm master-slave remote manipulation. As part of the Consolidated Fuel Reprocessing Program, ORNL developed the dual-arm advanced servomanipulator focusing on remote maintainability for systems exposed to high radiation fields. ORNL also participated in almost all of the various technical areas of the U.S. Department of Energy s Robotics Technology Development Program, while leading the Decontamination and Decommissioning and Tank Waste Retrievalmore » categories. Over the course of this involvement, ORNL has developed a substantial base of working knowledge as to what works when and under what circumstances for many types of remote systems tasks as well as operator interface modes, control bandwidth, and sensing requirements to name a few. By using a select list of manipulator systems that is not meant to be exhaustive, this paper will discuss history and outcome of development, field-testing, deployment, and operations from a lessons learned perspective. The final outcome is a summary paper outlining ORNL experiences and guidelines for transition of developmental remote systems to real-world hazardous environments.« less
NASA Technical Reports Server (NTRS)
Lewis, Mark David (Inventor); Seal, Michael R. (Inventor); Hood, Kenneth Brown (Inventor); Johnson, James William (Inventor)
2007-01-01
Remotely sensed spectral image data are used to develop a Vegetation Index file which represents spatial variations of actual crop vigor throughout a field that is under cultivation. The latter information is processed to place it in a format that can be used by farm personnel to correlate and calibrate it with actually observed crop conditions existing at control points within the field. Based on the results, farm personnel formulate a prescription request, which is forwarded via email or FTP to a central processing site, where the prescription is prepared. The latter is returned via email or FTP to on-side farm personnel, who can load it into a controller on a spray rig that directly applies inputs to the field at a spatially variable rate.
NASA Technical Reports Server (NTRS)
Hood, Kenneth Brown (Inventor); Johnson, James William (Inventor); Seal, Michael R. (Inventor); Lewis, Mark David (Inventor)
2004-01-01
Remotely sensed spectral image data are used to develop a Vegetation Index file which represents spatial variations of actual crop vigor throughout a field that is under cultivation. The latter information is processed to place it in a format that can be used by farm personnel to correlate and calibrate it with actually observed crop conditions existing at control points within the field. Based on the results, farm personnel formulate a prescription request, which is forwarded via email or FTP to a central processing site, where the prescription is prepared. The latter is returned via email or FTP to on-side farm personnel, who can load it into a controller on a spray rig that directly applies inputs to the field at a spatially variable rate.
Naver: a PC-cluster-based VR system
NASA Astrophysics Data System (ADS)
Park, ChangHoon; Ko, HeeDong; Kim, TaiYun
2003-04-01
In this paper, we present a new framework NAVER for virtual reality application. The NAVER is based on a cluster of low-cost personal computers. The goal of NAVER is to provide flexible, extensible, scalable and re-configurable framework for the virtual environments defined as the integration of 3D virtual space and external modules. External modules are various input or output devices and applications on the remote hosts. From the view of system, personal computers are divided into three servers according to its specific functions: Render Server, Device Server and Control Server. While Device Server contains external modules requiring event-based communication for the integration, Control Server contains external modules requiring synchronous communication every frame. And, the Render Server consists of 5 managers: Scenario Manager, Event Manager, Command Manager, Interaction Manager and Sync Manager. These managers support the declaration and operation of virtual environment and the integration with external modules on remote servers.
An Analysis of the Elements of Collaboration Associated with Top Collaborative Tools
2010-03-01
lets you access your e-mail, calendar, and files from any web browser anywhere in the world. Web based www.hotoffice.com Noodle Vialect’s (parent...www.taroby.org Yuuguu Yuuguu is an instant screen sharing, web conferencing, remote support, desktop remote control and messaging tool. Client...Office, Noodle , Novlet, Revizr, Taroby, and Yuuguu) received all seven NS ratings (see Table 20 below). The overall ratings for the major elements
Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K.; Utzinger, Jürg; Raso, Giovanna
2015-01-01
Background Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. Methodology We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d’Ivoire and validated against readily available survey data from school-aged children. Principal Findings Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d’Ivoire. Conclusions/Significance A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data. PMID:26587839
Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K; Utzinger, Jürg; Raso, Giovanna
2015-11-01
Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d'Ivoire and validated against readily available survey data from school-aged children. Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d'Ivoire. A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data.
NASA Astrophysics Data System (ADS)
Semerjyan, Vardan; Yuan, Tao
2011-04-01
Sodium (Na) Faraday filters based spectrometer is a relatively new instrument to study sodium nightglow as well as sodium and oxygen chemistry in the mesopause region. Successful spectrometer measurement demands highly accurate control of filter temperature. The ideal, long-term operation site for the Na spectrometer is an isolated location with minimum nocturnal sky background. Thus, the remote control of the filter temperature is a requirement for such operation, whereas current temperature controllers can only be operated manually. The proposed approach is aimed to not only enhance the temperature control, but also achieve spectrometer's remote and autonomous operation. In the meantime, the redesign should relief the burden of the cost for multi temperature controllers. The program will give to the operator flexibility in setting the operation temperatures of the Faraday filters, monitoring the temperature variations, and logging the data during the operation. Research will make diligent efforts to attach preliminary data analysis subroutine to the main control program. The real-time observation results will be posted online after the observation is completed. This approach also can be a good substitute for the temperature control system currently used to run the Lidar system at Utah State University (USU).
Remote sensing techniques for conservation and management of natural vegetation ecosystems
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Verdesio, J. J.; Dossantos, J. R.
1981-01-01
The importance of using remote sensing techniques, in the visible and near-infrared ranges, for mapping, inventory, conservation and management of natural ecosystems is discussed. Some examples realized in Brazil or other countries are given to evaluate the products from orbital platform (MSS and RBV imagery of LANDSAT) and aerial level (photography) for ecosystems study. The maximum quantitative and qualitative information which can be obtained from each sensor, at different level, are discussed. Based on the developed experiments it is concluded that the remote sensing technique is a useful tool in mapping vegetation units, estimating biomass, forecasting and evaluation of fire damage, disease detection, deforestation mapping and change detection in land-use. In addition, remote sensing techniques can be used in controling implantation and planning natural/artificial regeneration.
Monitoring and Controlling an Underwater Robotic Arm
NASA Technical Reports Server (NTRS)
Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.
2009-01-01
The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.
47 CFR 74.434 - Remote control operation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...
47 CFR 74.434 - Remote control operation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...
47 CFR 74.434 - Remote control operation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...
47 CFR 74.434 - Remote control operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...
47 CFR 74.434 - Remote control operation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...
An evaluative model of system performance in manned teleoperational systems
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1989-01-01
Manned teleoperational systems are used in aerospace operations in which humans must interact with machines remotely. Manual guidance of remotely piloted vehicles, controling a wind tunnel, carrying out a scientific procedure remotely are examples of teleoperations. A four input parameter throughput (Tp) model is presented which can be used to evaluate complex, manned, teleoperations-based systems and make critical comparisons among candidate control systems. The first two parameters of this model deal with nominal (A) and off-nominal (B) predicted events while the last two focus on measured events of two types, human performance (C) and system performance (D). Digital simulations showed that the expression A(1-B)/C+D) produced the greatest homogeneity of variance and distribution symmetry. Results from a recently completed manned life science telescience experiment will be used to further validate the model. Complex, interacting teleoperational systems may be systematically evaluated using this expression much like a computer benchmark is used.
Remote multi-function fire alarm system based on internet of things
NASA Astrophysics Data System (ADS)
Wang, Lihui; Zhao, Shuai; Huang, Jianqing; Ji, Jianyu
2018-05-01
This project uses MCU STC15W408AS (stable, energy saving, high speed), temperature sensor DS18B20 (cheap, high efficiency, stable), MQ2 resistance type semiconductor smog sensor (high stability, fast response and economy) and NRF24L01 wireless transmitting and receiving module (energy saving, small volume, reliable) as the main body to achieve concentration temperature data presentation, intelligent voice alarming and short distance wireless transmission. The whole system is safe, reliable, cheap, quick reaction and good performance. This project uses the MCU STM32F103RCT6 as the main control chip, and use WIFI module ESP8266, wireless module NRF24L01 to make the gateway. Users can remotely check and control the related devices in real-time on smartphones or computers. We can also realize the functions of intelligent fire monitoring, remote fire extinguishing, cloud data storage through the third party server Big IOT.
Baggett, Kathleen; Davis, Betsy; Feil, Edward; Sheeber, Lisa; Landry, Susan; Leve, Craig; Johnson, Ursula
2017-11-01
Technology advances increasingly allow for access to remotely delivered interventions designed to promote early parenting practices that protect against child maltreatment. Among low-income families, at somewhat elevated risk for child maltreatment, there is some evidence that parents do engage in and benefit from remote-coaching interventions. However, little is known about the effectiveness of such programs to engage and benefit families at high risk for child maltreatment due to multiple stressors associated with poverty. To address this limitation, we examined engagement and outcomes among mothers at heightened risk for child abuse, who were enrolled in a randomized controlled, intent-to-treat trial of an Internet adaptation of an evidence-based infant parenting intervention. We found that engagement patterns were similar between higher and lower risk groups. Moreover, an intervention dose by condition effect was found for increased positive parent behavior and reduced child abuse potential.
Virtual and remote robotic laboratory using EJS, MATLAB and LabVIEW.
Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián
2013-02-21
This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented.
Design and implementation of Remote Digital Energy Meter (RDEM) based on GSM technology
NASA Astrophysics Data System (ADS)
Khan, Muhammad Waseem; Wang, Jie; Irfan, Muhammad; Shiraz, M.; Khan, Ali Hassan
2017-11-01
Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.
Virtual and Remote Robotic Laboratory Using EJS, MATLAB and Lab VIEW
Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián
2013-01-01
This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented. PMID:23429578
Controlling mechanisms over the internet
NASA Astrophysics Data System (ADS)
Lumia, Ronald
1997-01-01
The internet, widely available throughout the world, can be used to control robots, machine tools, and other mechanisms. This paper will describe a low-cost virtual collaborative environment (VCE) which will connect users with distant equipment. The system is based on PC technology, and incorporates off-line-programming with on-line execution. A remote user programs the systems graphically and simulates the motions and actions of the mechanism until satisfied with the functionality of the program. The program is then transferred from the remote site to the local site where the real equipment exists. At the local site, the simulation is run again to check the program from a safety standpoint. Then, the local user runs the program on the real equipment. During execution, a camera in the real workspace provides an image back to the remote user through a teleconferencing system. The system costs approximately 12,500 dollars and represents a low-cost alternative to the Sandia National Laboratories VCE.
Use of control umbilicals as a deployment mode for free flying telerobotic work systems
NASA Technical Reports Server (NTRS)
Kuehn, J. S.; Selle, E. D.
1987-01-01
Work to date on telerobotic work systems for use in space generally consider two deployment modes, free flying, or fixed within a limited work envelope. Control tethers may be employed to obtain a number of operational advantages and added flexibility in the basing and deployment of telerobotic work systems. Use of a tether allows the work system to be separated into two major modules, the remote work package and the control module. The Remote Work Package (RWP) comprises the free flying portion of the work system while the Control Module (CM) remains at the work system base. The chief advantage of this configuration is that only the components required for completion of the work task must be located at the work site. Reaction mass used in free flight is stored at the Control module and supplied to the RWP through the tether, eliminating the need for the RWP to carry it. The RWP can be made less massive than a self contained free flying work system. As a result, reaction mass required for free flight is lower than for a self contained free flyer.
NASA Astrophysics Data System (ADS)
Verma, Manish K.
Terrestrial gross primary productivity (GPP) is the largest and most variable component of the carbon cycle and is strongly influenced by phenology. Realistic characterization of spatio-temporal variation in GPP and phenology is therefore crucial for understanding dynamics in the global carbon cycle. In the last two decades, remote sensing has become a widely-used tool for this purpose. However, no study has comprehensively examined how well remote sensing models capture spatiotemporal patterns in GPP, and validation of remote sensing-based phenology models is limited. Using in-situ data from 144 eddy covariance towers located in all major biomes, I assessed the ability of 10 remote sensing-based methods to capture spatio-temporal variation in GPP at annual and seasonal scales. The models are based on different hypotheses regarding ecophysiological controls on GPP and span a range of structural and computational complexity. The results lead to four main conclusions: (i) at annual time scale, models were more successful capturing spatial variability than temporal variability; (ii) at seasonal scale, models were more successful in capturing average seasonal variability than interannual variability; (iii) simpler models performed as well or better than complex models; and (iv) models that were best at explaining seasonal variability in GPP were different from those that were best able to explain variability in annual scale GPP. Seasonal phenology of vegetation follows bounded growth and decay, and is widely modeled using growth functions. However, the specific form of the growth function affects how phenological dynamics are represented in ecosystem and remote sensing-base models. To examine this, four different growth functions (the logistic, Gompertz, Mirror-Gompertz and Richards function) were assessed using remotely sensed and in-situ data collected at several deciduous forest sites. All of the growth functions provided good statistical representation of in-situ and remote sensing time series. However, the Richards function captured observed asymmetric dynamics that were not captured by the other functions. The timing of key phenophase transitions derived using the Richards function therefore agreed best with observations. This suggests that ecosystem models and remote-sensing algorithms would benefit from using the Richards function to represent phenological dynamics.
Wang, Ying; Lin, Xudong; Chen, Xi; Chen, Xian; Xu, Zhen; Zhang, Wenchong; Liao, Qinghai; Duan, Xin; Wang, Xin; Liu, Ming; Wang, Feng; He, Jufang; Shi, Peng
2017-10-01
Many nanomaterials can be used as sensors or transducers in biomedical research and they form the essential components of transformative novel biotechnologies. In this study, we present an all-optical method for tetherless remote control of neural activity using fully implantable micro-devices based on upconversion technology. Upconversion nanoparticles (UCNPs) were used as transducers to convert near-infrared (NIR) energy to visible light in order to stimulate neurons expressing different opsin proteins. In our setup, UCNPs were packaged in a glass micro-optrode to form an implantable device with superb long-term biocompatibility. We showed that remotely applied NIR illumination is able to reliably trigger spiking activity in rat brains. In combination with a robotic laser projection system, the upconversion-based tetherless neural stimulation technique was implemented to modulate brain activity in various regions, including the striatum, ventral tegmental area, and visual cortex. Using this system, we were able to achieve behavioral conditioning in freely moving animals. Notably, our microscale device was at least one order of magnitude smaller in size (∼100 μm in diameter) and two orders of magnitude lighter in weight (less than 1 mg) than existing wireless optogenetic devices based on light-emitting diodes. This feature allows simultaneous implantation of multiple UCNP-optrodes to achieve modulation of brain function to control complex animal behavior. We believe that this technology not only represents a novel practical application of upconversion nanomaterials, but also opens up new possibilities for remote control of neural activity in the brains of behaving animals. Copyright © 2017 Elsevier Ltd. All rights reserved.
High-autonomy control of space resource processing plants
NASA Technical Reports Server (NTRS)
Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue
1993-01-01
A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.
Design of a Low-Cost Air Levitation System for Teaching Control Engineering.
Chacon, Jesus; Saenz, Jacobo; Torre, Luis de la; Diaz, Jose Manuel; Esquembre, Francisco
2017-10-12
Air levitation is the process by which an object is lifted without mechanical support in a stable position, by providing an upward force that counteracts the gravitational force exerted on the object. This work presents a low-cost lab implementation of an air levitation system, based on open solutions. The rapid dynamics makes it especially suitable for a control remote lab. Due to the system's nature, the design can be optimized and, with some precision trade-off, kept affordable both in cost and construction effort. It was designed to be easily adopted to be used as both a remote lab and as a hands-on lab.
Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI.
Stawicki, Piotr; Gembler, Felix; Volosyak, Ivan
2016-01-01
Brain-computer interfaces represent a range of acknowledged technologies that translate brain activity into computer commands. The aim of our research is to develop and evaluate a BCI control application for certain assistive technologies that can be used for remote telepresence or remote driving. The communication channel to the target device is based on the steady-state visual evoked potentials. In order to test the control application, a mobile robotic car (MRC) was introduced and a four-class BCI graphical user interface (with live video feedback and stimulation boxes on the same screen) for piloting the MRC was designed. For the purpose of evaluating a potential real-life scenario for such assistive technology, we present a study where 61 subjects steered the MRC through a predetermined route. All 61 subjects were able to control the MRC and finish the experiment (mean time 207.08 s, SD 50.25) with a mean (SD) accuracy and ITR of 93.03% (5.73) and 14.07 bits/min (4.44), respectively. The results show that our proposed SSVEP-based BCI control application is suitable for mobile robots with a shared-control approach. We also did not observe any negative influence of the simultaneous live video feedback and SSVEP stimulation on the performance of the BCI system.
Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI
2016-01-01
Brain-computer interfaces represent a range of acknowledged technologies that translate brain activity into computer commands. The aim of our research is to develop and evaluate a BCI control application for certain assistive technologies that can be used for remote telepresence or remote driving. The communication channel to the target device is based on the steady-state visual evoked potentials. In order to test the control application, a mobile robotic car (MRC) was introduced and a four-class BCI graphical user interface (with live video feedback and stimulation boxes on the same screen) for piloting the MRC was designed. For the purpose of evaluating a potential real-life scenario for such assistive technology, we present a study where 61 subjects steered the MRC through a predetermined route. All 61 subjects were able to control the MRC and finish the experiment (mean time 207.08 s, SD 50.25) with a mean (SD) accuracy and ITR of 93.03% (5.73) and 14.07 bits/min (4.44), respectively. The results show that our proposed SSVEP-based BCI control application is suitable for mobile robots with a shared-control approach. We also did not observe any negative influence of the simultaneous live video feedback and SSVEP stimulation on the performance of the BCI system. PMID:27528864
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Yeh, Jui-Chi; Shih, Ching-Tien; Chang, Man-Ling
2011-01-01
The latest studies have adopted software technology which turns the Wii Remote Controller into a high-performance limb action detector, we assessed whether two persons with multiple disabilities would be able to control an environmental stimulus through limb action. This study extends the functionality of the Wii Remote Controller to the…
Integration of the Remote Agent for the NASA Deep Space One Autonomy Experiment
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Bernard, Douglas E.; Gamble, Edward B., Jr.; Kanefsky, Bob; Kurien, James; Muscettola, Nicola; Nayak, P. Pandurang; Rajan, Kanna; Lau, Sonie (Technical Monitor)
1998-01-01
This paper describes the integration of the Remote Agent (RA), a spacecraft autonomy system which is scheduled to control the Deep Space 1 spacecraft during a flight experiment in 1999. The RA is a reusable, model-based autonomy system that is quite different from software typically used to control an aerospace system. We describe the integration challenges we faced, how we addressed them, and the lessons learned. We focus on those aspects of integrating the RA that were either easier or more difficult than integrating a more traditional large software application because the RA is a model-based autonomous system. A number of characteristics of the RA made integration process easier. One example is the model-based nature of RA. Since the RA is model-based, most of its behavior is not hard coded into procedural program code. Instead, engineers specify high level models of the spacecraft's components from which the Remote Agent automatically derives correct system-wide behavior on the fly. This high level, modular, and declarative software description allowed some interfaces between RA components and between RA and the flight software to be automatically generated and tested for completeness against the Remote Agent's models. In addition, the Remote Agent's model-based diagnosis system automatically diagnoses when the RA models are not consistent with the behavior of the spacecraft. In flight, this feature is used to diagnose failures in the spacecraft hardware. During integration, it proved valuable in finding problems in the spacecraft simulator or flight software. In addition, when modifications are made to the spacecraft hardware or flight software, the RA models are easily changed because they only capture a description of the spacecraft. one does not have to maintain procedural code that implements the correct behavior for every expected situation. On the other hand, several features of the RA made it more difficult to integrate than typical flight software. For example, the definition of correct behavior is more difficult to specify for a system that is expected to reason about and flexibly react to its environment than for a traditional flight software system. Consequently, whenever a change is made to the RA it is more time consuming to determine if the resulting behavior is correct. We conclude the paper with a discussion of future work on the Remote Agent as well as recommendations to ease integration of similar autonomy projects.
Remote synchronization of amplitudes across an experimental ring of non-linear oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it
In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a “mixing” stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certainmore » control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.« less
Remote synchronization of amplitudes across an experimental ring of non-linear oscillators.
Minati, Ludovico
2015-12-01
In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a "mixing" stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.
Distributed Learning and Information Dynamics In Networked Autonomous Systems
2015-11-20
2009 to June 30, 2015 4. TITLE AND SUBTITLE DISTRIBUTED LEARNING AND INFORMATION DYNAMICS IN NETWORKED AUTONOMOUS SYSTEMS 5a. CONTRACT NUMBER 5b...AUTONOMOUS SYSTEMS AFOSR Grant #FA9550–09–1–0538 PI: Eric Feron (current) Jeff S. Shamma (former) Georgia Institute of Technology Atlanta, GA 30332 1...Control. Design of event-based optimal remote estimation systems : We have proposed two new for- mulations to study the design of optimal remote
Suppression of tritium retention in remote areas of ITER by nonperturbative reactive gas injection.
Tabarés, F L; Ferreira, J A; Ramos, A; van Rooij, G; Westerhout, J; Al, R; Rapp, J; Drenik, A; Mozetic, M
2010-10-22
A technique based on reactive gas injection in the afterglow region of the divertor plasma is proposed for the suppression of tritium-carbon codeposits in remote areas of ITER when operated with carbon-based divertor targets. Experiments in a divertor simulator plasma device indicate that a 4 nm/min deposition can be suppressed by addition of 1 Pa·m³ s⁻¹ ammonia flow at 10 cm from the plasma. These results bolster the concept of nonperturbative scavenger injection for tritium inventory control in carbon-based fusion plasma devices, thus paving the way for ITER operation in the active phase under a carbon-dominated, plasma facing component background.
21 CFR 892.5700 - Remote controlled radionuclide applicator system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5700 Remote controlled...
NASA Technical Reports Server (NTRS)
Robinson, W. W.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the Electrical Power Distribution and Control (EPD and C)/Remote Manipulator System (RMS) hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained in the NASA FMEA/CIL documentation. This report documents the results of the independent analysis of the EPD and C/RMS (both port and starboard) hardware. The EPD and C/RMS subsystem hardware provides the electrical power and power control circuitry required to safely deploy, operate, control, and stow or guillotine and jettison two (one port and one starboard) RMSs. The EPD and C/RMS subsystem is subdivided into the four following functional divisions: Remote Manipulator Arm; Manipulator Deploy Control; Manipulator Latch Control; Manipulator Arm Shoulder Jettison; and Retention Arm Jettison. The IOA analysis process utilized available EPD and C/RMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based on the severity of the effect for each failure mode.
Rationale and design of the health economics evaluation registry for remote follow-up: TARIFF.
Ricci, Renato P; D'Onofrio, Antonio; Padeletti, Luigi; Sagone, Antonio; Vicentini, Alfredo; Vincenti, Antonio; Morichelli, Loredana; Cavallaro, Ciro; Ricciardi, Giuseppe; Lombardi, Leonida; Fusco, Antonio; Rovaris, Giovanni; Silvestri, Paolo; Guidotto, Tiziana; Pollastrelli, Annalisa; Santini, Massimo
2012-11-01
The aims of the study are to develop a cost-minimization analysis from the hospital perspective and a cost-effectiveness analysis from the third payer standpoint, based on direct estimates of costs and QOL associated with remote follow-ups, using Merlin@home and Merlin.net, compared with standard ambulatory follow-ups, in the management of ICD and CRT-D recipients. Remote monitoring systems can replace ambulatory follow-ups, sparing human and economic resources, and increasing patient safety. TARIFF is a prospective, controlled, observational study aimed at measuring the direct and indirect costs and quality of life (QOL) of all participants by a 1-year economic evaluation. A detailed set of hospitalized and ambulatory healthcare costs and losses of productivity that could be directly influenced by the different means of follow-ups will be collected. The study consists of two phases, each including 100 patients, to measure the economic resources consumed during the first phase, associated with standard ambulatory follow-ups, vs. the second phase, associated with remote follow-ups. Remote monitoring systems enable caregivers to better ensure patient safety and the healthcare to limit costs. TARIFF will allow defining the economic value of remote ICD follow-ups for Italian hospitals, third payers, and patients. The TARIFF study, based on a cost-minimization analysis, directly comparing remote follow-up with standard ambulatory visits, will validate the cost effectiveness of the Merlin.net technology, and define a proper reimbursement schedule applicable for the Italian healthcare system. NCT01075516.
Multi-controller quantum teleportation with remote rotation and its applications
NASA Astrophysics Data System (ADS)
Kao, Shih-Hung; Chen, Yu-Ting; Tsai, Chia-Wei; Hwang, Tzonelih
2015-12-01
This work proposes the first multi-controller quantum teleportation with remote rotations, which allows a sender to teleport an arbitrary qubit to a receiver and at the same time, many controllers can remotely perform two kinds of rotation operations with various angles on the teleported qubit. In order to show its usefulness, a controlled quantum teleportation protocol has also been proposed.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Wang, Shu-Hui; Chang, Man-Ling; Shih, Ching-Hsiang
2012-01-01
The latest researches have adopted software technology, turning the Nintendo Wii Remote Controller into a high performance three-dimensional object orientation detector. This study extended Wii Remote Controller functionality to assess whether two people with developmental disabilities would be able to actively perform designated simple…
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb action with a Nintendo Wii Remote Controller and a newly developed limb action detection program (LADP, i.e., a new software program that turns a Wii Remote Controller into a precise limb action detector). This study was…
Telepresence system development for application to the control of remote robotic systems
NASA Technical Reports Server (NTRS)
Crane, Carl D., III; Duffy, Joseph; Vora, Rajul; Chiang, Shih-Chien
1989-01-01
The recent developments of techniques which assist an operator in the control of remote robotic systems are described. In particular, applications are aimed at two specific scenarios: The control of remote robot manipulators; and motion planning for remote transporter vehicles. Common to both applications is the use of realistic computer graphics images which provide the operator with pertinent information. The specific system developments for several recently completed and ongoing telepresence research projects are described.
Flexible distributed architecture for semiconductor process control and experimentation
NASA Astrophysics Data System (ADS)
Gower, Aaron E.; Boning, Duane S.; McIlrath, Michael B.
1997-01-01
Semiconductor fabrication requires an increasingly expensive and integrated set of tightly controlled processes, driving the need for a fabrication facility with fully computerized, networked processing equipment. We describe an integrated, open system architecture enabling distributed experimentation and process control for plasma etching. The system was developed at MIT's Microsystems Technology Laboratories and employs in-situ CCD interferometry based analysis in the sensor-feedback control of an Applied Materials Precision 5000 Plasma Etcher (AME5000). Our system supports accelerated, advanced research involving feedback control algorithms, and includes a distributed interface that utilizes the internet to make these fabrication capabilities available to remote users. The system architecture is both distributed and modular: specific implementation of any one task does not restrict the implementation of another. The low level architectural components include a host controller that communicates with the AME5000 equipment via SECS-II, and a host controller for the acquisition and analysis of the CCD sensor images. A cell controller (CC) manages communications between these equipment and sensor controllers. The CC is also responsible for process control decisions; algorithmic controllers may be integrated locally or via remote communications. Finally, a system server images connections from internet/intranet (web) based clients and uses a direct link with the CC to access the system. Each component communicates via a predefined set of TCP/IP socket based messages. This flexible architecture makes integration easier and more robust, and enables separate software components to run on the same or different computers independent of hardware or software platform.
NASA Technical Reports Server (NTRS)
Mavroidis, Constantinos; Pfeiffer, Charles; Paljic, Alex; Celestino, James; Lennon, Jamie; Bar-Cohen, Yoseph
2000-01-01
For many years, the robotic community sought to develop robots that can eventually operate autonomously and eliminate the need for human operators. However, there is an increasing realization that there are some tasks that human can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robot can be employed to perform these tasks. Remotely performing these types of tasks requires operating robots as human surrogates. While current "hand master" haptic systems are able to reproduce the feeling of rigid objects, they present great difficulties in emulating the feeling of remote/virtual stiffness. In addition, they tend to be heavy, cumbersome and usually they only allow limited operator workspace. In this paper a novel haptic interface is presented to enable human-operators to "feel" and intuitively mirror the stiffness/forces at remote/virtual sites enabling control of robots as human-surrogates. This haptic interface is intended to provide human operators intuitive feeling of the stiffness and forces at remote or virtual sites in support of space robots performing dexterous manipulation tasks (such as operating a wrench or a drill). Remote applications are referred to the control of actual robots whereas virtual applications are referred to simulated operations. The developed haptic interface will be applicable to IVA operated robotic EVA tasks to enhance human performance, extend crew capability and assure crew safety. The electrically controlled stiffness is obtained using constrained ElectroRheological Fluids (ERF), which changes its viscosity under electrical stimulation. Forces applied at the robot end-effector due to a compliant environment will be reflected to the user using this ERF device where a change in the system viscosity will occur proportionally to the force to be transmitted. In this paper, we will present the results of our modeling, simulation, and initial testing of such an electrorheological fluid (ERF) based haptic device.
BEGIRA: Basque Educational Gate for Interactive and Remote Astronomy
NASA Astrophysics Data System (ADS)
Gorosabel, J.; Sánchez-Lavega, A.; Pérez Hoyos, S.; Hueso, R.
2015-05-01
The BEGIRA project consists in making available the 1.23 m Calar Alto (CAHA) telescope to students of the University of the Basque Country (UPV/EHU). The project is designed in such a way that undergraduate and graduate students of the Máster oficial en ciencia y tecnología espacial of the UPV/EHU can control remotely the 1.23 m CAHA telescope. The instrument used is the DLR camera, which based on its large field of view and high sensitivity, allows observations ranging from nearby solar system bodies to remote gamma-ray bursts. The students are also responsible of reducing and analyzing the resultant DLR data. The observations are conducted from the Aula Espazio Gela located at the Faculty of Engineering at Bilbao. The students can control remotely i) the 1.23 m telescope, ii) the DLR camera and iii) the autoguider. They have also continuous access to the observatory weather station, webcams, astrometric tools and the CAHA archive, so they can actually see in real-time what they are doing. The operations can be visualized by two light cannons which display the telescope and camera controls for the audience. In case of any emergency the students are backed up by the CAHA staff. The BEGIRA project shows the potential that remote control of professional telescopes has for educational purposes. As proven by the several discoveries carried out under BEGIRA, the educational activities can be complemented with cutting-edge research activities carried out by Master Students. In the coming years we plan to continue with the BEGIRA project. More information can be found at http://www.ehu.es/aula-espazio/begira/.
Shih, Ching-Hsiang; Wang, Shu-Hui; Chang, Man-Ling; Shih, Ching-Hsiang
2012-01-01
The latest researches have adopted software technology, turning the Nintendo Wii Remote Controller into a high performance three-dimensional object orientation detector. This study extended Wii Remote Controller functionality to assess whether two people with developmental disabilities would be able to actively perform designated simple occupational activities according to simple instructions by controlling their favorite environmental stimulation using a Nintendo Wii Remote Controller. This study was conducted using ABAB designs. The data showed that both participants significantly increased their target response (performing a designated occupational activity) by activating the control system to produce their preferred environmental stimulation during the intervention phases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Remote Control Childhood: Combating the Hazards of Media Culture in Schools
ERIC Educational Resources Information Center
Levin, Diane
2010-01-01
Background: Media culture touches most aspects of the lives of children growing up today, beginning at the earliest ages. It is profoundly the lessons children learn as well as how they learn, thereby contributing to what this article characterizes as "remote control childhood." Educators need to understand remote control childhood so…
Comoretto, Rosanna Irene; Facchin, Domenico; Ghidina, Marco; Proclemer, Alessandro; Gregori, Dario
2017-08-01
Health-related quality of life (HRQoL) improves shortly after pacemaker (PM) implantation. No studies have investigated the HRQoL trend for elderly patients with a remote device monitoring follow-up system. Using EuroQol-5D Questionnaire and the PM-specific Assessment of Quality of Life and Related Events Questionnaire, HRQoL was measured at baseline and then repeatedly during the 6 months following PM implantation in a cohort of 42 consecutive patients. Twenty-five patients were followed-up with standard outpatient visits, while 17 used a remote monitoring system. Aquarel scores were significantly higher in patients with remote device monitoring system regarding chest discomfort and arrhythmia subscales the first month after PM implant and remained stable until 6 months. Remote monitoring affected the rate of HRQoL improvement in the first 3 months after pacemaker implantation more than ambulatory follow-up. Remote device monitoring has a significant impact on HRQoL in pacemaker patients, increasing its levels up to 6 months after implant. © 2017 John Wiley & Sons, Ltd.
Telerobotic controller development
NASA Technical Reports Server (NTRS)
Otaguro, W. S.; Kesler, L. O.; Land, Ken; Rhoades, Don
1987-01-01
To meet NASA's space station's needs and growth, a modular and generic approach to robotic control which provides near-term implementation with low development cost and capability for growth into more autonomous systems was developed. The method uses a vision based robotic controller and compliant hand integrated with the Remote Manipulator System arm on the Orbiter. A description of the hardware and its system integration is presented.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Chia-Ju; Shih, Ching-Tien
2011-01-01
The latest researches have adopted software technology by applying the Nintendo Wii Remote Controller to the correction of hyperactive limb behavior. This study extended Wii Remote Controller functionality for improper head position (posture) correction (i.e. actively adjusting abnormal head posture) to assess whether two people with multiple…
Clinical benefits of remote versus transtelephonic monitoring of implanted pacemakers.
Crossley, George H; Chen, Jane; Choucair, Wassim; Cohen, Todd J; Gohn, Douglas C; Johnson, W Ben; Kennedy, Eleanor E; Mongeon, Luc R; Serwer, Gerald A; Qiao, Hongyan; Wilkoff, Bruce L
2009-11-24
The purpose of this study was to evaluate remote pacemaker interrogation for the earlier diagnosis of clinically actionable events compared with traditional transtelephonic monitoring and routine in-person evaluation. Pacemaker patient follow-up procedures have evolved from evaluating devices with little programmability and diagnostic information solely in person to transtelephonic rhythm strip recordings that allow monitoring of basic device function. More recently developed remote monitoring technology leverages expanded device capabilities, augmenting traditional transtelephonic monitoring to evaluate patients via full device interrogation. The time to first diagnosis of a clinically actionable event was compared in patients who were followed by remote interrogation (Remote) and those who were followed per standard of care with office visits augmented by transtelephonic monitoring (Control). Patients were randomized 2:1. Remote arm patients transmitted pacemaker information at 3-month intervals. Control arm patients with a single-chamber pacemaker transmitted at 2-month intervals. Control arm patients with dual-chamber devices transmitted at 2-month intervals with an office visit at 6 months. All patients were seen in office at 12 months. The mean time to first diagnosis of clinically actionable events was earlier in the Remote arm (5.7 months) than in the Control arm (7.7 months). Three (2%) of the 190 events in the Control arm and 446 (66%) of 676 events in the Remote arm were identified remotely. The strategic use of remote pacemaker interrogation follow-up detects actionable events that are potentially important more quickly and more frequently than transtelephonic rhythm strip recordings. The use of transtelephonic rhythm strips for pacemaker follow-up is of little value except for battery status determinations. (PREFER [Pacemaker Remote Follow-up Evaluation and Review]; NCT00294645).
DOE Office of Scientific and Technical Information (OSTI.GOV)
PIERSON, R.M.
1999-10-27
This document provides the technical basis for use of remote reading capabilities with radiological control instruments at River Protection Project facilities. The purpose of this document is to evaluate applications of remote reading capabilities with Radiological Control instrumentation to allow continuous monitoring of radiation dose rates at River Protection Project (RPP) facilities. In addition this document provides a technical basis and implementing guidelines for remote monitoring of dose rates and their potential contribution to maintaining radiation exposures ALARA.
Tian, Jiajun; Zhang, Qi; Fink, Thomas; Li, Hong; Peng, Wei; Han, Ming
2012-11-15
Intensity-based demodulation of extrinsic Fabry-Perot interferometric (EFPI) fiber-optic sensors requires the light wavelength to be on the quadrature point of the interferometric fringes for maximum sensitivity. In this Letter, we propose a novel and remote operating-point tuning method for EFPI fiber-optic sensors using microstructured fibers (MFs) and gas pressure. We demonstrated the method using a diaphragm-based EFPI sensor with a microstructured lead-in fiber. The holes in the MF were used as gas channels to remotely control the gas pressure inside the Fabry-Perot cavity. Because of the deformation of the diaphragm with gas pressure, the cavity length and consequently the operating point can be remotely tuned for maximum sensitivity. The proposed operating-point tuning method has the advantage of reduced complexity and cost compared to previously reported methods.
Distributive, Non-destructive Real-time System and Method for Snowpack Monitoring
NASA Technical Reports Server (NTRS)
Frolik, Jeff (Inventor); Skalka, Christian (Inventor)
2013-01-01
A ground-based system that provides quasi real-time measurement and collection of snow-water equivalent (SWE) data in remote settings is provided. The disclosed invention is significantly less expensive and easier to deploy than current methods and less susceptible to terrain and snow bridging effects. Embodiments of the invention include remote data recovery solutions. Compared to current infrastructure using existing SWE technology, the disclosed invention allows more SWE sites to be installed for similar cost and effort, in a greater variety of terrain; thus, enabling data collection at improved spatial resolutions. The invention integrates a novel computational architecture with new sensor technologies. The invention's computational architecture is based on wireless sensor networks, comprised of programmable, low-cost, low-powered nodes capable of sophisticated sensor control and remote data communication. The invention also includes measuring attenuation of electromagnetic radiation, an approach that is immune to snow bridging and significantly reduces sensor footprints.
GSM Web-Based Centralized Remote Wireless Automatic Controlling and Monitoring of Aquafeeder
NASA Astrophysics Data System (ADS)
Wong, C. L.; Idris, A.; Hasan, Z.
2016-03-01
This project is about producing a prototype to feed fishes at fish ponds of remote location with the use of GSM mobile phone. An automatic fish feeder is an electric device that has been designed to give out the right amount of pellets at the designed time. In this project, the automatic feeder designed consists of photovoltaic solar cells that are used to generate electricity and storing it into batteries. Solar charge controllers can be used to determine the rate of which current is drawn and added from the batteries. GSM cellular communication is used to allow user to control from a distance. Commands or instructions are sent to the operating system which in return runs the servomotor and blower by blowing certain amount of fish pallets into the pond to feed the fishes. The duration of the feeding processes is fixed by the user, hence the amount of fish food pallets released are precisely the same for each time. This technology is especially useful for fish farmers where they can remotely feed their fishes.
NASA Astrophysics Data System (ADS)
Hellman, Brandon; Bosset, Erica; Ender, Luke; Jafari, Naveed; McCann, Phillip; Nguyen, Chris; Summitt, Chris; Wang, Sunglin; Takashima, Yuzuru
2017-11-01
The ray formalism is critical to understanding light propagation, yet current pedagogy relies on inadequate 2D representations. We present a system in which real light rays are visualized through an optical system by using a collimated laser bundle of light and a fog chamber. Implementation for remote and immersive access is enabled by leveraging a commercially available 3D viewer and gesture-based remote controlling of the tool via bi-directional communication over the Internet.
Creature co-op: Achieving robust remote operations with a community of low-cost robots
NASA Technical Reports Server (NTRS)
Bonasso, R. Peter
1990-01-01
The concept is advanced of carrying out space based remote missions using a cooperative of low cost robot specialists rather than monolithic, multipurpose systems. A simulation is described wherein a control architecture for such a system of specialists is being investigated. Early results show such co-ops to be robust in the face of unforeseen circumstances. Descriptions of the platforms and sensors modeled and the beacon and retriever creatures that make up the co-op are included.
The family of micro sensors for remote control the pollution in liquids and gases
NASA Astrophysics Data System (ADS)
Tulaikova, Tamara; Kocharyun, Gevorg; Rogerson, Graham; Burmistrova, Ludmyla; Sychugov, Vladimir; Dorojkin, Peter
2005-10-01
There are the results for the 3 groups of fiber-optical sensors. First is the fiber-optical sensor with changed sensitive heads on the base on porous polymer with clamped activated dye. Vibration method for fiber-optical sensors provides more convenient output measurements of resonant frequency changes, in comparison with the first device. The self-focusing of the living sells into optical wave-guides in laser road in water will be considered as a new touch method for environment remote sensing.
Remote Sensing of Complex Flows by Doppler Wind Lidar: Issues and Preliminary Recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Andrew; Boquet, Matthieu; Burin Des Roziers, Edward
Remote sensing of winds using lidar has become popular and useful in the wind energy industry. Extensive experience has been gained with using lidar for applications including land-based and offshore resource assessment, plant operations, and turbine control. Prepared by members of International Energy Agency Task 32, this report describes the state of the art in the use of Doppler wind lidar for resource assessment in complex flows. The report will be used as input for future recommended practices on this topic.
NASA Astrophysics Data System (ADS)
Wu, Hao; Zha, Xin-Wei; Yang, Yu-Quan
2018-01-01
We propose a new protocol of implementing four-party controlled joint remote state preparation and meanwhile realizing controlled quantum teleportation via a seven-qubit entangled state. That is to say, Alice wants to teleport an arbitrary single-qubit state to Bob and Bob wants to remotely prepare a known state for Alice via the control of supervisors Fred and David. Compared with previous studies for the schemes of solely bidirectional quantum teleportation and remote state preparation, the new protocol is a kind of hybrid approach of information communication which makes the quantum channel multipurpose.
NASA Astrophysics Data System (ADS)
Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao
2015-11-01
For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.
Using NetMeeting for remote configuration of the Otto Bock C-Leg: technical considerations.
Lemaire, E D; Fawcett, J A
2002-08-01
Telehealth has the potential to be a valuable tool for technical and clinical support of computer controlled prosthetic devices. This pilot study examined the use of Internet-based, desktop video conferencing for remote configuration of the Otto Bock C-Leg. Laboratory tests involved connecting two computers running Microsoft NetMeeting over a local area network (IP protocol). Over 56 Kbs(-1), DSL/Cable, and 10 Mbs(-1) LAN speeds, a prosthetist remotely configured a user's C-Leg by using Application Sharing, Live Video, and Live Audio. A similar test between sites in Ottawa and Toronto, Canada was limited by the notebook computer's 28 Kbs(-1) modem. At the 28 Kbs(-1) Internet-connection speed, NetMeeting's application sharing feature was not able to update the remote Sliders window fast enough to display peak toe loads and peak knee angles. These results support the use of NetMeeting as an accessible and cost-effective tool for remote C-Leg configuration, provided that sufficient Internet data transfer speed is available.
Collaboration technology and space science
NASA Technical Reports Server (NTRS)
Leiner, Barry M.; Brown, R. L.; Haines, R. F.
1990-01-01
A summary of available collaboration technologies and their applications to space science is presented as well as investigations into remote coaching paradigms and the role of a specific collaboration tool for distributed task coordination in supporting such teleoperations. The applicability and effectiveness of different communication media and tools in supporting remote coaching are investigated. One investigation concerns a distributed check-list, a computer-based tool that allows a group of people, e.g., onboard crew, ground based investigator, and mission control, to synchronize their actions while providing full flexibility for the flight crew to set the pace and remain on their operational schedule. This autonomy is shown to contribute to morale and productivity.
Supervisory autonomous local-remote control system design: Near-term and far-term applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul
1993-01-01
The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.
NASA Astrophysics Data System (ADS)
Zhan, Jinliang; Lu, Pei
2006-11-01
Since the quality of traditional Chinese medicine products are affected by raw material, machining and many other factors, it is difficult for traditional Chinese medicine production process especially the extracting process to ensure the steady and homogeneous quality. At the same time, there exist some quality control blind spots due to lacking on-line quality detection means. But if infrared spectrum analysis technology was used in traditional Chinese medicine production process on the basis of off-line analysis to real-time detect the quality of semi-manufactured goods and to be assisted by advanced automatic control technique, the steady and homogeneous quality can be obtained. It can be seen that the on-line detection of extracting process plays an important role in the development of Chinese patent medicines industry. In this paper, the design and implement of a traditional Chinese medicine extracting process monitoring experiment system which is based on PROFIBUS-DP field bus, OPC, and Internet technology is introduced. The system integrates intelligence node which gathering data, superior sub-system which achieving figure configuration and remote supervisory, during the process of traditional Chinese medicine production, monitors the temperature parameter, pressure parameter, quality parameter etc. And it can be controlled by the remote nodes in the VPN (Visual Private Network). Experiment and application do have proved that the system can reach the anticipation effect fully, and with the merits of operational stability, real-time, reliable, convenient and simple manipulation and so on.
A Three-Year Feedback Study of a Remote Laboratory Used in Control Engineering Studies
ERIC Educational Resources Information Center
Chevalier, Amélie; Copot, Cosmin; Ionescu, Clara; De Keyser, Robin
2017-01-01
This paper discusses the results of a feedback study for a remote laboratory used in the education of control engineering students. The goal is to show the effectiveness of the remote laboratory on examination results. To provide an overview, the two applications of the remote laboratory are addressed: 1) the Stewart platform, and 2) the quadruple…
Experiments in teleoperator and autonomous control of space robotic vehicles
NASA Technical Reports Server (NTRS)
Alexander, Harold L.
1991-01-01
A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.
NASA Astrophysics Data System (ADS)
Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub
2012-07-01
The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.
Development and Use of a Virtual NMR Facility
NASA Astrophysics Data System (ADS)
Keating, Kelly A.; Myers, James D.; Pelton, Jeffrey G.; Bair, Raymond A.; Wemmer, David E.; Ellis, Paul D.
2000-03-01
We have developed a "virtual NMR facility" (VNMRF) to enhance access to the NMR spectrometers in Pacific Northwest National Laboratory's Environmental Molecular Sciences Laboratory (EMSL). We use the term virtual facility to describe a real NMR facility made accessible via the Internet. The VNMRF combines secure remote operation of the EMSL's NMR spectrometers over the Internet with real-time videoconferencing, remotely controlled laboratory cameras, real-time computer display sharing, a Web-based electronic laboratory notebook, and other capabilities. Remote VNMRF users can see and converse with EMSL researchers, directly and securely control the EMSL spectrometers, and collaboratively analyze results. A customized Electronic Laboratory Notebook allows interactive Web-based access to group notes, experimental parameters, proposed molecular structures, and other aspects of a research project. This paper describes our experience developing a VNMRF and details the specific capabilities available through the EMSL VNMRF. We show how the VNMRF has evolved during a test project and present an evaluation of its impact in the EMSL and its potential as a model for other scientific facilities. All Collaboratory software used in the VNMRF is freely available from http://www.emsl.pnl.gov:2080/docs/collab.
A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.
Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R
2018-05-01
This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Dessay, Nadine
2018-01-01
The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field. PMID:29518988
Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Gurgel, Helen; Mangeas, Morgan; Seyler, Frédérique; Dessay, Nadine
2018-03-07
The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field.
Ubiquitous remote operation collaborative interface for MRI scanners
NASA Astrophysics Data System (ADS)
Morris, H. Douglas
2001-05-01
We have developed a remote control interface for research class magnetic resonance imaging (MRI) spectrometers. The goal of the interface is to provide a better collaborative environment for geographically dispersed researchers and a tool that can teach students of medical imaging in a network-based laboratory using state-of-the-art MR instrumentation that would not otherwise be available. The interface for the remote operator(s) is now ubiquitous web browser, which was chosen for the ease of controlling the operator interface, the display of both image and text information, and the wide availability on many computer platforms. The remote operator is presented with an active display in which they may select and control most of the parameters in the MRI experiment. The MR parameters are relayed via web browser to a CGI program running in a standard web server, which passes said parameters to the MRI manufacturers control software. The data returned to the operator(s) consists of the parameters used in acquiring that image, a flat 8-bit grayscale GIF representation of the image, and a 16-bit grayscale image that can be viewed by an appropriate application. It is obvious that the utility of this interface would be helpful for researchers of regional and national facilities to more closely collaborate with colleagues across their region, the nation, or the world. And medical imaging students can put much of their classroom discussions into practice on machinery that would not normally be available to them.
47 CFR 22.575 - Use of mobile channel for remote control of station functions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Use of mobile channel for remote control of...) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service One-Way Or Two-Way Mobile Operation § 22.575 Use of mobile channel for remote control of station functions. Carriers may...
Autonomous formation flying based on GPS — PRISMA flight results
NASA Astrophysics Data System (ADS)
D'Amico, Simone; Ardaens, Jean-Sebastien; De Florio, Sergio
2013-01-01
This paper presents flight results from the early harvest of the Spaceborne Autonomous Formation Flying Experiment (SAFE) conducted in the frame of the Swedish PRISMA technology demonstration mission. SAFE represents one of the first demonstrations in low Earth orbit of an advanced guidance, navigation and control system for dual-spacecraft formations. Innovative techniques based on differential GPS-based navigation and relative orbital elements control are validated and tuned in orbit to fulfill the typical requirements of future distributed scientific instruments for remote sensing.
Remote Supervision and Control of Air Conditioning Systems in Different Modes
NASA Astrophysics Data System (ADS)
Rafeeq, Mohammed; Afzal, Asif; Rajendra, Sree
2018-01-01
In the era of automation, most of the application of engineering and science are interrelated with system for optimal operation. To get the efficient result of an operation and desired response, interconnected systems should be controlled by directing, regulating and commanding. Here, air conditioning (AC) system is considered for experimentation, to supervise and control its functioning in both, automated and manual mode. This paper reports the work intended to design and develop an automated and manual AC system working in remote and local mode, to increase the level of comfort, easy operation, reducing human intervention and faults occurring in the system. The Programmable Logical Controller (PLC) and Supervisory Control and Data Acquisition (SCADA) system were used for remote supervision and monitoring of AC systems using series ninety protocol and remote terminal unit modbus protocol as communication module to operate in remote mode. PLC was used as remote terminal for continuous supervision and control of AC system. SCADA software was used as a tool for designing user friendly graphical user interface. The proposed SCADA AC system successfully monitors and controls in accordance within the parameter limits like temperature, pressure, humidity and voltage. With all the features, this designed system is capable of efficient handling of the resources like the compressor, humidifier etc., with all the levels of safety and durability. This system also maintains the temperature and controls the humidity of the remote location and also looks after the health of the compressor.
Design of a Low-Cost Air Levitation System for Teaching Control Engineering
Chacon, Jesus; Saenz, Jacobo; de la Torre, Luis; Diaz, Jose Manuel; Esquembre, Francisco
2017-01-01
Air levitation is the process by which an object is lifted without mechanical support in a stable position, by providing an upward force that counteracts the gravitational force exerted on the object. This work presents a low-cost lab implementation of an air levitation system, based on open solutions. The rapid dynamics makes it especially suitable for a control remote lab. Due to the system’s nature, the design can be optimized and, with some precision trade-off, kept affordable both in cost and construction effort. It was designed to be easily adopted to be used as both a remote lab and as a hands-on lab. PMID:29023381
Remote Optical Control of an Optical Flip-Flop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maywar, D.N.; Solomon, K.P.; Agrawal, G.P.
2007-11-01
We experimentally demonstrate control of a holding-beam–enabled optical flip-flop by means of optical signals that act in a remote fashion. These optical-control signals vary the holding-beam power by means of cross-gain modulation within a remotely located semiconductor optical amplifier (SOA). The power-modulated holding beam then travels through a resonant-type SOA, where flip-flop action occurs as the holding-beam power falls above and below the switching thresholds of the bistable hysteresis. Control is demonstrated using submilliwatt pulses whose wavelengths are not restricted to the vicinity of the holding beam. Benefits of remote control include the potential for controlling multiple flip-flops with amore » single pair of optical signals and for realizing all-optical control of any holding-beam–enabled flip-flop.« less
Study of Galfenol direct cytotoxicity and remote microactuation in cells.
Vargas-Estevez, Carolina; Blanquer, Andreu; Dulal, Prabesh; Pérez Del Real, Rafael; Duch, Marta; Ibáñez, Elena; Barrios, Leonardo; Murillo, Gonzalo; Torras, Núria; Nogués, Carme; Stadler, Bethanie J H; Plaza, José A; Esteve, Jaume
2017-09-01
Remote microactuators are of great interest in biology and medicine as minimally-invasive tools for cellular stimulation. Remote actuation can be achieved by active magnetostrictive transducers which are capable of changing shape in response to external magnetic fields thereby creating controlled displacements. Among the magnetostrictive materials, Galfenol, the multifaceted iron-based smart material, offers high magnetostriction with robust mechanical properties. In order to explore these capabilities for biomedical applications, it is necessary to study the feasibility of material miniaturization in standard fabrication processes as well as evaluate the biocompatibility. Here we develop a technology to fabricate, release, and suspend Galfenol-based microparticles, without affecting the integrity of the material. The morphology, composition and magnetic properties of the material itself are characterized. The direct cytotoxicity of Galfenol is evaluated in vitro using human macrophages, osteoblast and osteosarcoma cells. In addition, cytotoxicity and actuation of Galfenol microparticles in suspension are evaluated using human macrophages. The biological parameters analyzed indicate that Galfenol is not cytotoxic, even after internalization of some of the particles by macrophages. The microparticles were remotely actuated forming intra- and extracellular chains that did not impact the integrity of the cells. The results propose Galfenol as a suitable material to develop remote microactuators for cell biology studies and intracellular applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Communication network for decentralized remote tele-science during the Spacelab mission IML-2
NASA Technical Reports Server (NTRS)
Christ, Uwe; Schulz, Klaus-Juergen; Incollingo, Marco
1994-01-01
The ESA communication network for decentralized remote telescience during the Spacelab mission IML-2, called Interconnection Ground Subnetwork (IGS), provided data, voice conferencing, video distribution/conferencing and high rate data services to 5 remote user centers in Europe. The combination of services allowed the experimenters to interact with their experiments as they would normally do from the Payload Operations Control Center (POCC) at MSFC. In addition, to enhance their science results, they were able to make use of reference facilities and computing resources in their home laboratory, which typically are not available in the POCC. Characteristics of the IML-2 communications implementation were the adaptation to the different user needs based on modular service capabilities of IGS and the cost optimization for the connectivity. This was achieved by using a combination of traditional leased lines, satellite based VSAT connectivity and N-ISDN according to the simulation and mission schedule for each remote site. The central management system of IGS allows minimization of staffing and the involvement of communications personnel at the remote sites. The successful operation of IGS for IML-2 as a precursor network for the Columbus Orbital Facility (COF) has proven the concept for communications to support the operation of the COF decentralized scenario.
Porcar-Castell, Albert; Tyystjärvi, Esa; Atherton, Jon; van der Tol, Christiaan; Flexas, Jaume; Pfündel, Erhard E; Moreno, Jose; Frankenberg, Christian; Berry, Joseph A
2014-08-01
Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
FAST at MACH 20: clinical ultrasound aboard the International Space Station.
Sargsyan, Ashot E; Hamilton, Douglas R; Jones, Jeffrey A; Melton, Shannon; Whitson, Peggy A; Kirkpatrick, Andrew W; Martin, David; Dulchavsky, Scott A
2005-01-01
Focused assessment with sonography for trauma (FAST) examination has been proved accurate for diagnosing trauma when performed by nonradiologist physicians. Recent reports have suggested that nonphysicians also may be able to perform the FAST examination reliably. A multipurpose ultrasound system is installed on the International Space Station as a component of the Human Research Facility. Nonphysician crew members aboard the International Space Station receive modest training in hardware operation, sonographic techniques, and remotely guided scanning. This report documents the first FAST examination conducted in space, as part of the sustained effort to maintain the highest possible level of available medical care during long-duration space flight. An International Space Station crew member with minimal sonography training was remotely guided through a FAST examination by an ultrasound imaging expert from Mission Control Center using private real-time two-way audio and a private space-to-ground video downlink (7.5 frames/second). There was a 2-second satellite delay for both video and audio. To facilitate the real-time telemedical ultrasound examination, identical reference cards showing topologic reference points and hardware controls were available to both the crew member and the ground-based expert. A FAST examination, including four standard abdominal windows, was completed in approximately 5.5 minutes. Following commands from the Mission Control Center-based expert, the crew member acquired all target images without difficulty. The anatomic content and fidelity of the ultrasound video were excellent and would allow clinical decision making. It is possible to conduct a remotely guided FAST examination with excellent clinical results and speed, even with a significantly reduced video frame rate and a 2-second communication latency. A wider application of trauma ultrasound applications for remote medicine on earth appears to be possible and warranted.
NASA Astrophysics Data System (ADS)
Kappas, Martin; Nguyen Hong, Quang; Thanh, Nga Pham Thi; Thu, Hang Le Thi; Nguyen Vu, Giang; Degener, Jan; Rafiei Emam, Ammar
2017-04-01
There has been an increasing attention to the large trans-boundary Mekong river basin due to various problems related to water management and flood control, for instance. Vietnam Mekong delta is located at the downstream of the river basin where is affected most by this human-induced reduction in flows from the upstream. On the other hand, the flood plain of nine anastomosing channels is increasingly effected by the seawater intrusion due to sea level rising of climate change. This results in negative impacts of salinization, drought, and floods, while formerly flooding had frequently brought positive natural gain of irrigation water and alluvial aggradation. In this research, our aim is to predict flooding for the better water management adaptation and control. We applied the model HEC-SSP 2.1 to analyze flood flow frequency, two-dimensional unsteady flow calculations in HEC-RAS 5.0 for simulating a floodplain inundation. Remote sensing-based water level (Jason-2) and inundation map were used for validation and comparison with the model simulations. The results revealed a reduction of water level at all the monitoring stations, particularly in the last decade. In addition, a trend of the inundation extension gradually declined, but in some periods it remained severe due to water release from upstream reservoirs during the rainy season (October-November). We found an acceptable agreement between the HEC-RAS and remote sensing flooding maps (around 70%). Based on the flood routine analysis, we could conclude that the water level will continue lower and lead to a trend of drought and salinization harsher in the near future. Keywords: Mekong delta, flood control, inundation, water management, hydrological modelling, remote sensing
Moon-Mars simulation campaign in volcanic Eifel: Remote science support and sample analysis
NASA Astrophysics Data System (ADS)
Offringa, Marloes; Foing, Bernard H.; Kamps, Oscar
2016-07-01
Moon-Mars analogue missions using a mock-up lander that is part of the ESA/ILEWG ExoGeoLab project were conducted during Eifel field campaigns in 2009, 2015 and 2016 (Foing et al., 2010). In the last EuroMoonMars2016 campaign the lander was used to conduct reconnaissance experiments and in situ geological scientific analysis of samples, with a payload that mainly consisted of a telescope and a UV-VIS reflectance spectrometer. The aim of the campaign was to exhibit possibilities for the ExoGeoLab lander to perform remotely controlled experiments and test its applicability in the field by simulating the interaction with astronauts. The Eifel region in Germany where the experiments with the ExoGeoLab lander were conducted is a Moon-Mars analogue due to its geological setting and volcanic rock composition. The research conducted by analysis equipment on the lander could function in support of Moon-Mars sample return missions, by providing preliminary insight into characteristics of the analyzed samples. The set-up of the prototype lander was that of a telescope with camera and solar power equipment deployed on the top, the UV-VIS reflectance spectrometer together with computers and a sample webcam were situated in the middle compartment and to the side a sample analysis test bench was attached, attainable by astronauts from outside the lander. An alternative light source that illuminated the samples in case of insufficient daylight was placed on top of the lander and functioned on solar power. The telescope, teleoperated from a nearby stationed pressurized transport vehicle that functioned as a base control center, attained an overview of the sampling area and assisted the astronauts in their initial scouting pursuits. Locations of suitable sampling sites based on these obtained images were communicated to the astronauts, before being acquired during a simulated EVA. Sampled rocks and soils were remotely analyzed by the base control center, while the astronauts assisted by placing the samples onto the sample holder and adjusting test bench settings in order to obtain spectra. After analysis the collected samples were documented and stored by the astronauts, before returning to the base. Points of improvement for the EuroMoonMars2016 analog campaign are the remote control of the computers using an established network between the base and the lander. During following missions the computers should preferably be operated over a larger distance without interference. In the bottom compartment of the lander a rover is stored that in future campaigns could replace astronaut functions by collecting and returning samples, as well as performing adjustments to the analysis test bench by using a remotely controlled robotic arm. Acknowledgements: we thank Dominic Doyle for ESTEC optical lab support, Aidan Cowley (EAC) and Matthias Sperl (DLR) for support discussions, and collaborators from EuroMoonMars Eifel 2015-16 campaign team.
Hand controller commonality evaluation process
NASA Technical Reports Server (NTRS)
Stuart, Mark A.; Bierschwale, John M.; Wilmington, Robert P.; Adam, Susan C.; Diaz, Manuel F.; Jensen, Dean G.
1990-01-01
A hand controller evaluation process has been developed to determine the appropriate hand controller configurations for supporting remotely controlled devices. These devices include remote manipulator systems (RMS), dexterous robots, and remotely-piloted free flyers. Standard interfaces were developed to evaluate six different hand controllers in three test facilities including dynamic computer simulations, kinematic computer simulations, and physical simulations. The hand controllers under consideration were six degree-of-freedom (DOF) position and rate minimaster and joystick controllers, and three-DOF rate controllers. Task performance data, subjective comments, and anthropometric data obtained during tests were used for controller configuration recommendations to the SSF Program.
Remote modulation of neural activities via near-infrared triggered release of biomolecules.
Li, Wei; Luo, Rongcong; Lin, Xudong; Jadhav, Amol D; Zhang, Zicong; Yan, Li; Chan, Chung-Yuan; Chen, Xianfeng; He, Jufang; Chen, Chia-Hung; Shi, Peng
2015-10-01
The capability to remotely control the release of biomolecules provides an unique opportunity to monitor and regulate neural signaling, which spans extraordinary spatial and temporal scales. While various strategies, including local perfusion, molecular "uncaging", or photosensitive polymeric materials, have been applied to achieve controlled releasing of neuro-active substances, it is still challenging to adopt these technologies in many experimental contexts that require a straightforward but versatile loading-releasing mechanism. Here, we develop a synthetic strategy for remotely controllable releasing of neuro-modulating molecules. This platform is based on microscale composite hydrogels that incorporate polypyrrole (PPy) nanoparticles as photo-thermal transducers and is triggered by near-infrared-light (NIR) irradiation. Specifically, we first demonstrate the utility of our technology by recapitulating the "turning assay" and "collapse assay", which involve localized treatment of chemotactic factors (e.g. Netrin or Semaphorin 3A) to subcellular neural elements and have been extensively used in studying axonal pathfinding. On a network scale, the photo-sensitive microgels are also validated for light-controlled releasing of neurotransmitters (e.g. glutamate). A single NIR-triggered release is sufficient to change the dynamics of a cultured hippocampal neuron network. Taking the advantage of NIR's capability to penetrate deep into live tissue, this technology is further shown to work similarly well in vivo, which is evidenced by synchronized spiking activity in response to NIR-triggered delivery of glutamate in rat auditory cortex, demonstrating remote control of brain activity without any genetic modifications. Notably, our nano-composite microgels are capable of delivering various molecules, ranging from small chemicals to large proteins, without involving any crosslinking chemistry. Such great versatility and ease-of-use will likely make our optically-controlled delivery technology a general and important tool in cell biology research. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lv, Shu-Xin; Zhao, Zheng-Wei; Zhou, Ping
2018-01-01
We present a scheme for multiparty-controlled joint remote preparation of an arbitrary m-qudit state by using d-dimensional Greenberger-Horne-Zeilinger (GHZ) states as the quantum channel. An arbitrary m-qudit state can be transmitted from two senders to a remote receiver in a quantum communication network under the controller's control. The senders perform m-qudit measurements according to their information of prepared state, the controllers only need perform single-particle projective measurements. The receiver can prepare the original state on his quantum system by performing corresponding unitary operation according the measurement results of the senders and controllers. It is shown that an arbitrary m-qudit state in general form can be controlled joint remote prepared if and only if the receiver cooperates with all the senders and controllers.
Kurti, Allison N; Davis, Danielle R; Redner, Ryan; Jarvis, Brantley P; Zvorsky, Ivori; Keith, Diana R; Bolivar, Hypatia A; White, Thomas J; Rippberger, Peter; Markesich, Catherine; Atwood, Gary; Higgins, Stephen T
2016-06-01
Use of technology (e.g., Internet, cell phones) to allow remote implementation of incentives interventions for health-related behavior change is growing. To our knowledge, there has yet to be a systematic review of this literature reported. The present report provides a systematic review of the controlled studies where technology was used to remotely implement financial incentive interventions targeting substance use and other health behaviors published between 2004 and 2015. For inclusion in the review, studies had to use technology to remotely accomplish one of the following two aims alone or in combination: (a) monitor the target behavior, or (b) deliver incentives for achieving the target goal. Studies also had to examine financial incentives (e.g., cash, vouchers) for health-related behavior change, be published in peer-reviewed journals, and include a research design that allowed evaluation of the efficacy of the incentive intervention relative to another condition (e.g., non-contingent incentives, treatment as usual). Of the 39 reports that met inclusion criteria, 18 targeted substance use, 10 targeted medication adherence or home-based health monitoring, and 11 targeted diet, exercise, or weight loss. All 39 (100%) studies used technology to facilitate remote monitoring of the target behavior, and 26 (66.7%) studies also incorporated technology in the remote delivery of incentives. Statistically significant intervention effects were reported in 71% of studies reviewed. Overall, the results offer substantial support for the efficacy of remotely implemented incentive interventions for health-related behavior change, which have the potential to increase the cost-effectiveness and reach of this treatment approach.
NASA Technical Reports Server (NTRS)
Aucoin, B. M.; Heller, R. P.
1990-01-01
An intelligent remote power controller (RPC) based on microcomputer technology can implement advanced functions for the accurate and secure detection of all types of faults on a spaceborne electrical distribution system. The intelligent RPC will implement conventional protection functions such as overcurrent, under-voltage, and ground fault protection. Advanced functions for the detection of soft faults, which cannot presently be detected, can also be implemented. Adaptive overcurrent protection changes overcurrent settings based on connected load. Incipient and high-impedance fault detection provides early detection of arcing conditions to prevent fires, and to clear and reconfigure circuits before soft faults progress to a hard-fault condition. Power electronics techniques can be used to implement fault current limiting to prevent voltage dips during hard faults. It is concluded that these techniques will enhance the overall safety and reliability of the distribution system.
Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin
2015-07-10
Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.
Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture
Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin
2015-01-01
Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology. PMID:26184205
All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.
Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis
2013-05-20
This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.
NASA Astrophysics Data System (ADS)
Agoritsas, V.; Beck, F.; Benincasa, G. P.; Bovigny, J. P.
1986-06-01
This paper describes a new beam loss monitor system which has been installed in the PS and PSB machines, replacing an earlier system. The new system is controlled by a microprocessor which can operate independently of the accelerator control system, though setting up and central display are usually done remotely, using the standard control system facilities.
NASA Astrophysics Data System (ADS)
Choe, Giseok; Nang, Jongho
The tiled-display system has been used as a Computer Supported Cooperative Work (CSCW) environment, in which multiple local (and/or remote) participants cooperate using some shared applications whose outputs are displayed on a large-scale and high-resolution tiled-display, which is controlled by a cluster of PC's, one PC per display. In order to make the collaboration effective, each remote participant should be aware of all CSCW activities on the titled display system in real-time. This paper presents a capturing and delivering mechanism of all activities on titled-display system to remote participants in real-time. In the proposed mechanism, the screen images of all PC's are periodically captured and delivered to the Merging Server that maintains separate buffers to store the captured images from the PCs. The mechanism selects one tile image from each buffer, merges the images to make a screen shot of the whole tiled-display, clips a Region of Interest (ROI), compresses and streams it to remote participants in real-time. A technical challenge in the proposed mechanism is how to select a set of tile images, one from each buffer, for merging so that the tile images displayed at the same time on the tiled-display can be properly merged together. This paper presents three selection algorithms; a sequential selection algorithm, a capturing time based algorithm, and a capturing time and visual consistency based algorithm. It also proposes a mechanism of providing several virtual cameras on tiled-display system to remote participants by concurrently clipping several different ROI's from the same merged tiled-display images, and delivering them after compressing with video encoders requested by the remote participants. By interactively changing and resizing his/her own ROI, a remote participant can check the activities on the tiled-display effectively. Experiments on a 3 × 2 tiled-display system show that the proposed merging algorithm can build a tiled-display image stream synchronously, and the ROI-based clipping and delivering mechanism can provide individual views on the tiled-display system to multiple remote participants in real-time.
[Remote sensing monitoring and screening for urban black and odorous water body: A review.
Shen, Qian; Zhu, Li; Cao, Hong Ye
2017-10-01
Continuous improvement of urban water environment and overall control of black and odorous water body are not merely national strategic needs with the action plan for prevention and treatment of water pollution, but also the hot issues attracting the attention of people. Most previous researches concentrated on the study of cause, evaluation and treatment measures of this phenomenon, and there are few researches on the monitoring using remote sensing, which is often a strain to meet the national needs of operational monitoring. This paper mainly summarized the urgent research problems, mainly including the identification and classification standard, research on the key technologies, and the frame of remote sensing screening systems for the urban black and odorous water body. The main key technologies were concluded too, including the high spatial resolution image preprocessing and extraction technique for black and odorous water body, the extraction of water information in city zones, the classification of the black and odorous water, and the identification and classification technique based on satellite-sky-ground remote sensing. This paper summarized the research progress and put forward research ideas of monitoring and screening urban black and odorous water body via high spatial resolution remote sensing technology, which would be beneficial to having an overall grasp of spatial distribution and improvement progress of black and odorous water body, and provide strong technical support for controlling urban black and odorous water body.
NASA Astrophysics Data System (ADS)
Iakovleva, E. V.; Momot, B. A.
2017-10-01
The object of this study is to develop a power plant and an electric propulsion control system for autonomous remotely controlled vessels. The tasks of the study are as follows: to assess remotely controlled vessels usage reasonability, to define the requirements for this type of vessel navigation. In addition, the paper presents the analysis of technical diagnostics systems. The developed electric propulsion control systems for vessels should provide improved reliability and efficiency of the propulsion complex to ensure the profitability of remotely controlled vessels.
Cullington, Helen; Kitterick, Padraig; Weal, Mark; Margol-Gromada, Magdalena
2018-04-20
Substantial resources are required to provide lifelong postoperative care to people with cochlear implants. Most patients visit the clinic annually. We introduced a person-centred remote follow-up pathway, giving patients telemedicine tools to use at home so they would only visit the centre when intervention was required. To assess the feasibility of comparing a remote care pathway with the standard pathway in adults using cochlear implants. Two-arm randomised controlled trial. Randomisation used a minimisation approach, controlling for potential confounding factors. Participant blinding was not possible, but baseline measures occurred before allocation. University of Southampton Auditory Implant Service: provider of National Health Service care. 60 adults who had used cochlear implants for at least 6 months. Control group (n=30) followed usual care pathway.Remote care group (n=30) received care remotely for 6 months incorporating: home hearing in noise test, online support tool and self-adjustment of device (only 10 had compatible equipment). Primary: change in patient activation; measured using the Patient Activation Measure.Secondary: change in hearing and quality of life; qualitative feedback from patients and clinicians. One participant in the remote care group dropped out. The remote care group showed a greater increase in patient activation than the control group. Changes in hearing differed between the groups. The remote care group improved on the Triple Digit Test hearing test; the control group perceived their hearing was worse on the Speech, Spatial and Qualities of Hearing Scale questionnaire. Quality of life remained unchanged in both groups. Patients and clinicians were generally positive about remote care tools and wanted to continue. Adults with cochlear implants were willing to be randomised and complied with the protocol. Personalised remote care for long-term follow-up is feasible and acceptable, leading to more empowered patients. ISRCTN14644286. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Kitterick, Padraig; Weal, Mark; Margol-Gromada, Magdalena
2018-01-01
Introduction Substantial resources are required to provide lifelong postoperative care to people with cochlear implants. Most patients visit the clinic annually. We introduced a person-centred remote follow-up pathway, giving patients telemedicine tools to use at home so they would only visit the centre when intervention was required. Objectives To assess the feasibility of comparing a remote care pathway with the standard pathway in adults using cochlear implants. Design Two-arm randomised controlled trial. Randomisation used a minimisation approach, controlling for potential confounding factors. Participant blinding was not possible, but baseline measures occurred before allocation. Setting University of Southampton Auditory Implant Service: provider of National Health Service care. Participants 60 adults who had used cochlear implants for at least 6 months. Interventions Control group (n=30) followed usual care pathway. Remote care group (n=30) received care remotely for 6 months incorporating: home hearing in noise test, online support tool and self-adjustment of device (only 10 had compatible equipment). Main outcome measures Primary: change in patient activation; measured using the Patient Activation Measure. Secondary: change in hearing and quality of life; qualitative feedback from patients and clinicians. Results One participant in the remote care group dropped out. The remote care group showed a greater increase in patient activation than the control group. Changes in hearing differed between the groups. The remote care group improved on the Triple Digit Test hearing test; the control group perceived their hearing was worse on the Speech, Spatial and Qualities of Hearing Scale questionnaire. Quality of life remained unchanged in both groups. Patients and clinicians were generally positive about remote care tools and wanted to continue. Conclusions Adults with cochlear implants were willing to be randomised and complied with the protocol. Personalised remote care for long-term follow-up is feasible and acceptable, leading to more empowered patients. Trial registration number ISRCTN14644286. PMID:29678970
NASA Technical Reports Server (NTRS)
Mackro, J.
1973-01-01
The results are presented of a study involving closed circuit television as the means of providing the necessary task-to-operator feedback for efficient performance of the remote manipulation system. Experiments were performed to determine the remote video configuration that will result in the best overall system. Two categories of tests were conducted which include: those which involved remote control position (rate) of just the video system, and those in which closed circuit TV was used along with manipulation of the objects themselves.
Integrated instrumentation & computation environment for GRACE
NASA Astrophysics Data System (ADS)
Dhekne, P. S.
2002-03-01
The project GRACE (Gamma Ray Astrophysics with Coordinated Experiments) aims at setting up a state of the art Gamma Ray Observatory at Mt. Abu, Rajasthan for undertaking comprehensive scientific exploration over a wide spectral window (10's keV - 100's TeV) from a single location through 4 coordinated experiments. The cumulative data collection rate of all the telescopes is expected to be about 1 GB/hr, necessitating innovations in the data management environment. As real-time data acquisition and control as well as off-line data processing, analysis and visualization environment of these systems is based on the us cutting edge and affordable technologies in the field of computers, communications and Internet. We propose to provide a single, unified environment by seamless integration of instrumentation and computations by taking advantage of the recent advancements in Web based technologies. This new environment will allow researchers better acces to facilities, improve resource utilization and enhance collaborations by having identical environments for online as well as offline usage of this facility from any location. We present here a proposed implementation strategy for a platform independent web-based system that supplements automated functions with video-guided interactive and collaborative remote viewing, remote control through virtual instrumentation console, remote acquisition of telescope data, data analysis, data visualization and active imaging system. This end-to-end web-based solution will enhance collaboration among researchers at the national and international level for undertaking scientific studies, using the telescope systems of the GRACE project.
State resource management and role of remote sensing. [California
NASA Technical Reports Server (NTRS)
Johnson, H. D.
1981-01-01
Remote sensing by satellite can provide valuable information to state officials when making decisions regarding resources management. Portions of California's investment for Prosperity program which seem likely candidates for remote sensing include: (1) surveying vegetation type, age, and density in forests and wildlife habitats; (2) controlling fires through chaparal management; (3) monitoring wetlands and measuring ocean biomass; (4) eliminating ground water overdraught; (5) locating crops in overdraught areas, assessing soil erosion and the areas of poorly drained soils and those affected by salt; (6) monitoring coastal lands and resources; (7) changes in landscapes for recreational purposes; (8) inventorying irrigated lands; (9) classifying ground cover; (10) monitoring farmland conversion; and (11) supplying data for a statewide computerized farmlands data base.
Networking observers and observatories with remote telescope markup language
NASA Astrophysics Data System (ADS)
Hessman, Frederic V.; Tuparev, Georg; Allan, Alasdair
2006-06-01
Remote Telescope Markup Language (RTML) is an XML-based protocol for the transport of the high-level description of a set of observations to be carried out on a remote, robotic or service telescope. We describe how RTML is being used in a wide variety of contexts: the transport of service and robotic observing requests in the Hands-On Universe TM, ACP, eSTAR, and MONET networks; how RTML is easily combined with other XML protocols for more localized control of telescopes; RTML as a secondary observation report format for the IVOA's VOEvent protocol; the input format for a general-purpose observation simulator; and the observatory-independent means for carrying out request transactions for the international Heterogeneous Telescope Network (HTN).
Deterministic Joint Remote Preparation of Arbitrary Four-Qubit Cluster-Type State Using EPR Pairs
NASA Astrophysics Data System (ADS)
Li, Wenqian; Chen, Hanwu; Liu, Zhihao
2017-02-01
Using four Einstein-Podolsky-Rosen (EPR) pairs as the pre-shared quantum channel, an economic and feasible scheme for deterministic joint remote preparation of the four-particle cluster-type state is presented. In the scheme, one of the senders performs a four-qubit projective measurement based on a set of ingeniously constructed vectors with real coefficients, while the other performs the bipartite projective measurements in terms of the imaginary coefficients. Followed with some appropriate unitary operations and controlled-NOT operations, the receiver can reconstruct the desired state. Compared with other analogous JRSP schemes, our scheme can not only reconstruct the original state (to be prepared remotely) with unit successful probability, but also ensure greater efficiency.
Bilevel Shared Control Of A Remote Robotic Manipulator
NASA Technical Reports Server (NTRS)
Hayati, Samad A.; Venkataraman, Subramanian T.
1992-01-01
Proposed concept blends autonomous and teleoperator control modes, each overcoming deficiencies of the other. Both task-level and execution-level functions performed at local and remote sites. Applicable to systems with long communication delay between local and remote sites or systems intended to function partly autonomously.
Control of Melt Conversion Using Traveling Magnetic Fields
NASA Technical Reports Server (NTRS)
Mazurruk, Konstantin; Rose, M. Franklin (Technical Monitor)
2000-01-01
An axisymmetric traveling magnetic wave induces a meridional base flow in a cylindrical zone of an electrically conducting liquid. This remotely induced flow can be conveniently controlled, in magnitude and direction, and can have benefits for crystal growth applications. In particular, it can be used to significantly offset natural convection. Theoretical basics of this new technological method are presented.
Control of Melt Convection Using Traveling Magnetic Fields
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin
2000-01-01
An axisymmetric traveling magnetic wave induces a meridional base flow in a cylindrical zone of an electrically conducting liquid. This remotely induced flow can be conveniently controlled, in magnitude and direction, and can have benefits for crystal growth applications. In particular, it can be used to offset natural convection. Theoretical basics of this new technological method are presented.
Design and Evaluation of an Integrated Online Motion Control Training Package
ERIC Educational Resources Information Center
Buiu, C.
2009-01-01
The aim of this paper is to present an integrated Internet-based package for teaching the fundamentals of motion control by using a wide range of resources: theory, videos, simulators, games, quizzes, and a remote lab. The package is aimed at automation technicians, pupils at vocational schools and students taking an introductory course in…
Barrón-González, Héctor Gilberto; Martínez-Espronceda, Miguel; Trigo, Jesús Daniel; Led, Santiago; Serrano, Luis
2016-01-01
The Point of Care (PoC) version of the interoperability standard ISO/IEEE11073 (X73) provided a mechanism to control remotely agents through documents X73-10201 and X73-20301. The newer version of X73 oriented to Personal Health Devices (PHD) has no mechanisms to do such a thing. The authors are working toward a common proposal with the PHD Working Group (PHD-WG) in order to adapt the remote control capabilities from X73PoC to X73PHD. However, this theoretical adaptation has to be implemented and tested to evaluate whether or not its inclusion entails an acceptable overhead and extra cost. Such proof-of-concept assessment is the main objective of this paper. For the sake of simplicity, a weighing scale with a configurable operation was chosen as use case. First, in a previous stage of the research - the model was defined. Second, the implementation methodology - both in terms of hardware and software - was defined and executed. Third, an evaluation methodology to test the remote control features was defined. Then, a thorough comparison between a weighing scale with and without remote control was performed. The results obtained indicate that, when implementing remote control in a weighing scale, the relative weight of such feature represents an overhead of as much as 53%, whereas the number of Implementation Conformance Statements (ICSs) to be satisfied by the manufacturer represent as much as 34% regarding the implementation without remote control. The new feature facilitates remote control of PHDs but, at the same time, increases overhead and costs, and, therefore, manufacturers need to weigh this trade-off. As a conclusion, this proof-of-concept helps in fostering the evolution of the remote control proposal to extend X73PHD and promotes its inclusion as part of the standard, as well as it illustrates the methodological steps for its extrapolation to other specializations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Rawstorn, Jonathan C; Gant, Nicholas; Warren, Ian; Doughty, Robert Neil; Lever, Nigel; Poppe, Katrina K; Maddison, Ralph
2015-03-20
Remote telemonitoring holds great potential to augment management of patients with coronary heart disease (CHD) and atrial fibrillation (AF) by enabling regular physiological monitoring during physical activity. Remote physiological monitoring may improve home and community exercise-based cardiac rehabilitation (exCR) programs and could improve assessment of the impact and management of pharmacological interventions for heart rate control in individuals with AF. Our aim was to evaluate the measurement validity and data transmission reliability of a remote telemonitoring system comprising a wireless multi-parameter physiological sensor, custom mobile app, and middleware platform, among individuals in sinus rhythm and AF. Participants in sinus rhythm and with AF undertook simulated daily activities, low, moderate, and/or high intensity exercise. Remote monitoring system heart rate and respiratory rate were compared to reference measures (12-lead ECG and indirect calorimeter). Wireless data transmission loss was calculated between the sensor, mobile app, and remote Internet server. Median heart rate (-0.30 to 1.10 b∙min -1 ) and respiratory rate (-1.25 to 0.39 br∙min -1 ) measurement biases were small, yet statistically significant (all P≤.003) due to the large number of observations. Measurement reliability was generally excellent (rho=.87-.97, all P<.001; intraclass correlation coefficient [ICC]=.94-.98, all P<.001; coefficient of variation [CV]=2.24-7.94%), although respiratory rate measurement reliability was poor among AF participants (rho=.43, P<.001; ICC=.55, P<.001; CV=16.61%). Data loss was minimal (<5%) when all system components were active; however, instability of the network hosting the remote data capture server resulted in data loss at the remote Internet server during some trials. System validity was sufficient for remote monitoring of heart and respiratory rates across a range of exercise intensities. Remote exercise monitoring has potential to augment current exCR and heart rate control management approaches by enabling the provision of individually tailored care to individuals outside traditional clinical environments. ©Jonathan C Rawstorn, Nicholas Gant, Ian Warren, Robert Neil Doughty, Nigel Lever, Katrina K Poppe, Ralph Maddison. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 20.03.2015.
Automatic control of a negative ion source
NASA Astrophysics Data System (ADS)
Saadatmand, K.; Sredniawski, J.; Solensten, L.
1989-04-01
A CAMAC based control architecture is devised for a Berkeley-type H - volume ion source [1]. The architecture employs three 80386 TM PCs. One PC is dedicated to control and monitoring of source operation. The other PC functions with digitizers to provide data acquisition of waveforms. The third PC is used for off-line analysis. Initially, operation of the source was put under remote computer control (supervisory). This was followed by development of an automated startup procedure. Finally, a study of the physics of operation is now underway to establish a data base from which automatic beam optimization can be derived.
Developing a Remote Laboratory for Engineering Education
ERIC Educational Resources Information Center
Fabregas, E.; Farias, G.; Dormido-Canto, S.; Dormido, S.; Esquembre, F.
2011-01-01
New information technologies provide great opportunities for education. One such opportunity is the use of remote control laboratories for teaching students about control systems. This paper describes the creation of interactive remote laboratories (RLs). Two main software tools are used: Simulink and Easy Java Simulations (EJS). The first is a…
Comparison of adaptive critic-based and classical wide-area controllers for power systems.
Ray, Swakshar; Venayagamoorthy, Ganesh Kumar; Chaudhuri, Balarko; Majumder, Rajat
2008-08-01
An adaptive critic design (ACD)-based damping controller is developed for a thyristor-controlled series capacitor (TCSC) installed in a power system with multiple poorly damped interarea modes. The performance of this ACD computational intelligence-based method is compared with two classical techniques, which are observer-based state-feedback (SF) control and linear matrix inequality LMI-H(infinity) robust control. Remote measurements are used as feedback signals to the wide-area damping controller for modulating the compensation of the TCSC. The classical methods use a linearized model of the system whereas the ACD method is purely measurement-based, leading to a nonlinear controller with fixed parameters. A comparative analysis of the controllers' performances is carried out under different disturbance scenarios. The ACD-based design has shown promising performance with very little knowledge of the system compared to classical model-based controllers. This paper also discusses the advantages and disadvantages of ACDs, SF, and LMI-H(infinity).
Magnetic steering control of multi-cellular bio-hybrid microswimmers.
Carlsen, Rika Wright; Edwards, Matthew R; Zhuang, Jiang; Pacoret, Cecile; Sitti, Metin
2014-10-07
Bio-hybrid devices, which integrate biological cells with synthetic components, have opened a new path in miniaturized systems with the potential to provide actuation and control for systems down to a few microns in size. Here, we address the challenge of remotely controlling bio-hybrid microswimmers propelled by multiple bacterial cells. These devices have been proposed as a viable method for targeted drug delivery but have also been shown to exhibit stochastic motion. We demonstrate a method of remote magnetic control that significantly reduces the stochasticity of the motion, enabling steering control. The demonstrated microswimmers consist of multiple Serratia marcescens (S. marcescens) bacteria attached to a 6 μm-diameter superparamagnetic bead. We characterize their motion and define the parameters governing their controllability. We show that the microswimmers can be controlled along two-dimensional (2-D) trajectories using weak magnetic fields (≤10 mT) and can achieve 2-D swimming speeds up to 7.3 μm s(-1). This magnetic steering approach can be integrated with sensory-based steering in future work, enabling new control strategies for bio-hybrid microsystems.
[Communication subsystem design of tele-screening system for diabetic retinopathy].
Chen, Jian; Pan, Lin; Zheng, Shaohua; Yu, Lun
2013-12-01
A design scheme of a tele-screening system for diabetic retinopathy (DR) has been proposed, especially the communication subsystem. The scheme uses serial communication module consisting of ARM 7 microcontroller and relays to connect remote computer and fundus camera, and also uses C++ programming language based on MFC to design the communication software consisting of therapy and diagnostic information module, video/audio surveillance module and fundus camera control module. The scheme possesses universal property in some remote medical treatment systems which are similar to the system.
Highly Protable Airborne Multispectral Imaging System
NASA Technical Reports Server (NTRS)
Lehnemann, Robert; Mcnamee, Todd
2001-01-01
A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.
Earth orbital teleoperator systems evaluation
NASA Technical Reports Server (NTRS)
Shields, N. L., Jr.; Slaughter, P. H.; Brye, R. G.; Henderson, D. E.
1979-01-01
The mechanical extension of the human operator to remote and specialized environments poses a series of complex operational questions. A technical and scientific team was organized to investigate these questions through conducting specific laboratory and analytical studies. The intent of the studies was to determine the human operator requirements for remotely manned systems and to determine the particular effects that various system parameters have on human operator performance. In so doing, certain design criteria based on empirically derived data concerning the ultimate control system, the human operator, were added to the Teleoperator Development Program.
Eye-in-Hand Manipulation for Remote Handling: Experimental Setup
NASA Astrophysics Data System (ADS)
Niu, Longchuan; Suominen, Olli; Aref, Mohammad M.; Mattila, Jouni; Ruiz, Emilio; Esque, Salvador
2018-03-01
A prototype for eye-in-hand manipulation in the context of remote handling in the International Thermonuclear Experimental Reactor (ITER)1 is presented in this paper. The setup consists of an industrial robot manipulator with a modified open control architecture and equipped with a pair of stereoscopic cameras, a force/torque sensor, and pneumatic tools. It is controlled through a haptic device in a mock-up environment. The industrial robot controller has been replaced by a single industrial PC running Xenomai that has a real-time connection to both the robot controller and another Linux PC running as the controller for the haptic device. The new remote handling control environment enables further development of advanced control schemes for autonomous and semi-autonomous manipulation tasks. This setup benefits from a stereovision system for accurate tracking of the target objects with irregular shapes. The overall environmental setup successfully demonstrates the required robustness and precision that remote handling tasks need.
[Development of Biliary Contrast Agents Remote Pushing Device].
Zhu, Haoyang; Dong, Dinghui; Luo, Yu; Ren, Fenggang; Zhang, Jing; Tan, Wenjun; Shi, Aihua; Hu, Liangshuo; Wu, Rongqian; Lyu, Yi
2018-01-30
A biliary contrast agents pushing device, including a syringe pushing system and a remote controller is introduced. The syringe pushing system comprises an injector card slot, a support platform and an injection bolus fader. A 20 mL syringe can be fitted on the syringe pushing system and kept with the ground about 30 degree. This system can perform air bubble pumping back and contrast agents bolus injection as well as speed adjustment. Remote controller is an infrared remote control which can start and stop the syringe pushing system. With this device, the remote controlled cholangiography technology can be achieved, which can not only protect doctors from X-ray radiation but also improve the traditional T-tube cholangiography and the contrast effect, reduce postoperative complications in patients as well. The application of this device will improve the current diagnosis and treatment system, the device will benefit the majority of doctors and patients.
The feasibility of remote-controlled assistance as a search tool for patient education.
Lin, I K; Bray, B E; Smith, J A; Lange, L L
2001-01-01
Patients often desire more information about their conditions than they receive during a physician office visit. To address the patient's information needs, a touchscreen information kiosk was implemented. Results from the first prototype identified interface, security, and technical issues. Misspelling of search terms was identified as the most observable cause of search failure. An experimental remote control assistance feature was added in the second prototype. The feature allowed a medical librarian to provide real-time remote help during searches by taking control of the patient's computer. Remote assistance improved patient satisfaction, increased ease of use, and raised document retrieval rate (86.7% vs. 56.7%). Both patients and librarians found the application useful. Reasons included its convenience and flexibility, opportunity for direct patient contact, ability to teach through direct demonstration, and complementing the librarian's role as an information gateway. The project demonstrated the feasibility of applying remote control technology to patient education.
The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhou, Liqing
2015-12-01
With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.
Neural basis of functional fixedness during creative idea generation: an EEG study.
Camarda, Anaëlle; Salvia, Émilie; Vidal, Julie; Weil, Benoit; Poirel, Nicolas; Houdé, Olivier; Borst, Grégoire; Cassotti, Mathieu
2018-03-09
Decades of problem solving and creativity research have converged to show that the ability to generate new and useful ideas can be blocked or impeded by intuitive biases leading to mental fixations. The present study aimed at investigating the neural bases of the processes involved in overcoming fixation effects during creative idea generation. Using the AU task adapted for EEG recording, we examined whether participant's ability to provide original ideas was related to alpha power changes in both the frontal and temporo-parietal regions. Critically, for half of the presented objects, the classical use of the object was primed orally, and a picture of the classical use was presented visually to increase functional fixedness (Fixation Priming condition). For the other half, only the name of the object and a picture of the object was provided to the participants (control condition). As expected, priming the classical use of an object before the generation of creative alternative uses of the object impeded participants' performances in terms of remoteness. In the control condition, while the frontal alpha synchronization was maintained across all successive time windows in participants with high remoteness scores, the frontal alpha synchronization decreased in participants with low remoteness scores. In the Fixation Priming condition, in which functional fixedness was maximal, both participants with high and low remoteness scores maintained frontal alpha synchronization throughout the period preceding their answer. Whereas participants with high remoteness scores maintained alpha synchronization in the temporo-parietal regions throughout the creative idea generation period, participants with low remoteness scores displayed alpha desynchronization in the same regions during this period. We speculate that individuals with high remoteness scores might generate more creative ideas than individuals with low remoteness scores because they rely more on internal semantic association and selection processes. Copyright © 2018. Published by Elsevier Ltd.
MSAT system and service description
NASA Astrophysics Data System (ADS)
Sward, D. J.; Lok, M. F.
1986-09-01
A satellite based mobile communications system known as MSAT, was developed in Canada. It will be used primarily in rural and remote regions where the wide-area coverage and extended range features are of greatest benefit. Applications can be found in trucking, mineral exploration, forestry, law enforcement, coastal and in-land shipping, light aircraft communications, national paging, environmental sensing, remote monitoring and control of utilities, and emergency relief. The services which are likely to be offered initially on MSAT include mobile radio, mobile telephone, mobile data, wide-area paging, supervisory control, and data collection. Maritime and aeronautical services can also be provided as well as conventional telephone service to locations which for technical and economic reasons cannot be served by the fixed terrestrial and satellite infrastructures.
Remote-area health care delivery through space technology - STARPAHC
NASA Technical Reports Server (NTRS)
Belasco, N.; Johnston, R. S.; Stonesifer, J. C.; Pool, S. L.
1977-01-01
A joint NASA/HEW project called Space Technology Applied to Rural Papage Advanced Health Care (STARPAHC) has been developed to deliver quality health care to inhabitants of remote geographical areas. The system consists of a hospital-based support control center, a fixed clinic, a mobile clinic, and a referral center with access to specialists via television links to the control center. A strategically located relay station routes television, voice, and data transmissions between system elements. A model system has been installed on the Papage Indian Reservation in Arizona, and is undergoing a 2-year evaluation. The system has been shown to be both effective and cost-efficient, and applications of the concept are planned for future manned spacecraft flights.
Airborne multicamera system for geo-spatial applications
NASA Astrophysics Data System (ADS)
Bachnak, Rafic; Kulkarni, Rahul R.; Lyle, Stacey; Steidley, Carl W.
2003-08-01
Airborne remote sensing has many applications that include vegetation detection, oceanography, marine biology, geographical information systems, and environmental coastal science analysis. Remotely sensed images, for example, can be used to study the aftermath of episodic events such as the hurricanes and floods that occur year round in the coastal bend area of Corpus Christi. This paper describes an Airborne Multi-Spectral Imaging System that uses digital cameras to provide high resolution at very high rates. The software is based on Delphi 5.0 and IC Imaging Control's ActiveX controls. Both time and the GPS coordinates are recorded. Three successful test flights have been conducted so far. The paper present flight test results and discusses the issues being addressed to fully develop the system.
Seelye, Adriana M; Wild, Katherine V; Larimer, Nicole; Maxwell, Shoshana; Kearns, Peter; Kaye, Jeffrey A
2012-12-01
Remote telepresence provided by tele-operated robotics represents a new means for obtaining important health information, improving older adults' social and daily functioning and providing peace of mind to family members and caregivers who live remotely. In this study we tested the feasibility of use and acceptance of a remotely controlled robot with video-communication capability in independently living, cognitively intact older adults. A mobile remotely controlled robot with video-communication ability was placed in the homes of eight seniors. The attitudes and preferences of these volunteers and those of family or friends who communicated with them remotely via the device were assessed through survey instruments. Overall experiences were consistently positive, with the exception of one user who subsequently progressed to a diagnosis of mild cognitive impairment. Responses from our participants indicated that in general they appreciated the potential of this technology to enhance their physical health and well-being, social connectedness, and ability to live independently at home. Remote users, who were friends or adult children of the participants, were more likely to test the mobility features and had several suggestions for additional useful applications. Results from the present study showed that a small sample of independently living, cognitively intact older adults and their remote collaterals responded positively to a remote controlled robot with video-communication capabilities. Research is needed to further explore the feasibility and acceptance of this type of technology with a variety of patients and their care contacts.
Zhou, Yu; Fu, Lixin; Cheng, Linglin
2007-09-01
China's national government and Beijing city authorities have adopted additional control measures to reduce the negative impact of vehicle emissions on Beijing's air quality. An evaluation of the effectiveness of these measures may provide guidance for future vehicle emission control strategy development. In-use emissions from light-duty gasoline vehicles (LDGVs) were investigated at five sites in Beijing with remote sensing instrumentation. Distance-based mass emission factors were derived with fuel consumption modeled on real world data. The results show that the recently implemented aggressive control strategies are significantly reducing the emissions of on-road vehicles. Older vehicles are contributing substantially to the total fleet emissions. An earlier program to retrofit pre-Euro cars with three-way catalysts produced little emission reduction. The impact of model year and driving conditions on the average mass emission factors indicates that the durability of vehicles emission controls may be inadequate in Beijing.
Display aids for remote control of untethered undersea vehicles
NASA Technical Reports Server (NTRS)
Verplank, W. L.
1978-01-01
A predictor display superimposed on slow-scan video or sonar data is proposed as a method to allow better remote manual control of an untethered submersible. Simulation experiments show good control under circumstances which otherwise make control practically impossible.
ENEL power generation and transmission control (PGTC) system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, F.; Schiavi
1986-08-01
The ENEL (Italian State Power Board) PGTC System has a multi-level architecture which consists of a National Control Center (NCC), eight Area Control Centers (ACC), and Remote Terminal Units (RTU). Remote Control Centers (RCC), representing the third hierarchical level of the control system, will be integrated into the system beginning in 1987. This paper describes the structure of the PGTC system from the remote stations up to the NCC and the main control functions. The method of implementation, the organizational and managerial problems that were faced in the development of the project are also described.
Long-range strategy for remote sensing: an integrated supersystem
NASA Astrophysics Data System (ADS)
Glackin, David L.; Dodd, Joseph K.
1995-12-01
Present large space-based remote sensing systems, and those planned for the next two decades, remain dichotomous and custom-built. An integrated architecture might reduce total cost without limiting system performance. An example of such an architecture, developed at The Aerospace Corporation, explores the feasibility of reducing overall space systems costs by forming a 'super-system' which will provide environmental, earth resources and theater surveillance information to a variety of users. The concept involves integration of programs, sharing of common spacecraft bus designs and launch vehicles, use of modular components and subsystems, integration of command and control and data capture functions, and establishment of an integrated program office. Smart functional modules that are easily tested and replaced are used wherever possible in the space segment. Data is disseminated to systems such as NASA's EOSDIS, and data processing is performed at established centers of expertise. This concept is advanced for potential application as a follow-on to currently budgeted and planned space-based remote sensing systems. We hope that this work will serve to engender discussion that may be of assistance in leading to multinational remote sensing systems with greater cost effectiveness at no loss of utility to the end user.
Remote Operations of Laser Guide Star Systems: Gemini Observatory.
NASA Astrophysics Data System (ADS)
Oram, Richard J.; Fesquet, Vincent; Wyman, Robert; D'Orgeville, Celine
2011-03-01
The Gemini North telescope, equipped with a 14W laser, has been providing Laser Guide Star Adaptive Optics (LGS AO) regular science queue observations for worldwide astronomers since February 2007. The new 55W laser system for MCAO was installed on the Gemini South telescope in May 2010. In this paper, we comment on how Gemini Observatory developed regular remote operation of the Laser Guide Star Facility and high-power solid-state laser as routine normal operations. Fully remote operation of the LGSF from the Hilo base facility HBF was initially trialed and then optimized and became the standard operating procedure (SOP) for LGS operation in December 2008. From an engineering perspective remote operation demands stable, well characterized and base-lined equipment sets. In the effort to produce consistent, stable and controlled laser parameters (power, wavelength and beam quality) we completed a failure mode effect analysis of the laser system and sub systems that initiated a campaign of hardware upgrades and procedural improvements to the routine maintenance operations. Finally, we provide an overview of normal operation procedures during LGS runs and present a snapshot of data accumulated over several years that describes the overall LGS AO observing efficiency at the Gemini North telescope.
Kearney, N; McCann, L; Norrie, J; Taylor, L; Gray, P; McGee-Lennon, M; Sage, M; Miller, M; Maguire, R
2009-04-01
To evaluate the impact of a mobile phone-based, remote monitoring, advanced symptom management system (ASyMS) on the incidence, severity and distress of six chemotherapy-related symptoms (nausea, vomiting, fatigue, mucositis, hand-foot syndrome and diarrhoea) in patients with lung, breast or colorectal cancer. A two group (intervention and control) by five time points (baseline, pre-cycle 2, pre-cycle 3, pre-cycle 4 and pre-cycle 5) randomised controlled trial. Seven clinical sites in the UK; five specialist cancer centres and two local district hospitals. One hundred and twelve people with breast, lung or colorectal cancer receiving outpatient chemotherapy. A mobile phone-based, remote monitoring, advanced symptom management system (ASyMS). Chemotherapy-related morbidity of six common chemotherapy-related symptoms (nausea, vomiting, fatigue, mucositis, hand-foot syndrome and diarrhoea). There were significantly higher reports of fatigue in the control group compared to the intervention group (odds ratio = 2.29, 95%CI = 1.04 to 5.05, P = 0.040) and reports of hand-foot syndrome were on average lower in the control group (odds ratio control/intervention = 0.39, 95%CI = 0.17 to 0.92, P = 0.031). The study demonstrates that ASyMS can support the management of symptoms in patients with lung, breast and colorectal cancer receiving chemotherapy.
The magic glove: a gesture-based remote controller for intelligent mobile robots
NASA Astrophysics Data System (ADS)
Luo, Chaomin; Chen, Yue; Krishnan, Mohan; Paulik, Mark
2012-01-01
This paper describes the design of a gesture-based Human Robot Interface (HRI) for an autonomous mobile robot entered in the 2010 Intelligent Ground Vehicle Competition (IGVC). While the robot is meant to operate autonomously in the various Challenges of the competition, an HRI is useful in moving the robot to the starting position and after run termination. In this paper, a user-friendly gesture-based embedded system called the Magic Glove is developed for remote control of a robot. The system consists of a microcontroller and sensors that is worn by the operator as a glove and is capable of recognizing hand signals. These are then transmitted through wireless communication to the robot. The design of the Magic Glove included contributions on two fronts: hardware configuration and algorithm development. A triple axis accelerometer used to detect hand orientation passes the information to a microcontroller, which interprets the corresponding vehicle control command. A Bluetooth device interfaced to the microcontroller then transmits the information to the vehicle, which acts accordingly. The user-friendly Magic Glove was successfully demonstrated first in a Player/Stage simulation environment. The gesture-based functionality was then also successfully verified on an actual robot and demonstrated to judges at the 2010 IGVC.
A general observatory control software framework design for existing small and mid-size telescopes
NASA Astrophysics Data System (ADS)
Ge, Liang; Lu, Xiao-Meng; Jiang, Xiao-Jun
2015-07-01
A general framework for observatory control software would help to improve the efficiency of observation and operation of telescopes, and would also be advantageous for remote and joint observations. We describe a general framework for observatory control software, which considers principles of flexibility and inheritance to meet the expectations from observers and technical personnel. This framework includes observation scheduling, device control and data storage. The design is based on a finite state machine that controls the whole process.
Unmanned ground vehicles for integrated force protection
NASA Astrophysics Data System (ADS)
Carroll, Daniel M.; Mikell, Kenneth; Denewiler, Thomas
2004-09-01
The combination of Command and Control (C2) systems with Unmanned Ground Vehicles (UGVs) provides Integrated Force Protection from the Robotic Operation Command Center. Autonomous UGVs are directed as Force Projection units. UGV payloads and fixed sensors provide situational awareness while unattended munitions provide a less-than-lethal response capability. Remote resources serve as automated interfaces to legacy physical devices such as manned response vehicles, barrier gates, fence openings, garage doors, and remote power on/off capability for unmanned systems. The Robotic Operations Command Center executes the Multiple Resource Host Architecture (MRHA) to simultaneously control heterogeneous unmanned systems. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. A control hierarchy of missions and duty rosters support autonomous operations. This paper provides an overview of the key technology enablers for Integrated Force Protection with details on a force-on-force scenario to test and demonstrate concept of operations using Unmanned Ground Vehicles. Special attention is given to development and applications for the Remote Detection Challenge and Response (REDCAR) initiative for Integrated Base Defense.
NASA Technical Reports Server (NTRS)
Sicard, Pierre; Wen, John T.
1992-01-01
A passivity approach for the control design of flexible joint robots is applied to the rate control of a three-link arm modeled after the shoulder yaw joint of the Space Shuttle Remote Manipulator System (RMS). The system model includes friction and elastic joint couplings modeled as nonlinear springs. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. A regulator approach with link state feedback is employed to define the desired motor state. Passivity theory is used to design a motor state-based controller to stabilize the error system formed by the feedforward. Simulation results show that greatly improved performance was obtained by using the proposed controller over the existing RMS controller.
Dynamic analysis of space robot remote control system
NASA Astrophysics Data System (ADS)
Kulakov, Felix; Alferov, Gennady; Sokolov, Boris; Gorovenko, Polina; Sharlay, Artem
2018-05-01
The article presents analysis on construction of two-stage remote control for space robots. This control ensures efficiency of the robot control system at large delays in transmission of control signals from the ground control center to the local control system of the space robot. The conditions for control stability of and high transparency are found.
CHIMERA II - A real-time multiprocessing environment for sensor-based robot control
NASA Technical Reports Server (NTRS)
Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.
1989-01-01
A multiprocessing environment for a wide variety of sensor-based robot system, providing the flexibility, performance, and UNIX-compatible interface needed for fast development of real-time code is addressed. The requirements imposed on the design of a programming environment for sensor-based robotic control is outlined. The details of the current hardware configuration are presented, along with the details of the CHIMERA II software. Emphasis is placed on the kernel, low-level interboard communication, user interface, extended file system, user-definable and dynamically selectable real-time schedulers, remote process synchronization, and generalized interprocess communication. A possible implementation of a hierarchical control model, the NASA/NBS standard reference model for telerobot control system is demonstrated.
Recommendation on Transition from Primary/Secondary Radar to Secondary- Only Radar Capability
1994-10-01
Radar Beacon Performance Monitor RCIU Remote Control Interface Unit RCL Remote Communications Link R E&D Research, Engineering and Development RML Radar...rate. 3.1.2.5 Maintenance The current LRRs have limited remote maintenance monitoring (RMM) capabilities via the Remote Control Interface Unit ( RCIU ...1, -2 and FPS-20 radars required an upgrade of some of the radar subsystems, namely the RCIU to respond as an RMS and the CD to interface with radar
NASA Astrophysics Data System (ADS)
Childers, Gina; Jones, M. Gail
2015-10-01
Remote access technologies enable students to investigate science by utilizing scientific tools and communicating in real-time with scientists and researchers with only a computer and an Internet connection. Very little is known about student perceptions of how real remote investigations are and how immersed the students are in the experience. This study, conducted with high school students and their teachers, explored the impact of students' perception of ownership and virtual presence during a remote investigation using a scanning electron microscope. Students were randomly assigned to one of two treatment groups: students able to select their own insect to use during the remote investigation, and students that did not select their own insects to view during the remote investigation. The results of this study showed that students in the experimental group who had choice and ownership of their insect reported being more present (less distracted) during the remote investigation than students in the control group, whereas students in the control group reported controlling the technology was easier than the experimental group. Students indicated the remote investigation was very real; however, the teachers of these students were less likely to describe the investigation as being real. The results of this study have practical implications for designing remote learning environments.
NASA Astrophysics Data System (ADS)
Janet, J.; Natesan, T. R.; Santhosh, Ramamurthy; Ibramsha, Mohideen
2005-02-01
An intelligent decision support tool to the Radiologist in telemedicine is described. Medical prescriptions are given based on the images of cyst that has been transmitted over computer networks to the remote medical center. The digital image, acquired by sonography, is converted into an intensity image. This image is then subjected to image preprocessing which involves correction methods to eliminate specific artifacts. The image is resized into a 256 x 256 matrix by using bilinear interpolation method. The background area is detected using distinct block operation. The area of the cyst is calculated by removing the background area from the original image. Boundary enhancement and morphological operations are done to remove unrelated pixels. This gives us the cyst volume. This segmented image of the cyst is sent to the remote medical center for analysis by Knowledge based artificial Intelligent Decision Support System (KIDSS). The type of cyst is detected and reported to the control mechanism of KIDSS. Then the inference engine compares this with the knowledge base and gives appropriate medical prescriptions or treatment recommendations by applying reasoning mechanisms at the remote medical center.
Interactive intelligent remote operations: application to space robotics
NASA Astrophysics Data System (ADS)
Dupuis, Erick; Gillett, G. R.; Boulanger, Pierre; Edwards, Eric; Lipsett, Michael G.
1999-11-01
A set of tolls addressing the problems specific to the control and monitoring of remote robotic systems from extreme distances has been developed. The tools include the capability to model and visualize the remote environment, to generate and edit complex task scripts, to execute the scripts to supervisory control mode and to monitor and diagnostic equipment from multiple remote locations. Two prototype systems are implemented for demonstration. The first demonstration, using a prototype joint design called Dexter, shows the applicability of the approach to space robotic operation in low Earth orbit. The second demonstration uses a remotely controlled excavator in an operational open-pit tar sand mine. This demonstrates that the tools developed can also be used for planetary exploration operations as well as for terrestrial mining applications.
Shared virtual environments for telerehabilitation.
Popescu, George V; Burdea, Grigore; Boian, Rares
2002-01-01
Current VR telerehabilitation systems use offline remote monitoring from the clinic and patient-therapist videoconferencing. Such "store and forward" and video-based systems cannot implement medical services involving patient therapist direct interaction. Real-time telerehabilitation applications (including remote therapy) can be developed using a shared Virtual Environment (VE) architecture. We developed a two-user shared VE for hand telerehabilitation. Each site has a telerehabilitation workstation with a videocamera and a Rutgers Master II (RMII) force feedback glove. Each user can control a virtual hand and interact hapticly with virtual objects. Simulated physical interactions between therapist and patient are implemented using hand force feedback. The therapist's graphic interface contains several virtual panels, which allow control over the rehabilitation process. These controls start a videoconferencing session, collect patient data, or apply therapy. Several experimental telerehabilitation scenarios were successfully tested on a LAN. A Web-based approach to "real-time" patient telemonitoring--the monitoring portal for hand telerehabilitation--was also developed. The therapist interface is implemented as a Java3D applet that monitors patient hand movement. The monitoring portal gives real-time performance on off-the-shelf desktop workstations.
Robust Stability of Scaled-Four-Channel Teleoperation with Internet Time-Varying Delays
Delgado, Emma; Barreiro, Antonio; Falcón, Pablo; Díaz-Cacho, Miguel
2016-01-01
We describe the application of a generic stability framework for a teleoperation system under time-varying delay conditions, as addressed in a previous work, to a scaled-four-channel (γ-4C) control scheme. Described is how varying delays are dealt with by means of dynamic encapsulation, giving rise to mu-test conditions for robust stability and offering an appealing frequency technique to deal with the stability robustness of the architecture. We discuss ideal transparency problems and we adapt classical solutions so that controllers are proper, without single or double differentiators, and thus avoid the negative effects of noise. The control scheme was fine-tuned and tested for complete stability to zero of the whole state, while seeking a practical solution to the trade-off between stability and transparency in the Internet-based teleoperation. These ideas were tested on an Internet-based application with two Omni devices at remote laboratory locations via simulations and real remote experiments that achieved robust stability, while performing well in terms of position synchronization and force transparency. PMID:27128914
NASA Technical Reports Server (NTRS)
Asner, Gregory P. (Principal Investigator)
2003-01-01
Woody encroachment has contributed to documented changes world-wide and locally in the southwestern U.S. Specifically, in North Texas rangelands encroaching mesquite (Prosopis glandulosa var. glandulosa) a known N-fixing species has caused changes in aboveground biomass. While measurements of aboveground plant production are relatively common, measures of soil N availability are scarce and vary widely. N trace gas emissions (nitric and nitrous oxide) flom soils reflect patterns in current N cycling rates and availability as they are stimulated by inputs of organic and inorganic N. Quantification of N oxide emissions from savanna soils may depend upon the spatial distribution of woody plant canopies, and specifically upon the changes in N availability and cycling and subsequent N trace gas production as influenced by the shift from herbaceous to woody vegetation type. The main goal of this research was to determine whether remotely sensible parameters of vegetation structure and soil type could be used to quantify biogeochemical changes in N at local, landscape and regional scales. To accomplish this goal, field-based measurements of N trace gases were carried out between 2000-2001, encompassing the acquisition of imaging spectrometer data from the NASA Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) on September 29, 2001. Both biotic (vegetation type and soil organic N) and abiotic (soil type, soil pH, temperature, soil moisture, and soil inorganic N) controls were analyzed for their contributions to observed spatial and temporal variation in soil N gas fluxes. These plot level studies were used to develop relationships between spatially extensive, field-based measurements of N oxide fluxes and remotely sensible aboveground vegetation and soil properties, and to evaluate the short-term controls over N oxide emissions through intensive field wetting experiments. The relationship between N oxide emissions, remotely-sensed parameters (vegetation cover, and soil type), and physical controls (soil moisture, and temperature) permitted the regional scale quantification of soil N oxides emissions. Landscape scale analysis linking N oxide emissions with cover change revealed an alleviation from N limitation following mesquite invasion. This study demonstrated the advantage of using N trace gases as a measure of ecosystem N availability combined with remote sensing to characterize the spatial heterogeneity in ecosystem parameters at a scale commensurate with field-based measurements of these properties. Woody vegetation encroachment provided an opportunity to capitalize on detection of the remotely-sensible parameter of woody cover as it relates to belowground biogeochemical processes that determine N trace gas production. The first spatially-explicit estimates of NO flux were calculated based on Prosopis fractional cover derived from high resolution remote sensing estimates of fractional woody cover (< 4 m) for a 120 sq km region of North Texas. An assessment of both N stocks and fluxes from the study revealed an alleviation of N limitation at this site experiencing recent woody encroachment. Many arid and semi-arid regions of the world are experiencing woody invasions, often of N-fixing species. The issue of woody encroachment is in the center of an ecological and political debate. Improving the links between biogeochemical processes and remote sensing of ecosystem properties will improve our understanding of biogeochemical processes at the regional scale, thus providing a means to address issues of land-use and land-cover change.
Web Information Systems for Monitoring and Control of Indoor Air Quality at Subway Stations
NASA Astrophysics Data System (ADS)
Choi, Gi Heung; Choi, Gi Sang; Jang, Joo Hyoung
In crowded subway stations indoor air quality (IAQ) is a key factor for ensuring the safety, health and comfort of passengers. In this study, a framework for web-based information system in VDN environment for monitoring and control of IAQ in subway stations is suggested. Since physical variables that describing IAQ need to be closely monitored and controlled in multiple locations in subway stations, concept of distributed monitoring and control network using wireless media needs to be implemented. Connecting remote wireless sensor network and device (LonWorks) networks to the IP network based on the concept of VDN can provide a powerful, integrated, distributed monitoring and control performance, making a web-based information system possible.
2013-09-01
Width Modulation QuarC Quanser Real-time Control RC Remote Controlled RPV Remotely Piloted Vehicles SLAM Simultaneous Localization and Mapping UAV...development of the following systems: 1. Navigation (GPS, Lidar , etc.) 2. Communication (Datalink) 3. Ground Control Station (GUI, software programming
Remote monitoring and security alert based on motion detection using mobile
NASA Astrophysics Data System (ADS)
Suganya Devi, K.; Srinivasan, P.
2016-03-01
Background model does not have any robust solution and constitutes one of the main problems in surveillance systems. The aim of the paper is to provide a mobile based security to a remote monitoring system through a WAP using GSM modem. It is most designed to provide durability and versatility for a wide variety of indoor and outdoor applications. It is compatible with both narrow and band networks and provides simultaneous image detection. The communicator provides remote control, event driven recording, including pre-alarm and post-alarm and image motion detection. The web cam allowing them to be mounted either to a ceiling or wall without requiring bracket, with the use of web cam. We could continuously monitoring status in the client system through the web. If any intruder arrives in the client system, server will provide an alert to the mobile (what we are set in the message that message send to the authorized person) and the client can view the image using WAP.
NASA Technical Reports Server (NTRS)
Morgan, E. L.; Young, R. C.; Smith, M. D.; Eagleson, K. W.
1986-01-01
The objective of this study was to evaluate proposed design characteristics and applications of automated biomonitoring devices for real-time toxicity detection in water quality control on-board permanent space stations. Simulated tests in downlinking transmissions of automated biomonitoring data to Earth-receiving stations were simulated using satellite data transmissions from remote Earth-based stations.
Research on the inspection robot for cable tunnel
NASA Astrophysics Data System (ADS)
Xin, Shihao
2017-03-01
Robot by mechanical obstacle, double end communication, remote control and monitoring software components. The mechanical obstacle part mainly uses the tracked mobile robot mechanism, in order to facilitate the design and installation of the robot, the other auxiliary swing arm; double side communication part used a combination of communication wire communication with wireless communication, great improve the communication range of the robot. When the robot is controlled by far detection range, using wired communication control, on the other hand, using wireless communication; remote control part mainly completes the inspection robot walking, navigation, positioning and identification of cloud platform control. In order to improve the reliability of its operation, the preliminary selection of IPC as the control core the movable body selection program hierarchical structure as a design basis; monitoring software part is the core part of the robot, which has a definite diagnosis Can be instead of manual simple fault judgment, instead the robot as a remote actuators, staff as long as the remote control can be, do not have to body at the scene. Four parts are independent of each other but are related to each other, the realization of the structure of independence and coherence, easy maintenance and coordination work. Robot with real-time positioning function and remote control function, greatly improves the IT operation. Robot remote monitor, to avoid the direct contact with the staff and line, thereby reducing the accident casualties, for the safety of the inspection work has far-reaching significance.
NASA Astrophysics Data System (ADS)
Hsu, Roy CHaoming; Jian, Jhih-Wei; Lin, Chih-Chuan; Lai, Chien-Hung; Liu, Cheng-Ting
2013-01-01
The main purpose of this paper is to use machine learning method and Kinect and its body sensation technology to design a simple, convenient, yet effective robot remote control system. In this study, a Kinect sensor is used to capture the human body skeleton with depth information, and a gesture training and identification method is designed using the back propagation neural network to remotely command a mobile robot for certain actions via the Bluetooth. The experimental results show that the designed mobile robots remote control system can achieve, on an average, more than 96% of accurate identification of 7 types of gestures and can effectively control a real e-puck robot for the designed commands.
Remote Neural Pendants In A Welding-Control System
NASA Technical Reports Server (NTRS)
Venable, Richard A.; Bucher, Joseph H.
1995-01-01
Neural network integrated circuits enhance functionalities of both remote terminals (called "pendants") and communication links, without necessitating installation of additional wires in links. Makes possible to incorporate many features into pendant, including real-time display of critical welding parameters and other process information, capability for communication between technician at pendant and host computer or technician elsewhere in system, and switches and potentiometers through which technician at pendant exerts remote control over such critical aspects of welding process as current, voltage, rate of travel, flow of gas, starting, and stopping. Other potential manufacturing applications include control of spray coating and of curing of composite materials. Potential nonmanufacturing uses include remote control of heating, air conditioning, and lighting in electrically noisy and otherwise hostile environments.
NASA Technical Reports Server (NTRS)
1974-01-01
The transient and steady state response of the respiratory control system for variations in volumetric fractions of inspired gases and special system parameters are modeled. The program contains the capability to change workload. The program is based on Grodins' respiratory control model and can be envisioned as a feedback control system comprised of a plant (the controlled system) and the regulating component (controlling system). The controlled system is partitioned into 3 compartments corresponding to lungs, brain, and tissue with a fluid interconnecting patch representing the blood.
Exploring Pacific Seamounts through Telepresence Mapping on the NOAA Ship Okeanos Explorer
NASA Astrophysics Data System (ADS)
Lobecker, E.; Malik, M.; Sowers, D.; Kennedy, B. R.
2016-12-01
Telepresence utilizes modern computer networks and a high bandwidth satellite connection to enable remote users to participate virtually in ocean research and exploration cruises. NOAA's Office of Ocean Exploration and Research (OER) has been leveraging telepresence capabilities since the early 2000s. Through telepresence, remote users have provided support for operations planning and execution, troubleshooting hardware and software, and data interpretation during exploratory ocean mapping and remotely operated vehicle missions conducted by OER. The potential for this technology's application to immersive data acquisition and processing during mapping missions, however, has not yet been fully realized. We report the results of the application of telepresence to an 18-day 24 hour / day seafloor mapping expedition with the NOAA Ship Okeanos Explorer. The mapping team was split between shipboard and shore-based mission team members based at the Exploration Command Center at the University of New Hampshire. This cruise represented the third dedicated mapping cruise in a multi-year NOAA Campaign to Address the Pacific monument Science, Technology, and Ocean Needs (CAPSTONE). Cruise objectives included mapping several previously unmapped seamounts in the Wake Atoll Unit of the recently expanded Pacific Remote Islands Marine National Monument, and mapping of prominent seamount, ridge, and fracture zone features during transits. We discuss (1) expanded shore-based data processing of multiple sonar data streams leading to enhanced, rapid, initial site characterization, (2) remote access control of shipboard sonar data acquisition and processing computers, and (3) potential for broadening multidisciplinary applications of ocean mapping cruises including outreach, education, and communications efforts focused on expanding societal cognition and benefits of ocean exploration.
Shih, Ching-Hsiang; Yeh, Jui-Chi; Shih, Ching-Tien; Chang, Man-Ling
2011-01-01
The latest studies have adopted software technology which turns the Wii Remote Controller into a high-performance limb action detector, we assessed whether two persons with multiple disabilities would be able to control an environmental stimulus through limb action. This study extends the functionality of the Wii Remote Controller to the correction of limb hyperactive behavior to assess whether two children with Attention Deficit Hyperactivity Disorder (ADHD) would be able to actively reduce their limb hyperactive behavior through controlling their favorite stimuli by turning them on/off using a Wii Remote Controller. An ABAB design, in which A represented the baseline and B represented intervention phases, was adopted in this study. Result showed that both participants significantly increased their time duration of maintaining a static limb posture (TDMSLP) to activate the control system in order to produce environmental stimulation in the intervention phases. Practical and developmental implications of the findings are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Design of MPPT Controller Monitoring Software Based on QT Framework
NASA Astrophysics Data System (ADS)
Meng, X. Z.; Lu, P. G.
2017-10-01
The MPPT controller was a hardware device for tracking the maximum power point of solar photovoltaic array. Multiple controllers could be working as networking mode by specific communicating protocol. In this article, based on C++ GUI programming with Qt frame, we designed one sort of desktop application for monitoring and analyzing operational parameter of MPPT controller. The type of communicating protocol for building network was Modbus protocol which using Remote Terminal Unit mode and The desktop application of host computer was connected with all the controllers in the network through RS485 communication or ZigBee wireless communication. Using this application, user could monitor the parameter of controller wherever they were by internet.
Tu, Pei-Chi; Kuan, Yi-Hsuan; Li, Cheng-Ta; Su, Tung-Ping
2017-06-01
This study investigated the structural correlates of creative thinking in patients with bipolar disorder (BD) to understand the possible neural mechanism of creative thinking in BD. We recruited 59 patients with BD I or BD II (35.3±8.5 y) and 56 age- and sex-matched controls (HCs; 34±7.4 y). Each participant underwent structural magnetic resonance imaging and evaluation of creative thinking, which was assessed using two validated tools: the Chinese version of the Abbreviated Torrance Test for Adults for divergent thinking and the Chinese Word Remote Associates Test for remote association. Voxel-based morphometry was performed using SPM12. In patients with BD, divergent thinking positively correlated with the gray matter volume (GMV) in right medial frontal gyrus (Brodmann area [BA] 9), and remote association positively correlated with the GMV in the medial prefrontal gyrus (BA 10). In the HCs, divergent thinking negatively correlated with the GMV in left superior frontal gyrus (BA 8) and positively correlated with the GMV in the precuneus and occipital regions, and remote association positively correlated with the GMV in the hippocampus. Patients with BD were receiving various dosages of antipsychotics, antidepressants and mood stabilizer. These medications may confound the GMV-creative thinking relationship in patients with BD. Our findings indicate that medial prefrontal cortex plays a major and positive role in creative thinking in patients with BD. By contrary, creative thinking involves more diverse structures, and the prefrontal cortex may have an opposite effect in HCs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.
1994-01-01
System for remote control of robotic land vehicle requires only small radio-communication bandwidth. Twin video cameras on vehicle create stereoscopic images. Operator views cross-polarized images on two cathode-ray tubes through correspondingly polarized spectacles. By use of cursor on frozen image, remote operator designates path. Vehicle proceeds to follow path, by use of limited degree of autonomous control to cope with unexpected conditions. System concept, called "computer-aided remote driving" (CARD), potentially useful in exploration of other planets, military surveillance, firefighting, and clean-up of hazardous materials.
Implementation of High Speed Distributed Data Acquisition System
NASA Astrophysics Data System (ADS)
Raju, Anju P.; Sekhar, Ambika
2012-09-01
This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high accuracy, high speed, real time monitoring.
The automation of remote vehicle control. [in Mars roving vehicles
NASA Technical Reports Server (NTRS)
Paine, G.
1977-01-01
The automation of remote vehicles is becoming necessary to overcome the requirement of having man present as a controller. By removing man, remote vehicles can be operated in areas where the environment is too hostile for man, his reaction times are too slow, time delays are too long, and where his presence is too costly, or where system performance can be improved. This paper addresses the development of automated remote vehicle control for nonspace and space tasks from warehouse vehicles to proposed Mars rovers. The state-of-the-art and the availability of new technology for implementing automated control are reviewed and the major problem areas are outlined. The control strategies are divided into those where the path is planned in advance or constrained, or where the system is a teleoperator, or where automation or robotics have been introduced.
Abrahamsen, Håkon B
2015-06-10
Major incidents are complex, dynamic and bewildering task environments characterised by simultaneous, rapidly changing events, uncertainty and ill-structured problems. Efficient management, communication, decision-making and allocation of scarce medical resources at the chaotic scene of a major incident is challenging and often relies on sparse information and data. Communication and information sharing is primarily voice-to-voice through phone or radio on specified radio frequencies. Visual cues are abundant and difficult to communicate between teams and team members that are not co-located. The aim was to assess the concept and feasibility of using a remotely piloted aircraft (RPA) system to support remote sensing in simulated major incident exercises. We carried out an experimental, pilot feasibility study. A custom-made, remotely controlled, multirotor unmanned aerial vehicle with vertical take-off and landing was equipped with digital colour- and thermal imaging cameras, a laser beam, a mechanical gripper arm and an avalanche transceiver. We collected data in five simulated exercises: 1) mass casualty traffic accident, 2) mountain rescue, 3) avalanche with buried victims, 4) fisherman through thin ice and 5) search for casualties in the dark. The unmanned aerial vehicle was remotely controlled, with high precision, in close proximity to air space obstacles at very low levels without compromising work on the ground. Payload capacity and tolerance to wind and turbulence were limited. Aerial video, shot from different altitudes, and remote aerial avalanche beacon search were streamed wirelessly in real time to a monitor at a ground base. Electromagnetic interference disturbed signal reception in the ground monitor. A small remotely piloted aircraft can be used as an effective tool carrier, although limited by its payload capacity, wind speed and flight endurance. Remote sensing using already existing remotely piloted aircraft technology in pre-hospital environments is feasible and can be used to support situation assessment and information exchange at a major incident scene. Regulations are needed to ensure the safe use of unmanned aerial vehicles in major incidents. Ethical issues are abundant.
KNET - DISTRIBUTED COMPUTING AND/OR DATA TRANSFER PROGRAM
NASA Technical Reports Server (NTRS)
Hui, J.
1994-01-01
KNET facilitates distributed computing between a UNIX compatible local host and a remote host which may or may not be UNIX compatible. It is capable of automatic remote login. That is, it performs on the user's behalf the chore of handling host selection, user name, and password to the designated host. Once the login has been successfully completed, the user may interactively communicate with the remote host. Data output from the remote host may be directed to the local screen, to a local file, and/or to a local process. Conversely, data input from the keyboard, a local file, or a local process may be directed to the remote host. KNET takes advantage of the multitasking and terminal mode control features of the UNIX operating system. A parent process is used as the upper layer for interfacing with the local user. A child process is used for a lower layer for interfacing with the remote host computer, and optionally one or more child processes can be used for the remote data output. Output may be directed to the screen and/or to the local processes under the control of a data pipe switch. In order for KNET to operate, the local and remote hosts must observe a common communications protocol. KNET is written in ANSI standard C-language for computers running UNIX. It has been successfully implemented on several Sun series computers and a DECstation 3100 and used to run programs remotely on VAX VMS and UNIX based computers. It requires 100K of RAM under SunOS and 120K of RAM under DEC RISC ULTRIX. An electronic copy of the documentation is provided on the distribution medium. The standard distribution medium for KNET is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. KNET was developed in 1991 and is a copyrighted work with all copyright vested in NASA. UNIX is a registered trademark of AT&T Bell Laboratories. Sun and SunOS are trademarks of Sun Microsystems, Inc. DECstation, VAX, VMS, and ULTRIX are trademarks of Digital Equipment Corporation.
Application and Removal of Strippable Coatings via Remote Platform - 13133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoffner, P.; Lagos, L.; Maggio, S.
2013-07-01
Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and technology demonstrations of selected technologies and working with technology vendors to optimize the design of their current technologies to accomplish dangerous and demanding tasks during D and D operations.more » To meet one identified technology gap challenge for a technology to remotely apply strippable coatings, fixatives and decontamination gels, FIU identified and performed an initial demonstration of an innovative remote fixative sprayer platform from International Climbing Machines (ICM). The selected technology was demonstrated spraying fixative products at the hot cell mockup facility at the Applied Research Center at FIU in November 2008 under cold (non-radioactive) conditions. The remotely controlled platform was remotely operated and entered the facility and sprayed a fixative onto horizontal and vertical surfaces. Based on the initial FIU demonstration and the specific technical requirements identified at the DOE facilities, a follow-up demonstration was expanded to include strippable coatings and a decontamination gel, which was demonstrated in June 2010 at the ICM facility in Ithaca, NY. This second technology evaluation documented the ability of the remote system to spray the selected products on vertical stainless steel and concrete surfaces to a height of 3 meters (10 feet) and to achieve sufficient coverage and product thickness to promote the ability to peel/remove the strippable coatings and decontamination gel. The next challenge was to determine if a remote platform could be used to remove the strippable coatings and decontamination gels. In 2012, FIU worked with the technology provider, ICM, to conduct feasibility and trade studies to identify the requirements for the remote removal of strippable coatings or decontamination gels using the existing remote controlled platform. (authors)« less
NASA Technical Reports Server (NTRS)
Shields, N., Jr.; Piccione, F.; Kirkpatrick, M., III; Malone, T. B.
1982-01-01
The capabilities within the teleoperator laboratories to perform remote and teleoperated investigations for a wide variety of applications are described. Three major teleoperator issues are addressed: the human operator, the remote control and effecting subsystems, and the human/machine system performance results for specific teleoperated tasks.
"O.K. Where's the Remote?" Children, Families, and Remote Control Devices.
ERIC Educational Resources Information Center
Krendl, Kathy A.; And Others
This paper, part of a larger study of new television technologies, examines how preschool children integrate remote control devices (RCDs) into their television viewing behavior, preschoolers' competence with and knowledge of RCDs, and the role of the RCD in shaping family viewing styles. Subjects, 50 children aged 4 to 6 years attending 3…
Web Environment for Programming and Control of a Mobile Robot in a Remote Laboratory
ERIC Educational Resources Information Center
dos Santos Lopes, Maísa Soares; Gomes, Iago Pacheco; Trindade, Roque M. P.; da Silva, Alzira F.; de C. Lima, Antonio C.
2017-01-01
Remote robotics laboratories have been successfully used for engineering education. However, few of them use mobile robots to to teach computer science. This article describes a mobile robot Control and Programming Environment (CPE) and its pedagogical applications. The system comprises a remote laboratory for robotics, an online programming tool,…
Hand Gesture Based Wireless Robotic Arm Control for Agricultural Applications
NASA Astrophysics Data System (ADS)
Kannan Megalingam, Rajesh; Bandhyopadhyay, Shiva; Vamsy Vivek, Gedela; Juned Rahi, Muhammad
2017-08-01
One of the major challenges in agriculture is harvesting. It is very hard and sometimes even unsafe for workers to go to each plant and pluck fruits. Robotic systems are increasingly combined with new technologies to automate or semi automate labour intensive work, such as e.g. grape harvesting. In this work we propose a semi-automatic method for aid in harvesting fruits and hence increase productivity per man hour. A robotic arm fixed to a rover roams in the in orchard and the user can control it remotely using the hand glove fixed with various sensors. These sensors can position the robotic arm remotely to harvest the fruits. In this paper we discuss the design of hand glove fixed with various sensors, design of 4 DoF robotic arm and the wireless control interface. In addition the setup of the system and the testing and evaluation under lab conditions are also presented in this paper.
A CCD experimental platform for large telescope in Antarctica based on FPGA
NASA Astrophysics Data System (ADS)
Zhu, Yuhua; Qi, Yongjun
2014-07-01
The CCD , as a detector , is one of the important components of astronomical telescopes. For a large telescope in Antarctica, a set of CCD detector system with large size, high sensitivity and low noise is indispensable. Because of the extremely low temperatures and unattended, system maintenance and software and hardware upgrade become hard problems. This paper introduces a general CCD controller experiment platform, using Field programmable gate array FPGA, which is, in fact, a large-scale field reconfigurable array. Taking the advantage of convenience to modify the system, construction of driving circuit, digital signal processing module, network communication interface, control algorithm validation, and remote reconfigurable module may realize. With the concept of integrated hardware and software, the paper discusses the key technology of building scientific CCD system suitable for the special work environment in Antarctica, focusing on the method of remote reconfiguration for controller via network and then offering a feasible hardware and software solution.
A combination of Raspberry Pi and SoftEther VPN for controlling research devices via the Internet.
Kuroda, Toshikazu
2017-11-01
Remote control over devices for experiments may increase the efficiency of operant research and expand the area where behavior can be studied. This article introduces a combination of Raspberry Pi ® (Pi) and SoftEther VPN ® that allows for such remote control via the Internet. The Pi is a small Linux computer with a great degree of flexibility for customization. Test results indicate that a Pi-based interface meets the requirement for conducting operant research. SoftEther VPN ® allows for establishing an extensive private network on the Internet using a single private Wi-Fi router. Step-by-step instructions are provided in the present article for setting up the Pi along with SoftEther VPN ® . Their potential for improving the way of conducting research is discussed. © 2017 Society for the Experimental Analysis of Behavior.
Seelye, Adriana M.; Larimer, Nicole; Maxwell, Shoshana; Kearns, Peter; Kaye, Jeffrey A.
2012-01-01
Abstract Objective: Remote telepresence provided by tele-operated robotics represents a new means for obtaining important health information, improving older adults' social and daily functioning and providing peace of mind to family members and caregivers who live remotely. In this study we tested the feasibility of use and acceptance of a remotely controlled robot with video-communication capability in independently living, cognitively intact older adults. Materials and Methods: A mobile remotely controlled robot with video-communication ability was placed in the homes of eight seniors. The attitudes and preferences of these volunteers and those of family or friends who communicated with them remotely via the device were assessed through survey instruments. Results: Overall experiences were consistently positive, with the exception of one user who subsequently progressed to a diagnosis of mild cognitive impairment. Responses from our participants indicated that in general they appreciated the potential of this technology to enhance their physical health and well-being, social connectedness, and ability to live independently at home. Remote users, who were friends or adult children of the participants, were more likely to test the mobility features and had several suggestions for additional useful applications. Conclusions: Results from the present study showed that a small sample of independently living, cognitively intact older adults and their remote collaterals responded positively to a remote controlled robot with video-communication capabilities. Research is needed to further explore the feasibility and acceptance of this type of technology with a variety of patients and their care contacts. PMID:23082794
NASA Technical Reports Server (NTRS)
Sellers, J. F.
1973-01-01
The transient performance of two concepts for control of vertical takeoff aircraft remote lift fans is analyzed and discussed. Both concepts employ flow transfer between pairs of lift fans located in separate parts of the aircraft in order to obtain attitude control moments for hover and low-speed flight. The results presented are from a digital computer, dynamic analysis of the YJ97/LF460 remote drive turbofan. The transient responses of the two systems are presented for step demands in lift and moment.
Remote-Controlled Rotorcraft Blade Vibration and Modal Analysis at Low Frequencies
2016-02-01
modal analysis, remote-controlled helicopter , remote-controlled rotorcraft, HUMS for rotorcraft 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...Experimental Setup 1 4. Results 4 4.1 Rotor Blade Acceleration 4 4.2 Modal Analysis: Using an Impact Hammer 7 4.3 Dynamic Response Revisited 8 5... Rotor blade response to shaker outputting 1-V sine wave at 100 Hz ....5 Fig. 6 Rotor blade response to shaker outputting 1-V sine sweep from 20- to 100
Satellite control system nucleus for the Brazilian complete space mission
NASA Astrophysics Data System (ADS)
Yamaguti, Wilson; Decarvalhovieira, Anastacio Emanuel; Deoliveira, Julia Leocadia; Cardoso, Paulo Eduardo; Dacosta, Petronio Osorio
1990-10-01
The nucleus of the satellite control system for the Brazilian data collecting and remote sensing satellites is described. The system is based on Digital Equipment Computers and the VAX/VMS operating system. The nucleus provides the access control, the system configuration, the event management, history files management, time synchronization, wall display control, and X25 data communication network access facilities. The architecture of the nucleus and its main implementation aspects are described. The implementation experience acquired is considered.
1996-04-08
Development tasks and products of remote sensing ground stations in Europe are represented by the In-Sec Corporation and the Schlumberger Industries Corporation. The article presents the main products of these two corporations.
Remote control of an MR imaging study via tele-collaboration tools
NASA Astrophysics Data System (ADS)
Sullivan, John M., Jr.; Mullen, Julia S.; Benz, Udo A.; Schmidt, Karl F.; Murugavel, Murali; Chen, Wei; Ghadyani, Hamid
2005-04-01
In contrast to traditional 'video conferencing' the Access Grid (AG), developed by Argonne National Laboratory, is a collaboration of audio, video and shared application tools which provide the 'persistent presence' of each participant. Among the shared application tools are the ability to share viewing and control of presentations, browsers, images and movies. When used in conjunction with Virtual Network Computing (VNC) software, an investigator can interact with colleagues at a remote site, and control remote systems via local keyboard and mouse commands. This combination allows for effective viewing and discussion of information, i.e. data, images, and results. It is clear that such an approach when applied to the medical sciences will provide a means by which a team of experts can not only access, but interact and control medical devices for the purpose of experimentation, diagnosis, surgery and therapy. We present the development of an application node at our 4.7 Tesla MR magnet facility, and a demonstration of remote investigator control of the magnet. A local magnet operator performs manual tasks such as loading the test subject into the magnet and administering the stimulus associated with the functional MRI study. The remote investigator has complete control of the magnet console. S/he can adjust the gradient coil settings, the pulse sequence, image capture frequency, etc. A geographically distributed audience views and interacts with the remote investigator and local MR operator. This AG demonstration of MR magnet control illuminates the potential of untethered medical experiments, procedures and training.
NASA Astrophysics Data System (ADS)
Zhang, Jie-Lin; Wang, Jun-hu; Zhou, Mi; Huang, Yan-ju; Xuan, Yan-xiu; Wu, Ding
2011-11-01
The modern Earth Observation System (EOS) technology takes important role in the uranium geological exploration, and high resolution remote sensing as one of key parts of EOS is vital to characterize spectral and spatial information of uranium mineralization factors. Utilizing satellite high spatial resolution and hyperspectral remote sensing data (QuickBird, Radarsat2, ASTER), field spectral measurement (ASD data) and geological survey, this paper established the spectral identification characteristics of uranium mineralization factors including six different types of alaskite, lower and upper marble of Rössing formation, dolerite, alkali metasomatism, hematization and chloritization in the central zone of Damara Orogen, Namibia. Moreover, adopted the texture information identification technology, the geographical distribution zones of ore-controlling faults and boundaries between the different strata were delineated. Based on above approaches, the remote sensing geological anomaly information and image interpretation signs of uranium mineralization factors were extracted, the metallogenic conditions were evaluated, and the prospective areas have been predicted.
Reeve, Carole; Humphreys, John; Wakerman, John; Carroll, Vicki; Carter, Maureen; O'Brien, Tim; Erlank, Carol; Mansour, Rafik; Smith, Bec
2015-01-01
The aim of this study was to describe the reorientation of a remote primary health-care service, in the Kimberley region of Australia, its impact on access to services and the factors instrumental in bringing about change. A unique community-initiated health service partnership was developed between a community-controlled Aboriginal health organisation, a government hospital and a population health unit, in order to overcome the challenges of delivering primary health care to a dispersed, highly disadvantaged Aboriginal population in a very remote area. The shared goals and clear delineation of responsibilities achieved through the partnership reoriented an essentially acute hospital-based service to a prevention-focussed comprehensive primary health-care service, with a focus on systematic screening for chronic disease, interdisciplinary follow up, health promotion, community advocacy and primary prevention. This formal partnership enabled the primary health-care service to meet the major challenges of providing a sustainable, prevention-focussed service in a very remote and socially disadvantaged area.
Remote Software Application and Display Development
NASA Technical Reports Server (NTRS)
Sanders, Brandon T.
2014-01-01
The era of the shuttle program has come to an end, but only to give rise to newer and more exciting projects. Now is the time of the Orion spacecraft, a work of art designed to exceed all previous endeavors of man. NASA is exiting the time of exploration and is entering a new period, a period of pioneering. With this new mission, many of NASAs organizations must undergo a great deal of change and development to support the Orion missions. The Spaceport Command and Control System (SCCS) is the new system that will provide NASA the ability to launch rockets into orbit and thus control Orion and other spacecraft as the goal of populating Mars becomes ever increasingly tangible. Since the previous control system, Launch Processing System (LPS), was primarily designed to launch the shuttles, SCCS was needed as Kennedy Space Center (KSC) reorganized to a multiuser spaceport for commercial flights, providing a more versatile control over rockets. Within SCCS, is the Launch Control System (LCS), which is the remote software behind the command and monitoring of flight and ground system hardware. This internship at KSC has involved two main components in LCS, including Remote Software Application and Display development. The display environment provides a graphical user interface for an operator to view and see if any cautions are raised, while the remote applications are the backbone that communicate with hardware, and then relay the data back to the displays. These elements go hand in hand as they provide monitoring and control over hardware and software alike from the safety of the Launch Control Center. The remote software applications are written in Application Control Language (ACL), which must undergo unit testing to ensure data integrity. This paper describes both the implementation and writing of unit tests in ACL code for remote software applications, as well as the building of remote displays to be used in the Launch Control Center (LCC).
Remote control radioactive-waste removal system uses modulated laser transmitter
NASA Technical Reports Server (NTRS)
Burcher, E. E.; Kopia, L. P.; Rowland, C. W.; Sinclair, A. R.
1971-01-01
Laser remote control system consists of transmitter, auto tracker, and receiver. Transmitter and tracker, packaged together and bore sighted, constitute control station, receiver is slave station. Model has five command channels and optical link operating range of 110 m.
47 CFR 74.634 - Remote control operation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... control system must be designed, installed, and protected so that the transmitter can only be activated or... ensure proper operation. (3) The remote control system must be designed to prevent inadvertent...
47 CFR 74.634 - Remote control operation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... control system must be designed, installed, and protected so that the transmitter can only be activated or... ensure proper operation. (3) The remote control system must be designed to prevent inadvertent...
47 CFR 74.634 - Remote control operation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... control system must be designed, installed, and protected so that the transmitter can only be activated or... ensure proper operation. (3) The remote control system must be designed to prevent inadvertent...
47 CFR 74.634 - Remote control operation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... control system must be designed, installed, and protected so that the transmitter can only be activated or... ensure proper operation. (3) The remote control system must be designed to prevent inadvertent...
47 CFR 74.634 - Remote control operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... control system must be designed, installed, and protected so that the transmitter can only be activated or... ensure proper operation. (3) The remote control system must be designed to prevent inadvertent...
Adaptive Control Of Remote Manipulator
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.
Navigation and Remote Sensing Payloads and Methods of the Sarvant Unmanned Aerial System
NASA Astrophysics Data System (ADS)
Molina, P.; Fortuny, P.; Colomina, I.; Remy, M.; Macedo, K. A. C.; Zúnigo, Y. R. C.; Vaz, E.; Luebeck, D.; Moreira, J.; Blázquez, M.
2013-08-01
In a large number of scenarios and missions, the technical, operational and economical advantages of UAS-based photogrammetry and remote sensing over traditional airborne and satellite platforms are apparent. Airborne Synthetic Aperture Radar (SAR) or combined optical/SAR operation in remote areas might be a case of a typical "dull, dirty, dangerous" mission suitable for unmanned operation - in harsh environments such as for example rain forest areas in Brazil, topographic mapping of small to medium sparsely inhabited remote areas with UAS-based photogrammetry and remote sensing seems to be a reasonable paradigm. An example of such a system is the SARVANT platform, a fixed-wing aerial vehicle with a six-meter wingspan and a maximumtake- of-weight of 140 kilograms, able to carry a fifty-kilogram payload. SARVANT includes a multi-band (X and P) interferometric SAR payload, as the P-band enables the topographic mapping of densely tree-covered areas, providing terrain profile information. Moreover, the combination of X- and P-band measurements can be used to extract biomass estimations. Finally, long-term plan entails to incorporate surveying capabilities also at optical bands and deliver real-time imagery to a control station. This paper focuses on the remote-sensing concept in SARVANT, composed by the aforementioned SAR sensor and envisioning a double optical camera configuration to cover the visible and the near-infrared spectrum. The flexibility on the optical payload election, ranging from professional, medium-format cameras to mass-market, small-format cameras, is discussed as a driver in the SARVANT development. The paper also focuses on the navigation and orientation payloads, including the sensors (IMU and GNSS), the measurement acquisition system and the proposed navigation and orientation methods. The latter includes the Fast AT procedure, which performs close to traditional Integrated Sensor Orientation (ISO) and better than Direct Sensor Orientation (DiSO), and features the advantage of not requiring the massive image processing load for the generation of tie points, although it does require some Ground Control Points (GCPs). This technique is further supported by the availability of a high quality INS/GNSS trajectory, motivated by single-pass and repeat-pass SAR interferometry requirements.
An Efficient Wireless Sensor Network for Industrial Monitoring and Control.
Aponte-Luis, Juan; Gómez-Galán, Juan Antonio; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel
2018-01-10
This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.
An Efficient Wireless Sensor Network for Industrial Monitoring and Control
Aponte-Luis, Juan; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel
2018-01-01
This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management. PMID:29320466
Wu, Chinglin; Zhong, Suyu; Chen, Hsuehchih
2016-01-01
Remote association is a core ability that influences creative output. In contrast to close association, remote association is commonly agreed to be connected with more original and unique concepts. However, although existing studies have discovered that creativity is closely related to the white-matter structure of the brain, there are no studies that examine the relevance between the connectivity efficiencies and creativity of the brain regions from the perspective of networks. Consequently, this study constructed a brain white matter network structure that consisted of cerebral tissues and nerve fibers and used graph theory to analyze the connection efficiencies among the network nodes, further illuminating the differences between remote and close association in relation to the connectivity of the brain network. Researchers analyzed correlations between the scores of 35 healthy adults with regard to remote and close associations and the connectivity efficiencies of the white-matter network of the brain. Controlling for gender, age, and verbal intelligence, the remote association positively correlated with the global efficiency and negatively correlated with the levels of small-world. A close association negatively correlated with the global efficiency. Notably, the node efficiency in the middle temporal gyrus (MTG) positively correlated with remote association and negatively correlated with close association. To summarize, remote and close associations work differently as patterns in the brain network. Remote association requires efficient and convenient mutual connections between different brain regions, while close association emphasizes the limited connections that exist in a local region. These results are consistent with previous results, which indicate that creativity is based on the efficient integration and connection between different regions of the brain and that temporal lobes are the key regions for discriminating remote and close associations. PMID:27760177
Synthesis of the unmanned aerial vehicle remote control augmentation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomczyk, Andrzej, E-mail: A.Tomczyk@prz.edu.pl
Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are notmore » suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.« less
Demonstration of the Low-Cost Virtual Collaborative Environment (VCE)
NASA Technical Reports Server (NTRS)
Bowers, David; Montes, Leticia; Ramos, Angel; Joyce, Brendan; Lumia, Ron
1997-01-01
This paper demonstrates the feasibility of a low-cost approach of remotely controlling equipment. Our demonstration system consists of a PC, the PUMA 560 robot with Barrett hand, and commercially available controller and teleconferencing software. The system provides a graphical user interface which allows a user to program equipment tasks and preview motions i.e., simulate the results. Once satisfied that the actions are both safe and accomplish the task, the remote user sends the data over the Internet to the local site for execution on the real equipment. A video link provides visual feedback to the remote sight. This technology lends itself readily to NASA's upcoming Mars expeditions by providing remote simulation and control of equipment.
Chang-Diaz and Perrin attach power and data cables to MBS during STS-111 UF-2 EVA 2
2002-06-11
STS111-E-5184 (11 June 2002) --- Astronauts Franklin R. Chang-Diaz (left) and Philippe Perrin, both mission specialists, work on the Mobile Remote Servicer Base System (MBS) and the Mobile Transporter on the International Space Station (ISS) during the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. The boxes in front of the spacewalkers are the Canadian Remote Power Control Modules (RPCM). The S0 (S-zero) Truss is partially visible in the background. Perrin represents CNES, the French Space Agency.
Chang-Diaz and Perrin attach power and data cables to MBS during STS-111 UF-2 EVA 2
2002-06-11
STS111-E-5183 (11 June 2002) --- Astronauts Franklin R. Chang-Diaz (left) and Philippe Perrin, both mission specialists, work on the Mobile Remote Servicer Base System (MBS) and the Mobile Transporter on the International Space Station (ISS) during the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. The boxes in front of the spacewalkers are the Canadian Remote Power Control Modules (RPCM). The S0 (S-zero) Truss is partially visible in the background. Perrin represents CNES, the French Space Agency.
Fast, cheap and in control: spectral imaging with handheld devices
NASA Astrophysics Data System (ADS)
Gooding, Edward A.; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.
2017-05-01
Remote sensing has moved out of the laboratory and into the real world. Instruments using reflection or Raman imaging modalities become faster, cheaper and more powerful annually. Enabling technologies include virtual slit spectrometer design, high power multimode diode lasers, fast open-loop scanning systems, low-noise IR-sensitive array detectors and low-cost computers with touchscreen interfaces. High-volume manufacturing assembles these components into inexpensive portable or handheld devices that make possible sophisticated decision-making based on robust data analytics. Examples include threat, hazmat and narcotics detection; remote gas sensing; biophotonic screening; environmental remediation and a host of other applications.
NASA Technical Reports Server (NTRS)
Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.
1989-01-01
Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.
Dynamics and Control of Tethered Satellite Formations for the Purpose of Space-Based Remote Sensing
2006-08-01
remote sensing mission. Energy dissipation is found to have an adverse effect on foundational rigid body (Likins-Pringle) equilibria. It is shown that a continuously earth-facing equilibrium condition for a fixed-length tethered system does not exist since the spin rate required for the proper precession would not be high enough to maintain tether tension. The range of required spin rates for steady-spin motion is numerically defined here, but none of these conditions can meet the continuously earth-facing criteria. Of particular note is the discovery that applying certain
An operator interface design for a telerobotic inspection system
NASA Technical Reports Server (NTRS)
Kim, Won S.; Tso, Kam S.; Hayati, Samad
1993-01-01
The operator interface has recently emerged as an important element for efficient and safe interactions between human operators and telerobotics. Advances in graphical user interface and graphics technologies enable us to produce very efficient operator interface designs. This paper describes an efficient graphical operator interface design newly developed for remote surface inspection at NASA-JPL. The interface, designed so that remote surface inspection can be performed by a single operator with an integrated robot control and image inspection capability, supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.
StimDuino: an Arduino-based electrophysiological stimulus isolator.
Sheinin, Anton; Lavi, Ayal; Michaelevski, Izhak
2015-03-30
Electrical stimulus isolator is a widely used device in electrophysiology. The timing of the stimulus application is usually automated and controlled by the external device or acquisition software; however, the intensity of the stimulus is adjusted manually. Inaccuracy, lack of reproducibility and no automation of the experimental protocol are disadvantages of the manual adjustment. To overcome these shortcomings, we developed StimDuino, an inexpensive Arduino-controlled stimulus isolator allowing highly accurate, reproducible automated setting of the stimulation current. The intensity of the stimulation current delivered by StimDuino is controlled by Arduino, an open-source microcontroller development platform. The automatic stimulation patterns are software-controlled and the parameters are set from Matlab-coded simple, intuitive and user-friendly graphical user interface. The software also allows remote control of the device over the network. Electrical current measurements showed that StimDuino produces the requested current output with high accuracy. In both hippocampal slice and in vivo recordings, the fEPSP measurements obtained with StimDuino and the commercial stimulus isolators showed high correlation. Commercial stimulus isolators are manually managed, while StimDuino generates automatic stimulation patterns with increasing current intensity. The pattern is utilized for the input-output relationship analysis, necessary for assessment of excitability. In contrast to StimuDuino, not all commercial devices are capable for remote control of the parameters and stimulation process. StimDuino-generated automation of the input-output relationship assessment eliminates need for the current intensity manually adjusting, improves stimulation reproducibility, accuracy and allows on-site and remote control of the stimulation parameters. Copyright © 2015 Elsevier B.V. All rights reserved.
Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.
Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng
2017-02-08
Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.
Distributed observing facility for remote access to multiple telescopes
NASA Astrophysics Data System (ADS)
Callegari, Massimo; Panciatici, Antonio; Pasian, Fabio; Pucillo, Mauro; Santin, Paolo; Aro, Simo; Linde, Peter; Duran, Maria A.; Rodriguez, Jose A.; Genova, Francoise; Ochsenbein, Francois; Ponz, J. D.; Talavera, Antonio
2000-06-01
The REMOT (Remote Experiment Monitoring and conTrol) project was financed by 1996 by the European Community in order to investigate the possibility of generalizing the remote access to scientific instruments. After the feasibility of this idea was demonstrated, the DYNACORE (DYNAmically, COnfigurable Remote Experiment monitoring and control) project was initiated as a REMOT follow-up. Its purpose is to develop software technology to support scientists in two different domains, astronomy and plasma physics. The resulting system allows (1) simultaneous multiple user access to different experimental facilities, (2) dynamic adaptability to different kinds of real instruments, (3) exploitation of the communication infrastructures features, (4) ease of use through intuitive graphical interfaces, and (5) additional inter-user communication using off-the-shelf projects such as video-conference tools, chat programs and shared blackboards.
Differences Between S/X and VLBI2010 Operation
NASA Technical Reports Server (NTRS)
Hase, Hayo; Himwich, Ed; Neidhardt, Alexander
2010-01-01
The intended VLBI2010 operation has some significant differences to the current S/X operation. The presentation focuses on the problem of extending the operation of a global VLBI network to continuous operation within the frame of the same given amount of human resources. Remote control operation is a suitable solution to minimize operational expenses. The implementation of remote control operation requires more site specific information. A concept of a distributed-centralized remote control of the operation and its implications is presented.
Remote Optical Switch for Localized and Selective Control of Gene Interference
Lee, Somin Eunice; Liu, Gang Logan; Kim, Franklin; Lee, Luke P.
2009-01-01
Near infrared-absorbing gold nanoplasmonic particles (GNPs) are used as optical switches of gene interference and are remotely controlled using light. We have tuned optical switches to a wavelength where cellular photodamage is minimized. Optical switches are functionalized with double-stranded oligonucleotides. At desired times and at specific intracellular locations, remote optical excitation is used to liberate gene-interfering oligonucleotides. We demonstrate a novel gene-interfering technique offering spatial and temporal control, which is otherwise impossible using conventional gene-interfering techniques. PMID:19128006
Remote radio control of insect flight.
Sato, Hirotaka; Berry, Christopher W; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E; Lavella, Gabriel; Vandenbrooks, John M; Harrison, Jon F; Maharbiz, Michel M
2009-01-01
We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.
Research on the man in the loop control system of the robot arm based on gesture control
NASA Astrophysics Data System (ADS)
Xiao, Lifeng; Peng, Jinbao
2017-03-01
The Man in the loop control system of the robot arm based on gesture control research complex real-world environment, which requires the operator to continuously control and adjust the remote manipulator, as the background, completes the specific mission human in the loop entire system as the research object. This paper puts forward a kind of robot arm control system of Man in the loop based on gesture control, by robot arm control system based on gesture control and Virtual reality scene feedback to enhance immersion and integration of operator, to make operator really become a part of the whole control loop. This paper expounds how to construct a man in the loop control system of the robot arm based on gesture control. The system is a complex system of human computer cooperative control, but also people in the loop control problem areas. The new system solves the problems that the traditional method has no immersion feeling and the operation lever is unnatural, the adjustment time is long, and the data glove mode wears uncomfortable and the price is expensive.
NASA Technical Reports Server (NTRS)
Shields, N., Jr.; Piccione, F.; Kirkpatrick, M., III; Malone, T. B.
1982-01-01
The combination of human and machine capabilities into an integrated engineering system which is complex and interactive interdisciplinary undertaking is discussed. Human controlled remote systems referred to as teleoperators, are reviewed. The human factors requirements for remotely manned systems are identified. The data were developed in three principal teleoperator laboratories and the visual, manipulator and mobility laboratories are described. Three major sections are identified: (1) remote system components, (2) human operator considerations; and (3) teleoperator system simulation and concept verification.
Remote focusing for programmable multi-layer differential multiphoton microscopy
Hoover, Erich E.; Young, Michael D.; Chandler, Eric V.; Luo, Anding; Field, Jeffrey J.; Sheetz, Kraig E.; Sylvester, Anne W.; Squier, Jeff A.
2010-01-01
We present the application of remote focusing to multiphoton laser scanning microscopy and utilize this technology to demonstrate simultaneous, programmable multi-layer imaging. Remote focusing is used to independently control the axial location of multiple focal planes that can be simultaneously imaged with single element detection. This facilitates volumetric multiphoton imaging in scattering specimens and can be practically scaled to a large number of focal planes. Further, it is demonstrated that the remote focusing control can be synchronized with the lateral scan directions, enabling imaging in orthogonal scan planes. PMID:21326641
First results of ground-based LWIR hyperspectral imaging remote gas detection
NASA Astrophysics Data System (ADS)
Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Wang, Hai-yang; Fu, Yan-peng; Liao, Ning-fang; Su, Jun-hong
2014-11-01
The new progress of ground-based long-wave infrared remote sensing is presented. The LWIR hyperspectral imaging by using the windowing spatial and temporal modulation Fourier spectroscopy, and the results of outdoor ether gas detection, verify the features of LWIR hyperspectral imaging remote sensing and technical approach. It provides a new technical means for ground-based gas remote sensing.
Use of telemedicine in the remote programming of cochlear implants.
Ramos, Angel; Rodriguez, Carina; Martinez-Beneyto, Paz; Perez, Daniel; Gault, Alexandre; Falcon, Juan Carlos; Boyle, Patrick
2009-05-01
Remote cochlear implant (CI) programming is a viable, safe, user-friendly and cost-effective procedure, equivalent to standard programming in terms of efficacy and user's perception, which can complement the standard procedures. The potential benefits of this technique are outlined. We assessed the technical viability, risks and difficulties of remote CI programming; and evaluated the benefits for the user comparing the standard on-site CI programming versus the remote CI programming. The Remote Programming System (RPS) basically consists of completing the habitual programming protocol in a regular CI centre, assisted by local staff, although guided by a remote expert, who programs the CI device using a remote programming station that takes control of the local station through the Internet. A randomized prospective study has been designed with the appropriate controls comparing RPS to the standard on-site CI programming. Study subjects were implanted adults with a HiRes 90K(R) CI with post-lingual onset of profound deafness and 4-12 weeks of device use. Subjects underwent two daily CI programming sessions either remote or standard, on 4 programming days separated by 3 month intervals. A total of 12 remote and 12 standard sessions were completed. To compare both CI programming modes we analysed: program parameters, subjects' auditory progress, subjects' perceptions of the CI programming sessions, and technical aspects, risks and difficulties of remote CI programming. Control of the local station from the remote station was carried out successfully and remote programming sessions were achieved completely and without incidents. Remote and standard program parameters were compared and no significant differences were found between the groups. The performance evaluated in subjects who had been using either standard or remote programs for 3 months showed no significant difference. Subjects were satisfied with both the remote and standard sessions. Safety was proven by checking emergency stops in different conditions. A very small delay was noticed that did not affect the ease of the fitting. The oral and video communication between the local and the remote equipment was established without difficulties and was of high quality.
Airport Remote Tower Sensor Systems
NASA Technical Reports Server (NTRS)
Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin
2006-01-01
Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.
Photogrammetric Processing of Planetary Linear Pushbroom Images Based on Approximate Orthophotos
NASA Astrophysics Data System (ADS)
Geng, X.; Xu, Q.; Xing, S.; Hou, Y. F.; Lan, C. Z.; Zhang, J. J.
2018-04-01
It is still a great challenging task to efficiently produce planetary mapping products from orbital remote sensing images. There are many disadvantages in photogrammetric processing of planetary stereo images, such as lacking ground control information and informative features. Among which, image matching is the most difficult job in planetary photogrammetry. This paper designs a photogrammetric processing framework for planetary remote sensing images based on approximate orthophotos. Both tie points extraction for bundle adjustment and dense image matching for generating digital terrain model (DTM) are performed on approximate orthophotos. Since most of planetary remote sensing images are acquired by linear scanner cameras, we mainly deal with linear pushbroom images. In order to improve the computational efficiency of orthophotos generation and coordinates transformation, a fast back-projection algorithm of linear pushbroom images is introduced. Moreover, an iteratively refined DTM and orthophotos scheme was adopted in the DTM generation process, which is helpful to reduce search space of image matching and improve matching accuracy of conjugate points. With the advantages of approximate orthophotos, the matching results of planetary remote sensing images can be greatly improved. We tested the proposed approach with Mars Express (MEX) High Resolution Stereo Camera (HRSC) and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. The preliminary experimental results demonstrate the feasibility of the proposed approach.
Kinematic modeling of a double octahedral Variable Geometry Truss (VGT) as an extensible gimbal
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1994-01-01
This paper presents the complete forward and inverse kinematics solutions for control of the three degree-of-freedom (DOF) double octahedral variable geometry truss (VGT) module as an extensible gimbal. A VGT is a truss structure partially comprised of linearly actuated members. A VGT can be used as joints in a large, lightweight, high load-bearing manipulator for earth- and space-based remote operations, plus industrial applications. The results have been used to control the NASA VGT hardware as an extensible gimbal, demonstrating the capability of this device to be a joint in a VGT-based manipulator. This work is an integral part of a VGT-based manipulator design, simulation, and control tool.
1946-09-01
camera is supported on four rubber grummets to a metal base which is normally attached in tho aircraft by bolts. The pistol grip remote control...daylight loading (h) Supply • 24 volts 1.7 35 nun Cino Gun Pantra ( Tyre number unknown) ’ ." The oamora dsscribod below is a clockwork
Community Capacity Building: Starting with People Not Projects.
ERIC Educational Resources Information Center
Simpson, Lyn; Wood, Leanne; Daws, Leonie
2003-01-01
A remote Australian town's initiative to develop an Internet cafe was based on a foundation of community empowerment and capacity building. The project's failure illustrates factors that inhibit community control: overstretched local resources, failure to understand impact on existing social infrastructure and social networks, and lack of…
The Development of a Manhole Access Pipe-Crawler System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, M.
2000-09-19
The Savannah River Site's (SRS) Environmental Restoration Division (ERD) is in the process of reconditioning and decommissioning potentially contaminated facilities. Many of these facilities require inspection prior to remediation tasks. Remote inspections are necessary to reduce hazards and ensure the health and safety of workers and the public. To aid in ERD's efforts, the Remote and Specialty Equipment Systems (RSES) section developed a remote inspection vehicle referred to as the Manhole Access Pipecrawler System (MAPS). The MAPS is comprised of a battery-powered mobile vehicle, a portable control console, a cable reel enclosing 300 feet of tethered cable, and a deployment/retrievalmore » system. The components used in MAPS are predominantly standard off-the-shelf items to reduce fabrication costs. Parts were chosen based on size and durability to satisfy SRS operating conditions.« less
Research and design of intelligent distributed traffic signal light control system based on CAN bus
NASA Astrophysics Data System (ADS)
Chen, Yu
2007-12-01
Intelligent distributed traffic signal light control system was designed based on technologies of infrared, CAN bus, single chip microprocessor (SCM), etc. The traffic flow signal is processed with the core of SCM AT89C51. At the same time, the SCM controls the CAN bus controller SJA1000/transceiver PCA82C250 to build a CAN bus communication system to transmit data. Moreover, up PC realizes to connect and communicate with SCM through USBCAN chip PDIUSBD12. The distributed traffic signal light control system with three control styles of Vehicle flux, remote and PC is designed. This paper introduces the system composition method and parts of hardware/software design in detail.
a New Approach for Accuracy Improvement of Pulsed LIDAR Remote Sensing Data
NASA Astrophysics Data System (ADS)
Zhou, G.; Huang, W.; Zhou, X.; He, C.; Li, X.; Huang, Y.; Zhang, L.
2018-05-01
In remote sensing applications, the accuracy of time interval measurement is one of the most important parameters that affect the quality of pulsed lidar data. The traditional time interval measurement technique has the disadvantages of low measurement accuracy, complicated circuit structure and large error. A high-precision time interval data cannot be obtained in these traditional methods. In order to obtain higher quality of remote sensing cloud images based on the time interval measurement, a higher accuracy time interval measurement method is proposed. The method is based on charging the capacitance and sampling the change of capacitor voltage at the same time. Firstly, the approximate model of the capacitance voltage curve in the time of flight of pulse is fitted based on the sampled data. Then, the whole charging time is obtained with the fitting function. In this method, only a high-speed A/D sampler and capacitor are required in a single receiving channel, and the collected data is processed directly in the main control unit. The experimental results show that the proposed method can get error less than 3 ps. Compared with other methods, the proposed method improves the time interval accuracy by at least 20 %.
Telerobot local-remote control architecture for space flight program applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John
1993-01-01
The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.
Diverse Planning for UAV Control and Remote Sensing
Tožička, Jan; Komenda, Antonín
2016-01-01
Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs. PMID:28009831
Diverse Planning for UAV Control and Remote Sensing.
Tožička, Jan; Komenda, Antonín
2016-12-21
Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs.
Burkow, Tatjana M; Vognild, Lars K; Krogstad, Trine; Borch, Njål; Ostengen, Geir; Bratvold, Astrid; Risberg, Marijke Jongsma
2008-01-01
This paper describes an easy to use home-based eHealth system for chronic disease management. We present the design and implementation of a prototype for home based education, exercises, treatment and following-up, with the TV and a remote control as user interface. We also briefly describe field trials of the system for patients with COPD and diabetes, and their experience with the technology.
A software control system for the ACTS high-burst-rate link evaluation terminal
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Daugherty, Elaine S.
1991-01-01
Control and performance monitoring of NASA's High Burst Rate Link Evaluation Terminal (HBR-LET) is accomplished by using several software control modules. Different software modules are responsible for controlling remote radio frequency (RF) instrumentation, supporting communication between a host and a remote computer, controlling the output power of the Link Evaluation Terminal and data display. Remote commanding of microwave RF instrumentation and the LET digital ground terminal allows computer control of various experiments, including bit error rate measurements. Computer communication allows system operators to transmit and receive from the Advanced Communications Technology Satellite (ACTS). Finally, the output power control software dynamically controls the uplink output power of the terminal to compensate for signal loss due to rain fade. Included is a discussion of each software module and its applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...
Code of Federal Regulations, 2010 CFR
2010-10-01
... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...
Code of Federal Regulations, 2013 CFR
2013-10-01
... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...
Code of Federal Regulations, 2014 CFR
2014-10-01
... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...
Code of Federal Regulations, 2012 CFR
2012-10-01
... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...
Remote sensing of nitric oxide emissions from planes, trains and automobiles
NASA Astrophysics Data System (ADS)
Popp, Peter John
Remote sensing has been proven as an effective method for measuring in-use mobile source emissions. This document describes the development of a remote sensor for mobile source nitric oxide, based on an instrument previously developed at the University of Denver for measuring carbon monoxide and hydrocarbon emissions. The new remote sensor makes use of a high-speed ultraviolet spectrometer to quantify nitric oxide by absorption spectroscopy at 226 nm in the ultraviolet region. The high-speed spectrometer is coupled to an existing FEAT remote sensor, for the simultaneous measurement of CO, CO2 and hydrocarbons by non-dispersive infrared absorption spectroscopy. The utility of the instrument was demonstrated in the measurement of nitric oxide emissions from automobiles, commercial aircraft, and railroad locomotives. The remote sensor was used to measure nitric oxide emissions from motor vehicles in Chicago in 1997 and 1998, as part of a five-year study to characterize motor vehicle emissions and deterioration in that city. Emissions data were collected for over 19,000 vehicles in 1997 and almost 23,000 vehicles in 1998. All of these records contained valid measurements for carbon monoxide and hydrocarbons, in addition to nitric oxide. In September of 1997, a study was conducted with the cooperation of British Airways and the British Airports Authority to demonstrate the capability of the remote sensor in measuring nitric oxide emissions from in-use commercial aircraft. In two days of sampling at London Heathrow Airport, a total of 122 measurements were made of 90 different aircraft, ranging in size from Gulfstream executive jets to Boeing 747-400s. The measured nitric oxide emission indices were not inconsistent with commercial aircraft emission indices published by the International Civil Aviation Organization. The utility of the remote sensor in measuring nitric oxide emissions from railroad locomotives was demonstrated in January of 1999, in a study conducted with the cooperation of the Burlington Northern Santa Fe Railway. Nitric oxide emissions measured from freight locomotives in a controlled test at a switchyard agreed with previously published values. Measurements of in-use locomotives hauling coal trains revealed higher NO emissions than those measured from similar locomotives in the controlled test.
F-8C adaptive control law refinement and software development
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.
1981-01-01
An explicit adaptive control algorithm based on maximum likelihood estimation of parameters was designed. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm was implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer, surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software.
Kampik, Timotheus; Larsen, Frank; Bellika, Johan Gustav
2015-01-01
The objective of the study was to identify experiences and attitudes of German and Norwegian general practitioners (GPs) towards Internet-based remote consultation solutions supporting communication between GPs and patients in the context of the German and Norwegian healthcare systems. Interviews with four German and five Norwegian GPs were conducted. The results were qualitatively analyzed. All interviewed GPs stated they would like to make use of Internet-based remote consultations in the future. Current experiences with remote consultations are existent to a limited degree. No GP reported to use a comprehensive remote consultation solution. The main features GPs would like to see in a remote consultation solution include asynchronous exchange of text messages, video conferencing with text chat, scheduling of remote consultation appointments, secure login and data transfer and the integration of the remote consultation solution into the GP's EHR system.
Using incentives to attract nurses to remote areas of Tanzania: a contingent valuation study.
Munga, Michael A; Torsvik, Gaute; Mæstad, Ottar
2014-03-01
This article analyses (1) how financial incentives (salary top-ups) and non-financial incentives (housing and education) affect nurses' willingness to work in remote areas of Tanzania and (2) how the magnitude of the incentives needed to attract health workers varies with the nurses' geographic origin and their intrinsic motivation. A contingent valuation method was used to elicit the location preferences of 362 nursing students. Without any interventions, 19% of the nurses were willing to work in remote places. With the provision of free housing, this share increased by 15 percentage points. Better education opportunities increased the share by 28 percentage points from the baseline. For a salary top-up to have the same effect as provision of free housing, the top-up needs to be between 80 and 100% of the base salary. Similarly, for salary top-ups to have the same effect as provision of better education opportunities, the top-up should be between 120 and 140%. Our study confirms results from previous research, that those with a strong intrinsic motivation to provide health care are more motivated to work in a remote location. A more surprising finding is that students of older age are more prepared to take a job in remote areas. Several studies have found that individuals who grew up in a remote area are more willing to work in such locations. A novel finding of our analysis is that only nursing students with a 'very' remote origin (i.e. those who grew up farther from a district centre than the suggested remote working place) express a higher willingness to take the remote job. Although we do control for nursing school effects, our results could be biased due to omitted variables capturing individual characteristics.
E-Control: First Public Release of Remote Control Software for VLBI Telescopes
NASA Technical Reports Server (NTRS)
Neidhardt, Alexander; Ettl, Martin; Rottmann, Helge; Ploetz, Christian; Muehlbauer, Matthias; Hase, Hayo; Alef, Walter; Sobarzo, Sergio; Herrera, Cristian; Himwich, Ed
2010-01-01
Automating and remotely controlling observations are important for future operations in a Global Geodetic Observing System (GGOS). At the Geodetic Observatory Wettzell, in cooperation with the Max-Planck-Institute for Radio Astronomy in Bonn, a software extension to the existing NASA Field System has been developed for remote control. It uses the principle of a remotely accessible, autonomous process cell as a server extension for the Field System. The communication is realized for low transfer rates using Remote Procedure Calls (RPC). It uses generative programming with the interface software generator idl2rpc.pl developed at Wettzell. The user interacts with this system over a modern graphical user interface created with wxWidgets. For security reasons the communication is automatically tunneled through a Secure Shell (SSH) session to the telescope. There are already successful test observations with the telescopes at O Higgins, Concepcion, and Wettzell. At Wettzell the software is already used routinely for weekend observations. Therefore the first public release of the software is now available, which will also be useful for other telescopes.
Dual use display systems for telerobotics
NASA Technical Reports Server (NTRS)
Massimino, Michael J.; Meschler, Michael F.; Rodriguez, Alberto A.
1994-01-01
This paper describes a telerobotics display system, the Multi-mode Manipulator Display System (MMDS), that has applications for a variety of remotely controlled tasks. Designed primarily to assist astronauts with the control of space robotics systems, the MMDS has applications for ground control of space robotics as well as for toxic waste cleanup, undersea, remotely operated vehicles, and other environments which require remote operations. The MMDS has three modes: (1) Manipulator Position Display (MPD) mode, (2) Joint Angle Display (JAD) mode, and (3) Sensory Substitution (SS) mode. These three modes are discussed in the paper.
A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications
Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco
2017-01-01
This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers. PMID:28216556
A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications.
Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco
2017-02-14
This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO₂ concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.
Site-specific management of cotton root rot using airborne and satellite imagery
USDA-ARS?s Scientific Manuscript database
Cotton root rot is a serious cotton disease that can now be effectively controlled with Topguard Terra Fungicide. The objectives of this research were to demonstrate how site-specific fungicide application could be implemented based on historical remote sensing imagery and variable rate technology. ...
Video PATSEARCH: A Mixed-Media System.
ERIC Educational Resources Information Center
Schulman, Jacque-Lynne
1982-01-01
Describes a videodisc-based information display system in which a computer terminal is used to search the online PATSEARCH database from a remote host with local microcomputer control to select and display drawings from the retrieved records. System features and system components are discussed and criteria for system evaluation are presented.…
47 CFR 74.432 - Licensing requirements and procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Remote Pickup... transmitter or points of any intercity relay system on frequencies in Groups I and J. (d) Base stations may be... at the control point of the station. (k) In case of permanent discontinuance of operations of a...
Aerostat-Based Sampling of Emissions from Open Burning and Open Detonation of Military Ordnance
Emissions from open detonation (OD), open burning (OB), and static firing (SF) of obsolete military munitions were collected using an aerostat-lofted sampling instrument maneuvered into the plumes with remotely controlled tether winches. PM2.5, PM10, metals, volatile organic comp...
NASA Technical Reports Server (NTRS)
Smarr, Larry; Press, William; Arnett, David W.; Cameron, Alastair G. W.; Crutcher, Richard M.; Helfand, David J.; Horowitz, Paul; Kleinmann, Susan G.; Linsky, Jeffrey L.; Madore, Barry F.
1991-01-01
The applications of computers and data processing to astronomy are discussed. Among the topics covered are the emerging national information infrastructure, workstations and supercomputers, supertelescopes, digital astronomy, astrophysics in a numerical laboratory, community software, archiving of ground-based observations, dynamical simulations of complex systems, plasma astrophysics, and the remote control of fourth dimension supercomputers.
UAV-based remote sensing of the Heumoes landslide, Austria Vorarlberg
NASA Astrophysics Data System (ADS)
Niethammer, U.; Joswig, M.
2009-04-01
The Heumoes landslide, is located in the eastern Vorarlberg Alps, Austria, 10 km southeast of Dornbirn. The extension of the landslide is about 2000 m in west to east direction and about 500 m at its widest extent in north to south direction. It occurs between an elevation of 940 m in the east and 1360 m in the west, slope angles of more than 60 % can be observed as well as almost flat areas. Its total volume is estimated to be 9.400.000 cubic meters and its average velocities amount to some centimeter per year. Surface signatures or 'photolineations' of creeping landslides, e.g. fractures and rupture lines in sediments and street pavings, and vegetation contrasts by changes of water table in shallow vegetation in principle can be resolved by remote sensing. The necessary ground cell resolution of few centimeters, however, generally can't be achieved by routine areal or satellite imagery. The fast technological progress of unmanned areal vehicles (UAV) and the reduced payload by miniaturized optical cameras now allow for UAV remote sensing applications that are below the high financial limits of military intelligence. Even with 'low-cost' equipment, the necessary centimeter-scale ground cell resolution can be achieved by adapting the flight altitude to some ten to one hundred meters. Operated by scientists experienced in remote-control flight models, UAV remote sensing can now be performed routinely, and campaign-wise after any significant event of, e.g., heavy rainfall, or partial mudflow. We have investigated a concept of UAV-borne remote sensing based on motorized gliders, and four-propeller helicopters or 'quad-rotors'. Several missions were flown over the Heumoes landslide. Between 2006 and 2008 three series UAV-borne photographs of the Heumoes landslide were taken and could be combined to orto-mosaics of the slope area within few centimeters ground cell resolution. We will present the concept of our low cost quad-rotor UAV system and first results of the image-processing based evaluation of the acquired images to characterize spatial and temporal details of landslide behaviour. We will also sketch first schemes of joint interpretation or 'data fusion' of UAV-based remote sensing with the results from geophysical mapping of underground distribution of soil moisture and fracture processes (Walter & Joswig, EGU 2009).
Hyperspectral remote sensing application for monitoring and preservation of plant ecosystems
NASA Astrophysics Data System (ADS)
Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas; Petrov, Nikolay; Stoev, Antoniy
Remote sensing technologies have advanced significantly at last decade and have improved the capability to gather information about Earth’s resources and environment. They have many applications in Earth observation, such as mapping and updating land-use and cover, weather forecasting, biodiversity determination, etc. Hyperspectral remote sensing offers unique opportunities in the environmental monitoring and sustainable use of natural resources. Remote sensing sensors on space-based platforms, aircrafts, or on ground, are capable of providing detailed spectral, spatial and temporal information on terrestrial ecosystems. Ground-based sensors are used to record detailed information about the land surface and to create a data base for better characterizing the objects which are being imaged by the other sensors. In this paper some applications of two hyperspectral remote sensing techniques, leaf reflectance and chlorophyll fluorescence, for monitoring and assessment of the effects of adverse environmental conditions on plant ecosystems are presented. The effect of stress factors such as enhanced UV-radiation, acid rain, salinity, viral infections applied to some young plants (potato, pea, tobacco) and trees (plums, apples, paulownia) as well as of some growth regulators were investigated. Hyperspectral reflectance and fluorescence data were collected by means of a portable fiber-optics spectrometer in the visible and near infrared spectral ranges (450-850 nm and 600-900 nm), respectively. The differences between the reflectance data of healthy (control) and injured (stressed) plants were assessed by means of statistical (Student’s t-criterion), first derivative, and cluster analysis and calculation of some vegetation indices in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (690-720 nm) and near infrared (720-780 nm). Fluorescence spectra were analyzed at five characteristic wavelengths located at the maximums of the emitted radiation and at the forefronts and rear slopes. The strong relationship, which was found between the results from the two remote sensing techniques and some biochemical and serological analyses (stress markers, DAS-ELISA test), indicates the importance of hyperspectral reflectance and fluorescence techniques for conducting, easily and without damage, rapid health condition assessments of vegetation. This study fills in the existed spectral data base and exemplifies the benefits of integrating remote sensing, Earth observation, plant physiology, ecology, and conducting of interdisciplinary investigations of terrestrial ecosystems.
Use of Satellite Remote Sensing Data in the Mapping of Global Landslide Susceptibility
NASA Technical Reports Server (NTRS)
Hong, Yang; Adler, Robert F.; Huffman, George J.
2007-01-01
Satellite remote sensing data has significant potential use in analysis of natural hazards such as landslides. Relying on the recent advances in satellite remote sensing and geographic information system (GIS) techniques, this paper aims to map landslide susceptibility over most of the globe using a GIs-based weighted linear combination method. First , six relevant landslide-controlling factors are derived from geospatial remote sensing data and coded into a GIS system. Next, continuous susceptibility values from low to high are assigned to each of the six factors. Second, a continuous scale of a global landslide susceptibility index is derived using GIS weighted linear combination based on each factor's relative significance to the process of landslide occurrence (e.g., slope is the most important factor, soil types and soil texture are also primary-level parameters, while elevation, land cover types, and drainage density are secondary in importance). Finally, the continuous index map is further classified into six susceptibility categories. Results show the hot spots of landslide-prone regions include the Pacific Rim, the Himalayas and South Asia, Rocky Mountains, Appalachian Mountains, Alps, and parts of the Middle East and Africa. India, China, Nepal, Japan, the USA, and Peru are shown to have landslide-prone areas. This first-cut global landslide susceptibility map forms a starting point to provide a global view of landslide risks and may be used in conjunction with satellite-based precipitation information to potentially detect areas with significant landslide potential due to heavy rainfall. 1
Enabling private and public sector organizations as agents of homeland security
NASA Astrophysics Data System (ADS)
Glassco, David H. J.; Glassco, Jordan C.
2006-05-01
Homeland security and defense applications seek to reduce the risk of undesirable eventualities across physical space in real-time. With that functional requirement in mind, our work focused on the development of IP based agent telecommunication solutions for heterogeneous sensor / robotic intelligent "Things" that could be deployed across the internet. This paper explains how multi-organization information and device sharing alliances may be formed to enable organizations to act as agents of homeland security (in addition to other uses). Topics include: (i) using location-aware, agent based, real-time information sharing systems to integrate business systems, mobile devices, sensor and actuator based devices and embedded devices used in physical infrastructure assets, equipment and other man-made "Things"; (ii) organization-centric real-time information sharing spaces using on-demand XML schema formatted networks; (iii) object-oriented XML serialization as a methodology for heterogeneous device glue code; (iv) how complex requirements for inter / intra organization information and device ownership and sharing, security and access control, mobility and remote communication service, tailored solution life cycle management, service QoS, service and geographic scalability and the projection of remote physical presence (through sensing and robotics) and remote informational presence (knowledge of what is going elsewhere) can be more easily supported through feature inheritance with a rapid agent system development methodology; (v) how remote object identification and tracking can be supported across large areas; (vi) how agent synergy may be leveraged with analytics to complement heterogeneous device networks.
Evaluation of Student Learning in Remotely Controlled Instrumental Analyses
ERIC Educational Resources Information Center
Meintzer, Chris; Sutherland, Frances; Kennepohl, Dietmar K.
2017-01-01
The Canadian Remote Sciences Laboratories (CRSL) website (www.remotelab.ca) was successfully employed in a study of the differences in the performance and perceptions of students' about their learning in the laboratory (in-person) versus learning at a remote location (remote access). The experiment was completed both in-person and via remote…
TERMTrial--terminology-based documentation systems for cooperative clinical trials.
Merzweiler, A; Weber, R; Garde, S; Haux, R; Knaup-Gregori, P
2005-04-01
Within cooperative groups of multi-center clinical trials a standardized documentation is a prerequisite for communication and sharing of data. Standardizing documentation systems means standardizing the underlying terminology. The management and consistent application of terminology systems is a difficult and fault-prone task, which should be supported by appropriate software tools. Today, documentation systems for clinical trials are often implemented as so-called Remote-Data-Entry-Systems (RDE-systems). Although there are many commercial systems, which support the development of RDE-systems there is none offering a comprehensive terminological support. Therefore, we developed the software system TERMTrial which consists of a component for the definition and management of terminology systems for cooperative groups of clinical trials and two components for the terminology-based automatic generation of trial databases and terminology-based interactive design of electronic case report forms (eCRFs). TERMTrial combines the advantages of remote data entry with a comprehensive terminological control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wen-Yang; Cai, Rong; Pham, Tony
Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal–organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu₂(O₂C-)₄], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu₃O(N 4–x(CH) xC-)₃] (x = 0, 1, or 2). Remotely, the chemicalmore » stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1.« less
Development of remote sensing based site specific weed management for Midwest mint production
NASA Astrophysics Data System (ADS)
Gumz, Mary Saumur Paulson
Peppermint and spearmint are high value essential oil crops in Indiana, Michigan, and Wisconsin. Although the mints are profitable alternatives to corn and soybeans, mint production efficiency must improve in order to allow industry survival against foreign produced oils and synthetic flavorings. Weed control is the major input cost in mint production and tools to increase efficiency are necessary. Remote sensing-based site-specific weed management offers potential for decreasing weed control costs through simplified weed detection and control from accurate site specific weed and herbicide application maps. This research showed the practicability of remote sensing for weed detection in the mints. Research was designed to compare spectral response curves of field grown mint and weeds, and to use these data to develop spectral vegetation indices for automated weed detection. Viability of remote sensing in mint production was established using unsupervised classification, supervised classification, handheld spectroradiometer readings and spectral vegetation indices (SVIs). Unsupervised classification of multispectral images of peppermint production fields generated crop health maps with 92 and 67% accuracy in meadow and row peppermint, respectively. Supervised classification of multispectral images identified weed infestations with 97% and 85% accuracy for meadow and row peppermint, respectively. Supervised classification showed that peppermint was spectrally distinct from weeds, but the accuracy of these measures was dependent on extensive ground referencing which is impractical and too costly for on-farm use. Handheld spectroradiometer measurements of peppermint, spearmint, and several weeds and crop and weed mixtures were taken over three years from greenhouse grown plants, replicated field plots, and production peppermint and spearmint fields. Results showed that mints have greater near infrared (NIR) and lower green reflectance and a steeper red edge slope than all weed species. These distinguishing characteristics were combined to develop narrow band and broadband spectral vegetation indices (SVIs, ratios of NIR/green reflectance), that were effective in differentiating mint from key weed species. Hyperspectral images of production peppermint and spearmint fields were then classified using SVI-based classification. Narrowband and broadband SVIs classified early season peppermint and spearmint with 64 to 100% accuracy compared to 79 to 100% accuracy for supervised classification of multispectral images of the same fields. Broadband SVIs have potential for use as an automated spectral indicator for weeds in the mints since they require minimal ground referencing and can be calculated from multispectral imagery which is cheaper and more readily available than hyperspectral imagery. This research will allow growers to implement remote sensing based site specific weed management in mint resulting in reduced grower input costs and reduced herbicide entry into the environment and will have applications in other specialty and meadow crops.
Chen, Hung-Ming; Lo, Jung-Wen; Yeh, Chang-Kuo
2012-12-01
The rapidly increased availability of always-on broadband telecommunication environments and lower-cost vital signs monitoring devices bring the advantages of telemedicine directly into the patient's home. Hence, the control of access to remote medical servers' resources has become a crucial challenge. A secure authentication scheme between the medical server and remote users is therefore needed to safeguard data integrity, confidentiality and to ensure availability. Recently, many authentication schemes that use low-cost mobile devices have been proposed to meet these requirements. In contrast to previous schemes, Khan et al. proposed a dynamic ID-based remote user authentication scheme that reduces computational complexity and includes features such as a provision for the revocation of lost or stolen smart cards and a time expiry check for the authentication process. However, Khan et al.'s scheme has some security drawbacks. To remedy theses, this study proposes an enhanced authentication scheme that overcomes the weaknesses inherent in Khan et al.'s scheme and demonstrated this scheme is more secure and robust for use in a telecare medical information system.
NASA Technical Reports Server (NTRS)
Howard, James C.
1976-01-01
Remotely piloted research vehicles (RPRVS) are currently being flown from fixed-base control centers, and visual information is supplied to the remote pilot by a TV camera mounted in the vehicle. In these circumstances, the possibility of a TV failure or an interruption in the downlink to the pilot must be considered. To determine the influence of loss of TV information on pilot performance during the final approach and landing phase of a mission, an experiment was conducted in which pilots were asked to fly a fixed-base simulation of a Piper PA-30 aircraft with loss of TV information occurring at altitudes of 15.24, 30.48, and 45.72 m (50, 100, and 150 ft). For this experiment, a specially designed display configuration was presented to four pilots in accordance with a Latin square design. Initial results indicate that pilots could not ensure successful landings from altitudes exceeding 15.24 m (.50 ft) without the visual cues supplied by the TV picture.
Robotic telepathology for intraoperative remote diagnosis using a still-imaging-based system.
Demichelis, F; Barbareschi, M; Boi, S; Clemente, C; Dalla Palma, P; Eccher, C; Forti, S
2001-11-01
The aim of the present study was to assess whether a telemicroscopy system based on static imaging could provide a remote intraoperative frozen section service. Three pathologists evaluated 70 consecutive frozen section cases (for a total of 210 diagnoses) using a static telemicroscopy system (STeMiSy) and light microscopy (LM). STeMiSy uses a robotic microscope, enabling full remote control by consultant pathologists in a near real-time manner. Clinically important concordance between STeMiSy and LM was 98.6% (95.2% overall concordance), indicating very good agreement. The rates of deferred diagnoses given by STeMiSy and LM were comparable (11.0% and 9.5%, respectively). Compared with the consensus diagnosis, the diagnostic accuracy of STeMiSy and LM was 95.2% and 96.2%. The mean viewing time per slide was 3.6 minutes, and the overall time to make a diagnosis by STeMiSy was 6.2 minutes, conforming to intraoperative practice requirements. Our study demonstrates that a static imaging active telepathology system is comparable to dynamic telepathology systems and can provide a routine frozen section service.
Variable acuity remote viewing system flight demonstration
NASA Technical Reports Server (NTRS)
Fisher, R. W.
1983-01-01
The Variable Acuity Remote Viewing System (VARVS), originally developed under contract to the Navy (ONR) as a laboratory brassboard, was modified for flight demonstration. The VARVS system was originally conceived as a technique which could circumvent the acuity/field of view/bandwidth tradeoffs that exists in remote viewing to provide a nearly eye limited display in both field of view (160 deg) and resolution (2 min arc) while utilizing conventional TV sensing, transmission, and display equipment. The modifications for flight demonstration consisted of modifying the sensor so it could be installed and flow in a Piper PA20 aircraft, equipped for remote control and modifying the display equipment so it could be integrated with the NASA Research RPB (RPRV) remote control cockpit.
Advanced telepresence surgery system development.
Jensen, J F; Hill, J W
1996-01-01
SRI International is currently developing a prototype remote telepresence surgery system, for the Advanced Research Projects Agency (ARPA), that will bring life-saving surgical care to wounded soldiers in the zone of combat. Remote surgery also has potentially important applications in civilian medicine. In addition, telepresence will find wide medical use in local surgery, in endoscopic, laparoscopic, and microsurgery applications. Key elements of the telepresence technology now being developed for ARPA, including the telepresence surgeon's workstation (TSW) and associated servo control systems, will have direct application to these areas of minimally invasive surgery. The TSW technology will also find use in surgical training, where it will provide an immersive visual and haptic interface for interaction with computer-based anatomical models. In this paper, we discuss our ongoing development of the MEDFAST telesurgery system, focusing on the TSW man-machine interface and its associated servo control electronics.
Canadair CL-227 Remotely Piloted Vehicle
NASA Astrophysics Data System (ADS)
Clark, Andrew S.
1983-08-01
The Canadair CL-227 is a rotary winged Remotely Piloted Vehicle (RPV) intended initially as the air-vehicle for a medium range battlefield surveillance and target acquisition system. The concept on which this vehicle is based brings together in-house expertise as a designer and manufacturer of surveillance drones (AN-USD-50l -MIDGE-) with experience in rigid rotor technology from the CL-84 tilt wing VTOL program. The vehicle is essentially modular in design with a power module containing the engine, fuel and related systems, a rotor module containing the two counter-rotating rotors and control actuators, and a control module containing the autopilot, data link and sensor system. The vehicle is a true RPV (as opposed to a drone) as it is flown in real time by an operator on the ground and requires relatively little skill to pilot.
Fuzzy Logic Path Planning System for Collision Avoidance by an Autonomous Rover Vehicle
NASA Technical Reports Server (NTRS)
Murphy, Michael G.
1991-01-01
Systems already developed at JSC have shown the benefits of applying fuzzy logic control theory to space related operations. Four major issues are addressed that are associated with developing an autonomous collision avoidance subsystem within a path planning system designed for application in a remote, hostile environment that does not lend itself well to remote manipulation of the vehicle involved through Earth-based telecommunication. A good focus for this is unmanned exploration of the surface of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. The four major issues addressed are: (1) avoidance of a single fuzzy moving obstacle; (2) back off from a dead end in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system.
Intelligent viewing control for robotic and automation systems
NASA Astrophysics Data System (ADS)
Schenker, Paul S.; Peters, Stephen F.; Paljug, Eric D.; Kim, Won S.
1994-10-01
We present a new system for supervisory automated control of multiple remote cameras. Our primary purpose in developing this system has been to provide capability for knowledge- based, `hands-off' viewing during execution of teleoperation/telerobotic tasks. The reported technology has broader applicability to remote surveillance, telescience observation, automated manufacturing workcells, etc. We refer to this new capability as `Intelligent Viewing Control (IVC),' distinguishing it from a simple programmed camera motion control. In the IVC system, camera viewing assignment, sequencing, positioning, panning, and parameter adjustment (zoom, focus, aperture, etc.) are invoked and interactively executed by real-time by a knowledge-based controller, drawing on a priori known task models and constraints, including operator preferences. This multi-camera control is integrated with a real-time, high-fidelity 3D graphics simulation, which is correctly calibrated in perspective to the actual cameras and their platform kinematics (translation/pan-tilt). Such merged graphics- with-video design allows the system user to preview and modify the planned (`choreographed') viewing sequences. Further, during actual task execution, the system operator has available both the resulting optimized video sequence, as well as supplementary graphics views from arbitrary perspectives. IVC, including operator-interactive designation of robot task actions, is presented to the user as a well-integrated video-graphic single screen user interface allowing easy access to all relevant telerobot communication/command/control resources. We describe and show pictorial results of a preliminary IVC system implementation for telerobotic servicing of a satellite.
Remote balance weighs accurately amid high radiation
NASA Technical Reports Server (NTRS)
Eggenberger, D. N.; Shuck, A. B.
1969-01-01
Commercial beam-type balance, modified and outfitted with electronic controls and digital readout, can be remotely controlled for use in high radiation environments. This allows accurate weighing of breeder-reactor fuel pieces when they are radioactively hot.
Evaluation of high-voltage, high-power, solid-state remote power controllers for amps
NASA Technical Reports Server (NTRS)
Callis, Charles P.
1987-01-01
The Electrical Power Branch at Marshall Space Flight Center has a Power System Development Facility where various power circuit breadboards are tested and evaluated. This project relates to the evaluation of a particular remote power controller (RPC) energizing high power loads. The Facility equipment permits the thorough testing and evaluation of high-voltage, high-power solid-state remote power controllers. The purpose is to evaluate a Type E, 30 Ampere, 200 V dc remote power controller. Three phases of the RPC evaluation are presented. The RPC is evaluated within a low-voltage, low-power circuit to check its operational capability. The RPC is then evaluated while performing switch/circuit breaker functions within a 200 V dc, 30 Ampere power circuit. The final effort of the project relates to the recommended procedures for installing these RPC's into the existing Autonomously Managed Power System (AMPS) breadboard/test facility at MSFC.
Interconnecting network for switching data packets and method for switching data packets
Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian
2010-05-25
The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).
Protocol for multiple node network
NASA Technical Reports Server (NTRS)
Kirkham, Harold (Inventor)
1995-01-01
The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.
Protocol for multiple node network
NASA Technical Reports Server (NTRS)
Kirkham, Harold (Inventor)
1994-01-01
The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.
Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management
USDA-ARS?s Scientific Manuscript database
Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...
Remote observing with the Nickel Telescope at Lick Observatory
NASA Astrophysics Data System (ADS)
Grigsby, Bryant; Chloros, Konstantinos; Gates, John; Deich, William T. S.; Gates, Elinor; Kibrick, Robert
2008-07-01
We describe a project to enable remote observing on the Nickel 1-meter Telescope at Lick Observatory. The purpose was to increase the subscription rate and create more economical means for graduate- and undergraduate students to observe with this telescope. The Nickel Telescope resides in a 125 year old dome on Mount Hamilton. Remote observers may work from any of the University of California (UC) remote observing facilities that have been created to support remote work at both Keck Observatory and Lick Observatory. The project included hardware and software upgrades to enable computer control of all equipment that must be operated by the astronomer; a remote observing architecture that is closely modeled on UCO/Lick's work to implement remote observing between UC campuses and Keck Observatory; new policies to ensure safety of Observatory staff and equipment, while ensuring that the telescope subsystems would be suitably configured for remote use; and new software to enforce the safety-related policies. The results increased the subscription rate from a few nights per month to nearly full subscription, and has spurred the installation of remote observing sites at more UC campuses. Thanks to the increased automation and computer control, local observing has also benefitted and is more efficient. Remote observing is now being implemented for the Shane 3- meter telescope.
A car theft deterrent system research based on ARM9
NASA Astrophysics Data System (ADS)
Zhang, Kaisheng; Liu, Jinhao; Fan, Lijun
2009-07-01
The traditional automotive burglarproof systems commonly only rely on the simple remote control to security which measures are not perfect and functions are too single. With the development of society, people tend to concern on the fingerprint recognition technology, GSM /GPRS wireless transmission technology, the idea of ARM9-based design of automobile burglarproof system is dependent on both of them. The S3C2410 microprocessor embedded system is used in this system, which is illuminated the idea of the control system design through the hardware and software. The spot use indicates that the high control precision, steady performance and the humanistic rational design of automotive burglarproof system.
US Steel Gary Works land based pushing emissions control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randolph, R.A.; Price, C.A.
1983-01-01
To meet air quality standards at its Gary Works Coke Plant in Gary, Indiana, US Steel Corporation has installed pushing emission control systems for its five (77) oven, three meter coke batteries. The pushing emission control system consists of a hooded coke guide, single spot catch car, stationary emission capture ducts and remote gas cleaning baghouse with precoat capabilities. The system is providing effective emission control. In addition, there are corollary benefits. The operation of the single spot catch cars is easier and safer and coke moisture variables have been reduced.
A computer simulation experiment of supervisory control of remote manipulation. M.S. Thesis
NASA Technical Reports Server (NTRS)
Mccandlish, S. G.
1966-01-01
A computer simulation of a remote manipulation task and a rate-controlled manipulator is described. Some low-level automatic decision making ability which could be used at the operator's discretion to augment his direct continuous control was built into the manipulator. Experiments were made on the effect of transmission delay, dynamic lag, and intermittent vision on human manipulative ability. Delay does not make remote manipulation impossible. Intermittent visual feedback, and the absence of rate information in the display presented to the operator do not seem to impair the operator's performance. A small-capacity visual feedback channel may be sufficient for remote manipulation tasks, or one channel might be time-shared between several operators. In other experiments the operator called in sequence various on-site automatic control programs of the machine, and thereby acted as a supervisor. The supervisory mode of operation has some advantages when the task to be performed is difficult for a human controlling directly.
Reliability analysis of airship remote sensing system
NASA Astrophysics Data System (ADS)
Qin, Jun
1998-08-01
Airship Remote Sensing System (ARSS) for obtain the dynamic or real time images in the remote sensing of the catastrophe and the environment, is a mixed complex system. Its sensor platform is a remote control airship. The achievement of a remote sensing mission depends on a series of factors. For this reason, it is very important for us to analyze reliability of ARSS. In first place, the system model was simplified form multi-stage system to two-state system on the basis of the result of the failure mode and effect analysis and the failure tree failure mode effect and criticality analysis. The failure tree was created after analyzing all factors and their interrelations. This failure tree includes four branches, e.g. engine subsystem, remote control subsystem, airship construction subsystem, flying metrology and climate subsystem. By way of failure tree analysis and basic-events classing, the weak links were discovered. The result of test running shown no difference in comparison with theory analysis. In accordance with the above conclusions, a plan of the reliability growth and reliability maintenance were posed. System's reliability are raised from 89 percent to 92 percent with the reformation of the man-machine interactive interface, the augmentation of the secondary better-groupie and the secondary remote control equipment.
NASA Astrophysics Data System (ADS)
Zhu, X.
2016-12-01
Mangrove wetlands play an important role in global carbon cycle due to their strong carbon sequestration resulting from high plant carbon assimilation and low soil respiration. However, temporal variability of carbon sequestration in mangrove wetlands is less understood since carbon processes of mangrove wetlands are influenced by many complicated and concurrent environmental controls including tidal activities, site climate and soil conditions. Canopy light use efficiency (LUE), is the most important plant physiological parameter that can be used to describe the temporal dynamics of canopy photosynthesis, and therefore a better characterization of temporal variability of canopy LUE will improve our understanding in mangrove photosynthesis and carbon balance. One of our aims is to study the temporal variability of canopy LUE and its environmental controls in a subtropical mangrove wetland. Half-hourly canopy LUE is derived from eddy covariance (EC) carbon flux and photosynthesis active radiation observations, and half-hourly environmental controls we measure include temperature, humidity, precipitation, radiation, tidal height, salinity, etc. Another aim is to explore the links between canopy LUE and spectral indices derived from near-surface tower-based remote sensing (normalized difference vegetation index, enhanced vegetation index, photochemical reflectance index, solar-induced chlorophyll fluorescence, etc.), and then identify potential quantitative relationships for developing remote sensing-based estimation methods of canopy LUE. At present, some instruments in our in-situ observation system have not yet been installed (planned in next months) and therefore we don't have enough measurements to support our analysis. However, a preliminary analysis of our historical EC and climate observations in past several years indicates that canopy LUE shows strong temporal variability and is greatly affected by environmental factors such as tidal activity. Detailed and systematic analyses of temporal variability of canopy LUE and its environmental controls and potential remote sensing estimation methods will be conducted when our in-situ observation system is ready in near future.
Moss, William J; Hamapumbu, Harry; Kobayashi, Tamaki; Shields, Timothy; Kamanga, Aniset; Clennon, Julie; Mharakurwa, Sungano; Thuma, Philip E; Glass, Gregory
2011-06-10
The burden of malaria has decreased dramatically within the past several years in parts of sub-Saharan Africa. Further malaria control will require targeted control strategies based on evidence of risk. The objective of this study was to identify environmental risk factors for malaria transmission using remote sensing technologies to guide malaria control interventions in a region of declining burden of malaria. Satellite images were used to construct a sampling frame for the random selection of households enrolled in prospective longitudinal and cross-sectional surveys of malaria parasitaemia in Southern Province, Zambia. A digital elevation model (DEM) was derived from the Shuttle Radar Topography Mission version 3 DEM and used for landscape characterization, including landforms, elevation, aspect, slope, topographic wetness, topographic position index and hydrological models of stream networks. A total of 768 individuals from 128 randomly selected households were enrolled over 21 months, from the end of the rainy season in April 2007 through December 2008. Of the 768 individuals tested, 117 (15.2%) were positive by malaria rapid diagnostic test (RDT). Individuals residing within 3.75 km of a third order stream were at increased risk of malaria. Households at elevations above the baseline elevation for the region were at decreasing risk of having RDT-positive residents. Households where new infections occurred were overlaid on a risk map of RDT positive households and incident infections were more likely to be located in high-risk areas derived from prevalence data. Based on the spatial risk map, targeting households in the top 80th percentile of malaria risk would require malaria control interventions directed to only 24% of the households. Remote sensing technologies can be used to target malaria control interventions in a region of declining malaria transmission in southern Zambia, enabling a more efficient use of resources for malaria elimination.
Hendy, Jane; Chrysanthaki, Theopisti; Barlow, James; Knapp, Martin; Rogers, Anne; Sanders, Caroline; Bower, Peter; Bowen, Robert; Fitzpatrick, Ray; Bardsley, Martin; Newman, Stanton
2012-11-15
To investigate organisational factors influencing the implementation challenges of redesigning services for people with long term conditions in three locations in England, using remote care (telehealth and telecare). Case-studies of three sites forming the UK Department of Health's Whole Systems Demonstrator (WSD) Programme. Qualitative research techniques were used to obtain data from various sources, including semi-structured interviews, observation of meetings over the course programme and prior to its launch, and document review. Participants were managers and practitioners involved in the implementation of remote care services. The implementation of remote care was nested within a large pragmatic cluster randomised controlled trial (RCT), which formed a core element of the WSD programme. To produce robust benefits evidence, many aspect of the trial design could not be easily adapted to local circumstances. While remote care was successfully rolled-out, wider implementation lessons and levels of organisational learning across the sites were hindered by the requirements of the RCT. The implementation of a complex innovation such as remote care requires it to organically evolve, be responsive and adaptable to the local health and social care system, driven by support from front-line staff and management. This need for evolution was not always aligned with the imperative to gather robust benefits evidence. This tension needs to be resolved if government ambitions for the evidence-based scaling-up of remote care are to be realised.
Remote Energy Monitoring System via Cellular Network
NASA Astrophysics Data System (ADS)
Yunoki, Shoji; Tamaki, Satoshi; Takada, May; Iwaki, Takashi
Recently, improvement on power saving and cost efficiency by monitoring the operation status of various facilities over the network has gained attention. Wireless network, especially cellular network, has advantage in mobility, coverage, and scalability. On the other hand, it has disadvantage of low reliability, due to rapid changes in the available bandwidth. We propose a transmission control scheme based on data priority and instantaneous available bandwidth to realize a highly reliable remote monitoring system via cellular network. We have developed our proposed monitoring system and evaluated the effectiveness of our scheme, and proved it reduces the maximum transmission delay of sensor status to 1/10 compared to best effort transmission.
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.; Shafer, M. F.
1976-01-01
In response to the interest in airplane configuration characteristics at high angles of attack, an unpowered remotely piloted 3/8-scale F-15 airplane model was flight tested. The subsonic stability and control characteristics of this airplane model over an angle of attack range of -20 to 53 deg are documented. The remotely piloted technique for obtaining flight test data was found to provide adequate stability and control derivatives. The remotely piloted technique provided an opportunity to test the aircraft mathematical model in an angle of attack regime not previously examined in flight test. The variation of most of the derivative estimates with angle of attack was found to be consistent, particularly when the data were supplemented by uncertainty levels.
Detection Thresholds for Rotation and Translation Gains in 360° Video-Based Telepresence Systems.
Zhang, Jingxin; Langbehn, Eike; Krupke, Dennis; Katzakis, Nicholas; Steinicke, Frank
2018-04-01
Telepresence systems have the potential to overcome limits and distance constraints of the real-world by enabling people to remotely visit and interact with each other. However, current telepresence systems usually lack natural ways of supporting interaction and exploration of remote environments (REs). In particular, single webcams for capturing the RE provide only a limited illusion of spatial presence, and movement control of mobile platforms in today's telepresence systems are often restricted to simple interaction devices. One of the main challenges of telepresence systems is to allow users to explore a RE in an immersive, intuitive and natural way, e.g., by real walking in the user's local environment (LE), and thus controlling motions of the robot platform in the RE. However, the LE in which the user's motions are tracked usually provides a much smaller interaction space than the RE. In this context, redirected walking (RDW) is a very suitable approach to solve this problem. However, so far there is no previous work, which explored if and how RDW can be used in video-based 360° telepresence systems. In this article, we conducted two psychophysical experiments in which we have quantified how much humans can be unknowingly redirected on virtual paths in the RE, which are different from the physical paths that they actually walk in the LE. Experiment 1 introduces a discrimination task between local and remote translations, and in Experiment 2 we analyzed the discrimination between local and remote rotations. In Experiment 1 participants performed straightforward translations in the LE that were mapped to straightforward translations in the RE shown as 360° videos, which were manipulated by different gains. Then, participants had to estimate if the remotely perceived translation was faster or slower than the actual physically performed translation. Similarly, in Experiment 2 participants performed rotations in the LE that were mapped to the virtual rotations in a 360° video-based RE to which we applied different gains. Again, participants had to estimate whether the remotely perceived rotation was smaller or larger than the actual physically performed rotation. Our results show that participants are not able to reliably discriminate the difference between physical motion in the LE and the virtual motion from the 360° video RE when virtual translations are down-scaled by 5.8% and up-scaled by 9.7%, and virtual rotations are about 12.3% less or 9.2% more than the corresponding physical rotations in the LE.
NASA Astrophysics Data System (ADS)
Abdullah, U. N. N.; Handroos, H.
2017-09-01
Introduction: This paper presents the study of sense of control parameters to improve the lack of direct motion feeling through remote operated container crane station (ROCCS) joystick interface. The investigations of the parameters in this study are important to develop the engineering parameters related to the sense of control goal in the next design process. Methodology: Structured interviews and observations were conducted to obtain the user experience data from thirteen remote container crane operators from two international terminals. Then, interview analysis, task analysis, activity analysis and time line analysis were conducted to compare and contrast the results from interviews and observations. Results: Four experience parameters were identified to support the sense of control goal in the later design improvement of the ROCC joystick interface. The significance of difficulties to control, unsynchronized movements, facilitate in control and decision making in unexpected situation as parameters to the sense of control goal were validated by' feedbacks from operators as well as analysis. Contribution: This study provides feedback directly from end users towards developing a sustainable control interface for ROCCS in specific and remote operated off-road vehicles in general.
Phillips removes Failed RPCM (Remote Power Controller Module)
2005-09-20
ISS011-E-13361 (20 September 2005) --- Astronaut John L. Phillips, Expedition 11 NASA science officer and flight engineer, performs a Remote Power Control Module (RPCM) remove and replacement in the Unity node of the international space station.
ERIC Educational Resources Information Center
Hardway, Jack
This consortium-developed instructor's manual for small engine repair (with focus on outboard motors) consists of the following nine instructional units: electrical remote control assembly, mechanical remote control assembly, tilt assemblies, exhaust housing, propeller and trim tabs, cooling system, mechanical gearcase, electrical gearcase, and…
47 CFR 27.1210 - Remote control operation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Remote control operation. 27.1210 Section 27.1210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service § 27...
47 CFR 27.1210 - Remote control operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Remote control operation. 27.1210 Section 27.1210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service § 27...
47 CFR 27.1210 - Remote control operation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Remote control operation. 27.1210 Section 27.1210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service § 27...
47 CFR 27.1210 - Remote control operation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Remote control operation. 27.1210 Section 27.1210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service § 27...
47 CFR 27.1210 - Remote control operation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Remote control operation. 27.1210 Section 27.1210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service § 27...
NASA Astrophysics Data System (ADS)
Clapuyt, Francois; Vanacker, Veerle; Van Oost, Kristof
2016-05-01
Combination of UAV-based aerial pictures and Structure-from-Motion (SfM) algorithm provides an efficient, low-cost and rapid framework for remote sensing and monitoring of dynamic natural environments. This methodology is particularly suitable for repeated topographic surveys in remote or poorly accessible areas. However, temporal analysis of landform topography requires high accuracy of measurements and reproducibility of the methodology as differencing of digital surface models leads to error propagation. In order to assess the repeatability of the SfM technique, we surveyed a study area characterized by gentle topography with an UAV platform equipped with a standard reflex camera, and varied the focal length of the camera and location of georeferencing targets between flights. Comparison of different SfM-derived topography datasets shows that precision of measurements is in the order of centimetres for identical replications which highlights the excellent performance of the SfM workflow, all parameters being equal. The precision is one order of magnitude higher for 3D topographic reconstructions involving independent sets of ground control points, which results from the fact that the accuracy of the localisation of ground control points strongly propagates into final results.
Semiautonomous teleoperation system with vision guidance
NASA Astrophysics Data System (ADS)
Yu, Wai; Pretlove, John R. G.
1998-12-01
This paper describes the ongoing research work on developing a telerobotic system in Mechatronic Systems and Robotics Research group at the University of Surrey. As human operators' manual control of remote robots always suffer from reduced performance and difficulties in perceiving information from the remote site, a system with a certain level of intelligence and autonomy will help to solve some of these problems. Thus, this system has been developed for this purpose. It also serves as an experimental platform to test the idea of using the combination of human and computer intelligence in teleoperation and finding out the optimum balance between them. The system consists of a Polhemus- based input device, a computer vision sub-system and a graphical user interface which communicates the operator with the remote robot. The system description is given in this paper as well as the preliminary experimental results of the system evaluation.
The acquisition, storage, and dissemination of LANDSAT and other LACIE support data
NASA Technical Reports Server (NTRS)
Abbotts, L. F.; Nelson, R. M. (Principal Investigator)
1979-01-01
Activities performed at the LACIE physical data library are described. These include the researching, acquisition, indexing, maintenance, distribution, tracking, and control of LACIE operational data and documents. Much of the data available can be incorporated into an Earth resources data base. Elements of the data collection that can support future remote sensing programs include: (1) the LANDSAT full-frame image files; (2) the microfilm file of aerial and space photographic and multispectral maps and charts that encompasses a large portion of the Earth's surface; (3) the map/chart collection that includes various scale maps and charts for a good portion of the U.S. and the LACIE area in foreign countries; (4) computer-compatible tapes of good quality LANDSAT scenes; (5) basic remote sensing data, project data, reference material, and associated publications; (6) visual aids to support presentation on remote sensing projects; and (7) research acquisition and handling procedures for managing data.
NASA Technical Reports Server (NTRS)
Stoker, Carol
1994-01-01
This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary geologists participated in the mission simulation. The scientific goal of the science mission was to determine what could be learned about the geologic context of the site using the capabilities of imaging and mobility provided by the Marsokhod system in these two modes of operation. I will discuss the lessons learned from these experiments in terms of the strategy for performing Mars surface exploration using rovers. This research is supported by the Solar System Exploration Exobiology, Geology, and Advanced Technology programs.
NASA Astrophysics Data System (ADS)
Klawon, Kevin; Gold, Josh; Bachman, Kristen
2013-05-01
The DIA, in conjunction with the Army Research Lab (ARL), wants to create an Unmanned Ground Sensor (UGS) controller that is (a) interoperable across all controller platforms, (b) capable of easily adding new sensors, radios, and processes and (c) backward compatible with existing UGS systems. To achieve this, a Terra Harvest controller was created that used Java JRE 1.6 and an Open Services Gateway initiative (OSGi) platform, named Terra Harvest Open Software Environment (THOSE). OSGi is an extensible framework that provides a modularized environment for deploying functionality in "bundles". These bundles can publish, discover, and share services available from other external bundles or bundles provided by the controller core. With the addition of a web GUI used for interacting with THOSE, a natural step was then to create a common remote interface that allows 3rd party real-time interaction with the controller. This paper provides an overview of the THOSE system and its components as well as a description of the architectural structure of the remote interface, highlighting the interactions occurring between the controller and the remote interface and its role in providing a positive user experience for managing UGSS functions.