Sample records for remote launch operations

  1. View from northeast to southwest of remote launch operations building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from northeast to southwest of remote launch operations building, showing (left to right) diesel exhaust, diesel intake, and entrance tunnel - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND

  2. 1. View from southeast to northwest of remote launch operations ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View from southeast to northwest of remote launch operations buildings, showing diesel exhaust and intake shafts, with tunnel on the right - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND

  3. View (southwest to northeast) of remote launch operations building, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View (southwest to northeast) of remote launch operations building, showing diesel exhaust shaft on the left and intake shaft on the right. To the far right is the tunnel entrance - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Buildings, Near Service Road exit from patrol Road, Nekoma, Cavalier County, ND

  4. Overall view from south to north of remote sprint launch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view from south to north of remote sprint launch sprint launch site #3. Remote launch operations building on left, exclusion area sentry station at distant center, and limited area sentry station on right - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 3, North of State Route 5, approximately 10 miles Southwest of Walhalla, ND, Nekoma, Cavalier County, ND

  5. Overview (northeast to southwest) of remote sprint launch site #4. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview (northeast to southwest) of remote sprint launch site #4. In center is limited area sentry station, just behind it can be seen the exhaust and intake shafts for the remote launch operations building, and to the far right is the exclusion area sentry station - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 4, North of State Highway 17, approximately 9 miles Northwest of Adams, ND, Nekoma, Cavalier County, ND

  6. 3. Photographic copy of a photograph, dated June 1993 (original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photographic copy of a photograph, dated June 1993 (original print in the possession of CSSD-HO, Huntsville, AL). Gerald Greenwood, photographer. Interior of remote launch operations building, room unknown, demonstrating the result of salvaging operations. Note the ceiling tiles have been removed - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND

  7. Photographic copy of photograph, dated September 1973 (original in possession ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, dated September 1973 (original in possession of CSSD-HO, Huntsville, AL). Photographer unknown. Aerial view (northwest to southeast) of remote sprint launch site #4 during construction. In the background are the waste stabilization ponds. In the foreground, left to right, are the remote launch operations building, the exclusion area sentry stations, and the sprint launch cells - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 4, North of State Highway 17, approximately 9 miles Northwest of Adams, ND, Nekoma, Cavalier County, ND

  8. Photographic copy of photograph, dated September 1971, (original print in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, dated September 1971, (original print in possession of CSSD-HO, Huntsville, AL). Photographer unknown. Aerial view looking north of remote sprint launch site #2, during construction. In the foreground is the remote launch operations building (RLOB); sprint silos are being installed in the background - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 2, West of Mile Marker 220 on State Route 1, 6.0 miles North of Langdon, ND, Nekoma, Cavalier County, ND

  9. Display Developer for Firing Room Applications

    NASA Technical Reports Server (NTRS)

    Bowman, Elizabeth A.

    2013-01-01

    The firing room at Kennedy Space Center (KSC) is responsible for all NASA human spaceflight launch operations, therefore it is vital that all displays within the firing room be properly tested, up-to-date, and user-friendly during a launch. The Ground Main Propulsion System (GMPS) requires a number of remote displays for Vehicle Integration and Launch (VIL) Operations at KSC. My project is to develop remote displays for the GMPS using the Display Services and Framework (DSF) editor. These remote displays will be based on model images provided by GMPS through PowerPoint. Using the DSF editor, the PowerPoint images can be recreated with active buttons associated with the correct Compact Unique Identifiers (CUIs). These displays will be documented in the Software Requirements and Design Specifications (SRDS) at the 90% GMPS Design Review. In the future, these remote displays will be available for other developers to improve, edit, or add on to so that the display may be incorporated into the firing room to be used for launches.

  10. Photographic copy of photograph, dated September 1973 (original in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, dated September 1973 (original in the possession of CSSD-HO, Huntsville AL). Photographer unknown. Aerial photograph (west to 0 east) of remote sprint launch site #1. In background are waste stabilization pounds. On next row are the sprint cells. In foreground are the remote launch operations building on left and the limited area sentry station on right. The view illustrates the relatively flat topography of the SRMSC area Benjamin Halpern, 5-18 October 1992 - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 1, Just South of Ramsey-Cavalier County line & 3 miles West of Hampden, ND, Nekoma, Cavalier County, ND

  11. International collaboration: The cornerstone of satellite land remote sensing in the 21st century

    USGS Publications Warehouse

    Bailey, G. Bryan; Lauer, Donald T.; Carneggie, David M.

    2001-01-01

    Satellite land remotely sensed data are used by scientists and resource managers world-wide to study similar multidisciplinary earth science problems. Most of their information requirements can be met by a small number of satellite sensor types. Moderate-resolution resource satellites and low-resolution environmental satellites are the most prominent of these, and they are the focus of this paper. Building, launching, and operating satellite systems are very expensive endeavors. Consequently, nations should change the current pattern of independently launching and operating similar, largely redundant resource and environmental satellite systems in favor of true and full collaboration in developing, launching, operating, and sharing the data from such systems of the future. The past decade has seen encouraging signs of increasing international collaboration in earth remote sensing, but full collaboration has not yet been attempted. A general strategy to achieve such international collaboration is presented here, including discussion of potential obstacles, ideas for organizing and overseeing the long-term process toward collaboration, and short-term objectives whereby early successes critical to accomplishing long-term goals can be achieved.

  12. 14 CFR 460.3 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.3 Applicability. (a... have flight crew on board a vehicle or proposes to employ a remote operator of a vehicle with a human... vehicle or who employs a remote operator of a vehicle with a human on board. (3) A crew member...

  13. Noise and low-frequency sound levels due to aerial fireworks and prediction of the occupational exposure of pyrotechnicians to noise

    PubMed Central

    Tanaka, Tagayasu; Inaba, Ryoichi; Aoyama, Atsuhito

    2016-01-01

    Objectives: This study investigated the actual situation of noise and low-frequency sounds in firework events and their impact on pyrotechnicians. Methods: Data on firework noise and low-frequency sounds were obtained at a point located approximately 100 m away from the launch site of a firework display held in "A" City in 2013. We obtained the data by continuously measuring and analyzing the equivalent continuous sound level (Leq) and the one-third octave band of the noise and low-frequency sounds emanating from the major firework detonations, and predicted sound levels at the original launch site. Results: Sound levels of 100-115 dB and low-frequency sounds of 100-125 dB were observed at night. The maximum and mean Leq values were 97 and 95 dB, respectively. The launching noise level predicted from the sounds (85 dB) at the noise measurement point was 133 dB. Occupational exposure to noise for pyrotechnicians at the remote operation point (located 20-30 m away from the launch site) was estimated to be below 100 dB. Conclusions: Pyrotechnicians are exposed to very loud noise (>100 dB) at the launch point. We believe that it is necessary to implement measures such as fixing earplugs or earmuffs, posting a warning at the workplace, and executing a remote launching operation to prevent hearing loss caused by occupational exposure of pyrotechnicians to noise. It is predicted that both sound levels and low-frequency sounds would be reduced by approximately 35 dB at the remote operation site. PMID:27725489

  14. Noise and low-frequency sound levels due to aerial fireworks and prediction of the occupational exposure of pyrotechnicians to noise.

    PubMed

    Tanaka, Tagayasu; Inaba, Ryoichi; Aoyama, Atsuhito

    2016-11-29

    This study investigated the actual situation of noise and low-frequency sounds in firework events and their impact on pyrotechnicians. Data on firework noise and low-frequency sounds were obtained at a point located approximately 100 m away from the launch site of a firework display held in "A" City in 2013. We obtained the data by continuously measuring and analyzing the equivalent continuous sound level (Leq) and the one-third octave band of the noise and low-frequency sounds emanating from the major firework detonations, and predicted sound levels at the original launch site. Sound levels of 100-115 dB and low-frequency sounds of 100-125 dB were observed at night. The maximum and mean Leq values were 97 and 95 dB, respectively. The launching noise level predicted from the sounds (85 dB) at the noise measurement point was 133 dB. Occupational exposure to noise for pyrotechnicians at the remote operation point (located 20-30 m away from the launch site) was estimated to be below 100 dB. Pyrotechnicians are exposed to very loud noise (>100 dB) at the launch point. We believe that it is necessary to implement measures such as fixing earplugs or earmuffs, posting a warning at the workplace, and executing a remote launching operation to prevent hearing loss caused by occupational exposure of pyrotechnicians to noise. It is predicted that both sound levels and low-frequency sounds would be reduced by approximately 35 dB at the remote operation site.

  15. 6. Photographic copy of a photograph taken from pasteup negatives ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photographic copy of a photograph taken from paste-up negatives for U.S. Army Corps of Engineers document GF-500-MCP, entitled "Grand Forks Site RLS Army Operating Drawings, Master Composite Photographs for SAFEGUARD TSE Systems and Equipment," Page 9, dated 1 September 1974 (original document and negatives in possession of U.S. Army Corps of Engineers, Huntsville, AL). Photographer unknown. View of remote launch operations building, power generation room #124, showing no-break units NB-1002 (A) and NB-1001 (B). This equipment consisted of a 150 horsepower, d.c. operational motor which drove, on each end of the extended shaft, a 70 kw generator and a 30 kw generator unit. It was designed to provide continuous power service for launch equipment. In particular, the photo is an excellent representation of the shock isolation scheme, as evidenced by the supporting air springs and equipment platform - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND

  16. 50 CFR 217.75 - Requirements for monitoring and reporting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., during, and 2 hours after launch; (2) Ensure a remote camera system will be in place and operating in a..., whenever a new class of rocket is flown from the Kodiak Launch Complex, a real-time sound pressure and... camera system designed to detect pinniped responses to rocket launches for at least the first five...

  17. 50 CFR 217.75 - Requirements for monitoring and reporting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., during, and 2 hours after launch; (2) Ensure a remote camera system will be in place and operating in a..., whenever a new class of rocket is flown from the Kodiak Launch Complex, a real-time sound pressure and... camera system designed to detect pinniped responses to rocket launches for at least the first five...

  18. KSC-IMG_6548re

    NASA Image and Video Library

    2010-03-04

    Cape Canaveral AFS, Fla. - A United Launch Alliance Delta IV rocket sits poised on its launch pad with the NASA/NOAA Geostationary Operational Environmental Satellite P (GOES P) at Space Launch Complex-37. GOES P will provide NOAA and NASA scientists with data to support weather, solar and space operations, and will enable future science improvements in weather prediction and remote sensing. Additionally, GOES-P will provide data on global climate changes and capability for search and rescue. Photo credit: Carleton Bailie, The Boeing Company

  19. Merlin: an integrated path differential absorption (IPDA) lidar for global methane remote sensing

    NASA Astrophysics Data System (ADS)

    Bode, M.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.

    2017-11-01

    The Methane Remote Sensing LIDAR Mission (MERLIN) is a joint French-German cooperation on the development, launch and operation of a climate monitoring satellite, executed by the French Space Agency CNES and the German Space Administration DLR.

  20. Merlin: an integrated path differential absorption (IPDA) lidar for global methane remote sensing

    NASA Astrophysics Data System (ADS)

    Bode, M.; Wührer, C.; Alpers, M.; Millet, B.; Ehret, G.; Bousquet, P.

    2017-09-01

    The Methane Remote Sensing LIDAR Mission (MERLIN) is a joint French-German cooperation on the development, launch and operation of a climate monitoring satellite, executed by the French Space Agency CNES and the German Space Administration DLR.

  1. Programmable Low-Voltage Circuit Breaker and Tester

    NASA Technical Reports Server (NTRS)

    Greenfield, Terry

    2008-01-01

    An instrumentation system that would comprise a remotely controllable and programmable low-voltage circuit breaker plus several electric-circuit-testing subsystems has been conceived, originally for use aboard a spacecraft during all phases of operation from pre-launch testing through launch, ascent, orbit, descent, and landing. The system could also be adapted to similar use aboard aircraft. In comparison with remotely controllable circuit breakers heretofore commercially available, this system would be smaller, less massive, and capable of performing more functions, as needed for aerospace applications.

  2. 4. Photographic copy of a photograph taken from pasteup negatives ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photographic copy of a photograph taken from paste-up negatives for U.S. Army Corps of Engineers document GF-500-MCP, entitled "Grand Forks Site RLS Army Operating Drawings, Master Composite Photographs for SAFEGUARD TSE Systems and Equipment," Page 9, dated 1 September 1974 (original document and negatives in possession of U.S. Army Corps of Engineers, Huntsville, AL). Photographer unknown. View of remote launch operations building exterior (southwest corner), prior to earth mounding. A,B,C, and D are heat exchangers HX-1102B, HX-1102A, HX-1101B, and HX-1101 A, respectively. The heat exchangers transferred heat from the cooling water to the outside air during the normal operating mode. On the far right is the air exhaust shaft - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND

  3. Remote Software Application and Display Development

    NASA Technical Reports Server (NTRS)

    Sanders, Brandon T.

    2014-01-01

    The era of the shuttle program has come to an end, but only to give rise to newer and more exciting projects. Now is the time of the Orion spacecraft, a work of art designed to exceed all previous endeavors of man. NASA is exiting the time of exploration and is entering a new period, a period of pioneering. With this new mission, many of NASAs organizations must undergo a great deal of change and development to support the Orion missions. The Spaceport Command and Control System (SCCS) is the new system that will provide NASA the ability to launch rockets into orbit and thus control Orion and other spacecraft as the goal of populating Mars becomes ever increasingly tangible. Since the previous control system, Launch Processing System (LPS), was primarily designed to launch the shuttles, SCCS was needed as Kennedy Space Center (KSC) reorganized to a multiuser spaceport for commercial flights, providing a more versatile control over rockets. Within SCCS, is the Launch Control System (LCS), which is the remote software behind the command and monitoring of flight and ground system hardware. This internship at KSC has involved two main components in LCS, including Remote Software Application and Display development. The display environment provides a graphical user interface for an operator to view and see if any cautions are raised, while the remote applications are the backbone that communicate with hardware, and then relay the data back to the displays. These elements go hand in hand as they provide monitoring and control over hardware and software alike from the safety of the Launch Control Center. The remote software applications are written in Application Control Language (ACL), which must undergo unit testing to ensure data integrity. This paper describes both the implementation and writing of unit tests in ACL code for remote software applications, as well as the building of remote displays to be used in the Launch Control Center (LCC).

  4. The Indian Space Program

    NASA Technical Reports Server (NTRS)

    Talapatra, Dipak C.

    1993-01-01

    The Indian Space program aimed at providing operation space services in communications and remote sensing and using state-of-the-art space technologies is reviewed. Emphasis is placed on the development and operation of satellites and launch vehicles for providing these space services.

  5. Remote sensing and human health: new sensors and new opportunities.

    PubMed

    Beck, L R; Lobitz, B M; Wood, B L

    2000-01-01

    Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Système Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.

  6. Remote sensing and human health: new sensors and new opportunities

    NASA Technical Reports Server (NTRS)

    Beck, L. R.; Lobitz, B. M.; Wood, B. L.

    2000-01-01

    Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Systeme Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.

  7. Overview of international remote sensing through 2007

    NASA Astrophysics Data System (ADS)

    Glackin, David L.

    1997-12-01

    The field of Earth remote sensing is evolving from one that contains purely governmental and military standalone systems of high complexity and expense to one that includes an increasing number of commercial systems, focused missions using small satellites, and systems of lower complexity and cost. The evolution of the field from 1980 - 2007 is summarized in this paper, with emphasis on the rapid changes of international scope that are taking place in 1997 which will shape the future of the field. As of three years ago, seven counties had built and flown free-flying earth observation satellite systems. Projections are for the number of countries operating such systems to approximately double by three years from now. Rapid changes are taking place in terms of spatial resolution, spectral resolution, proliferation of small satellites, ocean color, commercialization and privatization. Several fully commercial high-resolution systems will be launched over the next three years. Partly commercial synthetic aperture radar (SAR) systems became a reality with the launch of Radarsat in 1995. Only a handful of small satellite remote sensing missions have been launched to date, while a large number will be launched over the next few years, including minisats from Australia, Brazil, Israel, Italy, South Korea, Taiwan, Thailand, and the USA, as well as microsats from many countries including Malaysia, Pakistan and South Africa. Systems with far greater spectral resolution will also become a reality as hyperspectral instruments are launched. In 1997, we truly stand on the cusp of tremendous change in the burgeoning field of Earth remote sensing.

  8. ERTS-B (Earth Resources Technology Satellite). [spacecraft design remote sensor description, and technology utilization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Mission plans and objectives of the ERTS 2 Satellite are presented. ERTS 2 follow-on investigations in various scientific disciplines including agriculture, meteorology, land-use, geology, water resources, oceanography, and environment are discussed. Spacecraft design and its sensors are described along with the Delta launch vehicle and launch operations. Applications identified from ERTS 1 investigations are summarized.

  9. Seasat. Volume 3: Ground systems

    NASA Technical Reports Server (NTRS)

    Pounder, E. (Editor)

    1980-01-01

    The Seasat Project was a feasibility demonstration of the use of orbital remote sensing for global ocean observation. The satellite was launched in June of 1978 and was operated successfully until October 1978. A massive electrical failure occurred in the power system, terminating the mission prematurely. The ground systems using during the mission life are discussed. Descriptions of the operating organization, the system elements, and the testing program are included. The various phases of the mission: launch and orbit insertion; cruise; and calibration are discussed. A special section is included on the orbit maneuver activites. Operations during the satellite failure are reviewed and summarized.

  10. Remote video assessment for missile launch facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, G.G.; Stewart, W.A.

    1995-07-01

    The widely dispersed, unmanned launch facilities (LFs) for land-based ICBMs (intercontinental ballistic missiles) currently do not have visual assessment capability for existing intrusion alarms. The security response force currently must assess each alarm on-site. Remote assessment will enhance manpower, safety, and security efforts. Sandia National Laboratories was tasked by the USAF Electronic Systems Center to research, recommend, and demonstrate a cost-effective remote video assessment capability at missile LFs. The project`s charter was to provide: system concepts; market survey analysis; technology search recommendations; and operational hardware demonstrations for remote video assessment from a missile LF to a remote security center viamore » a cost-effective transmission medium and without using visible, on-site lighting. The technical challenges of this project were to: analyze various video transmission media and emphasize using the existing missile system copper line which can be as long as 30 miles; accentuate and extremely low-cost system because of the many sites requiring system installation; integrate the video assessment system with the current LF alarm system; and provide video assessment at the remote sites with non-visible lighting.« less

  11. Computer-Based Instruction for TRIDENT FBM Training

    DTIC Science & Technology

    1976-06-01

    remote voice feedback to an operator. In this case it is possible to display text which represents the voice messages required during sequential ...provides two main services: (a) the preparation of missiles for sequential launching with self-guidance after launch, and (b) the coordination of...monitor- ing the status of the guidance system in each missile. FCS SWS coordina- tion consists of monitoring systems involved in sequential functions at

  12. Unit Testing and Remote Display Development

    NASA Technical Reports Server (NTRS)

    Costa, Nicholas

    2014-01-01

    The Kennedy Space Center is currently undergoing an extremely interesting transitional phase. The final Space Shuttle mission, STS-135, was completed in July of 2011. NASA is now approaching a new era of space exploration. The development of the Orion Multi- Purpose Crew Vehicle (MPCV) and the Space Launch System (SLS) launch vehicle that will launch the Orion are currently in progress. An important part of this transition involves replacing the Launch Processing System (LPS) which was previously used to process and launch Space Shuttles and their associated hardware. NASA is creating the Spaceport Command and Control System (SCCS) to replace the LPS. The SCCS will be much simpler to maintain and improve during the lifetime of the spaceflight program that it will support. The Launch Control System (LCS) is a portion of the SCCS that will be responsible for launching the rockets and spacecraft. The Integrated Launch Operations Applications (ILOA) group of SCCS is responsible for creating displays and scripts, both remote and local, that will be used to monitor and control hardware and systems needed to launch a spacecraft. It is crucial that the software contained within be thoroughly tested to ensure that it functions as intended. Unit tests must be written in Application Control Language (ACL), the scripting language used by LCS. These unit tests must ensure complete code coverage to safely guarantee there are no bugs or any kind of issue with the software.

  13. Landsat Data

    USGS Publications Warehouse

    ,

    1997-01-01

    In the mid-1960's, the National Aeronautics and Space Administration (NASA) embarked on an initiative to develop and launch the first Earth monitoring satellite to meet the needs of resource managers and earth scientists. The U.S. Geological Survey (USGS) entered into a partnership with NASA in the early 1970?s to assume responsibility for archiving data and distributing data products. On July 23, 1972, NASA launched the first in a series of satellites designed to provide repetitive global coverage of the Earth?s land masses. Designated initially as the "Earth Resources Technology Satellite-A" ("ERTS-A"), it used a Nimbus-type platform that was modified to carry sensor systems and data relay equipment. When operational orbit was achieved, it was designated "ERTS-1." The satellite continued to function beyond its designed life expectancy of 1 year and finally ceased to operate on January 6, 1978, more than 5 years after its launch date. The second in this series of Earth resources satellites (designated ?ERTS-B?) was launched January 22, 1975. It was renamed "Landsat 2" by NASA, which also renamed "ERTS-1" as "Landsat 1." Three additional Landsats were launched in 1978, 1982, and 1984 (Landsats 3, 4, and 5 ). (See table 1). NASA was responsible for operating the program through the early 1980?s. In January 1983, operation of the Landsat system was transferred to the National Oceanic and Atmospheric Administration (NOAA). In October 1985, the Landsat system was commercialized and the Earth Observation Satellite Company, now Space Imaging EOSAT, assumed responsibility for its operation under contract to NOAA. Throughout these changes, the USGS EROS Data Center (EDC) retained primary responsibility as the Government archive of Landsat data. The Land Remote Sensing Policy Act of 1992 (Public Law 102-5555) officially authorized the National Satellite Land Remote Sensing Data Archive and assigned responsibility to the Department of the Interior. In addition to its Landsat data management responsibility, the EDC investigates new methods of characterizing and studying changes on the land surface with Landsat data.

  14. LANDSAT D to test thematic mapper, inaugurate operational system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    NASA will launch the Landsat D spacecraft on July 9, 1982 aboard a new, up-rated Delta 3920 expendable launch vehicle. LANDSAT D will incorporate two highly sophisticated sensors; the flight proven multispectral scanner; and a new instrument expected to advance considerably the remote sensing capabilities of Earth resources satellites. The new sensor, the thematic mapper, provides data in seven spectral (light) bands with greatly improved spectral, spatial and radiometric resolution.

  15. Architectures Toward Reusable Science Data Systems

    NASA Technical Reports Server (NTRS)

    Moses, John Firor

    2014-01-01

    Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research and NOAA's Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today.

  16. RESOURCESAT-2: a mission for Earth resources management

    NASA Astrophysics Data System (ADS)

    Venkata Rao, M.; Gupta, J. P.; Rattan, Ram; Thyagarajan, K.

    2006-12-01

    The Indian Space Research Organisation (ISRO) has established an operational Remote sensing satellite system by launching its first satellite, IRS-1A in 1988, followed by a series of IRS spacecraft. The IRS-1C/1D satellites with their unique combination of Payloads have taken a lead position in the Global remote sensing scenario. Realising the growing User demands for the "Multi" level approach in terms of Spatial, Spectral, Temporal and Radiometric resolutions, ISRO identified the Resourcesat as a continuity as well as improved RS Satellite. The Resourcesat-1 (IRS-P6) was launched in October 2003 using PSLV launch vehicle and it is in operational service. Resourcesat-2 is its follow-on Mission scheduled for launch in 2008. Each Resourcesat satellite carries three Electro-optical cameras as its payload - LISS-3, LISS-4 and AWIFS. All the three are multi-spectral push-broom scanners with linear array CCDs as Detectors. LISS-3 and AWIFS operate in four identical spectral bands in the VIS-NIR-SWIR range while LISS-4 is a high resolution camera with three spectral bands in VIS-NIR range. In order to meet the stringent requirements of band-to-band registration and platform stability, several improvements have been incorporated in the mainframe Bus configuration like wide field Star trackers, precision Gyroscopes, on-board GPS receiver etc,. The Resourcesat data finds its application in several areas like agricultural crop discrimination and monitoring, crop acreage/yield estimation, precision farming, water resources, forest mapping, Rural infrastructure development, disaster management etc,. to name a few. A brief description of the Payload cameras, spacecraft bus elements and operational modes and few applications are presented.

  17. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  18. KSC-04pd1226

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Rick Wetherington checks out one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with an electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  19. KSC-04pd1220

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen works on the recently acquired Contraves-Goerz Kineto Tracking Mount (KTM). Trailer-mounted with a center console/seat and electric drive tracking mount, the KTM includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff. There are 10 KTMs certified for use on the Eastern Range.

  20. KSC-04pd1219

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen works on the recently acquired Contraves-Goerz Kineto Tracking Mount (KTM). Trailer-mounted with a center console/seat and electric drive tracking mount, the KTM includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff. There are 10 KTMs certified for use on the Eastern Range.

  1. KSC-04pd1227

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen checks out one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with an electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  2. Field Experiments using Telepresence and Virtual Reality to Control Remote Vehicles: Application to Mars Rover Missions

    NASA Technical Reports Server (NTRS)

    Stoker, Carol

    1994-01-01

    This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary geologists participated in the mission simulation. The scientific goal of the science mission was to determine what could be learned about the geologic context of the site using the capabilities of imaging and mobility provided by the Marsokhod system in these two modes of operation. I will discuss the lessons learned from these experiments in terms of the strategy for performing Mars surface exploration using rovers. This research is supported by the Solar System Exploration Exobiology, Geology, and Advanced Technology programs.

  3. Launch and on-orbit checkout of Aquarius/SAC-D Observatory: an international remote sensing satellite mission measuring sea surface salinity

    NASA Astrophysics Data System (ADS)

    Sen, Amit; Caruso, Daniel; Durham, David; Falcon, Carlos

    2011-11-01

    The Aquarius/SAC-D observatory was launch in June 2011 from Vandenberg Air Force Base (VAFB), in California, USA. This mission is the fourth joint earth-observation endeavor between NASA and CONAE. The primary objective of the Aquarius/SAC-D mission is to investigate the links between global water cycle, ocean circulation and climate by measuring Sea Surface Salinity (SSS). Over the last year, the observatory successfully completed system level environmental and functional testing at INPE, Brazil and was transported to VAFB for launch operations. This paper will present the challenges of this mission, the system, the preparation of the spacecraft, instruments, testing, launch, inorbit checkout and commissioning of this Observatory in space.

  4. Irrigated lands: Monitoring by remote sensing

    NASA Technical Reports Server (NTRS)

    Epiphanio, J. C. N.; Vitorelli, I.

    1983-01-01

    The use of remote sensing for irrigated areas, especially in the region of Guaira, Brazil (state of Sao Paulo), is examined. Major principles of utilizing LANDSAT data for the detection and mapping of irrigated lands are discussed. In addition, initial results obtained by computer processing of digital data, use of MSS (Multispectral Scanner System)/LANDSAT products, and the availability of new remote sensing products are highlighted. Future activities include the launching of the TM (Thematic Mapper)/LANDSAT 4 with 30 meters of resolution and SPOT (Systeme Probatorie d'Observation de la Terre) with 10 to 20 meters of resolution, to be operational in 1984 and 1986 respectively.

  5. KSC-04pd1223

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen makes adjustments on one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with a center console/seat and electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  6. KSC-04pd1221

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operators Rick Worthington (left) and Kenny Allen work on one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with a center console/seat and electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  7. KSC-04pd1225

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen stands in the center console area of one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with an electric-drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  8. KSC-04pd1224

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Rick Wetherington sits in the center console seat of one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with an electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  9. KSC-04pd1222

    NASA Image and Video Library

    2004-05-19

    KENNEDY SPACE CENTER, FLA. -- Johnson Controls operators Rick Wetherington (left) and Kenny Allen work on two of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with a center console/seat and electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.

  10. STS-2 second space shuttle mission: Shuttle to carry scientific payload on second flight

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The STS-2 flight seeks to (1) fly the vehicle with a heavier payload than the first flight; (2) test Columbia's ability to hold steady attitude for Earth-viewing payloads; (3) measure the range of payload environment during launch and entry; (4) further test the payload bay doors and space radiators; and (5) operate the Canadian-built remote manipulator arm. The seven experiments which comprise the OSTA-1 payload are described as well as experiments designed to assess shuttle orbiter performance during launch, boost, orbit, atmospheric entry and landing. The menu for the seven-day flight and crew biographies, are included with mission profiles and overviews of ground support operations.

  11. SPOT satellite family: Past, present, and future of the operations in the mission and control center

    NASA Technical Reports Server (NTRS)

    Philippe, Pacholczyk

    1993-01-01

    SPOT sun-synchronous remote sensing satellites are operated by CNES since February 1986. Today, the SPOT mission and control center (CCM) operates SPOT1, SPOT2, and is ready to operate SPOT3. During these seven years, the way to operate changed and the CCM, initially designed for the control of one satellite, has been modified and upgraded to support these new operating modes. All these events have shown the performances and the limits of the system. A new generation of satellite (SPOT4) will continue the remote sensing mission during the second half of the 90's. Its design takes into account the experience of the first generation and supports several improvements. A new generation of control center (CMP) has been developed and improves the efficiency, quality, and reliability of the operations. The CMP is designed for operating two satellites at the same time during launching, in-orbit testing, and operating phases. It supports several automatic procedures and improves data retrieval and reporting.

  12. STS-88 Mission Specialist Currie prepares to enter Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialist Nancy Jane Currie is assisted with her ascent and re-entry flight suit in the white room at Launch Pad 39A before entering Space Shuttle Endeavour for launch. During the nearly 12-day mission, the six-member crew will mate the first two elements of the International Space Station -- the already-orbiting Zarya control module with the Unity connecting module carried by Endeavour. She is making her third spaceflight as the crew's flight engineer and prime operator of the Remote Manipulator System, the robotic arm.

  13. Landsat eyes help guard the world's forests

    USGS Publications Warehouse

    Campbell, Jon

    2017-03-03

    SummaryThe Landsat program is a joint effort between the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), but the partner agencies have distinct roles. NASA develops remote-sensing instruments and spacecraft, launches satellites, and validates their performance in orbit. The USGS owns and operates Landsat satellites in space and manages their data transmissions, including ground reception, archiving, product generation, and public distribution. In 2008, with support from the U.S. Department of the Interior, the USGS made its Landsat data free to anyone in the world.The current satellites in the Landsat program, Landsat 7 (launched in 1999) and Landsat 8 (launched in 2013), provide complete coverage of the Earth every eight days. A Landsat 9 satellite is scheduled for launch in late 2020.

  14. A Future Vision for Remotely Piloted Aircraft: Leveraging Interoperability and Networked Operations

    DTIC Science & Technology

    2013-06-21

    over the next 25 years  Balances the effects envisioned in the USAF UAS Flight Plan with the reality of constrained resources and ambitious...theater-level unmanned systems must detect, avoid, or counter threats – operating from permissive to highly contested access in all weather...Rapid Reaction Group II/III SUAS Unit  Light Footprint, Low Cost ISR Option  Networked Autonomous C2 System  Air-Launched SUAS  Common

  15. Final environmental impact statement for the Galileo Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This Final Environmental Impact Statement (FEIS) addresses the proposed action of completing the preparation and operation of the Galileo spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle in October 1989, and the alternative of canceling further work on the mission. The only expected environmental effects of the proposed action are associated with normal launch vehicle operation, and are treated in published National Environmental Policy Act (NEPA) documents on the Shuttle (NASA 1978) and the Kennedy Space Center (NASA 1979), and in the KSC Environmental Resources Document (NASA 1986) and the Galileo Tier 1 EIS (NASA 1988a). The environmental impacts of a normal launch were deemed insufficient to preclude Shuttle operations. Environmental impacts may also result from launch or mission accidents that could release plutonium fuel used in the Galileo power system. Intensive analysis of the possible accidents associated with the proposed action reveal small health or environmental risks. There are no environmental impacts in the no-action alternative. The remote possibility of environmental impacts of the proposed action must be weighed against the large adverse fiscal and programmatic impacts inherent in the no-action alternative.

  16. Other remote sensing systems: Retrospect and outlook

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The history of remote sensing is reviewed and the scope and versatility of the several remote sensing systems already in orbit are discussed, especially those with sensors operating in other EM spectral modes. The multisensor approach is examined by interrelating LANDSAT observations with data from other satellite systems. The basic principles and practices underlying the use of thermal infrared and radar sensors are explored and the types of observations and interpretations emanating from the Nimbus, Heat Capacity Mapping Mission, and SEASAT programs are examined. Approved or proposed Earth resources oriented missions for the 1980's previewed include LANDSAT D, Stereosat, Gravsat, the French satellite SPOT-1, and multimission modular spacecraft launched from space shuttle. The pushbroom imager, the linear array pushbroom radiometer, the multispectral linear array, and the operational LANDSAT observing system, to be designed the LANDSAT-E series are also envisioned for this decade.

  17. Operating a wide-area remote observing system for the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory D.; Kibrick, Robert I.; Goodrich, Robert W.; Lyke, James E.

    2008-07-01

    For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 6 years, WMKO remote observing has expanded to allow teams at dedicated sites in California to observe either in collaboration with colleagues in Waimea or entirely from the U.S. mainland. Once an experimental effort, the Observatory's mainland observing capability is now fully operational, supported on all science instruments (except the interferometer) and regularly used by astronomers at eight mainland sites. Establishing a convenient and secure observing capability from those sites required careful planning to ensure that they are properly equipped and configured. It also entailed a significant investment in hardware and software, including both custom scripts to simplify launching the instrument interface at remote sites and automated routers employing ISDN backup lines to ensure continuation of observing during Internet outages. Observers often wait until shortly before their runs to request use of the mainland facilities. Scheduling these requests and ensuring proper system operation prior to observing requires close coordination between personnel at WMKO and the mainland sites. An established protocol for approving requests and carrying out pre-run checkout has proven useful in ensuring success. The Observatory anticipates enhancing and expanding its remote observing system. Future plans include deploying dedicated summit computers for running VNC server software, implementing a web-based tracking system for mainland-based observing requests, expanding the system to additional mainland sites, and converting to full-time VNC operation for all instruments.

  18. Design and Implementation study of Remote Home Rehabilitation Training Operating System based on Internet

    NASA Astrophysics Data System (ADS)

    Zhuo, Jin; Chung Gun, Jang

    2018-03-01

    The proportion of rehabilitation doctors and patients mismatch is very grim in the context of social aging. The Family Rehabilitation System captures the profound information of the trainer’s movements through the kinect bone tracing technique, allowing the doctor to remotely master the patient’s training progress. With the help of computers and the Internet, the patient can consult a physician, while the physician can remotely guide and launch the training “prescription” through the Internet according to the training effect. Patients can have rehabilitated training at home. The results of the test showed that the system has a positive effect on the rehabilitation of the patient.

  19. The Geoscience Laser Altimeter System (GLAS) Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, Robert S.; Yu, Anthony W.; Dallas, Joseph L.; Melak, Anthony; Lukemir, Alan; Ramos-Izqueirdo, L.; Mamakos, William

    2007-01-01

    The Geoscience Laser Altimeter System (GLAS), launched in January 2003, is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. GLAS accommodates three, sequentially operated, diode-pumped, solid-state, Nd:YAG laser transmitters. The laser transmitter requirements, design and qualification test results for this space-based remote sensing instrument is summarized and presented

  20. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    The overall remotely piloted drop model operation, descriptions, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods are discussed. Static and dynamic stability derivatives were obtained for an angle attack range from -20 deg to 53 deg. It is indicated that the variations of the estimates with angle of attack are consistent for most of the static derivatives, and the effects of configuration modifications to the model were apparent in the static derivative estimates.

  1. KSC-2009-1077

    NASA Image and Video Library

    2009-01-08

    CAPE CANAVERAL, Fla. -- A closeup of the replacement weather Doppler radar being installed in a remote field located west of NASA's Kennedy Space Center in Florida. The tower is 100 feet high; the radome is 22 feet in diameter, the antenna 14 feet in diameter. It rotates at 6 rpm. The structure can withstand 130 mph winds. It is undergoing initial testing and expected to become operational in the summer. The weather radar is essential in issuing lightning and other severe weather warnings and vital in evaluating lightning launch commit criteria for space shuttle and rocket launches. Photo credit: NASA/Troy Cryder

  2. KSC-2009-1079

    NASA Image and Video Library

    2009-01-08

    CAPE CANAVERAL, Fla. -- A closeup of the replacement weather Doppler radar being installed in a remote field located west of NASA's Kennedy Space Center in Florida. The tower is 100 feet high; the radome is 22 feet in diameter, the antenna 14 feet in diameter. It rotates at 6 rpm. The structure can withstand 130 mph winds. It is undergoing initial testing and expected to become operational in the summer. The weather radar is essential in issuing lightning and other severe weather warnings and vital in evaluating lightning launch commit criteria for space shuttle and rocket launches. Photo credit: NASA/Troy Cryder

  3. KSC-2009-1080

    NASA Image and Video Library

    2009-01-08

    CAPE CANAVERAL, Fla. -- A closeup of the replacement weather Doppler radar being installed in a remote field located west of NASA's Kennedy Space Center in Florida. The tower is 100 feet high; the radome is 22 feet in diameter, the antenna 14 feet in diameter. It rotates at 6 rpm. The structure can withstand 130 mph winds. It is undergoing initial testing and expected to become operational in the summer. The weather radar is essential in issuing lightning and other severe weather warnings and vital in evaluating lightning launch commit criteria for space shuttle and rocket launches. Photo credit: NASA/Troy Cryder

  4. KSC-2009-1078

    NASA Image and Video Library

    2009-01-08

    CAPE CANAVERAL, Fla. -- A closeup of the replacement weather Doppler radar being installed in a remote field located west of NASA's Kennedy Space Center in Florida. The tower is 100 feet high; the radome is 22 feet in diameter, the antenna 14 feet in diameter. It rotates at 6 rpm. The structure can withstand 130 mph winds. It is undergoing initial testing and expected to become operational in the summer. The weather radar is essential in issuing lightning and other severe weather warnings and vital in evaluating lightning launch commit criteria for space shuttle and rocket launches. Photo credit: NASA/Troy Cryder

  5. FOREWORD: Satellite Remote Sensing Beyond 2015

    NASA Technical Reports Server (NTRS)

    Tucker, Compton J.

    2017-01-01

    Satellite remote sensing has progressed tremendously since the first Landsat was launched on June 23, 1972. Since the 1970s, satellite remote sensing and associated airborne and in situ measurements have resulted in vital and indispensable observations for understanding our planet through time. These observations have also led to dramatic improvements in numerical simulation models of the coupled atmosphere-land-ocean systems at increasing accuracies and predictive capability. The same observations document the Earth's climate and are driving the consensus that Homo sapiens is changing our climate through greenhouse gas emissions. These accomplishments are the combined work of many scientists from many countries and a dedicated cadre of engineers who build the instruments and satellites that collect Earth observation data from satellites, all working toward the goal of improving our understanding of the Earth. This edition of the Remote Sensing Handbook (Vol. I, II, and III) is a compendium of information for many research areas of our Planet that have contributed to our substantial progress since the 1970s. Remote sensing community is now using multiple sources of satellite and in situ data to advance our studies, what ever they might be. In the following paragraphs, I will illustrate how valuable and pivotal role satellite remote sensing has played in climate system study over last five decades, The Chapters in the Remote Sensing Handbook (Vol. I, II, and III) provides many other specific studies on land, water, and other applications using EO data of last five decades, The Landsat system of Earth-observing satellites has led the way in pioneering sustained observations of our planet. From 1972 to the present, at least one and sometimes two Landsat satellites have been in operation. Starting with the launch of the first NOAA-NASA Polar Orbiting Environmental Satellites NOAA-6 in 1978, improved imaging of land, clouds, and oceans and atmospheric soundings of temperature were accomplished. The NOAA system of polar-orbiting meteorological satellites has continued uninterrupted since that time, providing vital observations for numerical weather prediction. These same satellites are also responsible for the remarkable records of sea surface temperature and land vegetation index from the Advanced Very High Resolution Radiometers (AVHRR) that now span more than 33 years, although no one anticipated these valuable climate records from this instrument before the launch of NOAA-7 in 1981. The success of data from the AVHRR led to the design of the MODIS instruments on NASA's Earth Observing System of satellite platforms that improved substantially upon the AVHRR. The first of the EOS platforms, Terra, was launched in 2000 and the second of these platforms, Aqua, was launched in 2002.

  6. Study of safety implications for shuttle launched spacecraft using fluorinated oxidizers. Volume 1: Complete text

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The safety implications of space shuttle launched spacecraft using liquid flourine as the oxidizer for spacecraft propulsion were investigated. Feasibility of safe operation was investigated and the equipment and procedures necessary to maximize the chance of success determined. Hazards to the shuttle were found to be similar in kind if not degree to those encountered in use of nitrogen tetroxide (also toxic oxidizer). It was concluded that residual risks from spacecraft using fluorine and nitrogen tetroxide during ground and flight handling may be reduced by isolation of the oxidizer to only its tank. Operation of planetary spacecraft propulsion in the vicinity of the shuttle in earth orbit is not required. The primary hazard to personnel was identified as propellant loading operations, which should be accomplished in an area reasonably remote from personnel and facilities concentrations. Clearing the pad during spacecraft mating with the shuttle orbiter is recommended.

  7. RocketCam systems for providing situational awareness on rockets, spacecraft, and other remote platforms

    NASA Astrophysics Data System (ADS)

    Ridenoure, Rex

    2004-09-01

    Space-borne imaging systems derived from commercial technology have been successfully employed on launch vehicles for several years. Since 1997, over sixty such imagers - all in the product family called RocketCamTM - have operated successfully on 29 launches involving most U.S. launch systems. During this time, these inexpensive systems have demonstrated their utility in engineering analysis of liftoff and ascent events, booster performance, separation events and payload separation operations, and have also been employed to support and document related ground-based engineering tests. Such views from various vantage points provide not only visualization of key events but stunning and extremely positive public relations video content. Near-term applications include capturing key events on Earth-orbiting spacecraft and related proximity operations. This paper examines the history to date of RocketCams on expendable and manned launch vehicles, assesses their current utility on rockets, spacecraft and other aerospace vehicles (e.g., UAVs), and provides guidance for their use in selected defense and security applications. Broad use of RocketCams on defense and security projects will provide critical engineering data for developmental efforts, a large database of in-situ measurements onboard and around aerospace vehicles and platforms, compelling public relations content, and new diagnostic information for systems designers and failure-review panels alike.

  8. The Technologies and Principles Needed for the Powering of Remote Nodes in an Interoperability Network

    DTIC Science & Technology

    2009-03-01

    utilizing a radioisotope, polonium - 210 , the advent of a practical use TEG launched the development and array of applications for such devices. Rapidly...47 1. Seebeck Effect ...............................47 2. Principles of Operation ......................48...UltraCell XX25 Fuel Cell (From UltraCell Corporation)....................................59 Figure 13. Effect of CO on PEMFC (From Baschuk and Li 2001

  9. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    NASA Astrophysics Data System (ADS)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  10. University of Virginia suborbital infrared sensing experiment

    NASA Astrophysics Data System (ADS)

    Holland, Stephen; Nunnally, Clayton; Armstrong, Sarah; Laufer, Gabriel

    2002-03-01

    An Orion sounding rocket launched from Wallops Flight Facility carried a University of Virginia payload to an altitude of 47 km and returned infrared measurements of the Earth's upper atmosphere and video images of the ocean. The payload launch was the result of a three-year undergraduate design project by a multi-disciplinary student group from the University of Virginia and James Madison University. As part of a new multi-year design course, undergraduate students designed, built, tested, and participated in the launch of a suborbital platform from which atmospheric remote sensors and other scientific experiments could operate. The first launch included a simplified atmospheric measurement system intended to demonstrate full system operation and remote sensing capabilities during suborbital flight. A thermoelectrically cooled HgCdTe infrared detector, with peak sensitivity at 10 micrometers , measured upwelling radiation and a small camera and VCR system, aligned with the infrared sensor, provided a ground reference. Additionally, a simple orientation sensor, consisting of three photodiodes, equipped with red, green, and blue light with dichroic filters, was tested. Temperature measurements of the upper atmosphere were successfully obtained during the flight. Video images were successfully recorded on-board the payload and proved a valuable tool in the data analysis process. The photodiode system, intended as a replacement for the camera and VCR system, functioned well, despite low signal amplification. This fully integrated and flight tested payload will serve as a platform for future atmospheric sensing experiments. It is currently being modified for a second suborbital flight that will incorporate a gas filter correlation radiometry (GFCR) instrument to measure the distribution of stratospheric methane and imaging capabilities to record the chlorophyll distribution in the Metompkin Bay as an indicator of pollution runoff.

  11. Project Centaur. [for earth dayside magnetic cleft investigation

    NASA Technical Reports Server (NTRS)

    Brence, W. A.; Hardin, J. W.; Crook, E. D.; Roberts, H.

    1982-01-01

    The National Aeronautics and Space Administration (NASA) and the Canada Centre for Space Science, National Research Council of Canada (NRCC), conducted a cooperative sounding rocket campaign in the Canadian Arctic during November/December 1981. The objective of the campaign was to investigate the earth's dayside magnetic cleft region. The project was named CENTAUR for Cleft Energetics Transport and Ultraviolet Radiation. Remote launch support facilities were established at Cape Parry, NWT, Canada (70 deg 10 min N latitude, 124 deg 40 min W longitude). The cleft region is accessible from this location when launched poleward during reasonably quiet magnetic activity. Five large sounding rockets were launched (3 NASA, 2 NRCC). About 30 scientific experiments were launched, and an extensive array of ground based experiments was established at Cape Parry and at Sachs Harbour, Banks Island, 130 miles poleward. This paper discusses the unique organization, planning, facilities, instrumentation, and operation required to support the campaign, and looks briefly at the results.

  12. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa; Honda, Yoshiaki

    2017-09-01

    Five programs, i.e. ASTER, GOSAT, GCOM-W1, GPM and ALOS-2 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012 with slow rotation speed. It finally stopped on December 2015. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Superconducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. GPM (Global Precipitation Mission) core satellite was launched on Feb. 2014. GPM is a joint project with NASA and carries two instruments. JAXA has developed DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2 and carries L-band SAR. It was launched on May 2014. JAXA is planning to launch follow on of optical sensors. It is now called Advanced Optical Satellite and the planned launch date is fiscal 2019. Other future satellites are GCOM-C1 (ADEOS-2 follow on), GOSAT-2 and EarthCare. GCOM-C1 will be launched on 2017 and GOSAT-2 will be launched on fiscal 2018. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). EarthCare will be launched on 2019.

  13. Environmental Control Subsystem Development

    NASA Technical Reports Server (NTRS)

    Laidlaw, Jacob; Zelik, Jonathan

    2017-01-01

    Kennedy Space Center's Launch Pad 39B, part of Launch Complex 39, is currently undergoing construction to prepare it for NASA's Space Launch System missions. The Environmental Control Subsystem, which provides the vehicle with an air or nitrogen gas environment, required development of its local and remote display screens. The remote displays, developed by NASA contractors and previous interns, were developed without complete functionality; the remote displays were revised, adding functionality to over 90 displays. For the local displays, multiple test procedures were developed to assess the functionality of the screens, as well as verify requirements. One local display screen was also developed.

  14. Preparing for Operational Use of High Priority Products from the Joint Polar Satellite System (JPSS) in Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.

    2017-12-01

    This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical weather prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time Global Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National Weather Service (NWS) Global Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National Weather Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact weather forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the experience with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4 missions ensuring benefits and enhancements during the system's design life.

  15. From Antarctica to space: Use of telepresence and virtual reality in control of remote vehicles

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Hine, Butler P., III; Sims, Michael; Rasmussen, Daryl; Hontalas, Phil; Fong, Terrence W.; Steele, Jay; Barch, Don; Andersen, Dale; Miles, Eric

    1994-01-01

    In the Fall of 1993, NASA Ames deployed a modified Phantom S2 Remotely-Operated underwater Vehicle (ROV) into an ice-covered sea environment near McMurdo Science Station, Antarctica. This deployment was part of the antarctic Space Analog Program, a joint program between NASA and the National Science Foundation to demonstrate technologies relevant for space exploration in realistic field setting in the Antarctic. The goal of the mission was to operationally test the use of telepresence and virtual reality technology in the operator interface to a remote vehicle, while performing a benthic ecology study. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research Center. Local control of the vehicle was accomplished using the standard Phantom control box containing joysticks and switches, with the operator viewing stereo video camera images on a stereo display monitor. Remote control of the vehicle over the satellite link was accomplished using the Virtual Environment Vehicle Interface (VEVI) control software developed at NASA Ames. The remote operator interface included either a stereo display monitor similar to that used locally or a stereo head-mounted head-tracked display. The compressed video signal from the vehicle was transmitted to NASA Ames over a 768 Kbps satellite channel. Another channel was used to provide a bi-directional Internet link to the vehicle control computer through which the command and telemetry signals traveled, along with a bi-directional telephone service. In addition to the live stereo video from the satellite link, the operator could view a computer-generated graphic representation of the underwater terrain, modeled from the vehicle's sensors. The virtual environment contained an animate graphic model of the vehicle which reflected the state of the actual vehicle, along with ancillary information such as the vehicle track, science markers, and locations of video snapshots. The actual vehicle was driven either from within the virtual environment or through a telepresence interface. All vehicle functions could be controlled remotely over the satellite link.

  16. SHADOZ (Southern Hemisphere ADditional OZonesondes): An Ozonesonde Network and Resource for Remote Sensing Research and Education

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.

    2000-01-01

    Balloon-borne ozone instrumentation (ozonesondes), launched at fixed sites, is used to study local patterns in stratospheric and tropospheric ozone and to provide validation for satellite ozone products and model calculations of ozone. A paucity of coordinated ozonesonde data in the southern hemisphere tropics is being remedied in a 3-year project of coordinated ozonesondes launches at 10 sites. The data are available to the scientific community at the SHADOZ website at NASA/Goddard. Stations and their operational characteristics, with examples of ozone observations, are given. One expectation of SHADOZ is that wide dissemination of data and interaction with users and field projects will leverage local funding to maintain infrastructure and operations. SHADOZ data are well-suited for educational projects in which students learn about regional ozone patterns.

  17. Software Development for Remote Control and Firing Room Displays

    NASA Technical Reports Server (NTRS)

    Zambrano Pena, Jessica

    2014-01-01

    The Launch Control System (LCS) developed at NASA's Kennedy Space Center (KSC) will be used to launch future spacecraft. Two of the many components of this system are the Application Control Language (ACL) and remote displays. ACL is a high level domain specific language that is used to write remote control applications for LCS. Remote displays are graphical user interfaces (GUIs) developed to display vehicle and Ground Support Equipment (GSE) data, they also provide the ability to send commands to control GSE and the vehicle. The remote displays and the control applications have many facets and this internship experience dealt with several of them.

  18. A three-finger multisensory hand for dexterous space robotic tasks

    NASA Technical Reports Server (NTRS)

    Murase, Yuichi; Komada, Satoru; Uchiyama, Takashi; Machida, Kazuo; Akita, Kenzo

    1994-01-01

    The National Space Development Agency of Japan will launch ETS-7 in 1997, as a test bed for next generation space technology of RV&D and space robot. MITI has been developing a three-finger multisensory hand for complex space robotic tasks. The hand can be operated under remote control or autonomously. This paper describes the design and development of the hand and the performance of a breadboard model.

  19. Landsat: A Global Land-Observing Program

    USGS Publications Warehouse

    ,

    2003-01-01

    Landsat represents the world's longest continuously acquired collection of space-based land remote sensing data. The Landsat Project is a joint initiative of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) designed to gather Earth resource data from space. NASA developed and launched the spacecrafts, while the USGS handles the operations, maintenance, and management of all ground data reception, processing, archiving, product generation, and distribution.

  20. Firing Room Remote Application Software Development

    NASA Technical Reports Server (NTRS)

    Liu, Kan

    2014-01-01

    The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories subsystem. In addition, a Conversion Fusion project was created to show specific approved checkout and launch engineering data for public-friendly display purposes.

  1. Firing Room Remote Application Software Development

    NASA Technical Reports Server (NTRS)

    Liu, Kan

    2015-01-01

    The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories (LACC) subsystem. In addition, a software test verification procedure document was created to verify and checkout LACC software for Launch Equipment Test Facility (LETF) testing.

  2. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near-daily coverage of the Earth's surface, MODIS provides comprehensive measurements that enable scientists and policy makers to better understand and effectively manage the natural resources on both regional and global scales. Terra, the first large multisensor EOS satellite, is operated in a 10:30 am (local equatorial crossing time, descending southwards) polar orbit. Aqua, the second multisensor EOS satellite is operated in a 1:30 pm (local equatorial crossing time, ascending northwards) polar orbit. With complementing morning and afternoon observations, the Terra and Aqua MODIS, together with other sensors housed on both satellites, have greatly improved our understanding of the dynamics of the global environmental system.

  3. a Kml-Based Approach for Distributed Collaborative Interpretation of Remote Sensing Images in the Geo-Browser

    NASA Astrophysics Data System (ADS)

    Huang, L.; Zhu, X.; Guo, W.; Xiang, L.; Chen, X.; Mei, Y.

    2012-07-01

    Existing implementations of collaborative image interpretation have many limitations for very large satellite imageries, such as inefficient browsing, slow transmission, etc. This article presents a KML-based approach to support distributed, real-time, synchronous collaborative interpretation for remote sensing images in the geo-browser. As an OGC standard, KML (Keyhole Markup Language) has the advantage of organizing various types of geospatial data (including image, annotation, geometry, etc.) in the geo-browser. Existing KML elements can be used to describe simple interpretation results indicated by vector symbols. To enlarge its application, this article expands KML elements to describe some complex image processing operations, including band combination, grey transformation, geometric correction, etc. Improved KML is employed to describe and share interpretation operations and results among interpreters. Further, this article develops some collaboration related services that are collaboration launch service, perceiving service and communication service. The launch service creates a collaborative interpretation task and provides a unified interface for all participants. The perceiving service supports interpreters to share collaboration awareness. Communication service provides interpreters with written words communication. Finally, the GeoGlobe geo-browser (an extensible and flexible geospatial platform developed in LIESMARS) is selected to perform experiments of collaborative image interpretation. The geo-browser, which manage and visualize massive geospatial information, can provide distributed users with quick browsing and transmission. Meanwhile in the geo-browser, GIS data (for example DEM, DTM, thematic map and etc.) can be integrated to assist in improving accuracy of interpretation. Results show that the proposed method is available to support distributed collaborative interpretation of remote sensing image

  4. Value of Spaceborne Remotely Sensed Data Products in the Context of the Launch Phase of an On-Site Inspection

    NASA Astrophysics Data System (ADS)

    Labak, P.; Rowlands, A.; Malich, G.; Charlton, A.; Schultz-Fellenz, E. S.; Craven, J.

    2016-12-01

    The availability of data and the ability to effectively interpret those data in the context of an alleged Treaty violation are critical to operations during the launch phase of an inspection. The launch phase encompasses the time when the initial inspection plan is being developed and finalised; this document will set the scene for the inspection and will propose mission activities for the critical first three days of an inspection. While authenticated data products from the CTBT International Data Centre form the basis of the initial inspection plan, other data types, provided as national technical means, can also be used to inform the development of the initial inspection plan. In this context, remotely sensed data and derived products acquired from sensors on satellites feature prominently. Given the environmental setting, optical and/or radar sensors have the potential to provide valuable information to guide mission activities. Such data could provide more than mere backdrops to mapping products. While recognising time constraints and the difficulties associated with integrating data from disparate optical and radar sensors, this abstract uses case studies to illustrate the types of derived data products from sapecborne sensors that have the potential to inform inspectors during the preparation of the initial inspection plan.

  5. KSC-2009-1084

    NASA Image and Video Library

    2009-01-08

    CAPE CANAVERAL, Fla. -- A replacement weather Doppler radar has been installed on top of this tower in a remote field located west of NASA's Kennedy Space Center in Florida. The radome houses the rotating antenna and pedestal and protects them from the elements. The tower is 100 feet high; the radome is 22 feet in diameter, the antenna 14 feet in diameter. It rotates at 6 rpm. The structure can withstand 130 mph winds. It is undergoing initial testing and expected to become operational in the summer. The weather radar is essential in issuing lightning and other severe weather warnings and vital in evaluating lightning launch commit criteria for space shuttle and rocket launches. Photo credit: NASA/Troy Cryder

  6. KSC-2009-1082

    NASA Image and Video Library

    2009-01-08

    CAPE CANAVERAL, Fla. -- A replacement weather Doppler radar has been installed on top of this tower in a remote field located west of NASA's Kennedy Space Center in Florida. The radome houses the rotating antenna and pedestal and protects them from the elements. The tower is 100 feet high; the radome is 22 feet in diameter, the antenna 14 feet in diameter. It rotates at 6 rpm. The structure can withstand 130 mph winds. It is undergoing initial testing and expected to become operational in the summer. The weather radar is essential in issuing lightning and other severe weather warnings and vital in evaluating lightning launch commit criteria for space shuttle and rocket launches. Photo credit: NASA/Troy Cryder

  7. KSC-2009-1081

    NASA Image and Video Library

    2009-01-08

    CAPE CANAVERAL, Fla. -- A replacement weather Doppler radar has been installed in the radome on top of this tower in a remote field located west of NASA's Kennedy Space Center in Florida. The dome houses the rotating antenna and pedestal and protects them from the elements. The tower is 100 feet high; the radome is 22 feet in diameter, the antenna 14 feet in diameter. It rotates at 6 rpm. The structure can withstand 130 mph winds. It is undergoing initial testing and expected to become operational in the summer. The weather radar is essential in issuing lightning and other severe weather warnings and vital in evaluating lightning launch commit criteria for space shuttle and rocket launches. Photo credit: NASA/Troy Cryder

  8. KSC-2009-1083

    NASA Image and Video Library

    2009-01-08

    CAPE CANAVERAL, Fla. -- A replacement weather Doppler radar has been installed on top of this tower in a remote field located west of NASA's Kennedy Space Center in Florida. The radome houses the rotating antenna and pedestal and protects them from the elements. The tower is 100 feet high; the radome is 22 feet in diameter, the antenna 14 feet in diameter. It rotates at 6 rpm. The structure can withstand 130 mph winds. It is undergoing initial testing and expected to become operational in the summer. The weather radar is essential in issuing lightning and other severe weather warnings and vital in evaluating lightning launch commit criteria for space shuttle and rocket launches. Photo credit: NASA/Troy Cryder

  9. Utilization of Internet Protocol-Based Voice Systems in Remote Payload Operations

    NASA Technical Reports Server (NTRS)

    Chamberlain, jim; Bradford, Bob; Best, Susan; Nichols, Kelvin

    2002-01-01

    Due to limited crew availability to support science and the large number of experiments to be operated simultaneously, telescience is key to a successful International Space Station (ISS) science program. Crew, operations personnel at NASA centers, and researchers at universities and companies around the world must work closely together to per orm scientific experiments on-board ISS. The deployment of reliable high-speed Internet Protocol (IP)-based networks promises to greatly enhance telescience capabilities. These networks are now being used to cost-effectively extend the reach of remote mission support systems. They reduce the need for dedicated leased lines and travel while improving distributed workgroup collaboration capabilities. NASA has initiated use of Voice over Internet Protocol (VoIP) to supplement the existing mission voice communications system used by researchers at their remote sites. The Internet Voice Distribution System (IVoDS) connects remote researchers to mission support "loopsll or conferences via NASA networks and Internet 2. Researchers use NODS software on personal computers to talk with operations personnel at NASA centers. IVoDS also has the ;capability, if authorized, to allow researchers to communicate with the ISS crew during experiment operations. NODS was developed by Marshall Space Flight Center with contractors & Technology, First Virtual Communications, Lockheed-Martin, and VoIP Group. NODS is currently undergoing field-testing with full deployment for up to 50 simultaneous users expected in 2002. Research is being performed in parallel with IVoDS deployment for a next-generation system to qualitatively enhance communications among ISS operations personnel. In addition to the current voice capability, video and data/application-sharing capabilities are being investigated. IVoDS technology is also being considered for mission support systems for programs such as Space Launch Initiative and Homeland Defense.

  10. Application of the Hardman methodology to the Army Remotely Piloted Vehicle (RPV)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The application of the HARDMAN Methodology to the Remotely Piloted Vehicle (RPV) is described. The methodology was used to analyze the manpower, personnel, and training (MPT) requirements of the proposed RPV system design for a number of operating scenarios. The RPV system is defined as consisting of the equipment, personnel, and operational procedures needed to perform five basic artillery missions: reconnaissance, target acquisition, artillery adjustment, target designation and damage assessment. The RPV design evaluated includes an air vehicle (AV), a modular integrated communications and navigation system (MICNS), a ground control station (GCS), a launch subsystem (LS), a recovery subsystem (RS), and a number of ground support requirements. The HARDMAN Methodology is an integrated set of data base management techniques and analytic tools, designed to provide timely and fully documented assessments of the human resource requirements associated with an emerging system's design.

  11. Plans for the extreme ultraviolet explorer data base

    NASA Technical Reports Server (NTRS)

    Marshall, Herman L.; Dobson, Carl A.; Malina, Roger F.; Bowyer, Stuart

    1988-01-01

    The paper presents an approach for storage and fast access to data that will be obtained by the Extreme Ultraviolet Explorer (EUVE), a satellite payload scheduled for launch in 1991. The EUVE telescopes will be operated remotely from the EUVE Science Operation Center (SOC) located at the University of California, Berkeley. The EUVE science payload consists of three scanning telescope carrying out an all-sky survey in the 80-800 A spectral region and a Deep Survey/Spectrometer telescope performing a deep survey in the 80-250 A spectral region. Guest Observers will remotely access the EUVE spectrometer database at the SOC. The EUVE database will consist of about 2 X 10 to the 10th bytes of information in a very compact form, very similar to the raw telemetry data. A history file will be built concurrently giving telescope parameters, command history, attitude summaries, engineering summaries, anomalous events, and ephemeris summaries.

  12. Transitioning Earth Remote Sensing Data to Benefit Society: A Paradigm for a Center of Excellence

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Bjorgo, Einar; Burn, Anthony

    2015-01-01

    Over the past decade there has been a substantial increase in the number of Earth remote sensing satellites launched for research and operational usage and numerous others planned by the international community. These satellites have been used to varying degrees by their supporting agencies for weather and environmental monitoring, climate studies, disaster monitoring and response, and other humanitarian activities. While there are success stories on useful applications of remote sensing data, the broader use of these satellite assets by other organizations and entities has been limited for a number of reasons including lack of data services, data dissemination issues, and a general failure to engage the broader end user community with useful data access and knowledge of how to use the data and products. This paper describes some of these current limitations on the broader use of Earth remote sensing data by the international community and describes the concept of a general "Center of Excellence" to facilitate the development, transition, and utilization of these Earth remote sensing observations by the broader international community.

  13. Theory, Instrumentation and Applications of Magnetoelastic Resonance Sensors: A Review

    PubMed Central

    Grimes, Craig A.; Roy, Somnath C.; Rani, Sanju; Cai, Qingyun

    2011-01-01

    Thick-film magnetoelastic sensors vibrate mechanically in response to a time varying magnetic excitation field. The mechanical vibrations of the magnetostrictive magnetoelastic material launch, in turn, a magnetic field by which the sensor can be monitored. Magnetic field telemetry enables contact-less, remote-query operation that has enabled many practical uses of the sensor platform. This paper builds upon a review paper we published in Sensors in 2002 (Grimes, C.A.; et al. Sensors 2002, 2, 294–313), presenting a comprehensive review on the theory, operating principles, instrumentation and key applications of magnetoelastic sensing technology. PMID:22163768

  14. Orbital Maneuvering Vehicle (OMV) remote servicing kit

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1988-01-01

    With the design and development of the Orbital Maneuvering Vehicle (OMV) progressing toward an early 1990 initial operating capability (IOC), a new era in remote space operations will evolve. The logical progression to OMV front end kits would make available in situ satellite servicing, repair, and consummables resupply to the satellite community. Several conceptual design study efforts are defining representative kits (propellant tanks, debris recovery, module servicers); additional focus must also be placed on an efficient combination module servicer and consummables resupply kit. A remote servicer kit of this type would be designed to perform many of the early maintenance/resupply tasks in both nominal and high inclination orbits. The kit would have the capability to exchange Orbital Replacement Units (ORUs), exchange propellant tanks, and/or connect fluid transfer umbilicals. Necessary transportation system functions/support could be provided by interfaces with the OMV, Shuttle (STS), or Expendable Launch Vehicle (ELV). Specific remote servicer kit designs, as well as ground and flight demonstrations of servicer technology are necessary to prepare for the potential overwhelming need. Ground test plans should adhere to the component/system/breadboard test philosophy to assure maximum capability of one-g testing. The flight demonstration(s) would most likely be a short duration, Shuttle-bay experiment to validate servicer components requiring a micro-g environment.

  15. Remote Sensing Laboratory - RSL

    ScienceCinema

    None

    2018-01-16

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  16. Remote Sensing Laboratory - RSL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip,more » maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.« less

  17. JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.

    DTIC Science & Technology

    1991-01-17

    Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,

  18. Integrated Launch Operations Applications Remote Display Developer

    NASA Technical Reports Server (NTRS)

    Flemming, Cedric M., II

    2014-01-01

    This internship provides the opportunity to support the creation and use of Firing Room Displays and Firing Room Applications that use an abstraction layer called the Application Control Language (ACL). Required training included video watching, reading assignments, face-to-face instruction and job shadowing other Firing Room software developers as they completed their daily duties. During the training period various computer and access rights needed for creating the applications were obtained. The specific ground subsystems supported are the Cryogenics Subsystems, Liquid Hydrogen (LH2) and Liquid Oxygen (LO2). The cryogenics team is given the task of finding the best way to handle these very volatile liquids that are used to fuel the Space Launch System (SLS) and the Orion flight vehicles safely.

  19. Integration of Remote Sensing Data In Operational Flood Forecast In Southwest Germany

    NASA Astrophysics Data System (ADS)

    Bach, H.; Appel, F.; Schulz, W.; Merkel, U.; Ludwig, R.; Mauser, W.

    Methods to accurately assess and forecast flood discharge are mandatory to minimise the impact of hydrological hazards. However, existing rainfall-runoff models rarely accurately consider the spatial characteristics of the watershed, which is essential for a suitable and physics-based description of processes relevant for runoff formation. Spatial information with low temporal variability like elevation, slopes and land use can be mapped or extracted from remote sensing data. However, land surface param- eters of high temporal variability, like soil moisture and snow properties are hardly available and used in operational forecasts. Remote sensing methods can improve flood forecast by providing information on the actual water retention capacities in the watershed and facilitate the regionalisation of hydrological models. To prove and demonstrate this, the project 'InFerno' (Integration of remote sensing data in opera- tional water balance and flood forecast modelling) has been set up, funded by DLR (50EE0053). Within InFerno remote sensing data (optical and microwave) are thor- oughly processed to deliver spatially distributed parameters of snow properties and soil moisture. Especially during the onset of a flood this information is essential to estimate the initial conditions of the model. At the flood forecast centres of 'Baden- Württemberg' and 'Rheinland-Pfalz' (Southwest Germany) the remote sensing based maps on soil moisture and snow properties will be integrated in the continuously op- erated water balance and flood forecast model LARSIM. The concept is to transfer the developed methodology from the Neckar to the Mosel basin. The major challenges lie on the one hand in the implementation of algorithms developed for a multisensoral synergy and the creation of robust, operationally applicable remote sensing products. On the other hand, the operational flood forecast must be adapted to make full use of the new data sources. In the operational phase of the project ESA's ENVISAT satellite, which will be launched in 2002, will serve as remote sensing data source. Until EN- VISAT data is available, algorithm retrieval, software development and product gener- ation is performed using existing sensors with ENVISAT-like specifications. Based on these data sets test cases and demonstration runs are conducted and will be presented to prove the advantages of the approach.

  20. Remote sensing at the NASA Kennedy Space Center: a perspective from the ground up

    NASA Astrophysics Data System (ADS)

    Huddleston, Lisa H.; Roeder, William P.; Morabito, David D.; D'Addario, Larry R.; Morgan, Jennifer G.; Barbré, Robert E.; Decker, Ryan K.; Geldzahler, Barry; Seibert, Mark A.; Miller, Michael J.

    2014-10-01

    This paper provides an overview of ground based operational remote sensing activities that enable a broad range of missions at the Eastern Range (ER), which includes the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) and U.S. Air Force Cape Canaveral Air Force Station (CCAFS). Many types of sensors are in use by KSC and across the ER. We examine remote sensors for winds, lightning and electric fields, precipitation and storm hazards. These sensors provide data that are used in real-time to evaluate launch commit criteria during space launches, major ground processing operations in preparation for space launches, issuing weather warnings/watches/advisories to protect over 25,000 people and facilities worth over $20 billion, and routine weather forecasts. The data from these sensors are archived to focus NASA launch vehicle design studies, to develop forecast techniques, and for incident investigation. The wind sensors include the 50-MHz and 915-MHz Doppler Radar Wind Profilers (DRWP) and the Doppler capability of the weather surveillance radars. The atmospheric electricity sensors include lightning aloft detectors, cloud-to-ground lightning detectors, and surface electric field mills. The precipitation and storm hazards sensors include weather surveillance radars. Next, we discuss a new type of remote sensor that may lead to better tracking of near-Earth asteroids versus current capabilities. The Ka Band Objects Observation and Monitoring (KaBOOM) is a phased array of three 12 meter (m) antennas being built as a technology demonstration for a future radar system that could be used to track deep-space objects such as asteroids. Transmissions in the Ka band allow for wider bandwidth than at lower frequencies, but the signals are also far more susceptible to de-correlation from turbulence in the troposphere, as well as attenuation due to water vapor, which is plentiful in the Central Florida atmosphere. If successful, KaBOOM will have served as the pathfinder for a larger and more capable instrument that will enable tracking 15 m asteroids up to 72 million kilometers (km) away, about half the distance to the Sun and five times further than we can track today. Finally, we explore the use of Site Test Interferometers (STI) as atmospheric sensors. The STI antennas continually observe signals emitted by geostationary satellites and produce measurements of the phase difference between the received signals. STIs are usually located near existing or candidate antenna array sites to statistically characterize atmospheric phase delay fluctuation effects for the site. An STI measures the fluctuations in the difference of atmospheric delay from an extraterrestrial source to two or more points on the Earth. There is a three-element STI located at the KaBOOM site at KSC.

  1. Comparisons of Ground Truth and Remote Spectral Measurements of the FORMOSAT and ANDE Spacecrafts

    NASA Technical Reports Server (NTRS)

    JorgensenAbercromby, Kira; Hamada, Kris; Okada, Jennifer; Guyote, Michael; Barker, Edwin

    2006-01-01

    Determining the material type of objects in space is conducted using laboratory spectral reflectance measurements from common spacecraft materials and comparing the results to remote spectra. This past year, two different ground-truth studies commenced. The first, FORMOSAT III, is a Taiwanese set of six satellites to be launched in March 2006. The second is ANDE (Atmospheric Neutral Density Experiment), a Naval Research Laboratory set of two satellites set to launch from the Space Shuttle in November 2006. Laboratory spectra were obtained of the spacecraft and a model of the anticipated spectra response was created for each set of satellites. The model takes into account phase angle and orientation of the spacecraft relative to the observer. Once launched, the spacecraft are observed once a month to determine the space aging effects of materials as deduced from the remote spectra. Preliminary results will be shown of the FORMOSAT III comparison with laboratory data and remote data while results from only the laboratory data will be shown for the ANDE spacecraft.

  2. X-Band Acquisition Aid Software

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael J.; Strain, Martha M.; Wert, Michael

    2011-01-01

    The X-band Acquisition Aid (AAP) software is a low-cost acquisition aid for the Deep Space Network (DSN) antennas, and is used while acquiring a spacecraft shortly after it has launched. When enabled, the acquisition aid provides corrections to the antenna-predicted trajectory of the spacecraft to compensate for the variations that occur during the actual launch. The AAP software also provides the corrections to the antenna-predicted trajectory to the navigation team that uses the corrections to refine their model of the spacecraft in order to produce improved antenna-predicted trajectories for each spacecraft that passes over each complex. The software provides an automated Acquisition Aid receiver calibration, and provides graphical displays to the operator and remote viewers via an Ethernet connection. It has a Web server, and the remote workstations use the Firefox browser to view the displays. At any given time, only one operator can control any particular display in order to avoid conflicting commands from more than one control point. The configuration and control is accomplished solely via the graphical displays. The operator does not have to remember any commands. Only a few configuration parameters need to be changed, and can be saved to the appropriate spacecraft-dependent configuration file on the AAP s hard disk. AAP automates the calibration sequence by first commanding the antenna to the correct position, starting the receiver calibration sequence, and then providing the operator with the option of accepting or rejecting the new calibration parameters. If accepted, the new parameters are stored in the appropriate spacecraft-dependent configuration file. The calibration can be performed on the Sun, greatly expanding the window of opportunity for calibration. The spacecraft traditionally used for calibration is in view typically twice per day, and only for about ten minutes each pass.

  3. Deployable reconnaissance from a VTOL UAS in urban environments

    NASA Astrophysics Data System (ADS)

    Barnett, Shane; Bird, John; Culhane, Andrew; Sharkasi, Adam; Reinholtz, Charles

    2007-04-01

    Reconnaissance collection in unknown or hostile environments can be a dangerous and life threatening task. To reduce this risk, the Unmanned Systems Group at Virginia Tech has produced a fully autonomous reconnaissance system able to provide live video reconnaissance from outside and inside unknown structures. This system consists of an autonomous helicopter which launches a small reconnaissance pod inside a building and an operator control unit (OCU) on a ground station. The helicopter is a modified Bergen Industrial Twin using a Rotomotion flight controller and can fly missions of up to one half hour. The mission planning OCU can control the helicopter remotely through teleoperation or fully autonomously by GPS waypoints. A forward facing camera and template matching aid in navigation by identifying the target building. Once the target structure is identified, vision algorithms will center the UAS adjacent to open windows or doorways. Tunable parameters in the vision algorithm account for varying launch distances and opening sizes. Launch of the reconnaissance pod may be initiated remotely through a human in the loop or autonomously. Compressed air propels the half pound stationary pod or the larger mobile pod into the open portals. Once inside the building, the reconnaissance pod will then transmit live video back to the helicopter. The helicopter acts as a repeater node for increased video range and simplification of communication back to the ground station.

  4. Low frequency microwave radiometer for N-ROSS

    NASA Astrophysics Data System (ADS)

    Hollinger, J. P.; Lo, R. C.

    1984-01-01

    The all weather, global determination of sea surface temperature (SST) has been identified as a requirement needed to support naval operations.The target SST accuracy is + or 1.0 K with a surface resolution of 10 km. Investigations of the phenomenology and technology of remote passive microwave sensing of the ocean environment over the past decade have demonstrated that this objective is presently attainable. Preliminary specification and trade off studies were conducted to define the frequency, polarization, scan geometry, antenna size, and other essential parameters of the low frequency microwave radiometer (LFMR). It will be a meter deployable mesh surface antenna. It is to be flown on the Navy-Remote Ocean Sensing System (N-ROSS) satellite scheduled to be launched in late 1988.

  5. Rocket engine exhaust plume diagnostics and health monitoring/management during ground testing

    NASA Technical Reports Server (NTRS)

    Chenevert, D. J.; Meeks, G. R.; Woods, E. G.; Huseonica, H. F.

    1992-01-01

    The current status of a rocket exhaust plume diagnostics program sponsored by NASA is reviewed. The near-term objective of the program is to enhance test operation efficiency and to provide for safe cutoff of rocket engines prior to incipient failure, thereby avoiding the destruction of the engine and the test complex and preventing delays in the national space program. NASA programs that will benefit from the nonintrusive remote sensed rocket plume diagnostics and related vehicle health management and nonintrusive measurement program are Space Shuttle Main Engine, National Launch System, National Aero-Space Plane, Space Exploration Initiative, Advanced Solid Rocket Motor, and Space Station Freedom. The role of emission spectrometry and other types of remote sensing in rocket plume diagnostics is discussed.

  6. Medical Screening for Individuals Supporting Spacecraft Launch and Landing Activities in Remote Locations

    NASA Technical Reports Server (NTRS)

    Powers. W. Edward

    2010-01-01

    This viewgraph presentation reviews the medical screening process and spacecraft launch and landing mission activities for astronauts. The topics include: 1) Launch and Landing Mission Overview; 2) Available Resources; and 3) Medical Screening Process.

  7. Remote Sensing.

    ERIC Educational Resources Information Center

    Williams, Richard S., Jr.; Southworth, C. Scott

    1983-01-01

    The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)

  8. Web-Based Toxic Gas Dispersion Model for Shuttle Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    During the launch of the Space Shuttle vehicle, the burning of liquid hydrogen fuel with liquid oxygen at extreme high temperatures inside the three space shuttle main engines, and the burning of the solid propellant mixture of ammonium perchlorate oxidizer, aluminum fuel, iron oxide catalyst, polymer binder, and epoxy curing agent in the two solid rocket boosters result in the formation of a large cloud of hot, buoyant toxic exhaust gases near the ground level which subsequently rises and entrains into ambient air until the temperature and density of the cloud reaches an approximate equilibrium with ambient conditions. In this paper, toxic gas dispersion for various gases are simulated over the web for varying environmental conditions which is provided by rawinsonde data. The model simulates chemical concentration at ground level up to 10 miles (1 KM grids) in downrange up to an hour after launch. The ambient concentration of the gas dispersion and the deposition of toxic particles are used as inputs for a human health risk assessment model. The advantage of the present model is the accessibility and dissemination of model results to other NASA centers over the web. The model can be remotely operated and various scenarios can be analyzed.

  9. Proposal for a remotely manned space station

    NASA Technical Reports Server (NTRS)

    Minsky, Marvin

    1990-01-01

    The United States is in trouble in space. The costs of the proposed Space Station Freedom have grown beyond reach, and the present design is obsolete. The trouble has come from imagining that there are only two alternatives: manned vs. unmanned. Both choices have led us into designs that do not appear to be practical. On one side, the United States simply does not possess the robotic technology needed to operate or assemble a sophisticated unmanned space station. On the other side, the manned designs that are now under way seem far too costly and dangerous, with all of its thousands of extravehicular activity (EVA) hours. More would be accomplished at far less cost by proceeding in a different way. The design of a space station made of modular, Erector Set-like parts is proposed which is to be assembled using earth-based remotely-controlled binary-tree telerobots. Earth-based workers could be trained to build the station in space using simulators. A small preassembled spacecraft would be launched with a few telerobots, and then, telerobots could be ferried into orbit along with stocks of additional parts. Trained terrestrial workers would remotely assemble a larger station, and materials for additional power and life support systems could be launched. Finally, human scientists and explorers could be sent to the space station. Other aspects of such a space station program are discussed.

  10. Using Avizo Software on the Peregrine System | High-Performance Computing |

    Science.gov Websites

    be run remotely from the Peregrine visualization node. First, launch a TurboVNC remote desktop. Then from a terminal in that remote desktop: % module load avizo % vglrun avizo Running Locally Avizo can

  11. Lessons Learned From Developing Three Generations of Remote Sensing Science Data Processing Systems

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt; Fleig, Albert J.

    2005-01-01

    The Biospheric Information Systems Branch at NASA s Goddard Space Flight Center has developed three generations of Science Investigator-led Processing Systems for use with various remote sensing instruments. The first system is used for data from the MODIS instruments flown on NASA s Earth Observing Systems @OS) Terra and Aqua Spacecraft launched in 1999 and 2002 respectively. The second generation is for the Ozone Measuring Instrument flying on the EOS Aura spacecraft launched in 2004. We are now developing a third generation of the system for evaluation science data processing for the Ozone Mapping and Profiler Suite (OMPS) to be flown by the NPOESS Preparatory Project (NPP) in 2006. The initial system was based on large scale proprietary hardware, operating and database systems. The current OMI system and the OMPS system being developed are based on commodity hardware, the LINUX Operating System and on PostgreSQL, an Open Source RDBMS. The new system distributes its data archive across multiple server hosts and processes jobs on multiple processor boxes. We have created several instances of this system, including one for operational processing, one for testing and reprocessing and one for applications development and scientific analysis. Prior to receiving the first data from OMI we applied the system to reprocessing information from the Solar Backscatter Ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) instruments flown from 1978 until now. The system was able to process 25 years (108,000 orbits) of data and produce 800,000 files (400 GiB) of level 2 and level 3 products in less than a week. We will describe the lessons we have learned and tradeoffs between system design, hardware, operating systems, operational staffing, user support and operational procedures. During each generational phase, the system has become more generic and reusable. While the system is not currently shrink wrapped we believe it is to the point where it could be readily adopted, with substantial cost savings, for other similar tasks.

  12. Design and Development of Functionally Effective Human-Machine Interfaces for Firing Room Displays

    NASA Technical Reports Server (NTRS)

    Cho, Henry

    2013-01-01

    This project involves creating software for support equipment used on the Space Launch System (SLS). The goal is to create applications and displays that will be used to remotely operate equipment from the firing room and will continue to support the SLS launch vehicle to the extent of its program. These displays include design practices that help to convey information effectively, such as minimizing distractions at normal operating state and displaying intentional distractions during a warning or alarm state. The general practice for creating an operator display is to reduce the detail of unimportant aspects of the display and promote focus on data and dynamic information. These practices include using minimalist design, using muted tones for background colors, using a standard font at a readable text size, displaying alarms visible for immediate attention, grouping data logically, and displaying data appropriately varying on the type of data. Users of these displays are more likely to stay focused on operating for longer periods by using design practices that reduce eye strain and fatigue. Effective operator displays will improve safety by reducing human errors during operation, which will help prevent catastrophic accidents. This report entails the details of my work on developing remote displays for the Hypergolic fuel servicing system. Before developing a prototype display, the design and requirements of the system are outlined and compiled into a document. Then each subsystem has schematic representations drawn that meet the specifications detailed in the document. The schematics are then used as the outline to create display representations of each subsystem. Each display is first tested individually. Then the displays are integrated with a prototype of the master system, and they are tested in a simulated environment then retested in the real environment. Extensive testing is important to ensure the displays function reliably as intended.

  13. Integrating small satellite communication in an autonomous vehicle network: A case for oceanography

    NASA Astrophysics Data System (ADS)

    Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando

    2018-04-01

    Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.

  14. Lunar Prospector: a Preliminary Surface Remote Sensing Resource Assessment for the Moon

    NASA Technical Reports Server (NTRS)

    Mardon, A. A.

    1992-01-01

    The potential existence of lunar volatiles is a scientific discovery that could distinctly change the direction of pathways of inner solar system human expansion. With a dedicated germanium gamma ray spectrometer launched in the early 1990's, surface water concentrations of 0.7 percent could be detected immediately upon full lunar polar orbit operations. The expense of lunar base construction and operation would be dramatically reduced over a scenario with no lunar volatile resources. Global surface mineral distribution could be mapped out and integrated into a GIS database for lunar base site selection. Extensive surface lunar mapping would also result in the utilization of archived Apollo images. A variety of remote sensing systems and their parameters have been proposed for use in the detection of these lunar ice masses. The detection or nondetection of subsurface and surface ice masses in lunar polar crater floors could dramatically direct the development pathways that the human race might follow in its radiation from the Earth to habitable locales in the inner terran solar system. Potential sources of lunar volatiles are described. The use of remote sensing to detect lunar volatiles is addressed.

  15. Proceedings of the Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J. (Editor)

    1991-01-01

    The Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop was held on 23-24 May 1991 at JPL. Thirty oral presentations were made and 18 poster papers displayed during the workshop. Papers from these 25 presentations are presented which include analyses of AIRSAR operations and studies in SAR remote sensing, ecology, hydrology, soil science, geology, oceanography, volcanology, and SAR mapping and data handling. Results from these studies indicate the direction and emphasis of future orbital radar-sensor missions that will be launched during the 1990's.

  16. Progress of the LASSO experiment

    NASA Technical Reports Server (NTRS)

    Serene, B. E. H.

    1981-01-01

    The LASSO (Later Synchronisation from Stationary Orbit) experiment, designed to demonstrate the feasibility of achieving time synchronization between remote atomic clocks with an accuracy of one nanosecond or better by using laser techniques for the first time is described. The experiment uses groundbased laser stations and the SIRIO-2 geostationary satellite to be launched towards the end of 1981. The qualification of the LASSO on-board equipment is discussed with a brief description of the electrical and optical test equipment used. The progress of the operational organization is included.

  17. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Brenton, James C.; Walker, James C.; Leach, Richard D.

    2015-01-01

    Space launch vehicles utilize atmospheric winds in design of the vehicle and during day-of-launch (DOL) operations to assess affects of wind loading on the vehicle and to optimize vehicle performance during ascent. The launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use for vehicle engineering assessments. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output on DOL. First, balloons need approximately one hour to reach required altitude. For vehicle assessments this occurs at 60 kft (18.3 km). Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. Figure 1 illustrates the spatial separation of balloon measurements from the surface up to approximately 55 kft (16.8 km) during the Space Shuttle launch on 10 December 2006. The balloon issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data up to 60 kft (18.3 km) for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. Details on how data from various wind measurement systems are combined and sample output will be presented in the following sections.

  18. Unique Offerings of the ISS as an Earth Observing Platform

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    2013-01-01

    The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow.

  19. An Ion-Propelled Cubesat for Planetary Defense and Planetary Science

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.; Wirz, Richard; Lai, Hairong; Li, Jian-Yang; Connors, Martin

    2017-04-01

    Small satellites can reduce the cost of launch by riding along with other payloads on a large rocket or being launched on a small rocket, but are perceived as having limited capabilities. This perception can be at least partially overcome by innovative design, including ample in-flight propulsion. This allows achieving multiple targets and adaptive exploration. Ion propulsion has been pioneered on Deep Space 1 and honed on the long-duration, multiple-planetary body mission Dawn. Most importantly, the operation of such a mission is now well- understood, including navigation, communication, and science operations for remote sensing. We examined different mission concepts that can be used for both planetary defense and planetary science near 1 AU. Such a spacecraft would travel in the region between Venus and Mars, allowing a complete inventory of material above, including objects down to about 10m diameter to be inventoried. The ion engines could be used to approach these bodies slowly and carefully and allow the spacecraft to map debris and follow its collisional evolution throughout its orbit around the Sun, if so desired. The heritage of Dawn operations experience enables the mission to be operated inexpensively, and the engineering heritage will allow it to be operated for many trips around the Sun.

  20. Best Practice Guidelines for Pre-Launch Characterization and Calibration of Instruments for Passive Optical Remote Sensing1

    PubMed Central

    Datla, R. U.; Rice, J. P.; Lykke, K. R.; Johnson, B. C.; Butler, J. J.; Xiong, X.

    2011-01-01

    The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented. PMID:26989588

  1. Best Practice Guidelines for Pre-Launch Characterization and Calibration of Instruments for Passive Optical Remote Sensing.

    PubMed

    Datla, R U; Rice, J P; Lykke, K R; Johnson, B C; Butler, J J; Xiong, X

    2011-01-01

    The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented.

  2. HiSentinel: A Stratospheric Airship

    NASA Astrophysics Data System (ADS)

    Smith, I.; Lew, T.; Perry, W.; Smith, M.

    On December 4 2005 a team led by Southwest Research Institute SwRI successfully demonstrated powered flight of the HiSentinel stratospheric airship at an altitude of 74 000 feet The development team of Aerostar International the Air Force Research Laboratory AFRL and SwRI launched the airship from Roswell N M for a five-hour technology demonstration flight The 146-foot-long airship carried a 60-pound equipment pod and propulsion system when it became only the second airship in history to achieve powered flight in the stratosphere Designed for launch from remote sites these airships do not require large hangars or special facilities Unlike most stratospheric airship concepts HiSentinel is launched flaccid with the hull only partially inflated with helium As the airship rises the helium expands until it completely inflates the hull to the rigid aerodynamic shape required for operation A description of previous Team development results of the test flight plans for future development and applicability to future science missions will be presented

  3. KSC-08pd3502

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is positioned for movement into NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB

  4. KSC-08pd3501

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from the transporter at NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB

  5. KSC-08pd3500

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft arrives at NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB

  6. KSC-08pd3499

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from a C-5 aircraft after arrival at Vandenberg Air Force Base Airfield in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB

  7. KSC-08pd3503

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – Workers move the NOAA-N Prime spacecraft into NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB

  8. KSC-08pd3498

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from a C-5 aircraft after arrival at Vandenberg Air Force Base Airfield in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB

  9. H-II launch vehicle telemetry system realizing intelligent control of pre-processed data from remote terminal

    NASA Astrophysics Data System (ADS)

    Tanioka, Noritaka; Yoshida, Yasunori; Obi, Shinzo; Chiba, Ryoichi; Nakai, Kazumoto

    The development of a PCM telemetry system for the Japanese H-II launch vehicle is discussed. PCM data streams acquire and process data from remote terminals which can be located at any place near the data source. The data are synchronized by a clock and are individually controlled by a central PCM data processing unit. The system allows the launch vehicle to acquire data from many different areas of the rocket, with a total of 879 channels. The data are multiplexed and processed into one PCM data stream and are down-linked on a phase-modulated RF carrier.

  10. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation

    PubMed Central

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B. Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth’s land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies’ scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized1. PMID:26601030

  11. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation.

    PubMed

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized.

  12. KSC-08pd1505

    NASA Image and Video Library

    2008-05-30

    CAPE CANAVERAL, Fla. -- Bathed in lights surrounding Launch Pad 39A and its structures at NASA's Kennedy Space Center, space shuttle Discovery is poised for launch on the STS-124 mission after rollback of the rotating service structure. First motion was at 8:33 p.m. and rollback was complete at 9:07 p.m. The structure provides protected access to the shuttle for changeout and servicing of payloads at the pad. It is supported by a rotating bridge that pivots on a vertical axis on the west side of the pad's flame trench. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The pad is cleared to the perimeter gate for operations to fill the external tank with about 500,000 gallons of cryogenic propellants used by the shuttle’s main engines. This is done at the pad approximately eight hours before the scheduled launch. Behind the shuttle is the orange external tank and the two solid rocket boosters (only one seen here). Beneath the shuttle's starboard wing is one of two tail service masts, which provide several umbilical connections to the orbiter, including a liquid-oxygen line through one and a liquid-hydrogen line through another. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. The 14-day flight includes three spacewalks. Launch is scheduled for 5:02 p.m. May 31. Photo credit: NASA/Troy Cryder

  13. Space-Derived Imagery and a Commercial Remote Sensing Industry: Impossible Dream or Inevitable Reality?

    NASA Astrophysics Data System (ADS)

    Murray, Felsher

    Landsat-1 was launched in 1972 as a research satellite. Many of us viewed this satellite as a precursor to remote sensing "commercialization." Indeed since that time, the birth, growth and maturation of a remote sensing "industry" has been an ongoing objective for much of the U.S. private sector engaged in space and ground-segment activities related to the acquisition, analysis, and dissemination of imagery. In September 1999 a U.S. commercial entity, Space Imaging, Inc. launched its 1-meter pan/4-meter multispectral IKONOS sensor. DigitalGlobe, Inc. (nee EarthWatch, Inc.) matched this feat in October 2001. Thus, a full 30 years later, we are finally on the brink of building a true remote sensing information industry based on the global availability of competitively-priced space- derived imagery of the Earth. The upcoming availability of similar imagery from non-U.S. sources as ImageSat and U.S. sources as ORBIMAGE will only strengthen that reality. However, a remote sensing industry can only grow by allowing these entities (in times of peace) unencumbered access to a world market. And that market continues to expand -- up 11% in 2001, with gross revenues of U.S. commercial remote sensing firms alone reaching 2.44 billion, according to a joint NASA/ASPRS industry survey. However, the 30-year gap between the research-labeled Landsat-1 and our current commercial successes was not technology-driven. That lacuna was purely political -- driven by valid concerns related to national security. Although the world's governments have cooperated thoroughly and completely in areas related to satellite telecommunications, cooperation in space-derived image information is still today done cautiously and on a case-by-case basis -- and then only for science- based undertakings. It is still a fact that, except for the United States, all other Earth-imaging satellites/sensors flying today are owned, operated, and their products disseminated, by national governments -- and not private sector entities. Will the template now fashioned by the U.S. -- that of licensing private industry to build, fly, and operate remote sensing satellites as well as to distribute their imagery worldwide -- be replicated by other nations? Eventually, yes. Availability of the World Wide Web is an international communications reality. Availability of world wide imaging will be just as real. And much of that imagery will be marketed, sold, and distributed via that same global Internet. I feel that as an expected outcome of our technological age, we can ensure not only our own national security but international security as well, by assuring worldwide accessibility to worldwide space- derived image information. This requires -- in fact demands -- the presence of a viable international remote sensing industry. It is not impossible; It is inevitable.

  14. Preventing Accidental Ignition of Upper-Stage Rocket Motors

    NASA Technical Reports Server (NTRS)

    Hickman, John; Morgan, Herbert; Cooper, Michael; Murbach, Marcus

    2005-01-01

    A report presents a proposal to reduce the risk of accidental ignition of certain upper-stage rocket motors or other high energy hazardous systems. At present, mechanically in-line initiators are used for initiation of many rocket motors and/or other high-energy hazardous systems. Electrical shorts and/or mechanical barriers, which are the basic safety devices in such systems, are typically removed as part of final arming or pad preparations while personnel are present. At this time, static discharge, test equipment malfunction, or incorrect arming techniques can cause premature firing. The proposal calls for a modular out-of-line ignition system incorporating detonating-cord elements, identified as the donor and the acceptor, separated by an air gap. In the safe configuration, the gap would be sealed with two shields, which would prevent an accidental firing of the donor from igniting the system. The shields would be removed to enable normal firing, in which shrapnel generated by the donor would reliably ignite the acceptor to continue the ordnance train. The acceptor would then ignite a through bulkhead initiator (or other similar device), which would ignite the motor or high-energy system. One shield would be remotely operated and would be moved to the armed position when a launch was imminent or conversely returned to the safe position if the launch were postponed. In the event of failure of the remotely operated shield, the other shield could be inserted manually to safe the system.

  15. Intelligent Systems: Terrestrial Observation and Prediction Using Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2005-01-01

    NASA has made science and technology investments to better utilize its large space-borne remote sensing data holdings of the Earth. With the launch of Terra, NASA created a data-rich environment where the challenge is to fully utilize the data collected from EOS however, despite unprecedented amounts of observed data, there is a need for increasing the frequency, resolution, and diversity of observations. Current terrestrial models that use remote sensing data were constructed in a relatively data and compute limited era and do not take full advantage of on-line learning methods and assimilation techniques that can exploit these data. NASA has invested in visualization, data mining and knowledge discovery methods which have facilitated data exploitation, but these methods are insufficient for improving Earth science models that have extensive background knowledge nor do these methods refine understanding of complex processes. Investing in interdisciplinary teams that include computational scientists can lead to new models and systems for online operation and analysis of data that can autonomously improve in prediction skill over time.

  16. Evaluation of shoulder integrity in space: first report of musculoskeletal US on the International Space Station.

    PubMed

    Fincke, E Michael; Padalka, Gennady; Lee, Doohi; van Holsbeeck, Marnix; Sargsyan, Ashot E; Hamilton, Douglas R; Martin, David; Melton, Shannon L; McFarlin, Kellie; Dulchavsky, Scott A

    2005-02-01

    Investigative procedures were approved by Henry Ford Human Investigation Committee and NASA Johnson Space Center Committee for Protection of Human Subjects. Informed consent was obtained. Authors evaluated ability of nonphysician crewmember to obtain diagnostic-quality musculoskeletal ultrasonographic (US) data of the shoulder by following a just-in-time training algorithm and using real-time remote guidance aboard the International Space Station (ISS). ISS Expedition-9 crewmembers attended a 2.5-hour didactic and hands-on US training session 4 months before launch. Aboard the ISS, they completed a 1-hour computer-based Onboard Proficiency Enhancement program 7 days before examination. Crewmembers did not receive specific training in shoulder anatomy or shoulder US techniques. Evaluation of astronaut shoulder integrity was done by using a Human Research Facility US system. Crew used special positioning techniques for subject and operator to facilitate US in microgravity environment. Common anatomic reference points aided initial probe placement. Real-time US video of shoulder was transmitted to remote experienced sonologists in Telescience Center at Johnson Space Center. Probe manipulation and equipment adjustments were guided with verbal commands from remote sonologists to astronaut operators to complete rotator cuff evaluation. Comprehensive US of crewmember's shoulder included transverse and longitudinal images of biceps and supraspinatus tendons and articular cartilage surface. Total examination time required to guide astronaut operator to acquire necessary images was approximately 15 minutes. Multiple arm and probe positions were used to acquire dynamic video images that were of excellent quality to allow evaluation of shoulder integrity. Postsession download and analysis of high-fidelity US images collected onboard demonstrated additional anatomic detail that could be used to exclude subtle injury. Musculoskeletal US can be performed in space by minimally trained operators by using remote guidance. This technique can be used to evaluate shoulder integrity in symptomatic crewmembers after strenuous extravehicular activities or to monitor microgravity-associated changes in musculoskeletal anatomy. Just-in-time training, combined with remote experienced physician guidance, may provide a useful approach to complex medical tasks performed by nonexperienced personnel in a variety of remote settings, including current and future space programs. (c) RSNA, 2004.

  17. Evaluation of shoulder integrity in space: first report of musculoskeletal US on the International Space Station

    NASA Technical Reports Server (NTRS)

    Fincke, E. Michael; Padalka, Gennady; Lee, Doohi; van Holsbeeck, Marnix; Sargsyan, Ashot E.; Hamilton, Douglas R.; Martin, David; Melton, Shannon L.; McFarlin, Kellie; Dulchavsky, Scott A.

    2005-01-01

    Investigative procedures were approved by Henry Ford Human Investigation Committee and NASA Johnson Space Center Committee for Protection of Human Subjects. Informed consent was obtained. Authors evaluated ability of nonphysician crewmember to obtain diagnostic-quality musculoskeletal ultrasonographic (US) data of the shoulder by following a just-in-time training algorithm and using real-time remote guidance aboard the International Space Station (ISS). ISS Expedition-9 crewmembers attended a 2.5-hour didactic and hands-on US training session 4 months before launch. Aboard the ISS, they completed a 1-hour computer-based Onboard Proficiency Enhancement program 7 days before examination. Crewmembers did not receive specific training in shoulder anatomy or shoulder US techniques. Evaluation of astronaut shoulder integrity was done by using a Human Research Facility US system. Crew used special positioning techniques for subject and operator to facilitate US in microgravity environment. Common anatomic reference points aided initial probe placement. Real-time US video of shoulder was transmitted to remote experienced sonologists in Telescience Center at Johnson Space Center. Probe manipulation and equipment adjustments were guided with verbal commands from remote sonologists to astronaut operators to complete rotator cuff evaluation. Comprehensive US of crewmember's shoulder included transverse and longitudinal images of biceps and supraspinatus tendons and articular cartilage surface. Total examination time required to guide astronaut operator to acquire necessary images was approximately 15 minutes. Multiple arm and probe positions were used to acquire dynamic video images that were of excellent quality to allow evaluation of shoulder integrity. Postsession download and analysis of high-fidelity US images collected onboard demonstrated additional anatomic detail that could be used to exclude subtle injury. Musculoskeletal US can be performed in space by minimally trained operators by using remote guidance. This technique can be used to evaluate shoulder integrity in symptomatic crewmembers after strenuous extravehicular activities or to monitor microgravity-associated changes in musculoskeletal anatomy. Just-in-time training, combined with remote experienced physician guidance, may provide a useful approach to complex medical tasks performed by nonexperienced personnel in a variety of remote settings, including current and future space programs. (c) RSNA, 2004.

  18. The atmospheric correction algorithm for HY-1B/COCTS

    NASA Astrophysics Data System (ADS)

    He, Xianqiang; Bai, Yan; Pan, Delu; Zhu, Qiankun

    2008-10-01

    China has launched her second ocean color satellite HY-1B on 11 Apr., 2007, which carried two remote sensors. The Chinese Ocean Color and Temperature Scanner (COCTS) is the main sensor on HY-1B, and it has not only eight visible and near-infrared wavelength bands similar to the SeaWiFS, but also two more thermal infrared bands to measure the sea surface temperature. Therefore, COCTS has broad application potentiality, such as fishery resource protection and development, coastal monitoring and management and marine pollution monitoring. Atmospheric correction is the key of the quantitative ocean color remote sensing. In this paper, the operational atmospheric correction algorithm of HY-1B/COCTS has been developed. Firstly, based on the vector radiative transfer numerical model of coupled oceanatmosphere system- PCOART, the exact Rayleigh scattering look-up table (LUT), aerosol scattering LUT and atmosphere diffuse transmission LUT for HY-1B/COCTS have been generated. Secondly, using the generated LUTs, the exactly operational atmospheric correction algorithm for HY-1B/COCTS has been developed. The algorithm has been validated using the simulated spectral data generated by PCOART, and the result shows the error of the water-leaving reflectance retrieved by this algorithm is less than 0.0005, which meets the requirement of the exactly atmospheric correction of ocean color remote sensing. Finally, the algorithm has been applied to the HY-1B/COCTS remote sensing data, and the retrieved water-leaving radiances are consist with the Aqua/MODIS results, and the corresponding ocean color remote sensing products have been generated including the chlorophyll concentration and total suspended particle matter concentration.

  19. Orbital transfer vehicle concept definition and system analysis study. Volume 1A: Executive summary. Phase 2

    NASA Technical Reports Server (NTRS)

    Ketchum, W. J.

    1986-01-01

    The objectives of the Phase 2 study were to improve the orbit transfer vehicle (OTV) concept definition by focusing on the following issues: the impact of mission requirements on OTV system design; OTV basing concepts on the Space Shuttle, separate platforms, and/or remote locations; cost reduction of an OTV program to improve its economic benefits and support its acquisition. The OTV mission scenario includes a wide range of missions the main drivers of which are manned GEO servicing, mid-inclination/polar DOD, and lunar/planetary projects. A mission model is presented which includes the type and number of missions per year and the estimated propellant requirements. To accomplish the missions, many OTV concepts were defined including ground-based OTVs launched either in the STS orbiter, the aft cargo carrier, or a heavy lift launch vehicle, and a space-based OTV. System and program trade studies were conducted using performance, cost, safety/risk, and operations/growth criteria. The study shows that mission requirements and substantial economic benefits justify a reusable, cryogenic (H2/O2) space-based OTV. Such a system would not be subjected to Earth-to-orbit launch loads and would not be constained in size or weight. Safety is enhanced by the fact that the system components are launched unfueled. Its inherent reusability and ability to be refueled in space make the space-based OTV very economical to operate.

  20. Pipeline inspection using an autonomous underwater vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egeskov, P.; Bech, M.; Bowley, R.

    1995-12-31

    Pipeline inspection can be carried out by means of small Autonomous Underwater Vehicles (AUVs), operating either with a control link to a surface vessel, or totally independently. The AUV offers an attractive alternative to conventional inspection methods where Remotely Operated Vehicles (ROVs) or paravanes are used. A flatfish type AUV ``MARTIN`` (Marine Tool for Inspection) has been developed for this purpose. The paper describes the proposed types of inspection jobs to be carried out by ``MARTIN``. The design and construction of the vessel, its hydrodynamic properties, its propulsion and control systems are discussed. The pipeline tracking and survey systems, asmore » well as the launch and recovery systems are described.« less

  1. Development of the reactor antineutrino detection technology within the iDream project

    NASA Astrophysics Data System (ADS)

    Gromov, M.; Kuznetsov, D.; Murchenko, A.; Novikova, G.; Obinyakov, B.; Oralbaev, A.; Plakitina, K.; Skorokhvatov, M.; Sukhotin, S.; Chepurnov, A.; Etenko, A.

    2017-12-01

    The iDREAM (industrial Detector for reactor antineutrino monitoring) project is aimed at remote monitoring of the operating modes of the atomic reactor on nuclear power plant to ensure a technical support of IAEA non-proliferation safeguards. The detector is a scintillator spectrometer. The sensitive volume (target) is filled with a liquid organic scintillator based on linear alkylbenzene where reactor antineutrinos will be detected via inverse beta-decay reaction. We present first results of laboratory tests after physical launch. The detector was deployed at sea level without background shielding. The number of calibrations with radioactive sources was conducted. All data were obtained by means of a slow control system which was put into operation.

  2. Observations and Operational Products from the Special Sensor Ultraviolet Limb Imager (SSULI)

    NASA Astrophysics Data System (ADS)

    Dandenault, Patrick; Nicholas, Andrew C.; Coker, Clayton; Budzien, Scott A.; Chua, Damien H.; Finne, Ted T.; Metzler, Christopher A.; Dymond, Kenneth F.

    The Naval Research Laboratory (NRL) has developed five ultraviolet remote sensing instru-ments for the Air Force Defense Meteorological Satellite Program (DMSP). These instruments known as SSULI (Special Sensor Ultraviolet Limb Imager) are on the DMSP block of 5D3 satellites, which first launched in 2003. The DMSP satellites are launched in a near-polar, sun-synchronous orbit at an altitude of approximately 830 km. SSULI measures vertical profiles of the natural airglow radiation from atoms, molecules and ions in the upper atmosphere and ionosphere by viewing the earth's limb at a tangent altitude of approximately 50 km to 750 km. Limb observations are made from the extreme ultraviolet (EUV) to the far ultraviolet (FUV) over the wavelength range of 80 nm to 170 nm, with 1.8 nm resolution. An extensive operational data processing system, the SSULI Ground Data Analysis Software (GDAS), has been developed to generate environmental data products from SSULI spectral data in near-real time for use at the Air Force Weather Agency (AFWA). The operational software uses advanced science algorithms developed at NRL and was designed to calibrate data from USAF Raw Sensor Data Records (RSDR) and generate Environmental Data Records (EDRs). Data products from SSULI observations include vertical profiles of electron (Ne) densities, N2, O2, O, O+, Temperature and also vertical Total Electron Content (TEC). On October 18, 2009, the third SSULI sensor launched from Vandenberg Air Force Base, aboard the DMSP F18 spacecraft. An overview of the SSULI operational program and the status of the F18 sensor will be discussed.

  3. A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 LAUNCH VIEW --- A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of the Space Shuttle Columbia as it cleared the tower to begin the mission. The liftoff occurred on schedule at 3:18:00 p.m. (EST), February 22, 1996. Onboard Columbia for the scheduled two-week mission were astronauts Andrew M. Allen, commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and astronauts Maurizio Cheli, Jeffrey A. Hoffman and Claude Nicollier, along with payload specialist Umberto Guidioni. Cheli and Nicollier represent the European Space Agency (ESA), while Guidioni represents the Italian Space Agency (ASI).

  4. Primary analysis of the ocean color remote sensing data of the HY-1B/COCTS

    NASA Astrophysics Data System (ADS)

    He, Xianqiang; Bai, Yan; Pan, Delu; Zhu, Qiankun; Gong, Fang

    2009-01-01

    China had successfully launched her second ocean color satellite HY-1B on 11 Apr., 2007, which was the successor of the HY-1A satellite launched on 15 May, 2002. There were two sensors onboard HY-1B, named the Chinese Ocean Color and Temperature Scanner (COCTS) and the Coastal Zone Imager (CZI) respectively, and COCTS was the main sensor. COCTS had not only eight visible and near-infrared wave bands similar to the SeaWiFS, but also two more thermal infrared wave bands to measure the sea surface temperature. Therefore, COCTS had broad application potentiality, such as fishery resource protection and development, coastal monitoring and management and marine pollution monitoring. In this paper, the main characteristics of COCTS were described firstly. Then, using the crosscalibration method, the vicarious calibration of COCTS was carried out by the synchronous remote sensing data of SeaWiFS, and the results showed that COCTS had well linear responses for the visible light bands with the correlation coefficients more than 0.98, however, the performances of the near infrared wavelength bands were not good as visible light bands. Using the vicarious calibration result, the operational atmospheric correction (AC) algorithm of COCTS was developed based on the exact Rayleigh scattering look-up table (LUT), aerosol scattering LUT and atmosphere diffuse transmission LUT generated by the coupled ocean-atmospheric vector radiative transfer numerical model named PCOART. The AC algorithm had been validated by the simulated radiance data at the top-of-atmosphere, and the results showed the errors of the water-leaving reflectance retrieved by the AC algorithm were less than 0.0005, which met the requirement of the exactly atmospheric correction of ocean color remote sensing. Finally, the AC algorithm was applied to the HY-1B/COCTS remote sensing data, and the corresponding ocean color remote sensing products have been generated.

  5. Introduction to AIRS and CrIS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2004-01-01

    "Introduction to AIRS and CrIS" is a chapter in a book dealing with various aspects of remote sensing. AIRS and CrIS are both high spectral resolution IR sounding instruments, which were recently launched (AIRS) or will soon be launched (CrIS). The chapter explains the general principles of infra-red remote sensing, and explains the significance and information content of high spectral resolution IR measurements. The chapter shows results obtained using AIRS observations, and explains why similar quality results should be obtainable from CrIS data.

  6. GPS Sounding Rocket Developments

    NASA Technical Reports Server (NTRS)

    Bull, Barton

    1999-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads several hundred miles in altitude. These missions return a variety of scientific data including; chemical makeup and physical processes taking place In the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft prior to their use in more expensive activities. The NASA Sounding Rocket Program is managed by personnel from Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia. Typically around thirty of these rockets are launched each year, either from established ranges at Wallops Island, Virginia, Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico or from Canada, Norway and Sweden. Many times launches are conducted from temporary launch ranges in remote parts of the world requi6ng considerable expense to transport and operate tracking radars. An inverse differential GPS system has been developed for Sounding Rocket. This paper addresses the NASA Wallops Island history of GPS Sounding Rocket experience since 1994 and the development of a high accurate and useful system.

  7. The enhanced ASDEX Upgrade pellet centrifuge launcher

    NASA Astrophysics Data System (ADS)

    Plöckl, B.; Lang, P. T.

    2013-10-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  8. The enhanced ASDEX Upgrade pellet centrifuge launcher.

    PubMed

    Plöckl, B; Lang, P T

    2013-10-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  9. The enhanced ASDEX Upgrade pellet centrifuge launcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plöckl, B.; Lang, P. T.

    2013-10-15

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system.more » Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.« less

  10. ERTS and EROS

    USGS Publications Warehouse

    Staff, EROS Program

    1972-01-01

    In June the National Aeronautics & Space Administration is to launch its first experimental satellite designed to view the Earth systematically with remote-sensing instruments that will provide new information about our resources and environment. The launching will culminate more than 8 years of planning and research by resource agencies of the Federal Government in cooperation with NASA, state and local governments, universities, and industry. The first Earth Resources Technology Satellite, ERTS-A, will be followed a year later by ERTS-B. Analyses of data from them, it is hoped, will lead to design of operational satellites for Earth resources investigations in the future. In the belief that satellite systems will be of significant assistance in meeting its responsibilities to map, monitor, and manage the vast resources and the public lands of the United States, the Department of the Interior assumed a major role in the ERTS-A Experiment.

  11. Lightning Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation and First Results

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.; Virts, K.; hide

    2017-01-01

    Mission: Fly a flight-spare LIS (Lightning Imaging Sensor) on ISS to take advantage of unique capabilities provided by the ISS (e.g., high inclination, real time data); Integrate LIS as a hosted payload on the DoD Space Test Program-Houston 5 (STP-H5) mission and launch on a Space X rocket for a minimum 2 year mission. Measurement: NASA and its partners developed and demonstrated effectiveness and value of using space-based lightning observations as a remote sensing tool; LIS measures lightning (amount, rate, radiant energy) with storm scale resolution, millisecond timing, and high detection efficiency, with no land-ocean bias. Benefit: LIS on ISS will extend TRMM (Tropical Rainfall Measuring Mission) time series observations, expand latitudinal coverage, provide real time data to operational users, and enable cross-sensor calibration.

  12. Synergy Between Archives, VO, and the Grid at ESAC

    NASA Astrophysics Data System (ADS)

    Arviset, C.; Alvarez, R.; Gabriel, C.; Osuna, P.; Ott, S.

    2011-07-01

    Over the years, in support to the Science Operations Centers at ESAC, we have set up two Grid infrastructures. These have been built: 1) to facilitate daily research for scientists at ESAC, 2) to provide high computing capabilities for project data processing pipelines (e.g., Herschel), 3) to support science operations activities (e.g., calibration monitoring). Furthermore, closer collaboration between the science archives, the Virtual Observatory (VO) and data processing activities has led to an other Grid use case: the Remote Interface to XMM-Newton SAS Analysis (RISA). This web service-based system allows users to launch SAS tasks transparently to the GRID, save results on http-based storage and visualize them through VO tools. This paper presents real and operational use cases of Grid usages in these contexts

  13. Fire protection for launch facilities using machine vision fire detection

    NASA Astrophysics Data System (ADS)

    Schwartz, Douglas B.

    1993-02-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  14. Fire protection for launch facilities using machine vision fire detection

    NASA Technical Reports Server (NTRS)

    Schwartz, Douglas B.

    1993-01-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  15. Firing Room Remote Application Software Development & Swamp Works Laboratory Robot Software Development

    NASA Technical Reports Server (NTRS)

    Garcia, Janette

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is creating a way to send humans beyond low Earth orbit, and later to Mars. Kennedy Space Center (KSC) is working to make this possible by developing a Spaceport Command and Control System (SCCS) which will allow the launch of Space Launch System (SLS). This paper's focus is on the work performed by the author in her first and second part of the internship as a remote application software developer. During the first part of her internship, the author worked on the SCCS's software application layer by assisting multiple ground subsystems teams including Launch Accessories (LACC) and Environmental Control System (ECS) on the design, development, integration, and testing of remote control software applications. Then, on the second part of the internship, the author worked on the development of robot software at the Swamp Works Laboratory which is a research and technology development group which focuses on inventing new technology to help future In-Situ Resource Utilization (ISRU) missions.

  16. Low-frequency microwave radiometer for N-ROSS

    NASA Astrophysics Data System (ADS)

    Hollinger, J. P.; Lo, R. C.

    1985-04-01

    The all weather, global determination of sea surface temperature (SST) has been identified as a requirement needed to support naval operations. The target SST accuracy is + or - 1.0 K with a surface resolution of 10 km. Investigations of the phenomenology and technology of remote passive microwave sensing of the ocean environment over the past decade have demonstrated that this objective is presently attainable. Preliminary specification and trade off studies were conducted to define the frequency, polarization, scan geometry, antenna size, and other esstential parameters of the low frequency microwave radiometer (LFMR). It will be a dual polarized, dual frequency system at 5.2 and 10.4 GHz using a 4.9 meter deployable mesh surface antenna. It is to be flown on the Navy-Remote Ocean Sensing System (N-ROSS) satellite scheduled to be launched in late 1988.

  17. Low-frequency microwave radiometer for N-ROSS

    NASA Technical Reports Server (NTRS)

    Hollinger, J. P.; Lo, R. C.

    1985-01-01

    The all weather, global determination of sea surface temperature (SST) has been identified as a requirement needed to support naval operations. The target SST accuracy is + or - 1.0 K with a surface resolution of 10 km. Investigations of the phenomenology and technology of remote passive microwave sensing of the ocean environment over the past decade have demonstrated that this objective is presently attainable. Preliminary specification and trade off studies were conducted to define the frequency, polarization, scan geometry, antenna size, and other esstential parameters of the low frequency microwave radiometer (LFMR). It will be a dual polarized, dual frequency system at 5.2 and 10.4 GHz using a 4.9 meter deployable mesh surface antenna. It is to be flown on the Navy-Remote Ocean Sensing System (N-ROSS) satellite scheduled to be launched in late 1988.

  18. Ocean observer study: A proposed national asset to augment the future U.S. operational satellite system

    USGS Publications Warehouse

    Cunningham, J.D.; Chambers, D.; Davis, C.O.; Gerber, A.; Helz, R.; McGuire, J.P.; Pichel, W.

    2003-01-01

    The next generation of U.S. polar orbiting environmental satellites, are now under development. These satellites, jointly developed by the Department of Defense (DoD), the Department of Commerce (DOC), and the National Aeronautics and Space Administration (NASA), will be known as the National Polar-orbiting Operational Environmental Satellite System (NPOESS). It is expected that the first of these satellites will be launched in 2010. NPOESS has been designed to meet the operational needs of the U.S. civilian meteorological, environmental, climatic, and space environmental remote sensing programs, and the Global Military Space and Geophysical Environmental remote sewing programs. This system, however, did not meet all the needs of the user community interested in operational oceanography (particularly in coastal regions). Beginning in the fall of 2000, the Integrated Program Office (IPO), a joint DoD, DOC, and NASA office responsible for the NPOESS development, initiated the Ocean Observer Study (OOS). The purpose of this study was to assess and recommend how best to measure the missing or inadequately sampled ocean parameters. This paper summarizes the ocean measurement requirements documented in the OOS, describes the national need to measure these parameters, and describes the satellite instrumentation required to make those measurements.

  19. Constellations: A New Paradigm for Earth Observations

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Volz, Stephen M.; Yuhas, Cheryl L.; Case, Warren F.

    2009-01-01

    The last decade has seen a significant increase in the number and the capabilities of remote sensing satellites launched by the international community. A relatively new approach has been the launching of satellites into heterogeneous constellations. Constellations provide the scientists a capability to acquire science data, not only from specific instruments on a single satellite, but also from instruments on other satellites that fly in the same orbit. Initial results from the A-Train (especially following the CALIPSO/CloudSat launch) attest to the tremendous scientific value of constellation flying. This paper provides a history of the constellations (particularly the A-Train) and how the A-Train mission design was driven by science requirements. The A-Train has presented operational challenges which had not previously been encountered. Operations planning had to address not only how the satellites of each constellation operate safely together, but also how the two constellations fly in the same orbits without interfering with each other when commands are uplinked or data are downlinked to their respective ground stations. This paper discusses the benefits of joining an on-orbit constellation. When compared to a single, large satellite, a constellation infrastructure offers more than just the opportunities for coincidental science observations. For example, constellations reduce risks by distributing observing instruments among numerous satellites; in contrast, a failed launch or a system failure in a single satellite would lead to loss of all observations. Constellations allow for more focused, less complex satellites. Constellations distribute the development, testing, and operations costs among various agencies and organizations for example, the Morning and Afternoon Constellations involve several agencies within the U.S. and in other countries. Lastly, this paper addresses the need to plan for the long-term evolution of a constellation. Agencies need to have a replenishment strategy as some satellites age and eventually leave the constellation. This will ensure overlap of observations, thus providing continuous, calibrated science data over a much longer time period. Thoughts on the evolution of the A-Train will also be presented.

  20. 3D Printing of Bench

    NASA Image and Video Library

    2018-02-09

    A Zero Launch Mass 3-D printer is being tested at the Swamp Works at NASA's Kennedy Space Center in Florida. The printer can be used for construction projects on the Moon and Mars, and even for troops in remote locations on Earth. Zero launch mass refers to the fact that the printer uses pellets made from simulated lunar regolith, or dirt, and polymers to prove that space explorers can use resources at their destination instead of taking everything with them, saving them launch mass and money. The group is working with Marshall Space Flight Center in Huntsville, Alabama, and the U.S. Army Corps of Engineers to develop a system that can 3-D print barracks in remote locations on Earth, using the resources they have where they are.

  1. Seasat Celebrates Landmark in Remote-Sensing History

    NASA Image and Video Library

    2013-06-27

    Seasat, built and managed by NASA Jet Propulsion Laboratory JPL, was launched thirty-five years ago, on June 27, 1978. It was the first satellite designed for remote sensing of the Earth oceans using many ground-breaking technologies.

  2. Perspectives in remote sensing in Brazil. An approach of the remote sensing applications to Earth resources surveys

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novaes, R. A.

    1982-01-01

    Since the systematic use of earth surface data collection by orbital sensor systems started in 1972 with the launching of the North American LANDSAT satellite, a great effort has been made to assimilate, develop and transfer remote sensing technology (data acquisition and analysis) in its many applications in Brazil. The availability of sensor systems and existing data is considered approached, as well as those which will soon be available to the Brazilian researchers. The new systems of the LANDSAT-4, of the Columbia space shuttle and of the French satellites of the SPOT series are discussed. Some characteristics of the sensor system for the first Brazilian remote sensing satellite, to be launched by the end of the decade, are presented. Some LANDSAT-4 and SPOT simulation products are shown, emphasizing how the data obtained by these new satellites can be applied.

  3. Crash in Australian outback ends NASA ballooning season

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2010-06-01

    NASA has temporarily suspended all its scientific balloon launches after the balloon-borne Nuclear Compton Tele scope (NCT) crashed during take-off, scattering a trail of debris across the remote launch site and overturning a nearby parked car.

  4. Next-generation pushbroom filter radiometers for remote sensing

    NASA Astrophysics Data System (ADS)

    Tarde, Richard W.; Dittman, Michael G.; Kvaran, Geir E.

    2012-09-01

    Individual focal plane size, yield, and quality continue to improve, as does the technology required to combine these into large tiled formats. As a result, next-generation pushbroom imagers are replacing traditional scanning technologies in remote sensing applications. Pushbroom architecture has inherently better radiometric sensitivity and significantly reduced payload mass, power, and volume than previous generation scanning technologies. However, the architecture creates challenges achieving the required radiometric accuracy performance. Achieving good radiometric accuracy, including image spectral and spatial uniformity, requires creative optical design, high quality focal planes and filters, careful consideration of on-board calibration sources, and state-of-the-art ground test facilities. Ball Aerospace built the Landsat Data Continuity Mission (LDCM) next-generation Operational Landsat Imager (OLI) payload. Scheduled to launch in 2013, OLI provides imagery consistent with the historical Landsat spectral, spatial, radiometric, and geometric data record and completes the generational technology upgrade from the Enhanced Thematic Mapper (ETM+) whiskbroom technology to modern pushbroom technology afforded by advanced focal planes. We explain how Ball's capabilities allowed producing the innovative next-generational OLI pushbroom filter radiometer that meets challenging radiometric accuracy or calibration requirements. OLI will improve the multi-decadal land surface observation dataset dating back to the 1972 launch of ERTS-1 or Landsat 1.

  5. Supervising simulations with the Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark; Carenton, Nicolas; Denvil, Sebastien

    2015-04-01

    At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of High Performance Computing (HPC) environments spread throughout France. The IPSL's simulation execution runtime is called libIGCM (library for IPSL Global Climate Modeling group). libIGCM has recently been enhanced so as to support realtime operational use cases. Such use cases include simulation monitoring, data publication, environment metrics collection, automated simulation control … etc. At the core of this enhancement is the Prodiguer messaging platform. libIGCM now emits information, in the form of messages, for remote processing at IPSL servers in Paris. The remote message processing takes several forms, for example: 1. Persisting message content to database(s); 2. Notifying an operator of changes in a simulation's execution status; 3. Launching rollback jobs upon simulation failure; 4. Dynamically updating controlled vocabularies; 5. Notifying downstream applications such as the Prodiguer web portal; We will describe how the messaging platform has been implemented from a technical perspective and demonstrate the Prodiguer web portal receiving realtime notifications.

  6. On-line access to remote sensing data with the satellite-data information system (ISIS)

    NASA Astrophysics Data System (ADS)

    Strunz, G.; Lotz-Iwen, H.-J.

    1994-08-01

    The German Remote Sensing Data Center (DFD) is developing the satellite-data information system ISIS as central interface for users to access Earth observation data. ISIS has been designed to support international scientific research as well as operational applications by offering online database access via public networks, and is integrated in the international activities dedicated to catalogue and archive interoperability. A prototype of ISIS is already in use within the German Processing and Archiving Facility for ERS-1 for the storage and retrieval of digital SAR quicklook products and for the Radarmap of Germany. An operational status of the system is envisaged for the launch of ERS-2. The paper in hand describes the underlying concepts of ISIS and the recent state of realization. It explains the overall structure of the system and the functionality of each of its components. Emphasis is put on the description of the advisory system, the catalogue retrieval, and the online access and transfer of image data. Finally, the integration into a future global environmental data network is outlined.

  7. Mission safety evaluation report for STS-37, postflight edition

    NASA Technical Reports Server (NTRS)

    Hill, William C.; Finkel, Seymour I.

    1991-01-01

    STS-37/Atlantis was launched on April 5, 1991 from Kennedy Space Center launch complex 39B at 9:23 a.m. Eastern Standard Time (EST). Launch was delayed 4 minutes 45 seconds because of safety concerns about the low cloud ceiling and the wind direction in the potential blast area. Based on the limited number and type of inflight anomalies encountered, the Space Shuttle operated satisfactorily throughout the STS-37 mission. A contingency EVA was performed by the crew on Flight Day (FD) 3 to free a sticky Gamma Ray Observatory (GRO) high gain antenna, after which the GRO primary payload was successfully deployed by the Orbiter's Remote Manipulator System. The GRO, which weighed just over 35,000 lbs, was the heaviest NASA science satellite ever deployed by the Space Shuttle into low Earth orbit. The scheduled entry/landing on FD 6 was waved off for one day due to high wind conditions at Edwards Air Force Base. Atlantis landed on FD 7, 11 April 1991 on Edwards AFB lakebed runway 33 at 9:55 a.m. Eastern Daylight Time.

  8. Detection, Identification, Location, and Remote Sensing using SAW RFID Sensor Tags

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2009-01-01

    In this presentation, we will consider the problem of simultaneous detection, identification, location estimation, and remote sensing for multiple objects. In particular, we will describe the design and testing of a wireless system capable of simultaneously detecting the presence of multiple objects, identifying each object, and acquiring both a low-resolution estimate of location and a high-resolution estimate of temperature for each object based on wireless interrogation of passive surface acoustic wave (SAW) radiofrequency identification (RFID) sensor tags affixed to each object. The system is being studied for application on the lunar surface as well as for terrestrial remote sensing applications such as pre-launch monitoring and testing of spacecraft on the launch pad and monitoring of test facilities. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In the presentation, we will summarize the system design and illustrate several aspects of the operational characteristics and signal structure. We will examine the theoretical performance characteristics of the system and compare the theoretical results with results obtained from experiments in both controlled laboratory environments and in the field.

  9. National Polar-orbiting Operational Environmental Satellite System (NPOESS) Design and Architecture

    NASA Astrophysics Data System (ADS)

    Hinnant, F.

    2008-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system - the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD and will provide continuity for the NASA Earth Observing System (EOS) with the launch of the NPOESS Preparatory Project (NPP). This poster will provide an overview of the NPOESS architecture, which includes four segments. The space segment includes satellites in two orbits that carry a suite of sensors to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the Earth, atmosphere, and near-Earth space environment. The NPOESS design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for NPOESS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government as well as to remote terminal users. The Launch Support Segment completes the four segments that make up NPOESS that will enhance the connectivity between research and operations and provide critical operational and scientific environmental measurements to military, civil, and scientific users until 2026.

  10. ECRH and W7-X: An intriguing pair

    NASA Astrophysics Data System (ADS)

    Erckmann, V.; Braune, H.; Gantenbein, G.; Jelonnek, J.; Kasparek, W.; Laqua, H. P.; Lechte, C.; Marushchenko, N. B.; Michel, G.; Plaum, B.; Thumm, M.; Weissgerber, M.; Wolf, R.; W7-X ECRH Teams

    2014-02-01

    The construction of the W7-X basic machine is almost completed and the device is approaching the commissioning phase. W7-X operation will be supported by ECRH working at 140 GHz in 2nd harmonic X- or O-mode with 10 MW cw power. Presently the activities at W7-X concentrate on the implementation of wall-armour, in-vessel components and diagnostics. The ECRH-system is in stand by with 5 out of 10 gyrotrons operational. The status of both, the W7-X device and the ECRH system is reported. Further R&D activities concentrate on extending the launching capability for sophisticated confinement investigations with remote steering launchers in a poloidal plane with weak magnetic field gradient.

  11. Orbital Spacecraft Consumables Resupply System (OSCRS). Volume 4: Extended study results Part 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The objectives consisted of three major tasks. The first was to establish the definition of Space Station and Orbital Maneuvering Vehicle (OMV) user requirements and interfaces and to evaluate system requirements of a water tanker to be used at the station. The second task is to conduct trade studies of system requirements, hardware/software, and operations to evaluate the effect of automatic operation at the station or remote from the station in consonance with the OMV. The last task is to evaluate automatic refueling concepts and to evaluate the impact to Orbital Spacecraft Consumable Resupply System (OSCRS) concept/design to use expendable launch vehicles (ELV) to place the tank into orbit. Progress in each area is discussed.

  12. 5. Photographic copy of a photograph taken from pasteup negatives ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photographic copy of a photograph taken from paste-up negatives for U.S. Army Corps of Engineers document GF-500-MCP, entitled "Grand Forks Site RLS Army Operating Drawings, Master Composite Photographs for SAFEGUARD TSE Systems and Equipment," Page 9, dated 1 September 1974 (original document and negatives in possession of U.S. Army Corps of Engineers, Huntsville, AL). Photographer unknown. View of pneumatic control panel regulating entrance to waiting room #116. The panel activated the pneumatic cylinder for opening and closing of blast doors #116 and #118. A rotary air motor actuated locking and unlocking of the doors. - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND

  13. Proceedings of the Scientific Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K. (Editor)

    1989-01-01

    Continuing advances in space and Earth science requires increasing amounts of data to be gathered from spaceborne sensors. NASA expects to launch sensors during the next two decades which will be capable of producing an aggregate of 1500 Megabits per second if operated simultaneously. Such high data rates cause stresses in all aspects of end-to-end data systems. Technologies and techniques are needed to relieve such stresses. Potential solutions to the massive data rate problems are: data editing, greater transmission bandwidths, higher density and faster media, and data compression. Through four subpanels on Science Payload Operations, Multispectral Imaging, Microwave Remote Sensing and Science Data Management, recommendations were made for research in data compression and scientific data applications to space platforms.

  14. Chemistry and Microphysics of Lower Stratospheric Aerosols Determined by Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zasetsky, A. Y.; Khalizov, A.; Sloan, J.

    2003-12-01

    Observations of broadband Infrared satellites such as ILAS-II (Ministry of the Environment, Japan, launched 14 December 2002) and SciSat-1 (Canadian Space Agency, launched 12 August 2003) can provide details of the chemical composition and particle size of atmospheric aerosols by direct inversion without recourse to models. During the past decade, we have developed mathematical methods to achieve this inversion by working with FTIR observations of model atmospheric aerosols in cryogenic flowtubes. More recently, we have converted these to operational algorithms for use in the above missions. In this presentation, we will briefly outline these procedures and illustrate their capabilities using laboratory data. These laboratory results show that the chemical compositions, phases and sizes of ensembles of particles can be obtained simultaneously using these procedures. We will also report chemical and microphysical properties of lower stratospheric clouds and aerosols derived by applying these procedures to observations from space.

  15. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Walker, John R.; Barbre, Robert E., Jr.; Leach, Richard D.

    2015-01-01

    Atmospheric wind data are required by space launch vehicles in order to assess flight vehicle loads and performance on day-of-launch. Space launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use within vehicle trajectory analyses. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output. First, balloons require approximately one hour to reach required altitudes. Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. These issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data over altitude ranges necessary for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. This paper will present details of the splicing software algorithms and will provide sample output.

  16. Subsurface Microsensors for Assisted Recertification of TPS (SmarTPS)

    NASA Technical Reports Server (NTRS)

    Pallix, Joan B.; Milos, Frank S.; Huestis, Dave; Arnold, James O. (Technical Monitor)

    1999-01-01

    Commercialization of a competitive reusable launch vehicle (RLV) is a primary goal for both NASA and the U.S. aerospace industry. To expedite achievement of this goal, the Bantam-X Technology Program is funding development of innovative technologies to lower costs for access to space. Ground operations is one area where significant cost reduction is required. For the Shuttle fleet, ground operations account for over 80% of the life cycle costs, and TPS recertification accounts for 27% of the operation costs ($4.5M per flight). Bantam Task TPS-7, Subsurface Microsensors for Assisted Recertification of TPS (SmarTPS), is a joint effort between NASA centers and industry partners to develop rapid remote detection and scanning technology for inspection of TPS and detection of subsurface defects. This short paper will provide a general overview of the SmarTPS concept.

  17. VIEW OF REMOTE MANIPULATOR SYSTEM LAB, ROOM NO. 1N4, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF REMOTE MANIPULATOR SYSTEM LAB, ROOM NO. 1N4, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  18. DETAIL VIEW OF TESTING EQUIPMENT, REMOTE MANIPULATOR SYSTEM LAB, ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF TESTING EQUIPMENT, REMOTE MANIPULATOR SYSTEM LAB, ROOM NO. 1N4, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  19. VIEW OF REMOTE MANIPULATOR SYSTEM LAB, ROOM NO. 1N4, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF REMOTE MANIPULATOR SYSTEM LAB, ROOM NO. 1N4, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. Large-Scale Cryogen Systems and Test Facilities

    NASA Technical Reports Server (NTRS)

    Johnson, R. G.; Sass, J. P.; Hatfield, W. H.

    2007-01-01

    NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.

  1. 3D Printing of Bench

    NASA Image and Video Library

    2018-02-09

    Research engineers at NASA's Kennedy Space Center in Florida are working on a Zero Launch Mass 3-D printer at the center's Swamp Works. The printer can be used for construction projects on the Moon and Mars, and even for troops in remote locations on Earth. Zero launch mass refers to the fact that the printer uses pellets made from simulated lunar regolith, or dirt, and polymers to prove that space explorers can use resources at their destination instead of taking everything with them, saving them launch mass and money. The group is working with Marshall Space Flight Center in Huntsville, Alabama, and the U.S. Army Corps of Engineers to develop a system that can 3-D print barracks in remote locations on Earth, using the resources they have where they are.

  2. 3D Printing of Bench

    NASA Image and Video Library

    2018-02-09

    Nathan Gelino, a NASA research engineer at Kennedy Space Center in Florida, is working on a Zero Launch Mass 3-D printer in the center's Swamp Works that can be used for construction projects on the Moon and Mars, and even for troops in remote locations here on Earth. Zero launch mass refers to the fact that the printer uses pellets made from simulated lunar regolith, or dirt, and polymers to prove that space explorers can use resources at their destination instead of taking everything with them, saving them launch mass and money. Gelino and his team are working with Marshall Space Flight Center in Huntsville, Alabama, and the U.S. Army Corps of Engineers to develop a system that can 3-D print barracks in remote locations on Earth, using the resources they have where they are.

  3. 3D Printing of Bench

    NASA Image and Video Library

    2018-02-09

    Pellets made from simulated lunar regolith, or dirt, and polymers are being used to test a Zero Launch Mass 3-D printer in the Swamp Works at NASA's Kennedy Space Center in Florida. The printer can be used for construction projects on the Moon and Mars, and even for troops in remote locations on Earth. Zero launch mass refers to the fact that the printer uses these pellets to prove that space explorers can use resources at their destination instead of taking everything with them, saving them launch mass and money. The group is working with Marshall Space Flight Center in Huntsville, Alabama, and the U.S. Army Corps of Engineers to develop a system that can 3-D print barracks in remote locations on Earth, using the resources they have where they are.

  4. The U.S. Geological Survey Land Remote Sensing Program

    USGS Publications Warehouse

    ,

    2003-01-01

    In 2002, the U. S. Geological Survey (USGS) launched a program to enhance the acquisition, preservation, and use of remotely sensed data for USGS science programs, as well as for those of cooperators and customers. Remotely sensed data are fundamental tools for studying the Earth's land surface, including coastal and near-shore environments. For many decades, the USGS has been a leader in providing remotely sensed data to the national and international communities. Acting on its historical topographic mapping mission, the USGS has archived and distributed aerial photographs of the United States for more than half a century. Since 1972, the USGS has acquired, processed, archived, and distributed Landsat and other satellite and airborne remotely sensed data products to users worldwide. Today, the USGS operates and manages the Landsats 5 and 7 missions and cooperates with the National Aeronautics and Space Administration (NASA) to define and implement future satellite missions that will continue and expand the collection of moderate-resolution remotely sensed data. In addition to being a provider of remotely sensed data, the USGS is a user of these data and related remote sensing technology. These data are used in natural resource evaluations for energy and minerals, coastal environmental surveys, assessments of natural hazards (earthquakes, volcanoes, and landslides), biological surveys and investigations, water resources status and trends analyses and studies, and geographic and cartographic applications, such as wildfire detection and tracking and as a source of information for The National Map. The program furthers these distinct but related roles by leading the USGS activities in providing remotely sensed data while advancing applications of such data for USGS programs and a wider user community.

  5. Applied Virtual Reality in Reusable Launch Vehicle Design, Operations Development, and Training

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1997-01-01

    Application of Virtual Reality (VR) technology offers much promise to enhance and accelerate the development of Reusable Launch Vehicle (RLV) infrastructure and operations while simultaneously reducing developmental and operational costs. One of the primary cost areas in the RLV concept that is receiving special attention is maintenance and refurbishment operations. To produce and operate a cost effective RLV, turnaround cost must be minimized. Designing for maintainability is a necessary requirement in developing RLVs. VR can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) is beginning to utilize VR for design, operations development, and design analysis for RLVs. A VR applications program has been under development at NASA/MSFC since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. The NASA/MSFC VR capability has also been utilized in several applications. These include: 1) the assessment of the design of the late Space Station Freedom Payload Control Area (PCA), the control room from which onboard payload operations are managed; 2) a viewing analysis of the Tethered Satellite System's (TSS) "end-of-reel" tether marking options; 3) development of a virtual mockup of the International Space Welding Experiment for science viewing analyses from the Shuttle Remote Manipulator System elbow camera and as a trainer for ground controllers; and 4) teleoperations using VR. This presentation will give a general overview of the MSFC VR Applications Program and describe the use of VR in design analyses, operations development, and training for RLVs.

  6. Mass Property Measurements of the Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2012-01-01

    The NASA/JPL Mars Science Laboratory (MSL) spacecraft mass properties were measured on a spin balance table prior to launch. This paper discusses the requirements and issues encountered with the setup, qualification, and testing using the spin balance table, and the idiosyncrasies encountered with the test system. The final mass measurements were made in the Payload Hazardous Servicing Facility (PHSF) at Kennedy Space Center on the fully assembled and fueled spacecraft. This set of environmental tests required that the control system for the spin balance machine be at a remote location, which posed additional challenges to the operation of the machine

  7. Use of a personal computer for the real-time reception and analysis of data from a sounding rocket experiment

    NASA Technical Reports Server (NTRS)

    Herrick, W. D.; Penegor, G. T.; Cotton, D. M.; Kaplan, G. C.; Chakrabarti, S.

    1990-01-01

    In September 1988 the Earth and Planetary Atmospheres Group of the Space Sciences Laboratory of the University of California at Berkeley flew an experiment on a high-altitude sounding rocket launched from the NASA Wallops Flight Facility in Virginia. The experiment, BEARS (Berkeley EUV Airglow Rocket Spectrometer), was designed to obtain spectroscopic data on the composition and structure of the earth's upper atmosphere. Consideration is given to the objectives of the BEARS experiment; the computer interface and software; the use of remote data transmission; and calibration, integration, and flight operations.

  8. West Europe Report, Science and Technology

    DTIC Science & Technology

    1986-01-16

    Nicolas Rousseaux; ZERO UN INFORMATION HEBDO, 30 Sep 85) 93 TECHNOLOGY TRANSFER Briefs Renault Equipment to USSR 96 c - 16 January 1986 AEROSPACE...personnel and has a capacity of 200 persons. From the launch center, where monitoring and command systems are installed, the start up of the remote...supplying of propellants and fluids and hookup of monitoring and control systems -preparation for launch: countdown and launch -possible erection and

  9. Applications of the SWOT Mission to Reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Hossain, F.

    2017-12-01

    The forthcoming Surface Water and Ocean Topography (SWOT) mission has the potential to significantly improve our ability to observe artificial reservoirs globally from a remote sensing perspective. By providing simultaneous estimates of reservoir water surface extent and elevation with near global coverage, reservoir storage changes can be estimated. Knowing how reservoir storage changes over time is critical for understanding reservoir impacts on river systems. In data limited regions, remote sensing is often the only viable method of retrieving such information about reservoir operations. When SWOT launches in 2021, it will join an array of satellite sensors with long histories of reservoir observation and monitoring capabilities. There are many potential synergies in the complimentary use of future SWOT observations with observations from current satellite sensors. The work presented here explores the potential benefits of utilizing SWOT observations over 20 reservoirs in the Mekong River Basin. The SWOT hydrologic simulator, developed by NASA Jet Propulsion Laboratory, is used to generate realistic SWOT observations, which are then inserted into a previously established remote sensing modeling framework of the 20 Mekong Basin reservoirs. This framework currently combines data from Landsat missions, Jason radar altimeters, and the Shuttle Radar and Topography Mission (SRTM), to provide monthly estimates of reservoir storage change. The incorporation of SWOT derived reservoir surface area and elevation into the model is explored in an effort to improve both accuracy and temporal resolution of observed reservoir operations.

  10. Observation of rocket pollution with overhead sensors

    NASA Astrophysics Data System (ADS)

    Fisher, Annette

    2011-12-01

    The objective of this thesis is to study the dispersal of rocket pollution through remote sensing techniques. Substantial research with remote sensors has been dedicated to observation of volcanic plumes, particulate dispersion, and aircraft contrails with less emphasis on observing rocket launches and the effects on the surrounding environment. This research focuses on observation of rocket exhaust constituents, particularly carbon soot, alumina, and water vapor. The sensors utilized in this thesis have unique capabilities that provide measurements that are likely capable of detecting the rocket exhaust constituents. Methodology and analysis included choosing an appropriate launch vehicle with obtainable launch data and various booster combinations of liquid propellant only or a combination of liquid and solid propellant, prioritizing the data based on launch time versus sensor passing, processing the data, and applying known constituent properties to the data sets where key areas of work in this endeavor. Results of this work demonstrate a unique capability in monitoring man-made pollution and the extent the pollution can spread to surrounding areas.

  11. NPOESS System Architecture

    NASA Astrophysics Data System (ADS)

    Hinnant, F.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD and will provide continuity for the NASA Earth Observation System with the launch of the NPOESS Preparatory Project. This poster will provide a top level status update of the program, as well as an overview of the NPOESS system architecture, which includes four segments. The space segment includes satellites in two orbits that carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The NPOESS system design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for NPOESS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government as well as remote terminal users. The Launch Support Segment completes the four segments that make up the NPOESS system that will enhance the connectivity between research and operations and provide critical operational and scientific environmental measurements to military, civil, and scientific users until 2026.

  12. Radiometric, geometric, and image quality assessment of ALOS AVNIR-2 and PRISM sensors

    USGS Publications Warehouse

    Saunier, S.; Goryl, P.; Chander, G.; Santer, R.; Bouvet, M.; Collet, B.; Mambimba, A.; Kocaman, Aksakal S.

    2010-01-01

    The Advanced Land Observing Satellite (ALOS) was launched on January 24, 2006, by a Japan Aerospace Exploration Agency (JAXA) H-IIA launcher. It carries three remote-sensing sensors: 1) the Advanced Visible and Near-Infrared Radiometer type 2 (AVNIR-2); 2) the Panchromatic Remote-Sensing Instrument for Stereo Mapping (PRISM); and 3) the Phased-Array type L-band Synthetic Aperture Radar (PALSAR). Within the framework of ALOS Data European Node, as part of the European Space Agency (ESA), the European Space Research Institute worked alongside JAXA to provide contributions to the ALOS commissioning phase plan. This paper summarizes the strategy that was adopted by ESA to define and implement a data verification plan for missions operated by external agencies; these missions are classified by the ESA as third-party missions. The ESA was supported in the design and execution of this plan by GAEL Consultant. The verification of ALOS optical data from PRISM and AVNIR-2 sensors was initiated 4 months after satellite launch, and a team of principal investigators assembled to provide technical expertise. This paper includes a description of the verification plan and summarizes the methodologies that were used for radiometric, geometric, and image quality assessment. The successful completion of the commissioning phase has led to the sensors being declared fit for operations. The consolidated measurements indicate that the radiometric calibration of the AVNIR-2 sensor is stable and agrees with the Landsat-7 Enhanced Thematic Mapper Plus and the Envisat MEdium-Resolution Imaging Spectrometer calibration. The geometrical accuracy of PRISM and AVNIR-2 products improved significantly and remains under control. The PRISM modulation transfer function is monitored for improved characterization.

  13. Earth remote sensing with NPOESS: instruments and environmental data products

    NASA Astrophysics Data System (ADS)

    Glackin, David L.; Cunningham, John D.; Nelson, Craig S.

    2004-02-01

    The NPOESS (National Polar-orbiting Operational Environmental Satellite System) program represents the merger of the NOAA POES (Polar-orbiting Environmental Satellite) program and the DoD DMSP (Defense Meteorological Satellite Program) satellites. Established by presidential directive in 1994, a tri-agency Integrated Program Office (IPO) in Silver Spring, Maryland, has been managing NPOESS development, and is staffed by representatives of NOAA, DoD, and NASA. NPOESS is being designed to provide 55 atmospheric, oceanographic, terrestrial, and solar-geophysical data products, and will disseminate them to civilian and military users worldwide. The first NPOESS satellite is scheduled to be launched late in this decade, with the other two satellites of the three-satellite constellation due to be launched over the ensuing four years. NPOESS will remain operational for at least ten years. The 55 Environmental Data Records (EDRs) will be provided by a number of instruments, many of which will be briefly described in this paper. The instruments will be hosted in various combinations on three NPOESS platforms in three distinct polar sun-synchronous orbits. The instrument complement represents the combined requirements of the weather, climate, and environmental remote sensing communities. The three critical instruments are VIIRS (Visible/Infrared Imager-Radiometer Suite), CMIS (Conical Microwave Imager/Sounder), and CrIS (Cross-track Infrared Sounder). The other IPO-developed instruments are OMPS (Ozone Mapper/Profiler Suite), GPSOS (Global Positioning System Occultation Sensor), the APS (Aerosol Polarimeter Sensor), and the SESS (Space Environment Sensor Suite). NPOESS will also carry various "leveraged" instruments, i.e., ones that do not require development by the IPO. These include the ATMS (Advanced Technology Microwave Sounder), the TSIS (Total Solar Irradiance Sensor), the ERBS (Earth Radiation Budget Sensor), and the ALT (Radar Altimeter).

  14. PIPOR - A Programme for International Polar Oceans Research

    NASA Technical Reports Server (NTRS)

    Gudmandsen, P.; Carsey, F.; Mcnutt, L.

    1989-01-01

    The Programme for International Polar Oceans Research is accepted as a part of the ERS-1 mission which will be initiated with the launch of the ERS-1 earth observation satellite by the European Space Agency in 1990. It is a bipolar program with participation by institutions engaged in studies of the atmosphere-ocean-sea ice interaction and the application of remote sensing data for operational uses. The program objectives are to develop the application of microwave data for studies and modeling of sea ice dynamics and for operational uses in sea ice infested areas. As such, it is closely connected with ongoing and forthcoming research in the Arctic and the Antarctic. With sea ice being a sensitive indicator of climate perturbations, PIPOR addresses objectives of the World Climate Research Programme.

  15. Technology development of the Space Transportation System mission and terrestrial applications of satellite technology

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Space Transportation System (STS) is discussed, including the launch processing system, the thermal protection subsystem, meteorological research, sound supression water system, rotating service structure, improved hypergol or removal systems, fiber optics research, precision positioning, remote controlled solid rocket booster nozzle plugs, ground operations for Centaur orbital transfer vehicle, parachute drying, STS hazardous waste disposal and recycle, toxic waste technology and control concepts, fast analytical densitometry study, shuttle inventory management system, operational intercommunications system improvement, and protective garment ensemble. Terrestrial applications are also covered, including LANDSAT applications to water resources, satellite freeze forecast system, application of ground penetrating radar to soil survey, turtle tracking, evaluating computer drawn ground cover maps, sparkless load pulsar, and coupling a microcomputer and computing integrator with a gas chromatograph.

  16. A modular suite of hardware enabling spaceflight cell culture research

    NASA Technical Reports Server (NTRS)

    Hoehn, Alexander; Klaus, David M.; Stodieck, Louis S.

    2004-01-01

    BioServe Space Technologies, a NASA Research Partnership Center (RPC), has developed and operated various middeck payloads launched on 23 shuttle missions since 1991 in support of commercial space biotechnology projects. Modular cell culture systems are contained within the Commercial Generic Bioprocessing Apparatus (CGBA) suite of flight-qualified hardware, compatible with Space Shuttle, SPACEHAB, Spacelab and International Space Station (ISS) EXPRESS Rack interfaces. As part of the CGBA family, the Isothermal Containment Module (ICM) incubator provides thermal control, data acquisition and experiment manipulation capabilities, including accelerometer launch detection for automated activation and thermal profiling for culture incubation and sample preservation. The ICM can accommodate up to 8 individually controlled temperature zones. Command and telemetry capabilities allow real-time downlink of data and video permitting remote payload operation and ground control synchronization. Individual cell culture experiments can be accommodated in a variety of devices ranging from 'microgravity test tubes' or standard 100 mm Petri dishes, to complex, fed-batch bioreactors with automated culture feeding, waste removal and multiple sample draws. Up to 3 levels of containment can be achieved for chemical fixative addition, and passive gas exchange can be provided through hydrophobic membranes. Many additional options exist for designing customized hardware depending on specific science requirements.

  17. 14 CFR 417.103 - Safety organization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety organization. 417.103 Section 417... organization. (a) A launch operator must maintain and document a safety organization. A launch operator must... within the launch operator's organization and between the launch operator and any federal launch range or...

  18. A Real Time Differential GPS Tracking System for NASA Sounding Rockets

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Bauer, Frank (Technical Monitor)

    2000-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads to several hundred miles in altitude. These missions return a variety of scientific data including: chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices to be used on satellites and other spacecraft prior to their use in these more expensive missions. Typically around thirty of these rockets are launched each year, from established ranges at Wallops Island, Virginia; Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico and from a number of ranges outside the United States. Many times launches are conducted from temporary launch ranges in remote parts of the world requiring considerable expense to transport and operate tracking radars. In order to support these missions, an inverse differential GPS system has been developed. The flight system consists of a small, inexpensive receiver, a preamplifier and a wrap-around antenna. A rugged, compact, portable ground station extracts GPS data from the raw payload telemetry stream, performs a real time differential solution and graphically displays the rocket's path relative to a predicted trajectory plot. In addition to generating a real time navigation solution, the system has been used for payload recovery, timing, data timetagging, precise tracking of multiple payloads and slaving of optical tracking systems for over the horizon acquisition. This paper discusses, in detail, the flight and ground hardware, as well as data processing and operational aspects of the system, and provides evidence of the system accuracy.

  19. KSC-08pd1503

    NASA Image and Video Library

    2008-05-30

    CAPE CANAVERAL, Fla. -- Against the dark sky, lights bathe space shuttle Discovery, revealed after rollback of the rotating service structure in preparation for launch on the STS-124 mission. First motion was at 8:33 p.m. and rollback was complete at 9:07 p.m. The rotating structure provides protected access to the shuttle for changeout and servicing of payloads at the pad. It is supported by a rotating bridge that pivots on a vertical axis on the west side of the pad's flame trench. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The pad is cleared to the perimeter gate for operations to fill the external tank with about 500,000 gallons of cryogenic propellants used by the shuttle’s main engines. This is done at the pad approximately eight hours before the scheduled launch. Above the orange external tank is the oxygen vent hood, called the "beanie cap," at the end of the gaseous oxygen vent arm extending from the fixed service structure. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Below is the orbiter access arm with the White Room at the end, flush against the shuttle. The White Room provides access into the shuttle. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. The 14-day flight includes three spacewalks. Launch is scheduled for 5:02 p.m. May 31. Photo credit: NASA/Troy Cryder

  20. A new stratospheric sounding platform based on unmanned aerial vehicle (UAV) droppable from meteorological balloon

    NASA Astrophysics Data System (ADS)

    Efremov, Denis; Khaykin, Sergey; Lykov, Alexey; Berezhko, Yaroslav; Lunin, Aleksey

    High-resolution measurements of climate-relevant trace gases and aerosols in the upper troposphere and stratosphere (UTS) have been and remain technically challenging. The high cost of measurements onboard airborne platforms or heavy stratospheric balloons results in a lack of accurate information on vertical distribution of atmospheric constituents. Whereas light-weight instruments carried by meteorological balloons are becoming progressively available, their usage is constrained by the cost of the equipment or the recovery operations. The evolving need in cost-efficient observations for UTS process studies has led to development of small airborne platforms - unmanned aerial vehicles (UAV), capable of carrying small sensors for in-situ measurements. We present a new UAV-based stratospheric sounding platform capable of carrying scientific payload of up to 2 kg. The airborne platform comprises of a latex meteorological balloon and detachable flying wing type UAV with internal measurement controller. The UAV is launched on a balloon to stratospheric altitudes up to 20 km, where it can be automatically released by autopilot or by a remote command sent from the ground control. Having been released from the balloon the UAV glides down and returns to the launch position. Autopilot using 3-axis gyro, accelerometer, barometer, compas and GPS navigation provides flight stabilization and optimal way back trajectory. Backup manual control is provided for emergencies. During the flight the onboard measurement controller stores the data into internal memory and transmits current flight parameters to the ground station via telemetry. Precise operation of the flight control systems ensures safe landing at the launch point. A series of field tests of the detachable stratospheric UAV has been conducted. The scientific payload included the following instruments involved in different flights: a) stratospheric Lyman-alpha hygrometer (FLASH); b) backscatter sonde; c) electrochemical ozone sonde; d) optical CO2 sensor; e) radioactivity sensor; f) solar radiation sensor. In addition, each payload included temperature sensor, barometric sensor and a GPS receiver. Design features of measurement systems onboard UAV and flight results are presented. Possible applications for atmospheric studies and validation of remote ground-based and space-borne observations is discussed.

  1. Applications of satellite remote sensing to forested ecosystems

    Treesearch

    Louis R. Iverson; Robin Lambert Graham; Elizabeth A. Cook; Elizabeth A. Cook

    1989-01-01

    Since the launch of the first civilian earth-observing satellite in 1972, satellite remote sensing has provided increasingly sophisticated information on the structure and function of forested ecosystems. Forest classification and mapping, common uses of satellite data, have improved over the years as a result of more discriminating sensors, better classification...

  2. STS-100 crew exits the O&C to travel to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The STS-100 crew walks out of the Operations and Checkout Building on their way to Launch Pad 39A and liftoff for an 11-day mission to the International Space Station. Leading in front are Pilot Jeffrey S. Ashby (left) and Commander Kent V. Rominger (right). Behind them are (left to right) Mission Specialists Umberto Guidoni, Yuri Lonchakov and Chris A. Hadfield. Following in the rear are Mission Specialists Scott E. Parazynski (left) and John L. Phillips (right). An international crew, Guidoni represents the European Space Agency, Lonchakov the Russian Aviation and Space Agency and Hadfield the Canadian Space Agency. Space Shuttle Endeavour and its crew will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator System and the UHF Antenna. The mission includes two planned spacewalks for installation of the SSRMS, which will be performed by Parazynski and Hadfield. The mission is also the inaugural flight of Multi-Purpose Logistics Module Raffaello, carrying resupply stowage racks and resupply/return stowage platforms. Liftoff of Space Shuttle Endeavour on mission STS-100 is scheduled at 2:41 p.m. EDT April 19.

  3. STS-100 crew heads for the Astrovan to travel to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Leaving the Operations and Checkout Building, the STS-100 crew waves to well-wishers and heads to the Astrovan for transport to Launch Pad 39A. . Leading in front are Pilot Jeffrey S. Ashby (left) and Commander Kent V. Rominger (right). Behind them are (left to right) Mission Specialists Yuri Lonchakov and Chris A. Hadfield. Next are Mission Specialists Umberto Guidoni (left) and John L. Phillips (right). Following in the rear is Mission Specialist Scott E. Parazynski. An international crew, Guidoni represents the European Space Agency, Lonchakov the Russian Aviation and Space Agency and Hadfield the Canadian Space Agency. Space Shuttle Endeavour and its crew will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator System and the UHF Antenna. The mission includes two planned spacewalks for installation of the SSRMS, which will be performed by Parazynski and Hadfield. The mission is also the inaugural flight of Multi-Purpose Logistics Module Raffaello, carrying resupply stowage racks and resupply/return stowage platforms. Liftoff of Space Shuttle Endeavour on mission STS-100 is scheduled at 2:41 p.m. EDT April 19.

  4. Remote excitation and detection of surface-enhanced Raman scattering from graphene.

    PubMed

    Coca-López, Nicolás; Hartmann, Nicolai F; Mancabelli, Tobia; Kraus, Jürgen; Günther, Sebastian; Comin, Alberto; Hartschuh, Achim

    2018-06-07

    We demonstrate the remote excitation and detection of surface-enhanced Raman scattering (SERS) from graphene using a silver nanowire as a plasmonic waveguide. By investigating a nanowire touching a graphene sheet at only one terminal, we first show the remote excitation of SERS from graphene by propagating surface plasmon polaritons (SPPs) launched by a focused laser over distances on the order of 10 μm. Remote detection of SERS is then demonstrated for the same nanowire by detecting light emission at the distal end of the nanowire that was launched by graphene Raman scattering and carried to the end of the nanowire by SPPs. We then show that the transfer of the excitation and Raman scattered light along the nanowire can also be visualized through spectrally selective back focal plane imaging. Back focal plane images detected upon focused laser excitation at one of the nanowire's tips reveal propagating surface plasmon polaritons at the laser energy and at the energies of the most prominent Raman bands of graphene. With this approach the identification of remote excitation and detection of SERS for nanowires completely covering the Raman scatterer is achieved, which is typically not possible by direct imaging.

  5. Photographic copy of photograph (original print in possession of James ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph (original print in possession of James E. Zelinski, Earth Tech, Huntsville, AL). Photographer unknown. Aerial view (southwest to northeast) of remote sprint launch site #2, nearing completion. The RLOB has been earth-mounded. The limited access sentry station can be seen in the PAR right foreground, behind it are the waste stabilization ponds. Barely discernible is the exclusion area sentry station at the entrance to the sprint field - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 2, West of Mile Marker 220 on State Route 1, 6.0 miles North of Langdon, ND, Nekoma, Cavalier County, ND

  6. KSC-08pd1502

    NASA Image and Video Library

    2008-05-30

    CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center, the rotating service structure, or RSS, has rolled back on its axis to uncover space shuttle Discovery, lighted against the night sky, in preparation for launch on the STS-124 mission. Support for the outer end of the bridge is provided by two eight-wheel, motor-driven trucks (one is seen at bottom left) that move along circular twin rails installed flush with the pad surface. First motion was at 8:33 p.m. and rollback was complete at 9:07 p.m. The structure provides protected access to the shuttle for changeout and servicing of payloads at the pad. It is supported by a rotating bridge that pivots on a vertical axis on the west side of the pad's flame trench. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The pad is cleared to the perimeter gate for operations to fill the external tank with about 500,000 gallons of cryogenic propellants used by the shuttle’s main engines. This is done at the pad approximately eight hours before the scheduled launch. Above the orange external tank is the oxygen vent hood, called the "beanie cap," at the end of the gaseous oxygen vent arm extending from the fixed service structure. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Below is the orbiter access arm with the White Room at the end, flush against the shuttle. The White Room provides access into the shuttle. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. The 14-day flight includes three spacewalks. Launch is scheduled for 5:02 p.m. May 31. Photo credit: NASA/Troy Cryder

  7. 14 CFR 417.403 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.403 General. (a) Public safety. A launch operator must... with launch processing and post-launch operations. (b) Ground safety analysis. A launch operator must...

  8. Landsat: A Global Land-Imaging Project

    USGS Publications Warehouse

    Headley, Rachel

    2010-01-01

    Across nearly four decades since 1972, Landsat satellites continuously have acquired space-based images of the Earth's land surface, coastal shallows, and coral reefs. The Landsat Program, a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), was established to routinely gather land imagery from space; consequently, NASA develops remote-sensing instruments and spacecraft, then launches and validates the satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground-data reception, archiving, product generation, and distribution. The result of this program is a visible, long-term record of natural and human-induced changes on the global landscape.

  9. Landsat: a global land imaging program

    USGS Publications Warehouse

    Byrnes, Raymond A.

    2012-01-01

    Landsat satellites have continuously acquired space-based images of the Earth's land surface, coastal shallows, and coral reefs across four decades. The Landsat Program, a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), was established to routinely gather land imagery from space. In practice, NASA develops remote-sensing instruments and spacecraft, launches satellites, and validates their performance. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground-data reception, archiving, product generation, and distribution. The result of this program is a visible, long-term record of natural and human-induced changes on the global landscape.

  10. Dryden Flight Research Center Overview

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.

    2007-01-01

    This viewgraph document presents a overview of the Dryden Flight Research Center's facilities. Dryden's mission is to advancing technology and science through flight. The mission elements are: perform flight research and technology integration to revolutionize aviation and pioneer aerospace technology, validate space exploration concepts, conduct airborne remote sensing and science observations, and support operations of the Space Shuttle and the ISS for NASA and the Nation. It reviews some of the recent research projects that Dryden has been involved in, such as autonomous aerial refueling, the"Quiet Spike" demonstration on supersonic F-15, intelligent flight controls, high angle of attack research on blended wing body configuration, and Orion launch abort tests.

  11. Earth observing system - Concepts and implementation strategy

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.

    1986-01-01

    The concepts of an Earth Observing System (EOS), an information system being developed by the EOS Science and Mission Requirements Working Group for international use and planned to begin in the 1990s, are discussed. The EOS is designed to study the factors that control the earth's hydrologic cycle, biochemical cycles, and climatologic processes by combining the measurements from remote sensing instruments, in situ measurement devices, and a data and information system. Three EOS platforms are planned to be launched into low, polar, sun-synchronous orbits during the Space Station's Initial Operating Configuration, one to be provided by ESA and two by the United States.

  12. Pan Sharpening Quality Investigation of Turkish In-Operation Remote Sensing Satellites: Applications with Rasat and GÖKTÜRK-2 Images

    NASA Astrophysics Data System (ADS)

    Ozendi, Mustafa; Topan, Hüseyin; Cam, Ali; Bayık, Çağlar

    2016-10-01

    Recently two optical remote sensing satellites, RASAT and GÖKTÜRK-2, launched successfully by the Republic of Turkey. RASAT has 7.5 m panchromatic, and 15 m visible bands whereas GÖKTÜRK-2 has 2.5 m panchromatic and 5 m VNIR (Visible and Near Infrared) bands. These bands with various resolutions can be fused by pan-sharpening methods which is an important application area of optical remote sensing imagery. So that, the high geometric resolution of panchromatic band and the high spectral resolution of VNIR bands can be merged. In the literature there are many pan-sharpening methods. However, there is not a standard framework for quality investigation of pan-sharpened imagery. The aim of this study is to investigate pan-sharpening performance of RASAT and GÖKTÜRK-2 images. For this purpose, pan-sharpened images are generated using most popular pan-sharpening methods IHS, Brovey and PCA at first. This procedure is followed by quantitative evaluation of pan-sharpened images using Correlation Coefficient (CC), Root Mean Square Error (RMSE), Relative Average Spectral Error (RASE), Spectral Angle Mapper (SAM) and Erreur Relative Globale Adimensionnelle de Synthése (ERGAS) metrics. For generation of pan-sharpened images and computation of metrics SharpQ tool is used which is developed with MATLAB computing language. According to metrics, PCA derived pan-sharpened image is the most similar one to multispectral image for RASAT, and Brovey derived pan-sharpened image is the most similar one to multispectral image for GÖKTÜRK-2. Finally, pan-sharpened images are evaluated qualitatively in terms of object availability and completeness for various land covers (such as urban, forest and flat areas) by a group of operators who are experienced in remote sensing imagery.

  13. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we highlight use in the arctic of two different small remotely piloted aircraft (ScanEagle and RAVEN) for remote sensing of ice and ocean conditions as well as surveys of marine mammals. Finally, we explain how these can be used in future networked environments with DTN support not only for the collection of ocean and ice data for maritime domain awareness, but also for monitoring oil spill dynamics in high latitude environments, including spills in and under sea ice. The networked operation of heterogeneous air and ocean vehicle systems using DTN communications methods can provide unprecedented levels of spatial-temporal sampling resolution important to improving arctic remote sensing and maritime domain awareness capabilities.

  14. NPOESS Preparatory Project Validation Program for Ocean Data Products from VIIRS

    NASA Astrophysics Data System (ADS)

    Arnone, R.; Jackson, J. M.

    2009-12-01

    The National Polar-orbiting Operational Environmental Satellite Suite (NPOESS) Program, in partnership with National Aeronautical Space Administration (NASA), will launch the NPOESS Preparatory Project (NPP), a risk reduction and data continuity mission, prior to the first operational NPOESS launch. The NPOESS Program, in partnership with Northrop Grumman Aerospace Systems (NGAS), will execute the NPP Validation program to ensure the data products comply with the requirements of the sponsoring agencies. Data from the NPP Visible/Infrared Imager/Radiometer Suite (VIIRS) will be used to produce Environmental Data Records (EDR's) of Ocean Color/Chlorophyll and Sea Surface Temperature. The ocean Cal/Val program is designed to address an “end to end” capability from sensor to end product and is developed based on existing ongoing government satellite ocean remote sensing capabilities that are currently in use with NASA research and Navy and NOAA operational products. Therefore, the plan focuses on the extension of known reliable methods and capabilities currently used with the heritage sensors that will be extended to the NPP and NPOESS ocean product Cal/Val effort. This is not a fully “new” approach but it is designed to be the most reliable and cost effective approach to developing an automated Cal/Val system for VIIRS while retaining highly accurate procedures and protocols. This presentation will provide an overview of the approaches, data and schedule for the validation of the NPP VIIRS Ocean environmental data products.

  15. Linking Satellites Via Earth "Hot Spots" and the Internet to Form Ad Hoc Constellations

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Frye, Stu; Grosvenor, Sandra; Ingram, Mary Ann; Langley, John; Miranda, Felix; Lee, Richard Q.; Romanofsky, Robert; Zaman, Afoz; Popovic, Zoya

    2004-01-01

    As more assets are placed in orbit, opportunities emerge to combine various sets of satellites in temporary constellations to perform collaborative image collections. Often, new operations concepts for a satellite or set of satellites emerge after launch. To the degree with which new space assets can be inexpensively and rapidly integrated into temporary or "ad hoc" constellations, will determine whether these new ideas will be implemented or not. On the Earth Observing 1 (EO-1) satellite, a New Millennium Program mission, a number of experiments were conducted and are being conducted to demonstrate various aspects of an architecture that, when taken as a whole, will enable progressive mission autonomy. In particular, the target architecture will use adaptive ground antenna arrays to form, as close as possible, the equivalent of wireless access points for low earth orbiting satellites. Coupled with various ground and flight software and the Internet. the architecture enables progressive mission autonomy. Thus, new collaborative sensing techniques can be implemented post-launch. This paper will outline the overall operations concept and highlight details of both the research effort being conducted in

  16. Telescience Testbed Program: A study of software for SIRTF instrument control

    NASA Technical Reports Server (NTRS)

    Young, Erick T.

    1992-01-01

    As a continued element in the Telescience Testbed Program (TTP), the University of Arizona Steward Observatory and the Electrical and Computer Engineering Department (ECE) jointly developed a testbed to evaluate the Operations and Science Instrument System (OASIS) software package for remote control of an instrument for the Space Infrared Telescope Facility (SIRTF). SIRTF is a cryogenically-cooled telescope with three focal plane instruments that will be the infrared element of NASA's Great Observatory series. The anticipated launch date for SIRTF is currently 2001. Because of the complexity of the SIRTF mission, it was not expected that the OASIS package would be suitable for instrument control in the flight situation, however, its possible use as a common interface during the early development and ground test phases of the project was considered. The OASIS package, developed at the University of Colorado for control of the Solar Mesosphere Explorer (SME) satellite, serves as an interface between the operator and the remote instrument which is connected via a network. OASIS provides a rudimentary windowing system as well as support for standard spacecraft communications protocols. The experiment performed all of the functions required of the MIPS simulation program. Remote control of the instrument was demonstrated but found to be inappropriate for SIRTF at this time for the following reasons: (1) programming interface is too difficult; (2) significant computer resources were required to run OASIS; (3) the communications interface is too complicated; (4) response time was slow; and (5) quicklook of image data was not possible.

  17. Landsat: A global land-observing program

    USGS Publications Warehouse

    ,

    2005-01-01

    Landsat represents the world’s longest continuously acquired collection of space-based land remote sensing data. The Landsat Project is a joint initiative of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) designed to gather Earth resource data from space. NASA developed and launched the spacecrafts, while the USGS handles the operations, maintenance, and management of all ground data reception, processing, archiving, product generation, and distribution.Landsat satellites have been collecting images of the Earth’s surface for more than thirty years. Landsat’s Global Survey Mission is to repeatedly capture images of the Earth’s land mass, coastal boundaries, and coral reefs, and to ensure that sufficient data are acquired to support the observation of changes on the Earth’s land surface and surrounding environment. NASA launched the first Landsat satellite in 1972, and the most recent one, Landsat 7, in 1999. Landsats 5 and 7 continue to capture hundreds of additional images of the Earth’s surface each day. These images provide a valuable resource for people who work

  18. On-orbit Characterization of RVS for MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V.; Chiang, K.; Wu, A.; Guenther, B.; Barnes, W.

    2004-01-01

    Response versus scan angle (RVS) is a key calibration parameter for remote sensing radiometers that make observations using a scanning optical system, such as a scan mirror in MODIS and GLI or a rotating telescope in SeaWiFS and VIIRS, since the calibration is typically performed at a fixed viewing angle while the Earth scene observations are made over a range of viewing angles. Terra MODIS has been in operation for more than four years since its launch in December 1999. It has 36 spectral bands covering spectral range from visible (VIS) to long-wave infrared (LWIR). It is a cross-track scanning radiometer using a two-sided paddle wheel scan mirror, making observations over a wide field of view (FOV) of +/-55 deg from the instrument nadir. This paper describes on-orbit characterization of MODIS RVS for its thermal emissive bands (TEB), using the Earth view data collected during Terra spacecraft deep space maneuvers (DSM). Comparisons with pre-launch analysis and early on-orbit measurements are also provided.

  19. SAR-EDU - An education initiative for applied Synthetic Aperture Radar remote sensing

    NASA Astrophysics Data System (ADS)

    Eckardt, Robert; Richter, Nicole; Auer, Stefan; Eineder, Michael; Roth, Achim; Hajnsek, Irena; Walter, Diana; Braun, Matthias; Motagh, Mahdi; Pathe, Carsten; Pleskachevsky, Andrey; Thiel, Christian; Schmullius, Christiane

    2013-04-01

    Since the 1970s, radar remote sensing techniques have evolved rapidly and are increasingly employed in all fields of earth sciences. Applications are manifold and still expanding due to the continuous development of new instruments and missions as well as the availability of very high-quality data. The trend worldwide is towards operational employment of the various algorithms and methods that have been developed. However, the utilization of operational services does not keep up yet with the rate of technical developments and the improvements in sensor technology. With the enhancing availability and variety of space borne Synthetic Aperture Radar (SAR) data and a growing number of analysis algorithms the need for a vital user community is increasing. Therefore the German Aerospace Center (DLR) together with the Friedrich-Schiller-University Jena (FSU) and the Technical University Munich (TUM) launched the education initiative SAR-EDU. The aim of the project is to facilitate access to expert knowledge in the scientific field of radar remote sensing. Within this effort a web portal will be created to provide seminar material on SAR basics, methods and applications to support both, lecturers and students. The overall intension of the project SAR-EDU is to provide seminar material for higher education in radar remote sensing covering the topic holistically from the very basics to the most advanced methods and applications that are available. The principles of processing and interpreting SAR data are going to be taught using test data sets and open-source as well as commercial software packages. The material that is provided by SAR-EDU will be accessible at no charge from a DLR web portal. The educational tool will have a modular structure, consisting of separate modules that broach the issue of a particular topic. The aim of the implementation of SAR-EDU as application-oriented radar remote sensing educational tool is to advocate the development and wider use of operational services on the base of pre-existing algorithms and sensors on the one hand, and to aid the extension of radar remote sensing techniques to a broader field of application on the other. SAR-EDU therefore combines the knowledge, expertise and experience of an excellent German consortium.

  20. 14 CFR 417.405 - Ground safety analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hazard from affecting the public. A launch operator must incorporate the launch site operator's systems... personnel who are knowledgeable of launch vehicle systems, launch processing, ground systems, operations...) Begin a ground safety analysis by identifying the systems and operations to be analyzed; (2) Define the...

  1. 14 CFR 417.405 - Ground safety analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hazard from affecting the public. A launch operator must incorporate the launch site operator's systems... personnel who are knowledgeable of launch vehicle systems, launch processing, ground systems, operations...) Begin a ground safety analysis by identifying the systems and operations to be analyzed; (2) Define the...

  2. 14 CFR 417.25 - Post launch report.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post launch...

  3. 14 CFR 417.25 - Post launch report.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post launch...

  4. 14 CFR 417.25 - Post launch report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post launch...

  5. 14 CFR 417.25 - Post launch report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post launch...

  6. 14 CFR 417.25 - Post launch report.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post launch...

  7. Ground System for Solar Dynamics Observatory (SDO) Mission

    NASA Technical Reports Server (NTRS)

    Tann, Hun K.; Silva, Christopher J.; Pages, Raymond J.

    2005-01-01

    NASA s Goddard Space Flight Center (GSFC) has recently completed its Critical Design Review (CDR) of a new dual Ka and S-band ground system for the Solar Dynamics Observatory (SDO) Mission. SDO, the flagship mission under the new Living with a Star Program Office, is one of GSFC s most recent large-scale in-house missions. The observatory is scheduled for launch in August 2008 from the Kennedy Space Center aboard an Atlas-5 expendable launch vehicle. Unique to this mission is an extremely challenging science data capture requirement. The mission is required to capture 99.99% of available science over 95% of all observation opportunities. Due to the continuous, high volume (150 Mbps) science data rate, no on-board storage of science data will be implemented on this mission. With the observatory placed in a geo-synchronous orbit at 36,000 kilometers within view of dedicated ground stations, the ground system will in effect implement a "real-time" science data pipeline with appropriate data accounting, data storage, data distribution, data recovery, and automated system failure detection and correction to keep the science data flowing continuously to three separate Science Operations Centers (SOCs). Data storage rates of approx. 45 Tera-bytes per month are expected. The Mission Operations Center (MOC) will be based at GSFC and is designed to be highly automated. Three SOCs will share in the observatory operations, each operating their own instrument. Remote operations of a multi-antenna ground station in White Sands, New Mexico from the MOC is part of the design baseline.

  8. Spin Research Vehicle (SRV) in B-52 Captive Flight

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This in-flight photo of NASA's B-52 mothership shows the bomber carrying a subscale model of an Air Force F-15, a remotely piloted vehicle that was used to conduct spin research. The F-15 Remotely Piloted Research Vehicles (RPRV) was air launched from the B-52 at approximately 45,000 feet and was controlled by a pilot in a ground cockpit complete with flight controls and a television screen. The F-15 model in this particular configuration was known as the Spin Research Vehicle (SRV). NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  9. Architectures Toward Reusable Science Data Systems

    NASA Astrophysics Data System (ADS)

    Moses, J. F.

    2014-12-01

    Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building ground systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research, NOAA's weather satellites and USGS's Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today. System functions such as ingest, product generation and distribution need to be configured and performed in a consistent and repeatable way with an emphasis on scalability. This paper will examine the key architectural elements of several NASA satellite data processing systems currently in operation and under development that make them suitable for scaling and reuse. Examples of architectural elements that have become attractive include virtual machine environments, standard data product formats, metadata content and file naming, workflow and job management frameworks, data acquisition, search, and distribution protocols. By highlighting key elements and implementation experience the goal is to recognize architectures that will outlast their original application and be readily adaptable for new applications. Concepts and principles are explored that lead to sound guidance for SDS developers and strategists.

  10. Architectures Toward Reusable Science Data Systems

    NASA Technical Reports Server (NTRS)

    Moses, John

    2015-01-01

    Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research and NOAAs Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today. System functions such as ingest, product generation and distribution need to be configured and performed in a consistent and repeatable way with an emphasis on scalability. This paper will examine the key architectural elements of several NASA satellite data processing systems currently in operation and under development that make them suitable for scaling and reuse. Examples of architectural elements that have become attractive include virtual machine environments, standard data product formats, metadata content and file naming, workflow and job management frameworks, data acquisition, search, and distribution protocols. By highlighting key elements and implementation experience we expect to find architectures that will outlast their original application and be readily adaptable for new applications. Concepts and principles are explored that lead to sound guidance for SDS developers and strategists.

  11. Robotics technology developments in the United States space telerobotics program

    NASA Technical Reports Server (NTRS)

    Lavery, David

    1994-01-01

    In the same way that the launch of Yuri Gagarin in April 1961 announced the beginning of human space flight, last year's flight of the German ROTEX robot flight experiment is heralding the start of a new era of space robotics. After a gap of twelve years since the introduction of a new capability in space remote manipulation, ROTEX is the first of at least ten new robotic systems and experiments which will fly before the year 2000. As a result of redefining the development approach for space robotic systems, and capitalizing on opportunities associated with the assembly and maintenance of the space station, the space robotics community is preparing a whole new generation of operational robotic capabilities. Expanding on the capabilities of earlier manipulation systems such as the Viking and Surveyor soil scoops, the Russian Lunakhods, and the Shuttle Remote Manipulator System (RMS), these new space robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces.

  12. The role of remotely sensed and relayed data in the Delaware River Basin

    NASA Technical Reports Server (NTRS)

    Paulson, R. W.

    1970-01-01

    A discussion is presented of the planned integration of the existing Delaware River Basin water quality monitoring and data processing systems with a data relay experiment proposed for the Earth Resources Technology Satellite (ERTS)-A, which will be launched in 1972. The experiment is designed to use ERTS-A as a data relay link for a maximum of 20 hydrologic stations in the basin, including streamgaging, reservoir level, ground water level,and water quality monitoring stations. This experiment has the potential for reducing the timelag between data collection and dissemination to less than 12 hours. At present there is a significant timelag between the time when the data are recorded at a monitoring site and the water resources agencies receive the data. The timelag exists because most of these instruments operate in remote locations without telementry, and the data records are removed manually, generally at a weekly frequency. For most water quality monitoring, the data do not reach water resources agencies for a period of 2 weeks to 2 months.

  13. Spaceborne Microwave Instrument for High Resolution Remote Sensing of the Earth's Surface Using a Large-Aperture Mesh Antenna

    NASA Technical Reports Server (NTRS)

    Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.

    2001-01-01

    This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.

  14. 66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS IN CONSOLE LOCATED CENTRALLY IN SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT IN BACKGROUND: LAUNCH OPERATOR, LAUNCH ANALYST, AND FACILITIES PANELS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. Spectral reflectance of five hardwood tree species in southern Indiana

    Treesearch

    Dale R. Weigel; J.C. Randolph

    2013-01-01

    The use of remote sensing to identify forest species has been ongoing since the launch of Landsat-1 using MSS imagery. The ability to separate hardwoods from conifers was accomplished by the 1980s. However, distinguishing individual hardwood species is more problematic due to similar spectral and phenological characteristics. With the launch of commercial satellites...

  16. Photographic copy of a photograph, dated June 1993 (original print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of a photograph, dated June 1993 (original print in the possession of CSSD-HO, Huntsville, AL). Gerald Greenwood, photographer. Close-up view of sprint cell at missile field of remote sprint launch site #3, with launch cell cover marked "inert". Adjacent and to the right is the launch preparation equipment chamber (LPEC) cover. Other cell covers can be seen in the background - Stanley R. Mickelsen Safeguard Complex, Exclusion Area Sentry Station, At Service Road entrance to Missile Field, Nekoma, Cavalier County, ND

  17. Distributed Web-Based Expert System for Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar

    2005-01-01

    The simulation and modeling of launch operations is based on a representation of the organization of the operations suitable to experiment of the physical, procedural, software, hardware and psychological aspects of space flight operations. The virtual test bed consists of a weather expert system to advice on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, and the risk impact on human health. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.

  18. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining a License § 420.29 Launch site location review for unproven launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall...

  19. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining a License § 420.29 Launch site location review for unproven launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall...

  20. 73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED NEAR CENTER OF SOUTH WALL OF SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT ON WALL IN BACKGROUND: COMMUNICATIONS HEADSET AND FOOT PEDAL IN FORGROUND. ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. Application of System Operational Effectiveness Methodology to Space Launch Vehicle Development and Operations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Kelley, Gary W.

    2012-01-01

    The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.

  2. VIDEOR: cultural heritage risk assessment and monitoring on the Web

    NASA Astrophysics Data System (ADS)

    Monteleone, Antonio; Dore, Nicole; Giovagnoli, Annamaria; Cacace, C.

    2016-08-01

    Cultural heritage is constantly threatened by several factors, such as anthropic activities (e.g. urbanization, pollution) and natural events (e.g. landslides, subsidence) that compromise cultural assets conservation and integrity over time. Italy is the country with the highest number of UNESCO cultural and natural World Heritage sites (51) containing both monuments and archaeological assets of global significance that need to be preserved for future generations, as declared and requested both by UNESCO and the European Commission. VIDEOR, the first web-service completely dedicated to cultural heritage, arises as support tool to institutions and organisations responsible of CH safeguard, with the goal to guarantee a constant and continuous monitoring of cultural assets considered to be at risk. Thanks to its services, VIDEOR allows a periodic situation evaluation, performed with the use of satellite remote sensing data (both optical and SAR) and aerial platform remote sensing data (UAVs), these last used when satellites identify a critical situation that requires deeper analyses. This constant and periodic monitoring will allow not only always updated information about the asset health status, but also early warnings launched by the operative center (NAIS) directly to experts of the responsible institutions (ISCR) after risk identification. The launch of early warnings will be essential for triggering promptly activities of preventive restoration, a less expensive way of intervention if compared to the post-event restoration, both in economic terms and in terms of historical preservation of a country.

  3. Operationally efficient propulsion system study (OEPSS) data book. Volume 7; Launch Operations Index (LOI) Design Features and Options

    NASA Technical Reports Server (NTRS)

    Ziese, James M.

    1992-01-01

    A design tool of figure of merit was developed that allows the operability of a propulsion system design to be measured. This Launch Operations Index (LOI) relates Operations Efficiency to System Complexity. The figure of Merit can be used by conceptual designers to compare different propulsion system designs based on their impact on launch operations. The LOI will improve the design process by making sure direct launch operations experience is a necessary feedback to the design process.

  4. Small satellite space operations

    NASA Technical Reports Server (NTRS)

    Reiss, Keith

    1994-01-01

    CTA Space Systems has played a premier role in the development of the 'lightsat' programs of the 80's and 90's. The high costs and development times associated with conventional LEO satellite design, fabrication, launch, and operations continue to motivate the development of new methodologies, techniques, and generally low cost and less stringently regulated satellites. These spacecraft employ low power 'lightsat' communications (versus TDRSS for NASA's LEO's) and typically fly missions with payload/experiment suites that can succeed, for example, without heavily redundant backup systems and large infrastructures of personnel and ground support systems. Such small yet adaptable satellites are also typified by their very short contract-to-launch times (often one to two years). This paper reflects several of the methodologies and perspectives of our successful involvement in these innovative programs and suggests how they might relieve NASA's mounting pressures to reduce the cost of both the spacecraft and their companion mission operations. It focuses on the use of adaptable, sufficiently powerful yet inexpensive PC-based ground systems for wide ranging user terminal (UT) applications and master control facilities for mission operations. These systems proved themselves in successfully controlling more than two dozen USAF, USN, and ARPA satellites at CTA/SS. UT versions have linked with both GEO and LEO satellites and functioned autonomously in relay roles often in remote parts of the world. LEO applications particularly illustrate the efficacy of these concepts since a user can easily mount a lightweight antenna, usually an omni or helix with light duty rotors and PC-based drivers. A few feet of coax connected to a small transceiver module (the size of a small PC) and a serial line to an associated PC establishes a communications link and together with the PC constitute a viable ground station. Applications included geomagnetic mapping; spaceborne solid state recorder validation; global store-and-forward data communications for both scientific and military purposes such as Desert Storm; UHF transponder services for both digital data and voice using a constellation; remote sensor monitoring of weather and oceanographic conditions; classified payloads; and UHF spectrum surveillance. Ground processing has been accomplished by automatic unattended or manual operation. Management of multiple assets highlights the relative ease with which two constellations totaling nine satellites were controlled from one system including constellation station keeping. Our experience in small end-to-end systems including concurrent design, development, and testing of the flight and operational ground systems offers low cost approaches to NASA scientific satellite operations of the 1990's.

  5. Enhancing moderate-resolution ocean color products over coastal/inland waters (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pahlevan, Nima; Schott, John R.; Zibordi, Giuseppe

    2016-10-01

    With the successful launch of Landsat-8 in 2013 followed by a very recent launch of Sentinel-2A, we are entering a new area where frequent moderate resolution water quality products over coastal/inland waters will be available to scientists and operational agencies. Although designed for land observations, the Operational Land Imager (OLI) has proven to provide high-fidelity products in these aquatic systems where coarse-resolution ocean color imagers fail to provide valid observations. High-quality, multi-scale ocean color products can give insights into the biogeochemical/physical processes from the upstream in watersheds, into near-shore regions, and further out in ocean basins. In this research, we describe a robust cross-calibration approach, which facilitates seamless ocean color products at multi scales. The top-of-atmosphere (TOA) OLI imagery is cross-calibrated against near-simultaneous MODIS and VIIRS ocean color observations in high-latitude regions. This allows for not only examining the overall relative performance of OLI but also for characterizing non-uniformity (i.e., banding) across its swath. The uncertainty of this approach is, on average, found to be less than 0.5% in the blue channels. The adjustments made for OLI TOA reflectance products are then validated against in-situ measurements of remote sensing reflectance collected in research cruises or at the AERONET-OC.

  6. Earth Observation from Space - The Issue of Environmental Sustainability

    NASA Technical Reports Server (NTRS)

    Durrieu, Sylvie; Nelson, Ross F.

    2013-01-01

    Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given that they're rare event, space launches may be benign, but study is merited on upper stratospheric and exospheric layers given the chemical activity associated with rocket combustion by-products. (3) Minimization of Type II error should be considered in situations where minimization of Type I error greatly hampers or precludes our ability to correct the environmental condition being studied. (4) In certain situations, airborne collects may be less expensive and more environmentally benign, and comparative studies should be done to determine which path is wisest. (5) International cooperation and data sharing will reduce instrument and launch costs and mission redundancy. Given fiscal concerns of most of the major space agencies e e.g. NASA, ESA, CNES e it seems prudent to combine resources.

  7. 14 CFR 417.117 - Reviews.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... information: (i) Readiness of launch vehicle and payload. (ii) Readiness of any flight safety system and... of a launch safety review must ensure satisfaction of the following criteria: (i) A launch operator... operator must resolve all safety related action items. (ii) A launch operator must assign and certify...

  8. Modified Universal Design Survey: Enhancing Operability of Launch Vehicle Ground Crew Worksites

    NASA Technical Reports Server (NTRS)

    Blume, Jennifer L.

    2010-01-01

    Operability is a driving requirement for next generation space launch vehicles. Launch site ground operations include numerous operator tasks to prepare the vehicle for launch or to perform preflight maintenance. Ensuring that components requiring operator interaction at the launch site are designed for optimal human use is a high priority for operability. To promote operability, a Design Quality Evaluation Survey based on Universal Design framework was developed to support Human Factors Engineering (HFE) evaluation for NASA s launch vehicles. Universal Design per se is not a priority for launch vehicle processing however; applying principles of Universal Design will increase the probability of an error free and efficient design which promotes operability. The Design Quality Evaluation Survey incorporates and tailors the seven Universal Design Principles and adds new measures for Safety and Efficiency. Adapting an approach proven to measure Universal Design Performance in Product, each principle is associated with multiple performance measures which are rated with the degree to which the statement is true. The Design Quality Evaluation Survey was employed for several launch vehicle ground processing worksite analyses. The tool was found to be most useful for comparative judgments as opposed to an assessment of a single design option. It provided a useful piece of additional data when assessing possible operator interfaces or worksites for operability.

  9. Indicators of international remote sensing activities

    NASA Technical Reports Server (NTRS)

    Spann, G. W.

    1977-01-01

    The extent of worldwide remote sensing activities, including the use of satellite and high/medium altitude aircraft data was studied. Data were obtained from numerous individuals and organizations with international remote sensing responsibilities. Indicators were selected to evaluate the nature and scope of remote sensing activities in each country. These indicators ranged from attendance at remote sensing workshops and training courses to the establishment of earth resources satellite ground stations and plans for the launch of earth resources satellites. Results indicate that this technology constitutes a rapidly increasing component of environmental, land use, and natural resources investigations in many countries, and most of these countries rely on the LANDSAT satellites for a major portion of their data.

  10. Landsat: A global land-imaging mission

    USGS Publications Warehouse

    ,

    2012-01-01

    Across four decades since 1972, Landsat satellites have continuously acquired space-based images of the Earth's land surface, coastal shallows, and coral reefs. The Landsat Program, a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), was established to routinely gather land imagery from space. NASA develops remote-sensing instruments and spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and distribution. The result of this program is a long-term record of natural and human induced changes on the global landscape.

  11. Storage, retrieval, and analysis of ST data

    NASA Technical Reports Server (NTRS)

    Albrecht, R.

    1984-01-01

    Space Telescope can generate multidimensional image data, very similar in nature to data produced with microdensitometers. An overview is presented of the ST science ground system between carrying out the observations and the interactive analysis of preprocessed data. The ground system elements used in data archival and retrieval are described and operational procedures are discussed. Emphasis is given to aspects of the ground system that are relevant to the science user and to general principles of system software development in a production environment. While the system being developed uses relatively conservative concepts for the launch baseline, concepts were developed to enhance the ground system. This includes networking, remote access, and the utilization of alternate data storage technologies.

  12. Informed maintenance for next generation reusable launch systems

    NASA Astrophysics Data System (ADS)

    Fox, Jack J.; Gormley, Thomas J.

    2001-03-01

    Perhaps the most substantial single obstacle to progress of space exploration and utilization of space for human benefit is the safety & reliability and the inherent cost of launching to, and returning from, space. The primary influence in the high costs of current launch systems (the same is true for commercial and military aircraft and most other reusable systems) is the operations, maintenance and infrastructure portion of the program's total life cycle costs. Reusable Launch Vehicle (RLV) maintenance and design have traditionally been two separate engineering disciplines with often conflicting objectives - maximizing ease of maintenance versus optimizing performance, size and cost. Testability analysis, an element of Informed Maintenance (IM), has been an ad hoc, manual effort, in which maintenance engineers attempt to identify an efficient method of troubleshooting for the given product, with little or no control over product design. Therefore, testability deficiencies in the design cannot be rectified. It is now widely recognized that IM must be engineered into the product at the design stage itself, so that an optimal compromise is achieved between system maintainability and performance. The elements of IM include testability analysis, diagnostics/prognostics, automated maintenance scheduling, automated logistics coordination, paperless documentation and data mining. IM derives its heritage from complimentary NASA science, space and aeronautic enterprises such as the on-board autonomous Remote Agent Architecture recently flown on NASA's Deep Space 1 Probe as well as commercial industries that employ quick turnaround operations. Commercial technologies and processes supporting NASA's IM initiatives include condition based maintenance technologies from Boeing's Commercial 777 Aircraft and Lockheed-Martin's F-22 Fighter, automotive computer diagnostics and autonomous controllers that enable 100,000 mile maintenance free operations, and locomotive monitoring system software. This paper will summarize NASA's long-term strategy, development, and implementation plans for Informed Maintenance for next generation RLVs. This will be done through a convergence into a single IM vision the work being performed throughout NASA, industry and academia. Additionally, a current status of IM development throughout NASA programs such as the Space Shuttle, X-33, X-34 and X-37 will be provided and will conclude with an overview of near-term work that is being initiated in FY00 to support NASA's 2 nd Generation Reusable Launch Vehicle Program.

  13. 3D Printing of Bench

    NASA Image and Video Library

    2018-02-09

    Nathan Gelino, a NASA research engineer at Kennedy Space Center in Florida displays a 3-D printed cylinder used for compression testing. Engineers at the center’s Swamp Works measured how much force it takes to break the structure before moving on to 3-D printing with a simulated lunar regolith, or dirt, and polymers. Next, Gelino and his group are working on a Zero Launch Mass 3-D printer that can be used for construction projects on the Moon and Mars, even for troops in remote locations here on Earth. Zero launch mass refers to the fact that the printer uses these pellets to prove that space explorers can use resources at their destination instead of taking everything with them, saving them launch mass and money. Gelino and his team are working with Marshall Space Flight Center in Huntsville, Alabama, and the U.S. Army Corps of Engineers to develop a system that can 3-D print barracks in remote locations on Earth, using the resources they have where they are.

  14. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    NASA Astrophysics Data System (ADS)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build < 4 kg payloads. The high-altitude balloon program provides an engaging laboratory, gives challenging field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Furthermore this program has generated many front page news reports along with significant TV coverage because of its connection to hands-on learning for students and adults of all ages, connection to understanding climate change and ways to mitigate global warming, and the excitement of taking measurements in a much uncharted region of our atmosphere. Teaching the scientific method or learning cycle (theory, research, instrumentation, operations, data analysis, and presentation) is a significant pedagogical building block that stimulates and retains students and prepares them well for graduate school and professional careers. Students obtain a personal ownership of their education when they engage in state-of-the-art balloon launch capability into the "unknown" with real-time data (50 Kb) with command interaction. The scientific method comes alive with creativity, problem solving, fun, and multidisciplinary hands-on team work. More students in basic science (and liberal arts) and public have an awareness of the environment, atmosphere, space, and heavens by direct probing and remote sensing from "New Heights" (over 98% of atmosphere at 30 km altitude).

  15. 2. VIEW OF WEST FACE OF LAUNCH OPERATIONS BUILDING. BUNKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF WEST FACE OF LAUNCH OPERATIONS BUILDING. BUNKER PERISCOPE VISIBLE ON NORTH END OF ROOF. ESCAPE TUNNEL AND CABLE SHED VISIBLE ON NORTH FACE. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. 65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS LOCATED NEAR CENTER OF SLC-3E CONTROL ROOM. NOTE 30-CHANNEL COMMUNICATIONS PANELS. PAYLOAD ENVIRONMENTAL CONTROL AND MONITORING PANELS (LEFT) AND LAUNCH OPERATORS PANEL (RIGHT) IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. 33 CFR 117.42 - Remotely operated and automated drawbridges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS General Requirements § 117.42 Remotely operated and... authorize a drawbridge to operate under an automated system or from a remote location. (b) If the request is... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Remotely operated and automated...

  18. Project MEDSAT: The design of a remote sensing platform for malaria research and control

    NASA Astrophysics Data System (ADS)

    1991-04-01

    Project MEDSAT was proposed with the specific goal of designing a satellite to remotely sense pertinent information useful in establishing strategies to control malaria. The 340 kg MEDSAT satellite is to be inserted into circular earth orbit aboard the Pegasus Air-Launched Space Booster at an inclination of 21 degrees and an altitude of 473 km. It is equipped with a synthetic aperture radar and a visible thermal/infrared sensor to remotely sense conditions at the target area of Chiapas, Mexico. The orbit is designed so that MEDSAT will pass over the target site twice each day. The data from each scan will be downlinked to Hawaii for processing, resulting in maps indicating areas of high malaria risk. These will be distributed to health officials at the target site. A relatively inexpensive launch by Pegasus and a design using mainly proven, off-the-shelf technology permit a low mission cost, while innovations in the satellite controls and the scientific instruments allow a fairly complex mission.

  19. Project MEDSAT: The design of a remote sensing platform for malaria research and control

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Project MEDSAT was proposed with the specific goal of designing a satellite to remotely sense pertinent information useful in establishing strategies to control malaria. The 340 kg MEDSAT satellite is to be inserted into circular earth orbit aboard the Pegasus Air-Launched Space Booster at an inclination of 21 degrees and an altitude of 473 km. It is equipped with a synthetic aperture radar and a visible thermal/infrared sensor to remotely sense conditions at the target area of Chiapas, Mexico. The orbit is designed so that MEDSAT will pass over the target site twice each day. The data from each scan will be downlinked to Hawaii for processing, resulting in maps indicating areas of high malaria risk. These will be distributed to health officials at the target site. A relatively inexpensive launch by Pegasus and a design using mainly proven, off-the-shelf technology permit a low mission cost, while innovations in the satellite controls and the scientific instruments allow a fairly complex mission.

  20. Development of wide area environment accelerator operation and diagnostics method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Akito; Furukawa, Kazuro

    2015-08-01

    Remote operation and diagnostic systems for particle accelerators have been developed for beam operation and maintenance in various situations. Even though fully remote experiments are not necessary, the remote diagnosis and maintenance of the accelerator is required. Considering remote-operation operator interfaces (OPIs), the use of standard protocols such as the hypertext transfer protocol (HTTP) is advantageous, because system-dependent protocols are unnecessary between the remote client and the on-site server. Here, we have developed a client system based on WebSocket, which is a new protocol provided by the Internet Engineering Task Force for Web-based systems, as a next-generation Web-based OPI using the Experimental Physics and Industrial Control System Channel Access protocol. As a result of this implementation, WebSocket-based client systems have become available for remote operation. Also, as regards practical application, the remote operation of an accelerator via a wide area network (WAN) faces a number of challenges, e.g., the accelerator has both experimental device and radiation generator characteristics. Any error in remote control system operation could result in an immediate breakdown. Therefore, we propose the implementation of an operator intervention system for remote accelerator diagnostics and support that can obviate any differences between the local control room and remote locations. Here, remote-operation Web-based OPIs, which resolve security issues, are developed.

  1. GLC_Exec v. 1.2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgore, Roger Martin; Soloboda, Alexander Joseph

    Launching a rocket involves a controlled transition of the rocket subsystems from a quiescent state to the launch state (i.e., lift-off). In order to launch safely, with confidence that the rocket will successfully complete its mission, the state-of-health for all rocket subsystems and critical ground support equipment must be closely monitored throughout the launch process. This is accomplished by the ground support engineers using mission-specific ground support equipment. A subset of the GSE, the Remote Electrical Ground Interface System (REGIS), is located nearest the rocket to which it's connected via the Umbilical, a wiring harness providing power, sensor, and controlmore » lines. The REGIS also connects via Ethernet to the Ground Launch Computer (GLC).« less

  2. 4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM NORTH FACE OF LAUNCH OPERATIONS BUILDING. TOPS OF BUNKER PERISCOPE AND FLAGPOLE ON ROOF OF LAUNCH OPERATIONS BUILDING IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Fundamentals and advances in the development of remote welding fabrication systems

    NASA Technical Reports Server (NTRS)

    Agapakis, J. E.; Masubuchi, K.; Von Alt, C.

    1986-01-01

    Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.

  4. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2002-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic airbreathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjet/scramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demonstrate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and development cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  5. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2003-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic air- breathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjetkcramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demon- strate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and develop ment cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  6. Terrestrial Applications of the Thermal Infrared Sensor, TIRS

    NASA Technical Reports Server (NTRS)

    Smith, Ramsey L.; Thome, Kurtis; Richardson, Cathleen; Irons, James; Reuter, Dennis

    2009-01-01

    Landsat satellites have acquired single-band thermal images since 1978. The next satellile in the heritage, Landsat Data Continuity Mission (LDCM), is scheduled to launch in December 2012. LDCM will contain the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), where TIRS operates in concert with, but independently of OLI. This paper will provide an overview of the remote sensing instrument TIRS. The T1RS instrument was designed at National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) where it will be fabricated and calibrated as well. Protecting the integrity of the Scientific Data that will be collected from TIRS played a strong role in definition of the calibration test equipment and procedures used for the optical, radiometric, and spatial calibration. The data that will be produced from LCDM will continue to be used world wide for environment monitoring and resource management.

  7. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    A recent NASA application of a remotely-piloted drop model to studies of the high angle-of-attack and spinning characteristics of a fighter configuration has provided an opportunity to evaluate and develop parameter estimation methods for the complex aerodynamic environment associated with high angles of attack. The paper discusses the overall drop model operation including descriptions of the model, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods used. Static and dynamic stability derivatives were obtained for an angle-of-attack range from -20 deg to 53 deg. The results of the study indicated that the variations of the estimates with angle of attack were consistent for most of the static derivatives, and the effects of configuration modifications to the model (such as nose strakes) were apparent in the static derivative estimates. The dynamic derivatives exhibited greater uncertainty levels than the static derivatives, possibly due to nonlinear aerodynamics, model response characteristics, or additional derivatives.

  8. Geostationary Operational Environmental Statellite(GEOS-N report)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Advanced Missions Analysis Office (AMAO) of GSFC has completed a study of the Geostationary Operational Environmental Satellites (GOES-N) series. The feasibility, risks, schedules, and associated costs of advanced space and ground system concepts responsive to National Oceanic and Atmospheric Administration (NOAA) requirements were evaluated. The study is the first step in a multi-phased procurement effort that is expected to result in launch ready hardware in the post 2000 time frame. This represents the latest activity of GSFC in translating meteorological requirements of NOAA into viable space systems in geosynchronous earth orbits (GEO). GOES-N represents application of the latest spacecraft, sensor, and instrument technologies to enhance NOAA meteorological capabilities via remote and in-situ sensing from GEO. The GOES-N series, if successfully developed, could become another significant step in NOAA weather forecasting space systems, meeting increasingly complex emerging national needs for that agency's services.

  9. Bandwidth efficient bidirectional 5 Gb/s overlapped-SCM WDM PON with electronic equalization and forward-error correction.

    PubMed

    Buset, Jonathan M; El-Sahn, Ziad A; Plant, David V

    2012-06-18

    We demonstrate an improved overlapped-subcarrier multiplexed (O-SCM) WDM PON architecture transmitting over a single feeder using cost sensitive intensity modulation/direct detection transceivers, data re-modulation and simple electronics. Incorporating electronic equalization and Reed-Solomon forward-error correction codes helps to overcome the bandwidth limitation of a remotely seeded reflective semiconductor optical amplifier (RSOA)-based ONU transmitter. The O-SCM architecture yields greater spectral efficiency and higher bit rates than many other SCM techniques while maintaining resilience to upstream impairments. We demonstrate full-duplex 5 Gb/s transmission over 20 km and analyze BER performance as a function of transmitted and received power. The architecture provides flexibility to network operators by relaxing common design constraints and enabling full-duplex operation at BER ∼ 10(-10) over a wide range of OLT launch powers from 3.5 to 8 dBm.

  10. Status of Current and Future Remote Sensing with EO-1 Hyperion

    NASA Technical Reports Server (NTRS)

    Ungar, Stephen

    2006-01-01

    The Earth Observing-One (EO-1) satellite, launched in November of 2000, will complete six full years of operation near the end of this year. Observations from the Hyperion Imaging Spectrometer on board EO-1 have contributed to over 300 papers in refereed journals, conference proceeds and other presentations. Hyperion has been used to study a variety of natural and anthropogenic phenomena including hazards and catastrophes, agricultural health and productivity, ecological disturbance/development, and land use/land cover change. As an example, Hyperion has been used in hazard and catastrophe studies to monitor and assess effects of tsunamis, earthquakes, volcanic eruptions, mudslides, tornadoes, hurricanes, wild-fires (natural and human ignited), oil spills, and the aftermath of world trade center bombing. This presentation summarizes the current status of EO-1 Hyperion in terms of key scientific findings to date and future plans for operation of this instrument through 2007.

  11. A data distribution strategy for the 1990s (files are not enough)

    NASA Technical Reports Server (NTRS)

    Tankenson, Mike; Wright, Steven

    1993-01-01

    Virtually all of the data distribution strategies being contemplated for the EOSDIS era revolve around the use of files. Most, if not all, mass storage technologies are based around the file model. However, files may be the wrong primary abstraction for supporting scientific users in the 1990s and beyond. Other abstractions more closely matching the respective scientific discipline of the end user may be more appropriate. JPL has built a unique multimission data distribution system based on a strategy of telemetry stream emulation to match the responsibilities of spacecraft team and ground data system operators supporting our nations suite of planetary probes. The current system, operational since 1989 and the launch of the Magellan spacecraft, is supporting over 200 users at 15 remote sites. This stream-oriented data distribution model can provide important lessons learned to builders of future data systems.

  12. IceCube: CubeSat 883-GHz Radiometry for Future Ice Cloud Remote Sensing

    NASA Technical Reports Server (NTRS)

    Wu, Dongliang; Esper, Jaime; Ehsan, Negar; Johnson, Thomas; Mast, William; Piepmeier, Jeffery R.; Racette, Paul E.

    2015-01-01

    Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Accurate observations of global cloud ice and its distribution have been a challenge from space, and require good instrument sensitivities to both cloud mass and microphysical properties. Despite great advances from recent spaceborne radar and passive sensors, uncertainty of current ice water path (IWP) measurements is still not better than a factor of 2. Submillimeter (submm) wave remote sensing offers great potential for improving cloud ice measurements, with simultaneous retrievals of cloud ice and its microphysical properties. The IceCube project is to enable this cloud ice remote sensing capability in future missions, by raising 874-GHz receiver technology TRL from 5 to 7 in a spaceflight demonstration on 3-U CubeSat in a low Earth orbit (LEO) environment. The NASAs Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes Inc (VDI) on the 874-GHz receiver through its Vector Network Analyzer (VNA) extender module product line, to develop an instrument with precision of 0.2 K over 1-second integration and accuracy of 2.0 K or better. IceCube is scheduled to launch to and subsequent release from the International Space Station (ISS) in mid-2016 for nominal operation of 28 plus days. We will present the updated design of the payload and spacecraft systems, as well as the operation concept. We will also show the simulated 874-GHz radiances from the ISS orbits and cloud scattering signals as expected for the IceCube cloud radiometer.

  13. Applications Integration Strategy in the Mission Development Process

    NASA Astrophysics Data System (ADS)

    Cox, E. L., Jr.

    2016-12-01

    NASA's Earth Science Applied Science Program has worked for the past four to five years with the Earth Science Division's Flight Program to cultivate an understanding of the importance of satellite remote sensing impacts on decision-making policy and decision support tools utilized by academia, state and local governments, other government agencies, private sector companies, and non-profit organizations. It has long been recognized that applications projects and studies in areas such as Health and Air Quality, Water Resources, Disasters, and Ecological Forecasting, have benefited and been enhanced through the use of satellite remote sensing. Applications researchers often use remote sensing data once it becomes available after the post-launch evaluation phase in the format and level of fidelity that is available. The results from the many applications projects, over the years, have been significant and there are countless examples of improvements and enhancements to operational systems and decision-making policies in the Applied Sciences community. However, feedback received from the applications community regarding the need for improved data availability and latency; processing and formatting, to name a few, prompted the idea of applied science involvement early in the life cycle of mission development. Over time, the Applied Science Program personnel have learned a great deal from the flight mission development life cycle process and recognized key areas of alignment. This presentation will discuss specific aspects of applied science that investigators should consider when proposing to future announcements involving an applications dimension. The Program's experience with user community needs, decision-making requirements, and stakeholder operations requirements will be highlighted.

  14. A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Thomas, T. J.; Chace, A. S.

    1974-01-01

    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration.

  15. Zvezda Launch Coverage

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Footage shows the Proton Rocket (containing the Zvezda module) ready for launch at the Baikonur Cosmodrome in Kazakhstan, Russia. The interior and exterior of Zvezda are seen during construction. Computerized simulations show the solar arrays deploying on Zvezda in space, the maneuvers of the module as it approaches and connects with the International Space Station (ISS), the installation of the Z1 truss on the ISS and its solar arrays deploying, and the installations of the Destiny Laboratory, Remote Manipulator System, and Kibo Experiment Module. Live footage then shows the successful launch of the Proton Rocket.

  16. ERTS & EROS

    ERIC Educational Resources Information Center

    Geotimes, 1972

    1972-01-01

    Describes the proposed investigations to be conducted with ERTS (Earth Resources Technology Satellite), the first experimental satellite for systematically surveying earth resources by remote sensing. Launching set for June, 1972. (PR)

  17. 78 FR 73794 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to U.S. Air Force Launches...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... operations from VAFB launch complexes and Delta Mariner operations, cargo unloading activities, and harbor maintenance dredging in support of the Delta IV/Evolved Expendable Launch Vehicle (EELV) launch activity on... Delta Mariner operations, cargo unloading activities, and harbor maintenance dredging. The Delta Mariner...

  18. Monitoring Land Surface Soil Moisture from Space with in-Situ Sensors Validation: The Huntsville Example

    NASA Technical Reports Server (NTRS)

    Wu, Steve Shih-Tseng

    1997-01-01

    Based on recent advances in microwave remote sensing of soil moisture and in pursuit of research interests in areas of hydrology, soil climatology, and remote sensing, the Center for Hydrology, Soil Climatology, and Remote Sensing (HSCARS) conducted the Huntsville '96 field experiment in Huntsville, Alabama from July 1-14, 1996. We, researchers at the Global Hydrology and Climate Center's MSFC/ES41, are interested in using ground-based microwave sensors, to simulate land surface brightness signatures of those spaceborne sensors that were in operation or to be launched in the near future. The analyses of data collected by the Advanced Microwave Precipitation Radiometer (AMPR) and the C-band radiometer, which together contained five frequencies (6.925,10.7,19.35, 37.1, and 85.5 GHz), and with concurrent in-situ collection of surface cover conditions (surface temperature, surface roughness, vegetation, and surface topology) and soil moisture content, would result in a better understanding of the data acquired over land surfaces by the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), and the Advanced Microwave Scanning Radiometer (AMSR), because these spaceborne sensors contained these five frequencies. This paper described the approach taken and the specific objective to be accomplished in the Huntsville '97 field experiment.

  19. Mission operations of the handicapped FORMOSAT-2

    NASA Astrophysics Data System (ADS)

    Lin, Shin-Fa; Chern, Jeng-Shing; Wu, An-Ming

    2014-10-01

    Since its launch on 20 May 2004, FORMOSAT-2 (FS2, Formosa satellite ♯2) has been operated on orbit for more than 9 years. It carries two payloads: the remote sensing instrument (RSI) for Earth observations and the imager of sprites and upper atmospheric lightning instrument (ISUAL) for the purpose of scientific observations. The RSI is operating at daytime while ISUAL is active at night-time. To meet both mission objectives simultaneously, the satellite operations planning has been more complicated. In order to maximize the usage of the on-board resources, the satellite attitude maneuver activities and power charge/discharge cycles have been scheduled cautiously in every detail. Under such fully engaged operations scenario and with a design life of 5 years, it is inevitable that the satellite encountered many anomalies, either permanent or temporary. In particular, one attitude gyro (totally four) and one reaction wheel (totally four) have been failed. This paper presents the major anomalies and resolutions in the past years. Many iterations and trade-offs have been made to minimize the effect on mission operations of the handicapped FORMOSAT-2. It still can provide about 80% of the designed functions and capabilities.

  20. The IXV Ground Segment design, implementation and operations

    NASA Astrophysics Data System (ADS)

    Martucci di Scarfizzi, Giovanni; Bellomo, Alessandro; Musso, Ivano; Bussi, Diego; Rabaioli, Massimo; Santoro, Gianfranco; Billig, Gerhard; Gallego Sanz, José María

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an ESA re-entry demonstrator that performed, on the 11th February of 2015, a successful re-entry demonstration mission. The project objectives were the design, development, manufacturing and on ground and in flight verification of an autonomous European lifting and aerodynamically controlled re-entry system. For the IXV mission a dedicated Ground Segment was provided. The main subsystems of the IXV Ground Segment were: IXV Mission Control Center (MCC), from where monitoring of the vehicle was performed, as well as support during pre-launch and recovery phases; IXV Ground Stations, used to cover IXV mission by receiving spacecraft telemetry and forwarding it toward the MCC; the IXV Communication Network, deployed to support the operations of the IXV mission by interconnecting all remote sites with MCC, supporting data, voice and video exchange. This paper describes the concept, architecture, development, implementation and operations of the ESA Intermediate Experimental Vehicle (IXV) Ground Segment and outlines the main operations and lessons learned during the preparation and successful execution of the IXV Mission.

  1. How To Cover NASA's Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    1999-07-01

    NASA's newest space telescope, the Chandra X-ray Observatory, is scheduled for launch not earlier than July 20, 1999, aboard Space Shuttle mission STS-93. The world's most powerful X-ray observatory, Chandra will join the Hubble Space Telescope and NASA's other great observatories in an unprecedented study of our universe. With its capability to "see" an otherwise invisible but violent, vibrant and ever-changing universe, Chandra will provide insights into the universe's structure and evolution. The following information is designed to assist news media representatives cover launch and activation of the Chandra X-ray Observatory. Covering from the Chandra Control Center NASA will establish a news center at the Chandra X-ray Observatory Operations Control Center in Cambridge, Mass., during the critical period of launch and early activation. The news center will be open from approximately two days prior to launch until the observatory is established in its operating orbit approximately 11 days after launch. The telephone numbers for the news center are: (617) 496-4454 (617) 496-4462 (617) 496-4484 The news center will be staffed around the clock during the Shuttle mission by media relations officers knowledgeable about the Chandra mission and its status. Media covering from the news center will be provided work space and have opportunities for face-to-face interviews with Chandra management, control team members and Chandra scientists. They will be able to participate in daily Chandra status briefings and have access to a special control room viewing area. Additionally, media covering from Cambridge will receive periodic status reports on Chandra and the STS-93 mission, and will be able to participate in interactive televised briefings on the STS-93 mission originating from other NASA centers. While advance accreditation is not required, media interested in covering Chandra from the Operations Control Center should contact Dave Drachlis by telephone at (256) 544-0031 in advance of the mission to make arrangements for special support, such as telephone service, and uplink or remote truck parking. Covering from the Kennedy Space Center The Kennedy Space Center, Fla., news center is primarily responsible for disseminating information about the Shuttle countdown and launch. However, media relations officers knowledgeable about Chandra will be present at the Kennedy news center through launch. Additionally, some members of the Chandra management and science team will be at the Kennedy Space Center and available for interviews through launch. Media interested in covering the Chandra launch from the Kennedy Space Center should contact its Public Affairs Office at (407) 867-2468. Prior accreditation is required. Covering from the Johnson Space Center The Johnson Space Center, Houston, Texas, news center has responsibility for disseminating information about STS-93 flight operations. Media interested in covering the mission from the Johnson Space Center should contact its Public Affairs Office at (281) 483-5111. Prior accreditation is required. Status Reports During the STS-93 Space Shuttle mission to launch Chandra, NASA will issue twice-daily status reports from the Chandra Operations Control Center in Cambridge, Mass. Following the Shuttle mission, through Chandra's on-orbit checkout period, reports will be issued weekly. These reports are available via the Internet at: http://chandra.msfc.nasa.gov Press Briefings During the Space Shuttle mission to launch the observatory, NASA will conduct daily press briefings on the status of the observatory. These briefings will be conducted at the Chandra Operations Control Center in Cambridge, Mass. Media briefings will be broadcast on NASA Television (see below). Media without access to NASA Television may monitor the briefings by calling (256) 544-5300 and asking to be connected to the NASA Television audio feed. A briefing schedule will be released before launch and updated as appropriate during the mission. NASA Television The launch and early activation of the Chandra X-ray Observatory will be carried live on NASA Television, available through the GE2 satellite system, which is located on Transponder 9C, at 85 degrees west longitude, frequency 3880.0 MHz, audio 6.8 MHz. Around-the-clock, up-to-the minute commentary, television and daily briefings on Chandra's status will originate from the Chandra Operations Control Center in Cambridge, Mass., during Shuttle Mission STS-93. Internet Information Up-to-date, comprehensive information on the Chandra X-ray Observatory is available to news media on the Internet at: http://chandra.harvard.edu The latest status reports, news releases, photos, fact sheets and background archives, as well as links to other Chandra-related sites, are available at this address. Live Shots - Television Back-hauls Television station news departments may conduct live, or live-to-tape interviews via the NASA satellite with Chandra program managers, scientists and control team members prior to, during, and following the launch of Chandra. For additional information or to arrange interviews, broadcasters may contact Dave Drachlis at (256) 544-0031. Interviews Members of the Chandra development, operations, and science teams are available to the news media for interviews upon request. NASA TV on the web

  2. New generation of space capabilities resulting from US/RF cooperative efforts

    NASA Astrophysics Data System (ADS)

    Humpherys, Thomas; Misnik, Victor; Sinelshchikov, Valery; Stair, A. T., Jr.; Khatulev, Valery; Carpenter, Jack; Watson, John; Chvanov, Dmitry; Privalsky, Victor

    2006-09-01

    Previous successful international cooperative efforts offer a wealth of experience in dealing with highly sensitive issues, but cooperative remote sensing for monitoring and understanding the global environmental is in the national interest of all countries. Cooperation between international partners is paramount, particularly with the Russian Federation, due to its technological maturity and strategic political and geographical position in the world. Based on experience gained over a decade of collaborative space research efforts, continued cooperation provides an achievable goal as well as understanding the fabric of our coexistence. Past cooperative space research efforts demonstrate the ability of the US and Russian Federation to develop a framework for cooperation, working together on a complex, state-of-the-art joint satellite program. These efforts consisted of teams of scientists and engineers who overcame numerous cultural, linguistic, engineering approaches and different political environments. Among these major achievements are: (1) field measurement activities with US satellites MSTI and MSX and the Russian RESURS-1 satellite, as well as the joint experimental use of the US FISTA aircraft; (2) successful joint Science, Conceptual and Preliminary Design Reviews; (3) joint publications of scientific research technical papers, (4) Russian investment in development, demonstration and operation of the Monitor-E spacecraft (Yacht satellite bus), (5) successful demonstration of the conversion of the SS-19 into a satellite launch system, and (6) negotiation of contractual and technical assistant agreements. This paper discusses a new generation of science and space capabilities available to the Remote Sensing community. Specific topics include: joint requirements definition process and work allocation for hardware and responsibility for software development; the function, description and status of Russian contributions in providing space component prototypes and test articles; summary of planned experimental measurements and simulations; results of the ROKOT launch system; performance of the Monitor-E spacecraft; prototype joint mission operations control center; and a Handbook for Success in satellite collaborative efforts based upon a decade of lessons learned.

  3. Rotating mobile launcher

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.

    1977-01-01

    Apparatus holds remotely piloted arm that accelerates until launching speed is reached. Then vehicle and counterweight at other end of arm are released simultaneously to avoid structural damage from unbalanced rotating forces.

  4. KSC-08pd2916

    NASA Image and Video Library

    2008-09-24

    CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, ramps are in place for the offloading of the primary cargo from the Russian Antonov AH-124-100 cargo airplane. The plane carries the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station: the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann

  5. KSC-08pd2915

    NASA Image and Video Library

    2008-09-24

    CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers remove material from a cargo box before offloading the primary cargo from the Russian Antonov AH-124-100 cargo airplane. The plane carries the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station: the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann

  6. KSC-08pd2914

    NASA Image and Video Library

    2008-09-24

    CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, equipment is removed from the Russian Antonov AH-124-100 cargo airplane to facilitate offloading of the primary cargo, the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. The components are the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann

  7. KSC-08pd1109

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, dawn reveals the arrival of space shuttle Discovery, secured atop the mobile launch platform below, at Launch Pad 39A to begin prelaunch processing for the STS-124 mission. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  8. KSC-08pd1106

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, space shuttle Discovery, secured atop the mobile launch platform below, arrives at Launch Pad 39A to begin prelaunch processing for the STS-124 mission. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  9. KSC-08pd1105

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- This aerial view of NASA's Kennedy Space Center shows space shuttle Discovery, secured atop a mobile launch platform as it is moved into position at Launch Pad 39A to prepare for the STS-124 mission. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  10. KSC-08pd1110

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, the sun rises upon the arrival of space shuttle Discovery, secured atop the mobile launch platform below, at Launch Pad 39A to begin prelaunch processing for the STS-124 mission. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  11. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  12. KSC-04PD-2687

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. A shipping container transporting part of the new Orbiter Boom Sensor System (OBSS) is delivered by truck to the Remote Manipulator System lab in the Vehicle Assembly Building (VAB). Once the entire structure has arrived, the OBSS will be assembled and undergo final checkout and testing in the lab prior to being transferred to the Orbiter Processing Facility (OPF) for installation on Space Shuttle Discovery. The 50-foot-long OBSS will be attached to the Remote Manipulator System, or Shuttle arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttle's Thermal Protection System while in space. Discovery is slated to fly mission STS-114 once Space Shuttle launches resume. The launch planning window is May 12 to June 3, 2005.

  13. Modeling and Simulation of Shuttle Launch and Range Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    The simulation and modeling test bed is based on a mockup of a space flight operations control suitable to experiment physical, procedural, software, hardware and psychological aspects of space flight operations. The test bed consists of a weather expert system to advise on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, impact of human health risk, debris dispersion model in 3D visualization. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.

  14. STS Derived Exploration Launch Operations

    NASA Technical Reports Server (NTRS)

    Best, Joel; Sorge, L.; Siders, J.; Sias, Dave

    2004-01-01

    A key aspect of the new space exploration programs will be the approach to optimize launch operations. A STS Derived Launch Vehicle (SDLV) Program can provide a cost effective, low risk, and logical step to launch all of the elements of the exploration program. Many benefits can be gained by utilizing the synergy of a common launch site as an exploration spaceport as well as evolving the resources of the current Space Shuttle Program (SSP) to meet the challenges of the Vision for Space Exploration. In particular, the launch operation resources of the SSP can be transitioned to the exploration program and combined with the operations efficiencies of unmanned EELVs to obtain the best of both worlds, resulting in lean launch operations for crew and cargo missions of the exploration program. The SDLV Program would then not only capture the extensive human space flight launch operations knowledge, but also provide for the safe fly-out of the SSP through continuity of system critical skills, manufacturing infrastructure, and ability to maintain and attract critical skill personnel. Thus, a SDLV Program can smoothly transition resources from the SSP and meet the transportation needs to continue the voyage of discovery of the space exploration program.

  15. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...

  16. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...

  17. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...

  18. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...

  19. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...

  20. Ocean Color Measurements from Landsat-8 OLI using SeaDAS

    NASA Technical Reports Server (NTRS)

    Franz, Bryan Alden; Bailey, Sean W.; Kuring, Norman; Werdell, P. Jeremy

    2014-01-01

    The Operational Land Imager (OLI) is a multi-spectral radiometer hosted on the recently launched Landsat-8 satellite. OLI includes a suite of relatively narrow spectral bands at 30-meter spatial resolution in the visible to shortwave infrared that make it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in SeaDAS, which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of satellite-based multi-spectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote-sensing reflectance (Rrs; sr exp 1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents such as the concentration of the phytoplankton pigment chlorophyll a.

  1. Directions for lunar construction - A derivation of requirements from a construction scenario analysis

    NASA Technical Reports Server (NTRS)

    Dias, William S.; Matijevic, Jacob R.; Venkataraman, Subramani T.; Smith, Jeffrey H.; Lindemann, Randel A.; Levin, Richard R.

    1992-01-01

    This paper provides an initial trade-off study among several lunar construction options available to the Space Exploration Initiative. The relative time effectiveness of Extra-Vehicular Activity (EVA), Intra-Vehicular Activity (IVA), and Earth-based remote control assembly and construction methods are studied. Also considered is whether there is any construction time savings to building roads in advance, or surveying the construction sites with orbiters or rovers in advance. The study was conducted by adding detail to a potentially real scenario - a nuclear power plant - and applying time multipliers for the various control options and terrain alternatives, provided by roboticists among the authors. The authors conclude that IVA is a faster construction method than either EVA or construction conducted remotely from Earth. Surveying proposed sites in advance, with orbiters and rovers, provides a significant time savings through adding to certainty, and therefore may be cost effective. Developing a heavy-lift launch capability and minimizing assembly and construction processes by landing large payloads is probably worthwhile to the degree possible, as construction activities would use a large amount of surface operations time.

  2. The Solar Orbiter Heliospheric Imager (SoloHI) for the Solar Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Howard, R.; Colaninno, R. C.; Plunkett, S. P.; Thernisien, A. F.; Wang, D.; Rich, N.; Korendyke, C.; Socker, D. G.; Linton, M.; McMullin, D. R.; Vourlidas, A.; Liewer, P. C.; De Jong, E.; Velli, M.; Mikic, Z.; Bothmer, V.; Philippe, L.; Carter, M. T.

    2017-12-01

    The SoloHI instrument has completed its development effort and has been integrated onto the Solar Orbiter (SolO) spacecraft. The SolO mission, scheduled for launch in February 2019, will undergo gravity assist maneuvers around Venus to change both the perihelion distance as well as the plane of the orbit to ultimately achieve a minimum perihelion of 0.28 AU and an orbital inclination of about 35° relative to the ecliptic plane. The remote sensing instruments will operate for three 10-day periods out of the nominal 6-month orbit. SoloHI will observe sunlight scattered by free electrons in the corona/solar wind from 5° to 45° elongation in visible wavelengths and will provide a coupling between remote sensing and in situ observations. It is very similar to the HI-1 instrument on STEREO/SECCHI except that the FOV is twice the size at 40o. We present our efforts to prepare for the mission including our observing plans, quick-look plans and some results of the calibration activities. We gratefully acknowledge the support of the NASA Solar Orbiter Collaboration project.

  3. 3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH OPERATIONS BUILDING. BUNKER PERISCOPE VISIBLE ABOVE RIGHT CORNER OF TUNNEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. Cassini Attitude Control Operations Flight Rules and How They are Enforced

    NASA Technical Reports Server (NTRS)

    Burk, Thomas; Bates, David

    2008-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. Cassini deployed the European-built Huygens probe which descended through the Titan atmosphere and landed on its surface on January 14, 2005. Operating the Cassini spacecraft is a complex scientific, engineering, and management job. In order to safely operate the spacecraft, a large number of flight rules were developed. These flight rules must be enforced throughout the lifetime of the Cassini spacecraft. Flight rules are defined as any operational limitation imposed by the spacecraft system design, hardware, and software, violation of which would result in spacecraft damage, loss of consumables, loss of mission objectives, loss and/or degradation of science, and less than optimal performance. Flight rules require clear description and rationale. Detailed automated methods have been developed to insure the spacecraft is continuously operated within these flight rules. An overview of all the flight rules allocated to the Cassini Attitude Control and Articulation Subsystem and how they are enforced is presented in this paper.

  5. Landsat—Earth observation satellites

    USGS Publications Warehouse

    ,

    2015-11-25

    Since 1972, Landsat satellites have continuously acquired space-based images of the Earth’s land surface, providing data that serve as valuable resources for land use/land change research. The data are useful to a number of applications including forestry, agriculture, geology, regional planning, and education. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). NASA develops remote sensing instruments and the spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and data distribution. The result of this program is an unprecedented continuing record of natural and human-induced changes on the global landscape.

  6. Suggested hurricane operational scenario for GOES I-M

    NASA Technical Reports Server (NTRS)

    Menzel, W. P.; Merrill, R. T.; Shenk, W. E.

    1987-01-01

    Improvements in tropical cyclone forecasts require optimum use of remote sensing capabilities, because conventional data sources cannot provide the necessary spatial and temporal data density over tropical and subtropical oceanic regions. In 1989, the first of a series of geostationary weather satellites, GOES 1-M, will be launched with the capability for simultaneous imaging and sounding. Careful scheduling of the GOES 1-M will enable measurements of both the wind and mass fields over the entire tropical cyclone activity area. The document briefly describes the GOES 1-M imager and sounder, surveys the data needs for hurricane forecasting, discusses how geostationary satellite observations help to meet them, and proposes a GOES 1-M schedule of observations and hurricane relevant derived products.

  7. Designing berthing mechanisms for international compatibility

    NASA Technical Reports Server (NTRS)

    Winch, John; Gonzalez-Vallejo, Juan J.

    1991-01-01

    The paper examines the technological issues regarding common berthing interfaces for the Space Station Freedom and pressurized modules from U.S., European, and Japanese space programs. The development of the common berthing mechanism (CBM) is based on common requirements concerning specifications, launch environments, and the unique requirements of ESA's Man-Tended Free Flyer. The berthing mechanism is composed of an active and a passive half, a remote manipulator system, 4 capture-latch assemblies, 16 structural bolts, and a pressure gage to verify equalization. Extensive graphic and verbal descriptions of each element are presented emphasizing the capture-latch motion and powered-bolt operation. The support systems to complete the interface are listed, and the manufacturing requirements for consistent fabrication are discussed to ensure effective international development.

  8. Towards Validation of SMAP: SMAPEX-4 & -5

    NASA Technical Reports Server (NTRS)

    Ye, Nan; Walker, Jeffrey; Wu, Xiaoling; Jackson, Thomas; Renzullo, Luigi; Merlin, Olivier; Rudiger, Christoph; Entekhabi, Dara; DeJeu, Richard; Kim, Edward

    2016-01-01

    The L-band (1 - 2 GHz) microwave remote sensing has been widely acknowledged as the most promising method to monitor regional to global soil moisture. Consequently, the Soil Moisture Active Passive (SMAP) satellite applied this technique to provide global soil moisture every 2 to 3 days. To verify the performance of SMAP, the fourth and fifth campaign of SMAP Experiments (SMAPEx-4 -5) were carried out at the beginning of the SMAP operational phase in the Murrumbidgee River catchment, southeast Australia. The airborne radar and radiometer observations together with ground sampling on soil moisture, vegetation water content, and surface roughness were collected in coincidence with SMAP overpasses. The SMAPEx-4 and -5 data sets will benefit to SMAP post-launch calibration andvalidation under Australian land surface conditions.

  9. KSC-08pd1166

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Karen Nyberg waits to begin training on the M113 armored personnel carrier on Launch Pad 39B. She and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett

  10. Natural Environmental Service Support to NASA Vehicle, Technology, and Sensor Development Programs

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The research performed under this contract involved definition of the natural environmental parameters affecting the design, development, and operation of space and launch vehicles. The Universities Space Research Association (USRA) provided the manpower and resources to accomplish the following tasks: defining environmental parameters critical for design, development, and operation of launch vehicles; defining environmental forecasts required to assure optimal utilization of launch vehicles; and defining orbital environments of operation and developing models on environmental parameters affecting launch vehicle operations.

  11. 14 CFR 415.55 - Classes of payloads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... may review and issue findings regarding a proposed class of payload, e.g., communications, remote sensing or navigation. However, each payload is subject to compliance monitoring by the FAA before launch...

  12. 14 CFR 415.55 - Classes of payloads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... may review and issue findings regarding a proposed class of payload, e.g., communications, remote sensing or navigation. However, each payload is subject to compliance monitoring by the FAA before launch...

  13. 14 CFR 415.55 - Classes of payloads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... may review and issue findings regarding a proposed class of payload, e.g., communications, remote sensing or navigation. However, each payload is subject to compliance monitoring by the FAA before launch...

  14. 14 CFR 415.55 - Classes of payloads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... may review and issue findings regarding a proposed class of payload, e.g., communications, remote sensing or navigation. However, each payload is subject to compliance monitoring by the FAA before launch...

  15. 14 CFR 415.55 - Classes of payloads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... may review and issue findings regarding a proposed class of payload, e.g., communications, remote sensing or navigation. However, each payload is subject to compliance monitoring by the FAA before launch...

  16. REMOTE SENSING TECHNOLOGIES APPLICATIONS RESEARCH

    EPA Science Inventory

    Remote sensing technologies applications research supports the ORD Landscape Sciences Program (LSP) in two separate areas: operational remote sensing, and remote sensing research and development. Operational remote sensing is provided to the LSP through the use of current and t...

  17. Extreme Tele-Echocardiography: Methodology for Remote Guidance of In-Flight Echocardiography Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Martin, David S.; Borowski, Allan; Bungo, Michael W.; Gladding, Patrick; Greenberg, Neil; Hamilton, Doug; Levine, Benjamin D.; Lee, Stuart M.; Norwood, Kelly; Platts, Steven H.; hide

    2012-01-01

    Methods: In the year before launch of an ISS mission, potential astronaut echocardiographic operators participate in 5 sessions to train for echo acquisitions that occur roughly monthly during the mission, including one exercise echocardiogram. The focus of training is familiarity with the study protocol and remote guidance procedures. On-orbit, real-time guidance of in-flight acquisitions is provided by a sonographer in the Telescience Center of Mission Control. Physician investigators with remote access are able to relay comments on image quality to the sonographer. Live video feed is relayed from the ISS to the ground via the Tracking and Data Relay Satellite System with a 2- second transmission delay. The expert sonographer uses these images, along with twoway audio, to provide instructions and feedback. Images are stored in non-compressed DICOM format for asynchronous relay to the ground for subsequent off-line analysis. Results: Since June, 2009, a total of 27 resting echocardiograms and 5 exercise studies have been performed during flight. Average acquisition time has been 45 minutes, reflecting 26,000 km of ISS travel per study. Image quality has been adequate in all studies, and remote guidance has proven imperative for fine-tuning imaging and prioritizing views when communication outages limit the study duration. Typical resting studies have included 27 video loops and 30 still-frame images requiring 750 MB of storage. Conclusions: Despite limited crew training, remote guidance allows research-quality echocardiography to be performed by non-experts aboard the ISS. Analysis is underway and additional subjects are being recruited to define the impact of microgravity on cardiac structure and systolic and diastolic function.

  18. The Planning and Scheduling of HST: Improvements and Enhancements since Launch

    NASA Astrophysics Data System (ADS)

    Taylor, D. K.; Chance, D. R.; Jordan, I. J. E.; Patterson, A. P.; Stanley, M.; Taylor, D. C.

    2001-12-01

    The planning and scheduling (P&S) systems used in operating the Hubble Space Telescope (HST) have undergone such substantial and pervasive re-engineering that today they dimly resemble those used when HST was launched. Processes (i.e., software, procedures, networking, etc.) which allow program implementation, the generation of a Long Range Plan (LRP), and the scheduling of science and mission activities have improved drastically in nearly 12 years, resulting in a consistently high observing efficiency, a stable LRP that principal investigators can use, exceptionally clean command loads uplinked to the spacecraft, and the capability of a very fast response time due to onboard anomalies or targets of opportunity. In this presentation we describe many of the systems which comprise the P&S ("front-end") system for HST, how and why they were improved, and what benefits have been realized by either the HST user community or the STScI staff. The systems include the Guide Star System, the Remote Proposal Submission System - 2 (RPS2), Artificial Intelligence (AI) planning tools such as Spike, and the science and mission scheduling software. We also describe how using modern software languages such as Python and better development practices allow STScI staff to do more with HST (e.g., to handle much more science data when ACS is installed) without increasing the cost to HST operations.

  19. Operations Analysis of the 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Noneman, Steven R.; Smith, C. A. (Technical Monitor)

    2002-01-01

    The Space Launch Initiative (SLI) program is developing a second-generation reusable launch vehicle. The program goals include lowering the risk of loss of crew to 1 in 10,000 and reducing annual operations cost to one third of the cost of the Space Shuttle. The SLI missions include NASA, military and commercial satellite launches and crew and cargo launches to the space station. The SLI operations analyses provide an assessment of the operational support and infrastructure needed to operate candidate system architectures. Measures of the operability are estimated (i.e. system dependability, responsiveness, and efficiency). Operations analysis is used to determine the impact of specific technologies on operations. A conceptual path to reducing annual operations costs by two thirds is based on key design characteristics, such as reusability, and improved processes lowering labor costs. New operations risks can be expected to emerge. They can be mitigated with effective risk management with careful identification, assignment, tracking, and closure. SLI design characteristics such as nearly full reusability, high reliability, advanced automation, and lowered maintenance and servicing coupled with improved processes are contributors to operability and large operating cost reductions.

  20. Risk Perception and Communication in Commercial Reusable Launch Vehicle Operations

    NASA Astrophysics Data System (ADS)

    Hardy, Terry L.

    2005-12-01

    A number of inventors and entrepreneurs are currently attempting to develop and commercially operate reusable launch vehicles to carry voluntary participants into space. The operation of these launch vehicles, however, produces safety risks to the crew, to the space flight participants, and to the uninvolved public. Risk communication therefore becomes increasingly important to assure that those involved in the flight understand the risk and that those who are not directly involved understand the personal impact of RLV operations on their lives. Those involved in the launch vehicle flight may perceive risk differently from those non-participants, and these differences in perception must be understood to effectively communicate this risk. This paper summarizes existing research in risk perception and communication and applies that research to commercial reusable launch vehicle operations. Risk communication is discussed in the context of requirements of United States law for informed consent from any space flight participants on reusable suborbital launch vehicles.

  1. A telescopic cinema sound camera for observing high altitude aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2014-09-01

    Rockets and other high altitude aerospace vehicles produce interesting visual and aural phenomena that can be remotely observed from long distances. This paper describes a compact, passive and covert remote sensing system that can produce high resolution sound movies at >100 km viewing distances. The telescopic high resolution camera is capable of resolving and quantifying space launch vehicle dynamics including plume formation, staging events and payload fairing jettison. Flight vehicles produce sounds and vibrations that modulate the local electromagnetic environment. These audio frequency modulations can be remotely sensed by passive optical and radio wave detectors. Acousto-optic sensing methods were primarily used but an experimental radioacoustic sensor using passive micro-Doppler radar techniques was also tested. The synchronized combination of high resolution flight vehicle imagery with the associated vehicle sounds produces a cinema like experience that that is useful in both an aerospace engineering and a Hollywood film production context. Examples of visual, aural and radar observations of the first SpaceX Falcon 9 v1.1 rocket launch are shown and discussed.

  2. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  3. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  4. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  5. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  6. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  7. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom

    2014-01-01

    Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.

  8. 14 CFR 417.103 - Safety organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Safety organization. 417.103 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.103 Safety organization. (a) A launch operator must maintain and document a safety organization. A launch operator must...

  9. KSC-08pd1113

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, the rotating service structure, at left, at Launch Pad 39A has been rolled back for the delivery of space shuttle Discovery, secured atop the mobile launch platform below, for final prelaunch processing for the STS-124 mission. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  10. KSC-08pd1101

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, a crawler transporter moves space shuttle Discovery, secured atop a mobile launch platform, along the crawlerway from the Vehicle Assembly Building to Launch Pad 39A to prepare for the STS-124 mission. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  11. KSC-08pd1111

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, access arms from the fixed service structure at Launch Pad 39A are in place against space shuttle Discovery, secured atop the mobile launch platform below, as final prelaunch processing for the STS-124 mission begins at the pad. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  12. KSC-08pd1102

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, space shuttle Discovery, secured atop a mobile launch platform, is reflected in water beside the crawlerway as it is moved from the Vehicle Assembly Building to Launch Pad 39A to prepare for the STS-124 mission. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  13. Development and Operation of the Americas ALOS Data Node

    NASA Astrophysics Data System (ADS)

    Arko, S. A.; Marlin, R. H.; La Belle-Hamer, A. L.

    2004-12-01

    In the spring of 2005, the Japanese Aerospace Exploration Agency (JAXA) will launch the next generation in advanced, remote sensing satellites. The Advanced Land Observing Satellite (ALOS) includes three sensors, two visible imagers and one L-band polarimetric SAR, providing high-quality remote sensing data to the scientific and commercial communities throughout the world. Focusing on remote sensing and scientific pursuits, ALOS will image nearly the entire Earth using all three instruments during its expected three-year lifetime. These data sets offer the potential for data continuation of older satellite missions as well as new products for the growing user community. One of the unique features of the ALOS mission is the data distribution approach. JAXA has created a worldwide cooperative data distribution network. The data nodes are NOAA /ASF representing the Americas ALOS Data Node (AADN), ESA representing the ALOS European and African Node (ADEN), Geoscience Australia representing Oceania and JAXA representing the Asian continent. The AADN is the sole agency responsible for archival, processing and distribution of L0 and L1 products to users in both North and South America. In support of this mission, AADN is currently developing a processing and distribution infrastructure to provide easy access to these data sets. Utilizing a custom, grid-based process controller and media generation system, the overall infrastructure has been designed to provide maximum throughput while requiring a minimum of operator input and maintenance. This paper will present an overview of the ALOS system, details of each sensor's capabilities and of the processing and distribution system being developed by AADN to provide these valuable data sets to users throughout North and South America.

  14. Launch vehicle operations cost reduction through artificial intelligence techniques

    NASA Technical Reports Server (NTRS)

    Davis, Tom C., Jr.

    1988-01-01

    NASA's Kennedy Space Center has attempted to develop AI methods in order to reduce the cost of launch vehicle ground operations as well as to improve the reliability and safety of such operations. Attention is presently given to cost savings estimates for systems involving launch vehicle firing-room software and hardware real-time diagnostics, as well as the nature of configuration control and the real-time autonomous diagnostics of launch-processing systems by these means. Intelligent launch decisions and intelligent weather forecasting are additional applications of AI being considered.

  15. Aeronautics and space report of the President

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report describes the activities and accomplishments of all agencies of the United States in the fields of aeronautics and space science during FY 1994. Activity summaries are presented for the following areas: space launch activities, space science, space flight and space technology, space communications, aeronuatics, and studies of the planet Earth. Several appendices providing data on U.S. launch activities, the Federal budget for space and aeronautics, remote sensing capabilities, and space policy are included.

  16. 115. Photocopy of drawing (1964 architectural drawing by Koebig & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. Photocopy of drawing (1964 architectural drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING, POINT ARGUELLO LAUNCH COMPLEX ONE, SECTIONS AND ELEVATIONS, SHEET A-2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Results From the Physics of Colloids Experiment on ISS

    NASA Technical Reports Server (NTRS)

    Weitz, David; Bailey, Arthur; Manley, Suliana; Prasad, Vikram; Christianson, Rebecca; Sankaran, Subramanian; Doherty, Michael; Jankovsky, Amy; Lorik, Tibor; Shiley, William

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment was accommodated within International Space Station (ISS) EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Rack 2 and was remotely operated from early June 2001 until February 2002 from NASA Glenn Research Center's Telescience Support Center (TSC) in Cleveland, Ohio, and from the remote site at Harvard University in Cambridge, Massachusetts. PCS was launched on 4/19/2001 on Space Shuttle STS-100. The experiment was activated on 5/31/2001. The entire experimental setup performed remarkably well, and accomplished 2400 hours of science operations on-orbit. The sophisticated instrumentation in PCS is capable of dynamic and static light scattering from 11 to 169 degrees, Bragg scattering over the range from 10 to 60 degrees, dynamic and static light scattering at low angles from 0.3 to 6.0 degrees, and color imaging. The long duration microgravity environment on the ISS facilitated extended studies on the growth and coarsening characteristics of binary crystals. The de-mixing of the colloid-polymer critical-point sample was also studied as it phase-separated into two phases. Further, aging studies on a col-pol gel, gelation rate studies in extremely low concentration fractal gels over several days, and studies on a glass sample, all provided valuable information. Several exciting and unique aspects of these results are discussed here.

  18. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    NASA Technical Reports Server (NTRS)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather forecasting for example for the effect of these process improvements on our daily lives.

  19. KSC-04PD-1080

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- A remote camera captures ignition of the Delta II rocket carrying the Gravity Probe B spacecraft from Space Launch Complex 2 on Vandenberg AFB, Calif., at 9:57:24 a.m. PDT.

  20. KSC-04PD-2689

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. A shipping container housing part of the new Orbiter Boom Sensor System (OBSS) is lifted from a truck into the Remote Manipulator System lab in the Vehicle Assembly Building (VAB). Once the entire structure has arrived, the OBSS will be assembled and undergo final checkout and testing in the lab prior to being transferred to the Orbiter Processing Facility (OPF) for installation on Space Shuttle Discovery. The 50-foot- long OBSS will be attached to the Remote Manipulator System, or Shuttle arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttle's Thermal Protection System while in space. Discovery is slated to fly mission STS-114 once Space Shuttle launches resume. The launch planning window is May 12 to June 3, 2005.

  1. Launch Vehicle Production and Operations Cost Metrics

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Neeley, James R.; Blackburn, Ruby F.

    2014-01-01

    Traditionally, launch vehicle cost has been evaluated based on $/Kg to orbit. This metric is calculated based on assumptions not typically met by a specific mission. These assumptions include the specified orbit whether Low Earth Orbit (LEO), Geostationary Earth Orbit (GEO), or both. The metric also assumes the payload utilizes the full lift mass of the launch vehicle, which is rarely true even with secondary payloads.1,2,3 Other approaches for cost metrics have been evaluated including unit cost of the launch vehicle and an approach to consider the full program production and operations costs.4 Unit cost considers the variable cost of the vehicle and the definition of variable costs are discussed. The full program production and operation costs include both the variable costs and the manufacturing base. This metric also distinguishes operations costs from production costs, including pre-flight operational testing. Operations costs also consider the costs of flight operations, including control center operation and maintenance. Each of these 3 cost metrics show different sensitivities to various aspects of launch vehicle cost drivers. The comparison of these metrics provides the strengths and weaknesses of each yielding an assessment useful for cost metric selection for launch vehicle programs.

  2. General Dynamic (GD) Launch Waveform On-Orbit Performance Report

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Shalkhauser, Mary Jo

    2014-01-01

    The purpose of this report is to present the results from the GD SDR on-orbit performance testing using the launch waveform over TDRSS. The tests include the evaluation of well-tested waveform modes, the operation of RF links that are expected to have high margins, the verification of forward return link operation (including full duplex), the verification of non-coherent operational models, and the verification of radio at-launch operational frequencies. This report also outlines the launch waveform tests conducted and comparisons to the results obtained from ground testing.

  3. 113. Photocopy of drawing (1964 civil engineering drawing by Koebig ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. Photocopy of drawing (1964 civil engineering drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING, POINT ARGUELLO LAUNCH COMPLEX ONE, GRADING AND UTILITY PLAN, SHEET C3 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. 116. Photocopy of drawing (1964 mechanical drawing by Koebig & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. Photocopy of drawing (1964 mechanical drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING, POINT ARGUELLO LAUNCH COMPLEX ONE, FLOW SHEET 1 AND PIPING PLANS, SHEET M-2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. 117. Photocopy of drawing (1964 mechanical drawing by Koebig & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Photocopy of drawing (1964 mechanical drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING; POINT ARGUELLO LAUNCH COMPLEX ONE; ABBREVIATIONS, SYMBOLS, AND SCHEDULES; SHEET M-1 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. 114. Photocopy of drawing (1964 architectural drawing by Koebig & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. Photocopy of drawing (1964 architectural drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING; POINT ARGUELLO LAUNCH COMPLEX ONE; FLOOR PLANS, SECTIONS, AND DETAILS; SHEET A-1 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. 14 CFR 417.402 - Compliance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Compliance. 417.402 Section 417.402... TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.402 Compliance. (a) General. A launch operator's... of compliance to the FAA if: (1) A launch operator has contracted with a Federal launch range for the...

  8. 14 CFR 417.402 - Compliance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Compliance. 417.402 Section 417.402... TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.402 Compliance. (a) General. A launch operator's... of compliance to the FAA if: (1) A launch operator has contracted with a Federal launch range for the...

  9. Remote sensing in operational range management programs in Western Canada

    NASA Technical Reports Server (NTRS)

    Thompson, M. D.

    1977-01-01

    A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.

  10. Pegasus air-launched space booster

    NASA Astrophysics Data System (ADS)

    Lindberg, Robert E.; Mosier, Marty R.

    The launching of small satellites with the mother- aircraft-launched Pegasus booster yields substantial cost improvements over ground launching and enhances operational flexibility, since it allows launches to be conducted into any orbital inclination. The Pegasus launch vehicle is a three-stage solid-rocket-propelled system with delta-winged first stage. The major components of airborne support equipment, located on the mother aircraft, encompass a launch panel operator console, an electronic pallet, and a pylon adapter. Alternatives to the currently employed B-52 launch platform aircraft have been identified for future use. Attention is given to the dynamic, thermal, and acoustic environments experienced by the payload.

  11. Arianespace Launch Service Operator Policy for Space Safety (Regulations and Standards for Safety)

    NASA Astrophysics Data System (ADS)

    Jourdainne, Laurent

    2013-09-01

    Since December 10, 2010, the French Space Act has entered into force. This French Law, referenced as LOS N°2008-518 ("Loi relative aux Opérations Spatiales"), is compliant with international rules. This French Space Act (LOS) is now applicable for any French private company whose business is dealing with rocket launch or in orbit satellites operations. Under CNES leadership, Arianespace contributed to the consolidation of technical regulation applicable to launch service operators.Now for each launch operation, the operator Arianespace has to apply for an authorization to proceed to the French ministry in charge of space activities. In the files issued for this purpose, the operator is able to justify a high level of warranties in the management of risks through robust processes in relation with the qualification maintenance, the configuration management, the treatment of technical facts and relevant conclusions and risks reduction implementation when needed.Thanks to the historic success of Ariane launch systems through its more than 30 years of exploitation experience (54 successes in a row for latest Ariane 5 launches), Arianespace as well as European public and industrial partners developed key experiences and knowledge as well as competences in space security and safety. Soyuz-ST and Vega launch systems are now in operation from Guiana Space Center with identical and proved risks management processes. Already existing processes have been slightly adapted to cope with the new roles and responsibilities of each actor contributing to the launch preparation and additional requirements like potential collision avoidance with inhabited space objects.Up to now, more than 12 Ariane 5 launches and 4 Soyuz-ST launches have been authorized under the French Space Act regulations. Ariane 5 and Soyuz- ST generic demonstration of conformity have been issued, including exhaustive danger and impact studies for each launch system.This article will detail how Arianespace succeeded to contribute to the maturation of the LOS. How Arianespace managed to demonstrate t he full compliance to the technical regulation for the two launch systems under exploitation (Ariane 5 andSoyuz-ST). Up to now, Vega launch system organization is still in an intermediate transition phase between development and exploitation prior to its second flight. Vega launch system will benefit of Arianespace experience capitalized through Ariane and Soyuz."Safet y is not an option". For our company regarding the mid and long term interest of space business of the launch operations and associated customers, it is a must!

  12. Operational Considerations and Comparisons of the Saturn, Space Shuttle and Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Chavers, Greg; Wittenstein, Jerry

    2009-01-01

    The United States (U.S.) space exploration policy has directed the National Aeronautics and Space Administration (NASA) to retire the Space Shuttle and to replace it with a new generation of space transportation systems for crew and cargo travel to the International Space Station, the Moon, Mars, and beyond. As part of the Constellation Program, engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama are working to design and build the Ares I, the first of two large launch vehicles to return humans to the Moon. A deliberate effort is being made to ensure a high level of operability in order to significantly increase safety and availability as well as reduce recurring costs of this new launch vehicle. It is the Ares Project's goal to instill operability as part of the requirements development, design and operations of the vehicle. This paper will identify important factors in launch vehicle design that affect the operability and availability of the system. Similarities and differences in operational constraints will also be compared between the Saturn V, Space Shuttle and current Ares I design. Finally, potential improvements in operations and operability for large launch vehicles will be addressed. From the examples presented, the paper will discuss potential improvements for operability for future launch vehicles.

  13. Application of CBERS-1 to monitoring of geological hazards in china

    NASA Astrophysics Data System (ADS)

    Qiao, Y.

    China is a country with a great variety of wide and frequent geological disasters which is the most serious natural disasters bring damage to national economical construction and people's life and property and causes an annual direct economic loss over 200 hundred million Chinese yuan to China. In recent 20 years great work has been done to apply remote sensing to investigation and monitoring earthquake, collapse, landslide, mud-rock flow, river-band cave-in, lava collapse, earth crevise, ground coal bunker spontaneous combustion, and great contribution has been done for the control. The successful launch and operation of the China-Brazil Resources Satellite& "CBERS -1" provides us an even more convenient tool. In present paper it introduces the applications of CBERS remote sensing in monitoring of large scale slide in Yigong Tibet and in Yangyuan Shanxi for earthquake calamities combined with meteorological remote sensing data. The results demonstrate that CBERS data could get in time and accurate geo-disasters monitoring information and show us the actual happenings which supply reliable basis for control and release measures to the disaster. CBERS has played an unique important role in fighting against the slide disaster and sending relief to the area and the resulted floods. It is bond to play an active role to promote growth of Chinese national economy. Keywords: CBERS; Geological Hazards; Monimonitoring

  14. Remote Sensing of Water Vapor and Thin Cirrus Clouds using MODIS Near-IR Channels

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yoram J.

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major facility instrument on board the Terra Spacecraft, was successfully launched into space in December of 1999. MODIS has several near-IR channels within and around the 0.94 micrometer water vapor bands for remote sensing of integrated atmospheric water vapor over land and above clouds. MODIS also has a special near-IR channel centered at 1.375-micron with a width of 30 nm for remote sensing of cirrus clouds. In this paper, we describe briefly the physical principles on remote sensing of water vapor and cirrus clouds using these channels. We also present sample water vapor images and cirrus cloud images obtained from MODIS data.

  15. Analysis of remote operating systems for space-based servicing operations, volume 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.

  16. 14 CFR 420.45 - Transfer of a license to operate a launch site.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Transfer of a license to operate a launch site. 420.45 Section 420.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE License Terms and...

  17. 14 CFR 420.45 - Transfer of a license to operate a launch site.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Transfer of a license to operate a launch site. 420.45 Section 420.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE License Terms and...

  18. Launch operations manpower yesterday, today and tomorrow

    NASA Technical Reports Server (NTRS)

    Ojalehto, George

    1991-01-01

    The manpower to accomplish spacecraft launch operations was analyzed. It seems that the ratio of personnel to launches was much higher in the beginning of the space program than in later years. The analysis was performed to see why the operational efficiency was better then than now and how that efficiency can be reattained.

  19. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... elevation angle setting that ensures the rocket will not fly uprange. A launch operator must set the... throughout each stage of powered flight. A caliber, for a rocket configuration, is defined as the distance... rocket configuration. (f) Tracking. A launch operator must track the flight of an unguided suborbital...

  20. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... elevation angle setting that ensures the rocket will not fly uprange. A launch operator must set the... throughout each stage of powered flight. A caliber, for a rocket configuration, is defined as the distance... rocket configuration. (f) Tracking. A launch operator must track the flight of an unguided suborbital...

  1. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... elevation angle setting that ensures the rocket will not fly uprange. A launch operator must set the... throughout each stage of powered flight. A caliber, for a rocket configuration, is defined as the distance... rocket configuration. (f) Tracking. A launch operator must track the flight of an unguided suborbital...

  2. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... elevation angle setting that ensures the rocket will not fly uprange. A launch operator must set the... throughout each stage of powered flight. A caliber, for a rocket configuration, is defined as the distance... rocket configuration. (f) Tracking. A launch operator must track the flight of an unguided suborbital...

  3. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... elevation angle setting that ensures the rocket will not fly uprange. A launch operator must set the... throughout each stage of powered flight. A caliber, for a rocket configuration, is defined as the distance... rocket configuration. (f) Tracking. A launch operator must track the flight of an unguided suborbital...

  4. 33 CFR 150.504 - When must the operator service and examine lifeboat and rescue boat launching appliances?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and examine lifeboat and rescue boat launching appliances? 150.504 Section 150.504 Navigation and... and examine lifeboat and rescue boat launching appliances? (a) The operator must service launching appliances for lifeboats and rescue boats at intervals recommended in the manufacturer's instructions under...

  5. 33 CFR 150.504 - When must the operator service and examine lifeboat and rescue boat launching appliances?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and examine lifeboat and rescue boat launching appliances? 150.504 Section 150.504 Navigation and... and examine lifeboat and rescue boat launching appliances? (a) The operator must service launching appliances for lifeboats and rescue boats at intervals recommended in the manufacturer's instructions under...

  6. 33 CFR 150.504 - When must the operator service and examine lifeboat and rescue boat launching appliances?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and examine lifeboat and rescue boat launching appliances? 150.504 Section 150.504 Navigation and... and examine lifeboat and rescue boat launching appliances? (a) The operator must service launching appliances for lifeboats and rescue boats at intervals recommended in the manufacturer's instructions under...

  7. 33 CFR 150.504 - When must the operator service and examine lifeboat and rescue boat launching appliances?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and examine lifeboat and rescue boat launching appliances? 150.504 Section 150.504 Navigation and... and examine lifeboat and rescue boat launching appliances? (a) The operator must service launching appliances for lifeboats and rescue boats at intervals recommended in the manufacturer's instructions under...

  8. 33 CFR 150.504 - When must the operator service and examine lifeboat and rescue boat launching appliances?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and examine lifeboat and rescue boat launching appliances? 150.504 Section 150.504 Navigation and... and examine lifeboat and rescue boat launching appliances? (a) The operator must service launching appliances for lifeboats and rescue boats at intervals recommended in the manufacturer's instructions under...

  9. Design and Development of Functionally Effective Human-Machine Interfaces for Firing Room Displays

    NASA Technical Reports Server (NTRS)

    Cho, Henry

    2013-01-01

    This project involves creating software for support equipment used on the Space l aunch System (SLS). The goal is to create applications and displays that will be used to remotely operate equipment from the firing room and will continue to support the SLS launch vehicle to the extent of its program. These displays include design practices that help to convey information effectively, such as minimizing distractions at normal operating state and displaying intentional distractions during a warning or alarm state. The general practice for creating an operator display is to reduce the detail of unimportant aspects of the display and promote focus on data and dynamic information. These practices include using minimalist design, using muted tones for background colors, using a standard font at a readable text size, displaying alarms visible for Immediate attention, grouping data logically, and displaying data appropriately varying on the type of data. Users of these displays are more likely to stay focused on operating for longer periods by using design practices that reduce eye strain and fatigue. Effective operator displays will improve safety by reducing human errors during operation, which will help prevent catastrophic accidents. This report entails the details of my work on developing remote displays for the Hypergolics ground system. Before developing a prototype display, the design and requirements of the system are outlined and compiled into a document. Then each subsystem has schematic representations drawn tha.t meet the specifications detailed in the document. The schematics are then used as the outline to create display representations of each subsystem. Each display is first tested individually. Then the displays are integrated with a prototype of the master system, and they are tested in a simulated environment then retested in the real environment. Extensive testing is important to ensure the displays function reliably as intended.

  10. KSC-08pd1167

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- STS-124 Mission Specialists Greg Chamitoff (left) and Akihiko Hoshide (center) and Commander Mark Kelly take part in M113 training on Launch Pad 39A. They and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett

  11. Sounding rockets in Antarctica

    NASA Technical Reports Server (NTRS)

    Alford, G. C.; Cooper, G. W.; Peterson, N. E.

    1982-01-01

    Sounding rockets are versatile tools for scientists studying the atmospheric region which is located above balloon altitudes but below orbital satellite altitudes. Three NASA Nike-Tomahawk sounding rockets were launched from Siple Station in Antarctica in an upper atmosphere physics experiment in the austral summer of 1980-81. The 110 kg payloads were carried to 200 km apogee altitudes in a coordinated project with Arcas rocket payloads and instrumented balloons. This Siple Station Expedition demonstrated the feasibility of launching large, near 1,000 kg, rocket systems from research stations in Antarctica. The remoteness of research stations in Antarctica and the severe environment are major considerations in planning rocket launching expeditions.

  12. KSC-04PD-1082

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- A remote wide-angle camera captures liftoff of the Delta II rocket carrying the Gravity Probe B spacecraft from Space Launch Complex 2 on Vandenberg AFB, Calif., at 9:57:24 a.m. PDT.

  13. Launch Vehicle Operations Simulator

    NASA Technical Reports Server (NTRS)

    Blackledge, J. W.

    1974-01-01

    The Saturn Launch Vehicle Operations Simulator (LVOS) was developed for NASA at Kennedy Space Center. LVOS simulates the Saturn launch vehicle and its ground support equipment. The simulator was intended primarily to be used as a launch crew trainer but it is also being used for test procedure and software validation. A NASA/contractor team of engineers and programmers implemented the simulator after the Apollo XI lunar landing during the low activity periods between launches.

  14. Debris Dispersion Model Using Java 3D

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  15. Informed maintenance for next generation space transportation systems

    NASA Astrophysics Data System (ADS)

    Fox, Jack J.

    2001-02-01

    Perhaps the most substantial single obstacle to progress of space exploration and utilization of space for human benefit is the safety & reliability and the inherent cost of launching to, and returning from, space. The primary influence in the high costs of current launch systems (the same is true for commercial and military aircraft and most other reusable systems) is the operations, maintenance and infrastructure portion of the program's total life cycle costs. Reusable Launch Vehicle (RLV) maintenance and design have traditionally been two separate engineering disciplines with often conflicting objectives-maximizing ease of maintenance versus optimizing performance, size and cost. Testability analysis, an element of Informed Maintenance (IM), has been an ad hoc, manual effort, in which maintenance engineers attempt to identify an efficient method of troubleshooting for the given product, with little or no control over product design. Therefore, testability deficiencies in the design cannot be rectified. It is now widely recognized that IM must be engineered into the product at the design stage itself, so that an optimal compromise is achieved between system maintainability and performance. The elements of IM include testability analysis, diagnostics/prognostics, automated maintenance scheduling, automated logistics coordination, paperless documentation and data mining. IM derives its heritage from complimentary NASA science, space and aeronautic enterprises such as the on-board autonomous Remote Agent Architecture recently flown on NASA's Deep Space 1 Probe as well as commercial industries that employ quick turnaround operations. Commercial technologies and processes supporting NASA's IM initiatives include condition based maintenance technologies from Boeing's Commercial 777 Aircraft and Lockheed-Martin's F-22 Fighter, automotive computer diagnostics and autonomous controllers that enable 100,000 mile maintenance free operations, and locomotive monitoring system software. This paper will summarize NASA's long-term strategy, development, and implementation plans for Informed Maintenance for next generation RLVs. This will be done through a convergence into a single IM vision the work being performed throughout NASA, industry and academia. Additionally, a current status of IM development throughout NASA programs such as the Space Shuttle, X-33, X-34 and X-37 will be provided and will conclude with an overview of near-term work that is being initiated in FY00 to support NASA's 2nd Generation Reusable Launch Vehicle Program. .

  16. Operational programs in forest management and priority in the utilization of remote sensing

    NASA Technical Reports Server (NTRS)

    Douglass, R. W.

    1978-01-01

    A speech is given on operational remote sensing programs in forest management and the importance of remote sensing in forestry is emphasized. Forest service priorities in using remote sensing are outlined.

  17. Using Pair Wise Rankings in the Assessment of Adaptive Aiding

    DTIC Science & Technology

    2017-02-22

    Aviation Psychology (ISAP) 9 – 11 May 2017 14. ABSTRACT In remotely piloted aircraft (RPA) operations, operator cognitive workload is an important concern...Force Research Laboratory Wright-Patterson AFB, Ohio In remotely piloted aircraft (RPA) operations, operator cognitive workload is an important...model in future research. Operator cognitive workload is an important concern in remotely piloted aircraft (RPA) operations. RPA use is

  18. Effectivity of atmospheric electricity on launch availability

    NASA Technical Reports Server (NTRS)

    Ernst, John A.

    1991-01-01

    Thunderstorm days at KSC; percentage of frequency of thunderstorms (1957-1989); effect of lightning advisory on ground operations; Shuttle launch history; Shuttle launch weather history; applied meteorology unit; and goals/operational benefits. This presentation is represented by viewgraphs.

  19. Aircraft operability methods applied to space launch vehicles

    NASA Astrophysics Data System (ADS)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  20. The XP spaceplane: A near term multi-purpose suborbital RLV

    NASA Astrophysics Data System (ADS)

    Lauer, Charles J.

    2007-06-01

    This paper will describe the history, technology and design features of the XP spaceplane being developed by Rocketplane Ltd. in Oklahoma. The XP is a four seat fighter-sized spaceplane that uses turbojets for takeoff and landing and a liquid oxygen/kerosene rocket engine for main propulsion during its ascent to a 100 km apogee suborbital space flight. The XP is intended to serve a variety of markets including suborbital tourist flights, intermediate duration microgravity research, remote sensing, astronomy, and microsatellite launch missions. Changes in vehicle configuration and flight profile for serving each of these markets will be described. The prototype XP will have its rollout ceremony at the end of 2007 and will begin test flights in early 2008. Commercial space flight operations are expected to begin in fall 2008 with tourist flights and microgravity research flights being the early customer base. The spaceplane's flight systems, safety systems, and operating procedures will be reviewed. In addition, key elements of the Rocketplane business and financial model will be discussed.

  1. System engineering analysis of derelict collision prevention options

    NASA Astrophysics Data System (ADS)

    McKnight, Darren S.; Di Pentino, Frank; Kaczmarek, Adam; Dingman, Patrick

    2013-08-01

    Sensitivities to the future growth of orbital debris and the resulting hazard to operational satellites due to collisional breakups of large derelict objects are being studied extensively. However, little work has been done to quantify the technical and operational tradeoffs between options for minimizing future derelict fragmentations that act as the primary source for future debris hazard growth. The two general categories of debris mitigation examined for prevention of collisions involving large derelict objects (rocket bodies and payloads) are active debris removal (ADR) and just-in-time collision avoidance (JCA). Timing, cost, and effectiveness are compared for ADR and JCA solutions highlighting the required enhancements in uncooperative element set accuracy, rapid ballistic launch, despin/grappling systems, removal technologies, and remote impulsive devices. The primary metrics are (1) the number of derelict objects moved/removed per the number of catastrophic collisions prevented and (2) cost per collision event prevented. A response strategy that contains five different activities, including selective JCA and ADR, is proposed as the best approach going forward.

  2. Managing Cassini Safe Mode Attitude at Saturn

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. In the event safe mode interrupts normal orbital operations, Cassini has flight software fault protection algorithms to detect, isolate, and recover to a thermally safe and commandable attitude and then wait for further instructions from the ground. But the Saturn environment is complex, and safety hazards change depending on where Cassini is in its orbital trajectory around Saturn. Selecting an appropriate safe mode attitude that insures safe operation in the Saturn environment, including keeping the star tracker field of view clear of bright bodies, while maintaining a quiescent, commandable attitude, is a significant challenge. This paper discusses the Cassini safe table management strategy and the key criteria that must be considered, especially during low altitude flybys of Titan, in deciding what spacecraft attitude should be used in the event of safe mode.

  3. KSC-08pd1112

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, tread marks from the shoes on the crawler-transporter are visible along the crawlerway leading up to the hardstand on Launch Pad 39A. Space shuttle Discovery, secured atop the mobile launch platform below, has just arrived for final prelaunch processing for the STS-124 mission. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  4. KSC-08pd1107

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, access arms from the fixed service structure at Launch Pad 39A are extended toward space shuttle Discovery, secured atop the mobile launch platform below, as final prelaunch processing for the STS-124 mission gets under way at the pad. The 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  5. Payload Configurations for Efficient Image Acquisition - Indian Perspective

    NASA Astrophysics Data System (ADS)

    Samudraiah, D. R. M.; Saxena, M.; Paul, S.; Narayanababu, P.; Kuriakose, S.; Kiran Kumar, A. S.

    2014-11-01

    The world is increasingly depending on remotely sensed data. The data is regularly used for monitoring the earth resources and also for solving problems of the world like disasters, climate degradation, etc. Remotely sensed data has changed our perspective of understanding of other planets. With innovative approaches in data utilization, the demands of remote sensing data are ever increasing. More and more research and developments are taken up for data utilization. The satellite resources are scarce and each launch costs heavily. Each launch is also associated with large effort for developing the hardware prior to launch. It is also associated with large number of software elements and mathematical algorithms post-launch. The proliferation of low-earth and geostationary satellites has led to increased scarcity in the available orbital slots for the newer satellites. Indian Space Research Organization has always tried to maximize the utility of satellites. Multiple sensors are flown on each satellite. In each of the satellites, sensors are designed to cater to various spectral bands/frequencies, spatial and temporal resolutions. Bhaskara-1, the first experimental satellite started with 2 bands in electro-optical spectrum and 3 bands in microwave spectrum. The recent Resourcesat-2 incorporates very efficient image acquisition approach with multi-resolution (3 types of spatial resolution) multi-band (4 spectral bands) electro-optical sensors (LISS-4, LISS-3* and AWiFS). The system has been designed to provide data globally with various data reception stations and onboard data storage capabilities. Oceansat-2 satellite has unique sensor combination with 8 band electro-optical high sensitive ocean colour monitor (catering to ocean and land) along with Ku band scatterometer to acquire information on ocean winds. INSAT- 3D launched recently provides high resolution 6 band image data in visible, short-wave, mid-wave and long-wave infrared spectrum. It also has 19 band sounder for providing vertical profile of water vapour, temperature, etc. The same system has data relay transponders for acquiring data from weather stations. The payload configurations have gone through significant changes over the years to increase data rate per kilogram of payload. Future Indian remote sensing systems are planned with very high efficient ways of image acquisition. This paper analyses the strides taken by ISRO (Indian Space research Organisation) in achieving high efficiency in remote sensing image data acquisition. Parameters related to efficiency of image data acquisition are defined and a methodology is worked out to compute the same. Some of the Indian payloads are analysed with respect to some of the system/ subsystem parameters that decide the configuration of payload. Based on the analysis, possible configuration approaches that can provide high efficiency are identified. A case study is carried out with improved configuration and the results of efficiency improvements are reported. This methodology may be used for assessing other electro-optical payloads or missions and can be extended to other types of payloads and missions.

  6. Launch and Landing Effects Ground Operations (LLEGO) Model

    NASA Technical Reports Server (NTRS)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  7. LIDAR Remote Sensing Concepts

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1997-01-01

    The primary goal of the NASA New Millennium Program (NMP) is to develop technology for use on future operational missions. The Program consists of two thrust areas, one oriented towards developing technologies for Deep Space Probes and one oriented towards developing technology for Earth Observing Probes. Each thrust area intends to fly several technology demonstrator space designated DS-X and EO-X respectively where X is the mission number. Each mission has an approximately $100 million cap on total mission cost. The EO-1 mission has been selected and is under development. The instrument discussed here was submitted by NASA MSFC as a potential candidate for the EO-2 or EO-3 missions due to launch in 2001 and late 2002 or early 2003 respectively. This report summarizes and follows the format of the material provided to NMP.

  8. LIDAR Remote Sensing Concepts

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1997-01-01

    The primary goal of the NASA New Millennium Program (NMP) is to develop technology for use on future operational missions. The Program consists of two thrust areas, one oriented towards developing technologies for Deep Space Probes and one oriented towards developing technology for Earth Observing Probes. Each thrust area intends to fly several technology demonstrator spacecraft designated DS-X and EO-X respectively where X is the mission number. Each mission has an approximately $100 million cap on total mission cost. The EO-1 mission has been selected and is under development. The instrument discussed here was submitted by NASA MSFC as a potential candidate for the EO-2 or EO-3 missions due to launch in 2001 and late 2002 or early 2003 respectively. This report summarizes and follows the format of the material provided to NMP.

  9. Mission Control Center (MCC): Apollo XV - MSC

    NASA Image and Video Library

    1971-08-02

    S71-41759 (2 Aug. 1971) --- A partial view of activity in the Mission Operations Control Room in the Mission Control Center during the liftoff of the Apollo 15 Lunar Module "Falcon" ascent stage from the lunar surface. An RCA color television camera mounted on the Lunar Roving Vehicle made it possible for people on Earth to watch the LM's spectacular launch from the moon. The LM liftoff was at 171:37 ground elapsed time. The LRV was parked about 300 feet east of the LM. The TV camera was remotely controlled from a console in the MOCR. Seated in the right foreground is astronaut Edgar D. Mitchell, a spacecraft communicator. Mitchell was lunar module pilot of the Apollo 14 lunar landing mission. Note liftoff on the television monitor in the center background.

  10. KSC-99pd0279

    NASA Image and Video Library

    1999-03-06

    Student teams behind protective walls operate remote controls to maneuver their robots around the playing field during the 1999 FIRST Southeastern Regional robotic competition held at KSC. The robotic gladiators spent two minutes each trying to grab, claw and hoist large, satin pillows onto their machines. Teams played defense by taking away competitors' pillows and generally harassing opposing machines. On the side of the field are the judges, including (far left) Deputy Director for Launch and Payload Processing Loren Shriver and former KSC Director of Shuttle Processing Robert Sieck. A giant screen TV displays the action on the field. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers

  11. Apollo Saturn 511 effluent measurements from the Apollo 16 launch operations: An experiment

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Hulten, W. C.; Wornom, D. E.

    1974-01-01

    An experiment was performed in conjunction with the Apollo 16 launch to define operational and instrumentational problems associated with launch-vehicle exhaust effluent monitoring. Ground and airborne sampling were performed for CO, CO2, hydrocarbons, and particulates. Sampling systems included filter pads and photometers for particulates and whole-air grab samples for gases. Launch debris was identified in the particulate samples at ground level(taken immediately after launch) and in the airborne measurements (taken 40 to 50 minutes after launch approximately 40 km downwind of the pad). Operational problems were identified and included the need for higher instrumentation mobility and the need for real-time sampling instrumentation as opposed to collection-type samples such as the whole-air grab sample.

  12. Differences Between S/X and VLBI2010 Operation

    NASA Technical Reports Server (NTRS)

    Hase, Hayo; Himwich, Ed; Neidhardt, Alexander

    2010-01-01

    The intended VLBI2010 operation has some significant differences to the current S/X operation. The presentation focuses on the problem of extending the operation of a global VLBI network to continuous operation within the frame of the same given amount of human resources. Remote control operation is a suitable solution to minimize operational expenses. The implementation of remote control operation requires more site specific information. A concept of a distributed-centralized remote control of the operation and its implications is presented.

  13. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    NASA Technical Reports Server (NTRS)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  14. Web-based Weather Expert System (WES) for Space Shuttle Launch

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Rajkumar, T.

    2003-01-01

    The Web-based Weather Expert System (WES) is a critical module of the Virtual Test Bed development to support 'go/no go' decisions for Space Shuttle operations in the Intelligent Launch and Range Operations program of NASA. The weather rules characterize certain aspects of the environment related to the launching or landing site, the time of the day or night, the pad or runway conditions, the mission durations, the runway equipment and landing type. Expert system rules are derived from weather contingency rules, which were developed over years by NASA. Backward chaining, a goal-directed inference method is adopted, because a particular consequence or goal clause is evaluated first, and then chained backward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the decision is expressed. The expert system is continuously verifying the rules against the past one-hour weather conditions and the decisions are made. The normal procedure of operations requires a formal pre-launch weather briefing held on Launch minus 1 day, which is a specific weather briefing for all areas of Space Shuttle launch operations. In this paper, the Web-based Weather Expert System of the Intelligent Launch and range Operations program is presented.

  15. Ground breaking at Astrotech for a new facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dirt flies during a ground-breaking ceremony to kick off Astrotech Space Operations' construction of a new satellite preparation facility to support the Delta IV, Boeing's winning entrant in the Air Force Evolved Expendable Launch Vehicle (EELV) Program. Wielding shovels are (from left to right) Tom Alexico; Chet Lee, chairman, Astrotech Space Operations; Gen. Forrest McCartney, vice president, Launch Operations, Lockheed Martin; Richard Murphy, director, Delta Launch Operations, The Boeing Company; Keith Wendt; Toby Voltz; Loren Shriver, deputy director, Launch & Payload Processing, Kennedy Space Center; Truman Scarborough, Brevard County commissioner; U.S. Representative 15th Congressional District David Weldon; Ron Swank; and watching the action at right is George Baker, president, Astrotech Space Operations. Astrotech is located in Titusville, Fla. It is a wholly owned subsidiary of SPACEHAB, Inc., and has been awarded a 10-year contract to provide payload processing services for The Boeing Company. The facility will enable Astrotech to support the full range of satellite sizes planned for launch aboard Delta II, III and IV launch vehicles, as well as the Atlas V, Lockheed Martin's entrant in the EELV Program. The Atlas V will be used to launch satellites for government, including NASA, and commercial customers.

  16. CERES and the S'COOL Project

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Young, David F.; Barkstrom, Bruce R.; Wielicki, Bruce A.

    1997-01-01

    The first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched on the Tropical Rainfall Measuring Mission (TRMM) spacecraft from a Japanese launch site in November 1997. This instrument is a follow-on to the Earth Radiation Budget Experiment (ERBE) begun in the 1980's. The instrument will measure the radiation budget - incoming and outgoing radiant energy - of the Earth. It will establish a baseline and look for climatic trends. The major feature of interest is clouds, which play a very strong role in regulating our climate. CERES will identify clear and cloudy regions and determine cloud physical and microphysical properties using imager data from a companion instrument. Validation efforts for the remote sensing algorithms will be intensive. As one component of the validation, the S'COOL (Students' Cloud Observations On-Line) project will involve school children from around the globe in making ground truth measurements at the time of a CERES overpass. Their observations will be collected at the NASA Langley Distributed Active Archive Center (DAAC) and made available over the Internet for educational purposes as well as for use by the CERES Science Team in validation efforts. Pilot testing of the S'COOL project began in January 1997 with two local schools in Southeastern Virginia and one remote site in Montana. This experience is helping guide the development of the S'COOL project. National testing is planned for April 1997, international testing for July 1997, and global testing for October 1997. In 1998, when the CERES instrument is operational, a global observer network should be in place providing useful information to the scientists and learning opportunities to the students.

  17. Space America's commercial space program

    NASA Technical Reports Server (NTRS)

    Macleod, N. H.

    1984-01-01

    Space America prepared a private sector land observing space system which includes a sensor system with eight spectral channels configured for stereoscopic data acquisition of four stereo pairs, a spacecraft bus with active three-axis stabilization, a ground station for data acquisition, preprocessing and retransmission. The land observing system is a component of Space America's end-to-end system for Earth resources management, monitoring and exploration. In the context of the Federal Government's program of commercialization of the US land remote sensing program, Space America's space system is characteristic of US industry's use of advanced technology and of commercial, entrepreneurial management. Well before the issuance of the Request for Proposals for Transfer of the United States Land Remote Sensing Program to the Private Sector by the US Department of Commerce, Space Services, Inc., the managing venturer of Space America, used private funds to develop and manage its sub-orbital launch of its Conestoga launch vehicle.

  18. Emergency end of life operations for CNES remote sensing satellites—Management and operational process

    NASA Astrophysics Data System (ADS)

    Bertrand, Régis; Alby, Fernand; Costes, Thierry; Dejoie, Joël; Delmas, Dominique-Roland; Delobette, Damien; Gibek, Isabelle; Gleyzes, Alain; Masson, Françoise; Meyer, Jean-Renaud; Moreau, Agathe; Perret, Lionel; Riclet, François; Ruiz, Hélène; Schiavon, Françoise; Spizzi, Pierre; Viallefont, Pierre; Villaret, Colette

    2012-10-01

    The French Space Agency (CNES) is currently operating thirteen satellites among which five remote sensing satellites. This fleet is composed of two civilian (SPOT) and three military (HELIOS) satellites and it has been recently completed by the first PLEIADES satellite which is devoted to both civil and military purposes. The CNES operation board decided to appoint a Working Group (WG) in order to anticipate and tackle issues related to the emergency End Of Life (EOL) operations due to unexpected on-board events affecting the satellite. This is of particular interest in the context of the French Law on Space Operations (LSO), entered in force on Dec. 2010, which states that any satellite operator must demonstrate its capability to control the space vehicle whatever the mission phase from the launch up to the EOL. Indeed, after several years in orbit the satellites may be affected by on-board anomalies which could damage the implementation of EOL operations, i.e. orbital manoeuvres or platform disposal. Even if automatic recovery actions ensure autonomous reconfigurations on redundant equipment, i.e. setting for instance the satellite into a safe mode, it is crucial to anticipate the consequences of failures of every equipment and functions necessary for the EOL operations. For this purpose, the WG has focused on each potential anomaly by analysing: its emergency level, as well as the EOL operations potentially inhibited by the failure and the needs of on-board software workarounds… The main contribution of the WG consisted in identifying a particular satellite configuration called "minimal Withdrawal From Service (WFS) configuration". This configuration corresponds to an operational status which involves a redundancy necessary for the EOL operations. Therefore as soon as a satellite reaches this state, a dedicated steering committee is activated and decides of the future of the satellite with respect to three options: a/. the satellite is considered safe and can continue its mission using the redundancy, b/. the EOL operations must be planned within a mid-term period, or c/. the EOL operations must be implemented as soon as possible by the operational teams. The paper describes this management and operational process illustrated with study cases of failures on SPOT and PLEIADES satellites corresponding to various emergency situations.

  19. The CERES S'COOL Project: Development and Operational Phases

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Young, David F.; Racel, Anne M.

    1998-01-01

    As part of NASA's Mission to Planet Earth, the first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched on the Tropical Rainfall Measuring Mission (TRMM) spacecraft from the Tanegashima launch site in Japan in November 1997. The instrument will measure the radiation budget incoming and outgoing radiant energy - of the Earth. The major feature of interest is clouds, which play a very strong role in regulating our climate. CERES will identify clear and cloudy regions and determine cloud physical and microphysical properties using imager data from a companion instrument. Validation efforts for the remote sensing algorithms will be intensive. As one component of the validation, the S'COOL (Students' Cloud Observations On-Line) project will involve school children around the globe in making ground truth measurements at the time of a CERES overpass. They will report cloud type, height, fraction, and opacity, as well as the local surface conditions. Their observations will be collected at the NASA Langley Distributed Active Archive Center (DAAC) and made available over the Internet for educational purposes as well as for use by the CERES Science Team in validation efforts. Pilot testing of the S'COOL project began in January 1997 with two local schools in Southeastern Virginia and one remote site in Montana. National testing in April 1997 involved 8 schools (grades 3 to high school) across the United States. Global testing will be carried out in October 1997. Details of the S'COOL project, which is mainly Internet-based, are being developed in each of these phases according to feedback received from participants. In 1998, when the CERES instrument is operational, a global observer network should be in place providing useful information to the scientists and learning opportunities to the students. Broad participation in the S'COOL project is planned, both to obtain data from a wide range of geographic areas, and to involve as many students as possible in learning about clouds and atmospheric science. This paper reports on the development phase of the S'COOL project, including the reaction of the teachers and students who have been involved. It describes the operational state of the S'COOL network, and identifies opportunities for additional participants.

  20. Fifth FLTSATCOM to be launched

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Launch of the FLTSATOOM-E, into an elliptical orbit by the Atlas Centaur launch vehicle is announced. The launch and relevant launch operations are described. A chart of the launch sequence for FLTSATCOM-E communication satellite is given.

  1. SCaN Transportable Communication Platform (STCP)

    NASA Technical Reports Server (NTRS)

    Haddad, George; Tanger, Thomas; Pleva, David; Schoenholz, Bryan; Nam, Connor

    2017-01-01

    NASA Glenn Research Center required a satellite communication trailer that served dual purposes; 24/7 Emergency Communication Services (ECS) in the event of a natural or manmade disaster that disrupted conventional communications, and a Ka Band NASA TDRS capability providing a research capability for over the air evaluations/characterizations. The trailer was to be field deployable, environmentally controlled and self-contained providing local area networks (LANs) and Wide Area Networks (WAN's) with user access both wired (Ethernet) and wireless (802.11) supporting VoIP, Internet Web access and Email. The TDRSS terminal included a 200W TWT amplifier mounted on the feed boom, individual up and down converters, and custom integrated waveguide and a supporting feed system. Other features such as a mast, generator, electrical, lighting, surveillance, and storage capabilities were also required. The Trailer was developed and demonstrated these original requested capabilities. New Requirements are defined and the trailer is now being evolved and upgraded to be a backup for the Near- Earth Network (NEN) Stations at KSC that will support the launch phase of EM-1. This paper presents the current and future capabilities of the trailer and additional options that will make it a valuable deployable asset to support remote operations from any launch from location.

  2. Remote Sensing of Terrestrial Water Storage with GRACE and Future Gravimetry Missions

    NASA Technical Reports Server (NTRS)

    Rodell, Matt; Watkins, Mike; Famiglietti, Jay

    2011-01-01

    The Gravity Recovery and Climate Experiment (GRACE) has demonstrated that satellite gravimetry can be a valuable tool for regional to global water cycle observation. Studies of ice sheet and glacier mass losses, ocean bottom pressure and circulation, and variability of water stored on and in the land including groundwater all have benefited from GRACE observations, and the list of applications and discoveries continues to grow. As the mission approaches its tenth anniversary of launch on March 12,2012, it has nearly doubled its proposed lifetime but is showing some signs of age. In particular, degraded battery capacity limits the availability of power in certain orbital configurations, so that the accelerometers must be turned off for approximately one month out of six. The mission managers have decided to operate the spacecrafts in a manner that maximizes the remaining lifetime, so that the longest possible climate data record is available from GRACE. Nevertheless, it is not unlikely that there will be a data gap between GRACE and the GRACE Follow On mission, currently proposed for launch in 2016. In this presentation we will describe recent GRACE enabled science, GRACE mission health, and plans for GRACE Follow On and other future satellite gravimetry missions.

  3. Space Qualification of Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Troupaki, Elisavet; Kashem, Nasir B.; Allan, Graham R.; Vasilyev, Aleksey; Stephen, Mark

    2005-01-01

    Laser instruments have great potential in enabling a new generation of remote-sensing scientific instruments. NASA s desire to employ laser instruments aboard satellites, imposes stringent reliability requirements under severe conditions. As a result of these requirements, NASA has a research program to understand, quantify and reduce the risk of failure to these instruments when deployed on satellites. Most of NASA s proposed laser missions have base-lined diode-pumped Nd:YAG lasers that generally use quasi-constant wave (QCW), 808 nm Laser Diode Arrays (LDAs). Our group has an on-going test program to measure the performance of these LDAs when operated in conditions replicating launch and orbit. In this paper, we report on the results of tests designed to measure the effect of vibration loads simulating launch into space and the radiation environment encountered on orbit. Our primary objective is to quantify the performance of the LDAs in conditions replicating those of a satellite instrument, determine their limitations and strengths which will enable better and more robust designs. To this end we have developed a systematic testing strategy to quantify the effect of environmental stresses on the optical and electrical properties of the LDA.

  4. Construction and characterization of a single stage dual diaphragm gas gun

    NASA Astrophysics Data System (ADS)

    Helminiak, Nathaniel Steven

    In the interest of studying the propagation of shock waves, this work sets out to design, construct, and characterize a pneumatic accelerator that performs high-velocity flyer plate impact tests. A single stage gas gun with a dual diaphragm breach allows for a non-volatile, reliable experimental testing platform for shock phenomena. This remotely operated gas gun utilizes compressed nitrogen to launch projectiles down a 14 foot long, 2 inch diameter bore barrel, which subsequently impacts a target material of interest. A dual diaphragm firing mechanism allows the 4.5 liter breech to reach a total pressure differential of 10ksi before accelerating projectiles to velocities as high as 1,000 m/s (1570-2240 mph). The projectile's velocity is measured using a series of break pin circuits. The target response can be measured with Photon Doppler Velocimetry (PDV) and/or stress gauge system. A vacuum system eliminates the need for pressure relief in front of the projectile, while additionally allowing the system to remain closed over the entire firing cycle. Characterization of the system will allow for projectile speed to be estimated prior to launching based on initial breach pressure.

  5. Integrated operations/payloads/fleet analysis. Volume 3: System costs. Appendix A: Program direct costs

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Individualized program direct costs for each satellite program are presented. This breakdown provides the activity level dependent costs for each satellite program. The activity level dependent costs, or, more simply, program direct costs, are comprised of the total payload costs (as these costs are strictly program dependent) and the direct launch vehicle costs. Only those incremental launch vehicle costs associated directly with the satellite program are considered. For expendable launch vehicles the direct costs include the vehicle investment hardware costs and the launch operations costs. For the reusable STS vehicles the direct costs include only the launch operations, recovery operations, command and control, vehicle maintenance, and propellant support. The costs associated with amortization of reusable vehicle investment, RDT&E range support, etc., are not included.

  6. Wernher von Braun

    NASA Image and Video Library

    1965-05-25

    This image depicts the tension in the Launch Control Center of the Launch Complex 37 at Cape Canaveral, Florida, during the SA-8 on May 25, 1965. Pointing, center is Dr. Kurt Debus, Director, Launch Operations Directorate, MSFC. To the right is Dr. Hans Gruene, Deputy Director, Launch Operations Directorate, MSFC; Dr. von Braun, Director, Marshall Space Flight Center (MSFC); and leaning, Dr. Eberhard Rees, Director, Deputy Director for Research and Development, MSFC. The SA-8 mission, with a Saturn I launch vehicle, made the first night launch and deployed Pegasus II, micrometeoroid detection satellite.

  7. KSC-08pd1271

    NASA Image and Video Library

    2008-05-09

    CAPE CANAVERAL, Fla. -- Two of the crewmembers for the STS-124 mission, Pilot Ken Ham and Mission Specialist Akihiko Hoshide, depart NASA's Kennedy Space Center in a T-38 training jet after a successful launch dress rehearsal called the terminal countdown demonstration test. The crew is expected to return in late May for the May 31 launch of space shuttle Discovery. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Photo credit: NASA/Kim Shiflett

  8. KSC-08pd1270

    NASA Image and Video Library

    2008-05-09

    CAPE CANAVERAL, Fla. -- The crew for the STS-124 mission departs NASA's Kennedy Space Center after a successful launch dress rehearsal called the terminal countdown demonstration test. Mission Specialist Akihiko Hoshide climbs into the T-38 training jet for he flight back to Houston. The crew is expected to return in late May for the May 31 launch of space shuttle Discovery. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Photo credit: NASA/Kim Shiflett

  9. KSC-08pd1268

    NASA Image and Video Library

    2008-05-09

    CAPE CANAVERAL, Fla. -- Two of the crewmembers for the STS-124 mission, Mission Specialists Ron Garan and Karen Nyberg, depart NASA's Kennedy Space Center in a T-38 training jet after a successful launch dress rehearsal called the terminal countdown demonstration test. The crew is expected to return in late May for the May 31 launch of space shuttle Discovery. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Photo credit: NASA/Kim Shiflett

  10. Remote sensing of landscape-level coastal environmental indicators.

    PubMed

    Klemas, V V

    2001-01-01

    Advances in technology and decreases in cost are making remote sensing (RS) and geographic information systems (GIS) practical and attractive for use in coastal resource management. They are also allowing researchers and managers to take a broader view of ecological patterns and processes. Landscape-level environmental indicators that can be detected by Landsat Thematic Mapper (TM) and other remote sensors are available to provide quantitative estimates of coastal and estuarine habitat conditions and trends. Such indicators include watershed land cover, riparian buffers, shoreline and wetland changes, among others. With the launch of Landsat 7, the cost of TM imagery has dropped by nearly a factor of 10, decreasing the cost of monitoring large coastal areas and estuaries. New satellites, carrying sensors with much finer spatial (1-5 m) and spectral (200 narrow bands) resolutions are being launched, providing a capability to more accurately detect changes in coastal habitat and wetland health. Advances in the application of GIS help incorporate ancillary data layers to improve the accuracy of satellite land-cover classification. When these techniques for generating, organizing, storing, and analyzing spatial information are combined with mathematical models, coastal planners and managers have a means for assessing the impacts of alternative management practices.

  11. 30. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. OPERATORS' CHAIR AND COMMUNICATIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. OPERATORS' CHAIR AND COMMUNICATIONS CONSOLE IN FOREGROUND. ELECTRONIC EQUIPMENT RACK AT LEFT; LAUNCH CONTROL CONSOLE WITH CAPTAIN JAMES L. KING, JR. IN CENTER. LIEUTENANT KEVIN R. MCCLUNEY IN BACKGROUND. VIEW TO SOUTHEAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  12. Moonport: A History of Apollo Launch Facilities and Operations

    NASA Technical Reports Server (NTRS)

    Benson, C. D.; Faherty, W. B.

    1978-01-01

    The development of the Apollo f launch facilities and launch operations is described from the beginning of design through the final launch. Management techniques, innovation in automation, and testing on the ground to avoid failures in space are among the topics covered. The impact of the Apollo program on the citrus groves and quiet beaches of Florida's east coast is included.

  13. Launch Method for Kites in Low-Wind or No-Wind Conditions

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    Airborne observations using lightweight camera systems are desirable for a variety of applications. This system was contemplated as a method to provide a simple remote sensing aerial platform. Kites have been successfully employed for aerial observations, but have historically required natural wind or towing to become airborne. This new method negates this requirement, and widens the applicability of kites for carrying instrumentation. Applicability is primarily limited by the space available on the ground for launching. The innovation is a method for launching kites in low-wind or no-wind conditions. This method will enable instrumentation to be carried aloft using simple (or complex) kite-based systems, to obtain observations from an aerial perspective. This technique will provide access to altitudes of 100 meters or more over any area normally suited for kite flying. The duration of any observation is dependent on wind strength; however, the initial altitude is relatively independent. The system does not require any electrical or combustion-based elements. This technology was developed to augment local-scale airborne measurement capabilities suitable for Earth science research, agricultural productivity, and environmental observations. The method represents an extension of techniques often used in aeronautical applications for launching fixed-wing aircraft, such as sailplanes, using mechanical means not incorporated in the aircraft itself. The innovation consists of an elastic cord (for propulsive force), a tether extension (optional, for additional height), and the kite (instrumentation optional). Operation of the system is accomplished by fixing the elastic cord to ground (or equivalent), attaching the cord with/or without a tether extension to the kite, tensioning the system to store energy, and releasing the kite. The kite will climb until energy is dissipated.

  14. Instrument workstation for the EGSE of the Near Infrared Spectro-Photometer instrument (NISP) of the EUCLID mission

    NASA Astrophysics Data System (ADS)

    Trifoglio, M.; Gianotti, F.; Conforti, V.; Franceschi, E.; Stephen, J. B.; Bulgarelli, A.; Fioretti, V.; Maiorano, E.; Nicastro, L.; Valenziano, L.; Zoli, A.; Auricchio, N.; Balestra, A.; Bonino, D.; Bonoli, C.; Bortoletto, F.; Capobianco, V.; Chiarusi, T.; Corcione, L.; Debei, S.; De Rosa, A.; Dusini, S.; Fornari, F.; Giacomini, F.; Guizzo, G. P.; Ligori, S.; Margiotta, A.; Mauri, N.; Medinaceli, E.; Morgante, G.; Patrizii, L.; Sirignano, C.; Sirri, G.; Sortino, F.; Stanco, L.; Tenti, M.

    2016-07-01

    The NISP instrument on board the Euclid ESA mission will be developed and tested at different levels of integration using various test equipment which shall be designed and procured through a collaborative and coordinated effort. The NISP Instrument Workstation (NI-IWS) will be part of the EGSE configuration that will support the NISP AIV/AIT activities from the NISP Warm Electronics level up to the launch of Euclid. One workstation is required for the NISP EQM/AVM, and a second one for the NISP FM. Each workstation will follow the respective NISP model after delivery to ESA for Payload and Satellite AIV/AIT and launch. At these levels the NI-IWS shall be configured as part of the Payload EGSE, the System EGSE, and the Launch EGSE, respectively. After launch, the NI-IWS will be also re-used in the Euclid Ground Segment in order to support the Commissioning and Performance Verification (CPV) phase, and for troubleshooting purposes during the operational phase. The NI-IWS is mainly aimed at the local storage in a suitable format of the NISP instrument data and metadata, at local retrieval, processing and display of the stored data for on-line instrument assessment, and at the remote retrieval of the stored data for off-line analysis on other computers. We describe the design of the IWS software that will create a suitable interface to the external systems in each of the various configurations envisaged at the different levels, and provide the capabilities required to monitor and verify the instrument functionalities and performance throughout all phases of the NISP lifetime.

  15. Operational Analysis in the Launch Environment

    NASA Technical Reports Server (NTRS)

    James, George; Kaouk, Mo; Cao, Tim; Fogt, Vince; Rocha, Rodney; Schultz, Ken; Tucker, Jon-Michael; Rayos, Eli; Bell,Jeff; Alldredge, David; hide

    2012-01-01

    The launch environment is a challenging regime to work due to changing system dynamics, changing environmental loading, joint compression loads that cannot be easily applied on the ground, and control effects. Operational testing is one of the few feasible approaches to capture system level dynamics since ground testing cannot reproduce all of these conditions easily. However, the most successful applications of Operational Modal Testing involve systems with good stationarity and long data acquisition times. This paper covers an ongoing effort to understand the launch environment and the utility of current operational modal tools. This work is expected to produce a collection of operational tools that can be applied to non-stationary launch environment, experience dealing with launch data, and an expanding database of flight parameters such as damping. This paper reports on recent efforts to build a software framework for the data processing utilizing existing and specialty tools; understand the limits of current tools; assess a wider variety of current tools; and expand the experience with additional datasets as well as to begin to address issues raised in earlier launch analysis studies.

  16. The DAWN Project's Transition to Mission Operations: on Its Way to Rendezvous with (4) Vesta and (1) Ceres

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.; Patel, Keyur C.

    2008-01-01

    Dawn launched on 27 September 2007 on a mission to orbit main belt asteroids (4) Vesta in 2011 - 2012 and (1) Ceres in 2015. The operations team conducted an extensive set of assessments of the engineering subsystems and science instruments during the first 80 days of the mission. A major objective of this period was to thrust for one week with the ion propulsion system to verify flight and ground systems readiness for typical interplanetary operations. Upon successful conclusion of the checkout phase, the interplanetary cruise phase began, most of which will be devoted to thrusting. The flexibility afforded by the use of ion propulsion enabled the project to accommodate a launch postponement of more than 3 months caused by a combination of launch vehicle and tracking system readiness, unfavorable weather, and then conflicts with other launches. Even with the shift in the launch date, all of the science objectives are retained with the same schedule and greater technical margins. This paper describes the conclusion of the development phase of the project, launch operations, and the progress of mission operations.

  17. Evaluation of balloon trajectory forecast routines for GAINS

    NASA Astrophysics Data System (ADS)

    Collander, R.; Girz, C.

    The Global Air-ocean IN-situ System (GAINS) is a global observing system designed to augment current environmental observing and monitoring networks. GAINS is a network of long-duration, stratospheric platforms that carry onboard sensors and hundreds of dropsondes to acquire meteorological, air chemistry, and climate data over oceans and in remote land regions of the globe. Although GAINS platforms will include balloons and Remotely Operated Aircraft (ROA), the scope of this paper is limited to balloon-based platforms. A primary goal of GAINS balloon test flights is post-flight recovery of the balloon shell and payload, which requires information on the expected flight path and landing site prior to launch. Software has been developed for the prediction of the balloon trajectory and landing site, with separate versions written to generate predictions based upon rawinsonde data and model output. Balloon positions are calculated in 1-min increments based on wind data from the closest rawinsonde site or model grid point, given a known launch point, ascent and descent rate and flight duration. For short flights (< 6h), rawinsonde winds interpolated to 10-mb levels are used for trajectory calculations. Predictions for flight durations of 6 to 48h are based upon the initialization and 3 h forecast wind fields from NOAA's global aviation- (AVN) and Rapid Update Cycle (RUC) models. Given a limited number of actual balloon launches, trajectories computed from a chronological series of hourly RUC initializations are used as the baseline for comparison purposes. These baseline trajectories are compared to trajectory predictions from the rawinsonde and model-based versions on a monthly and seasonal basis over a 1-year period (January 1 - December 31, 2001) for flight durations of 3h, 6h and 48h. Predicted trajectories diverge from the baseline path, with the divergence increasing with increasing time. We examine the zonal, meridional and net magnitudes of these deviations, and attempt to determine directional biases in the predictions. This paper gives an overview of the software, including methods employed, physical considerations and limitations, and discusses results of this evaluation.

  18. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an active instrument can be deployed in a sRLV under a satellite track, and serve as a "standard candle" for instruments on satellites. Yearly calibrations of the Solar Extreme Ultraviolet Experiment (SEE) instrument aboard the TIMED orbiter using sounding rockets depict the necessity of calibrations and illustrates calibration frequency.

  19. A web-based remote radiation treatment planning system using the remote desktop function of a computer operating system: a preliminary report.

    PubMed

    Suzuki, Keishiro; Hirasawa, Yukinori; Yaegashi, Yuji; Miyamoto, Hideki; Shirato, Hiroki

    2009-01-01

    We developed a web-based, remote radiation treatment planning system which allowed staff at an affiliated hospital to obtain support from a fully staffed central institution. Network security was based on a firewall and a virtual private network (VPN). Client computers were installed at a cancer centre, at a university hospital and at a staff home. We remotely operated the treatment planning computer using the Remote Desktop function built in to the Windows operating system. Except for the initial setup of the VPN router, no special knowledge was needed to operate the remote radiation treatment planning system. There was a time lag that seemed to depend on the volume of data traffic on the Internet, but it did not affect smooth operation. The initial cost and running cost of the system were reasonable.

  20. 47 CFR 74.434 - Remote control operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...

  1. 47 CFR 74.434 - Remote control operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...

  2. 47 CFR 74.434 - Remote control operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...

  3. 47 CFR 74.434 - Remote control operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...

  4. 47 CFR 74.434 - Remote control operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...

  5. New Science Opportunities on COSMIC-2/FORMOSAT-7

    NASA Technical Reports Server (NTRS)

    Mannucci, Anthony J.; Meehan, Thomas K.; Lowe, Stephen T.; Ao, Chi O; Franklin, Garth; Pi, Xiaoqing; Young, Lawrence E.; Kuo, Ying-Hwa (Bill); Schreiner, William S.

    2013-01-01

    COSMIC-2 Polar (second launch) is an excellent opportunity to extend SSAEM capabilities to global coverage. Enhanced ionospheric remote sensing via oceanic TEC and DORIS. Science: lower-upper atmosphere coupling. Additional payloads are being considered by NSPO/Taiwan.

  6. How autonomy and the web are taking the people out of TacSat-2

    NASA Astrophysics Data System (ADS)

    Finley, Charles J.

    2006-05-01

    One of the most costly components of the on-orbit operation of a spacecraft is the people that execute the mission. Historically, for Air Force Research Laboratory (AFRL) and the Department of Defense Space Test Program (STP) research and development, test and evaluation (RDT&E) space missions, a team of fifteen personnel maintains 24-hour coverage for the three-week Launch and Early Operations (L/EO) phase of the mission and four one-week L/EO rehearsals. During the Nominal Operations phase of the mission, 2.5 "man-days" of support are necessary each day that the spacecraft remains on-orbit, as well as during the two, week-long, nominal operations rehearsals. Therefore, the mission-dedicated personnel contribution to the cost of a one-year mission is more than eleven man-years, and this does not include the personnel that actually operate the antennas at the various remote ground facilities or develop and maintain the mission-specific or shared-use ground network, hardware, and software. In the low-budget RDT&E world, hardware, software, or Concept of Operations (CONOPS) developments that significantly reduce the necessary Operations personnel investment can mean the difference between a mission that does or does not survive. This paper explores the CONOPS and suite of tools that the TacSat-2 program has put together to achieve maximum mission effectiveness at minimum manpower cost.

  7. Coastal wetlands: The present and future role of remote sensing

    NASA Technical Reports Server (NTRS)

    Carter, V.

    1977-01-01

    During the past decade, there has been a rapid expansion of remote sensing research and technology development related to coastal wetlands. As a result of this research, all of the 23 coastal states have ongoing or completed wetland inventories, most utilizing aerial photographs as the data source for producing a variety of map products with varying scales, formats, classification systems and intended uses. The U.S. Geological Survey is increasing emphasis on map production and revision for the coastal zone. The new U.S. Fish and Wildlife Service National Wetland Inventory is intended to provide a standardized method for comparison of wetlands on a national basis - it too will use available aerial photographs as a basic data source. At present, satellite data is not used for operational mapping of coastal wetlands because of resolution and geometric constraints. In the future, however, satellite data may provide an accurate reliable and economical source to update wetland inventories and to monitor or evaluate coastal wetlands. The technological improvements accompanying the development and launch of Landsat C and D and the space shuttle promise to make satellite digital data a more powerful tool to supply information for future management decisions for coastal wetlands.

  8. IEEE 1393 Spaceborne Fiber Optic Data Bus: A Standard Approach to On-Board Payload Data Handling Networks for the AIAA Space Technology Conference and Exposition "Partnering in the 21th Century"

    NASA Technical Reports Server (NTRS)

    Andrucyk, Dennis J.; Orlando, Fred J.; Chalfant, Charles H.

    1999-01-01

    The Spaceborne Fiber Optic Data Bus (SFODB) is the next generation in on-board data handling networks. It will do for high speed payloads what SAE 1773 has done for on-board command and telemetry systems. That is, it will significantly reduce the cost of payload development, integration and test through interface standardization. As defined in IEEE 1393, SFODB is a 1 Gb/s, fiber optic network specifically designed to support the real-time, on-board data handling requirements of remote sensing spacecraft. The network is highly reliable, fault tolerant, and capable of withstanding the rigors of launch and the harsh space environment. SFODB achieves this operational and environmental performance while maintaining the small size, light weight, and low power necessary for spaceborne applications. SFODB was developed jointly by DoD and NASA GSFC to meet the on-board data handling needs of Remote Sensing satellites. This jointly funded project produced a complete set of flight transmitters, receivers and protocol ASICS; a complete Development & Evaluation System; and, the IEEE 1393 standard.

  9. Design and Development of Functionally Operative and Visually Appealing Remote Firing Room Displays

    NASA Technical Reports Server (NTRS)

    Quaranto, Kristy

    2014-01-01

    This internship provided an opportunity for an intern to work with NASA's Ground Support Equipment (GSE) for the Spaceport Command and Control System (SCCS) at Kennedy Space Center as a remote display developer, under NASA mentor Kurt Leucht. The main focus was on creating remote displays for the hypergolic and high pressure helium subsystem team to help control the filling of the respective tanks. As a remote display developer for the GSE hypergolic and high pressure helium subsystem team the intern was responsible for creating and testing graphical remote displays to be used in the Launch Control Center (LCC) on the Firing Room's computer monitors. To become more familiar with the subsystem, the individual attended multiple project meetings and acquired their specific requirements regarding what needed to be included in the remote displays. After receiving the requirements, the next step was to create a display that had both visual appeal and logical order using the Display Editor, on the Virtual Machine (VM). In doing so, all Compact Unique Identifiers (CUI), which are associated with specific components within the subsystem, will need to be included in each respective display for the system to run properly. Then, once the display was created it needed to be tested to ensure that the display runs as intended by using the Test Driver, also found on the VM. This Test Driver is a specific application that checks to make sure all the CUIs in the display are running properly and returning the correct form of information. After creating and locally testing the display it will need to go through further testing and evaluation before deemed suitable for actual use. By the end of the semester long experience at NASA's Kennedy Space Center, the individual should have gained great knowledge and experience in various areas of display development and testing. They were able to demonstrate this new knowledge obtained by creating multiple successful remote displays that will one day be used by the hypergolic and high pressure helium subsystem team in one of the LCC's firing rooms to fill the new Orion spacecraft.

  10. Extreme Tele-Echocardiography: Methodology for Remote Guidance of In-flight Echocardiography Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Martin, David; Borowski, Allan; Bungo, Michael W.; Dulchavsky, Scott; Gladding, Patrick; Greenberg, Neil; Hamilton, Doug; Levine, Benjamin D.; Norwoord, Kelly; Platts, Steven H.; hide

    2011-01-01

    Echocardiography is ideally suited for cardiovascular imaging in remote environments, but the expertise to perform it is often lacking. In 2001, an ATL HDI5000 was delivered to the International Space Station (ISS). The instrument is currently being used in a study to investigate the impact of long-term microgravity on cardiovascular function. The purpose of this report is to describe the methodology for remote guidance of echocardiography in space. Methods: In the year before launch of an ISS mission, potential astronaut echocardiographic operators participate in 5 sessions to train for echo acquisitions that occur roughly monthly during the mission, including one exercise echocardiogram. The focus of training is familiarity with the study protocol and remote guidance procedures. On-orbit, real-time guidance of in-flight acquisitions is provided by a sonographer in the Telescience Center of Mission Control. Physician investigators with remote access are able to relay comments on image optimization to the sonographer. Live video feed is relayed from the ISS to the ground via the Tracking and Data Relay Satellite System with a 2 second transmission delay. The expert sonographer uses these images along with two-way audio to provide instructions and feedback. Images are stored in non-compressed DICOM format for asynchronous relay to the ground for subsequent off-line analysis. Results: Since June, 2009, a total of 19 resting echocardiograms and 4 exercise studies have been performed in-flight. Average acquisition time has been 45 minutes, reflecting 26,000 km of ISS travel per study. Image quality has been adequate in all studies, but remote guidance has proven imperative for fine-tuning imaging and prioritizing views when communication outages limit the study duration. Typical resting studies have included 12 video loops and 21 still-frame images requiring 750 MB of storage. Conclusions: Despite limited crew training, remote guidance allows research-quality echocardiography to be performed by non-experts aboard the ISS. Analysis is underway and additional subjects are being recruited to define the impact of microgravity on cardiac structure and systolic and diastolic function.

  11. KSC-08pd1539

    NASA Image and Video Library

    2008-05-31

    CAPE CANAVERAL, Fla. -- At the Banana River viewing site, guests applaud the picture-perfect launch of space shuttle Discovery as it leaps from the clouds of smoke below on its STS-124 mission to the International Space Station. Launch was on time at 5:02 p.m. EDT. Discovery is making its 35th flight. The STS-124 mission is the 26th in the assembly of the space station. It is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. The 14-day flight includes three spacewalks. Photo credit: NASA/Sam Fat

  12. 3D Printing Demo - Autodesk

    NASA Image and Video Library

    2018-03-16

    Researchers demonstrate a Zero Launch Mass 3-D printer in Swamp Works at NASA's Kennedy Space Center in Florida. The printer can be used for construction projects on the Moon and Mars. Zero launch mass refers to the fact that the printer uses pellets made from simulated lunar regolith, or dirt, and polymers. This will prove that space explorers can use resources at their destination instead of taking everything with them, saving them launch mass and money. The Kennedy team is working with Marshall Space Flight Center in Huntsville, Alabama, and the U.S. Army Corps of Engineers to develop a system that can 3-D print barracks in remote locations on Earth, using the resources they have where they are.

  13. STS-80 Columbia, OV 102, liftoff from KSC Launch Pad 39B

    NASA Image and Video Library

    1996-11-19

    STS080-S-007 (19 Nov. 1996) --- One of the nearest remote camera stations to Launch Pad B captured this profile image of space shuttle Columbia's liftoff from the Kennedy Space Center's (KSC) Launch Complex 39 at 2:55:47 p.m. (EST), November 19, 1996. Onboard are astronauts Kenneth D. Cockrell, mission commander; Kent V. Rominger, pilot; along with Story Musgrave, Tamara E. Jernigan and Thomas D. Jones, all mission specialists. The two primary payloads for STS-80 stowed in Columbia?s cargo bay for later deployment and testing are the Wake Shield Facility (WSF-3) and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) with its associated Shuttle Pallet Satellite (SPAS).

  14. A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Kerns, Robert V.; Jones, Kenneth M.; Grinstead, Jay H.; Schwartz, Richard J.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Dantowitz, Ronald F.

    2011-01-01

    Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery-based measurement capability to support cross cutting applications that span the Agency mission directorates as well as meeting potential needs of the commercial sector and national interests of the Intelligence, Surveillance and Reconnaissance community are explored. A recommendation is made for an assessment study to baseline current imaging technology including the identification of future mission requirements. Development of requirements fostered by the applications suggested in this paper would be used to identify technology gaps and direct roadmapping for implementation of an affordable and sustainable next generation sensor/platform system.

  15. Parameterization of L-, C- and X-band Radiometer-based Soil Moisture Retrieval Algorithm Using In-situ Validation Sites

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Colliander, A.; Burgin, M. S.; Walker, J. P.; Chae, C. S.; Dinnat, E.; Cosh, M. H.; Caldwell, T. G.

    2017-12-01

    Passive microwave remote sensing has become an important technique for global soil moisture estimation over the past three decades. A number of missions carrying sensors at different frequencies that are capable for soil moisture retrieval have been launched. Among them, there are Japan Aerospace Exploration Agency's (JAXA's) Advanced Microwave Scanning Radiometer-EOS (AMSR-E) launched in May 2002 on the National Aeronautics and Space Administration (NASA) Aqua satellite (ceased operation in October 2011), European Space Agency's (ESA's) Soil Moisture and Ocean Salinity (SMOS) mission launched in November 2009, JAXA's Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the GCOM-W satellite launched in May 2012, and NASA's Soil Moisture Active Passive (SMAP) mission launched in January 2015. Therefore, there is an opportunity to develop a consistent inter-calibrated long-term soil moisture data record based on the availability of these four missions. This study focuses on the parametrization of the tau-omega model at L-, C- and X-band using the brightness temperature (TB) observations from the four missions and the in-situ soil moisture and soil temperature data from core validation sites across various landcover types. The same ancillary data sets as the SMAP baseline algorithm are applied for retrieval at different frequencies. Preliminary comparison of SMAP and AMSR2 TB observations against forward-simulated TB at the Yanco site in Australia showed a generally good agreement with each other and higher correlation for the vertical polarization (R=0.96 for L-band and 0.93 for C- and X-band). Simultaneous calibrations of the vegetation parameter b and roughness parameter h at both horizontal and vertical polarizations are also performed. Finally, a set of model parameters for successfully retrieving soil moisture at different validation sites at L-, C- and X-band respectively are presented. The research described in this paper is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Copyright 2017. All rights reserved.

  16. Telescience testbedding for life science missions on the Space Station

    NASA Technical Reports Server (NTRS)

    Rasmussen, D.; Mian, A.; Bosley, J.

    1988-01-01

    'Telescience', defined as the ability of distributed system users to perform remote operations associated with NASA Space Station life science operations, has been explored by a developmental testbed project allowing rapid prototyping to evaluate the functional requirements of telescience implementation in three areas: (1) research planning and design, (2) remote operation of facilities, and (3) remote access to data bases for analysis. Attention is given to the role of expert systems in telescience, its use in realistic simulation of Space Shuttle payload remote monitoring, and remote interaction with life science data bases.

  17. 5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM SOUTH FACE OF LAUNCH OPERATIONS BUILDING. MICROWAVE DISH IN FOREGROUND. METEOROLOGICAL TOWER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Data Impact of the DMSP F18 SSULI UV Data on the Operational GAIM Model

    NASA Astrophysics Data System (ADS)

    Dandenault, P. B.; Metzler, C. A.; Nicholas, A. C.; Coker, C.; Budzien, S. A.; Chua, D. H.; Finne, T. T.; Dymond, K.; Walker, P. W.; Schunk, R. W.; Scherliess, L.; Gardner, L. C.

    2011-12-01

    The Naval Research Laboratory (NRL) has developed five ultraviolet remote sensing instruments for the United States Air Force (USAF) Defense Meteorological Satellite Program (DMSP). The DMSP satellites are launched in a near-polar, sun-synchronous orbit at an altitude of approximately 830 km. Each Special Sensor Ultraviolet Limb Imager (SSULI) instrument measures vertical profiles of the natural airglow radiation from atoms, molecules and ions in the upper atmosphere and ionosphere by viewing the earth's limb within a tangent altitude range of approximately 50 km to 750 km. Limb observations are made from the extreme ultraviolet (EUV) to the far ultraviolet (FUV) over the wavelength range of 80 nm to 170 nm, with 1.8 nm resolution. Data products from SSULI observations include nightglow and dayglow Sensor Data Records (SDRs), as well as Environmental Data Records (EDRs) which contain vertical profiles of electron (Ne) densities, N2, O2, O, O+, and Temperature, hmF2, NmF2 and vertical Total Electron Content (TEC). On October 18, 2009, the third SSULI sensor launched from Vandenberg Air Force Base aboard the DMSP F18 spacecraft. The Calibration and Validation of the F18 instrument has completed and the SSULI program is scheduled to go operational at the Air Force Weather Agency (AFWA) in Fall 2011. The SSULI F18 data are ingested by the Global Assimilation of Ionospheric Measurements (GAIM) space weather model, which was developed by Utah State University and has been used operationally at AFWA since February 2006. A brief overview of the SSULI F18 SDR data assimilation process with GAIM is provided and the impact of the SSULI 1356 Å emission on the GAIM model is examined for spring and summer 2011 nightside data in the low-latitude region.

  19. Automated Formosat Image Processing System for Rapid Response to International Disasters

    NASA Astrophysics Data System (ADS)

    Cheng, M. C.; Chou, S. C.; Chen, Y. C.; Chen, B.; Liu, C.; Yu, S. J.

    2016-06-01

    FORMOSAT-2, Taiwan's first remote sensing satellite, was successfully launched in May of 2004 into the Sun-synchronous orbit at 891 kilometers of altitude. With the daily revisit feature, the 2-m panchromatic, 8-m multi-spectral resolution images captured have been used for researches and operations in various societal benefit areas. This paper details the orchestration of various tasks conducted in different institutions in Taiwan in the efforts responding to international disasters. The institutes involved including its space agency-National Space Organization (NSPO), Center for Satellite Remote Sensing Research of National Central University, GIS Center of Feng-Chia University, and the National Center for High-performance Computing. Since each institution has its own mandate, the coordinated tasks ranged from receiving emergency observation requests, scheduling and tasking of satellite operation, downlink to ground stations, images processing including data injection, ortho-rectification, to delivery of image products. With the lessons learned from working with international partners, the FORMOSAT Image Processing System has been extensively automated and streamlined with a goal to shorten the time between request and delivery in an efficient manner. The integrated team has developed an Application Interface to its system platform that provides functions of search in archive catalogue, request of data services, mission planning, inquiry of services status, and image download. This automated system enables timely image acquisition and substantially increases the value of data product. Example outcome of these efforts in recent response to support Sentinel Asia in Nepal Earthquake is demonstrated herein.

  20. Station set requirements document. Volume 82: Fire support. Book 2: Preliminary functional fire plan

    NASA Technical Reports Server (NTRS)

    Gray, N. C.

    1974-01-01

    The fire prevention/protection requirements for all shuttle facility and ground support equipment are presented for the hazardous operations. These include: preparing the orbiter for launch, launch operations, landing operations, safing operations, and associated off-line activities.

  1. Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations

    NASA Technical Reports Server (NTRS)

    Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara

    2010-01-01

    This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.

  2. 14 CFR 417.117 - Reviews.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Reviews. 417.117 Section 417.117... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.117 Reviews. (a) General. A launch operator must— (1) Review the status of operations, systems, equipment, and personnel required by part 417...

  3. 14 CFR 417.115 - Tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Tests. 417.115 Section 417.115 Aeronautics... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.115 Tests. (a) General. All flight... re-testing necessary to ensure reliable operation. A launch operator must— (1) Coordinate test plans...

  4. 14 CFR 417.115 - Tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Tests. 417.115 Section 417.115 Aeronautics... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.115 Tests. (a) General. All flight... re-testing necessary to ensure reliable operation. A launch operator must— (1) Coordinate test plans...

  5. 14 CFR 417.115 - Tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Tests. 417.115 Section 417.115 Aeronautics... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.115 Tests. (a) General. All flight... re-testing necessary to ensure reliable operation. A launch operator must— (1) Coordinate test plans...

  6. 14 CFR 417.115 - Tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Tests. 417.115 Section 417.115 Aeronautics... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.115 Tests. (a) General. All flight... re-testing necessary to ensure reliable operation. A launch operator must— (1) Coordinate test plans...

  7. 14 CFR 417.115 - Tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Tests. 417.115 Section 417.115 Aeronautics... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.115 Tests. (a) General. All flight... re-testing necessary to ensure reliable operation. A launch operator must— (1) Coordinate test plans...

  8. Bulk-buy practices by satellite operators foster further commercialization of launch services industry : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1997-01-01

    The satellite launch industry has steadily grown and matured to take on the features of a truly commercial industry. This year, commercial launches outnumber government launches for the first time. New launch systems, such as the Delta 3, Sea Launch,...

  9. Internet-to-orbit gateway and virtual ground station: A tool for space research and scientific outreach

    NASA Astrophysics Data System (ADS)

    Jaffer, Ghulam; Nader, Ronnie; Koudelka, Otto

    2011-09-01

    Students in higher education, and scientific and technological researchers want to communicate with the International Space Station (ISS), download live satellite images, and receive telemetry, housekeeping and science/engineering data from nano-satellites and larger spacecrafts. To meet this need the Ecuadorian Civilian Space Agency (EXA) has recently provided the civilian world with an internet-to-orbit gateway (Hermes-A/Minotaur) Space Flight Control Center (SFCC) available for public use. The gateway has a maximum range of tracking and detection of 22,000 km and sensitivity such that it can receive and discriminate the signals from a satellite transmitter with power˜0.1 W. The capability is enough to receive the faintest low-earth-orbit (LEO) satellites. This gateway virtually connects participating internet clients around the world to a remote satellite ground station (GS), providing a broad community for multinational cooperation. The goal of the GS is to lower financial and engineering barriers that hinder access to science and engineering data from orbit. The basic design of the virtual GS on a user side is based on free software suites. Using these and other software tools the GS is able to provide access to orbit for a multitude of users without each having to go through the costly setups. We present the design and implementation of the virtual GS in a higher education and scientific outreach settings. We also discuss the basic architecture of the single existing system and the benefits of a proposed distributed system. Details of the software tools and their applicability to synchronous round-the-world tracking, monitoring and processing performed by students and teams at Graz University of Technology, Austria, EXA-Ecuador, University of Michigan, USA and JAXA who have participated in various mission operations and have investigated real-time satellite data download and image acquisition and processing. Students and other remote users at these institutions undergo training with in orbit satellites in preparation for their own use with future university-class nano-satellites' post launch space operations. The exclusive ability of Hermes-A/Minotaur to act as a gateway between remote users (internet) and satellites (in orbit) makes the virtual GS at user-end more feasible for the long-term real-time nano/cubesats space operations. The only requirement is to have a mutual agreement between EXA and participating university/research organization and broadband internet connection at user-end. With successful and remote satellite tracking and downloading of real-time data from many operational satellites, the Hermes has been found a reliable potential GS for current and future university missions and a training platform for individuals pursuing space operations.

  10. Teleoperator Maneuvering System (TMS) benefits assessment study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Teleoperator Maneuvering System (TMS) versus integral spacecraft propulsion, spacecraft maintenance, cost benefits, launch prices, integral propulsion length penalties, remote maintenance versus EVA, potential weight reduction benefits, basing mode, mission models and payload requirements, and program profitability are discussed.

  11. Joint remote control of an arbitrary single-qubit state by using a multiparticle entangled state as the quantum channel

    NASA Astrophysics Data System (ADS)

    Lv, Shu-Xin; Zhao, Zheng-Wei; Zhou, Ping

    2018-01-01

    We present a scheme for joint remote implementation of an arbitrary single-qubit operation following some ideas in one-way quantum computation. All the senders share the information of implemented quantum operation and perform corresponding single-qubit measurements according to their information of implemented operation. An arbitrary single-qubit operation can be implemented upon the remote receiver's quantum system if the receiver cooperates with all the senders. Moreover, we study the protocol of multiparty joint remote implementation of an arbitrary single-qubit operation with many senders by using a multiparticle entangled state as the quantum channel.

  12. Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB)

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Rajkumar, T.

    2003-01-01

    Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.

  13. Intelligent launch and range operations virtual testbed (ILRO-VTB)

    NASA Astrophysics Data System (ADS)

    Bardina, Jorge; Rajkumar, Thirumalainambi

    2003-09-01

    Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.

  14. MACSAT - A Near Equatorial Earth Observation Mission

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  15. Solid-State, High Energy 2-Micron Laser Development for Space-Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2010-01-01

    Lidar (light detection and ranging) remote sensing enjoys the advantages of excellent vertical and horizontal resolution; pointing capability; a signal source independent from natural light; and control and knowledge of transmitted wavelength, pulse shape, and polarization and received polarization. Lidar in space is an emerging technology now being developing to fit applications where passive sensors cannot meet current measurement requirements. Technical requirements for space lidar are more demanding than for ground-based or airborne systems. Perhaps the most distinguishing characteristics of space lidars are the environmental requirements. Space lidar systems must be specially designed to survive the mechanical vibration loads of launch and operate in the vacuum of space where exposure to ionizing radiation limits the electronic components available. Finally, space lidars must be designed to be highly reliable because they must operate without the need for repair or adjustment. Lifetime requirements tend to be important drivers of the overall system design. The maturity of the required technologies is a key to the development of any space lidar system. NASA entered a new era in the 1990 s with the approval of several space-based remote sensing missions employing laser radar (lidar) techniques. Following the steps of passive remote sensing and then active radar remote sensing, lidar sensors were a logical next step, providing independence from natural light sources, and better spatial resolution and smaller sensor size than radar sensors. The shorter electromagnetic wavelengths of laser light also allowed signal reflectance from air molecules and aerosol particles. The smaller receiver apertures allowed the concept of scanning the sensor field of view. However, technical problems with several space-based lidar missions during that decade led to concern at NASA about the risk of lidar missions. An external panel was convened to make recommendations to NASA. Their report in 2000 strongly advocated that NASA maintain in-house laser and lidar capability, and that NASA should work to lower the technology risk for all future lidar missions. A multi-Center NASA team formulated an integrated NASA strategy to provide the technology and maturity of systems necessary to make Lidar/Laser systems viable for space-based study and monitoring of the Earth's atmosphere. In 2002 the NASA Earth Science Enterprise (ESE) and Office of Aerospace Technology (OAT) created the Laser Risk Reduction Program (LRRP) and directed NASA Langley Research Center (LaRC) and Goddard Space Flight Center to carry out synergistic and complementary research towards solid-state lasers/lidars developments for space-based remote sensing applications.

  16. Taiwan's second remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Chern, Jeng-Shing; Ling, Jer; Weng, Shui-Lin

    2008-12-01

    FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.

  17. Cryo Tank Fill at Pad 39B

    NASA Image and Video Library

    2017-09-26

    NASA Launch Director Charlie Blackwell-Thompson, at left, arrives at Launch Pad 39B at NASA's Kennedy Space Center in Florida, to observe the first major tanking operation of liquid oxygen, or LO2, into the giant storage sphere at the northwest corner of the pad to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. During the operation, several Praxair trucks will slowly offload LO2 to gradually chill down the sphere from normal temperature to about negative 298 degrees Fahrenheit. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.

  18. KSC-2009-5248

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – This ribbon cutting officially turns over NASA Kennedy Space Center's Launch Control Center Firing Room 1 from the Space Shuttle Program to the Constellation Program. Participating are (from left) Pepper Phillips, director of the Constellation Project Office at Kennedy; Bob Cabana, Kennedy's director; Robert Crippen, former astronaut; Jeff Hanley, manager of the Constellation Program at NASA's Johnson Space Center; and Nancy Bray, deputy director of Center Operations at Kennedy. The room has undergone demolition and construction and been outfitted with consoles for the upcoming Ares I-X rocket flight test targeted for launch on Oct. 27. As the center of launch operations at Kennedy since the Apollo Program, the Launch Control Center, or LCC, has played a central role in NASA's human spaceflight programs. Firing Room 1 was the first operational firing room constructed. From this room, controllers launched the first Saturn V, the first crewed flight of Saturn V, the first crewed mission to the moon and the first space shuttle. Firing Room 1 will continue this tradition of firsts when controllers launch the Constellation Program's first flight test. Also, this firing room will be the center of operations for the upcoming Ares I and Orion operations. Photo credit: NASA/Kim Shiflett

  19. Orbital transfer vehicle concept definition and system analysis study, 1985. Volume 2: OTV concept definition and evaluation. Book 4: Operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Jack C.; Keeley, J. T.

    1985-01-01

    The benefits of the reusable Space Shuttle and the advent of the new Space Station hold promise for increasingly effective utilization of space by the scientific and commercial as well as military communities. A high energy reusable oribital transfer vehicle (OTV) represents an additional capability which also exhibits potential for enhancing space access by allowing more ambitious missions and at the same time reducing launch costs when compared to existing upper stages. This section, Vol. 2: Book 4, covers launch operations and flight operations. The launch operations section covers analyses of ground based and space based vehicles, launch site facilities, logistics requirements, propellant loading, space based maintenance and aft cargo carrier access options. The flight operations sections contain summary descriptions of ground based and space based OTV missions, operations and support requirements, and a discussion of fleet implications.

  20. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 2: Ground operations problems

    NASA Technical Reports Server (NTRS)

    Waldrop, Glen S.

    1990-01-01

    Operations problems and cost drivers were identified for current propulsion systems and design and technology approaches were identified to increase the operational efficiency and to reduce operations costs for future propulsion systems. To provide readily usable data for the ALS program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume presents a detailed description of 25 major problems encountered during launch processing of current expendable and reusable launch vehicles. A concise description of each problem and its operational impact on launch processing is presented, along with potential solutions and technology recommendation.

  1. Remote Operations and Ground Control Centers

    NASA Technical Reports Server (NTRS)

    Bryant, Barry S.; Lankford, Kimberly; Pitts, R. Lee

    2004-01-01

    The Payload Operations Integration Center (POIC) at the Marshall Space Flight Center supports the International Space Station (ISS) through remote interfaces around the world. The POIC was originally designed as a gateway to space for remote facilities; ranging from an individual user to a full-scale multiuser environment. This achievement was accomplished while meeting program requirements and accommodating the injection of modern technology on an ongoing basis to ensure cost effective operations. This paper will discuss the open POIC architecture developed to support similar and dissimilar remote operations centers. It will include technologies, protocols, and compromises which on a day to day basis support ongoing operations. Additional areas covered include centralized management of shared resources and methods utilized to provide highly available and restricted resources to remote users. Finally, the effort of coordinating the actions of participants will be discussed.

  2. Seasat. Volume 4: Attitude determination

    NASA Technical Reports Server (NTRS)

    Treder, A. J.

    1980-01-01

    The Seasat project was a feasibility demonstration of the use of orbital remote sensing for global ocean observation. The satellite was launched in June 1978 and was operated successfully until October 1978. A massive electrical failure occurred in the power system, terminating the mission prematurely. The actual implementation of the Seasat Attitude Determination system and the contents of the attitude data files generated by that system are documented. The deviations from plan caused by the anomalous Sun interference with horizon sensors, inflight calibration of Sun sensor head 2 alignment and horizon sensor biomass, estimation of yaw interpolation parameters, Sun and horizon sensor error sources, and yaw interpolation accuracy are included. Examples are given of flight attitude data from all modes of the Orbital Attitude Control System, of the ground processing effects on attitude data, and of cold cloud effects on pitch, and roll data.

  3. Process-Hardened, Multi-Analyte Sensor for Characterizing Rocket Plume Constituents

    NASA Technical Reports Server (NTRS)

    Goswami, Kisholoy

    2011-01-01

    A multi-analyte sensor was developed that enables simultaneous detection of rocket engine combustion-product molecules in a launch-vehicle ground test stand. The sensor was developed using a pin-printing method by incorporating multiple sensor elements on a single chip. It demonstrated accurate and sensitive detection of analytes such as carbon dioxide, carbon monoxide, kerosene, isopropanol, and ethylene from a single measurement. The use of pin-printing technology enables high-volume fabrication of the sensor chip, which will ultimately eliminate the need for individual sensor calibration since many identical sensors are made in one batch. Tests were performed using a single-sensor chip attached to a fiber-optic bundle. The use of a fiber bundle allows placement of the opto-electronic readout device at a place remote from the test stand. The sensors are rugged for operation in harsh environments.

  4. Final matches of the FIRST regional robotic competition at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Student teams behind protective walls operate remote controls to maneuver their robots around the playing field during the 1999 FIRST Southeastern Regional robotic competition held at KSC. The robotic gladiators spent two minutes each trying to grab, claw and hoist large, satin pillows onto their machines. Teams played defense by taking away competitors' pillows and generally harassing opposing machines. On the side of the field are the judges, including (far left) Deputy Director for Launch and Payload Processing Loren Shriver and former KSC Director of Shuttle Processing Robert Sieck. A giant screen TV displays the action on the field. The competition comprised 27 teams, pairing high school students with engineer mentors and corporations. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.

  5. Data collection via CRS&SI technology to determine when to impose SLR.

    DOT National Transportation Integrated Search

    2013-12-01

    The research team and its partners have completed the project objectives to deploy : Commercial Remote Sensing and Spatial Information, CRS&SI, technology and to : launch a website, DSS-SLR, to display information or data retrieved via satellite. The...

  6. The Geoscience Laser Altimeter System Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  7. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    NASA Astrophysics Data System (ADS)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and manufacture of the scanning infrared imaging system, the infrared remote sensing system, the infrared early-warning satellite, and so on.

  8. NASA, John F. Kennedy Space Center environmental impact statement

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The probable total impact of the John F. Kennedy Space Center (KSC) operations on the environment is discussed in terms of launch operations emissions and environmental quality. A schedule of planned launches through 1973 is included with a description of the systems for eliminating harmful emissions during launch operations. The effects of KSC on wild life and environmental quality are discussed along with the irreversible and irretrievable commitments of natural resources.

  9. Status of Electrical Actuator Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Taylor, Linda M.; Hansen, Irving G.

    1996-01-01

    An ever increasing number of actuation functions historically performed by hydraulics or pneumatics are being accomplished by electric actuation. If 'end to end' systems are considered, electric actuators (EA's) are potentially lighter and more efficient. In general, system redundancies may be more easily implemented and operationally monitored. Typically, electrical components exhibit longer mean times to failure and projected lifetime costs of EA's are potentially much lower than those of other options. EA's have certain characteristics which must be considered in their application. The actual mechanical loadings must be established, for the more easily controlled EA may be operated much closer to its full capabilities. At higher rates of motion, EA's are operating as constant power devices. Therefore, it may be possible to start a movement that can not be stopped. The incorporation of high power electronics into remote locations introduces new concerns of EMI and thermal control. It is the management of these and other characteristics that forms the engineering design challenges. Work is currently in progress on EA's for aircraft and expendable launch vehicles. These applications span from ten to 40+ horsepower. The systematics and status of these actuators will be reported along with current technical trends in this area.

  10. Operationally Efficient Propulsion System Study (OEPSS): OEPSS Video Script

    NASA Technical Reports Server (NTRS)

    Wong, George S.; Waldrop, Glen S.; Trent, Donnie (Editor)

    1992-01-01

    The OEPSS video film, along with the OEPSS Databooks, provides a data base of current launch experience that will be useful for design of future expendable and reusable launch systems. The focus is on the launch processing of propulsion systems. A brief 15-minute overview of the OEPSS study results is found at the beginning of the film. The remainder of the film discusses in more detail: current ground operations at the Kennedy Space Center; typical operations issues and problems; critical operations technologies; and efficiency of booster and space propulsion systems. The impact of system architecture on the launch site and its facility infrastucture is emphasized. Finally, a particularly valuable analytical tool, developed during the OEPSS study, that will provide for the "first time" a quantitative measure of operations efficiency for a propulsion system is described.

  11. Remote observing with the Keck Telescopes from the U.S. mainland

    NASA Astrophysics Data System (ADS)

    Kibrick, Robert I.; Allen, Steve L.; Conrad, Albert

    2000-06-01

    We describe the current status of efforts to establish a high-bandwidth network from the U.S. mainland to Mauna Kea and a facility in California to support Keck remote observing and engineering via the Internet. The California facility will be an extension of the existing Keck remote operations facility located in Waimea, Hawaii. It will be targeted towards short-duration observing runs which now comprise roughly half of all scheduled science runs on the Keck Telescope. Keck technical staff in Hawaii will support remote observers on the mainland via video conferencing and collaborative software tools. Advantages and disadvantages of remote operation from California versus Hawaii are explored, and costs of alternative communication paths examined. We describe a plan for a backup communications path to protect against failure of the primary network. Alternative software models for remote operation are explored, and recent operational results described.

  12. KSC-08pd1269

    NASA Image and Video Library

    2008-05-09

    CAPE CANAVERAL, Fla. -- The STS-124 crew departs NASA's Kennedy Space Center after a successful launch dress rehearsal called the terminal countdown demonstration test. Seated in the T-38 training jet, Mission Specialist Mike Fossum is ready to put on his helmet for the flight back to Houston. The crew is expected to return in late May for the May 31 launch of space shuttle Discovery. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Photo credit: NASA/Kim Shiflett

  13. KSC-08pd1266

    NASA Image and Video Library

    2008-05-09

    CAPE CANAVERAL, Fla. -- The crew for the STS-124 mission departs NASA's Kennedy Space Center after a successful launch dress rehearsal called the terminal countdown demonstration test. Seen here are Commander Mark Kelly and Mission Specialist Greg Chamitoff heading for the T-38 training jets for their flight back to Houston. The crew is expected to return in late May for the May 31 launch of space shuttle Discovery. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Photo credit: NASA/Kim Shiflett

  14. KSC-08pd1265

    NASA Image and Video Library

    2008-05-09

    CAPE CANAVERAL, Fla. -- The crew for the STS-124 mission departs NASA's Kennedy Space Center after a successful launch dress rehearsal called the terminal countdown demonstration test. Seen here are Mission Specialists Ron Garan and Karen Nyberg heading for the T-38 training jets for their flight back to Houston. The crew is expected to return in late May for the May 31 launch of space shuttle Discovery. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Photo credit: NASA/Kim Shiflett

  15. KSC01padig202

    NASA Image and Video Library

    2001-04-19

    KENNEDY SPACE CENTER, FLA. -- Spring leaves frame the launch of Space Shuttle Endeavour on mission STS-100, the ninth flight to the International Space Station. Liftoff occurred at 2:40:42 p.m. EDT. The 11-day mission will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator System and the UHF Antenna. The mission includes two planned spacewalks for installation of the SSRMS on the Station. Also onboard is the Multi-Purpose Logistics Module Raffaello, carrying resupply stowage racks and resupply/return stowage platform

  16. KSC01PP0831

    NASA Image and Video Library

    2001-04-19

    KENNEDY SPACE CENTER, FLA. -- Spring leaves frame Space Shuttle Endeavour as the water captures the launch of mission STS-100. Liftoff of Endeavour on the ninth flight to the International Space Station occurred at 2:40:42 p.m. EDT. The 11-day mission will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator System and the UHF Antenna. The mission includes two planned spacewalks for installation of the SSRMS on the Station. Also onboard is the Multi-Purpose Logistics Module Raffaello, carrying resupply stowage racks and resupply/return stowage platforms

  17. 77 FR 61513 - Voluntary Licensing of Amateur Rocket Operations; Correction; Delay of Effective Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ...-0318; Notice No. 400-4] RIN 2120-AK16 Voluntary Licensing of Amateur Rocket Operations; Correction... allow launch operators that conduct certain amateur rocket launches an opportunity to voluntarily apply... final rule entitled, ``Voluntary Licensing of Amateur Rocket Operations'' (77 FR 50584). In this rule...

  18. Remotely operated submersible underwater suction apparatus

    DOEpatents

    Kristan, Louis L.

    1990-01-01

    A completely submersible, remotely operated underwater suction device for collection of irradiated materials in a nuclear pool is disclosed. The device includes a pump means for pumping water through the device, a filter means for capturing irradiated debris, remotely operated releasable connector means, a collection means and a means for remotely maneuvering the collection means. The components of the suction device may be changed and replaced underwater to take advantage of the excellent radiation shielding ability of water to thereby minimize exposure of personnel to radiation.

  19. 119. Photocopy of drawing (1959 civil engineering drawing by the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    119. Photocopy of drawing (1959 civil engineering drawing by the Ralph M. Parsons Company) PLOT PLAN AND PROFILE LINES OF WAVE GUIDE ENCLOSURE AND CABLE TRAY INSTALLATION FOR LAUNCH OPERATIONS BUILDING, SHEET C41 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. 120. Photocopy of drawing (1958 civil engineering drawing by the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. Photocopy of drawing (1958 civil engineering drawing by the Ralph M. Parsons Company) STRUCTURAL DETAILS OF WAVE GUIDE ENCLOSURE AND CABLE TRAY INSTALLATION FOR LAUNCH OPERATIONS BUILDING, SHEET C42 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. KSC-2015-1226

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  2. KSC-2015-1236

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  3. KSC-2015-1227

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  4. KSC-2015-1228

    NASA Image and Video Library

    2015-01-29

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  5. KSC-2015-1225

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  6. KSC-2015-1235

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  7. KSC-2015-1238

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  8. KSC-2015-1234

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  9. KSC-2015-1224

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  10. KSC-2015-1223

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  11. KSC-2015-1229

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett

  12. KSC-2015-1233

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  13. KSC-2015-1237

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin

  14. KSC-08pd1177

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- With Launch Pad 39B in the background, STS-124 Pilot Ken Ham drives the M113 armored personnel carrier as part of emergency training. Behind him at right is Mission Specialist Karen Nyberg. At center is Battalion Chief George Hoggard providing supervision. Ham and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett

  15. KSC-08pd1108

    NASA Image and Video Library

    2008-05-03

    CAPE CANAVERAL, Fla. -- At Launch Pad 39A at NASA's Kennedy Space Center, the payload for the STS-124 mission, secured in the payload changeout room on the rotating service structure, at left, awaits installation into the payload bay of space shuttle Discovery. Discovery's 3.4-mile journey from the Vehicle Assembly Building began at 11:47 p.m. on May 2. The shuttle arrived at the launch pad at 4:25 a.m. EDT May 3 and was secured, or hard down, by 6:06 a.m. On the 13-day mission, Discovery and its crew will deliver the Japan Aerospace Exploration Agency's Japanese Experiment Module – Pressurized Module and the Japanese Remote Manipulator System. Launch is targeted for May 31. Photo credit: NASA/Troy Cryder

  16. 3D Printing Demo - Autodesk

    NASA Image and Video Library

    2018-03-16

    A Zero Launch Mass 3-D printer is being developed by researchers in Swamp Works at NASA's Kennedy Space Center in Florida. The printer can be used for construction projects on the Moon and Mars. Zero launch mass refers to the fact that the printer uses pellets made from simulated lunar regolith, or dirt, and polymers. This will prove that space explorers can use resources at their destination instead of taking everything with them, saving them launch mass and money. The Kennedy team is working with Marshall Space Flight Center in Huntsville, Alabama, and the U.S. Army Corps of Engineers to develop a system that can 3-D print barracks in remote locations on Earth, using the resources they have where they are.

  17. 3D Printing Demo - Autodesk

    NASA Image and Video Library

    2018-03-16

    A Zero Launch Mass 3-D printer is being tested at the Swamp Works at NASA's Kennedy Space Center in Florida. The printer can be used for construction projects on the Moon and Mars. Zero launch mass refers to the fact that the printer uses pellets made from simulated lunar regolith, or dirt, and polymers. This will prove that space explorers can use resources at their destination instead of taking everything with them, saving them launch mass and money. The Kennedy team is working with Marshall Space Flight Center in Huntsville, Alabama, and the U.S. Army Corps of Engineers to develop a system that can 3-D print barracks in remote locations on Earth, using the resources they have where they are.

  18. 3D Printing Demo - Autodesk

    NASA Image and Video Library

    2018-03-16

    Researchers at NASA's Kennedy Space Center in Florida are developing a Zero Launch Mass 3-D printer at the center's Swamp Works. The printer can be used for construction projects on the Moon and Mars. Zero launch mass refers to the fact that the printer uses pellets made from simulated lunar regolith, or dirt, and polymers. This will prove that space explorers can use resources at their destination instead of taking everything with them, saving them launch mass and money. The Kennedy team is working with Marshall Space Flight Center in Huntsville, Alabama, and the U.S. Army Corps of Engineers to develop a system that can 3-D print barracks in remote locations on Earth, using the resources they have where they are.

  19. Canadian Space Launch: Exploiting Northern Latitudes For Efficient Space Launch

    DTIC Science & Technology

    2015-04-01

    9  Peoples’ Republic of China .........................................................................................11  USA Launch... taxation and legislation that make Canada an attractive destination for commercial space companies.3 General Definitions Highly Inclined Orbit...launches from sites north of the 35th parallel.33 USA Launch Facilities There are 3 US based launch facilities that conduct launch operations north

  20. KSC-97pc633

    NASA Image and Video Library

    1997-04-08

    The Lockheed Martin Atlas 1 expendable launch vehicle (AC-79) which will carry the GOES-K advanced weather satellite undergoes a critical prelaunch test with its mobile service tower pulled back. The Wet Dress Rehearsal is a major prelaunch test designed to demonstrate, in part, the launch readiness of the vehicle and launch support equipment. AC-79 will be the final launch of an Atlas 1 rocket, a derivative of the original Atlas Centaur which had its first successful launch for NASA in 1963. Future launches of Geostationary Operational Environmental Satellites (GOES) in the current series will be on Atlas II vehicles. The GOES satellites are owned and operated by the National Oceanic and Atmospheric Administration (NOAA); NASA manages the design, development and launch of the spacecraft. The launch of AC-79 with the GOES-K is targeted for April 24 during a launch window which extends from 1:50-3:09 a.m. EDT

Top