Impact of remote sensing upon the planning, management, and development of water resources
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L.; Fowler, T. R.; Frech, S. L.
1975-01-01
Principal water resources users were surveyed to determine the impact of remote data streams on hydrologic computer models. Analysis of responses demonstrated that: most water resources effort suitable to remote sensing inputs is conducted through federal agencies or through federally stimulated research; and, most hydrologic models suitable to remote sensing data are federally developed. Computer usage by major water resources users was analyzed to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era.
Lee, Zhongping; Shang, Shaoling; Lin, Gong; Chen, Jun; Doxaran, David
2016-03-01
We evaluated three key components in modeling hyperspectral remote-sensing reflectance in the visible to shortwave-infrared (Vis-SWIR) domain of high-sediment-load (HSL) waters, which are the relationship between remote-sensing reflectance (R(rs)) and inherent optical properties (IOPs), the absorption coefficient spectrum of pure water (a(w)) in the IR-SWIR region, and the spectral variation of sediment absorption coefficient (a(sed)). Results from this study indicate that it is necessary to use a more generalized R(rs)-IOP model to describe the spectral variation of R(rs) of HSL waters from Vis to SWIR; otherwise it may result in a spectrally distorted R(rs) spectrum if a constant model parameter is used. For hyperspectral a(w) in the IR-SWIR domain, the values reported in Kou et al. (1993) provided a much better match with the spectral variation of R(rs) in this spectral range compared to that of Segelstein (1981). For a(sed) spectrum, an empirical a(sed) spectral shape derived from sample measurements is found working much better than the traditional exponential-decay function of wavelength in modeling the spectral variation of R(rs) in the visible domain. These results would improve our understanding of the spectral signatures of R(rs) of HSL waters in the Vis-SWIR domain and subsequently improve the retrieval of IOPs from ocean color remote sensing, which could further help the estimation of sediment loading of such waters. Limitations in estimating chlorophyll concentration in such waters are also discussed.
33 CFR 183.53 - Horsepower capacity.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., calm water with the wind speed below 10 knots. The test must be conducted with no load other than a... there is no loss of directional control. (4) Quick turn test procedure. Set throttle at a low... factor is over 52.5 and the boat has Remote steering and at least 20″ transom height No remote steering...
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.
1975-01-01
An analysis of current computer usage by major water resources users was made to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era. The analysis showns significant impact due to the utilization and processing of ERTS CCT's data.
Turbidity-controlled suspended sediment sampling for runoff-event load estimation
Jack Lewis
1996-01-01
Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is generally a much better predictor than water discharge. Although it is now possible to collect continuous turbidity data even at remote sites, sediment sampling and load estimation are still conventionally based on discharge. With frequent calibration the relation of turbidity to...
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Boyd, T. J.; Anastasiou, C. J.; Thao, P. T. P.; Reid, J. S.
2016-02-01
Optical measurements (absorbance, EEM fluorescence, remote sensing reflectance) and concurrently-collected sensor-based data (CDOM, chlorophyll-a, salinity, turbidity, and temperature) were used to link optical properties to water mass characteristics. Data and samples were collected during four field events in the Philippines (SEP2011, SEP2012 - transects from Manila to Palawan Island), Thailand (MAR2012 - Pattaya Beach area) and Vietnam (MAR2012 - Nha Trang and Ha Long Bay). EEM fluorescence spectra from each site were modeled using PARAFAC to identify representative fluorophores. Remote sensing reflectance was modeled using PCA, determining spectral loadings showing variation in samples from each site. These synthesized model data and sensor-based measurements were collated and ordinated using PCA to determine if optical properties could be linked to water quality and biogeochemical measures. PCA models at each site showed stations nearest to the coastline falling near or outside 95% confidence regions. Initial results indicate protein-like fluorophores were found in lower salinity waters and more heavily-impacted regions (Manila Bay - Philippines, Nha Trang River - Vietnam, Bang Pakong River - Thailand). Spectral slope and an component loading from remote sensing reflectance appeared to co-vary with sensor-derived CDOM fluorescence. Results from intra- and inter-site comparisons and linkages to biogeochemical parameters will be presented.
Estimation of urban runoff and water quality using remote sensing and artificial intelligence.
Ha, S R; Park, S Y; Park, D H
2003-01-01
Water quality and quantity of runoff are strongly dependent on the landuse and landcover (LULC) criteria. In this study, we developed a more improved parameter estimation procedure for the environmental model using remote sensing (RS) and artificial intelligence (AI) techniques. Landsat TM multi-band (7bands) and Korea Multi-Purpose Satellite (KOMPSAT) panchromatic data were selected for input data processing. We employed two kinds of artificial intelligence techniques, RBF-NN (radial-basis-function neural network) and ANN (artificial neural network), to classify LULC of the study area. A bootstrap resampling method, a statistical technique, was employed to generate the confidence intervals and distribution of the unit load. SWMM was used to simulate the urban runoff and water quality and applied to the study watershed. The condition of urban flow and non-point contaminations was simulated with rainfall-runoff and measured water quality data. The estimated total runoff, peak time, and pollutant generation varied considerably according to the classification accuracy and percentile unit load applied. The proposed procedure would efficiently be applied to water quality and runoff simulation in a rapidly changing urban area.
Utilization of LANDSAT data for water quality surveys in the Choptank River
NASA Technical Reports Server (NTRS)
Johnson, J. M.; Cressy, P.; Dallam, W. C.
1975-01-01
Computer processing of LANDSAT-1 multispectral digital data demonstrated the applicability of remotely sensed data to water quality survey in the Choptank River. Water classes derived by automated analysis correlate to river nuisance levels of chlorophyll a and sediment loading as defined by the Maryland Department of Water Resources and the U.S. Corps of Engineers. Results indicate that an increase in chlorophyll a concentration corresponds, relative to MSS 5, to decreases in 4 and increases in 6 relative to the trends with increasing sediment load. It appears that for the purpose of water quality analysis, under favorable atmospheric conditions, only MSS 4, 5 and 6 are necessary.
Applications of remote sensing to hydrologic planning
NASA Technical Reports Server (NTRS)
Loats, H., Jr.; Fowler, T.; Castruccio, P.
1978-01-01
The transfer of LANDSAT remote sensing technology from the research sector to user operational applications requires demonstration of the utility and accuracy of LANDSAT data in solving real problems. This report describes such a demonstration project in the area of water resources, specifically the estimation of non-point source pollutant loads. Non-point source pollutants were estimated from land cover data from LANDSAT images. Classification accuracies for three small watersheds were above 95%. Land cover was converted to pollutant loads for a fourth watershed through the use of coefficients relating significant pollutants to land use and storm runoff volume. These data were input into a simulator model which simulated runoff from average rainfall. The result was the estimation of monthly expected pollutant loads for the 17 subbasins comprising the Magothy watershed.
Monitoring changes in Greater Yellowstone Lake water quality following the 1988 wildfires
NASA Technical Reports Server (NTRS)
Lathrop, Richard G., Jr.; Vande Castle, John D.; Brass, James A.
1994-01-01
The fires that burned the Greater Yellowstone Area (GYA) during the summer of 1988 were the largest ever recorded for the region. Wildfire can have profound indirect effects on associated aquatic ecosystems by increased nutrient loading, sediment, erosion, and runoff. Satellite remote sensing and water quality sampling were used to compare pre- versus post-fire conditions in the GYA's large oliotrophic (high transparency, low productivity) lakes. Inputs of suspended sediment to Jackson Lake appear to have increased. Yellowstone Lake has not shown any discernable shift in water quality. The insights gained separately from the Landsat Thematic and NOAA Advanced Very High Resolution Radiometer (AVHRR) remote sensing systems, along with conventional in-situ sampling, can be combined into a useful water quality monitoring tool.
Chapin, Thomas P.; Todd, Andrew S.
2012-01-01
Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7–8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R2 > 0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed.
Chapin, Thomas P; Todd, Andrew S
2012-11-15
Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7-8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R(2)>0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed. Published by Elsevier B.V.
Mobile Bay turbidity plume study
NASA Technical Reports Server (NTRS)
Crozier, G. F.
1976-01-01
Laboratory and field transmissometer studies on the effect of suspended particulate material upon the appearance of water are reported. Quantitative correlations were developed between remotely sensed image density, optical sea truth data, and actual sediment load. Evaluation of satellite image sea truth data for an offshore plume projects contours of transmissivity for two different tidal phases. Data clearly demonstrate the speed of change and movement of the optical plume for water patterns associated with the mouth of Mobile bay in which relatively clear Gulf of Mexico water enters the bay on the eastern side. Data show that wind stress in excess of 15 knots has a marked impact in producing suspended sediment loads.
Continental-scale water fluxes from continuous GPS observations of Earth surface loading
NASA Astrophysics Data System (ADS)
Borsa, A. A.; Agnew, D. C.; Cayan, D. R.
2015-12-01
After more than a decade of observing annual oscillations of Earth's surface from seasonal snow and water loading, continuous GPS is now being used to model time-varying terrestrial water fluxes on the local and regional scale. Although the largest signal is typically due to the seasonal hydrological cycle, GPS can also measure subtle surface deformation caused by sustained wet and dry periods, and to estimate the spatial distribution of the underlying terrestrial water storage changes. The next frontier is expanding this analysis to the continental scale and paving the way for incorporating GPS models into the National Climate Assessment and into the observational infrastructure for national water resource management. This will require reconciling GPS observations with predictions from hydrological models and with remote sensing observations from a suite of satellite instruments (e.g. GRACE, SMAP, SWOT). The elastic Earth response which transforms surface loads into vertical and horizontal displacements is also responsible for the contamination of loading observations by tectonic and anthropogenic transients, and we discuss these and other challenges to this new application of GPS.
van Katwijk, M M; van der Welle, M E W; Lucassen, E C H E T; Vonk, J A; Christianen, M J A; Kiswara, W; al Hakim, I Inayat; Arifin, A; Bouma, T J; Roelofs, J G M; Lamers, L P M
2011-07-01
In remote, tropical areas human influences increase, potentially threatening pristine seagrass systems. We aim (i) to provide a bench-mark for a near-pristine seagrass system in an archipelago in East Kalimantan, by quantifying a large spectrum of abiotic and biotic properties in seagrass meadows and (ii) to identify early warning indicators for river sediment and nutrient loading, by comparing the seagrass meadow properties over a gradient with varying river influence. Abiotic properties of water column, pore water and sediment were less suitable indicators for increased sediment and nutrient loading than seagrass properties. Seagrass meadows strongly responded to higher sediment and nutrient loads and proximity to the coast by decreasing seagrass cover, standing stock, number of seagrass species, changing species composition and shifts in tissue contents. Our study confirms that nutrient loads are more important than water nutrient concentrations. We identify seagrass system variables that are suitable indicators for sediment and nutrient loading, also in rapid survey scenarios with once-only measurements. Copyright © 2011 Elsevier Ltd. All rights reserved.
Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.
He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan
2009-01-01
Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.
Hyperspectral Remote Sensing of New England Coastal Waters to Predict Seagrass Distribution
The U.S. Environmental Protection Agency is working to improve its ability to quantify and predict aquatic (freshwater, estuarine, marine) ecosystem response and recovery to changing nutrient loads. The objective of this research is to quantify the relationship of nutrients with...
Inferring nutrient loading of estuarine systems by remote sensing of aquatic vegetation
NASA Technical Reports Server (NTRS)
Anderson, R. R.
1978-01-01
THe use of remote sensing to record algal and vascular aquatic plant growths in estuarine waters is discussed. A technique is proposed that uses a combination of data to hierarchically classify watersheds with regard to severity of potential pollution. Specific nonpoint sources of nutrients in tributaries of the watershed are identified with lower altitude photography of vegetation and selected ground sampling. It is concluded that excessive growths of some aquatic plants may be related to nutrient pollution.
Water survey of Canada: Application for use of ERTS-A for retransmission of water resources data
NASA Technical Reports Server (NTRS)
Halliday, R. A. (Principal Investigator); Reid, I. A.
1974-01-01
The author has identified the following significant results. Water resources data were retransmitted from nine data collection platforms (DCP) located in remote regions of Canada. The DCPs located in the Arctic operated in temperatures lower than -40 C and the DCP antennas have survived wind speeds of greater than 80 kph and snow loads of a depth of one metre. Ice-out indicators were installed at a few DCP sites. The purpose of these indicators was to enable the detection of the movement of ice out of river channel during spring break-up. The suitability of satellite retransmission as a means of obtaining data from remote areas of Canada continues to be demonstrated. A modest expansion of the DCP network is planned.
Remote sensing techniques were used to characterize and quantify spatial and temporal variation in water quality of the Great Miami River in Ohio. An initial feasibility study was conducted in the summer of 1999 using a non-imaging hand-held spectroradiometer to ascertain the pr...
HYPERSPECTRAL TECHNIQUE AS AN INDICATOR OF EUTROPHICATION AND SEDIMENT LOAD FOR DEEP RIVERS
Remote sensing techniques were used to characterize and quantify spatial and temporal variation in water quality of the Great Miami River in Ohio. An initial feasibility study was conducted in the summer of 1999 using a non-imaging hand-held spectroradiometer to ascertain the pre...
Cathodic protection of a remote river pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, B.A.
1994-03-01
The 261-km long 500-mm diam Kutubu pipeline, which runs through dense jungle swamps in Papua, New Guinea, was built for Chevron Niugini to transport oil from the remote Kutubu oil production facility in the Southern Highlands to an offshore loading facility. The pipeline was laid with a section in the bed of a wide, fast-flowing river. This section was subject to substantial telluric effects and current density variations from changing water resistivities. The cathodic protection system's effectiveness was monitored by coupon off'' potentials and required an innovative approach.
Remote sensing of land use and water quality relationships - Wisconsin shore, Lake Michigan
NASA Technical Reports Server (NTRS)
Haugen, R. K.; Marlar, T. L.
1976-01-01
This investigation assessed the utility of remote sensing techniques in the study of land use-water quality relationships in an east central Wisconsin test area. The following types of aerial imagery were evaluated: high altitude (60,000 ft) color, color infrared, multispectral black and white, and thermal; low altitude (less than 5000 ft) color infrared, multispectral black and white, thermal, and passive microwave. A non-imaging hand-held four-band radiometer was evaluated for utility in providing data on suspended sediment concentrations. Land use analysis includes the development of mapping and quantification methods to obtain baseline data for comparison to water quality variables. Suspended sediment loads in streams, determined from water samples, were related to land use differences and soil types in three major watersheds. A multiple correlation coefficient R of 0.85 was obtained for the relationship between the 0.6-0.7 micrometer incident and reflected radiation data from the hand-held radiometer and concurrent ground measurements of suspended solids in streams. Applications of the methods and baseline data developed in this investigation include: mapping and quantification of land use; input to watershed runoff models; estimation of effects of land use changes on stream sedimentation; and remote sensing of suspended sediment content of streams. High altitude color infrared imagery was found to be the most acceptable remote sensing technique for the mapping and measurement of land use types.
Development and evaluation of a water level proportional water sampler
NASA Astrophysics Data System (ADS)
Schneider, P.; Lange, A.; Doppler, T.
2013-12-01
We developed and adapted a new type of sampler for time-integrated, water level proportional water quality sampling (e.g. nutrients, contaminants and stable isotopes). Our samplers are designed for sampling small to mid-size streams based on the law of Hagen-Poiseuille, where a capillary (or a valve) limits the sampling aliquot by reducing the air flux out of a submersed plastic (HDPE) sampling container. They are good alternatives to battery-operated automated water samplers when working in remote areas, or at streams that are characterized by pronounced daily discharge variations such as glacier streams. We evaluated our samplers against standard automated water samplers (ISCO 2900 and ISCO 6712) during the snowmelt in the Black Forest and the Alps and tested them in remote glacial catchments in Iceland, Switzerland and Kyrgyzstan. The results clearly showed that our samplers are an adequate tool for time-integrated, water level proportional water sampling at remote test sites, as they do not need batteries, are relatively inexpensive, lightweight, and compact. They are well suited for headwater streams - especially when sampling for stable isotopes - as the sampled water is perfectly protected against evaporation. Moreover, our samplers have a reduced risk of icing in cold environments, as they are installed submersed in water, whereas automated samplers (typically installed outside the stream) may get clogged due to icing of hoses. Based on this study, we find these samplers to be an adequate replacement for automated samplers when time-integrated sampling or solute load estimates are the main monitoring tasks.
Schaeffer, Blake A; Hagy, James D; Conmy, Robyn N; Lehrter, John C; Stumpf, Richard P
2012-01-17
Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida's waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida's coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (Chl(RS)-a, mg m(-3)) were resolved across Florida's coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of Chl(RS)-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters.
2011-01-01
Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida’s waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida’s coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (ChlRS-a, mg m–3) were resolved across Florida’s coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of ChlRS-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters. PMID:22192062
Remote monitoring of bi-axial loads on a lifting surface moving unsteadily in water
NASA Astrophysics Data System (ADS)
Johnson, P. B.; Drake, K. R.; Eames, I.; Wojcik, A.
2014-12-01
A system of measuring the bi-axial load on a lifting surface (blade) which is freely moving and operates submerged in water at the laboratory scale is described. A blade with a span of 500 mm, a chord of 60 mm and a thickness of 9 mm (15% of the chord) was employed and the lift/drag forces were measured using a bespoke strain-gauge based load cell located at the mid-span of the blade, measuring bending moments in two independent directions. The requirement to move freely dictated that the load cell was encapsulated within the blade, along with signal conditioning circuitry, power supply and a data logger with wireless transmission. Submerged operation in water resulted in very short transmission distances, meaning that data were recorded and subsequently transferred using an aerial placed close to the blade while it was stationary. Assumptions based on Euler-Bernoulli beam bending theory were used to infer the total load from measurements of the bending moment at the mid-span and example data from a freely moving aerofoil on a Darrieus-type tidal energy extraction device are presented. The novelty of this system lies in its combination of free movement, submerged operation and small scale.
Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.
2016-01-01
Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p < 0.01) and organic carbon (OC, r = 0.95 p < 0.01), accounting for >90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites. PMID:27991554
Jensen, Andreas I; Severin, Gregory W; Hansen, Anders E; Fliedner, Frederikke P; Eliasen, Rasmus; Parhamifar, Ladan; Kjær, Andreas; Andresen, Thomas L; Henriksen, Jonas R
2018-01-10
Liposomes are nanoparticles used in drug delivery that distribute over several days in humans and larger animals. Radiolabeling with long-lived positron emission tomography (PET) radionuclides, such as manganese-52 ( 52 Mn, T½=5.6days), allow the imaging of this biodistribution. We report optimized protocols for radiolabeling liposomes with 52 Mn, through both remote-loading and surface labeling. For comparison, liposomes were also remote-loaded and surface labeled with copper-64 ( 64 Cu, T½=12.7h) through conventional means. The chelator DOTA was used in all cases. The in vivo stability of radiometal chelates is widely debated but studies that mimic a realistic in vivo setting are lacking. Therefore, we employed these four radiolabeled liposome types as platforms to demonstrate a new concept for such in vivo evaluation, here of the chelates 52 Mn-DOTA and 64 Cu-DOTA. This was done by comparing "shielded" remote-loaded with "exposed" surface labeled variants in a CT26 tumor-bearing mouse model. Remote loading (90min at 55°C) and surface labeling (55°C for 2h) of 52 Mn gave excellent radiolabeling efficiencies of 97-100% and 98-100% respectively, and the liposome biodistribution was imaged by PET for up to 8days. Liposomes with surface-conjugated 52 Mn-DOTA exhibited a significantly shorter plasma half-life (T ½ =14.4h) when compared to the remote-loaded counterpart (T ½ =21.3h), whereas surface-conjugated 64 Cu-DOTA cleared only slightly faster and non-significantly, when compared to remote-loaded (17.2±2.9h versus 20.3±1.2h). From our data, we conclude the successful remote-loading of liposomes with 52 Mn, and furthermore that 52 Mn-DOTA may be unstable in vivo whereas 64 Cu-DOTA appears suitable for quantitative imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Increasing precision of turbidity-based suspended sediment concentration and load estimates.
Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E
2010-01-01
Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.
Running VisIt Software on the Peregrine System | High-Performance Computing
kilobyte range. VisIt features a robust remote visualization capability. VisIt can be started on a local machine and used to visualize data on a remote compute cluster.The remote machine must be able to send VisIt module must be loaded as part of this process. To enable remote visualization the 'module load
NASA Astrophysics Data System (ADS)
Al-Hamdan, M. Z.; Smith, R. A.; Hoos, A.; Schwarz, G. E.; Alexander, R. B.; Crosson, W. L.; Srikishen, J.; Estes, M., Jr.; Cruise, J.; Al-Hamdan, A.; Ellenburg, W. L., II; Flores, A.; Sanford, W. E.; Zell, W.; Reitz, M.; Miller, M. P.; Journey, C. A.; Befus, K. M.; Swann, R.; Herder, T.; Sherwood, E.; Leverone, J.; Shelton, M.; Smith, E. T.; Anastasiou, C. J.; Seachrist, J.; Hughes, A.; Graves, D.
2017-12-01
The USGS Spatially Referenced Regression on Watershed Attributes (SPARROW) surface water quality modeling system has been widely used for long term, steady state water quality analysis. However, users have increasingly requested a dynamic version of SPARROW that can provide seasonal estimates of nutrients and suspended sediment to receiving waters. The goal of this NASA-funded project is to develop a dynamic decision support system to enhance the southeast SPARROW water quality model and finer-scale dynamic models for selected coastal watersheds through the use of remotely-sensed data and other NASA Land Information System (LIS) products. The spatial and temporal scale of satellite remote sensing products and LIS modeling data make these sources ideal for the purposes of development and operation of the dynamic SPARROW model. Remote sensing products including MODIS vegetation indices, SMAP surface soil moisture, and OMI atmospheric chemistry along with LIS-derived evapotranspiration (ET) and soil temperature and moisture products will be included in model development and operation. MODIS data will also be used to map annual land cover/land use in the study areas and in conjunction with Landsat and Sentinel to identify disturbed areas that might be sources of sediment and increased phosphorus loading through exposure of the bare soil. These data and others constitute the independent variables in a regression analysis whose dependent variables are the water quality constituents total nitrogen, total phosphorus, and suspended sediment. Remotely-sensed variables such as vegetation indices and ET can be proxies for nutrient uptake by vegetation; MODIS Leaf Area Index can indicate sources of phosphorus from vegetation; soil moisture and temperature are known to control rates of denitrification; and bare soil areas serve as sources of enhanced nutrient and sediment production. The enhanced SPARROW dynamic models will provide improved tools for end users to manage water quality in near real time and for the formulation of future scenarios to inform strategic planning. Time-varying SPARROW outputs will aid water managers in decision making regarding allocation of resources in protecting aquatic habitats, planning for harmful algal blooms, and restoration of degraded habitats, stream segments, or lakes.
Quantitative Structure – Property Relationship Modeling of Remote Liposome Loading Of Drugs
Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram
2012-01-01
Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a dataset including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and five-fold external validation. The external prediction accuracy for binary models was as high as 91–96%; for continuous models the mean coefficient R2 for regression between predicted versus observed values was 0.76–0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. PMID:22154932
Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S
2013-01-01
[1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508–2518, doi:10.1002/wrcr.20173. PMID:24223442
Optimization and modeling of the remote loading of luciferin into liposomes.
Hansen, Anders Højgaard; Lomholt, Michael A; Hansen, Per Lyngs; Mouritsen, Ole G; Arouri, Ahmad
2016-07-11
We carried out a mechanistic study to characterize and optimize the remote loading of luciferin into preformed liposomes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPC/DPPG) 7:3 mixtures. The influence of the loading agent (acetate, propionate, butyrate), the metal counterion (Na(+), K(+), Ca(+2), Mg(+2)), and the initial extra-liposomal amount of luciferin (nL(add)) on the luciferin Loading Efficiency (LE%) and luciferin-to-lipid weight ratio, i.e., Loading Capacity (LC), in the final formulation was determined. In addition, the effect of the loading process on the colloidal stability and phase behavior of the liposomes was monitored. Based on our experimental results, a theoretical model was developed to describe the course of luciferin remote loading. It was found that the highest luciferin loading was obtained with magnesium acetate. The use of longer aliphatic carboxylates or inorganic proton donors pronouncedly reduced luciferin loading, whereas the effect of the counterion was modest. The remote-loading process barely affected the colloidal stability and drug retention of the liposomes, albeit with moderate luciferin-induced membrane perturbations. The correlation between luciferin loading, expressed as LE% and LC, and nL(add) was established, and under our conditions the maximum LC was attained using an nL(add) of around 2.6μmol. Higher amounts of luciferin tend to pronouncedly perturb the liposome stability and luciferin retention. Our theoretical model furnishes a fair quantitative description of the correlation between nL(add) and luciferin loading, and a membrane permeability coefficient for uncharged luciferin of 1×10(-8)cm/s could be determined. We believe that our study will prove very useful to optimize the remote-loading strategies of moderately polar carboxylic acid drugs in general. Copyright © 2016 Elsevier B.V. All rights reserved.
Quantitative structure-property relationship modeling of remote liposome loading of drugs.
Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram
2012-06-10
Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a data set including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and 5-fold external validation. The external prediction accuracy for binary models was as high as 91-96%; for continuous models the mean coefficient R(2) for regression between predicted versus observed values was 0.76-0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Raquet, C. A.; Salzman, J. A.; Coney, T. A.; Svehla, R. A.; Shook, D. F.; Gedney, R. T.
1980-01-01
The remote sensing results of aircraft and ship surveys for determining the impact of river effluents on Great Lakes waters are presented. Aircraft multi-spectral scanner data were acquired throughout the spring and early summer of 1976 at five locations: the West Basin of Lake Erie, Genesee River - Lake Ontario, Menomonee River - Lake Michigan, Grand River - Lake Michigan, and Nemadji River - Lake Superior. Multispectral scanner data and ship surface sample data are correlated resulting in 40 contour plots showing large-scale distributions of parameters such as total suspended solids, turbidity, Secchi depth, nutrients, salts, and dissolved oxygen. The imagery and data analysis are used to determine the transport and dispersion of materials from the river discharges, especially during spring runoff events, and to evaluate the relative effects of river input, resuspension, and shore erosion. Twenty-five LANDSAT satellite images of the study sites are also included in the analysis. Examples of the use of remote sensing data in quantitatively estimating total particulate loading in determining water types, in assessing transport across international boundaries, and in supporting numerical current modeling are included. The importance of coordination of aircraft and ship lake surveys is discussed, including the use of telefacsimile for the transmission of imagery.
Microfluidic Remote Loading for Rapid Single-Step Liposomal Drug Preparation
Hood, R.R.; Vreeland, W. N.; DeVoe, D.L.
2014-01-01
Microfluidic-directed formation of liposomes is combined with in-line sample purification and remote drug loading for single step, continuous-flow synthesis of nanoscale vesicles containing high concentrations of stably loaded drug compounds. Using an on-chip microdialysis element, the system enables rapid formation of large transmembrane pH and ion gradients, followed by immediate introduction of amphipathic drug for real-time remote loading into the liposomes. The microfluidic process enables in-line formation of drug-laden liposomes with drug:lipid molar ratios of up to 1.3, and a total on-chip residence time of approximately 3 min, representing a significant improvement over conventional bulk-scale methods which require hours to days for combined liposome synthesis and remote drug loading. The microfluidic platform may be further optimized to support real-time generation of purified liposomal drug formulations with high concentrations of drugs and minimal reagent waste for effective liposomal drug preparation at or near the point of care. PMID:25003823
Overview of the NASA tropospheric environmental quality remote sensing program
NASA Technical Reports Server (NTRS)
Allario, F.; Ayers, W. G.; Hoell, J. M.
1979-01-01
This paper will summarize the current NASA Tropospheric Environmental Quality Remote Sensing Program for studying the global and regional troposphere from space, airborne and ground-based platforms. As part of the program to develop remote sensors for utilization from space, NASA has developed a series of passive and active remote sensors which have undergone field test measurements from airborne and ground platforms. Recent measurements with active lidar and passive gas filter correlation and infrared heterodyne techniques will be summarized for measurements of atmospheric aerosols, CO, SO2, O3, and NH3. These measurements provide the data base required to assess the sensitivity of remote sensors for applications to urban and regional field measurement programs. Studies of Earth Observation Satellite Systems are currently being performed by the scientific community to assess the capability of satellite imagery to detect regions of elevated pollution in the troposphere. The status of NASA sponsored research efforts in interpreting satellite imagery for determining aerosol loadings over land and inland bodies of water will be presented, and comments on the potential of these measurements to supplement in situ and airborne remote sensors in detecting regional haze will be made.
Assessing Factors Contributing to Cyanobacteria Harmful Algal Blooms in U.S. Lakes
NASA Astrophysics Data System (ADS)
Salls, W. B.; Iiames, J. S., Jr.; Lunetta, R. S.; Mehaffey, M.; Schaeffer, B. A.
2017-12-01
Cyanobacteria Harmful Algal Blooms (CHABs) in inland lakes have emerged as a major threat to water quality from both ecological and public health standpoints. Understanding the factors and processes driving CHAB occurrence is important in order to properly manage ensuring more favorable water quality outcomes. High water temperatures and nutrient loadings are known drivers of CHABs; however, the contribution of landscape variables and their interactions with these drivers remains relatively unstudied at a regional or national scale. This study assesses upstream landscape variables that may contribute to or obstruct/delay nutrient loadings to freshwater systems in several hundred inland lakes in the Upper Mid-western and Northeastern United States. We employ multiple linear regression and random forest modeling to determine which variables contribute most strongly to CHAB occurrence. This lakeshed-based approach will rank the impact of each landscape variable on cyanobacteria levels derived from satellite remotely sensed data from the Medium Resolution Imaging Spectrometer (MERIS) sensor for the 2011 bloom season (July - October).
Sensitivity of atmospheric correction to loading and model of the aerosol
NASA Astrophysics Data System (ADS)
Bassani, Cristiana; Braga, Federica; Bresciani, Mariano; Giardino, Claudia; Adamo, Maria; Ananasso, Cristina; Alberotanza, Luigi
2013-04-01
The physically-based atmospheric correction requires knowledge of the atmospheric conditions during the remotely data acquisitions [Guanter et al., 2007; Gao et al., 2009; Kotchenova et al. 2009; Bassani et al., 2010]. The propagation of solar radiation in the atmospheric window of visible and near-infrared spectral domain, depends on the aerosol scattering. The effects of solar beam extinction are related to the aerosol loading, by the aerosol optical thickness @550nm (AOT) parameter [Kaufman et al., 1997; Vermote et al., 1997; Kotchenova et al., 2008; Kokhanovsky et al. 2010], and also to the aerosol model. Recently, the atmospheric correction of hyperspectral data is considered sensitive to the micro-physical and optical characteristics of aerosol, as reported in [Bassani et al., 2012]. Within the framework of CLAM-PHYM (Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission) project, funded by Italian Space Agency (ASI), the role of the aerosol model on the accuracy of the atmospheric correction of hyperspectral image acquired over water target is investigated. In this work, the results of the atmospheric correction of HICO (Hyperspectral Imager for the Coastal Ocean) images acquired on Northern Adriatic Sea in the Mediterranean are presented. The atmospheric correction has been performed by an algorithm specifically developed for HICO sensor. The algorithm is based on the equation presented in [Vermote et al., 1997; Bassani et al., 2010] by using the last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2008; Vermote et al., 2009]. The sensitive analysis of the atmospheric correction of HICO data is performed with respect to the aerosol optical and micro-physical properties used to define the aerosol model. In particular, a variable mixture of the four basic components: dust- like, oceanic, water-soluble, and soot, has been considered. The water reflectance, obtained from the atmospheric correction with variable model and fixed loading of the aerosol, has been compared. The results highlight the requirements to define the aerosol characteristics, loading and model, to simulate the radiative field in the atmosphere system for an accurate atmospheric correction of hyperspectral data, improving the accuracy of the results for surface reflectance process over water, a dark-target. As conclusion, the aerosol model plays a crucial role for an accurate physically-based atmospheric correction of hyperspectral data over water. Currently, the PRISMA mission provides valuable opportunities to study aerosol and their radiative effects on the hyperspectral data. Bibliography Guanter, L.; Estellès, V.; Moreno, J. Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data. Remote Sens. Environ. 2007, 109, 54-65. Gao, B.-C.; Montes, M.J.; Davis, C.O.; Goetz, A.F.H. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sens. Environ. 2009, 113, S17-S24. Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. 2009, 113, D23. Bassani C.; Cavalli, R.M.; Pignatti S. Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land. Sens. 2010, 10, 6421-6438. Kaufman, Y. J., Tanrè, D., Gordon H. R., Nakajima T., Lenoble J., Frouin R., Grassl H., Herman B.M., King M., and Teillet P.M.: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res., 102(D14), 17051-17067, 1997. Vermote, E.F.; Tanrè , D.; Deuzè´ , J.L.; Herman M.; Morcrette J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675-686. Kotchenova, S.Y.; Vermote, E.F.; Levy, R.; Lyapustin, A. Radiative transfer codes for atmospheric correction and aerosol retrieval: Intercomparison study. Appl. Optics 2008, 47, 2215-2226. Kokhanovsky A.A., Deuzè J.L., Diner D.J., Dubovik O., Ducos F., Emde C., Garay M.J., Grainger R.G., Heckel A., Herman M., Katsev I.L., Keller J., Levy R., North P.R.J., Prikhach A.S., Rozanov V.V., Sayer A.M., Ota Y., Tanrè D., Thomas G.E., Zege E.P. The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light. Atmos. Meas. Tech., 3, 909-932, 2010. Bassani C.; Cavalli, R.M.; Antonelli, P. Influence of aerosol and surface reflectance variability on hyperspectral observed radiance. Atmos. Meas. Tech. 2012, 5, 1193-1203. Vermote , E.F.; Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. 2009, 113, D23.
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Newman, J. C., Jr.
1992-01-01
A three dimensional stress concentration analysis was conducted on straight shank and countersunk (rivet) holes in a large plate subjected to various loading conditions. Three dimensional finite element analysis were performed with 20 node isoparametric elements. The plate material was assumed to be linear elastic and isotropic, with a Poisson ratio of 0.3. Stress concentration along the bore of the hole were computed for several ratios of hole radius to plate thickness (0.1 to 2.5) and ratios of countersink depth to plate thickness (0.25 to 1). The countersink angles were varied from 80 to 100 degrees in some typical cases, but the angle was held constant at 100 degrees for most cases. For straight shank holes, three types of loading were considered: remote tension, remote bending, and wedge loading in the hole. Results for remote tension and wedge loading were used to estimate stress concentration for simulated rivet in pin loading. For countersunk holes only remote tension and bending were considered. Based on the finite element results, stress concentration equations were developed. Whenever possible, the present results were compared with other numerical solutions and experimental results from the literature.
NASA Astrophysics Data System (ADS)
Thanda Ko, Nyein; Rutten, Martine
2017-04-01
Detailed spatial coverage of water quality parameters are crucial to better manage rivers. However, collection of water quality parameters is both time consuming and costly for large rivers. This study demonstrates that Operational Land Image (OLI) Sensor on board of Landsat 8 can be successfully applied for the detection of spatial patterns of water temperature as well as suspended sediment concentration (SSC) using the Ayeyarwady river, Myanmar as a case study. Water temperature estimation was obtained from the brightness thermal Band 10 by using the Split-Window algorithm. The study finds that there is a close agreement between the remote sensing temperature and in-situ temperature with relative error in the range from 4.5% to 8.2%. The sediment load of Ayeyarwady river is ranked as the third-largest sediment load among the world's rivers but there is very little known about this important parameter, due to a lack of adequate gauge data. The single band reflectance of Landsat image (Band 5) seems a good indicator for the estimation of SSC with relative error in the range of less than 10% but the developed empirical formula by the power relation with the only seven ground reference points is uncertain to apply for the entire river basin. It is to note that an important constraint for the sediment analysis is the availability of spatial and temporal ground reference data. Future studies should also focus on the improvement of ground reference data points to become more reliable, because most of the river in Asia, especially in Myanmar, don't have readily available continuous ground sediment data points due to lack of measurement gauge stations through the river.
LabVIEW Serial Driver Software for an Electronic Load
NASA Technical Reports Server (NTRS)
Scullin, Vincent; Garcia, Christopher
2003-01-01
A LabVIEW-language computer program enables monitoring and control of a Transistor Devices, Inc., Dynaload WCL232 (or equivalent) electronic load via an RS-232 serial communication link between the electronic load and a remote personal computer. (The electronic load can operate at constant voltage, current, power consumption, or resistance.) The program generates a graphical user interface (GUI) at the computer that looks and acts like the front panel of the electronic load. Once the electronic load has been placed in remote-control mode, this program first queries the electronic load for the present values of all its operational and limit settings, and then drops into a cycle in which it reports the instantaneous voltage, current, and power values in displays that resemble those on the electronic load while monitoring the GUI images of pushbuttons for control actions by the user. By means of the pushbutton images and associated prompts, the user can perform such operations as changing limit values, the operating mode, or the set point. The benefit of this software is that it relieves the user of the need to learn one method for operating the electronic load locally and another method for operating it remotely via a personal computer.
Literature relevant to remote sensing of water quality
NASA Technical Reports Server (NTRS)
Middleton, E. M.; Marcell, R. F.
1983-01-01
References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stumpf, R.P.; Frayer, M.L.
1997-06-01
Florida Bay, at the southern tip of Florida, USA, has undergone dramatic changes in recent years. Following seagrass dieoffs starting in the late 1980`s, both algal blooms and high turbidity (the latter from resuspended sediments) have been reported as more common in the Bay. Remotely sensed data, particularly from the AVHRR (advanced very high resolution radiometer), can provide information on conditions prior to the start of monitoring programs as well as provide additional spatial detail on water clarity and particulate loads in this estuary . The AVHRR record currently available to us consists of over 600 usable scenes from December,more » 1989. Comparisons with field data have provided relationships with light attenuation, total suspended solids, and other turbidity measures. The imagery shows the seasonal change in turbidity resulting from high winds associated with winter cold fronts. Over the seven-year record, areas of clear water have decreased in the north-central Bay, while expanding in the southwestern Bay.« less
NASA Astrophysics Data System (ADS)
Novitski, Linda Nicole
Accurate and cost-effective assessment of water quality is necessary for proper management and restoration of inland water bodies susceptible to algal bloom conditions. Landsat and MODIS satellite images were used to create chlorophyll and Secchi depth predictive models for algal assessment of Great Lakes and other lakes of the United States. Boosted regression tree (BRT) models using satellite imagery are both easy to use and can have high predictive performance. BRT models inferred chlorophyll and Secchi depth more accurately than linear regression models for all study locations. Inferred chlorophyll of inner Saginaw Bay was subsequently used in ecological models to help understand the ecological drivers of algal blooms in this ecosystem. For small lakes (non-Great Lakes), the best national Landsat model for ln-transformed chlorophyll was the BRT model and had a cross-validation R 2 of 0.44 and a 0.76 ln-transformed mug/L RMSE. The best national Landsat model for Secchi depth was also a BRT model that had an adjusted R 2 of 0.52 and a 0.80 m RMSE. We assessed the applicability of the national chlorophyll model for ecological analysis by comparing the total phosphorus- chlorophyll relationship with chlorophyll determined from sampling or remote sensing, which showed the total phosphorus- chlorophyll relationship had an adjusted R2 = 0.58 and 1.02 ln-transformed microg/L RMSE with sampled chlorophyll versus an adjusted R2 = 0.56 and 1.04 ln-transformed mug/L RMSE with chlorophyll determined by the boosted regression tree remote sensing model. For Great Lakes models, the MODIS BRT model predicted chlorophyll most accurately of the three BRT models and compared well to other models in the literature. BRT models for Landsat ETM+ and TM more accurately predicted chlorophyll than the MSS model and all Landsat models had favorable results when compared to the literature. BRT chlorophyll predictive models are useful in helping to understand historical, long-term chlorophyll trends and to inform us of how climate change may alter ecosystems in the future. In inner Saginaw Bay, annual average and upper quartile Landsat-derived chlorophyll decreased from 7.44 to 6.62 and 8.38 to 7.38 mug/L between 1973-1982, and annual upper quartile of 8-day phosphorus loads increased from 5.29 to 6.79 kg between 1973-2012. Simple linear and multiple regression models and Wilcoxon rank test results for MODIS and Landsat-derived chlorophyll indicate that distance from the Saginaw River mouth influences chlorophyll concentration in Saginaw Bay; Landsat-derived surface water temperature and phosphorus loads to a lesser extent. Mixed-effect models for MODIS and Landsat-derived chlorophyll were related to chlorophyll better than simple linear or multiple regressions, with random effects of pixel and sample date contributing substantially to predictive power (NSE=0.35-70), though phosphorus loads, distance to Saginaw River mouth, and water were significant fixed effects in most models. Water quality changes in Saginaw Bay between 1972-2012 were influenced by phosphorus loading and distance to the Saginaw River's mouth. Landsat and MODIS imagery are complementary platforms because of the long history of Landsat operation and the finer spectral resolution and image frequency of MODIS. Remote sensing water quality assessment tools can be valuable for limnological study, ecological assessment, and water resource management.
Recent Trends in Suspended Sediment Load & Water Quality in the Upper Chesapeake Bay
NASA Astrophysics Data System (ADS)
Freeman, L. A.; Ackleson, S. G.
2016-02-01
The Chesapeake Bay spans several major cities on the US east coast and drains a large watershed (164,200 km2) to the Atlantic Ocean. Upstream deforestation and agriculture have led to a major decline in water quality (increased sediment and nutrient load) of the Bay over the past century. Sediment flux into the Chesapeake Bay is a natural process, but has become an environmental concern as land use changes have exacerbated natural suspended sediment loads and saturated the capacity of the estuary to filter and remove sediments. In situ measurements of suspended sediments and surface reflectance from the Potomac, Patapsco, and Severn River were used to develop algorithms that convert surface reflectance from Landsat (1-3, 4-5, 7, 8) imagery to suspended sediment concentration for the entire Chesapeake Bay. A unique time series of suspended sediment load in the Chesapeake Bay was compiled from Landsat imagery dating from 1977-2015. Particular focus is given to the upper Chesapeake Bay near Washington, DC and Baltimore, MD to understand urban effects. In particular, the Potomac, Patapsco, and Severn River are examined from both remote sensing and in situ measurements. Landsat imagery combined with in situ monitoring provides environmental scientists and resource managers with detailed trends in sediment distribution and concentration, a key measure of water quality. Trends of suspended sediment load in several rivers and the upper Chesapeake Bay will be presented, along with a discussion of suspended sediment algorithms for Landsat imagery. Advantages of Landsat 8 (improved signal-to-noise performance and more bands) versus previous sensors will be examined for suspended sediment applications.
NASA Astrophysics Data System (ADS)
Kliment, Zdenek; Langhammer, Jakub; Kadlec, Jiří; Vyslouzilová, Barbora
2014-05-01
A noticeable change in water soil erosion hazard and an increase of extreme meteorological effects at the same time have marked the Czech landscape in the last twenty years. Formerly cultivated areas have been grassed or forested in mountain and sub mountain regions. Crop management has also been substantially changed. Longer and more frequently dry periods, more intensive local rainfalls and more gentle winter periods we can observe in the present climate development. The aim of this contribution is to demonstrate the importance and spatial relationship between changes in water soil erosion hazard by way of example of model river basins in different areas of the Czech Republic. The field research, remote sensing data, GIS and model approaches (MEFEM- multicriteria erosion factors evaluation model, USLE, RUSLE, WaTEM/SEDEM, AnnAGNPS and SWAT) were used for erosion hazard assessment. The findings were comparing with the balance, regime and trends of suspended load. Research in the model Blšanka River basin, based on our fifteen-year monitoring of suspended load, can be considered as basic (Kliment et al. 2008, Langhammer et al. 2013). KLIMENT, Z., KADLEC, J., LANGHAMMER, J., 2008. Evaluation of suspended load changes using AnnAGNPS and SWAT semi-empirical models. Catena, 73(3): 286-299. LANGHAMMER, J., MATOUŠKOVÁ, M., KLIMENT, Z., 2013. Assessment of spatial and temporal changes of ecological status of streams in Czechia: a geographical approach. Geografie, 118(4): 309-333
Quantification of thickness loss in a liquid-loaded plate using ultrasonic guided wave tomography
NASA Astrophysics Data System (ADS)
Rao, Jing; Ratassepp, Madis; Fan, Zheng
2017-12-01
Ultrasonic guided wave tomography (GWT) provides an attractive solution to map thickness changes from remote locations. It is based on the velocity-to-thickness mapping employing the dispersive characteristics of selected guided modes. This study extends the application of GWT on a liquid-loaded plate. It is a more challenging case than the application on a free plate, due to energy of the guided waves leaking into the liquid. In order to ensure the accuracy of thickness reconstruction, advanced forward models are developed to consider attenuation effects using complex velocities. The reconstruction of the thickness map is based on the frequency-domain full waveform inversion (FWI) method, and its accuracy is discussed using different frequencies and defect dimensions. Validation experiments are carried out on a water-loaded plate with an irregularly shaped defect using S0 guided waves, showing excellent performance of the reconstruction algorithm.
Dorzolamide Loaded Niosomal Vesicles: Comparison of Passive and Remote Loading Methods.
Hashemi Dehaghi, Mohadeseh; Haeri, Azadeh; Keshvari, Hamid; Abbasian, Zahra; Dadashzadeh, Simin
2017-01-01
Glaucoma is a common progressive eye disorder and the treatment strategies will benefit from nanoparticulate delivery systems with high drug loading and sustained delivery of intraocular pressure lowering agents. Niosomes have been reported as a novel approach to improve drug low corneal penetration and bioavailability characteristics. Along with this, poor entrapment efficiency of hydrophilic drug in niosomal formulation remains as a major formulation challenge. Taking this perspective into consideration, dorzolamide niosomes were prepared employing two different loading methodologies (passive and remote loading methods) and the effects of various formulation variables (lipid to drug ratio, cholesterol percentage, drug concentration, freeze/thaw cycles, TPGS content, and external and internal buffer molarity and pH) on encapsulation efficiency were assessed. Encapsulation of dorzolamide within niosomes increased remarkably by the incorporation of higher cholesterol percentage as well as increasing the total lipid concentration. Remote loading method showed higher efficacy for drug entrapment compared to passive loading technique. Incorporation of TPGS in bilayer led to decrease in EE; however, retarded drug release rate. Scanning electron microscopy (SEM) studies confirmed homogeneous particle distribution, and spherical shape with smooth surface. In conclusion, the highest encapsulation can be obtained using phosphate gradient method and 50% cholesterol in Span 60 niosomal formulation.
NASA Astrophysics Data System (ADS)
Jordan, Yuyan C.; Ghulam, Abduwasit; Hartling, Sean
2014-01-01
In this paper, spatial and temporal trajectories of land cover/land use change (LCLUC) derived from Landsat data record are combined with hydrological modeling to explore the implication of vegetation dynamics on soil erosion and total suspended sediment (TSS) loading to surface rivers. The inter-annual coefficient of variation (CoV) of normalized difference vegetation index (NDVI) is used to screen the LCLUC and climate change. The Soil and Water Assessment Tool (SWAT) is employed to identify the monthly TSS for two times interval (1991 to 2001 and 2001 to 2011) at subbasin levels. SWAT model is calibrated from 1991 to 2001 and validated from 2002 to 2011 at three USGS gauging sites located in the study area. The Spearman's rank correlation of annual mean TSS is used to assess the temporal trends of TSS dynamics in the subbasins in the two study periods. The spatial correlation among NDVI, LCLUC, climate change and TSS loading rate changes is quantified by using linear regression model and negative/positive trend analysis. Our results showed that higher rainfall yields contribute to higher TSS loading into surface waters. A higher inter-annual accumulated vegetation index and lower inter-annual CoV distributed over the uplands resulted in a lower TSS loading rate, while a relatively low vegetation index with larger CoV observed over lowlands resulted in a higher TSS loading rate. The TSS loading rate at the basin outlet increased with the decrease of annual NDVI due to expanding urban areas in the watershed. The results also suggested nonlinearity between the trends of TSS loading with any of a specific land cover change because of the fact that the contribution of a factor can be influenced by the effects of other factors. However, dominant factors that shape the relationship between the trend of TSS loading and specific land cover changes were detected. The change of forest showed a negative relationship while agriculture and pasture demonstrated positive relationships with TSS loading change. Our results do not show any significant causal relationship between urbanization and the TSS loading change suggesting that further investigation needs to be carried out to understand the mechanism of the impact of urban sprawl on surface water quality.
NASA Astrophysics Data System (ADS)
Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.
2017-12-01
Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.
NASA Astrophysics Data System (ADS)
Foster, Robert
For decades, traditional remote sensing retrieval methods that rely solely on the spectral intensity of the water-leaving light have provided indicators of aquatic ecosystem health. With the increasing demand for new water quality indicators and improved accuracy of existing ones, the limits of traditional remote sensing approaches are becoming apparent. Use of the additional information intrinsic to the polarization state of light is therefore receiving more attention. One of the major challenges inherent in any above-surface determination of the water-leaving radiance, scalar or vector, is the removal of extraneous light which has not interacted with the water body and is therefore not useful for remote sensing of the water itself. Due in-part to the lack of a proven alternative, existing polarimeter installations have thus far assumed that such light was reflected by a flat sea surface, which can lead to large inaccuracies in the water-leaving polarization signal. This dissertation rigorously determines the full Mueller matrices for both surface-reflected skylight and upwardly transmitted light by a wind-driven ocean surface. A Monte Carlo code models the surface in 3D and performs polarized ray-tracing, while a vector radiative transfer (VRT) simulation generates polarized light distributions from which the initial Stokes vector for each ray is inferred. Matrices are computed for the observable range of surface wind speeds, viewing and solar geometries, and atmospheric aerosol loads. Radiometer field-of-view effects are also assessed. Validation of the results is achieved using comprehensive VRT simulations of the atmosphere-ocean system based on several oceanographic research cruises and specially designed polarimeters developed by the City College of New York: one submerged beneath the surface and one mounted on a research vessel. When available, additional comparisons are made at 9 km altitude with the NASA Research Scanning Polarimeter (RSP). Excellent agreement is achieved between all instrumentation, demonstrating the accuracy of the modeling approach and validating the computed Mueller matrices. Further, the results are used to demonstrate the feasibility for polarimetric retrieval of the total attenuation coefficient for Case II waters, a feat which is not possible using scalar remote sensing methods.
Barker, S Fiona; Packer, Michael; Scales, Peter J; Gray, Stephen; Snape, Ian; Hamilton, Andrew J
2013-09-01
Small, remote communities often have limited access to energy and water. Direct potable reuse of treated wastewater has recently gained attention as a potential solution for water-stressed regions, but requires further evaluation specific to small communities. The required pathogen reduction needed for safe implementation of direct potable reuse of treated sewage is an important consideration but these are typically quantified for larger communities and cities. A quantitative microbial risk assessment (QMRA) was conducted, using norovirus, giardia and Campylobacter as reference pathogens, to determine the level of treatment required to meet the tolerable annual disease burden of 10(-6) DALYs per person per year, using Davis Station in Antarctica as an example of a small remote community. Two scenarios were compared: published municipal sewage pathogen loads and estimated pathogen loads during a gastroenteritis outbreak. For the municipal sewage scenario, estimated required log10 reductions were 6.9, 8.0 and 7.4 for norovirus, giardia and Campylobacter respectively, while for the outbreak scenario the values were 12.1, 10.4 and 12.3 (95th percentiles). Pathogen concentrations are higher under outbreak conditions as a function of the relatively greater degree of contact between community members in a small population, compared with interactions in a large city, resulting in a higher proportion of the population being at risk of infection and illness. While the estimates of outbreak conditions may overestimate sewage concentration to some degree, the results suggest that additional treatment barriers would be required to achieve regulatory compliance for safe drinking water in small communities. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
De Toffoli, B.; Carli, C.; Maturilli, A.; Sauro, F.; Massironi, M.; Helbert, J.
2017-09-01
Spectroscopic analyses of basalt epithermal alterations, clay minerals and samples representative of wet sedimentary environments in a broad wavelength range from the ultraviolet to the far-infrared provide new loads of information for present and future exploration of environments that could have been linked to water and gas emission. Specifically, methane emission centers on the Martian surface are high interest targets for Exo-Mars mission since they involve environments where life could have potentially arisen, grown and given a contribution to the degassing phenomenon. Such data will be applied to drive the analysis on remotely sensed hyperspectral images of Martian regions where surface expressions of water and sediments resurgences are recognisable, such as the mound fields detected in Utopia and Hellas basins and Vastitas Borealis.
Using Avizo Software on the Peregrine System | High-Performance Computing |
be run remotely from the Peregrine visualization node. First, launch a TurboVNC remote desktop. Then from a terminal in that remote desktop: % module load avizo % vglrun avizo Running Locally Avizo can
Dorzolamide Loaded Niosomal Vesicles: Comparison of Passive and Remote Loading Methods
Hashemi Dehaghi, Mohadeseh; Haeri, Azadeh; Keshvari, Hamid; Abbasian, Zahra; Dadashzadeh, Simin
2017-01-01
Glaucoma is a common progressive eye disorder and the treatment strategies will benefit from nanoparticulate delivery systems with high drug loading and sustained delivery of intraocular pressure lowering agents. Niosomes have been reported as a novel approach to improve drug low corneal penetration and bioavailability characteristics. Along with this, poor entrapment efficiency of hydrophilic drug in niosomal formulation remains as a major formulation challenge. Taking this perspective into consideration, dorzolamide niosomes were prepared employing two different loading methodologies (passive and remote loading methods) and the effects of various formulation variables (lipid to drug ratio, cholesterol percentage, drug concentration, freeze/thaw cycles, TPGS content, and external and internal buffer molarity and pH) on encapsulation efficiency were assessed. Encapsulation of dorzolamide within niosomes increased remarkably by the incorporation of higher cholesterol percentage as well as increasing the total lipid concentration. Remote loading method showed higher efficacy for drug entrapment compared to passive loading technique. Incorporation of TPGS in bilayer led to decrease in EE; however, retarded drug release rate. Scanning electron microscopy (SEM) studies confirmed homogeneous particle distribution, and spherical shape with smooth surface. In conclusion, the highest encapsulation can be obtained using phosphate gradient method and 50% cholesterol in Span 60 niosomal formulation. PMID:28979296
NASA Astrophysics Data System (ADS)
Santini, F.; Cavalli, R. M.; Palombo, A.; Pignatti, S.
2007-10-01
The study, proposed within the framework of the cooperation with Kenyan Authorities, has been carried out on the Kenyan part of the Lake Victoria. This lake is one of the largest freshwater bodies of the world where, over the last few years, environmental challenges and human impact have perturbed the ecological balance. Pollution and sediments loads from the tributaries rivers and antrophic sources caused a worrying increase of the turbidity level of the lake water. Secchi transparency index has declined from 5 meters in the 1930s to less than one meter in the 1990s. With the aim of providing an inexpensive way to gather information linked to the water clarity and quality, a method for remotely sensed data interpretation, devoted to produce chl (chlorophyll), CDOM (coloured dissolved organic matter) and TSS (total suspended solids) maps, has been assessed. At this purpose a bio-optical model, based on radiative transfer theory in water bodies, has been refined. The method has been applied on an image acquired on January 2004 by ENVISAT/MERIS sensor just a week after an in situ campaign took place. During the in situ campaign a data set for model refinement and products validation has been collected. This data comprise surface radiometric quantity and samples for laboratory analyses. The comparison between the obtained maps and the data provided by the laboratory analysis showed a good correspondence, demonstrating the potentiality of remote observation in supporting the management of the water resources.
NASA Astrophysics Data System (ADS)
Fan, Yaoshen; Chen, Shenliang; Zhao, Bo; Pan, Shunqi; Jiang, Chao; Ji, Hongyu
2018-01-01
The Active Yellow River (Huanghe) Delta (AYRD) is a complex landform in which rapid deposition takes place due to its geologic formation and evolution. Continuous monitoring of shoreline dynamics at high-temporal frequency is crucial for understanding the processes and the driving factors behind this rapidly changing coast. Great efforts have been devoted to map the changing shoreline of the Yellow River delta and explain such changes through remote sensing data. However, the temporal frequency of shoreline in the obtained datasets are generally not fine enough to reflect the detailed or subtly variable processes of shoreline retreat and advance. To overcome these limitations, we continuously monitored the dynamics of this shoreline using time series of Landsat data based on tidal-level calibration model and orthogonal-transect method. The Abrupt Change Value (ACV) results indicated that the retreat-advance patterns had a significant impact regardless of season or year. The Water-Sediment Regulation Scheme (WSRS) plays a dominant role in delivering river sediment discharge to the sea and has an impact on the annual average maximum ACV, especially at the mouth of the river. The positive relationship among the average ACV, runoff and sediment load are relatively obvious; however, we found that the Relative Exposure Index (REI) that measures wave energy was able to explain only approximately 20% of the variation in the data. Based on the abrupt change at the shoreline of the AYRD, river flow and time, we developed a binary regression model to calculate the critical sediment load and water discharge for maintaining the equilibrium of the active delta from 2002 to 2015. These values were approximately 0.48 × 108 t/yr and 144.37 × 108 m3/yr. If the current water and sediment proportions released from the Xiaolangdi Reservoir during the WSRS remain stable, the erosion-accretion patterns of the active delta will shift from rapid accretion to a dynamic balance.
Karst aquifer characterization using geophysical remote sensing of dynamic recharge events
NASA Astrophysics Data System (ADS)
Grapenthin, R.; Bilek, S. L.; Luhmann, A. J.
2017-12-01
Geophysical monitoring techniques, long used to make significant advances in a wide range of deeper Earth science disciplines, are now being employed to track surficial processes such as landslide, glacier, and river flow. Karst aquifers are another important hydrologic resource that can benefit from geophysical remote sensing, as this monitoring allows for safe, noninvasive karst conduit measurements. Conduit networks are typically poorly constrained, let alone the processes that occur within them. Geophysical monitoring can also provide a regionally integrated analysis to characterize subsurface architecture and to understand the dynamics of flow and recharge processes in karst aquifers. Geophysical signals are likely produced by several processes during recharge events in karst aquifers. For example, pressure pulses occur when water enters conduits that are full of water, and experiments suggest seismic signals result from this process. Furthermore, increasing water pressure in conduits during recharge events increases the load applied to conduit walls, which deforms the surrounding rock to yield measureable surface displacements. Measureable deformation should also occur with mass loading, with subsidence and rebound signals associated with increases and decreases of water mass stored in the aquifer, respectively. Additionally, geophysical signals will likely arise with turbulent flow and pore pressure change in the rock surrounding conduits. Here we present seismic data collected during a pilot study of controlled and natural recharge events in a karst aquifer system near Bear Spring, near Eyota, MN, USA as well as preliminary model results regarding the processes described above. In addition, we will discuss an upcoming field campaign where we will use seismometers, tiltmeters, and GPS instruments to monitor for recharge-induced responses in a FL, USA karst system with existing cave maps, coupling these geophysical observations with hydrologic and meteorologic data to map and characterize conduits and other features of the larger karst system and to monitor subsurface flow dynamics during recharge events.
Development of the remote diagnosis system of the solar radio telescope
NASA Astrophysics Data System (ADS)
Kawashima, Susumu; Shinohara, Noriyuki; Sekiguchi, Hideaki
2005-04-01
"The remote diagnosis system" which we have developed is the one to monitor the operation conditions of two systems of solar radio observation (Nobeyama Radioheliograph and Nobeyama Radio Polarimeters) from the remote place. Under the condition of very limited human power, it is necessary to minimize the load of observers without degrading data quality. Thereupon, we have mulled measures to alleviate the load of observers, and worked out "the remote diagnosis system" which enables us to monitor the operation conditions and detect troubles, if any, in early stages, even if we are away from the observatory building where control system are concentrated. The plan was materialized by adopting an access through the INTERNET to the section where needed information for diagnosis is gathered.
Description and status of NASA-LeRC/DOE photovoltaic applications systems
NASA Technical Reports Server (NTRS)
Ratajczak, A. F.
1978-01-01
Designed, fabricated and installed were 16 geographically dispersed photovoltaic systems. These systems are powering a refrigerator, highway warning sign, forest lookout towers, remote weather stations, a water chiller at a visitor center, and insect survey traps. Each of these systems is described in terms of load requirements, solar array and battery size, and instrumentation and controls. Operational experience is described and present status is given for each system. The P/V power systems have proven to be highly reliable with almost no problems with modules and very few problems overall.
Elkhorn Slough: Detecting Eutrophication through Geospatial Modeling Applications
NASA Astrophysics Data System (ADS)
Caraballo Álvarez, I. O.; Childs, A.; Jurich, K.
2016-12-01
Elkhorn Slough in Monterey, California, has experienced substantial nutrient loading and eutrophication over the past 21 years as a result of fertilizer-rich runoff from nearby agricultural fields. This study seeks to identify and track spatial patterns of eutrophication hotspots and the correlation to land use changes, possible nutrient sources, and general climatic trends using remotely sensed and in situ data. Threats of rising sea level, subsiding marshes, and increased eutrophication hotspots demonstrate the necessity to analyze the effects of increasing nutrient loads, relative sea level changes, and sedimentation within Elkhorn Slough. The Soil & Water Assessment Tool (SWAT) model integrates specified inputs to assess nutrient and sediment loading and their sources. TerrSet's Land Change Modeler forecasts the future potential of land change transitions for various land cover classes around the slough as a result of nutrient loading, eutrophication, and increased sedimentation. TerrSet's Earth Trends Modeler provides a comprehensive analysis of image time series to rapidly assess long term eutrophication trends and detect spatial patterns of known hotspots. Results from this study will inform future coastal management practices and provide greater spatial and temporal insight into Elkhorn Slough eutrophication dynamics.
Advanced Electric Distribution, Switching, and Conversion Technology for Power Control
NASA Technical Reports Server (NTRS)
Soltis, James V.
1998-01-01
The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.
Application of remote sensing to water resources problems
NASA Technical Reports Server (NTRS)
Clapp, J. L.
1972-01-01
The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.
Photoswitchable nanoporous films by loading azobenzene in metal-organic frameworks of type HKUST-1.
Müller, Kai; Wadhwa, Jasmine; Singh Malhi, Jasleen; Schöttner, Ludger; Welle, Alexander; Schwartz, Heidi; Hermann, Daniela; Ruschewitz, Uwe; Heinke, Lars
2017-07-13
Photoswitchable metal-organic frameworks (MOFs) enable the dynamic remote control of their key properties. Here, a readily producible approach is presented where photochromic molecules, i.e. azobenzene (AB) and o-tetrafluoroazobenzene (tfAB), are loaded in MOF films of type HKUST-1. These nanoporous films, which can be reversibly switched with UV/visible or only visible light, have remote-controllable guest uptake properties.
Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram
2014-01-10
Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs' structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al., J. Control. Release 160 (2012) 147-157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-Nearest Neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used by us in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. © 2013.
Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram
2014-01-01
Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs’ structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al, Journal of Controlled Release, 160(2012) 14–157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-nearest neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. PMID:24184343
Platform for monitoring water and solid fluxes in mountainous rivers
NASA Astrophysics Data System (ADS)
Nord, Guillaume; Esteves, Michel; Aubert, Coralie; Belleudy, Philippe; Coulaud, Catherine; Bois, Jérôme; Geay, Thomas; Gratiot, Nicolas; Legout, Cédric; Mercier, Bernard; Némery, Julien; Michielin, Yoann
2016-04-01
The project aims to develop a platform that electronically integrates a set of existing sensors for the continuous measurement at high temporal frequency of water and solid fluxes (bed load and suspension), characteristics of suspended solids (distribution in particle size, settling velocity of the particles) and other variables on water quality (color, nutrient concentration). The project is preferentially intended for rivers in mountainous catchments draining areas from 10 to 1000 km², with high suspended sediment concentrations (maxima between 10 and 300 g/l) and highly dynamic behavior, water discharge varying of several orders of magnitude in a short period of time (a few hours). The measurement of water and solid fluxes in this type of river remains a challenge and, to date, there is no built-in device on the market to continuously monitor all these variables. The development of this platform is based on a long experience of measurement of sediment fluxes in rivers within the French Critical Zone Observatories (http://portailrbv.sedoo.fr/), especially in the Draix-Bléone (http://oredraixbleone.irstea.fr/) and OHMCV (http://www.ohmcv.fr/) observatories. The choice was made to integrate in the platform instruments already available on the market and currently used by the scientific community (water level radar, surface velocity radar, turbidity sensor, automatic water sampler, video camera) and to include also newly developed instruments (System for the Characterization of Aggregates and Flocs - see EGU2016-8542 - and hydrophone) or commercial instruments (spectrophotometer and radiometer) to be tested in surface water with high suspended sediment concentration. Priority is given to non-intrusive instruments due to their robustness in this type of environment with high destructive potential. Development work includes the construction of a platform prototype "smart" and remotely configurable for implantation in an isolated environment (absence of electric network and wired communication network). This platform should enable interaction between different sensors, remote management and real-time sensors, sending SMS (Short Message Service) and e-mail alarms, remote data transmission and data archiving. A test of the current platform is planned in 2016 on a site of the French Critical Zone Observatories.
Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient.
Fritze, Andreas; Hens, Felicitas; Kimpfler, Andrea; Schubert, Rolf; Peschka-Süss, Regine
2006-10-01
This study examines a new method for the remote loading of doxorubicin into liposomes. It was shown that doxorubicin can be loaded to a level of up to 98% into large unilamellar vesicles composed of egg phosphatidylcholine/cholesterol (7/3 mol/mol) with a transmembrane phosphate gradient. The different encapsulation efficiencies which were achieved with ammonium salts (citrate 100%, phosphate 98%, sulfate 95%, acetate 77%) were significantly higher as compared to the loading via sodium salts (citrate 54%, phosphate 52%, sulfate 44%, acetate 16%). Various factors, including pH-value, buffer capacity, solubility of doxorubicin in different salt solutions and base counter-flow, which likely has an influence on drug accumulation in the intraliposomal interior are taken into account. In contrast to other methods, the newly developed remote loading method exhibits a pH-dependent drug release property which may be effective in tumor tissues. At physiological pH-value doxorubicin is retained in the liposomes, whereas drug release is achieved by lowering the pH to 5.5 (approximately 25% release at 25 degrees C or 30% at 37 degrees C within two h). The DXR release of liposomes which were loaded via a sulfate gradient showed a maximum of 3% at pH 5.5.
NASA's Contributions to the Gulf of Mexico Alliance
NASA Technical Reports Server (NTRS)
Glorioso, Mark
2008-01-01
This viewgraph document reviews the contribution that NASA has made and the plans for future missions that will assist the mission of the Gulf of Mexico Alliance (GOMA). Specific reference to the work of the Stennis Space Center is reviewed. Some of the projects are: Coastal Online Assessment and Synthesis Tool (COAST), Regional Sediment Management, Coral Reef Early Warning System, Harmful Algal Bloom, Hypoxia, Land-Use and Land-Cover (LULC) Change from 1974-2008 around Mobile Bay, AL, Satellite Estimation of Suspended Particulate Loads in and around Mobile Bay, AL, Estimating Relative Nutrient Contributions of Agriculture and Forests Using MODIS Time Series, Coastal Marsh Monitoring for Persistent Saltwater Intrusion, Standardized Remote Sensing PRoduct for Water Clarity estimation within Gulf of Mexico Coastal Waters.
Power controller 28Vdc load switching (N. O. SPST). Final report, 31 August 1977-21 January 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMackin, J.B.
1980-01-21
A solid state power controller has been designed in four ratings to switch 28Vdc power to selected loads upon remote command. The four ratings trip out at currents of 10, 5, 2 and 1/2 amps. The design allows for wide variations in load and supply voltage and will not trip out on short load transients of up to 1000% of rated load current. In case of failure of the controller circuitry, an internal fuse protects the load from excessive current. The control current which operates the controller also provides a sensing function so that the state of the controller canmore » be determined remotely. The controllers are designed to operate over a case temperature range of -54 C to 120 C. A quantity of 100 units have been fabricated, tested, and supplied to the Navy.« less
Pazzinatto, Marcella Ferraz; de Oliveira Silva, Danilo; Barton, Christian; Rathleff, Michael Skovdal; Briani, Ronaldo Valdir; de Azevedo, Fábio Mícolis
2016-10-01
Compare pressure pain thresholds (PPTs) at the knee and a site remote to the knee in female adults with patellofemoral pain (PFP) to pain-free controls before and after a patellofemoral joint (PFJ) loading protocol designed to aggravate symptoms. Cross-sectional study SETTING: Participants were recruited via advertisements in fitness centers, public places for physical activity and universities. Thirty-eight females with patellofemoral pain, and 33 female pain-free controls. All participant performed a novel PFJ loading protocol involving stair negotiation with an extra load equivalent 35% of body mass. PPTs and current knee pain (measured on a visual analogue scale) was assessed before and after the loading protocol. PPTs were measured at four sites around the knee and one remote site on the upper contralateral limb. Females with PFP demonstrated significantly lower PPTs locally and remote to the knee, both before and after the PFJ loading protocol when compared to control group. Following the loading protocol, PPTs at knee were significantly reduced by 0.54 kgf (95%CI = 0.33; 0.74) for quadriceps tendon, 0.38 kgf (95%CI = 0.14; 0.63) for medial patella, and 0.44 kgf (95%CI = 0.18; 0.69) for lateral patella. No significant change in PPT remote to the knee was observed - 0.10 kgf (95%CI = -0.04; 0.24). Female adults with PFP have local and widespread hyperalgesia compared to pain free controls. A novel loading protocol designed to aggravate symptoms, lowers the PPTs locally at the knee but has no effect on PPT on the upper contralateral limb. This suggests widespread hyperalgesia is not affected by acute symptom aggravation. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dokos, J.A.
1996-12-31
A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pinsmore » prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.« less
Arctic sea ice is an important temporal sink and means of transport for microplastic.
Peeken, Ilka; Primpke, Sebastian; Beyer, Birte; Gütermann, Julia; Katlein, Christian; Krumpen, Thomas; Bergmann, Melanie; Hehemann, Laura; Gerdts, Gunnar
2018-04-24
Microplastics (MP) are recognized as a growing environmental hazard and have been identified as far as the remote Polar Regions, with particularly high concentrations of microplastics in sea ice. Little is known regarding the horizontal variability of MP within sea ice and how the underlying water body affects MP composition during sea ice growth. Here we show that sea ice MP has no uniform polymer composition and that, depending on the growth region and drift paths of the sea ice, unique MP patterns can be observed in different sea ice horizons. Thus even in remote regions such as the Arctic Ocean, certain MP indicate the presence of localized sources. Increasing exploitation of Arctic resources will likely lead to a higher MP load in the Arctic sea ice and will enhance the release of MP in the areas of strong seasonal sea ice melt and the outflow gateways.
Stable Isotopes Reveal Nitrogen Loading to Lake Tanganyika from Remote Shoreline Villages
NASA Astrophysics Data System (ADS)
Kelly, Brianne; Mtiti, Emmanuel; McIntyre, Peter B.; Vadeboncoeur, Yvonne
2017-02-01
Access to safe water is an ongoing challenge in rural areas in Tanzania where communities often lack access to improved sanitation. Methods to detect contamination of surface water bodies, such as monitoring nutrient concentrations and bacterial counts, are time consuming and results can be highly variable in space and time. On the northeast shore of Lake Tanganyika, Tanzania, the low population density coupled with the high potential for dilution in the lake necessitates the development of a sensitive method for detecting contamination in order to avoid human health concerns. We investigated the potential use of nitrogen and carbon stable isotopes of snail tissues to detect anthropogenic nutrient loading along the northeast shore of Lake Tanganyika. δ15N of snails was positively related to human population size in the nearest village, but only for villages with >4000 inhabitants. The areal footprint of villages within their watershed was also significantly correlated with snail δ15N, while agricultural land use and natural vegetation were not. Dissolved nutrient concentrations were not significantly different between village and reference sites. Our results indicate that nitrogen isotopes provide a sensitive index of local nutrient loading that can be used to monitor contamination of oligotrophic aquatic environments with low surrounding population densities.
Time Patterns in Remote OPAC Use.
ERIC Educational Resources Information Center
Lucas, Thomas A.
1993-01-01
Describes a transaction log analysis of the New York Public Library research libraries' OPAC (online public access catalog). Much of the remote searching occurred when the libraries were closed and was more evenly distributed than internal searching, demonstrating that remote searching could expand access and reduce peak system loads. (Contains…
Cern, Ahuva; Marcus, David; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram
2017-04-28
Remote drug loading into nano-liposomes is in most cases the best method for achieving high concentrations of active pharmaceutical ingredients (API) per nano-liposome that enable therapeutically viable API-loaded nano-liposomes, referred to as nano-drugs. This approach also enables controlled drug release. Recently, we constructed computational models to identify APIs that can achieve the desired high concentrations in nano-liposomes by remote loading. While those previous models included a broad spectrum of experimental conditions and dealt only with loading, here we reduced the scope to the molecular characteristics alone. We model and predict API suitability for nano-liposomal delivery by fixing the main experimental conditions: liposome lipid composition and size to be similar to those of Doxil® liposomes. On that basis, we add a prediction of drug leakage from the nano-liposomes during storage. The latter is critical for having pharmaceutically viable nano-drugs. The "load and leak" models were used to screen two large molecular databases in search of candidate APIs for delivery by nano-liposomes. The distribution of positive instances in both loading and leakage models was similar in the two databases screened. The screening process identified 667 molecules that were positives by both loading and leakage models (i.e., both high-loading and stable). Among them, 318 molecules received a high score in both properties and of these, 67 are FDA-approved drugs. This group of molecules, having diverse pharmacological activities, may be the basis for future liposomal drug development. Copyright © 2017 Elsevier B.V. All rights reserved.
Land water storage from space and the geodetic infrastructure
NASA Astrophysics Data System (ADS)
Cazenave, A.; Larson, K.; Wahr, J.
2009-04-01
In recent years, remote sensing techniques have been increasingly used to monitor components of the water balance of large river basins. By complementing scarce in situ observations and hydrological modelling, space observations have the potential to significantly improve our understanding of hydrological processes at work in river basins and their relationship with climate variability and socio-economic life. Among the remote sensing tools used in land hydrology, several originate from space geodesy and are integral parts of the Global Geodetic Observing System. For example, satellite altimetry is used for systematic monitoring of water levels of large rivers, lakes and floodplains. InSAR allows the detection of surface water change. GRACE-based space gravity offers for the first time the possibility of directly measuring the spatio-temporal variations of the vertically integrated water storage in large river basins. GRACE is also extremely useful for measuring changes in mass of the snow pack in boreal regions. Vertical motions of the ground induced by changes in water storage in aquifers can be measured by both GPS and InSAR. These techniques can also be used to investigate water loading effects. Recently GPS has been used to measure changes in surface soil moisture, which would be important for agriculture, weather prediction, and for calibrationg satellite missions such as SMOS and SMAP. These few examples show that space and ground geodetic infrastructures are increasingly important for hydrological sciences and applications. Future missions like SWOT (Surface Waters Ocean Topography; a wide swath interferometric altimetry mission) and GRACE 2 (space gravimetry mission based on new technology) will provide a new generation of hydrological products with improved precision and resolution.
NASA Astrophysics Data System (ADS)
Antoine, D.; Hooker, S. B.; Bélanger, S.; Matsuoka, A.; Babin, M.
2013-07-01
A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic) in August 2009 (Malina project) is analyzed in order to describe apparent optical properties (AOPs) in this sea, which has been subject to dramatic environmental changes for several decades. The two properties derived from the measurements are the spectral diffuse attenuation coefficient for downward irradiance, Kd, and the spectral remote sensing reflectance, Rrs. The former controls light propagation in the upper water column. The latter determines how light is backscattered out of the water and becomes eventually observable from a satellite ocean color sensor. The data set includes offshore clear waters of the Beaufort Basin as well as highly turbid waters of the Mackenzie River plumes. In the clear waters, we show Kd values that are much larger in the ultraviolet and blue parts of the spectrum than what could be anticipated considering the chlorophyll concentration. A larger contribution of absorption by colored dissolved organic matter (CDOM) is responsible for these high Kd values, as compared to other oligotrophic areas. In turbid waters, attenuation reaches extremely high values, driven by high loads of particulate materials and also by a large CDOM content. In these two extreme types of waters, current satellite chlorophyll algorithms fail. This questions the role of ocean color remote sensing in the Arctic when Rrs from only the blue and green bands are used. Therefore, other parts of the spectrum (e.g., the red) should be explored if one aims at quantifying interannual changes in chlorophyll in the Arctic from space. The very peculiar AOPs in the Beaufort Sea also advocate for developing specific light propagation models when attempting to predict light availability for photosynthesis at depth.
NASA Astrophysics Data System (ADS)
Antoine, D.; Hooker, S. B.; Belanger, S.; Matsuoka, A.; Babin, M.
2013-03-01
A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic) in August 2009 (MALINA project) is analysed in order to describe apparent optical properties (AOPs) in this sea, which is subject to dramatic environmental changes for several decades. The two properties derived from the measurements are the spectral diffuse attenuation coefficient for downward irradiance, Kd, and the spectral remote sensing reflectance, Rrs. The former controls light propagation in the upper water column. The latter determines how light is backscattered out of the water and becomes eventually observable from a satellite ocean colour sensor. The data set includes offshore clear waters of the Beaufort basin as well as highly turbid waters of the Mackenzie River plumes. In the clear waters, we show Kd values that are much larger in the ultraviolet and blue parts of the spectrum than what could be anticipated considering the chlorophyll concentration. A larger contribution of absorption by coloured dissolved organic matter (CDOM) is responsible for this high Kd values, as compared to other oligotrophic areas. In turbid waters, attenuation reaches extremely high values, driven by high loads of particulate materials and also by a large CDOM content. In these two extreme types of waters, current satellite chlorophyll algorithms fail. This is questioning the role of ocean colour remote sensing in the Arctic when Rrs from only the blue and green bands are used. Therefore, other parts of the spectrum (e.g. the red) should be explored if one aims at quantifying interannual changes in chlorophyll in the Arctic from space. The very peculiar AOPs in the Beaufort Sea also advocate for developing specific light propagation models when attempting to predict light availability for photosynthesis at depth.
The role of groundwater transport in aquatic mercury cycling
Krabbenhoft, David P.; Babiarz, Christopher L.
1992-01-01
Mercury, which is transported globally by atmospheric pathways to remote aquatic environments, is a ubiquitous contaminant at very low (nanograms Hg per liter) aqueous concentrations. Until recently, however, analytical and sampling techniques were not available for freshwater systems to quantify the actual levels of mercury concentrations without introducing significant contamination artifacts. Four different sampling strategies were used to evaluate ground water flow as a mercury source and transport mechanism within aquatic systems. The sampling strategies employ ultraclean techniques to determine mercury concentrations in groundwater and pore water near Pallette Lake, Wisconsin. Ambient groundwater concentrations are about 2–4 ng Hg L−1, whereas pore waters near the sediment/water interface average about 12 ng Hg L−1, emphasizing the importance of biogeochemical processes near the interface. Overall, the groundwater system removes about twice as much mercury (1.5 g yr−1) as it contributes (0.7 g yr−1) to Pallette Lake. About three fourths of the groundwater mercury load is recycled, thought to be derived from the water column.
Shuttle remote manipulator system mission preparation and operations
NASA Technical Reports Server (NTRS)
Smith, Ernest E., Jr.
1989-01-01
The preflight planning, analysis, procedures development, and operations support for the Space Transportation System payload deployment and retrieval missions utilizing the Shuttle Remote Manipulator System are summarized. Analysis of the normal operational loads and failure induced loads and motion are factored into all procedures. Both the astronaut flight crews and the Mission Control Center flight control teams receive considerable training for standard and mission specific operations. The real time flight control team activities are described.
Ke, X; Bei, J H; Zhang, Y; Li, J
2011-04-01
Sanguinarine liposomes were prepared by a remote loading method using three different ammonium salts. A series of studies, including in vitro release, in vitro and in vivo anti-tumor effects and pharmacokinetics in rats, were conducted. The three liposomes showed pH-sensitive release characteristics in vitro, but there were obvious variations in their release profiles. Among the three liposomes, the liposomes made using ammonium citrate and phosphate possessed better anti-tumor activity in vitro and in vivo, compared with the liposome using ammonium sulfate. Pharmacokinetics test results in rats indicated that sanguinarine liposomes have notably elevated AUC (P<0.05) and markedly lower CL (P<0.05) compared with the solution, but there were no obvious differences between the three liposomes. The present study may be useful for better understanding and better choice of a suitable ammonium salt for the remote loading method.
46 CFR 38.15-20 - Remote shutdowns-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...
46 CFR 38.15-20 - Remote shutdowns-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...
46 CFR 38.15-20 - Remote shutdowns-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...
46 CFR 38.15-20 - Remote shutdowns-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...
46 CFR 38.15-20 - Remote shutdowns-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Remote shutdowns-TB/ALL. 38.15-20 Section 38.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Special Requirements § 38.15-20 Remote shutdowns—TB/ALL. (a) All machinery associated with cargo loading, unloading, or...
NASA Technical Reports Server (NTRS)
Spiering, Bruce; Underwood, Lauren; Ellis, Chris; Lehrter, John; Hagy, Jim; Schaeffer, Blake
2010-01-01
The goals of the project are to provide information from satellite remote sensing to support numeric nutrient criteria development and to determine data processing methods and data quality requirements to support nutrient criteria development and implementation. The approach is to identify water quality indicators that are used by decision makers to assess water quality and that are related to optical properties of the water; to develop remotely sensed data products based on algorithms relating remote sensing imagery to field-based observations of indicator values; to develop methods to assess estuarine water quality, including trends, spatial and temporal variability, and seasonality; and to develop tools to assist in the development and implementation of estuarine and coastal nutrient criteria. Additional slides present process, criteria development, typical data sources and analyses for criteria process, the power of remote sensing data for the process, examples from Pensacola Bay, spatial and temporal variability, pixel matchups, remote sensing validation, remote sensing in coastal waters, requirements for remotely sensed data products, and needs assessment. An additional presentation examines group engagement and information collection. Topics include needs assessment purpose and objectives, understanding water quality decision making, determining information requirements, and next steps.
Effect of solubilizing agents on mupirocin loading into and release from PEGylated nanoliposomes.
Cern, Ahuva; Nativ-Roth, Einat; Goldblum, Amiram; Barenholz, Yechezkel
2014-07-01
Mupirocin was identified by quantitative structure property relationship models as a good candidate for remote liposomal loading. Mupirocin is an antibiotic that is currently restricted to topical administration because of rapid hydrolysis in vivo to its inactive metabolite. Formulating mupirocin in PEGylated nanoliposomes may potentially expand its use to parenteral administration by protecting it from degradation in the circulation and target it (by the enhanced permeability effect) to the infected tissue. Mupirocin is slightly soluble in aqueous medium and its solubility can be increased using solubilizing agents. The effect of the solubilizing agents on mupirocin remote loading was studied when the solubilizing agents were added to the drug loading solution. Propylene glycol was found to increase mupirocin loading, whereas polyethylene glycol 400 showed no effect. Hydroxypropyl-β-cyclodextrin (HPCD) showed a concentration-dependent effect on mupirocin loading; using the optimal HPCD concentration increased loading, but higher concentrations inhibited it. The inclusion of HPCD in the liposome aqueous phase while forming the liposomes resulted in increased drug loading and substantially inhibited drug release in serum. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Test-bed for the remote health monitoring system for bridge structures using FBG sensors
NASA Astrophysics Data System (ADS)
Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog
2009-05-01
This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.
Hydrochloric acid: an overlooked driver of environmental change.
Evans, Chris D; Monteith, Don T; Fowler, David; Cape, J Neil; Brayshaw, Susan
2011-03-01
Research on the ecosystem impacts of acidifying pollutants, and measures to control them, has focused almost exclusively on sulfur (S) and nitrogen (N) compounds. Hydrochloric acid (HCl), although emitted by coal burning, has been overlooked as a driver of ecosystem change because most of it was considered to redeposit close to emission sources rather than in remote natural ecosystems. Despite receiving little regulatory attention, measures to reduce S emissions, and changes in energy supply, have led to a 95% reduction in United Kingdom HCl emissions within 20 years. Long-term precipitation, surface water, and soil solution data suggest that the near-disappearance of HCl from deposition could account for 30-40% of chemical recovery from acidification during this time, affecting both near-source and remote areas. Because HCl is highly mobile in reducing environments, it is a more potent acidifier of wetlands than S or N, and HCl may have been the major driver of past peatland acidification. Reduced HCl loadings could therefore have affected the peatland carbon cycle, contributing to increases in dissolved organic carbon leaching to surface waters. With many regions increasingly reliant on coal for power generation, HCl should be recognized as a potentially significant constituent of resulting emissions, with distinctive ecosystem impacts.
Needs Assessment for the Use of NASA Remote Sensing Data for Regulatory Water Quality
NASA Technical Reports Server (NTRS)
Spiering, Bruce; Underwood, Lauren
2010-01-01
This slide presentation reviews the assessment of the needs that NASA can use for the remote sensing of water quality. The goal of this project is to provide information for decision-making activities (water quality standards) using remotely sensed/satellite based water quality data from MODIS and Landsat data.
Estimates of Leaf Relative Water Content from Optical Polarization Measurements
NASA Astrophysics Data System (ADS)
Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.
2017-12-01
Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.
NASA Technical Reports Server (NTRS)
1981-01-01
The Space Transportation System (STS) is discussed, including the launch processing system, the thermal protection subsystem, meteorological research, sound supression water system, rotating service structure, improved hypergol or removal systems, fiber optics research, precision positioning, remote controlled solid rocket booster nozzle plugs, ground operations for Centaur orbital transfer vehicle, parachute drying, STS hazardous waste disposal and recycle, toxic waste technology and control concepts, fast analytical densitometry study, shuttle inventory management system, operational intercommunications system improvement, and protective garment ensemble. Terrestrial applications are also covered, including LANDSAT applications to water resources, satellite freeze forecast system, application of ground penetrating radar to soil survey, turtle tracking, evaluating computer drawn ground cover maps, sparkless load pulsar, and coupling a microcomputer and computing integrator with a gas chromatograph.
Solar maximum mission panel jettison analysis remote manipulator system
NASA Technical Reports Server (NTRS)
Bauer, R. B.
1980-01-01
A study is presented of the development of the Remote Manipulator System (RMS) configurations for jettison of the solar panels on the Solar Maximum Mission/Multimission Satellite. A valid RMS maneuver between jettison configurations was developed. Arm and longeron loads and effector excursions due to the solar panel jettison were determined to see if they were within acceptable limits. These loads and end effector excursions were analyzed under two RMS modes, servos active in position hold submode, and in the brakes on mode.
Sohns, Carl W.; Nodine, Robert N.; Wallace, Steven Allen
1999-01-01
A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast
NASA Astrophysics Data System (ADS)
El Alem, A.; Chokmani, K.; Laurion, I.; El-Adlouni, S. E.
2014-12-01
In reason of inland freshwaters sensitivity to Harmful algae blooms (HAB) development and the limits coverage of standards monitoring programs, remote sensing data have become increasingly used for monitoring HAB extension. Usually, HAB monitoring using remote sensing data is based on empirical and semi-empirical models. Development of such models requires a great number of continuous in situ measurements to reach an acceptable accuracy. However, Ministries and water management organizations often use two thresholds, established by the World Health Organization, to determine water quality. Consequently, the available data are ordinal «semi-qualitative» and they are mostly unexploited. Use of such databases with remote sensing data and statistical classification algorithms can produce hazard management maps linked to the presence of cyanobacteria. Unlike standard classification algorithms, which are generally unstable, classifiers based on ensemble systems are more general and stable. In the present study, an ensemble based classifier was developed and compared to a standard classification method called CART (Classification and Regression Tree) in a context of HAB monitoring in freshwaters using MODIS images downscaled to 250 spatial resolution and ordinal in situ data. Calibration and validation data on cyanobacteria densities were collected by the Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques on 22 waters bodies between 2000 and 2010. These data comprise three density classes: waters poorly (< 20,000 cells mL-1), moderately (20,000 - 100,000 cells mL-1), and highly (> 100,000 cells mL-1) loaded in cyanobacteria. Results were very interesting and highlighted that inland waters exhibit different spectral response allowing them to be classified into the three above classes for water quality monitoring. On the other, even if the accuracy (Kappa-index = 0.86) of the proposed approach is relatively lower than that of the CART algorithm (Kappa-index = 0.87), but its robustness is higher with a standard-deviation of 0.05 versus 0.06, specifically when applied on MODIS images. A new accurate, robust, and quick approach is thus proposed for a daily near real-time monitoring of HAB in southern Quebec freshwaters.
Catastrophic subsidence: An environmental hazard, shelby county, Alabama
NASA Astrophysics Data System (ADS)
Lamoreaux, Philip E.; Newton, J. G.
1986-03-01
Induced sinkholes (catastrophic subsidence) are those caused or accelerated by human activities These sinkholes commonly result from a water level decline due to pumpage Construction activities in a cone of depression greatly increases the likelihood of sinkhole occurrence Almost all occur where cavities develop in unconsolidated deposits overlying solution openings in carbonate rocks. Triggering mechanisms resulting from water level declines are (1) loss of buoyant support of the water, (2) increased gradient and water velocity, (3) water-level fluctuations, and (4) induced recharge Construction activities triggering sinkhole development include ditching, removing overburden, drilling, movement of heavy equipment, blasting and the diversion and impoundment of drainage Triggering mechanisms include piping, saturation, and loading Induced sinkholes resulting from human water development/management activities are most predictable in a youthful karst area impacted by groundwater withdrawals Shape, depth, and timing of catastrophic subsidence can be predicted in general terms Remote sensing techniques are used in prediction of locations of catastrophic subsidence. This provides a basis for design and relocation of structures such as a gas pipeline, dam, or building Utilization of techniques and a case history of the relocation of a pipeline are described
Current limiting remote power control module
NASA Technical Reports Server (NTRS)
Hopkins, Douglas C.
1990-01-01
The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.
Promoting Sustainable Agricultural Practices Through Remote Sensing Education and Outreach
NASA Astrophysics Data System (ADS)
Driese, K. L.; Sivanpillai, R.
2007-12-01
Ever increasing demand for food and fiber calls for farm management strategies such as effective use of chemicals and efficient water use that will maximize productivity while reducing adverse impacts on the environment. Remotely sensed data collected by satellites are a valuable resource for farmers and ranchers for gaining insights about farm and ranch productivity. While researchers in universities and agencies have made tremendous advances, technology transfer to end-users has lagged, preventing the farmers from taking advantage of this valuable resource. To overcome this barrier, the Upper Midwest Aerospace Consortium (UMAC), a NASA funded program headed by the University of North Dakota, has been working with end-users to promote the use of remote sensing technology for sustainable agricultural practices. We will highlight the UMAC activities in Wyoming aimed at promoting this technology to sugar-beet farmers in the Big Horn Basin. To assist farmers who might not have a computer at home, we provide them to local county Cooperative Extension Offices pre-loaded with relevant imagery. Our targeted outreach activities have resulted in farmers requesting and using new and old Landsat images to identify growth anomalies and trends which have enabled them to develop management zones within their croplands.
Surface Waves as Major Controls on Particle Backscattering in Southern California Coastal Waters
NASA Astrophysics Data System (ADS)
Henderikx Freitas, F.; Fields, E.; Maritorena, S.; Siegel, D.
2016-02-01
Satellite observations of particle loads and optical backscattering coefficients (bbp) in the Southern California Bight (SCB) have been thought to be driven by episodic inputs from storm runoff. Here we show however that surface waves have a larger role in controlling remotely sensed bbp values than previously considered. More than 14 years of 2-km resolution SeaWiFS, MODIS and MERIS satellite imagery spectrally-merged with the Garver-Siegel-Maritorena bio-optical model were used to assess the relative importance of terrestrial runoff and surface wave forcings in determining changes in particle load in the SCB. The space-time distributions of particle backscattering at 443nm and chlorophyll concentration estimates from the model were analyzed using Empirical Orthogonal Function analysis, and patterns were compared with several environmental variables. While offshore values of bbp are tightly related to chlorophyll concentrations, as expected for productive Case-1 waters, values of bbp in a 10km band near the coast are primarily modulated by surface waves. The relationship with waves holds throughout all seasons and is most apparent around the 40m isobath, but extends offshore until about 100m in depth. Riverine inputs are associated with elevated bbp near the coast mostly during the larger El Nino events of 1997/1998 and 2005. These findings are consistent with bio-optical glider and field observations from the Santa Barbara Channel taken as part of the Santa Barbara Coastal Long-Term Ecological Research and Plumes and Blooms programs. The implication of surface waves determining bbp variability beyond the surf zone has large consequences for the life cycle of many marine organisms, as well as for the interpretation of remote sensing signals near the coast.
NASA Technical Reports Server (NTRS)
Morris, W. D.; Witte, W. G.; Whitlock, C. H.
1980-01-01
Remote sensing of water quality is dicussed. Remote sensing penetration depth is a function both of water type and wavelength. Results of three tests to help demonstrate the magnitude of this dependence are presented. The water depth to which the remote-sensor data was valid was always less than that of the Secchi disk depth, although not always the same fraction of that depth. The penetration depths were wavelength dependent and showed the greatest variation for the water type with largest Secchi depth. The presence of a reflective plate, simulating a reflective subsurface, increased the apparent depth of light penetration from that calculated for water of infinite depth.
Ohlinger, L.A.
1958-10-01
A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.
Fish Mercury Loads and Lake Productivity Are Not Impacted by Wildland Fire in Northern Minnesota
NASA Astrophysics Data System (ADS)
Riggs, C.; Kolka, R. K.; Nater, E. A.; Witt, E.; Wickman, T.; Woodruff, L. G.; Butcher, J.
2016-12-01
Wildland fire can significantly alter mercury (Hg) cycling on land and in adjacent aquatic environments. In addition to enhancing local atmospheric Hg deposition, fire can influence terrestrial movement of Hg and other elements into lakes via runoff from burned upland soil. However, the impact of fire on water quality and the accumulation of Hg in fish remains equivocal. We investigated the effects of fire - specifically a low severity prescribed fire and moderate severity wildfire - on young-of-the-year yellow perch (Perca flavescens) and lake chemistry in two small remote watersheds in the Boundary Waters Canoe Area Wilderness in northeastern Minnesota using a paired watershed approach (fire-impacted vs. control watershed). Prior to fire, surface soil in the two study watersheds contained significant loads of Hg, mainly from atmospheric deposition. We expected fire to increase transport and deposition of Hg from smoke and burned soil into the fire-impacted lake, leading to changes in lake productivity and fish Hg loads. In contrast to our prediction, and despite significant effects of the moderate severity wildfire fire on upland soil Hg stocks, fish Hg accumulation and lake productivity were not affected by fire. Instead, climate and lake water levels were the strongest predictors of lake chemistry and fish responses in our study lakes. Our results suggest that low to moderate severity wildland fire does not alter lake productivity nor Hg accumulation in young-of-the-year yellow perch in these small, shallow lakes in the northern deciduous and boreal forest region. The effect of a high severity fire remains to be tested.
Caffeine, an anthropogenic marker for wastewater comtamination of surface waters.
Buerge, Ignaz I; Poiger, Thomas; Müller, Markus D; Buser, Hans-Rudolf
2003-02-15
The suitability of caffeine as a chemical marker for surface water pollution by domestic wastewaters was assessed in this study. Caffeine concentrations in influents and effluents of Swiss wastewater treatment plants (WWTPs, 7-73 and 0.03-9.5 microg/L, respectively) indicated an efficient elimination of 81-99.9%. Corresponding loads in untreated wastewater showed small variations when normalized forthe population discharging to the WWTPs (15.8 +/- 3.8 mg person(-1) d(-1)), reflecting a rather constant consumption. WWTP effluent loads were considerably lower (0.06 +/- 0.03 mg person(-1) d(-1)), apart from installations with low sludge age (< or = 5 d, loads up to 4.4 mg person(-1) d(-1)). Despite the efficient removal in most WWTPs, caffeine was ubiquitously found in Swiss lakes and rivers (6-250 ng/ L), except for remote mountain lakes (<2 ng/L; analytical procedure for wastewater and natural waters: SPE, GC-MS-SIM or GC-MS-MS-MRM, internal standard 13C3-labeled caffeine). Caffeine concentrations in lakes correlated with the anthropogenic burden by domestic wastewaters, demonstrating the suitability of caffeine as a marker. A mass balance for Greifensee revealed that approximately 1-4% of the wastewaters had been discharged without treatment, presumably on rainy days when the capacity of WWTPs had been exceeded. For Zürichsee, it could be shown that the monthly inputs of caffeine correlated with precipitation data. The depth- and seasonal-dependent concentrations in this lake were adequately rationalized by a numerical model considering flushing, biodegradation, and indirect photodegradation via HO. radicals as elimination processes and caffeine inputs as fitting variables.
Remote sensing in hydrology: A survey of applications with selected bibliography and abstracts
NASA Technical Reports Server (NTRS)
Sers, S. W. (Compiler)
1971-01-01
Remote infrared sensing as a water exploration technique is demonstrated. Various applications are described, demonstrating that infrared sensors can locate aquifers, geothermal water, water trapped by faults, springs and water in desert regions. The potentiality of airborne IR sensors as a water prospecting tool is considered. Also included is a selected bibliography with abstracts concentrating on those publications which will better acquaint the hydrologist with investigations using thermal remote sensors as applied to water exploration.
NASA Astrophysics Data System (ADS)
Miralles-Wilhelm, F.; Serrat-Capdevila, A.; Rodriguez, D.
2017-12-01
This research is focused on development of remote sensing methods to assess surface water pollution issues, particularly in multipurpose reservoirs. Three case study applications are presented to comparatively analyze remote sensing techniquesforo detection of nutrient related pollution, i.e., Nitrogen, Phosphorus, Chlorophyll, as this is a major water quality issue that has been identified in terms of pollution of major water sources around the country. This assessment will contribute to a better understanding of options for nutrient remote sensing capabilities and needs and assist water agencies in identifying the appropriate remote sensing tools and devise an application strategy to provide information needed to support decision-making regarding the targeting and monitoring of nutrient pollution prevention and mitigation measures. A detailed review of the water quality data available from ground based measurements was conducted in order to determine their suitability for a case study application of remote sensing. In the first case study, the Valle de Bravo reservoir in Mexico City reservoir offers a larger database of water quality which may be used to better calibrate and validate the algorithms required to obtain water quality data from remote sensing raw data. In the second case study application, the relatively data scarce Lake Toba in Indonesia can be useful to illustrate the value added of remote sensing data in locations where water quality data is deficient or inexistent. The third case study in the Paso Severino reservoir in Uruguay offers a combination of data scarcity and persistent development of harmful algae blooms. Landsat-TM data was obteined for the 3 study sites and algorithms for three key water quality parameters that are related to nutrient pollution: Chlorophyll-a, Total Nitrogen, and Total Phosphorus were calibrated and validated at the study sites. The three case study applications were developed into capacity building/training workshops for water resources students, applied scientists, practitioners, reservoir and water quality managers, and other interested stakeholders.
Mississippi Sound Remote Sensing Study
NASA Technical Reports Server (NTRS)
Atwell, B. H.
1973-01-01
The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.
Sams, James I.; Schroeder, Karl T.; Ackman, Terry E.; Crawford, J.K.; Otto, Kim L.
2001-01-01
In October 1998, a chemical synoptic survey was conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, National Energy Technology Laboratory, in the Lower Youghiogheny River Basin in Pennsylvania to give a snapshot of present (1998) water quality during low-flow conditions. Water samples from 38 sites—12 mainstem sites, 22 tributaries, and 4 mine discharges that discharge directly to the Youghiogheny River—were used to identify sources of contaminants from mining operations. Specific conductance, water temperature, pH, and dissolved oxygen were measured in the field at each site and concentrations of major ions and trace elements were measured in the laboratory.zUnaccounted for gains and losses in streamflow were measured during the study. Unaccounted for losses in streamflow might be attributed to water loss through streambed fractures. Extensive mine tunnels are present in the basin and loss of water to these tunnels seems likely. Unaccounted for gains in streamflow may be from unmeasured tributaries or surface seeps, but most of the gains are suspected to come from artesian flow through fractures in the streambed from underground mine pools. Influent flows of rust-colored water were noted in some river sections.The pH values for all the samples collected during this survey were above 5.8, and most (33 of 38 samples) were above 7.0. Samples from the four mine-discharge sites also had pH values between 6.3 and 6.7. The lowest pH (5.8) was in a tributary, Galley Run. All 38 sampling sites had net alkalinity.The alkalinity load in the Youghiogheny River increased between Connellsville and McKeesport from 35 to 79 tons per day. Above Smithton, the measured alkalinity load in the Lower Youghiogheny River agreed well with the estimated alkalinity load. Below Smithton, measured alkalinity loads in the Lower Youghiogheny River are greater than calculated loads, resulting in unaccounted for gains in alkalinity. These gains are believed to be from seeps in the streambed. Approximately one-third of the load of total alkalinity in the Youghiogheny River at McKeesport is attributed to Sewickley Creek, which contributes 14 tons per day.Sulfate concentrations in the Youghiogheny River steadily increase from 33 milligrams per liter at Connellsville to 77 milligrams per liter near McKeesport. The measured concentrations of sulfate exceeded Pennsylvania water-quality standards at four tributary sites (Galley Run, Hickman Run, Sewickley Creek, and Gillespie Run) and all four mine-discharge sites but not at any main-stem sites. A large increase in sulfate load between West Newton and Sutersville can be attributed almost entirely to the contribution from Sewickley Creek (49 tons per day). Approximately 25 percent of the load measured between Connellsville and McKeesport is unaccounted for. These gains are believed to be from seeps in the streambed from underground mine pools.Similar patterns also were observed for loads of sodium, calcium, and magnesium. Unmeasured inputs from mine drainage are believed to be the source of these loads. Elevated concentrations (above background levels) of chemicals associated with drainage from coal-mining operations were measured in samples from tributaries, especially from Galley Run, Gillespie Run, and Sewickley Creek, and from the mine-discharge sites. The synoptic survey conducted for this study was successful in identifying generalized reaches of the Youghiogheny River where unaccounted for loads of constituents associated with mining activities are entering the river. However, the survey was not able to pinpoint the location of these loads. Remote-sensing techniques, such as thermal infrared imaging by the National Energy Technology Laboratory, could be useful for determining the precise locations of these inputs.
NASA Astrophysics Data System (ADS)
Wang, Xu; Schiavone, Peter
2018-06-01
We consider a confocally coated rigid elliptical inclusion, loaded by a couple and introduced into a remote uniform stress field. We show that uniform interfacial and hoop stresses along the inclusion-coating interface can be achieved when the two remote normal stresses and the remote shear stress each satisfy certain conditions. Our analysis indicates that: (i) the uniform interfacial tangential stress depends only on the area of the inclusion and the moment of the couple; (ii) the rigid-body rotation of the rigid inclusion depends only on the area of the inclusion, the coating thickness, the shear moduli of the composite and the moment of the couple; (iii) for given remote normal stresses and material parameters, the coating thickness and the aspect ratio of the inclusion are required to satisfy a particular relationship; (iv) for prescribed remote shear stress, moment and given material parameters, the coating thickness, the size and aspect ratio of the inclusion are also related. Finally, a harmonic rigid inclusion emerges as a special case if the coating and the matrix have identical elastic properties.
Water Quality of a Tropical Montane Cloud Forest Watershed, Monteverde, Costa Rica
NASA Astrophysics Data System (ADS)
Rhodes, A. L.; Guswa, A. J.; Dallas, S.; Kim, E. M.; Katchpole, S.; Newell, S. E.; Pufall, A.
2004-05-01
The Rio Guacimal originates in the Monteverde Cloud Forest Preserve, located on the leeward side of the continental divide through Costa Rica. Agriculture and ecotourism has spurred growth adjacent to the preserve. Continued development coupled with changes in precipitation patterns could stress the quality and quantity of water. This study characterizes water chemistry and surface water hydrology of a 21 km2 headwater catchment to evaluate effects of current and projected land use on water quality. Stream samples have been collected from up to 11 sites since March 2000. Two sites located on tributaries in remote, forested areas serve as references for sites located downstream of agricultural and residential areas. Waters were analyzed for specific conductance, pH, DO, acid neutralizing capacity (ANC), Ca, Mg, Na, NH4, SO4, NO3, Cl, PO4 and dissolved silica. In the upland, forested streams, chemical loading is dominated by mineral weathering and cation exchange reactions. Silica, ANC and base cation concentrations all exceed sum of acid anions. During the dry season, concentrations of all dissolved constituents increase synchronously, but at different magnitudes (SO4 and Cl by 15 μ eq/L; silica by 250 μ mol/L; sum of base cations and ANC by 120 μ eq/L), suggesting that increased baseflow has a greater effect on temporal changes of chemical loads in high-elevation, forested streams than does evapotranspiration. Chemical loads of streams receiving runoff from populated areas are 2-5x more concentrated than the upland sites. Highest concentrations occur in Queb. Sucia (QS), which receives grey-water runoff from residential areas. Acidic runoff decreases the ANC of QS by 90-200 μ eq/L; however high alkalinity (ANC=400-1000 μ eq/L) prevents acidification. Acid anions in streams receiving grey-water runoff throughout the year are most concentrated during the dry season when dilution from precipitation is least. Conversely, a site that receives nonpoint source pollution from agricultural areas has its highest concentrations of acid anions during the wet season when surface runoff is the dominant flowpath.
NASA Technical Reports Server (NTRS)
Colwell, R. N.
1973-01-01
An investigation has begun into the potential impact of using modern remote sensing techniques as an aid in managing, even on a day-to-day basis, the storage, flow, and delivery of water made available through the California Water Project. It is obvious that the amount of this impact depends upon the extent to which remote sensing is proven to be useful in improving predictions of both the amount of water that will be available and the amount that will be needed. It is also proposed to investigate the potential impact of remote sensing techniques as an aid in monitoring, and perhaps even in directing, changes in land use and life style being brought about through the increased availability of water in central and southern California as a result of the California Water Project. The impact of remote sensing can be of appreciable significance only if: (1) the induced changes are very substantial ones; (2) remote sensing is found, in this context, to be very useful and potentially very cost effective; and (3) resource managers adopt this new technology. Analyses will be conducted of the changing economic bases and the new land use demands resulting from increased water availability in central and southern California.
Development of a microprocessor controller for stand-alone photovoltaic power systems
NASA Technical Reports Server (NTRS)
Millner, A. R.; Kaufman, D. L.
1984-01-01
A controller for stand-alone photovoltaic systems has been developed using a low power CMOS microprocessor. It performs battery state of charge estimation, array control, load management, instrumentation, automatic testing, and communications functions. Array control options are sequential subarray switching and maximum power control. A calculator keypad and LCD display provides manual control, fault diagnosis and digital multimeter functions. An RS-232 port provides data logging or remote control capability. A prototype 5 kW unit has been built and tested successfully. The controller is expected to be useful in village photovoltaic power systems, large solar water pumping installations, and other battery management applications.
Social and Economic Impact of Solar Electricity at Schuchuli Village
NASA Technical Reports Server (NTRS)
Bifano, W. J.; Ratajczak, A. F.; Bahr, D. M.; Garrett, B. G.
1979-01-01
Schuchuli, a small remote village on the Papago Indian Reservation in southwest Arizona, is 27 kilometers (17 miles) from the nearest available utility power. Its lack of conventional power is due to the prohibitive cost of supplying a small electrical load with a long-distance distribution line. Furthermore, alternate energy sources are expensive and place a burden on the resources of the villagers. On December 16, 1978, as part of a federally funded project, a solar cell power system was put into operation at Schuchuli. The system powers the village water pump, lighting for homes and other village buildings, family refrigerators and a communal washing machine and sewing machine.
Description and status of NASA-LeRC/DOE photovoltaic applications systems experiments
NASA Technical Reports Server (NTRS)
Ratajczak, A. F.
1978-01-01
In its role of supporting the DOE Photovoltaic Program, the NASA-Lewis Research Center has designed, fabricated and installed 16 geographically dispersed photovoltaic systems. These systems are powering a refrigerator, highway warning sign, forest lookout towers, remote weather stations, a water chiller at a visitor center, and insect survey traps. Each of these systems is described in terms of load requirements, solar array and battery size, and instrumentation and controls. Operational experience is described and present status is given for each system. The P/V power systems have proven to be highly reliable with almost no problems with modules and very few problems overall
Qiu, Guo Yu; Zhao, Ming
2010-03-01
Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.
Mapping of chlorophyll a distributions in coastal zones
NASA Technical Reports Server (NTRS)
Johnson, R. W.
1978-01-01
It is pointed out that chlorophyll a is an important environmental parameter for monitoring water quality, nutrient loads, and pollution effects in coastal zones. High chlorophyll a concentrations occur in areas which have high nutrient inflows from sources such as sewage treatment plants and industrial wastes. Low chlorophyll a concentrations may be due to the addition of toxic substances from industrial wastes or other sources. Remote sensing provides an opportunity to assess distributions of water quality parameters, such as chlorophyll a. A description is presented of the chlorophyll a analysis and a quantitative mapping of the James River, Virginia. An approach considered by Johnson (1977) was used in the analysis. An application of the multiple regression analysis technique to a data set collected over the New York Bight, an environmentally different area of the coastal zone, is also discussed.
Remote Sensing For Water Resources And Hydrology. Recommended research emphasis for the 1980's
NASA Technical Reports Server (NTRS)
1980-01-01
The problems and the areas of activity that the Panel believes should be emphasized in work on remote sensing for water resources and hydrology in the 1980's are set forth. The Panel deals only with those activities and problems in water resources and hydrology that the Panel considers important, and where, in the Panel's opinion, application of current remote sensing capability or advancements in remote sensing capability can help meet urgent problems and provide large returns in practical benefits.
NASA Technical Reports Server (NTRS)
Colwell, R. N.
1974-01-01
Progress and results of an integrated study of California's water resources are discussed. The investigation concerns itself primarily with the usefulness of remote sensing of relation to two categories of problems: (1) water supply; and (2) water demand. Also considered are its applicability to forest management and timber inventory. The cost effectiveness and utility of remote sensors such as the Earth Resources Technology Satellite for water and timber management are presented.
NASA Technical Reports Server (NTRS)
Seshadri, Banavara R.; Smith, Stephen W.
2007-01-01
Variation in constraint through the thickness of a specimen effects the cyclic crack-tip-opening displacement (DELTA CTOD). DELTA CTOD is a valuable measure of crack growth behavior, indicating closure development, constraint variations and load history effects. Fatigue loading with a continual load reduction was used to simulate the load history associated with fatigue crack growth threshold measurements. The constraint effect on the estimated DELTA CTOD is studied by carrying out three-dimensional elastic-plastic finite element simulations. The analysis involves numerical simulation of different standard fatigue threshold test schemes to determine how each test scheme affects DELTA CTOD. The American Society for Testing and Materials (ASTM) prescribes standard load reduction procedures for threshold testing using either the constant stress ratio (R) or constant maximum stress intensity (K(sub max)) methods. Different specimen types defined in the standard, namely the compact tension, C(T), and middle cracked tension, M(T), specimens were used in this simulation. The threshold simulations were conducted with different initial K(sub max) values to study its effect on estimated DELTA CTOD. During each simulation, the DELTA CTOD was estimated at every load increment during the load reduction procedure. Previous numerical simulation results indicate that the constant R load reduction method generates a plastic wake resulting in remote crack closure during unloading. Upon reloading, this remote contact location was observed to remain in contact well after the crack tip was fully open. The final region to open is located at the point at which the load reduction was initiated and at the free surface of the specimen. However, simulations carried out using the constant Kmax load reduction procedure did not indicate remote crack closure. Previous analysis results using various starting K(sub max) values and different load reduction rates have indicated DELTA CTOD is independent of specimen size. A study of the effect of specimen thickness and geometry on the measured DELTA CTOD for various load reduction procedures and its implication in the estimation of fatigue crack growth threshold values is discussed.
Definition and maintenance of a telemetry database dictionary
NASA Technical Reports Server (NTRS)
Knopf, William P. (Inventor)
2007-01-01
A telemetry dictionary database includes a component for receiving spreadsheet workbooks of telemetry data over a web-based interface from other computer devices. Another component routes the spreadsheet workbooks to a specified directory on the host processing device. A process then checks the received spreadsheet workbooks for errors, and if no errors are detected the spreadsheet workbooks are routed to another directory to await initiation of a remote database loading process. The loading process first converts the spreadsheet workbooks to comma separated value (CSV) files. Next, a network connection with the computer system that hosts the telemetry dictionary database is established and the CSV files are ported to the computer system that hosts the telemetry dictionary database. This is followed by a remote initiation of a database loading program. Upon completion of loading a flatfile generation program is manually initiated to generate a flatfile to be used in a mission operations environment by the core ground system.
NASA Astrophysics Data System (ADS)
Ozdogan, M.; Serrat-Capdevila, A.; Anderson, M. C.
2017-12-01
Despite increasing scarcity of freshwater resources, there is dearth of spatially explicit information on irrigation water consumption through evapotranspiration, particularly in semi-arid and arid geographies. Remote sensing, either alone or in combination with ground surveys, is increasingly being used for irrigation water management by quantifying evaporative losses at the farm level. Increased availability of observations, sophisticated algorithms, and access to cloud-based computing is also helping this effort. This presentation will focus on crop-specific evapotranspiration estimates at the farm level derived from remote sensing in a number of water-scarce regions of the world. The work is part of a larger effort to quantify irrigation water use and improve use efficiencies associated with several World Bank projects. Examples will be drawn from India, where groundwater based irrigation withdrawals are monitored with the help of crop type mapping and evapotranspiration estimates from remote sensing. Another example will be provided from a northern irrigation district in Mexico, where remote sensing is used for detailed water accounting at the farm level. These locations exemplify the success stories in irrigation water management with the help of remote sensing with the hope that spatially disaggregated information on evapotranspiration can be used as inputs for various water management decisions as well as for better water allocation strategies in many other water scarce regions.
Remote measurements of water pollution with a lidar polarimeter
NASA Technical Reports Server (NTRS)
Sheives, T. C.; Rouse, J. W., Jr.; Mayo, W. T., Jr.
1974-01-01
This paper examines a dual polarization laser backscatter system as a method for remote measurements of certain water quality parameters. Analytical models for describing the backscatter from turbid water and oil on turbid water are presented and compared with experimental data. Laser backscatter field measurements from natural waterways are presented and compared with simultaneous ground observations of the water quality parameters: turbidity, suspended solids, and transmittance. The results of this study show that the analytical models appear valid and that the sensor investigated is applicable to remote measurements of these water quality parameters and oil spills on water.-
On multidisciplinary research on the application of remote sensing to water resources problems
NASA Technical Reports Server (NTRS)
1972-01-01
This research is directed toward development of a practical, operational remote sensing water quality monitoring system. To accomplish this, five fundamental aspects of the problem have been under investigation during the past three years. These are: (1) development of practical and economical methods of obtaining, handling and analyzing remote sensing data; (2) determination of the correlation between remote sensed imagery and actual water quality parameters; (3) determination of the optimum technique for monitoring specific water pollution parameters and for evaluating the reliability with which this can be accomplished; (4) determination of the extent of masking due to depth of penetration, bottom effects, film development effects, and angle falloff, and development of techniques to eliminate or minimize them; and (5) development of operational procedures which might be employed by a municipal, state or federal agency for the application of remote sensing to water quality monitoring, including space-generated data.
NASA Astrophysics Data System (ADS)
You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.
2017-12-01
Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key water environmental parameters and further improved the inversion model. The results indicate that our proposed water environment inversion model can be a good inversion for alpine water environmental parameters, and can improve the monitoring and warning ability for the alpine river water environment in the future.
Estimating the relative water content of leaves in a cotton canopy.
USDA-ARS?s Scientific Manuscript database
Remotely sensing plant canopy water status remains a long term goal of remote sensing research. Established approaches to estimating canopy water status — the Crop Water Stress Index, the Water Deficit Index, the Equivalent Water Thickness and the many other indices — involve measurements in the the...
Yang, Xiaojun
2012-02-01
Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its ecosystem services. Copyright © 2011 Elsevier Ltd. All rights reserved.
The integration of satellite and airborne remote sensing, scientific visualization and decision support tools is discussed within the context of management techniques for minimizing the non-point source pollution load of inland waterways and the sustainability of food crop produc...
NASA Astrophysics Data System (ADS)
LI, G.; Lin, H.
2014-12-01
From 2000 till present, most endorheic lakes in Tibetan plateau experienced quick increasing. Several largest lakes, gathered several meters depth water during one decade. Such massive mass increasing will lead to elastic and visco-elastic deformation of the ground. Qinghai-Tibetan Plateau is one the most active tectonic places in the world; monitoring its ground deformation is essential, when loading effect is a nuisance item. Due to the sparse distribution of GPS sites and most are roving sites, it is hard to distinguish tectonic component from mass loading effect. In this research we took Selin Co Lake located at Nujiang-Bangoin suture zone and evaluated long time ground deformation at hundred kilometers scale by multi-temporal SAR interferometry and simulate the ground deformation by loading history evaluated by multi mission satellite altimetry and optical images observation. At Nujiang-Bangoin suture zone, where GPS presented the maximum ground subsidence in Qinghai-Tibetan Plateau of 3.6mm/a which was found at the shore of Selin Co Lake from 1999 to 2011, when it experienced water level increasing of 0.7m/a. A model of elastic plate lying over Newtonian viscous half-space matches well with the results of multi-temporal SAR interferometry and GPS observations. We concluded that near Selin Co Lake area, ground deformation is composed by both tectonic and hydrological loading part. As SAR image coverage is much smaller than tectonic scale, we contribute the deformation detected by InSAR to loading effect. After evaluating and removing the hydrological loading effect, we founds that Nujiang-Bangoin suture zone did not experience quick subsidence, but only limited to 0.5mm/a. Selin Co Lake's quick volume increasing caused 3mm/a subsidence rate to the nearest GPS site. The Second nearest site showed the 1.4mm/a subsidence totally, which were composed by 1.05mm/a hydrological loading effect and the rest was tectonic. We also found that Young's Modulus is the most essential parameter for loading effect simulation, and our simulation gave the similar Young's Modulus as the previous seismic tomographic INDEPTH III program did. Therefore with accurate seismic tomographic results and loading history detected by remote sensing could accurately simulate ground deformation caused by hydrological loading.
Remote sensing of water quality and contaminants in the California Bay-Delta
NASA Astrophysics Data System (ADS)
Fichot, C. G.; Downing, B. D.; Windham-Myers, L.; Marvin-DiPasquale, M. C.; Bergamaschi, B. A.; Thompson, D. R.; Gierach, M. M.
2014-12-01
The California Bay-Delta is a highly altered ecosystem largely reclaimed from wetlands for agriculture, and millions of acres of farmland and Californians rely on the Bay-Delta for their water supply. The Bay-Delta also harbors important habitats for many organisms, including commercial and endangered species. Recently, the Delta Stewardship Council developed a two component mission (coequal goals) to 1) provide a more reliable water supply for California while 2) protecting, restoring, and enhancing the Bay-Delta ecosystem. Dissolved organic carbon, turbidity, and contaminants such as methylmercury represent important water quality issues for water management and in the context of wetland restoration in the Bay-Delta, and can threaten the achievement of the coequal goals. Here, we use field measurements of optical properties, chemical analyses, and remotely sensed data acquired with the airborne Portable Remote Imaging SpectroMeter (PRISM ; http://prism.jpl.nasa.gov/index.html) to demonstrate these water quality parameters and the study of their dynamics in the Bay-Delta are amenable to remote sensing. PRISM provides high signal-to-noise, high spatial resolution (~2 m), hyperspectral measurements of remote-sensing reflectance in the 350-1050 nm range, and therefore has the adequate resolutions for water quality monitoring in inland, optically complex waters. Remote sensing of water quality will represent a valuable complement to existing in situ water quality monitoring programs in this region and will help with decision-making to achieve the co-equal goals.
Remote Sensing of Water Vapor and Thin Cirrus Clouds using MODIS Near-IR Channels
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Kaufman, Yoram J.
2001-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS), a major facility instrument on board the Terra Spacecraft, was successfully launched into space in December of 1999. MODIS has several near-IR channels within and around the 0.94 micrometer water vapor bands for remote sensing of integrated atmospheric water vapor over land and above clouds. MODIS also has a special near-IR channel centered at 1.375-micron with a width of 30 nm for remote sensing of cirrus clouds. In this paper, we describe briefly the physical principles on remote sensing of water vapor and cirrus clouds using these channels. We also present sample water vapor images and cirrus cloud images obtained from MODIS data.
NASA Astrophysics Data System (ADS)
Painter, T. H.; Famiglietti, J. S.; Stephens, G. L.
2016-12-01
We live in a time of increasing strains on our global fresh water availability due to increasing population, warming climate, changes in precipitation, and extensive depletion of groundwater supplies. At the same time, we have seen enormous growth in capabilities to remotely sense the regional to global water cycle and model complex systems with physically based frameworks. The GEWEX Water Availability Grand Challenge for North America is poised to leverage this convergence of remote sensing and modeling capabilities to answer fundamental questions on the water cycle. In particular, we envision an experiment that targets the complex and resource-critical Western US from California to just into the Great Plains, constraining physically-based hydrologic modeling with the US and international remote sensing capabilities. In particular, the last decade has seen the implementation or soon-to-be launch of water cycle missions such as GRACE and GRACE-FO for groundwater, SMAP for soil moisture, GPM for precipitation, SWOT for terrestrial surface water, and the Airborne Snow Observatory for snowpack. With the advent of convection-resolving mesoscale climate and water cycle modeling (e.g. WRF, WRF-Hydro) and mesoscale models capable of quantitative assimilation of remotely sensed data (e.g. the JPL Western States Water Mission), we can now begin to test hypotheses on the nature and changes in the water cycle of the Western US from a physical standpoint. In turn, by fusing water cycle science, water management, and ecosystem management while addressing these hypotheses, this golden age of remote sensing and modeling can bring all fields into a markedly less uncertain state of present knowledge and decadal scale forecasts.
Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)
NASA Technical Reports Server (NTRS)
Guild, Liane
2016-01-01
Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.
Hydrologic interpretations based on infrared imagery of Long Island, New York
NASA Technical Reports Server (NTRS)
Pluhowski, E. J.
1972-01-01
Six remote-sensing flights over Long Island's north and south shores were made during the period July 13, 1967, to February 25, 1970. Infrared imagery in the 8- to 14-micrometer range was obtained; results varied from poor to excellent in quality. The ability of the RS 7 and Reconofax 4 imagers to discern thermal contrasts of as little as 1 to 2 C (Celsius) permitted identification of areas of heavy ground-water discharge. These areas were concentrated primarily along the eroded headlands of the north shore and in the lower reaches of watercourses draining into Great South Bay. Only a few highly localized examples of direct ground-water discharge into the embayments along Long Island's south shore were detected in the imagery. Thermal loading emanating from a powerplant near Oceanside is shown to be quickly dissipated in Middle Bay. Optimal time for the collection of infrared imagery for hydrologic studies on Long Island is in summer and in winter, when surface-water thermal differences are relatively large.
Karpievitch, Yuliya V; Almeida, Jonas S
2006-01-01
Background Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. Results mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Conclusion Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet. PMID:16539707
Karpievitch, Yuliya V; Almeida, Jonas S
2006-03-15
Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet.
NASA Astrophysics Data System (ADS)
Ge, J.; Torres, R.; Chen, C.; Bellerby, R. G. J.
2017-12-01
The Changjiang Estuary is characterized as strong river discharge into the inner shelf of the East China Sea with abundant sediment load, producing significant high-turbidity water coverage from river mouth to deep region. The growth of offshore phytoplankton is dynamically controlled by river flushed low-salinity and high-turbidity water, and salter water from inner shelf of East China Sea. During last decade, the sediment and nutrients from the Changjiang River has significantly changed, which lead to the variation of offshore phytoplankton dynamics. The variations of sediment, nutrients, and their influenced phytoplankton has been simulated through a comprehensive modeling system, which integrated a multi-scale current-wave-sediment FVCOM model and generic marine biogeochemistry and ecosystem ERSEM model through The Framework for Aquatic Biogeochemical Models (FABM). This model system has successfully revealed the seasonal and decadal variations of sediment, nutrients transport around the inner shelf of the East China Sea. The spring and autumn peaks of phytoplankton growth were correctly captured by simulation. The modeling results, as well as MODIS and GOCI remote sensing, shows a strong sediment decreasing from northern to southern region, which creates different patterns of Chlorophyll-a distribution and seasonal variations. These results indicate the high-turbidity water in northern region strongly influenced the light attenuation in the water column and limits the phytoplankton growth in this relatively higher-nutrient area, especially in the wintertime. The relatively low-turbidity southern region has significant productivity of phytoplankton, even during low-temperature winter. The phytoplankton growth increased in the northern region from 2005 to 2010, with the increase of the nutrient load during this period. Then it became a decreasing trend after 2010.
USING A CONTAINMENT VESSEL LIFTING APPARATUS FOR REMOTE OPERATIONS OF SHIPPING PACKAGES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loftin, Bradley; Koenig, Richard
2013-08-08
The 9977 and the 9975 shipping packages are used in various nuclear facilities within the Department of Energy. These shipping packages are often loaded in designated areas with designs using overhead cranes or A-frames with lifting winches. However, there are cases where loading operations must be performed in remote locations where these facility infrastructures do not exist. For these locations, a lifting apparatus has been designed to lift the containment vessels partially out of the package for unloading operations to take place. Additionally, the apparatus allows for loading and closure of the containment vessel and subsequent pre-shipment testing. This papermore » will address the design of the apparatus and the challenges associated with the design, and it will describe the use of the apparatus.« less
Remote sensing of subsurface water temperature by Raman scattering.
Leonard, D A; Caputo, B; Hoge, F E
1979-06-01
The application of Raman scattering to remote sensing of subsurface water temperature and salinity is considered, and both theoretical and experimental aspects of the technique are discussed. Recent experimental field measurements obtained in coastal waters and on a trans-Atlantic/Mediterranean research cruise are correlated with theoretical expectations. It is concluded that the Raman technique for remote sensing of subsurface water temperature has been brought from theoretical and laboratory stages to the point where practical utilization can now be developed.
NASA Technical Reports Server (NTRS)
Grimes, C. A.; Kouzoudis, D.
2000-01-01
Free-standing magnetoelastic thick-film sensors have a characteristic resonant frequency that can be determined by monitoring the magnetic flux emitted from the sensor in response to a time varying magnetic field. This property allows the sensors to be monitored remotely without the use of direct physical connections, such as wires, enabling measurement of environmental parameters from within sealed, opaque containers. In this work, we report on application of magnetoelastic sensors to measurement of atmospheric pressure, fluid-flow velocity, temperature, and mass load. Mass loading effects are demonstrated by fabrication of a remote query humidity sensor, made by coating the magnetoelastic thick film with a thin layer of solgel deposited Al2O3 that reversibly changes mass in response to humidity. c2000 Elsevier Science S.A. All rights reserved.
Sohns, C.W.; Nodine, R.N.; Wallace, S.A.
1999-05-04
A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.
Solid state remote power controllers for 120 VDC power systems
NASA Technical Reports Server (NTRS)
Sundberg, G. R.; Baker, D. E.
1975-01-01
Solid state remote power controllers can be applied to any dc power system up to 120 Vdc and distribute power up to 3.6 kW per hour. Devices have demonstrated total electrical efficiencies of 98.5 percent to 99.0 percent at rated load currents.
One-shot valve may be remotely actuated
NASA Technical Reports Server (NTRS)
Kami, S.
1965-01-01
One-shot valve, with spring-loaded plunger and sealing diaphragm, incorporates an emergency release actuated by a remote sensor. The plunger is released by the electrical melting of a fuse link and pierces the valve seal. The valve lowers fluid pressure in a container without losing the contained fluid.
Adaptive Control Of Remote Manipulator
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1989-01-01
Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.
NASA Astrophysics Data System (ADS)
Waugh, Rachael C.; Dulieu-Barton, Janice M.; Quinn, S.
2015-03-01
Thermoelastic stress analysis (TSA) is an established active thermographic approach which uses the thermoelastic effect to correlate the temperature change that occurs as a material is subjected to elastic cyclic loading to the sum of the principal stresses on the surface of the component. Digital image correlation (DIC) tracks features on the surface of a material to establish a displacement field of a component subjected to load, which can then be used to calculate the strain field. The application of both DIC and TSA on a composite plate representative of aircraft secondary structure subject to resonant frequency loading using a portable loading device, i.e. `remote loading' is described. Laboratory based loading for TSA and DIC is typically imparted using a test machine, however in the current work a vibration loading system is used which is able to excite the component of interest at resonant frequency which enables TSA and DIC to be carried out. The accuracy of the measurements made under remote loading of both of the optical techniques applied is discussed. The data are compared to extract complimentary information from the two techniques. This work forms a step towards a combined strain based non-destructive evaluation procedure able to identify and quantify the effect of defects more fully, particularly when examining component performance in service applications.
[Remote sensing monitoring and screening for urban black and odorous water body: A review.
Shen, Qian; Zhu, Li; Cao, Hong Ye
2017-10-01
Continuous improvement of urban water environment and overall control of black and odorous water body are not merely national strategic needs with the action plan for prevention and treatment of water pollution, but also the hot issues attracting the attention of people. Most previous researches concentrated on the study of cause, evaluation and treatment measures of this phenomenon, and there are few researches on the monitoring using remote sensing, which is often a strain to meet the national needs of operational monitoring. This paper mainly summarized the urgent research problems, mainly including the identification and classification standard, research on the key technologies, and the frame of remote sensing screening systems for the urban black and odorous water body. The main key technologies were concluded too, including the high spatial resolution image preprocessing and extraction technique for black and odorous water body, the extraction of water information in city zones, the classification of the black and odorous water, and the identification and classification technique based on satellite-sky-ground remote sensing. This paper summarized the research progress and put forward research ideas of monitoring and screening urban black and odorous water body via high spatial resolution remote sensing technology, which would be beneficial to having an overall grasp of spatial distribution and improvement progress of black and odorous water body, and provide strong technical support for controlling urban black and odorous water body.
Mississippi Sound remote sensing study. [NASA Earth Resources Laboratory seasonal experiments
NASA Technical Reports Server (NTRS)
Atwell, B. H.; Thomann, G. C.
1973-01-01
A study of the Mississippi Sound was initiated in early 1971 by personnel of NASA Earth Resources Laboratory. Four separate seasonal experiments consisting of quasi-synoptic remote and surface measurements over the entire area were planned. Approximately 80 stations distributed throughout Mississippi Sound were occupied. Surface water temperature and secchi extinction depth were measured at each station and water samples were collected for water quality analyses. The surface distribution of three water parameters of interest from a remote sensing standpoint - temperature, salinity and chlorophyll content - are displayed in map form. Areal variations in these parameters are related to tides and winds. A brief discussion of the general problem of radiative measurements of water temperature is followed by a comparison of remotely measured temperatures (PRT-5) to surface vessel measurements.
NASA Technical Reports Server (NTRS)
Clapp, J. L.
1973-01-01
Research objectives during 1972-73 were to: (1) Ascertain the extent to which special aerial photography can be operationally used in monitoring water pollution parameters. (2) Ascertain the effectiveness of remote sensing in the investigation of nearshore mixing and coastal entrapment in large water bodies. (3) Develop an explicit relationship of the extent of the mixing zone in terms of the outfall, effluent and water body characteristics. (4) Develop and demonstrate the use of the remote sensing method as an effective legal implement through which administrative agencies and courts can not only investigate possible pollution sources but also legally prove the source of water pollution. (5) Evaluate the field potential of remote sensing techniques in monitoring algal blooms and aquatic macrophytes, and the use of these as indicators of lake eutrophication level. (6) Develop a remote sensing technique for the determination of the location and extent of hydrologically active source areas in a watershed.
Albert, A; Mobley, C
2003-11-03
Subsurface remote sensing signals, represented by the irradiance re fl ectance and the remote sensing re fl ectance, were investigated. The present study is based on simulations with the radiative transfer program Hydrolight using optical properties of Lake Constance (German: Bodensee) based on in-situ measurements of the water constituents and the bottom characteristics. Analytical equations are derived for the irradiance re fl ectance and remote sensing re fl ectance for deep and shallow water applications. The input of the parameterization are the inherent optical properties of the water - absorption a(lambda) and backscattering bb(lambda). Additionally, the solar zenith angle thetas, the viewing angle thetav , and the surface wind speed u are considered. For shallow water applications the bottom albedo RB and the bottom depth zB are included into the parameterizations. The result is a complete set of analytical equations for the remote sensing signals R and Rrs in deep and shallow waters with an accuracy better than 4%. In addition, parameterizations of apparent optical properties were derived for the upward and downward diffuse attenuation coefficients Ku and Kd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graydon, Jennifer A; Louis, Vincent; Hintelmann, Holger
2008-11-01
Although a positive relationship between atmospheric loadings of inorganic mercury (Hg(II)) to watersheds and concentrations of methyl mercury (MeHg) in fish has now been established, net wet and dry deposition of Hg(II) and MeHg to watersheds remains challenging to quantify. In this study, concentrations and loadings of total mercury (THg; all forms of Hg in a sample) and MeHg in open area wet deposition, throughfall, and litterfall were quantified at the remote Experimental Lakes Area in the boreal ecoregion, NW Ontario, Canada. Between 1992 and 2006, mean annual THg and MeHg loadings in the open were 36 17 and 0.5more » 0.2 mg ha 1, respectively. Throughfall THg and MeHg loadings were generally 2 4 times and 0.8 2 times higher, respectively, than loadings in the open. Loadings of both THg and MeHg were highest under an old growth spruce/fir canopy and lowest under a deciduous maple canopy, whereas loadings under young jack pine and wetland spruce/pine/alder canopies were intermediate. Litterfall generally represented the largest input of THg (86 105 mg ha 1) and MeHg (0.7 0.8 mg ha 1) to the landscape on an annual basis. Using the direct method of estimating dry deposition (thoughfall + litterfall open loadings), we calculated that annual dry deposition of THg and MeHg under forest canopies ranged from 105 to 201 mg ha 1, whereas dry deposition of MeHg ranged from 0.7 to 1.2 mg ha 1. Photoreduction and emission of wet-deposited Hg(II) from canopy foliage were accounted for, resulting in 3 5% (5 6 mg ha 1) higher annual estimates of dry deposition than via the direct method alone. Net THg and MeHg loadings to this remote landscape were lower than at any other previously studied forested site globally. This study shows that THg and MeHg loading can be extremely variable within a heterogeneous boreal landscape and that processes such as Hg photoreduction and emission from foliage should be considered when estimating dry deposition of Hg.« less
Remote observing environment using a KVM-over-IP for the OAO 188 cm telescope
NASA Astrophysics Data System (ADS)
Yanagisawa, Kenshi; Inoue, Goki; Kuroda, Daisuke; Ukita, Nobuharu; Mizumoto, Yoshihiko; Izumiura, Hideyuki
2016-08-01
We have prepared remote observing environment for the 188 cm telescope at Okayama Astrophysical Observatory. A KVM-over-IP and a VPN gateway are employed as core devices, which offer reliable, secure and fast link between on site and remote sites. We have confirmed the KVM-over-IP has ideal characteristics for serving the remote observing environment; the use is simple for both users and maintainer; access from any platform is available; multiple and simultaneous access is possible; and maintenance load is small. We also demonstrated that the degradation of observing efficiency specific to the remote observing is negligibly small. The remote observing environment has fully opened since the semester 2016A, about 30% of the total observing time in the last semester was occupied by remote observing.
Runner, Michael S.; Turnipseed, D. Phil; Coupe, Richard H.
2002-01-01
Increased nutrient loading to the Gulf of Mexico from off-continent flux has been identified as contributing to the increase in the areal extent of the low dissolved-oxygen zone that develops annually off the Louisiana and Texas coast. The proximity of the Yazoo River Basin in northwestern Mississippi to the Gulf of Mexico, and the intensive agricultural activities in the basin have led to speculation that the Yazoo River Basin contributes a disproportionate amount of nitrogen and phosphorus to the Mississippi River and ultimately to the Gulf of Mexico. An empirical measurement of the flux of nitrogen and phosphorus from the Yazoo Basin has not been possible due to the hydrology of the lower Yazoo River Basin. Streamflow for the Yazoo River below Steele Bayou is affected by backwater from the Mississippi River. Flow at the gage is non-uniform and varying, with bi-directional and reverse flows possible. Streamflow was computed by using remote sensing and acoustic and conventional discharge and velocity measurement techniques. Streamflow from the Yazoo River for the 1996-2000 period accounted for 2.8 percent of the flow of the Mississippi River for the same period. Water samples from the Yazoo River were collected from February 1996 through December 2000 and were analyzed for total nitrogen, nitrate, total phosphorus, and orthophosphorus as part of the U.S. Geological Survey National Water-Quality Assessment Program. These data were used to compute annual loads of nitrogen and phosphorus discharged from the Yazoo River for the period 1996-2000. Annual loads of nitrogen and phosphorus were calculated by two methods. The first method used multivariate regression and the second method multiplied the mean annual concentration by the total annual flow. Load estimates based on the product of the mean annual concentration and the total annual flow were within the 95 percent confidence interval for the load calculated by multivariate regression in 10 of 20 cases. The Yazoo River loads, compared to average annual loads in the Mississippi River, indicated that the Yazoo River was contributing 1.4 percent of the total nitrogen load, 0.7 percent of the nitrate load, 3.4 percent of the total phosphorus load, and 1.6 percent of the orthophosphorus load during 1996 - 2000. The total nitrogen, nitrate, and orthophosphorus loads in the Yazoo River Basin were less than expected, whereas the total phosphorus load was slightly higher than expected based on discharge.
Analysis of continuous GPS measurements from southern Victoria Land, Antarctica
Willis, Michael J.
2007-01-01
Several years of continuous data have been collected at remote bedrock Global Positioning System (GPS) sites in southern Victoria Land, Antarctica. Annual to sub-annual variations are observed in the position time-series. An atmospheric pressure loading (APL) effect is calculated from pressure field anomalies supplied by the European Centre for Medium-Range Weather Forecasts (ECMWF) model loading an elastic Earth model. The predicted APL signal has a moderate correlation with the vertical position time-series at McMurdo, Ross Island (International Global Navigation Satellite System Service (IGS) station MCM4), produced using a global solution. In contrast, a local solution in which MCM4 is the fiducial site generates a vertical time series for a remote site in Victoria Land (Cape Roberts, ROB4) which exhibits a low, inverse correlation with the predicted atmospheric pressure loading signal. If, in the future, known and well modeled geophysical loads can be separated from the time-series, then local hydrological loading, of interest for glaciological and climate applications, can potentially be extracted from the GPS time-series.
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh; Mugo, Robinson; Wanjohi, James; Farah, Hussein; Wahome, Anastasia; Flores, Africa; Irwin, Dan
2016-01-01
Various land use changes driven by urbanization, conversion of grasslands and woodlands into farmlands, intensification of agricultural practices, deforestation, land fragmentation and degradation are taking place in Africa. In Kenya, agriculture is the main driver of land use conversions. The impacts of these land use changes are observable in land cover maps, and eventually in the hydrological systems. Reduction or change of natural vegetation cover types increases the speed of surface runoff and reduces water and nutrient retention capacities. This can lead to high nutrient inputs into lakes, resulting in eutrophication, siltation and infestation of floating aquatic vegetation. To assess if changes in land use could be contributing to increased phytoplankton blooms and sediment loads into Lake Victoria, we analyzed land use land cover data from Landsat, as well as surface chlorophyll-a and total suspended matter from MODIS-Aqua sensor.
Predicting Near-Term Water Quality from Satellite Observations of Watershed Conditions
NASA Astrophysics Data System (ADS)
Weiss, W. J.; Wang, L.; Hoffman, K.; West, D.; Mehta, A. V.; Lee, C.
2017-12-01
Despite the strong influence of watershed conditions on source water quality, most water utilities and water resource agencies do not currently have the capability to monitor watershed sources of contamination with great temporal or spatial detail. Typically, knowledge of source water quality is limited to periodic grab sampling; automated monitoring of a limited number of parameters at a few select locations; and/or monitoring relevant constituents at a treatment plant intake. While important, such observations are not sufficient to inform proactive watershed or source water management at a monthly or seasonal scale. Satellite remote sensing data on the other hand can provide a snapshot of an entire watershed at regular, sub-monthly intervals, helping analysts characterize watershed conditions and identify trends that could signal changes in source water quality. Accordingly, the authors are investigating correlations between satellite remote sensing observations of watersheds and source water quality, at a variety of spatial and temporal scales and lags. While correlations between remote sensing observations and direct in situ measurements of water quality have been well described in the literature, there are few studies that link remote sensing observations across a watershed with near-term predictions of water quality. In this presentation, the authors will describe results of statistical analyses and discuss how these results are being used to inform development of a desktop decision support tool to support predictive application of remote sensing data. Predictor variables under evaluation include parameters that describe vegetative conditions; parameters that describe climate/weather conditions; and non-remote sensing, in situ measurements. Water quality parameters under investigation include nitrogen, phosphorus, organic carbon, chlorophyll-a, and turbidity.
Urbanization in Pearl River Delta area in past 20 years: remote sensing of impact on water quality
NASA Astrophysics Data System (ADS)
Wang, Yunpeng; Fan, Fenglei; Zhang, Jinqu; Xia, Hao; Ye, Chun
2004-11-01
The Pearl River Delta of Guangdong province in China is one of the world"s largest growths in urbanization for the past 20 years. The objective of this research is to explore the relationship between urbanization and water quality in this area. Present and past remote sensing data including MSS< TM/ETM and ASTER are used to research the urbanization and its impact on water quality. Land use and water quality information are extracted from remote sensing data. Data of population, industrial and agricultural productivity indices are integrated with the thematic maps derived from remote sensing data by GIS method. Spatial analysis methods are applied on these data and the results indicate that population, waste water both from household and industrial and chemical fertilizer consumptions are main controls of the regional water quality and environment.
Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser
NASA Astrophysics Data System (ADS)
Sano, Yuji; Kimura, Motohiko; Mukai, Naruhiko; Yoda, Masaki; Obata, Minoru; Ogisu, Tatsuki
2000-02-01
The authors have developed a new process of laser-induced shock compression to introduce a residual compressive stress on material surface, which is effective for prevention of stress corrosion cracking (SCC) and enhancement of fatigue strength of metal materials. The process developed is unique and beneficial. It requires no pre-conditioning for the surface, whereas the conventional process requires that the so-called sacrificial layer is made to protect the surface from damage. The new process can be freely applied to water- immersed components, since it uses water-penetrable green light of a frequency-doubled Nd:YAG laser. The process developed has the potential to open up new high-power laser applications in manufacturing and maintenance technologies. The laser-induced shock compression process (LSP) can be used to improve a residual stress field from tensile to compressive. In order to understand the physics and optimize the process, the propagation of a shock wave generated by the impulse of laser irradiation and the dynamic response of the material were analyzed by time-dependent elasto-plastic calculations with a finite element program using laser-induced plasma pressure as an external load. The analysis shows that a permanent strain and a residual compressive stress remain after the passage of the shock wave with amplitude exceeding the yield strength of the material. A practical system materializing the LSP was designed, manufactured, and tested to confirm the applicability to core components of light water reactors (LWRs). The system accesses the target component and remotely irradiates laser pulses to the heat affected zone (HAZ) along weld lines. Various functional tests were conducted using a full-scale mockup facility, in which remote maintenance work in a reactor vessel could be simulated. The results showed that the system remotely accessed the target weld lines and successfully introduced a residual compressive stress. After sufficient training for operational personnel, the system was applied to the core shroud of an existing nuclear power plant.
Development of flight experiments for remote measurement of pollution
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr.; Kopia, L. P.
1973-01-01
The status as of February 1973 of several NASA-sponsored development projects is reported concerning flight experiments for remote measurement of pollution. Eight passive multispectral instruments for remotely sensing air and water pollutants are described, as well as two active (laser radar) measuring techniques. These techniques are expected to add some new dimensions to the remote sensing of water quality, oceanographic parameters, and earth resources. Multiple applications in these fields are generally possible. Successful completion of the flight demonstration tests and comparisons with simultaneously obtained surface truth measurements may establish these techniques as valid water quality monitoring tools.
Borehole sounding device with sealed depth and water level sensors
Skalski, Joseph C.; Henke, Michael D.
2005-08-02
A borehole device having proximal and distal ends comprises an enclosure at the proximal end for accepting an aircraft cable containing a plurality of insulated conductors from a remote position. A water sensing enclosure is sealingly attached to the enclosure and contains means for detecting water, and sending a signal on the cable to the remote position indicating water has been detected. A bottom sensing enclosure is sealingly attached to the water sensing enclosure for determining when the borehole device encounters borehole bottom and sends a signal on the cable to the remote position indicating that borehole bottom has been encountered.
Applying narrowband remote-sensing reflectance models to wideband data.
Lee, Zhongping
2009-06-10
Remote sensing of coastal and inland waters requires sensors to have a high spatial resolution to cover the spatial variation of biogeochemical properties in fine scales. High spatial-resolution sensors, however, are usually equipped with spectral bands that are wide in bandwidth (50 nm or wider). In this study, based on numerical simulations of hyperspectral remote-sensing reflectance of optically-deep waters, and using Landsat band specifics as an example, the impact of a wide spectral channel on remote sensing is analyzed. It is found that simple adoption of a narrowband model may result in >20% underestimation in calculated remote-sensing reflectance, and inversely may result in >20% overestimation in inverted absorption coefficients even under perfect conditions, although smaller (approximately 5%) uncertainties are found for higher absorbing waters. These results provide a cautious note, but also a justification for turbid coastal waters, on applying narrowband models to wideband data.
Chen, Bei-Bei; Gong, Hui-Li; Li, Xiao-Juan; Lei, Kun-Chao; Lin, Zhu; Wang, Yan-Bing
2013-08-01
The excessive mining for underground water is the main reason inducing the land subsidence in Beijing, while, increasing of load brought by the urban construction aggravate the local land subsidence in a certain degree. As an international metropolis, the problems of land subsidence that caused by urban construction are becoming increasingly highlights, so revealing the relationship between regional load increase and the response of land subsidence also becomes one of the key problems in the land subsidence research field. In order to analyze the relationship between the load changes in construction and the land subsidence quantitatively, the present study selected the TM remote sensing image covering Beijing plain and used Erdas Modeler tool to invert the index based on building site (IBI), acquired the spatial and temporal change information in research area further; Based on results monitored by PS-InSAR (permanent scatterer interferometry) and IBI index method, and combined with the GIS spatial analysis method in the view of pixels in different scales, this paper analyzes the correlation between typical area load change and land subsidence, The conclusions show that there is a positive correlation between the density of load and the homogeneity of subsidence, especially in area which has a high sedimentation rate. Owing to such characteristics as the complexity and hysteretic nature of soil and geological structure, it is not obvious that the land subsidence caused by the increase of load in a short period. But with the increasing of local land load made by high density buildings and additional settlement of each monomer building superposed with each other, regional land subsidence is still a question that cannot be ignored and needs long-term systematic research and discussion.
Water Column Correction for Coral Reef Studies by Remote Sensing
Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton
2014-01-01
Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941
Water column correction for coral reef studies by remote sensing.
Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton
2014-09-11
Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.
Multisensor system for tunnel inspection
NASA Astrophysics Data System (ADS)
Idoux, Maurice
2005-01-01
The system is aimed at assisting inspection and monitoring of the degradation of tunnels in order to minimize maintenance and repair time. ATLAS 70 is a complete sensors/software package which enables thorough diagnosis of tunnel wall conditions. The data collected locally are stored on a computer hard disk for subsequent analysis in a remote location via elaborate dedicated software. The sensors and local computer are loaded onto a rail and/or road vehicle of specific design, i.e. with even travelling speed of 2 to 5 km/h. Originally, the system has been developed for the Paris Underground Company and has since been applied to rail and road tunnels, large town sewage systems, clean water underground aqueducts and electric cable tunnels.
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.; Boy, J. P.
2003-01-01
With the advances of measurements, modern space geodesy has become a new type of remote sensing for the Earth dynamics, especially for mass transports in the geophysical fluids on large spatial scales. A case in point is the space gravity mission GRACE (Gravity Recovery And Climate Experiment) which has been in orbit collecting gravity data since early 2002. The data promise to be able to detect changes of water mass equivalent to sub-cm thickness on spatial scale of several hundred km every month or so. China s Three-Gorge Reservoir has already started the process of water impoundment in phases. By 2009,40 km3 of water will be stored behind one of the world s highest dams and spanning a section of middle Yangtze River about 600 km in length. For the GRACE observations, the Three-Gorge Reservoir would represent a geophysical controlled experiment , one that offers a unique opportunity to do detailed geophysical studies. -- Assuming a complete documentation of the water level and history of the water impoundment process and aided with a continual monitoring of the lithospheric loading response (such as in area gravity and deformation), one has at hand basically a classical forwardinverse modeling problem of surface loading, where the input and certain output are known. The invisible portion of the impounded water, i.e. underground storage, poses either added values as an observable or a complication as an unknown to be modeled. Wang (2000) has studied the possible loading effects on a local scale; we here aim for larger spatial scales upwards from several hundred km, with emphasis on the time-variable gravity signals that can be detected by GRACE and follow-on missions. Results using the Green s function approach on the PREM elastic Earth model indicate the geoid height variations reaching several millimeters on wavelengths of about a thousand kilometers. The corresponding vertical deformations have amplitude of a few centimeters. In terms of long-wavelength spherical harmonics, the induced geoid height variations are very close to the accuracy of GRACE- recoverable gravity field, while the low-degree (2 to 5) harmonics should be detectable. With a large regional time-variable gravity signal, the Three-Gorge experiment can serve as a useful calibration/verification for GRACE (including the elastic loading effects), and future gravity missions (especially for visco-elastic yielding as well as underground water variations).
2010-12-06
raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with...results compared with those from remote - sensing models and from direct measurements. The agreement from different determinations suggests that...reasonable results for remote sensing reflectance of clear blue water to turbid brown water are obtainable from above-surface measurements, even under conditions of high waves.
NASA Astrophysics Data System (ADS)
Morrison, R. E.; Robinson, S. H.
A continuous wave Doppler radar system has been designed which is portable, easily deployed, and remotely controlled. The heart of this system is a DSP/control board using Analog Devices ADSP-21020 40-bit floating point digital signal processor (DSP) microprocessor. Two 18-bit audio A/D converters provide digital input to the DSP/controller board for near real time target detection. Program memory for the DSP is dual ported with an Intel 87C51 microcontroller allowing DSP code to be up-loaded or down-loaded from a central controlling computer. The 87C51 provides overall system control for the remote radar and includes a time-of-day/day-of-year real time clock, system identification (ID) switches, and input/output (I/O) expansion by an Intel 82C55 I/O expander.
Ground-Based Remote Sensing of Water-Stressed Crops: Thermal and Multispectral Imaging
USDA-ARS?s Scientific Manuscript database
Ground-based methods of remote sensing can be used as ground-truthing for satellite-based remote sensing, and in some cases may be a more affordable means of obtaining such data. Plant canopy temperature has been used to indicate and quantify plant water stress. A field research study was conducted ...
Bernard R. Parresol; John I. Blake; Andrew J. Thompson
2012-01-01
In the southeastern USA, land use history, forest management and natural geomorphic features have created heterogeneous fuel loads. This apparent temporal and spatial variation in fuel loads make it difficult to reliably assess potential fire behavior from remotely sensed canopy variables to determine risk and to prescribe treatments. We examined this variation by...
Design of an Ultra-High Efficiency GaN High-Power Amplifier for SAR Remote Sensing
NASA Technical Reports Server (NTRS)
Thrivikraman, Tushar; Hoffman, James
2013-01-01
This work describes the development of a high-power amplifier for use with a remote sensing SAR system. The amplifier is intended to meet the requirements for the Sweep-SAR technique for use in the proposed DESDynI SAR instrument. In order to optimize the amplifier design, active load-pull technique is employed to provide harmonic tuning to provide efficiency improvements. In addition, some of the techniques to overcome the challenges of load-pulling high power devices are presented. The design amplifier was measured to have 49 dBm of output power with 75% PAE, which is suitable to meet the proposed system requirements.
Remote actuated cryocooler for superconducting generator and method of assembling the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stautner, Ernst Wolfgang; Haran, Kiruba Sivasubramaniam; Fair, Ruben Jeevanasan
2017-02-14
In one embodiment, a cryocooler assembly for cooling a heat load is provided. The cryocooler assembly includes a vacuum vessel surrounding the heat load and a cryocooler at least partially inserted into the vacuum vessel, the cryocooler including a coldhead. The assembly further includes an actuator coupled to the cryocooler. The actuator is configured to translate the cryocooler coldhead into thermal engagement with the heat load and to maintain constant pressure of the coldhead against the heat load to facilitate maintaining thermal engagement with the heat load as the heat load shrinks during a cool down process.
Quantitative evaluation of water quality in the coastal zone by remote sensing
NASA Technical Reports Server (NTRS)
James, W. P.
1971-01-01
Remote sensing as a tool in a waste management program is discussed. By monitoring both the pollution sources and the environmental quality, the interaction between the components of the exturaine system was observed. The need for in situ sampling is reduced with the development of improved calibrated, multichannel sensors. Remote sensing is used for: (1) pollution source determination, (2) mapping the influence zone of the waste source on water quality parameters, and (3) estimating the magnitude of the water quality parameters. Diffusion coefficients and circulation patterns can also be determined by remote sensing, along with subtle changes in vegetative patterns and density.
This article summarizes the use of remote sensing techniques and technology to monitor coastal and estuarine waters. These waters are rich in mineral particles stirred up from the seabed by tides and waves and dissolved organic matter transported by rivers. The majority of the li...
Remote Sensing of Suspended Sediments and Shallow Coastal Waters
NASA Technical Reports Server (NTRS)
Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.
2002-01-01
Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
Direct and indirect atmospheric deposition of PCBs to the Delaware River watershed.
Totten, Lisa A; Panangadan, Maya; Eisenreich, Steven J; Cavallo, Gregory J; Fikslin, Thomas J
2006-04-01
Atmospheric deposition can be an important source of PCBs to aquatic ecosystems. To develop the total maximum daily load (TMDL) for polychlorinated biphenyls (PCBs) for the tidal Delaware River (water-quality Zones 2-5), estimates of the loading of PCBs to the river from atmospheric deposition were generated from seven air-monitoring sites along the river. This paper presents the atmospheric PCB data from these sites, estimates direct atmospheric deposition fluxes, and assesses the importance of atmospheric deposition relative to other sources of PCBs to the river. Also, the relationship between indirect atmospheric deposition and PCB loads from minor tributaries to the Delaware River is discussed. Data from these sites revealed high atmospheric PCB concentrations in the Philadelphia/Camden urban area and lower regional background concentrations in the more remote areas. Wet, dry particle, and gaseous absorption deposition are estimated to contribute about 0.6, 1.8, and 6.5 kg year-(-1) sigmaPCBs to the River, respectively, exceeding the TMDL of 0.139 kg year(-1) by more than an order of magnitude. Penta-PCB watershed fluxes were obtained by dividing the tributary loads by the watershed area. The lowest of these watershed fluxes are less than approximately 1 ng m(-2) day(-1) for penta-PCB and probably indicates pristine watersheds in which PCB loads are dominated by atmospheric deposition. In these watersheds, the pass-through efficiency of PCBs is estimated to be on the order of 1%.
NASA Technical Reports Server (NTRS)
Sheives, T. C.
1974-01-01
Remote identification and measurement of subsurface water turbidity and oil on water was accomplished with analytical models which describe the backscatter from smooth surface turbid water, including single scatter and multiple scatter effects. Lidar measurements from natural waterways are also presented and compared with ground observations of several physical water quality parameters.
A feasibility study of using remotely sensed data for water resource models
NASA Technical Reports Server (NTRS)
Ruff, J. F.
1973-01-01
Remotely sensed data were collected to demonstrate the feasibility of applying the results to water resource problems. Photographs of the Wolf Creek watershed in southwestern Colorado were collected over a one year period. Cloud top temperatures were measured using a radiometer. Thermal imagery of the Wolf Creek Pass area was obtained during one pre-dawn flight. Remote sensing studies of water resource problems for user agencies were also conducted. The results indicated that: (1) remote sensing techniques could be used to assist in the solution of water resource problems; (2) photogrammetric determination of snow depths is feasible; (3) changes in turbidity or suspended material concentration can be observed; and (4) surface turbulence can be related to bed scour; and (5) thermal effluents into rivers can be monitored.
NASA Astrophysics Data System (ADS)
Barker, J. Burdette
Spatially informed irrigation management may improve the optimal use of water resources. Sub-field scale water balance modeling and measurement were studied in the context of irrigation management. A spatial remote-sensing-based evapotranspiration and soil water balance model was modified and validated for use in real-time irrigation management. The modeled ET compared well with eddy covariance data from eastern Nebraska. Placement and quantity of sub-field scale soil water content measurement locations was also studied. Variance reduction factor and temporal stability were used to analyze soil water content data from an eastern Nebraska field. No consistent predictor of soil water temporal stability patterns was identified. At least three monitoring locations were needed per irrigation management zone to adequately quantify the mean soil water content. The remote-sensing-based water balance model was used to manage irrigation in a field experiment. The research included an eastern Nebraska field in 2015 and 2016 and a western Nebraska field in 2016 for a total of 210 plot-years. The response of maize and soybean to irrigation using variations of the model were compared with responses from treatments using soil water content measurement and a rainfed treatment. The remote-sensing-based treatment prescribed more irrigation than the other treatments in all cases. Excessive modeled soil evaporation and insufficient drainage times were suspected causes of the model drift. Modifying evaporation and drainage reduced modeled soil water depletion error. None of the included response variables were significantly different between treatments in western Nebraska. In eastern Nebraska, treatment differences for maize and soybean included evapotranspiration and a combined variable including evapotranspiration and deep percolation. Both variables were greatest for the remote-sensing model when differences were found to be statistically significant. Differences in maize yield in 2015 were attributed to random error. Soybean yield was lowest for the remote-sensing-based treatment and greatest for rainfed, possibly because of overwatering and lodging. The model performed well considering that it did not include soil water content measurements during the season. Future work should improve the soil evaporation and drainage formulations, because of excessive precipitation and include aerial remote sensing imagery and soil water content measurement as model inputs.
FPGA for Power Control of MSL Avionics
NASA Technical Reports Server (NTRS)
Wang, Duo; Burke, Gary R.
2011-01-01
A PLGT FPGA (Field Programmable Gate Array) is included in the LCC (Load Control Card), GID (Guidance Interface & Drivers), TMC (Telemetry Multiplexer Card), and PFC (Pyro Firing Card) boards of the Mars Science Laboratory (MSL) spacecraft. (PLGT stands for PFC, LCC, GID, and TMC.) It provides the interface between the backside bus and the power drivers on these boards. The LCC drives power switches to switch power loads, and also relays. The GID drives the thrusters and latch valves, as well as having the star-tracker and Sun-sensor interface. The PFC drives pyros, and the TMC receives digital and analog telemetry. The FPGA is implemented both in Xilinx (Spartan 3- 400) and in Actel (RTSX72SU, ASX72S). The Xilinx Spartan 3 part is used for the breadboard, the Actel ASX part is used for the EM (Engineer Module), and the pin-compatible, radiation-hardened RTSX part is used for final EM and flight. The MSL spacecraft uses a FC (Flight Computer) to control power loads, relays, thrusters, latch valves, Sun-sensor, and star-tracker, and to read telemetry such as temperature. Commands are sent over a 1553 bus to the MREU (Multi-Mission System Architecture Platform Remote Engineering Unit). The MREU resends over a remote serial command bus c-bus to the LCC, GID TMC, and PFC. The MREU also sends out telemetry addresses via a remote serial telemetry address bus to the LCC, GID, TMC, and PFC, and the status is returned over the remote serial telemetry data bus.
Remote sensing reflectance simulation of coastal optical complex water in the East China Sea
NASA Astrophysics Data System (ADS)
He, Shuo; Lou, Xiulin; Zhang, Huaguo; Zheng, Gang
2018-02-01
In this work, remote sensing reflectance (Rrs) spectra of the Zhejiang coastal water in the East China Sea (ECS) were simulated by using the Hydrolight software with field data as input parameters. The seawater along the Zhejiang coast is typical Case II water with complex optical properties. A field observation was conducted in the Zhejiang coastal region in late May of 2016, and the concentration of ocean color constituents (pigment, SPM and CDOM), IOPs (absorption and backscattering coefficients) and Rrs were measured at 24 stations of 3 sections covering the turbid to clear inshore coastal waters. Referring to these ocean color field data, an ocean color model suitable for the Zhejiang coastal water was setup and applied in the Hydrolight. A set of 11 remote sensing reflectance spectra above water surface were modeled and calculated. Then, the simulated spectra were compared with the filed measurements. Finally, the spectral shape and characteristics of the remote sensing reflectance spectra were analyzed and discussed.
Remote measurement of pollution
NASA Technical Reports Server (NTRS)
1971-01-01
A summary of the major conclusions and recommendations developed by the panels on gaseous air pollution, water pollution, and particulate air pollution is presented. It becomes evident that many of the trace gases are amenable to remote sensing; that certain water pollutants can be measured by remote techniques, but their number is limited; and that a similar approach to the remote measurement of specific particulate pollutants will follow only after understanding of their physical, chemical, and radiative properties is improved. It is also clear that remote sensing can provide essential information in all three categories that can not be obtained by any other means.
Defne, Zafer; Ganju, Neil K.
2015-01-01
Estuarine residence time is a major driver of eutrophication and water quality. Barnegat Bay-Little Egg Harbor (BB-LEH), New Jersey, is a lagoonal back-barrier estuary that is subject to anthropogenic pressures including nutrient loading, eutrophication, and subsequent declines in water quality. A combination of hydrodynamic and particle tracking modeling was used to identify the mechanisms controlling flushing, residence time, and spatial variability of particle retention. The models demonstrated a pronounced northward subtidal flow from Little Egg Inlet in the south to Pt. Pleasant Canal in the north due to frictional effects in the inlets, leading to better flushing of the southern half of the estuary and particle retention in the northern estuary. Mean residence time for BB-LEH was 13 days but spatial variability was between ∼0 and 30 days depending on the initial particle location. Mean residence time with tidal forcing alone was 24 days (spatial variability between ∼0 and 50 days); the tides were relatively inefficient in flushing the northern end of the Bay. Scenarios with successive exclusion of physical processes from the models revealed that meteorological and remote offshore forcing were stronger drivers of exchange than riverine inflow. Investigations of water quality and eutrophication should take into account spatial variability in hydrodynamics and residence time in order to better quantify the roles of nutrient loading, production, and flushing.
NASA Technical Reports Server (NTRS)
Fox, D. A.; Fullemann, J. S.
1980-01-01
Compact, solid state, electric-power controller switches power on and off at remote load, limits current drawn by load, and shuts off (with 2- to 3- second trip time) in case of short circuit. Lightweight efficient hybrid unit operates at 28 volts dc and at maximum currents of from 3 to 2 amperes.
Impact of remote sensing upon the planning, management, and development of water resources
NASA Technical Reports Server (NTRS)
Loats, H. L.; Fowler, T. R.; Frech, S. L.
1974-01-01
A survey of the principal water resource users was conducted to determine the impact of new remote data streams on hydrologic computer models. The analysis of the responses and direct contact demonstrated that: (1) the majority of water resource effort of the type suitable to remote sensing inputs is conducted by major federal water resources agencies or through federally stimulated research, (2) the federal government develops most of the hydrologic models used in this effort; and (3) federal computer power is extensive. The computers, computer power, and hydrologic models in current use were determined.
Assessment of the role of remote sensing in the study of inland and coastal waters
NASA Technical Reports Server (NTRS)
Curfman, H. J.; Oberholtzer, J. D.; Schertler, R. J.
1980-01-01
Several problems within Great Lakes, coastal, and continental shelf water were selected and organized under the topical headings of Productivity, Sedimentation, Water Dynamics, Eutrophication, and Hazardous Substances. The measurements required in the study of each of the problems were identified. An assessment was made of the present capability and the potential of remote sensing to make these measurements. The relevant remote-sensing technology for each of these classifications was discussed and needed advancements indicated.
A High Power Solid State Circuit Breaker for Military Hybrid Electric Vehicle Applications
2012-08-01
the SSCB to isolate a fault, breaker opening is latched and can be reset to reclose the breaker via remote logic input. SSCB state and health...rated load current (125 A). Figure 10 shows that after the SSCB detects a fault and opens, it can also be repeatedly reclosed remotely to attempt to
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
NASA Technical Reports Server (NTRS)
Gasiewski, Albin J.; Kunkee, D. B.; Jackson, D. M.; Blackwell, W.; Sharpe, S.
1994-01-01
Progress by the Georgia Institute of Technology's Laboratory for Radio-science and Remote Sensing in developing techniques for passive microwave retrieval of water vapor profiles and cloud and precipitation parameters using millimeter and submillimeter wavelength channels is reviewed. Channels of particular interest are in the tropospheric transmission windows at 90, 166, 220, 340, and 410 GHz and centered around the water vapor lines at 183 and 325 GHz. Collectively, these channels have potential application in high-resolution precipitation mapping (e.g., from geosynchronous orbit), remote sensing of cloud and precipitation parameters, including cirrus ice mass, and improved retrieval of water vapor profiles. During the period from January 1, 1994 through June 30, 1994 research activities focussed on calibrating and interpreting data from the Millimeter-Wave Imaging Radiometer (MIR). The MIR was deployed on the NASA ER-2 during the Convective Atmospheric Moisture Experiment (CAMEX, September-October 1993) to obtain the first submillimeter-wave tropospheric imagery of convective precipitations. A 325-GHz radiometer consisted of a submillimeter-wave DSB receiver with three IF channels at +/- 1, 3, and 8.5 GHz, and approximately 14 dB DSB noise figure was successfully operated during these experiments. Activities supported under this grant include a study of the impact of local oscillator reflections from the MIR calibration loads, the development of optimal gain and offset filters for radiometric calibration, and the modeling and interpretation of the MIR 325-GHz data over both clear and cloudy atmospheres. In addition, polarimetric radiometer measurements and modeling for ocean surface and atmospheric cloud-ice studies_were supported.
Hyperspectral remote sensing for the assessment of inland water quality can be used in enhancing the capabilities of resource managers to monitor water bodies in a timely and cost-effective manner. The key factor in assessing the accuracy of water quality assessments based on re...
Remotely operated submersible underwater suction apparatus
Kristan, Louis L.
1990-01-01
A completely submersible, remotely operated underwater suction device for collection of irradiated materials in a nuclear pool is disclosed. The device includes a pump means for pumping water through the device, a filter means for capturing irradiated debris, remotely operated releasable connector means, a collection means and a means for remotely maneuvering the collection means. The components of the suction device may be changed and replaced underwater to take advantage of the excellent radiation shielding ability of water to thereby minimize exposure of personnel to radiation.
How Can Remote Sensing Be Used for Water Quality Monitoring?
“How can remote sensing address information needs and gaps in water quality and quantity management?” was a workshop convened during the biennial National Water Quality Monitoring Conference 2014, held in Cincinnati, OH. The focus of this workshop was to provide an o...
Fatigue Crack Closure Analysis Using Digital Image Correlation
NASA Technical Reports Server (NTRS)
Leser, William P.; Newman, John A.; Johnston, William M.
2010-01-01
Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.
Adding Remote Sensing Data Products to the Nutrient Management Decision Support Toolbox
NASA Technical Reports Server (NTRS)
Lehrter, John; Schaeffer, Blake; Hagy, Jim; Spiering, Bruce; Blonski, Slawek; Underwood, Lauren; Ellis, Chris
2011-01-01
Some of the primary issues that manifest from nutrient enrichment and eutrophication (Figure 1) may be observed from satellites. For example, remotely sensed estimates of chlorophyll a (chla), total suspended solids (TSS), and light attenuation (Kd) or water clarity, which are often associated with elevated nutrient inputs, are data products collected daily and globally for coastal systems from satellites such as NASA s MODIS (Figure 2). The objective of this project is to inform water quality decision making activities using remotely sensed water quality data. In particular, we seek to inform the development of numeric nutrient criteria. In this poster we demonstrate an approach for developing nutrient criteria based on remotely sensed chla.
Lee, Casey J.; Murphy, Jennifer C.; Crawford, Charles G.; Deacon, Jeffrey R.
2017-10-24
The U.S. Geological Survey publishes information on concentrations and loads of water-quality constituents at 111 sites across the United States as part of the U.S. Geological Survey National Water Quality Network (NWQN). This report details historical and updated methods for computing water-quality loads at NWQN sites. The primary updates to historical load estimation methods include (1) an adaptation to methods for computing loads to the Gulf of Mexico; (2) the inclusion of loads computed using the Weighted Regressions on Time, Discharge, and Season (WRTDS) method; and (3) the inclusion of loads computed using continuous water-quality data. Loads computed using WRTDS and continuous water-quality data are provided along with those computed using historical methods. Various aspects of method updates are evaluated in this report to help users of water-quality loading data determine which estimation methods best suit their particular application.
Olympic Village thermal energy storage experiment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, R.A.; Saylor, C.M.
Four thermal energy storage (TES) systems were operated in identical dormitory-style buildings of the Raybrook Correctional Facility, formerly the housing for the athletes at the 1980 Winter Olympic Games in Lake Placid, New York. The objectives of the project were to assess the ability of these TES systems to be controlled so as to modify load profiles favorably, and to assess the ability to maintain comfortable indoor conditions under those control strategies. Accordingly, the test was designed to evaluate the effect on load profiles of appropriate control algorithms for the TES systems, collect comprehensive TES operating data, and identify neededmore » research and development to improve the effectiveness of the TES systems. The four similar dormitory buildings were used to compare electric slab heating on grade, ceramic brick storage heating, pressurized-hot-water heating, and heat pumps with hot-water storage. In a fifth similar building, a conventional (non-TES) forced air electric resistance heat system was used. The four buildings with TES systems also had electric resistance heating for backup. A remote computer-based monitoring and control system was used to implement the control algorithms and to collect data from the site. For a 25% TES saturation of electric heat customers on the NMPC system, production costs were reduced by up to $2,235,000 for the New York Power Pool. The winter peak load was reduced by up to 223 MW. The control schedules developed were successful in reducing on-peak energy consumption while maintaining indoor conditions as close to the comfort level as possible considering the test environment.« less
Riparian vegetation controls on the hydraulic geometry of streams
NASA Astrophysics Data System (ADS)
McBride, M.
2010-12-01
A synthesis of field measurements, remote observations, and numerical modeling techniques highlights the significance of riparian vegetation in determining the geometry of streams and impacting sediment transport dynamics in temperate, Piedmont regions. Specifically, forested and grassy riparian vegetation establish streams with significantly different widths and with different timescales for attaining a state of dynamic equilibrium. The interactions between riparian vegetation, channel form, and channel dynamics are scale dependent. Scale dependency arises because of variations in ratios of vegetation length scales and geomorphic scales (e.g., channel width and depth). Stream reaches with grassy vegetation experience more frequent overbank discharges, migrate more quickly, and exhibit a more classic dynamic equilibrium than forested reaches. These phenomena are relevant to current watershed management efforts that aim to reduce sediment and nutrient loads to receiving water bodies, such as the Chesapeake Bay. The reforestation of riparian buffers is a common restoration technique that intends to improve water quality, temperature regimes, and in-stream physical habitat. Passive reforestation of riparian areas along a tributary to Sleepers River in Danville, VT, USA caused an increase in channel width and cross-sectional area over a 40-year period. From a comparison of historical records and current cross-sectional dimensions, the channel widening resulted in the mobilization of approximately 85 kg/ha/yr of floodplain sediments. Long-term monitoring of suspended sediments in an adjacent watershed indicates that this sediment source may account for roughly 40 percent of the total suspended sediment load. In some instances, increased sediment loads associated with channel widening may be an unforeseen consequence that compromises riparian restoration efforts.
NASA Technical Reports Server (NTRS)
1980-01-01
The procedures and techniques used in NASA's aerospace technology transfer program are reviewed for consideration in establishing priorities and bases for joint action by technicians and users of remotely sensed data in France. Particular emphasis is given to remote sensing in agriculture, forestry, water resources, environment management, and urban research.
ERIC Educational Resources Information Center
Broadbent, Nicola J.; Squire, Larry R.; Clark, Robert E.
2006-01-01
Conventional lesion methods have shown that damage to the rodent hippocampus can impair previously acquired spatial memory in tasks such as the water maze. In contrast, work with reversible lesion methods using a different spatial task has found remote memory to be spared. To determine whether the finding of spared remote spatial memory depends on…
NASA Astrophysics Data System (ADS)
Mouw, Colleen; Greb, Steven
2012-09-01
Workshop for Remote Sensing of Coastal and Inland Waters;Madison, Wisconsin, 20-22 June 2012 Coastal and inland water bodies, which have great value for recreation, food supply, commerce, transportation, and human health, have been experiencing external pressure from direct human activities and climate change. Given their societal and economic value, understanding issues of water quality, water quantity, and the impact of environmental change on the ecological and biogeochemical functioning of these water bodies is of interest to a broad range of communities. Remote sensing offers one of the most spatially and temporally comprehensive tools for observing these waters. While there has been some success with remotely observing these water bodies, many challenges still remain, including algorithm performance, atmospheric correction, the relationships between optical properties and biogeochemical parameters, sufficient spatial and spectral resolution, and a lack of uncertainty estimates over the wide range of environmental conditions encountered across these coastal and inland water bodies.
Features of Changing Microwave Radiation from Loaded Rock in Elastic Phase
NASA Astrophysics Data System (ADS)
Wu, Lixin; Mao, Wenfei; Huang, Jianwei; Liu, Shanjun; Xu, Zhongying
2017-04-01
Since the discovery of satellite infrared anomaly occurred before some earthquake by Russian geo-scientists in 1980's, both satellite remote sensing on seismic activities and experimental infrared detection on rock physics in process of rock loading were undertaken in many counties including China, Japan, Europe nations and United States. Infrared imager and spectrum instruments were applied to detect the changed infrared radiation from loaded rock to fracturing, which lead to the development of Remote Sensing Rock Mechanics. However, the change of microwave radiation from loaded rock was not so much studied, even if abnormal changes of microwave brightness temperature (MBT) preceding some large earthquakes were observed by satellite sensors such as AMSR-E on boarded Aqua. To monitor rock hazards, seismic activities, and to make earthquake precautions by via of microwave detection or microwave remote sensing, it is fairly demanded to explore the laws of microwave radiation variation with changed stress and to uncover the rock physics. We developed a large scale rock loading system with capability of 500 tons and 10 tons of load, respectively, at two horizontal loading head, and designed a group of microwave detectors in C, K, and Ka bands. To investigate the changed microwave radiation from loaded granite and sandstone in its elastics deformation phase, the first horizontal stress was circularly applied on rock samples of size 10×30×60cm3 at a constant second horizontal stress, and the changes microwave radiation was detected by the detectors hanged overhead the rock sample. The experiments were conducted outdoor at nighttime to keep off environmental radiation and to simulate the satellite observation conditions in background of cool sky. The first horizontal stress and the microwave radiations were synchronically detected and recorded. After reducing the random noise of detected microwave signals with wavelet method, we found the MBT increase with stress rising and decrease with stress dropping, and the correlation factor (R2) of MBT-stress reached 0.88. The experiments and results revealed an important rock physical phenomenon of rock dielectric property changing with stress, which leads to detectable MBT variation.
The decomposition of remote sensing reflectance (RSR) spectra into absorption, scattering and backscattering coefficients, and scattering phase function is an important issue for estimating water quality (WQ) components. For Case 1 waters RSR decomposition can be easily accompli...
The applied technologies to access clean water for remote communities
NASA Astrophysics Data System (ADS)
Rabindra, I. B.
2018-01-01
A lot of research is done to overcome the remote communities to access clean water, yet very little is utilized and implemented by the community. Various reasons can probably be made for, which is the application of research results is assessed less practical. The aims of this paper is seeking a practical approach, how to establish criteria for the design can be easier applied, at the proper locations, the simple construction, effectively producing a volume and quality of clean water designation. The methods used in this paper is a technological model assessment of treatment/filtering clean water produced a variety of previous research, to establish a model of appropriate technology for remote communities. Various research results collected from the study of literature, while the identification of opportunities and threats to its application is done using a SWOT analysis. This article discussion is looking for alternative models of clean water filtration technology from the previous research results, to be selected as appropriate technology, easily applied and bring of many benefits to the remote communities. The conclusions resulting from the discussion in this paper, expected to be used as the basic criteria of design model of clean water filtration technologies that can be accepted and applied effectively by the remote communities.
Visible-infrared remote-sensing model and applications for ocean waters. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lee, Zhongping
1994-01-01
Remote sensing has become important in the ocean sciences, especially for research involving large spatial scales. To estimate the in-water constituents through remote sensing, whether carried out by satellite or airplane, the signal emitted from beneath the sea surface, the so called water-leaving radiance (L(w)), is of prime importance. The magnitude of L(w) depends on two terms: one is the intensity of the solar input, and the other is the reflectance of the in-water constituents. The ratio of the water-leaving radiance to the downwelling irradiance (E(d)) above the sear surface (remote-sensing reflectance, R(sub rs)) is independent of the intensity of the irradiance input, and is largely a function of the optical properties of the in-water constituents. In this work, a model is developed to interpret r(sub rs) for ocean water in the visible-infrared range. In addition to terms for the radiance scattered from molecules and particles, the model includes terms that describe contributions from bottom reflectance, fluorescence of gelbstoff or colored dissolved organic matter (CDOM), and water Raman scattering. By using this model, the measured R(sub rs) of waters from the West Florida Shelf to the Mississippi River plume, which covered a (concentration of chlorophyll a) range of 0.07 - 50 mg/cu m, were well interpreted. The average percentage difference (a.p.d.) between the measured and modeled R(sub rs) is 3.4%, and, for the shallow waters, the model-required water depth is within 10% of the chart depth. Simple mathematical simulations for the phytoplankton pigment absorption coefficient (a(sub theta)) are suggested for using the R(sub rs) model. The inverse problem of R(sub rs), which is to analytically derive the in-water constituents from R(sub rs) data alone, can be solved using the a(sub theta) functions without prior knowledge of the in-water optical properties. More importantly, this method avoids problems associated with a need for knowledge of the shape and value of the chlorophyll-specific absorption coefficient. The simulation was tested for a wide range of water types, including waters from Monterey Bay, the West Florida Shelf, and the Mississippi River plume. Using the simulation, the R(sub rs)-derived in-water absorption coefficients were consistent with the values from in-water measurements (r(exp 2) greater than 0.94, slope approximately 1.0). In the remote-sensing applications, a new approach is suggested for the estimation of primary production based on remote sensing. Using this approach, the calculated primary production (PP) values based upon remotely sensed data were very close to the measured values for the euphotic zone (r(exp 2) = 0.95, slope 1.26, and 32% average difference), while traditional, pigment-based PP model provided values only one-third the size of the measured data. This indicates a potential to significantly improve the accuracy of the estimation of primary production based upon remote sensing.
NASA Technical Reports Server (NTRS)
Vermote, Eric F.; Vassiliou, George D.; Kaufman, Yoram J.; Holben, Brent N.
1992-01-01
An inflight absolute calibration method has been adapted and applied to channel 1 of the AVHRR. The approach is based on AVHRR observations in channels 1, 2 and 4. A rigorous cloud screening is performed, based on the homogeneity of the data in channel 1 and 2 and on the temperature in channel 4. In a combined approach, the off-nadir view satellite count in channel 2 is used to detect the aerosol optical thickness and loading and the count of channel 1 is used to calibrate this channel, based on the predictable Rayleigh scattering component. Water vapor data are used, and the channels are intercalibrated using the ratio between channels 1 and 2 over the glint region.
Spatial characterization of acid rain stress in Canadian Shield Lakes
NASA Technical Reports Server (NTRS)
Tanis, F. J.; Marshall, E. M.
1989-01-01
The lake acidification in Northern Ontario was investigated using LANDSAT TM to sense lake volume reflectance and also to provide important vegetation and terrain characteristics. The purpose of this project was to determine the ability of LANDSAT to assess water quality characteristics associated with lake acidification. Results demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis is that seasonal and multi-year changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon present. Seasonal changes in the optical transparency of lakes can potentially provide an indication of the stress due to acid deposition and loading.
NASA Astrophysics Data System (ADS)
Watson, K. A.; Masarik, M. T.; Flores, A. N.
2016-12-01
Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.
NASA Astrophysics Data System (ADS)
Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.
2016-10-01
Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@ter-india.org; Chakraborty, A.
2014-01-15
Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is notmore » present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruff, T.M.
1992-01-01
A prototype mucking machine designed to operate in narrow vein stopes was developed by Foster-Miller, Inc., Waltham, MA, under contract with the U.S. Bureau of Mines. The machine, called a compact loader/trammer, or minimucker, was designed to replace slusher muckers in narrow-vein underground mines. The minimucker is a six-wheel-drive, skid-steered, load-haul-dump machine that loads muck at the front with a novel slide-bucket system and ejects it out the rear so that the machine does not have to be turned around. To correct deficiencies of the tether remote control system, a computer-based, radio remote control was retrofitted to the minimucker. Initialmore » tests indicated a need to assist the operator in guiding the machine in narrow stopes and an automatic guidance system that used ultrasonic ranging sensors and a wall-following algorithm was installed. Additional tests in a simulated test stope showed that these changes improved the operation of the minimucker. The design and functions of the minimucker and its computer-based, remote control system are reviewed, and an ultrasonic, sensor-based guidance system is described.« less
Near real time water quality monitoring of Chivero and Manyame lakes of Zimbabwe
NASA Astrophysics Data System (ADS)
Muchini, Ronald; Gumindoga, Webster; Togarepi, Sydney; Pinias Masarira, Tarirai; Dube, Timothy
2018-05-01
Zimbabwe's water resources are under pressure from both point and non-point sources of pollution hence the need for regular and synoptic assessment. In-situ and laboratory based methods of water quality monitoring are point based and do not provide a synoptic coverage of the lakes. This paper presents novel methods for retrieving water quality parameters in Chivero and Manyame lakes, Zimbabwe, from remotely sensed imagery. Remotely sensed derived water quality parameters are further validated using in-situ data. It also presents an application for automated retrieval of those parameters developed in VB6, as well as a web portal for disseminating the water quality information to relevant stakeholders. The web portal is developed, using Geoserver, open layers and HTML. Results show the spatial variation of water quality and an automated remote sensing and GIS system with a web front end to disseminate water quality information.
NASA Technical Reports Server (NTRS)
Kiefer, R. W. (Principal Investigator)
1979-01-01
Research on the application of remote sensing to problems of water resources was concentrated on sediments and associated nonpoint source pollutants in lakes. Further transfer of the technology of remote sensing and the refinement of equipment and programs for thermal scanning and the digital analysis of images were also addressed.
Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377
Design and implementation of a wireless sensor network-based remote water-level monitoring system.
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).
NASA Technical Reports Server (NTRS)
Burgy, R. H.
1972-01-01
Data relating to hydrologic and water resource systems and subsystems management are reported. Systems models, user application, and remote sensing technology are covered. Parameters governing water resources include evaportranspiration, vegetation, precipitation, streams and estuaries, reservoirs and lakes, and unsaturate and saturated soil zones.
NASA Astrophysics Data System (ADS)
Malbéteau, Y.; Lopez, O.; Houborg, R.; McCabe, M.
2017-12-01
Agriculture places considerable pressure on water resources, with the relationship between water availability and food production being critical for sustaining population growth. Monitoring water resources is particularly important in arid and semi-arid regions, where irrigation can represent up to 80% of the consumptive uses of water. In this context, it is necessary to optimize on-farm irrigation management by adjusting irrigation to crop water requirements throughout the growing season. However, in situ point measurements are not routinely available over extended areas and may not be representative at the field scale. Remote sensing approaches present as a cost-effective technique for mapping and monitoring broad areas. By taking advantage of multi-sensor remote sensing methodologies, such as those provided by MODIS, Landsat, Sentinel and Cubesats, we propose a new method to estimate irrigation input at pivot-scale. Here we explore the development of crop-water use estimates via these remote sensing data and integrate them into a land surface modeling framework, using a farm in Saudi Arabia as a demonstration of what can be achieved at larger scales.
NASA Astrophysics Data System (ADS)
Crawford, T. N.; Schaeffer, B. A.
2016-12-01
Anthropogenic nutrient pollution is a major stressor of aquatic ecosystems around the world. In the United States, states and tribes can adopt numeric water quality values (i.e. criteria) into their water quality management standards to protect aquatic life from eutrophication impacts. However, budget and resource constraints have limited the ability of many states and tribes to collect the water quality monitoring data needed to derive numeric criteria. Over the last few decades, satellite technology has provided water quality measurements on a global scale over long time periods. Water quality managers are finding the data provided by satellite technology useful in managing eutrophication impacts in coastal waters, estuaries, lakes, and reservoirs. In recent years EPA has worked with states and tribes to derive remotely sensed numeric Chl-a criteria for coastal waters with limited field-based data. This approach is now being expanded and used to derive Chl-a criteria in freshwater systems across the United States. This presentation will cover EPA's approach to derive numeric Chl-a criteria using satellite remote sensing, recommendations to improve satellite sensors to expand applications, potential areas of interest, and the challenges of using remote sensing to establish water quality management goals, as well as provide a case in which this approach has been applied.
14 CFR 23.521 - Water load conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for water...
14 CFR 23.521 - Water load conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for water...
14 CFR 23.521 - Water load conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for water...
14 CFR 23.521 - Water load conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for water...
NASA Astrophysics Data System (ADS)
Hunger, Sebastian; Karrasch, Pierre; Wessollek, Christine
2016-10-01
The European Water Framework Directive (Directive 2000/60/EC) is a mandatory agreement that guides the member states of the European Union in the field of water policy to fulfill the requirements for reaching the aim of the good ecological status of water bodies. In the last years several workflows and methods were developed to determine and evaluate the characteristics and the status of the water bodies. Due to their area measurements remote sensing methods are a promising approach to constitute a substantial additional value. With increasing availability of optical and radar remote sensing data the development of new methods to extract information from both types of remote sensing data is still in progress. Since most limitations of these data sets do not agree the fusion of both data sets to gain data with higher spectral resolution features the potential to obtain additional information in contrast to the separate processing of the data. Based thereupon this study shall research the potential of multispectral and radar remote sensing data and the potential of their fusion for the assessment of the parameters of water body structure. Due to the medium spatial resolution of the freely available multispectral Sentinel-2 data sets especially the surroundings of the water bodies and their land use are part of this study. SAR data is provided by the Sentinel-1 satellite. Different image fusion methods are tested and the combined products of both data sets are evaluated afterwards. The evaluation of the single data sets and the fused data sets is performed by means of a maximum-likelihood classification and several statistical measurements. The results indicate that the combined use of different remote sensing data sets can have an added value.
Feasibility and costs of water fluoridation in remote Australian Aboriginal communities
Ehsani, Jonathon P; Bailie, Ross
2007-01-01
Background Fluoridation of public water supplies remains the key potential strategy for prevention of dental caries. The water supplies of many remote Indigenous communities do not contain adequate levels of natural fluoride. The small and dispersed nature of communities presents challenges for the provision of fluoridation infrastructure and until recently smaller settlements were considered unfavourable for cost-effective water fluoridation. Technological advances in water treatment and fluoridation are resulting in new and more cost-effective water fluoridation options and recent cost analyses support water fluoridation for communities of less than 1,000 people. Methods Small scale fluoridation plants were installed in two remote Northern Territory communities in early 2004. Fluoride levels in community water supplies were expected to be monitored by local staff and by a remote electronic system. Site visits were undertaken by project investigators at commissioning and approximately two years later. Interviews were conducted with key informants and documentation pertaining to costs of the plants and operational reports were reviewed. Results The fluoridation plants were operational for about 80% of the trial period. A number of technical features that interfered with plant operation were identified and addressed though redesign. Management systems and the attitudes and capacity of operational staff also impacted on the effective functioning of the plants. Capital costs for the wider implementation of these plants in remote communities is estimated at about $US94,000 with recurrent annual costs of $US11,800 per unit. Conclusion Operational issues during the trial indicate the need for effective management systems, including policy and funding responsibility. Reliable manufacturers and suppliers of equipment should be identified and contractual agreements should provide for ongoing technical assistance. Water fluoridation units should be considered as a potential priority component of health related infrastructure in at least the larger remote Indigenous communities which have inadequate levels of natural fluoride and high levels of dental caries. PMID:17555604
Water resources by orbital remote sensing: Examples of applications
NASA Technical Reports Server (NTRS)
Martini, P. R. (Principal Investigator)
1984-01-01
Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.
Remote Sensing Applications to Water Quality Management in Florida
NASA Astrophysics Data System (ADS)
Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.
2013-12-01
Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria
Composite Materials and Meta Materials for a New Approach to ITER ICRH Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bottollier-Curtet, H.; Argouarch, A.; Vulliez, K.
Preliminary laboratory testing of ICRH antennas is a very useful step before their commissioning. Traditionally, pure water, salt water or baking soda water loads are used. These 'water' loads are convenient but strongly limited in terms of performance testing. We have started two feasibility studies for advanced ICRH loads made of ferroelectric ceramics (passive loads) and meta materials (active loads). Preliminary results are very encouraging.
NASA Astrophysics Data System (ADS)
Lei, F.; Crow, W. T.; Kustas, W. P.; Yang, Y.; Anderson, M. C.
2017-12-01
Improving the water usage efficiency and maintaining water use sustainability is challenging under rapidly changed natural environments. For decades, extensive field investigations and conceptual/physical numerical modeling have been developed to quantify and track surface water and energy fluxes at different spatial and temporal scales. Meanwhile, with the development of satellite-based sensors, land surface eco-hydrological parameters can be retrieved remotely to supplement ground-based observations. However, both models and remote sensing retrievals contain various sources of errors and an accurate and spatio-temporally continuous simulation and forecasting system at the field-scale is crucial for the efficient water management in agriculture. Specifically, data assimilation technique can optimally integrate measurements acquired from various sources (including in-situ and remotely-sensed data) with numerical models through consideration of different types of uncertainties. In this presentation, we will focus on improving the estimation of water and energy fluxes over a vineyard in California, U.S. A high-resolution remotely-sensed Evaporative Fraction (EF) product from the Atmosphere-Land Exchange Inverse (ALEXI) model will be incorporated into a Soil Vegetation Atmosphere Transfer (SVAT) model via a 2-D data assimilation method. The results will show that both the accuracy and spatial variability of soil water content and evapotranspiration in SVAT model can be enhanced through the assimilation of EF data. Furthermore, we will demonstrate that by taking the optimized soil water flux as initial condition and combining it with weather forecasts, future field water status can be predicted under different irrigation scenarios. Finally, we will discuss the practical potential of these advances by leveraging our numerical experiment for the design of new irrigation strategies and water management techniques.
14 CFR 23.527 - Hull and main float load factors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Water Loads § 23.527 Hull and main float load factors. (a) Water reaction load factors nw must be... landing cases EC28SE91.005 (b) The following values are used: (1) nw=water reaction load factor (that is, the water reaction divided by seaplane weight). (2) C1=empirical seaplane operations factor equal to 0...
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Miller, J. R.; Chen, J. M.
2009-05-01
Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without differentiation between and within vegetation types for calculating the photosynthesis rate, we incorporated the spatial distribution of leaf nitrogen content in the model to estimate net primary productivity and evaportranspiration of boreal ecosystem. These regional estimates of carbon and water budgets with and without N mapping are compared, and the importance of this leaf biochemistry information derived from hyperspectral remote sensing in regional mapping of carbon and water fluxes is quantitatively assessed. Keywords: Remote Sensing, Leaf Nitrogen Content, Spatial Distribution, Carbon and Water Budgets, Estimation
Remote sensing programs and courses in engineering and water resources
NASA Technical Reports Server (NTRS)
Kiefer, R. W.
1981-01-01
The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.
Jiao, Jialong; Ren, Huilong; Adenya, Christiaan Adika; Chen, Chaohe
2017-01-01
Wave-induced motion and load responses are important criteria for ship performance evaluation. Physical experiments have long been an indispensable tool in the predictions of ship’s navigation state, speed, motions, accelerations, sectional loads and wave impact pressure. Currently, majority of the experiments are conducted in laboratory tank environment, where the wave environments are different from the realistic sea waves. In this paper, a laboratory tank testing system for ship motions and loads measurement is reviewed and reported first. Then, a novel large-scale model measurement technique is developed based on the laboratory testing foundations to obtain accurate motion and load responses of ships in realistic sea conditions. For this purpose, a suite of advanced remote control and telemetry experimental system was developed in-house to allow for the implementation of large-scale model seakeeping measurement at sea. The experimental system includes a series of technique sensors, e.g., the Global Position System/Inertial Navigation System (GPS/INS) module, course top, optical fiber sensors, strain gauges, pressure sensors and accelerometers. The developed measurement system was tested by field experiments in coastal seas, which indicates that the proposed large-scale model testing scheme is capable and feasible. Meaningful data including ocean environment parameters, ship navigation state, motions and loads were obtained through the sea trial campaign. PMID:29109379
NASA Astrophysics Data System (ADS)
Kulinkina, A. V.; Walz, Y.; Liss, A.; Kosinski, K. C.; Biritwum, N. K.; Naumova, E. N.
2016-06-01
Schistosoma haematobium transmission is influenced by environmental conditions that determine the suitability of the parasite and intermediate host snail habitats, as well as by socioeconomic conditions, access to water and sanitation infrastructure, and human behaviors. Remote sensing is a demonstrated valuable tool to characterize environmental conditions that support schistosomiasis transmission. Socioeconomic and behavioral conditions that propagate repeated domestic and recreational surface water contact are more difficult to quantify at large spatial scales. We present a mixed-methods approach that builds on the remotely sensed ecological variables by exploring water and sanitation related community characteristics as independent risk factors of schistosomiasis transmission.
NASA Astrophysics Data System (ADS)
Fekri, A.; Mohamed, L.
2017-12-01
Egypt has a big water shortage problem because of the high population density and the lack of the surface water resources. So it was necessary to identify additional clean water resources and among all of the other alternative water resources, groundwater should be the most appropriate choice for Egyptians to explore and develop. Saint Katherine area is located in the highest mountainous area of southern Sinai including parallel ridges separated by deep wadis which have been cut along faults and fractures and enlarged through intense precipitation events during the old pluvial periods. Katherina volcanics and the surrounding granitic rocks in Saint Katherine area, which are generally impermeable except through fractures such as faults, joints and shear zones, are recharged with 50 mm annual precipitation. The groundwater recharge find a way through sets of interconnected joints to feed the existing wells in the low-lying fault zones. After the St. Katherine Protectorate was activated in 1996, public awareness of the possible harmful impact of the existing inadequate sewage disposal increased. The groundwater contamination (nitrates and coliform bacteria) in St. Katherine area causes health problems such as diarrhea and skin infections due to the use of well water for household purposes. This study will focus on; monitoring, evaluating and cleaning up the contaminant distribution in St. Katherine groundwater, using a conceptual model for the fault control on the groundwater flow in fractured basement aquifers to understand the possible pathways for the contaminated groundwater (using remote sensing data), and by preparing disinfectant tracers. It is known that Coliform bacteria could be treated by using Sulfanilamide drug, but in this study we will modify the Sulfanilamide compounds which are considered as ligands containing N, O, S donor atoms that could be used to uptake the transition metals, and produce a colored complex. The produced complex will work as a tracer to follow and understand the water path and disinfect water from Coliform bacteria. Moreover, such ligands could be loaded over Natural Polymeric Material or algae to remove nitrates by reducing it into its elemental state of N2.
Water Quality Analysis Tool (WQAT) | Science Inventory | US ...
The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-processed and geographically gridded remotely sensed images are available. A graphical user interface (GUI), was created to enable the user to select and display imagery from a variety of remote sensing data sources. The user can select a date (or date range) and location to extract pixels from the remotely sensed imagery. The GUI is used to obtain all available pixel values (i.e. pixel from all available bands of all available satellites) for a given location on a given date and time. The resultant data set can be analyzed or saved to a file for future use. The WQAT software provides users with a way to establish algorithms between remote sensing reflectance (Rrs) and any available in situ parameters, as well as statistical and regression analysis. The combined data sets can be used to improve water quality research and studies. Satellites provide spatially synoptic data at high frequency (daily to weekly). These characteristics are desirable for supplementing existing water quality observations and for providing information for large aquatic ecosystems that are historically under-sampled by field programs. Thus, the Water Quality Assessment Tool (WQAT) software tool was developed to suppo
Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software
NASA Astrophysics Data System (ADS)
Gowda, P. H.; Moorhead, J.; Brauer, D. K.
2017-12-01
Evapotranspiration (ET) is a major component of the hydrologic cycle. ET data are used for a variety of water management and research purposes such as irrigation scheduling, water and crop modeling, streamflow, water availability, and many more. Remote sensing products have been widely used to create spatially representative ET data sets which provide important information from field to regional scales. As UAV capabilities increase, remote sensing use is likely to also increase. For that purpose, scientists at the USDA-ARS research laboratory in Bushland, TX developed the Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software. The BEARS software is a Java based software that allows users to process remote sensing data to generate ET outputs using predefined models, or enter custom equations and models. The capability to define new equations and build new models expands the applicability of the BEARS software beyond ET mapping to any remote sensing application. The software also includes an image viewing tool that allows users to visualize outputs, as well as draw an area of interest using various shapes. This software is freely available from the USDA-ARS Conservation and Production Research Laboratory website.
Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan
2018-04-16
The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.
NASA Technical Reports Server (NTRS)
Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung
2014-01-01
Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.
Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.
Wang, Jiao; Deng, Zhiqiang
2017-06-01
A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.
DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR DWPF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krementz, D.; Coughlin, Jeffrey
2009-05-05
The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manuallymore » or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. Extensive testing of tooling operation was performed in the DWPF manipulator repair shop. This testing allowed the operators to gain confidence before the equipment was exposed to radioactive contamination. The testing also led to multiple design improvements. On July 17 and 29, 2008 the Remote Gasket Replacement Tooling was successfully demonstrated in the REDC at the DWPF of The Savannah River Site.« less
Monitoring water quality by remote sensing
NASA Technical Reports Server (NTRS)
Brown, R. L. (Principal Investigator)
1977-01-01
The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.
Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2016-01-01
Remotely sensing the water status of plants and the water content of canopies remain long-term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VISNIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VISNIR R and T to leaf physiological changes linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf and perhaps of a plant canopy might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.
Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements.
NASA Astrophysics Data System (ADS)
Vanderbilt, V. C.; Daughtry, C. S. T.; Dahlgren, R. P.
2016-12-01
Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VIS/NIR R and T to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.
Remote water monitoring system
NASA Technical Reports Server (NTRS)
Grana, D. C.; Haynes, D. P. (Inventor)
1978-01-01
A remote water monitoring system is described that integrates the functions of sampling, sample preservation, sample analysis, data transmission and remote operation. The system employs a floating buoy carrying an antenna connected by lines to one or more sampling units containing several sample chambers. Receipt of a command signal actuates a solenoid to open an intake valve outward from the sampling unit and communicates the water sample to an identifiable sample chamber. Such response to each signal receipt is repeated until all sample chambers are filled in a sample unit. Each sample taken is analyzed by an electrochemical sensor for a specific property and the data obtained is transmitted to a remote sending and receiving station. Thereafter, the samples remain isolated in the sample chambers until the sampling unit is recovered and the samples removed for further laboratory analysis.
Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation
NASA Technical Reports Server (NTRS)
Exton, R. J.; Houghton, W. M.; Esaias, W.; Harriss, R. C.; Farmer, F. H.; White, H. H.
1983-01-01
The theoretical concepts underlying remote sensing of estuarine parameters using laser excitation are examined. The concepts are extended to include Mie scattering as a measure of the total suspended solids and to develop the water Raman signal as an internal standard. Experimental validation of the theory was performed using backscattered laser light from a laboratory tank to simulate a remote-sensing geometry. Artificially prepared sediments and biological cultures were employed to check specific aspects of the theory under controlled conditions. Natural samples gathered from a variety of water types were also analyzed in the tank to further enhance the simulation. The results indicate that it should be possible to remotely quantify total suspended solids, dissolved organics, attenuation coefficient, chlorophyll a, and phycoerythrin in estuarine water using laser excitation.
Satellite control of electric power distribution
NASA Technical Reports Server (NTRS)
Bergen, L.
1981-01-01
An L-band frequencies satellite link providing the medium for direct control of electrical loads at individual customer sites from remote central locations is described. All loads supplied under interruptible-service contracts are likely condidates for such control, and they can be cycled or switched off to reduce system loads. For every kW of load eliminated or deferred to off-peak hours, the power company reduces its need for additional generating capacity. In addition, the satellite could switch meter registers so that their readings automatically reflected the time of consumption. The system would perform load-shedding operations during emergencies, disconnecting large blocks of load according to predetermined priorities. Among the distribution operations conducted by the satellite in real time would be: load reconfiguration, voltage regulation, fault isolation, and capacitor and feeder load control.
Water Dynamics in Fogera and the Upper Blue Nile - Farmers perspectives and remote sensing
NASA Astrophysics Data System (ADS)
Chemin, Yann; Desalegn, Mengistu; Curnow, Jayne; Johnston, Robyn
2015-04-01
This research work is about finding the connection between farmers perspectives on changes of water conditions in their socio-agricultural environment and satellite remote sensing analysis. Key informant surveys were conducted to investigate localised views on water scarcity as a counterpoint to the physical measurement of water availability. Does a numerical or mapped image identifying water scarcity always equate to a dearth of water for agriculture? To push the limits of the relationship between human and physical data we sought to ground-truth GIS results with the practical experience and knowledge of people living in the area. We data-mined public domain satellite data with FOSS (GDAL, GRASS GIS) and produced water-related spatio-temporal domains for our study area and the larger Upper Nile Basin. Accumulated remote sensing information was then cross-referenced with informant's accounts of water availability for the same space and time. During the survey fieldwork the team also took photographs electronically stamped with GPS coordinates to compare and contrast the views of informants and the remote sensing information with high resolution images of the landscape. We found that farmers perspective on the Spring maize crop sensibility to variability of rainfall can be quantified in space and time by remote sensing cumulative transpiration. A crop transpiration gap of 1-2.5 mm/day for about 20 days is to be overcome, a full amount of 20 to 50 mm, depending on the type of year deficit. Such gap can be overcome, even by temporary supplemental irrigation practices, however, the economical and cultural set up is already developed in another way, as per sesonal renting of higher soil profile water retention capacity fields.
NASA Astrophysics Data System (ADS)
Hand, Kevin P.; Carlson, Robert W.
2015-11-01
We have conducted a set of laboratory experiments to measure changes in NaCl, KCl, MgCl2, and mixtures of these salts, as a function of exposure to the temperature, pressure, and radiation conditions relevant to ice covered ocean worlds in our solar system. Reagent grade salts were placed onto a diffuse aluminum target at the end of a cryostat coldfinger and loaded into an ultra-high vacuum chamber. The samples were then cooled to 100 K and the chamber pumped down to ~10-8 Torr, achieving conditions comparable to the surface of several moons of the outer solar system. Samples were subsequently irradiated with 10 keV electrons at an average current of 1 µA.We examined a range of conditions for NaCl including pure salts grains (~300 µm diameter), salt grains with water ice deposited on top, and evaporites. For the evaporites saturated salt water was loaded onto the cryostat target, the chamber closed, and then slowly pumped down to remove the water, leaving behind a salt evaporate for irradiation.The electron bombardment resulted in the trapping of electrons in halogen vacancies, yielding the the F- and M- color centers. After irraditiation we observed yellow-brown discoloration in NaCl. KCl was observed to turn a distinct violet. In NaCl these centers have strong absorptions at 450 nm and 720 nm, respectively, providing a highly diagnostic signature of otherwise transparent alkali halides, making it possible to remotely characterize and quantify the composition and salinity of ocean worlds.
Tracy, J.C.; Bernknopf, R.; Forney, W.; Hill, K.
2004-01-01
The Federal Clean Water Act (Section 303(d)) mandates that states develop Total Maximum Daily Load (TMDL) plans for water bodies that are on the Section 303(d) list. To be placed on the 303(d) list, a water body must be found to have water quality conditions that limit its ability to meet its designated beneficial uses. The TMDL for a water body is defined in 40 CFR 130 as the sum of waste load allocations from identified points sources and non-point sources within the water body's watershed. The TMDL plan for a listed water body should identify the current waste loads to the water body, the waste load capacity of the water body and then allocate the waste load capacity to the known point and non-point sources of pollution within the water body's watershed. Copyright 2004 ASCE.
Microwave remote sensing of snowpack properties
NASA Technical Reports Server (NTRS)
Rango, A. (Editor)
1980-01-01
Topic concerning remote sensing capabilities for providing reliable snow cover data and measurement of snow water equivalents are discussed. Specific remote sensing technqiues discussed include those in the microwave region of the electromagnetic spectrum.
Aerospace remote sensing of the coastal zone for water quality and biotic productivity applications
NASA Technical Reports Server (NTRS)
Pritchard, E. B.; Harriss, R. C.
1981-01-01
Remote sensing can provide the wide area synoptic coverage of surface waters which is required for studies of such phenomena as river plume mixing, phytoplankton dynamics, and pollutant transport and fate, but which is not obtainable by conventional oceanographic techniques. The application of several remote sensors (aircraftborne and spacecraftborne multispectral scanners, passive microwave radiometers, and active laser systems) to coastal zone research is discussed. Current measurement capabilities (particulates, chlorophyll a, temperature, salinity, ocean dumped materials, other pollutants, and surface winds and roughness) are defined and the results of recent remote sensing experiments conducted in the North Atlantic coastal zone are presented. The future development of remote sensing must rely on an integrated laboratory research program in optical physics. Recent results indicate the potential for separation of particulates into subsets by remote sensors.
Possibilities of surface waters monitoring at mining areas using UAV
NASA Astrophysics Data System (ADS)
Lisiecka, Ewa; Motyka, Barbara; Motyka, Zbigniew; Pierzchała, Łukasz; Szade, Adam
2018-04-01
The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV). The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.
Geographic techniques and recent applications of remote sensing to landscape-water quality studies
Griffith, J.A.
2002-01-01
This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.
Small helicopter could find niche in remote heavy lift operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-21
A new helicopter specifically designed for external vertical lift operations, such as moving transportable rig components or seismic equipment in remote locations, operates more efficiently than most other medium or heavy-lift helicopters, according to manufacturer Kaman Aerospace. The single-pilot helicopter was designed as an aerial truck for efficient lifting of heavy loads but with the operating costs of a light-lift craft. The K-Max helicopter can lift more pounds of cargo per gallon of fuel consumed than other similar helicopters, according to Kaman. For example, to transport a 5,000-lb load at an elevation of 8,000 ft, the K-Max helicopter consumes 85more » gal of fuel/hr. Under the same load conditions, the next most efficient commercially available helicopter consumes 160 gal of fuel/hr and requires two pilots. The 4,500-lb helicopter can lift 5,000 lb to an altitude of 8,000 ft or about 6,000 lb at low altitudes.« less
Model for the Interpretation of Hyperspectral Remote-Sensing Reflectance
NASA Technical Reports Server (NTRS)
Lee, Zhongping; Carder, Kendall L.; Hawes, Steve K.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.
1994-01-01
Remote-sensing reflectance is easier to interpret for the open ocean than for coastal regions because the optical signals are highly coupled to the phytoplankton (e.g., chlorophyll) concentrations. For estuarine or coastal waters, variable terrigenous colored dissolved organic matter (CDOM), suspended sediments, and bottom reflectance, all factors that do not covary with the pigment concentration, confound data interpretation. In this research, remote-sensing reflectance models are suggested for coastal waters, to which contributions that are due to bottom reflectance, CDOM fluorescence, and water Raman scattering are included. Through the use of two parameters to model the combination of the backscattering coefficient and the Q factor, excellent agreement was achieved between the measured and modeled remote-sensing reflectance for waters from the West Florida Shelf to the Mississippi River plume. These waters cover a range of chlorophyll of 0.2-40 mg/cu m and gelbstoff absorption at 440 nm from 0.02-0.4/m. Data with a spectral resolution of 10 nm or better, which is consistent with that provided by the airborne visible and infrared imaging spectrometer (AVIRIS) and spacecraft spectrometers, were used in the model evaluation.
Lee, Zhongping; Ahn, Yu-Hwan; Mobley, Curtis; Arnone, Robert
2010-12-06
Using hyperspectral measurements made in the field, we show that the effective sea-surface reflectance ρ (defined as the ratio of the surface-reflected radiance at the specular direction corresponding to the downwelling sky radiance from one direction) varies not only for different measurement scans, but also can differ by a factor of 8 between 400 nm and 800 nm for the same scan. This means that the derived water-leaving radiance (or remote-sensing reflectance) can be highly inaccurate if a spectrally constant ρ value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote-sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear blue water to turbid brown water are obtainable from above-surface measurements, even under conditions of high waves.
L.R. Ahuja; S. A. El-Swaify
1979-01-01
Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...
USDA-ARS?s Scientific Manuscript database
The recent drought in much of California, particularly in the Central Valley region, has caused severe reduction in water reservoir levels and a major depletion of ground water by agriculture. Dramatic improvements in water and irrigation management practices are critical for agriculture to remain s...
USDA-ARS?s Scientific Manuscript database
The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI) was utilized to estimate CWSI in rain-fed switchgrass (Panicum virgatum L.) usin...
NASA Astrophysics Data System (ADS)
Kuhn, C.; Richey, J. E.; Striegl, R. G.; Ward, N.; Sawakuchi, H. O.; Crawford, J.; Loken, L. C.; Stadler, P.; Dornblaser, M.; Butman, D. E.
2017-12-01
More than 93% of the world's river-water volume occurs in basins impacted by large dams and about 43% of river water discharge is impacted by flow regulation. Human land use also alters nutrient and carbon cycling and the emission of carbon dioxide from inland reservoirs. Increased water residence times and warmer temperatures in reservoirs fundamentally alter the physical settings for biogeochemical processing in large rivers, yet river biogeochemistry for many large systems remains undersampled. Satellite remote sensing holds promise as a methodology for responsive regional and global water resources management. Decades of ocean optics research has laid the foundation for the use of remote sensing reflectance in optical wavelengths (400 - 700 nm) to produce satellite-derived, near-surface estimates of phytoplankton chlorophyll concentration. Significant improvements between successive generations of ocean color sensors have enabled the scientific community to document changes in global ocean productivity (NPP) and estimate ocean biomass with increasing accuracy. Despite large advances in ocean optics, application of optical methods to inland waters has been limited to date due to their optical complexity and small spatial scale. To test this frontier, we present a study evaluating the accuracy and suitability of empirical inversion approaches for estimating chlorophyll-a, turbidity and temperature for the Amazon, Columbia and Mississippi rivers using satellite remote sensing. We demonstrate how riverine biogeochemical measurements collected at high frequencies from underway vessels can be used as in situ matchups to evaluate remotely-sensed, near-surface temperature, turbidity, chlorophyll-a derived from the Landsat 8 (NASA) and Sentinel 2 (ESA) satellites. We investigate the use of remote sensing water reflectance to infer trophic status as well as tributary influences on the optical characteristics of the Amazon, Mississippi and Columbia rivers.
33 CFR 117.42 - Remotely operated and automated drawbridges.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS General Requirements § 117.42 Remotely operated and... authorize a drawbridge to operate under an automated system or from a remote location. (b) If the request is... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Remotely operated and automated...
Hand held phase-shifting diffraction moire interferometer
Deason, Vance A.; Ward, Michael B.
1994-01-01
An interferometer in which a coherent beam of light is generated within a remote case and transmitted to a hand held unit tethered to said remote case, said hand held unit having optical elements for directing a pair of mutually coherent collimated laser beams at a diffraction grating. Data from the secondary or diffracted beams are then transmitted to a separate video and data acquisition system for recording and analysis for load induced deformation or for identification purposes. Means are also provided for shifting the phase of one incident beam relative to the other incident beam and being controlled from within said remote case.
NASA Technical Reports Server (NTRS)
Brosius, C. A.; Gervin, J. C.; Ragusa, J. M.
1977-01-01
A text book on remote sensing, as part of the earth resources Skylab programs, is presented. The fundamentals of remote sensing and its application to agriculture, land use, geology, water and marine resources, and environmental monitoring are summarized.
On the Vertical Distribution of Local and Remote Sources of Water for Precipitation
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.
2001-01-01
The vertical distribution of local and remote sources of water for precipitation and total column water over the United States are evaluated in a general circulation model simulation. The Goddard Earth Observing System (GEOS) general circulation model (GCM) includes passive constituent tracers to determine the geographical sources of the water in the column. Results show that the local percentage of precipitable water and local percentage of precipitation can be very different. The transport of water vapor from remote oceanic sources at mid and upper levels is important to the total water in the column over the central United States, while the access of locally evaporated water in convective precipitation processes is important to the local precipitation ratio. This result resembles the conceptual formulation of the convective parameterization. However, the formulations of simple models of precipitation recycling include the assumption that the ratio of the local water in the column is equal to the ratio of the local precipitation. The present results demonstrate the uncertainty in that assumption, as locally evaporated water is more concentrated near the surface.
NASA Astrophysics Data System (ADS)
Peterson, K. T.; Wulamu, A.
2017-12-01
Water, essential to all living organisms, is one of the Earth's most precious resources. Remote sensing offers an ideal approach to monitor water quality over traditional in-situ techniques that are highly time and resource consuming. Utilizing a multi-scale approach, incorporating data from handheld spectroscopy, UAS based hyperspectal, and satellite multispectral images were collected in coordination with in-situ water quality samples for the two midwestern watersheds. The remote sensing data was modeled and correlated to the in-situ water quality variables including chlorophyll content (Chl), turbidity, and total dissolved solids (TDS) using Normalized Difference Spectral Indices (NDSI) and Partial Least Squares Regression (PLSR). The results of the study supported the original hypothesis that correlating water quality variables with remotely sensed data benefits greatly from the use of more complex modeling and regression techniques such as PLSR. The final results generated from the PLSR analysis resulted in much higher R2 values for all variables when compared to NDSI. The combination of NDSI and PLSR analysis also identified key wavelengths for identification that aligned with previous study's findings. This research displays the advantages and future for complex modeling and machine learning techniques to improve water quality variable estimation from spectral data.
Advances in understanding the optics of shallow water environments, submerged vegetation canopies and seagrass physiology, combined with improved spatial resolution of remote sensing platforms, now enable eelgrass ecosystems to be monitored at a variety of time scales from earth-...
Relation of laboratory and remotely sensed spectral signatures of ocean-dumped acid waste
NASA Technical Reports Server (NTRS)
Lewis, B. W.
1978-01-01
Results of laboratory transmission and remotely sensed ocean upwelled spectral signatures of acid waste ocean water solutions are presented. The studies were performed to establish ocean-dumped acid waste spectral signatures and to relate them to chemical and physical interactions occurring in the dump plume. The remotely sensed field measurements and the laboratory measurements were made using the same rapid-scanning spectrometer viewing a dump plume and with actual acid waste and ocean water samples, respectively. Laboratory studies showed that the signatures were produced by soluble ferric iron being precipitated in situ as ferric hydroxide upon dilution with ocean water. Sea-truth water samples were taken and analyzed for pertinent major components of the acid waste. Relationships were developed between the field and laboratory data both for spectral signatures and color changes with concentration. The relationships allow for the estimation of concentration of the indicator iron from remotely sensed spectral data and the laboratory transmission concentration data without sea-truth samples.
NASA Astrophysics Data System (ADS)
Ding, Deng
Intensive human-environment interactions are taking place in Midwestern agricultural systems. An integrated modeling framework is suitable for predicting dynamics of key variables of the socio-economic, biophysical, hydrological processes as well as exploring the potential transitions of system states in response to changes of the driving factors. The purpose of this dissertation is to address issues concerning the interacting processes and consequent changes in land use, water balance, and water quality using an integrated modeling framework. This dissertation is composed of three studies in the same agricultural watershed, the Clear Creek watershed in East-Central Iowa. In the first study, a parsimonious hydrologic model, the Threshold-Exceedance-Lagrangian Model (TELM), is further developed into RS-TELM (Remote Sensing TELM) to integrate remote sensing vegetation data for estimating evapotranspiration. The goodness of fit of RS-TELM is comparable to a well-calibrated SWAT (Soil and Water Assessment Tool) and even slightly superior in capturing intra-seasonal variability of stream flow. The integration of RS LAI (Leaf Area Index) data improves the model's performance especially over the agriculture dominated landscapes. The input of rainfall datasets with spatially explicit information plays a critical role in increasing the model's goodness of fit. In the second study, an agent-based model is developed to simulate farmers' decisions on crop type and fertilizer application in response to commodity and biofuel crop prices. The comparison between simulated crop land percentage and crop rotations with satellite-based land cover data suggest that farmers may be underestimating the effects that continuous corn production has on yields (yield drag). The simulation results given alternative market scenarios based on a survey of agricultural land owners and operators in the Clear Creek Watershed show that, farmers see cellulosic biofuel feedstock production in the form of perennial grasses or corn stover as a more risky enterprise than their current crop production systems, likely because of market and production risks and lock in effects. As a result farmers do not follow a simple farm-profit maximization rule. In the third study, the consequent water quantity and quality change of the potential land use transitions given alternative biofuel crop market scenarios is explored in a case study in the Clear Creek watershed. A computer program is developed to implement the loose-coupling strategy to couple an agent-based land use model with SWAT. The simulation results show that watershed-scale water quantity (water yield and runoff) and quality variables (sediment and nutrient loads) decrease in values as switchgrass price increases. However, negligence of farmers risk aversions towards biofuel crop adoption would cause overestimation of the impacts of switchgrass price on water quantity and quality.
NASA Astrophysics Data System (ADS)
Somekawa, Toshihiro; Fujita, Masayuki
2018-04-01
We examined the applicability of Raman spectroscopy as a laser remote sensing tool for monitoring CH4 in water. The Raman technique has already been used successfully for measurements of CO2 gas in water. In this paper, considering the spectral transmittance of water, third harmonics of Q-switched Nd:YAG laser at 355 nm (UV region) was used for detection of CH4 Raman signals. The Raman signal at 2892 cm-1 from CH4 dissolved in water was detected at a tail of water Raman signal.
Synoptic thermal and oceanographic parameter distributions in the New York Bight Apex
NASA Technical Reports Server (NTRS)
Johnson, R. W.; Bahn, G. S.; Thomas, J. P.
1981-01-01
Concurrent surface water measurements made from a moving oceanographic research vessel were used to calibrate and interpret remotely sensed data collected over a plume in the New York Bight Apex on 23 June 1977. Multiple regression techniques were used to develop equations to map synoptic distributions of chlorophyll a and total suspended matter in the remotely sensed scene. Thermal (which did not have surface calibration values) and water quality parameter distributions indicated a cold mass of water in the Bight Apex with an overflowing nutrient-rich warm water plume that originated in the Sandy Hook Bay and flowed south near the New Jersey shoreline. Data analysis indicates that remotely sensed data may be particularly useful for studying physical and biological processes in the top several metres of surface water at plume boundaries.
Capacity Building in Using NASA Remote Sensing for Water Resources and Disasters Management
NASA Astrophysics Data System (ADS)
Mehta, A. V.; Podest, E.; Prados, A. I.
2017-12-01
The NASA Applied Remote Sensing Training Program (ARSET), a part of NASA's Applied Sciences Capacity Building program, empowers the global community through online and in-person training. The program focuses on helping policy makers, environmental managers, and other professionals, both domestic and international, use remote sensing in decision making. Since 2011, ARSET has provided more than 20 trainings in water resource and disaster management, including floods and droughts. This presentation will include an overview of the ARSET program, best practices for approaching trainings, feedback from participants, and examples of case studies from the trainings showing the application of GPM, SMAP, Landsat, Terra and Aqua (MODIS), and Sentinel (SAR) data. This presentation will also outline how ARSET can serve as a liaison between remote sensing applications developers and users in the areas of water resource and disaster management.
14 CFR 25.527 - Hull and main float load factors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... float load factors. (a) Water reaction load factors n W must be computed in the following manner: (1... following values are used: (1) n W=water reaction load factor (that is, the water reaction divided by...
Teipel, Stefan; Grothe, Michel J
2016-03-01
Posterior cingulate cortex (PCC) hypometabolism as measured by FDG PET is an indicator of Alzheimer's disease (AD) in prodromal stages, such as in mild cognitive impairment (MCI), and has been found to be closely associated with hippocampus atrophy in AD dementia. We studied the effects of local and remote atrophy and of local amyloid load on the PCC metabolic signal in patients with different preclinical and clinical stages of AD. We determined the volume of the hippocampus and PCC grey matter based on volumetric MRI scans, PCC amyloid load based on AV45 PET, and PCC metabolism based on FDG PET in 667 subjects participating in the Alzheimer's Disease Neuroimaging Initiative spanning the range from cognitively normal ageing through prodromal AD to AD dementia. In cognitively normal individuals and those with early MCI, PCC hypometabolism was exclusively associated with hippocampus atrophy, whereas in subjects with late MCI it was associated with both local and remote effects of atrophy as well as local amyloid load. In subjects with AD dementia, PCC hypometabolism was exclusively related to local atrophy. Our findings suggest that the effects of remote pathology on PCC hypometabolism decrease and the effects of local pathology increase from preclinical to clinical stages of AD, consistent with a progressive disconnection of the PCC from downstream cortical and subcortical brain regions.
Water environmental management with the aid of remote sensing and GIS technology
NASA Astrophysics Data System (ADS)
Chen, Xiaoling; Yuan, Zhongzhi; Li, Yok-Sheung; Song, Hong; Hou, Yingzi; Xu, Zhanhua; Liu, Honghua; Wai, Onyx W.
2005-01-01
Water environment is associated with many disciplinary fields including sciences and management which makes it difficult to study. Timely observation, data getting and analysis on water environment are very important for decision makers who play an important role to maintain the sustainable development. This study focused on developing a plateform of water environment management based on remote sensing and GIS technology, and its main target is to provide with necessary information on water environment through spatial analysis and visual display in a suitable way. The work especially focused on three points, and the first one is related to technical issues of spatial data organization and communication with a combination of GIS and statistical software. A data-related model was proposed to solve the data communication between the mentioned systems. The second one is spatio-temporal analysis based on remote sensing and GIS. Water quality parameters of suspended sediment concentration and BOD5 were specially analyzed in this case, and the results suggested an obvious influence of land source pollution quantitatively in a spatial domain. The third one is 3D visualization of surface feature based on RS and GIS technology. The Pearl River estuary and HongKong's coastal waters in the South China Sea were taken as a case in this study. The software ARCGIS was taken as a basic platform to develop a water environmental management system. The sampling data of water quality in 76 monitoring stations of coastal water bodies and remote sensed images were selected in this study.
46 CFR 42.13-30 - Lines to be used with the load line mark.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) The following load lines shall be used: (1) The summer load line indicated by the upper edge of the... T. (5) The fresh water load line in summer indicated by the upper edge of a line marked F. The fresh water load line in summer is marked abaft the vertical line. The difference between the fresh water load...
46 CFR 42.13-30 - Lines to be used with the load line mark.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) The following load lines shall be used: (1) The summer load line indicated by the upper edge of the... T. (5) The fresh water load line in summer indicated by the upper edge of a line marked F. The fresh water load line in summer is marked abaft the vertical line. The difference between the fresh water load...
Remote sensing of water and nitrogen stress in broccoli
NASA Astrophysics Data System (ADS)
Elsheikha, Diael-Deen Mohamed
Remote sensing is being used in agriculture for crop management. Ground based remote sensing data acquisition system was used for collection of high spatial and temporal resolution data for irrigated broccoli crop. The system was composed of a small cart that ran back and forth on a rail system that was mounted on a linear move irrigation system. The cart was equipped with a sensor that had 4 discrete wavelengths; 550 nm, 660 nm, 720 nm, and 810 nm, and an infrared thermometer, all had 10 nm bandwidth. A global positioning system was used to indicate the cart position. The study consisted of two parts; the first was to evaluate remotely sensed reflectance and indices in broccoli during the growing season, and determine whether remotely sensed indices or standard deviation of indices can distinguish between nitrogen and water stress in broccoli, and the second part of the study was to evaluate remotely sensed indices and standard deviation of remotely sensed indices in broccoli during daily changes in solar zenith angle. Results indicated that nitrogen was detected using Ratio Vegetation index, RVI, Normalized Difference Vegetation Index, NDVI, Canopy Chlorophyll Concentration Index, CCCI, and also using the reflectance in the Near-Infrared, NIR, bands. The Red reflectance band capability of showing stress was not as clear as the previous indices and bands reflectance. The Canopy Chlorophyll Concentration Index, CCCI, was the most successful index. The Crop Water Stress Index was able to detect water stress but it was highly affected by the solar zenith angle change along the day.
Toole, D A; Siegel, D A; Menzies, D W; Neumann, M J; Smith, R C
2000-01-20
Three independent ocean color sampling methodologies are compared to assess the potential impact of instrumental characteristics and environmental variability on shipboard remote-sensing reflectance observations from the Santa Barbara Channel, California. Results indicate that under typical field conditions, simultaneous determinations of incident irradiance can vary by 9-18%, upwelling radiance just above the sea surface by 8-18%, and remote-sensing reflectance by 12-24%. Variations in radiometric determinations can be attributed to a variety of environmental factors such as Sun angle, cloud cover, wind speed, and viewing geometry; however, wind speed is isolated as the major source of uncertainty. The above-water approach to estimating water-leaving radiance and remote-sensing reflectance is highly influenced by environmental factors. A model of the role of wind on the reflected sky radiance measured by an above-water sensor illustrates that, for clear-sky conditions and wind speeds greater than 5 m/s, determinations of water-leaving radiance at 490 nm are undercorrected by as much as 60%. A data merging procedure is presented to provide sky radiance correction parameters for above-water remote-sensing reflectance estimates. The merging results are consistent with statistical and model findings and highlight the importance of multiple field measurements in developing quality coastal oceanographic data sets for satellite ocean color algorithm development and validation.
Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby
2016-09-15
Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan
2016-11-01
Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.
NASA Astrophysics Data System (ADS)
Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan
2016-11-01
Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.
NASA Technical Reports Server (NTRS)
Taylor, E. C.; Davis, J. D.
1978-01-01
A study of the interaction between the orbiter primary reaction control system (PRCS) and the remote manipulator system (RMS) with a loaded arm is documented. This analysis was performed with the Payload Deployment and Retrieval Systems Simulation (PDRSS) program with the passive arm bending option. The passive-arm model simulates the arm as massless elastic links with locked joints. The study was divided into two parts. The first part was the evaluation of the response of the arm to step inputs (i.e. constant jet torques) about each of the orbiter body axes. The second part of the study was the evaluation of the response of the arm to minimum impulse primary RCS jet firings with both single pulse and pulse train inputs.
Solid State Remote Power Controllers for high voltage DC distribution systems
NASA Technical Reports Server (NTRS)
Billings, W. W.; Sundberg, G. R.
1977-01-01
Presently, hybrid Remote Power Controllers (RPC's) are in production and prototype units are available for systems utilizing 28VDC, 120VDC, 115VAC/400 Hz and 230VAC/400 Hz. This paper describes RPC development in a new area of application: HVDC distribution systems utilizing 270/300VDC. Two RPC current ratings, 1 amp and 2 amps, were selected for development as they are adequate to control 90% of projected system loads. The various aspects and trade-offs encountered in circuit development are discussed with special focus placed on the circuits that see the duress of the high dc potentials. The comprehensive evaluation tests are summarized which confirmed the RPC compliance with the specification and with system/load compatibility requirements. In addition, present technology status and new applications are summarized.
46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Nonsubmergence subdivision load lines in salt water. 46.10-45 Section 46.10-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES SUBDIVISION LOAD LINES FOR PASSENGER VESSELS Administration § 46.10-45 Nonsubmergence subdivision load lines in salt water. (a) Passenger vessels...
A feasibility study for a remote laser water turbidity meter
NASA Technical Reports Server (NTRS)
Hickman, G. D.; Ghovanlou, A. H.; Friedman, E. J.; Gault, C. S.; Hogg, J. E.
1974-01-01
A technique to remotely determine the attenuation coefficient (alpha) of the water was investigated. The backscatter energy (theta = 180 deg) of a pulse laser (lambda = 440 - 660 nm) was found directly related to the water turbidity. The greatest sensitivity was found to exist at 440 nm. For waters whose turbidity was adjusted using Chesapeake Bay sediment, the sensitivity in determining alpha at 440 nm was found to be approximately 5 - 10%. A correlation was also found to exist between the water depth (time) at which the peak backscatter occurs and alpha.
Remote sensing applications program
NASA Technical Reports Server (NTRS)
1984-01-01
The activities of the Mississippi Remote Sensing Center are described in addition to technology transfer and information dissemination, remote sensing topics such as timber identification, water quality, flood prevention, land use, erosion control, animal habitats, and environmental impact studies are also discussed.
USDA-ARS?s Scientific Manuscript database
Turfgrass irrigation strategies must be clearly defined in response to increasing concerns over quality water availability. Water conservation may be achieved with technologies such as remote sensing. The objectives of this research were to (i) correlate reflectance measurements from creeping bentgr...
Water survey of Canada: Application for use of ERTS-A for retransmission of water resources data
NASA Technical Reports Server (NTRS)
Halliday, R. A. (Principal Investigator); Reid, I. A.
1974-01-01
The author has identified the following significant results. Water resources data including water level, water velocity, precipitation, air temperature, ice condition, DCP battery voltage, and water stage recorder clock operation have been transmitted from remote areas in Canada using the ERTS Data Collection System. The Data Collection Platforms have met all requirements. The suitability of satellite retransmission as a means of obtaining data from remote areas has been demonstrated. The present network of 9 Data Collection Platforms will be expanded to 28 to develop a quasi-operational network.
Determination of spectral signatures of substances in natural waters
NASA Technical Reports Server (NTRS)
Klemas, V.; Philpot, W. D.; Davis, G.
1978-01-01
Optical remote sensing of water pollution offers the possibility of fast, large scale coverage at a relatively low cost. The possibility of using the spectral characteristics of the upwelling light from water for the purpose of ocean water quality monitoring was explained. The work was broken into several broad tasks as follows: (1) definition of a remotely measured spectral signature of water, (2) collection of field data and testing of the signature analysis, and (3) the possibility of using LANDSAT data for the identification of substances in water. An attempt to extract spectral signatures of acid waste and sediment was successful.
Intercomparison of in-situ and remote sensing δD signals in tropospheric water vapour
NASA Astrophysics Data System (ADS)
Schneider, Matthias; González, Yenny; Dyroff, Christoph; Christner, Emanuel; García, Omaira; Wiegele, Andreas; Andrey, Javier; Barthlott, Sabine; Blumenstock, Thomas; Guirado, Carmen; Hase, Frank; Ramos, Ramon; Rodríguez, Sergio; Sepúveda, Eliezer
2014-05-01
The main mission of the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi-global tropospheric water vapour isototopologue dataset of a good and well-documented quality. We present a first empirical validation of MUSICA's remote sensing δD products (ground-based FTIR within NDACC, Network for the Detection of Atmospheric Composition Change, and space-based with IASI, Infrared Atmospheric Sounding Interferometer, flown on METOP). As reference we use in-situ measurements made on the island of Tenerife at two different altitudes (2370 and 3550 m a.s.l., using two Picarro L2120-i water isotopologue analyzers) and aboard an aircraft (between 200 and 6800 m a.s.l., using the homemade ISOWAT instrument).
Remote sensing of the boundary layer over the oceans. [by IRIS measurements
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Dalu, G.; Nath, N. R.; Lo, R.
1978-01-01
The paper explores the possibility of remotely sensing the boundary layer structure over the oceans by means of the Nimbus 4 IR Interferometric Spectrometer (IRIS) measurements in the water vapor bands. It is found from theoretical considerations that the moderately strong spectral lines in the 9-micron water vapor window region contain useful information about the lowest layers in the atmosphere. The difference between the observed line strength and the theoretically predicted line strength provides information about the departure in the atmospheric temperature and water vapor profiles from standard conditions. The observations of METEOR oceanographic expedition over the North and South Atlantic, and the Indian Ocean expedition make it possible to model the inversion conditions. It is concluded that significant characteristics of the temperature and water vapor profiles in the boundary layer of the atmosphere can be remotely sensed using the water vapor spectral measurements over the oceans.
Eutrophication monitoring for Lake Superior's Chequamegon ...
A priority for the Lake Superior CSMI was to identify susceptible nearshore eutrophication areas. We developed an integrated sampling design to collect baseline data for Lake Superior’s Chequamegon Bay to understand how nearshore physical processes and tributary loading relate to observed chlorophyll concentrations. Sampling included ship-based water samples combined with vertical CTD casts, continuous in situ towing and data collected from an autonomous underwater glider. Sampling was conducted during June, July and September. The glider collected regional data as part of three extended missions in Lake Superior over the same periods. During the study, two significant storm events impacted the western end of Lake Superior; the first occurred during July 11-12, with 8-10 inches of rain in 24hrs, and the second on July 21 with winds in excess of 161 km/h. Using GIS software, we organized these diverse temporal data sets along a continuous time line with temporally coincident Modis Satellite data to visualize surface sediment plumes in relation to water quality measurements. Preliminary results suggest that both events impacted regional water quality, and that nearshore physical forces (upwelling and currents) influenced the spatial variability. Results comparing in situ measures with remotely sensed images will be discussed. not applicable
Lin, Junfang; Lee, Zhongping; Ondrusek, Michael; Liu, Xiaohan
2018-01-22
Absorption (a) and backscattering (bb) coefficients play a key role in determining the light field; they also serve as the link between remote sensing and concentrations of optically active water constituents. Here we present an updated scheme to derive hyperspectral a and bb with hyperspectral remote-sensing reflectance (Rrs) and diffuse attenuation coefficient (Kd) as the inputs. Results show that the system works very well from clear open oceans to highly turbid inland waters, with an overall difference less than 25% between these retrievals and those from instrument measurements. This updated scheme advocates the measurement and generation of hyperspectral a and bb from hyperspectral Rrs and Kd, as an independent data source for cross-evaluation of in situ measurements of a and bb and for the development and/or evaluation of remote sensing algorithms for such optical properties.
Glof Study in Tawang River Basin, Arunachal Pradesh, India
NASA Astrophysics Data System (ADS)
Panda, R.; Padhee, S. K.; Dutta, S.
2014-11-01
Glacial lake outburst flood (GLOF) is one of the major unexpected hazards in the high mountain regions susceptible to climate change. The Tawang river basin in Arunachal Pradesh is an unexplored region in the Eastern Himalayas, which is impending to produce several upcoming hydro-electric projects (HEP). The main source of the river system is the snow melt in the Eastern Himalayas, which is composed of several lakes located at the snout of the glacier dammed by the lateral or end moraine. These lakes might prove as potential threat to the future scenario as they have a tendency to produce flash flood with large quantity of sediment load during outbursts. This study provides a methodology to detect the potential lakes as a danger to the HEP sites in the basin, followed by quantification of volume of discharge from the potential lake and prediction of hydrograph at the lake site. The remote location of present lakes induced the use of remote sensing data, which was fulfilled by Landsat-8 satellite imagery with least cloud coverage. Suitable reflectance bands on the basis of spectral responses were used to produce informational layers (NDWI, Potential snow cover map, supervised classification map) in GIS environment for discriminating different land features. The product obtained from vector overlay operation of these layers; representing possible water area, was further utilized in combination with Google earth to identify the lakes within the watershed. Finally those identified lakes were detected as potentially dangerous lakes based on the criteria of elevation, area, proximity from streamline, slope and volume of water held. HEC-RAS simulation model was used with cross sections from Google Earth and field survey as input to simulate dam break like situation; hydrodynamic channel routing of the outburst hydrograph along river reach was carried out to get the GLOF hydrograph at the project sites. It was concluded from the results that, the assessed GLOF would be a lead for the qualitative approximation of the amount of bed load transported along the river reach and thus hydropower project sites.
Remote liquid target loading system for LANL two-stage gas gun
NASA Astrophysics Data System (ADS)
Gibson, L. L.; Bartram, B.; Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.
2009-06-01
A Remote Liquid Loading System (RLLS) was designed to load high hazard liquid materials into targets for gas-gun driven impact experiments. These high hazard liquids tend to react with confining materials in a short period of time, degrading target assemblies and potentially building up pressure through the evolution of gas in the reactions. Therefore, the ability to load a gas gun target in place immediately prior to firing the gun, provides the most stable and reliable target fielding approach. We present the design and evaluation of a RLLS built for the LANL two-stage gas gun. Targets for the gun are made of PMMA and assembled to form a liquid containment cell with a volume of approximately 25 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with highly concentrated hydrogen peroxide. Teflon and 304-stainless steel were the two most compatible materials with the materials to be tested. Teflon valves and tubing, as well as stainless steel tubing, were used to handle the liquid, along with a stainless steel reservoir. Preliminary testing was done to ensure proper flow rate and safety. The system has been used to successfully load 97.5 percent hydrogen peroxide into a target cell just prior to a successful multiple magnetic gauge experiment. TV cameras on the target verified the bubble-free filling operation.
Masoner, J.R.; Mladinich, C.S.; Konduris, A.M.; Smith, S. Jerrod
2003-01-01
Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, is investigating new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin. Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for nine major crops were calculated from September 1999 to October 2000 using a solar radiation-based evapotranspiration model. Estimates of irrigation water use were calculated using remotely sensed irrigated crop acres derived from Landsat 7 Enhanced Thematic Mapper Plus imagery and were compared with irrigation water-use estimates calculated from irrigated crop acres reported by the Oklahoma Water Resources Board and the Texas Water Development Board for the 2000 growing season. The techniques presented will help manage water resources in the Lake Altus drainage basin and may be transferable to other areas with similar water management needs. Irrigation water use calculated from the remotely sensed irrigated acres was estimated at 154,920 acre-feet; whereas, irrigation water use calculated from state reported irrigated crop acres was 196,026 acre-feet, a 23 percent difference. The greatest difference in irrigation water use was in Carson County, Texas. Irrigation water use for Carson County, Texas, calculated from the remotely sensed irrigated acres was 58,555 acrefeet; whereas, irrigation water use calculated from state reported irrigated acres was 138,180 acre-feet, an 81 percent difference. The second greatest difference in irrigation water use occurred in Beckham County, Oklahoma. Differences between the two irrigation water use estimates are due to the differences of irrigated crop acres derived from the mapping process and those reported by the Oklahoma Water Resources Board and Texas Water Development Board.
Remotely Adjustable Hydraulic Pump
NASA Technical Reports Server (NTRS)
Kouns, H. H.; Gardner, L. D.
1987-01-01
Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.
[Algorithms of multiband remote sensing for coastal red tide waters].
Mao, Xianmou; Huang, Weigen
2003-07-01
The spectral characteristics of the coastal waters in East China Sea was studied using in situ measurements, and the multiband algorithms of remote sensing for bloom waters was discussed and developed. Examples of red tide detection using the algorithms in the East China Sea were presented. The results showed that the algorithms could provide information about the location and the area coverage of the red tide events.
NASA Astrophysics Data System (ADS)
González, Yenny; Schneider, Matthias; Christner, Emanuel; Rodríguez, Omaira E.; Sepúlveda, Eliezer; Dyroff, Christoph; Wiegele, Andreas
2013-04-01
The main goal of the project MUSICA (Multiplatform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi global tropospheric water vapor isototopologue dataset of a good and well-documented quality. Therefore, new ground- and space-based remote sensing observations (NDACC-FTIR and IASI/METOP) are combined with in-situ measurements. This work presents the first comparison between in-situ and remote sensing observations made at the Izaña Atmospheric Research Centre (Tenerife, Canary Islands, Spain). The in-situ measurements are made by a Picarro L2120-i water vapor isotopologue analyzer. At Izaña the in-situ data are affected by local small-scale mixing processes: during daylight, the thermally buoyant upslope flow prompts the mixing between the Marine Boundary Layer (MBL) and the low Free Troposphere (FT). However, the remote sensors detect δD values averaged over altitudes that are more representative for the free troposphere. This difference has to be considered for the comparison. In general, a good agreement between the MUSICA remote sensing and the in situ H2O-versus-δD plots is found, which demonstrates that the MUSICA δD remote sensing products add scientifically valuable information to the H2O data.
Microwave remote sensing from space
NASA Technical Reports Server (NTRS)
Carver, K. R.; Elachi, C.; Ulaby, F. T.
1985-01-01
Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms - soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries.
NASA Astrophysics Data System (ADS)
Guajardo, R.; Paerl, H. W.; Hall, N.; Whipple, A.; Luettich, R.
2007-12-01
In North Carolina's Neuse River Estuary (NRE)-Pamlico Sound (PS) System, nitrogen (N)-driven eutrophication, water quality and habitat decline have prompted the State and US EPA to mandate watershed-based N load reductions, including a total maximum daily allowable N load (TMDL). Chlorophyll a (chl-a), the indicator of algal biomass, is the measure for the efficacy of N reductions, with "acceptable" values being <40 μg chl- a L-1. However, algal blooms are patchy in time and space, making exceedances of 40 μ g L-1 difficult to track. The North Carolina ferry-based water quality monitoring program, FerryMon (www.ferrymon.org) addresses this and other environmental monitoring needs in the NRE-PS. FerryMon uses NC DOT ferries to provide continuous, space-time intensive, accurate measurements of chl-a and other key water quality criteria, using sensors placed in a flow-through system and discrete sampling of nutrients, organics, diagnostic photopigment and molecular indicators of major algal groups in a near real-time manner. Complementing FerryMon are automated vertical profilers (AVPs), which produce chl-a and other water quality indicator depth profiles with very high time and vertical resolution. In-line spectral fluorometers (Algae Online Analyzers (AOAs)) will be installed starting in late 2007, providing rapid early warning detection and quantification of algal blooms. FerryMon permits spatial characterization of trends in water quality conditions over a range of relevant physical, chemical and biological time scales. This enhanced capability is timely, given a protracted period of increased tropical storm and hurricane activity that, in combination with anthropogenic nutrient enrichment, affects water quality in unpredictable, yet significant ways. FerryMon also serves as a data source for calibrating and verifying remotely sensed indicators of water quality (photopigments, turbidity), nutrient-productivity and hydrologic modeling. Data management and communication links allow FerryMon to integrate with complementary watershed, estuarine and coastal observational programs . FerryMon's technology is readily transferable to other estuarine, large lake and coastal ecosystems served by ferries and other "ships of opportunity".
Reitz, Meredith; Senay, Gabriel; Sanford, Ward E.
2017-01-01
Evapotranspiration (ET) is a key component of the hydrologic cycle, accounting for ~70% of precipitation in the conterminous U.S. (CONUS), but it has been a challenge to predict accurately across different spatio-temporal scales. The increasing availability of remotely sensed data has led to significant advances in the frequency and spatial resolution of ET estimates, derived from energy balance principles with variables such as temperature used to estimate surface latent heat flux. Although remote sensing methods excel at depicting spatial and temporal variability, estimation of ET independently of other water budget components can lead to inconsistency with other budget terms. Methods that rely on ground-based data better constrain long-term ET, but are unable to provide the same temporal resolution. Here we combine long-term ET estimates from a water-balance approach with the SSEBop (operational Simplified Surface Energy Balance) remote sensing-based ET product for 2000–2015. We test the new combined method, the original SSEBop product, and another remote sensing ET product (MOD16) against monthly measurements from 119 flux towers. The new product showed advantages especially in non-irrigated areas where the new method showed a coefficient of determination R2 of 0.44, compared to 0.41 for SSEBop or 0.35 for MOD16. The resulting monthly data set will be a useful, unique contribution to ET estimation, due to its combination of remote sensing-based variability and ground-based long-term water balance constraints.
Hyperspectral remote sensing study of harmful algal blooms in the Chesapeake Bay
NASA Astrophysics Data System (ADS)
Nie, Yixiang
Recent development of hyperspectral remote sensing provides capability to identify and classify harmful algal blooms beyond the estimation of chlorophyll concentrations. This study uses hyperspectral data to extract spectral signatures, classify algal blooms, and map the spatial distribution of the algal blooms in the upper Chesapeake Bay. Furthermore, water quality parameters from ground stations have been used together with remote sensing data to provide better understanding of the formation and transformation of the life cycle of harmful algal blooms, and the cause of their outbreaks in the upper Chesapeake Bay. The present results show a strong and significant positive correlation between chlorophyll concentrations and total organic nitrogen concentrations. This relation suggests that total organic nitrogen played an important role in triggering the harmful algal blooms in the upper Chesapeake Bay in this study. This study establishes an integrated approach which combines hyperspectral imaging with multispectral ocean color remote sensing data and traditional water quality monitoring system in the study of harmful algal blooms in small water bodies such as the Chesapeake Bay. Presently, remote sensing is well integrated into the research community, but is less commonly used by resource managers. This dissertation couples remote sensing technologies with specific monitoring programs. The present results will help natural resource managers, local authorities, and the public to utilize an integrated approach in order to better understand, evaluate, preserve, and restore the health of the Chesapeake Bay waters and habitats.
Wirth, Lisa; Rosenberger, Amanda; Prakash, Anupma; Gens, Rudiger; Margraf, F. Joseph; Hamazaki, Toshihide
2012-01-01
At northern limits of a species’ distribution, fish habitat requirements are often linked to thermal preferences, and the presence of overwintering habitat. However, logistical challenges and hydrologic processes typical of glacial systems could compromize the identification of these habitats, particularly in large river environments. Our goal was to identify and characterize spawning habitat for fall-run chum salmon Oncorhynchus keta and model habitat selection from spatial distributions of tagged individuals in the Tanana River, Alaska using an approach that combined ground surveys with remote sensing. Models included braiding, sinuosity, ice-free water surface area (indicating groundwater influence), and persistent ice-free water (i.e., consistent presence of ice-free water for a 12-year period according to satellite imagery). Candidate models containing persistent ice-free water were selected as most likely, highlighting the utility of remote sensing for monitoring and identifying salmon habitat in remote areas. A combination of ground and remote surveys revealed spatial and temporal thermal characteristics of these habitats that could have strong biological implications. Persistent ice-free sites identified using synthetic aperture radar appear to serve as core areas for spawning fall chum salmon, and the importance of stability through time suggests a legacy of successful reproductive effort for this homing species. These features would not be captured with a one-visit traditional survey but rather required remote-sensing monitoring of the sites through time.
Chlorophyll-a retrieval in the Philippine waters
NASA Astrophysics Data System (ADS)
Perez, G. J. P.; Leonardo, E. M.; Felix, M. J.
2017-12-01
Satellite-based monitoring of chlorophyll-a (Chl-a) concentration has been widely used for estimating plankton biomass, detecting harmful algal blooms, predicting pelagic fish abundance, and water quality assessment. Chl-a concentrations at 1 km spatial resolution can be retrieved from MODIS onboard Aqua and Terra satellites. However, with this resolution, MODIS has scarce Chl-a retrieval in coastal and inland waters, which are relevant for archipelagic countries such as the Philippines. These gaps on Chl-a retrieval can be filled by sensors with higher spatial resolution, such as the OLI of Landsat 8. In this study, assessment of Chl-a concentration derived from MODIS/Aqua and OLI/Landsat 8 imageries across the open, coastal and inland waters of the Philippines was done. Validation activities were conducted at eight different sites around the Philippines for the period October 2016 to April 2017. Water samples filtered on the field were processed in the laboratory for Chl-a extraction. In situ remote sensing reflectance was derived from radiometric measurements and ancillary information, such as bathymetry and turbidity, were also measured. Correlation between in situ and satellite-derived Chl-a concentration using the blue-green ratio yielded relatively high R2 values of 0.51 to 0.90. This is despite an observed overestimation for both MODIS and OLI-derived values, especially in turbid and coastal waters. The overestimation of Chl-a may be attributed to inaccuracies in i) remote sensing reflectance (Rrs) retrieval and/or ii) empirical model used in calculating Chl-a concentration. However, a good 1:1 correspondence between the satellite and in situ maximum Rrs band ratio was established. This implies that the overestimation is largely due to the inaccuracies from the default coefficients used in the empirical model. New coefficients were then derived from the correlation analysis of both in situ-measured Chl-a concentration and maximum Rrs band ratio. This results to a significant improvement on calculated RMSE of satellite-derived Chl-a values. Meanwhile, it was observed that the blue-green band ratio has low Chl-a predictive capability in turbid waters. A more accurate estimation was found using the NIR and red band ratios for turbid waters with covarying Chl-a concentration and low sediment load.
NASA Technical Reports Server (NTRS)
Shimizu, H.; Kobayasi, T.; Inaba, H.
1979-01-01
A method of remote measurement of the particle size and density distribution of water droplets was developed. In this method, the size of droplets is measured from the Mie scattering parameter which is defined as the total-to-backscattering ratio of the laser beam. The water density distribution is obtained by a combination of the Mie scattering parameter and the extinction coefficient of the laser beam. This method was examined experimentally for the mist generated by an ultrasonic mist generator and applied to clouds containing rain and snow. Compared with the conventional sampling method, the present method has advantages of remote measurement capability and improvement in accuracy.
Rigid hoist articulated grapple system development for enhanced remote maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witham, C.; White, P.; Garin, J.
1979-01-01
Remote maintenance and repair within nuclear environments have become more demanding of remote manipulation equipment in the last few years. A deficiency exists in the array of tools available for dexterous operations of loads in the 180-kg range. The development of a manipulation system with enhanced operator controls is discussed. This system is a six-degree-of-freedom manipulator with bilateral servo control. It is to be attached to a mobile support boom in order to operate throughout the nuclear cell. The manipulator is intended to work in conjunction with light duty servomanipulators, overhead crane systems, and through-the-wall mechanical master slaves.
Hand held phase-shifting diffraction Moire interferometer
Deason, V.A.; Ward, M.B.
1994-09-20
An interferometer is described in which a coherent beam of light is generated within a remote case and transmitted to a hand held unit tethered to said remote case, said hand held unit having optical elements for directing a pair of mutually coherent collimated laser beams at a diffraction grating. Data from the secondary or diffracted beams are then transmitted to a separate video and data acquisition system for recording and analysis for load induced deformation or for identification purposes. Means are also provided for shifting the phase of one incident beam relative to the other incident beam and being controlled from within said remote case. 4 figs.
NASA Astrophysics Data System (ADS)
Forsythe, Nathan; Kilsby, Chris G.; Fowler, Hayley J.; Archer, David R.
2010-05-01
The water resources of the Upper Indus Basin (UIB) are of the utmost importance to the economic wellbeing of Pakistan. The irrigated agriculture made possible by Indus river runoff underpins the food security for Pakistan's nearly 200 million people. Contributions from hydropower account for more than one fifth of peak installed electrical generating capacity in a country where widespread, prolonged load-shedding handicaps business activity and industrial development. Pakistan's further socio-economic development thus depends largely on optimisation of its precious water resources. Confident, accurate seasonal predictions of water resource availability coupled with sound understanding of interannual variability are urgent insights needed by development planners and infrastructure managers at all levels. This study focuses on the challenge of providing meaningful quantitative information at the village/valley scale in the upper reaches of the UIB. Proceeding by progressive reductions in scale, the typology of the observed UIB hydrological regimes -- glacial, nival and pluvial -- are examined with special emphasis on interannual variability for individual seasons. Variations in discharge (runoff) are compared to observations of climate parameters (temperature, precipitation) and available spatial data (elevation, snow cover and snow-water-equivalent). The first scale presented is composed of the large-scale, long-record gauged UIB tributary basins. The Pakistan Water and Power Development Authority (WAPDA) has maintained these stations for several decades in order to monitor seasonal flows and accumulate data for design of further infrastructure. Data from basins defined by five gauging stations on the Indus, Hunza, Gilgit and Astore rivers are examined. The second scale presented is a set of smaller gauged headwater catchments with short records. These gauges were installed by WAPDA and its partners amongst the international development agencies to assess potential sites for medium-scale infrastructure projects. These catchments are placed in their context within the hydrological regime classification using the spatial data and (remote sensing) observations as well as river gauging measurements. The study assesses the degree of similarity with the larger basins of the same hydrological regime. This assessment focuses on the measured response to observed climate variable anomalies. The smallest scale considered is comprised of a number of case studies at the ungauged village/valley scale. These examples are based on the delineation of areas to which specific communities (villages) have customary (riparian) water rights. These examples were suggested by non-governmental organisations working on grassroots economic development initiatives and small-scale infrastructure projects in the region. The direct observations available for these subcatchments are limited to spatial data (elevation, snow parameters). The challenge at this level is to accurately extrapolate areal values (precipitation, temperature, runoff) from point observations at the basin scale. The study assesses both the degree of similarity in the distribution of spatial parameters to the larger gauged basins and the interannual variability (spatial heterogeneity) of remotely-sensed snow cover and snow-water-equivalent at this subcatchment scale. Based upon the characterisation of spatial and interannual variability at these three spatial scales, the challenges facing local water resource managers and infrastructure operators are enumerated. Local vulnerabilities include, but are not limited to, varying thresholds in irrigation water requirements based on crop-type, minimum base flows for micro-hydropower generation during winter (high load) months and relatively small but growing demand for domestic water usage. In conclusion the study posits potential strategies for managing interannual variability and potential emerging trends. Suggested strategies are guided by the principles of low-risk adaptation, participative decision making and local capacity building.
Remote Sensing Applications with High Reliability in Changjiang Water Resource Management
NASA Astrophysics Data System (ADS)
Ma, L.; Gao, S.; Yang, A.
2018-04-01
Remote sensing technology has been widely used in many fields. But most of the applications cannot get the information with high reliability and high accuracy in large scale, especially for the applications using automatic interpretation methods. We have designed an application-oriented technology system (PIR) composed of a series of accurate interpretation techniques,which can get over 85 % correctness in Water Resource Management from the view of photogrammetry and expert knowledge. The techniques compose of the spatial positioning techniques from the view of photogrammetry, the feature interpretation techniques from the view of expert knowledge, and the rationality analysis techniques from the view of data mining. Each interpreted polygon is accurate enough to be applied to the accuracy sensitive projects, such as the Three Gorge Project and the South - to - North Water Diversion Project. In this paper, we present several remote sensing applications with high reliability in Changjiang Water Resource Management,including water pollution investigation, illegal construction inspection, and water conservation monitoring, etc.
Remote sensing inputs to water demand modeling
NASA Technical Reports Server (NTRS)
Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.
1975-01-01
In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.
Monitoring suspended sediments and turbidity in Sahelian basins
NASA Astrophysics Data System (ADS)
Robert, Elodie; Grippa, Manuela; Kergoat, Laurent; Martinez, Jean-Michel; Pinet, Sylvain; Nogmana, Soumaguel
2017-04-01
Suspended matter can carry viruses and bacteria that are pathogenic to humans and can foster their development. Therefore, turbidity can be considered a vector of microbiological contaminants, which cause diarrheal diseases, and it can be used as a proxy for fecal bacteria. Few studies have focused on water turbidity in rural Africa, where many cases of intestinal parasitic infections are due to the consumption of unsafe water from ponds, reservoirs, lakes and rivers. Diarrheal diseases are indeed the second cause of infant mortality in sub-Saharan Africa. Furthermore, in this region, environment survey is minimal or inexistent. Monitoring water turbidity therefore represents a challenge for health improvement. Turbidity refers to the optical properties of water and it is well suited to monitoring by remote sensing. Because it varies in space and time and because the small water bodies (< 250m2) are critical for Sahelian societies, monitoring turbidity requires the use of high temporal and spatial resolution sensors like Landsat 7 and 8, Sentinel-2 as well SPOT5-TAKE5 data. Compared to many other regions of the world, the particularly high turbidity values found in tropical Africa challenges the use of remote sensing and questions the methods developed for less turbid waters. In addition, high aerosol loadings (mineral dust and biomass burning) may be detrimental to turbidity retrieval in this region because of inaccurate atmospheric corrections. We propose a method to monitor water quality of Sahelian ponds, lakes and rivers using in-situ and remote sensing data, which is tested at different sites for which in-situ water turbidity and suspended sediments concentration (SSSC) measurements are acquired. Water sample are routinely collected at two sites within the AMMA-CATCH observatory part of the Réseau de Bassin Versants (RBV) French network: the Agoufou pond in northern Mali (starting September 2014), and the Niger River at Niamey in Niger (starting June 2015). These data are used to evaluate different indexes to derive water turbidity from the reflectance in the visible and infrared bands of high resolution optical sensors (LANDSAT, SENTINEL2). The temporal evolution of the turbidity of ponds, lakes and rivers is well captured at the seasonal and interannual scales with the NIR reflectance. The Agoufou pond displays a strong seasonal evolutions, and also the highest values of turbidity and SSSC (as high as 4200 mg/l).Turbidity increases from the first rains in June with a maximum observed in July and August and then declines from October onwards. The 2015 and 2016 dry seasons however differ markedly, with a secondary maximum of SSSC in February occurring in 2016, possibly caused by wind-driven sediments remobilization or cattle trampling. The Niger River in Niamey displays a rapid increase in turbidity between mid-June and late August associated to the 'red' flood, with a maximum in late July-early August and then a sharp decline associated with the black flood. Overall, the high turbidity observed at these sites indicates clear risks for human health. The methods developed here for the AMMA-CATCH, RBV sites will be applied to all inland waters in West Africa.
Four dimensional variational assimilation of in-situ and remote-sensing aerosol data
NASA Astrophysics Data System (ADS)
Nieradzik, L. P.; Elbern, H.
2012-04-01
Aerosols play an increasingly important role in atmospheric modelling. They have a strong influence on the radiative transfer balance and a significant impact on human health. Their origin is various and so are its effects. Most of the measurement sites in Europe account for an integrated aerosol load PMx (Particulate Matter of less than x μm in diameter) which does not give any qualitative information on the composition of the aerosol. Since very different constituents contribute to PMx, like e.g. mineral dust derived from desert storms or sea salt, it is necessary to make aerosol forecasts not only of load, but also type resolved. The method of four dimensional variational data assimilation (4Dvar) is a widely known technique to enhance forecast skills of CTMs (Chemistry-Transport-Models) by ingesting in-situ and, especially, remote-sensing measurements. The EURAD-IM (EURopean Air pollution Dispersion - Inverse Model), containing a full adjoint gas-phase model, has been expanded with an adjoint of the MADE (Modal Aerosol Dynamics model for Europe) to optimise initial and boundary values for aerosols using 4Dvar. A forward and an adjoint radiative transfer model is driven by the EURAD-IM as mapping between BLAOT (Boundary Layer Aerosol Optical Thickness) and internal aerosol species. Furthermore, its condensation scheme has been bypassed by an HDMR (High-Dimensional-Model-Representation) to ensure differentiability. In this study both in-situ measured PMx as well as satellite retrieved aerosol optical thicknesses have been assimilated and the effect on forecast performance has been investigated. The source of BLAOT is the aerosol retrieval system SYNAER (SYNergetic AErosol Retrieval) from DLR-DFD that retrieves AOT by making use of both AATSR/SCIAMACHY and AVHRR/GOME-2 data respectively. Its strengths are a large spatial coverage, near real-time availability, and the classification of five intrinsic aerosol species, namely water-solubles, water-insolubles, soot, sea salt, and mineral dust which are furthermore size resolved in terms of modes. The skill of the aerosol 4Dvar system was tested in two episodes: 1) July through August 2003, a dry period with strong wildfire activity in Europe, and 2) October through November 2008, the period of the ZEPTER-2 (Second ZEPpelin based Tropospheric photochemical chemistry expERiment) measurement campaign in the area of Lake Constance. In the latter case one-way nesting has been applied from a horizontal grid resolution of 45 km down to 5 km. Overall, the results showed a significant increase in forecast quality of tropospheric aerosol loads.
Qin, Changbo; Jia, Yangwen; Su, Z; Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen
2008-07-29
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.
Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen
2008-01-01
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946
Steele, Timothy Doak; Hillier, Donald E.
1981-01-01
Expanded mining and use of coal resources in the Rocky Mountain region of the western United States will have substantial impacts on water resources, environmental amenities, and social and economic conditions. The U.S. Geological Survey has completed a 3-year assessment of the Yampa River basin, Colorado and Wyoming, where increased coal-resource development has begun to affect the environment and quality of life. Economic projections of the overall effects of coal-resource development were used to estimate water use and the types and amounts of waste residuals that need to be assimilated into the environment. Based in part upon these projections, several physical-based models and other semiquantitative assessment methods were used to determine possible effects upon the basin's water resources. Depending on the magnitude of mining and use of coal resources in the basin, an estimated 0.7 to 2.7 million tons (0.6 to 2.4 million metric tons) of waste residuals may be discharged annually into the environment by coal-resource development and associated economic activities. If the assumed development of coal resources in the basin occurs, annual consumptive use of water, which was approximately 142,000 acre-feet (175 million cubic meters) during 1975, may almost double by 1990. In a related analysis of alternative cooling systems for coal-conversion facilities, four to five times as much water may be used consumptively in a wet-tower, cooling-pond recycling system as in once-through cooling. An equivalent amount of coal transported by slurry pipeline would require about one-third the water used consumptively by once-through cooling for in-basin conversion. Current conditions and a variety of possible changes in the water resources of the basin resulting from coal-resource development were assessed. Basin population may increase by as much as threefold between 1975 and 1990. Volumes of wastes requiring treatment will increase accordingly. Potential problems associated with ammonia-nitrogen concentrations in the Yampa River downstream from Steamboat Springs were evaluated using a waste-load assimilative-capacity model. Changes in sediment loads carried by streams due to increased coal mining and construction of roads and buildings may be apparent only locally; projected increases in sediment loads relative to historic loads from the basin are estimated to be 2 to 7 percent. Solid-waste residuals generated by coal-conversion processes and disposed of into old mine pits may cause widely dispersed ground-water contamination, based on simulation-modeling results. Projected increases in year-round water use will probably result in the construction of several proposed reservoirs. Current seasonal patterns of streamflow and of dissolvedsolids concentrations in streamflow will be altered appreciably by these reservoirs. Decreases in time-weighted mean-annual dissolved-solids concentrations of as much as 34 percent are anticipated, based upon model simulations of several configurations of proposed reservoirs. Detailed statistical analyses of water-quality conditions in the Yampa River basin were made. Regionalized maximum waterquality concentrations were estimated for possible comparison with future conditions. Using Landsat imagery and aerial photographs, potential remote-sensing applications were evaluated to monitor land-use changes and to assess both snow cover and turbidity levels in streams. The technical information provided by the several studies of the Yampa River basin assessment should be useful to regional planners and resource managers in evaluating the possible impacts of development on the basin's water resources.
Using computational modeling of river flow with remotely sensed data to infer channel bathymetry
Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Shimizu, Y.
2012-01-01
As part of an ongoing investigation into the use of computational river flow and morphodynamic models for the purpose of correcting and extending remotely sensed river datasets, a simple method for inferring channel bathymetry is developed and discussed. The method is based on an inversion of the equations expressing conservation of mass and momentum to develop equations that can be solved for depth given known values of vertically-averaged velocity and water-surface elevation. The ultimate goal of this work is to combine imperfect remotely sensed data on river planform, water-surface elevation and water-surface velocity in order to estimate depth and other physical parameters of river channels. In this paper, the technique is examined using synthetic data sets that are developed directly from the application of forward two-and three-dimensional flow models. These data sets are constrained to satisfy conservation of mass and momentum, unlike typical remotely sensed field data sets. This provides a better understanding of the process and also allows assessment of how simple inaccuracies in remotely sensed estimates might propagate into depth estimates. The technique is applied to three simple cases: First, depth is extracted from a synthetic dataset of vertically averaged velocity and water-surface elevation; second, depth is extracted from the same data set but with a normally-distributed random error added to the water-surface elevation; third, depth is extracted from a synthetic data set for the same river reach using computed water-surface velocities (in place of depth-integrated values) and water-surface elevations. In each case, the extracted depths are compared to the actual measured depths used to construct the synthetic data sets (with two- and three-dimensional flow models). Errors in water-surface elevation and velocity that are very small degrade depth estimates and cannot be recovered. Errors in depth estimates associated with assuming water-surface velocities equal to depth-integrated velocities are substantial, but can be reduced with simple corrections.
46 CFR 45.37 - Salt water load lines.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...
46 CFR 45.37 - Salt water load lines.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...
46 CFR 45.37 - Salt water load lines.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...
46 CFR 45.37 - Salt water load lines.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...
46 CFR 45.37 - Salt water load lines.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...
Generating Fatigue Crack Growth Thresholds with Constant Amplitude Loads
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Newman, James C., J.; Forman, Royce G.
2002-01-01
The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. Some experimental procedures tend to induce load history effects that result in remote crack closure from plasticity. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor, K, will increase, as will the crack growth rate, da/dN. A fatigue crack growth threshold test procedure is developed and experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R.
USDA-ARS?s Scientific Manuscript database
The aim of this study was to determine the validity of energy intake (EI) estimations made using the remote food photography method (RFPM) compared to the doubly labeled water (DLW) method in minority preschool children in a free-living environment. Seven days of food intake and spot urine samples...
Hyperspectral remote sensing of postfire soil properties
Sarah A. Lewis; Peter R. Robichaud; William J. Elliot; Bruce E. Frazier; Joan Q. Wu
2004-01-01
Forest fires may induce changes in soil organic properties that often lead to water repellent conditions within the soil profile that decrease soil infiltration capacity. The remote detection of water repellent soils after forest fires would lead to quicker and more accurate assessment of erosion potential. An airborne hyperspectral image was acquired over the Hayman...
USDA-ARS?s Scientific Manuscript database
Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. A thermal-based scheme, called the Two-Source Energy Balance (TSEB) model, solves for the soil/substrate and canopy temp...
The hydrology of prehistoric farming systems in a central Arizona ecotone
NASA Technical Reports Server (NTRS)
Gumerman, G. J.; Hanson, J. A.; Brew, D.; Tomoff, K.; Weed, C. S.
1975-01-01
The prehistoric land use and water management in the semi-arid Southwest was examined. Remote sensing data, geology, hydrology and biology are discussed along with an evaluation of remote sensing contributions, recommendations for applications, and proposed future remote sensing studies.
Remote sensing of a coupled carbon-water-energy-radiation balances from the Globe to plot scales
NASA Astrophysics Data System (ADS)
Ryu, Y.; Jiang, C.; Huang, Y.; Kim, J.; Hwang, Y.; Kimm, H.; Kim, S.
2016-12-01
Advancements in near-surface and satellite remote sensing technologies have enabled us to monitor the global terrestrial ecosystems at multiple spatial and temporal scales. An emergent challenge is how to formulate a coupled water, carbon, energy, radiation, and nitrogen cycles from remote sensing. Here, we report Breathing Earth System Simulator (BESS), which coupled radiation (shortwave, longwave, PAR, diffuse PAR), carbon (gross primary productivity, ecosystem respiration, net ecosystem exchange), water (evaporation), and energy (latent and sensible heat) balances across the global land at 1 km resolution, 8 daily between 2000 and 2015 using multiple satellite remote sensing. The performance of BESS was tested against field observations (FLUXNET, BSRN) and other independent products (MPI-BGC, MODIS, GLASS). We found that the coupled model, BESS showed on par with, or better performance than the other products which computed land surface fluxes individually. Lastly, we show one plot-level study conducted in a paddy rice to demonstrate how to couple radiation, carbon, water, nitrogen balances with a series of near-surface spectral sensors.
Ding, Jiule; Xing, Wei; Wu, Dongmei; Chen, Jie; Pan, Liang; Sun, Jun; Xing, Shijun; Dai, Yongming
2015-01-01
To assess the feasibility of susceptibility-weighted imaging (SWI) while monitoring changes in renal oxygenation level after water loading. Thirty-two volunteers (age, 28.0 ± 2.2 years) were enrolled in this study. SWI and multi-echo gradient echo sequence-based T2(*) mapping were used to cover the kidney before and after water loading. Cortical and medullary parameters were measured using small regions of interest, and their relative changes due to water loading were calculated based on baseline and post-water loading data. An intraclass correlation coefficient analysis was used to assess inter-observer reliability of each parameter. A receiver operating characteristic curve analysis was conducted to compare the performance of the two methods for detecting renal oxygenation changes due to water loading. Both medullary phase and medullary T2(*) values increased after water loading (p < 0.001), although poor correlations were found between the phase changes and the T2(*) changes (p > 0.05). Interobserver reliability was excellent for the T2(*) values, good for SWI cortical phase values, and moderate for the SWI medullary phase values. The area under receiver operating characteristic curve of the SWI medullary phase values was 0.85 and was not different from the medullary T2(*) value (0.84). Susceptibility-weighted imaging enabled monitoring changes in the oxygenation level in the medulla after water loading, and may allow comparable feasibility to detect renal oxygenation level changes due to water loading compared with that of T2(*) mapping.
Huntington, Jena M.; Savard, Charles S.
2015-09-30
During this study, total annual sediment loads ranged from 355 tons per year in 2010 to 1,768 tons per year in 2011 and were significantly lower than the previous study (water years 2004–07). Bedload represented between 29 and 38 percent of total sediment load in water years 2010–12, and between 72 and 90 percent of the total sediment load in water years 2004–07, which indicates a decrease in bedload between study periods. Annual suspended-sediment loads in water years 2010–12 indicated no significant change from water years 2004–07. Mean daily discharge was significantly lower in water years 2010–12 than in waters years 2004–07 and may be the reason for the decrease in bedload that resulted in a lower total sediment load.
NASA Technical Reports Server (NTRS)
Colwell, R. N.; Churchman, C. W.; Burgy, R. H.; Schubert, G.; Estes, J. E.; Bowden, L. W.; Algazi, R.; Coulson, K. L. (Principal Investigator)
1973-01-01
The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources.
Calomino, Francesco; Di Paolo, Nicola; Nicolai, Giulia; Miglio, Antonio
2010-05-01
In a previous experimental study we showed that the administration of a large water load in a short time increases the urinary flow and the transport capacity in the excretory tract of the rabbit ureter. In human subjects drinking a water load of 25 ml/kg(BW) in 30 minutes, diuresis, creatinine and urea clearance increase more than in those drinking the same load in 24 hours. The aim of the present study was to investigate possible correlations between percent reduction and baseline values of serum urea, creatinine, folic acid, and magnesium in humans. 20 volunteers were divided in two groups. Subjects in group 1 received a water load of 25 ml/kg(BW) in 24 hours followed by the same load in 30 minutes. Subjects in group 2 received the same water load but in inverse order. Before and after each water administration, the following variables were measured and compared: diuresis, serum urea, creatinine, folic acid and magnesium concentration, and urea and creatinine clearance. Serum urea and folic acid concentration decreased up to 40% after administration of the water load in 24 hours. Serum creatinine concentration decreased up to 20% after administration of the water load in 30 minutes. The concentration drop of these metabolites increased with increasing baseline metabolite concentrations.
NASA Technical Reports Server (NTRS)
Lee, Hyongki; Kim, Jin-woo; Lu, Zhong; Jung, Hahn Chul; Shum, C. K.; Alsdorf, Doug
2012-01-01
Wetland loss in Louisiana has been accelerating due primarily to anthropogenic and nature processes, and is being advocated as a problem with national importance. Accurate measurement or modeling of wetland-wide water level changes, its varying extent, its storage and discharge changes resulting in part from sediment loads, erosion and subsidence are fundamental to assessment of hurricane-induced flood hazards and wetland ecology. Here, we use innovative method to integrate interferometric SAR (InSAR) and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identi:fy double-bonnce backscattering areas in the wetland. Envisat radar altimeter-measured 18- Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (approx.40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-l C-band InSAR are then integrated with Envisat radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. Furthermore, we compare our water elevation changes with 2D flood modeling from LISFLOOD hydrodynamic model. Our study demonstrates that this new technique allows retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.
NASA Technical Reports Server (NTRS)
Colwell, R. N.
1973-01-01
Since May 1970, personnel on several campuses of the University of California have been conducting investigations which seek to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Emphasis has been given to California's water resources as exemplified by the Feather River project and other aspects of the California Water Plan. This study is designed to consider in detail the supply, demand, and impact relationships. The specific geographic areas studied are the Feather River drainage in northern California, the Chino-Riverside Basin and Imperial Valley areas in southern California, and selected portions of the west side of San Joaquin Valley in central California. An analysis is also given on how an effective benefit-cost study of remote sensing in relation to California's water resources might best be made.
NASA Astrophysics Data System (ADS)
Li, Xin; Menenti, Massimo
2010-10-01
The general objective of project 5322 in the Dragon 2 programme is to quantitatively retrieve some key eco- hydrological parameters by using remote sensed data, especially from ESA, Chinese, and the Third Party Mission (TPM). To achieve this goal, a comprehensive observation experiment, Watershed Allied Telemetry Experimental Research (WATER) was carried out. WARER is a simultaneously airborne, satellite-borne, and ground-based remote sensing experiment took place in the Heihe River Basin, a typical inland river basin in the northwest of China. This paper introduces the background and implementation of WATER. Data have been obtained so far are described in details. After a period of data analysis for two years, numerous results have also been achieved. This paper presents some early results of WATER as well.
Buto, Susan G.; Gold, Brittany L.; Jones, Kimberly A.
2014-01-01
Irrigation in arid environments can alter the natural rate at which salts are dissolved and transported to streams. Irrigated agricultural lands are the major anthropogenic source of dissolved solids in the Upper Colorado River Basin (UCRB). Understanding the location, spatial distribution, and irrigation status of agricultural lands and the method used to deliver water to agricultural lands are important to help improve the understanding of agriculturally derived dissolved-solids loading to surface water in the UCRB. Irrigation status is the presence or absence of irrigation on an agricultural field during the selected growing season or seasons. Irrigation method is the system used to irrigate a field. Irrigation method can broadly be grouped into sprinkler or flood methods, although other techniques such as drip irrigation are used in the UCRB. Flood irrigation generally causes greater dissolved-solids loading to streams than sprinkler irrigation. Agricultural lands in the UCRB mapped by state agencies at varying spatial and temporal resolutions were assembled and edited to represent conditions in the UCRB between 2007 and 2010. Edits were based on examination of 1-meter resolution aerial imagery collected between 2009 and 2011. Remote sensing classification techniques were used to classify irrigation status for the June to September growing seasons between 2007 and 2010. The final dataset contains polygons representing approximately 1,759,900 acres of agricultural lands in the UCRB. Approximately 66 percent of the mapped agricultural lands were likely irrigated during the study period.
Internet Enabled Remote Driving of a Combat Hybrid Electric Power System for Duty Cycle Measurement
2007-06-01
INTERNET ENABLED REMOTE DRIVING OF A COMBAT HYBRID ELECTRIC POWER SYSTEM FOR DUTY CYCLE MEASUREMENT Jarrett Goodell1 Marc Compere , Ph.D.2...Orlando, FL, April 2006. 2. Compere , M.; M.; Goodell, J.; Simon, M; Smith, W.; Brudnak, M, “Robust Control Techniques Enabling Duty Cycle...2006-01-3077, SAE Power Systems Conference, Nov. 2006. 3. Compere , M.; Simon, M.; Kajs, J.; Pozolo, M., “Tracked Vehicle Mobility Load Emulation for a
2011-03-01
to remotely sensed SCA and SWE. The first analysis, a comparison to SCA imagery, tests the models ability to correctly estimate the snow extent...remotely sensed data (Con- galton and Green 2009). The producer’s accuracies consistently show the model underestimating the snow extent at the end...and K. Green. 2009. Assessing the accuracy of remotely sensed data: principals and practices, Second edition. CRC Press, Taylor & Francis Group
Empirical validation and proof of added value of MUSICA's tropospheric δD remote sensing products
NASA Astrophysics Data System (ADS)
Schneider, M.; González, Y.; Dyroff, C.; Christner, E.; Wiegele, A.; Barthlott, S.; García, O. E.; Sepúlveda, E.; Hase, F.; Andrey, J.; Blumenstock, T.; Guirado, C.; Ramos, R.; Rodríguez, S.
2015-01-01
The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) integrates tropospheric water vapour isotopologue remote sensing and in situ observations. This paper presents a first empirical validation of MUSICA's H2O and δD remote sensing products, generated from ground-based FTIR (Fourier transform infrared), spectrometer and space-based IASI (infrared atmospheric sounding interferometer) observation. The study is made in the area of the Canary Islands in the subtropical northern Atlantic. As reference we use well calibrated in situ measurements made aboard an aircraft (between 200 and 6800 m a.s.l.) by the dedicated ISOWAT instrument and on the island of Tenerife at two different altitudes (at Izaña, 2370 m a.s.l., and at Teide, 3550 m a.s.l.) by two commercial Picarro L2120-i water isotopologue analysers. The comparison to the ISOWAT profile measurements shows that the remote sensors can well capture the variations in the water vapour isotopologues, and the scatter with respect to the in situ references suggests a δD random uncertainty for the FTIR product of much better than 45‰ in the lower troposphere and of about 15‰ for the middle troposphere. For the middle tropospheric IASI δD product the study suggests a respective uncertainty of about 15‰. In both remote sensing data sets we find a positive δD bias of 30-70‰. Complementing H2O observations with δD data allows moisture transport studies that are not possible with H2O observations alone. We are able to qualitatively demonstrate the added value of the MUSICA δD remote sensing data. We document that the δD-H2O curves obtained from the different in situ and remote sensing data sets (ISOWAT, Picarro at Izaña and Teide, FTIR, and IASI) consistently identify two different moisture transport pathways to the subtropical north eastern Atlantic free troposphere.
NASA Astrophysics Data System (ADS)
Lee, C. M.
2016-02-01
The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.
NASA Astrophysics Data System (ADS)
Lee, C. M.
2016-12-01
The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.
Rose, William J.; Robertson, Dale M.; Mergener, Elizabeth A.
2004-01-01
Simulations using water-quality models within the Wisconsin Lake Model Suite (WiLMS) indicated Pike Lake's response to 13 different phosphorus-loading scenarios. These scenarios included a base 'normal' year (2000) for which lake water quality and loading were known, six different percentage increases or decreases in phosphorus loading from controllable sources, and six different loading scenarios corresponding to specific management actions. Model simulations indicate that a 50-percent reduction in controllable loading sources would be needed to achieve a mesotrophic classification with respect to phosphorus, chlorophyll a, and Secchi depth (an index of water clarity). Model simulations indicated that short-circuiting of phosphorus from the inlet to the outlet was the main reason the water quality of the lake is good relative to the amount of loading from the Rubicon River and that changes in the percentage of inlet-to-outlet short-circuiting have a significant influence on the water quality of the lake.
Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space
2000-02-20
Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving...atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses
NASA Technical Reports Server (NTRS)
Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Wu, X. R.; Shivakumar, K. N.
1995-01-01
Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions available in the literature.
NASA Astrophysics Data System (ADS)
Simard, M.; Liu, K.; Denbina, M. W.; Jensen, D.; Rodriguez, E.; Liao, T. H.; Christensen, A.; Jones, C. E.; Twilley, R.; Lamb, M. P.; Thomas, N. A.
2017-12-01
Our goal is to estimate the fluxes of water and sediments throughout the Wax Lake-Atchafalaya basin. This was achieved by parametrization of a set of 1D (HEC-RAS) and 2D (DELFT3D) hydrology models with state of the art remote sensing measurements of water surface elevation, water surface slope and total suspended sediment (TSS) concentrations. The model implementations are spatially explicit, simulating river currents, lateral flows to distributaries and marshes, and spatial variations of sediment concentrations. Three remote sensing instruments were flown simultaneously to collect data over the Wax Lake-Atchafalaya basin, and along with in situ field data. A Riegl Lidar was used to measure water surface elevation and slope, while the UAVSAR L-band radar collected data in repeat-pass interferometric mode to measure water level change within adjacent marshes and islands. These data were collected several times as the tide rose and fell. AVRIS-NG instruments measured water surface reflectance spectra, used to estimate TSS. Bathymetry was obtained from sonar transects and water level changes were recorded by 19 water level pressure transducers. We used several Acoustic Doppler Current Profiler (ADCP) transects to estimate river discharge. The remotely sensed measurements of water surface slope were small ( 1cm/km) and varied slightly along the channel, especially at the confluence with bayous and the intra-coastal waterway. The slope also underwent significant changes during the tidal cycle. Lateral fluxes to island marshes were mainly observed by UAVSAR close to the distributaries. The extensive remote sensing measurements showed significant disparity with the hydrology model outputs. Observed variations in water surface slopes were unmatched by the model and tidal wave propagation was much faster than gauge measurements. The slope variations were compensated for in the models by tuning local lateral fluxes, bathymetry and riverbed friction. Overall, the simpler 1D model could best simulate observed tidal wave propagation and water surface slope. The complexity of the 2D model requires further quantification of parameter sensitivity and improvement of the parametrization routine.
Anthropogenic land uses elevate metal levels in stream water in an urbanizing watershed.
Yu, Shen; Wu, Qian; Li, Qingliang; Gao, Jinbo; Lin, Qiaoying; Ma, Jun; Xu, Qiufang; Wu, Shengchun
2014-08-01
Land use/cover change is a dominant factor affecting surface water quality in rapidly developing areas of Asia. In this study we examined relationships between land use and instream metal loadings in a rapidly developing mixed land use watershed in southeastern China. Five developing subwatersheds and one forested reference site (head water) were instrumented with timing- and rainfall-triggered autosampler and instream loadings of anthropogenic metals (Cu, Zn, Pb, Cr, Cd, and Mn) were monitored from March 2012 to December 2013. Farm land and urban land were positively, and forest and green land were negatively associated with metal loadings (except Cr) in stream water. All developing sites had higher loadings than the reference head water site. Assessed by Chinese surface water quality standard (GB3830-2002), instream loadings of Cu and Zn occasionally exceeded the Class I thresholds at monitoring points within farmland dominated subwatersheds while Mn loadings were greater than the limit for drinking water sources at all monitoring points. Farm land use highly and positively contributed to statistical models of instream loadings of Cu, Zn, Cd, and Mn while urban land use was the dominant contributor to models of Pb and Cd loadings. Rainfall played a crucial role in metal loadings in stream water as a direct source (there were significant levels of Cu and Zn in rain water) and as a driver of watershed processes (loadings were higher in wet years and seasons). Urbanization effects on metal loadings in this watershed are likely to change rapidly with development in future years. Further monitoring to characterize these changes is clearly warranted and should help to develop plans to avoid conflicts between economic development and water quality degradation in this watershed and in watersheds throughout rapidly developing areas of Asia. Copyright © 2014 Elsevier B.V. All rights reserved.
Sarkar, Sudipta; Greenleaf, John E; Gupta, Anirban; Ghosh, Debabrata; Blaney, Lee M; Bandyopadhyay, P; Biswas, R K; Dutta, Amal K; Sengupta, Arup K
2010-11-01
In Bangladesh and the neighboring state of West Bengal, India, over 100 million people are affected by widespread arsenic poisoning through drinking water drawn from underground sources containing arsenic at concentrations well above the permissible limit of 50 μg/L. The health effects caused by arsenic poisoning in this area is as catastrophic as any other natural calamity that occurred throughout the world in recent times. Since 1997, over 200 community level arsenic removal units have been installed in Indian subcontinent through collaboration between Bengal Engineering and Science University (BESU), India and Lehigh University, USA. Approximately 200,000 villagers collect arsenic-safe potable water from these units on a daily basis. The treated water is also safe for drinking with regard to its total dissolved solids, hardness, iron and manganese content. The units use regenerable arsenic-selective adsorbents. Regular maintenance and upkeep of the units is administered by the villagers through formation of villagers' water committee. The villagers contribute towards the cost of operation through collection of a small water tariff. Upon exhaustion, the adsorbents are regenerated in a central facility by a few trained villagers. The process of regeneration reduces the volume of disposable arsenic-laden solids by nearly two orders of magnitude and allows for the reuse of the adsorbent material. Finally, the arsenic-laden solids are contained on well-aerated coarse sand filters with minimum arsenic leaching. This disposal technique is scientifically more appropriate than dumping arsenic-loaded adsorbents in the reducing environment of landfills as currently practiced in developed countries including the United States. The design of the units underwent several modifications over last ten years to enhance the efficiency in terms of arsenic removal, ease of maintenance and ecologically safe containment and disposal of treatment residuals. The continued safe operation of these units has amply demonstrated that use of regenerable arsenic-selective adsorbents is quite viable in remote locations. The technology and associated socio-economic management of the units have matured over the years, generating promise for rapid replication in other severely arsenic-affected countries in Southeast Asia. Copyright © 2010 Elsevier Ltd. All rights reserved.
A simple method to incorporate water vapor absorption in the 15 microns remote temperature sounding
NASA Technical Reports Server (NTRS)
Dallu, G.; Prabhakara, C.; Conhath, B. J.
1975-01-01
The water vapor absorption in the 15 micron CO2 band, which can affect the remotely sensed temperatures near the surface, are estimated with the help of an empirical method. This method is based on the differential absorption properties of the water vapor in the 11-13 micron window region and does not require a detailed knowledge of the water vapor profile. With this approach Nimbus 4 IRIS radiance measurements are inverted to obtain temperature profiles. These calculated profiles agree with radiosonde data within about 2 C.
[Effect analysis on the two total load control methods for poisonous heavy metals].
Fu, Guo-Wei
2012-12-01
Firstly it should be made clear that implementation of source total load control for the first type of pollutants is necessary for environmental pollution control legislation and economic structure regulation. This kind of surveillance method has been more practical to be implemented since the Manual of the Industry Discharge Coefficient of First National Pollution Sources Investigation was published. The source total load control and water environment total load control are independent of each other and none of them is redundant, on the other side they can be complementary to each other. In the present, some local planning managers are blurring and confusing the contents and styles of the two surveillance methods. They just use the water total load control to manage all the pollutants, and source total load control is discarded, which results in the loss of control for the first type of pollutants especially for the drinking water source surveillance. There is a big difference between the water quality standards and the water environmental background concentration values for the first type of pollutants in the Environmental quality standard for surface water (GB 3838-88), which means that there are problems such as "relaxing the pollutant discharge permit" and "risk induced by valence state change". Taking an enterprise with 10t electrolytic lead production capacity as an example, there is a big difference between the allowable lead discharged loads by the two total load surveillance methods. In summary, it will bring a lot of harmful effects if the water total load control is implemented for the two types of pollutants, so the source total load control and water environmental total load control should be implemented strictly at the same time.
Nutrient trends through time in Sweden's Baltic Drainage Area
NASA Astrophysics Data System (ADS)
Fischer, I.; Destouni, G.; Prieto, C.
2015-12-01
Changes in climate and land-use have and will continue to modify regional hydrology, in turn impacting environmental health, agricultural productivity and water resource quality and availability. The Baltic region is an area of interest as the coast spans nine countries- serving over 100 million people. The Baltic Sea contains one of the largest human caused hypoxic dead zones due to eutrophication driven by anthropogenic excess loading of nutrients. Policies to reduce these loads include also international directives and agreements, such as the EU Water Framework Directive, adopted in 2000 to protect and improve water quality throughout the European Union, and the Baltic Sea Action Plan under the Helsinki Commission aimed specifically at reducing the nutrient loading to and mitigating the eutrophication of the Baltic Sea. In light of these policies and amidst the number of studies on the Baltic Sea we ask, using the accessible nutrient and discharge data what does nutrient loading look like today? Are the most excessive loads going down? Observed nutrient and flow time series across Sweden allow for answering these questions, by spatial and temporal trend analysis of loads from various parts of Sweden to the Baltic Sea. Analyzing these observed time series in conjunction with the ecological health status classifications of the EU Water Framework Directive, allows in particular for answering the question if the loads into the water bodies with the poorest water quality, and from those to the Baltic Sea, are improving, being maintained or deteriorating. Such insight is required to contribute to relevant and efficient water and nutrient load management. Furthermore, empirically calculating nutrient loads, rather than only modeling, reveals that the water body health classification may not reflect what water bodies actually contribute the heaviest loads to the Baltic Sea. This work also underscores the importance of comprehensive analysis of all available data from long term monitoring programs over large spatial scales, including large water quality gradients, in order to assess and address water management problems of today and the future.
49 CFR 178.338-11 - Discharge control devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... water capacity, remote means of automatic closure must be installed at the ends of the cargo tank in at... control system. (ii) On a cargo tank motor vehicle of 3,500 gallons water capacity or less, at least one remote means of automatic closure must be installed on the end of the cargo tank farthest away from the...
Small Spacecraft Technology Initiative Education Program
NASA Technical Reports Server (NTRS)
1995-01-01
A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.
Remote Sensing of Water Pollution
NASA Technical Reports Server (NTRS)
White, P. G.
1971-01-01
Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.
Evapotranspiration and remote sensing
NASA Technical Reports Server (NTRS)
Schmugge, T. J.; Gurney, R.
1982-01-01
There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.
NASA Technical Reports Server (NTRS)
Khorram, S.
1977-01-01
Results are presented of a study intended to develop a general location-specific remote-sensing procedure for watershed-wide estimation of water loss to the atmosphere by evaporation and transpiration. The general approach involves a stepwise sequence of required information definition (input data), appropriate sample design, mathematical modeling, and evaluation of results. More specifically, the remote sensing-aided system developed to evaluate evapotranspiration employs a basic two-stage two-phase sample of three information resolution levels. Based on the discussed design, documentation, and feasibility analysis to yield timely, relatively accurate, and cost-effective evapotranspiration estimates on a watershed or subwatershed basis, work is now proceeding to implement this remote sensing-aided system.
NASA Astrophysics Data System (ADS)
Ansari, R.
2017-12-01
Aerial remote sensing conducted by volunteer pilots acting as citizen scientists is providing high-quality data to help understand reasons behind outbreaks of toxic algal blooms in nation's waterways and coastlines. The toxic water can be detrimental to national economy, human health, clean drinking water, fishing industry, and water sports. We will show how general aviation pilots around the country are contributing to this NASA citizen science initiative.
NASA Astrophysics Data System (ADS)
Morgan, E. L.; Eagleson, K. W.; Hermann, R.; McCollough, N. D.
1981-05-01
Maintaining adequate water quality in a multipurpose drainage system becomes increasingly important as demands on resources become greater. Real-time water quality monitoring plays a crucial role in meeting this objective. In addition to remote automated physical monitoring, developments at the end of the 1970's allow simultaneous real-time measurements of fish breathing response to water quality changes. These advantages complement complex in-stream surveys typically carried out to evaluate the environmental quality of a system. Automated biosensing units having remote capabilities are designed to aid in the evaluation of subtle water quality changes contributing to undesirable conditions in a drainage basin. Using microprocessor-based monitors to measure fish breathing rates, the biosensing units are interfaced to a U.S. National Aeronautics and Space Administration (N.A.S.A.) remote data collection platform for National Oceanic and Atmospheric Administration (N.O.A.A.) GOES satellite retrieval and transmission of data. Simultaneously, multiparameter physical information is collected from site-specific locations and recovered in a similar manner. Real-time biological and physical data received at a data processing center are readily available for interpretation by resource managers. Management schemes incorporating real-time monitoring networks into on-going programs to simultaneously retrieve biological and physical data by satellite, radio and telephone cable give added advantages in maintaining water quality for multipurpose needs.
GPS Remote Sensing Measurements Using Aerosonde UAV
NASA Technical Reports Server (NTRS)
Grant, Michael S.; Katzberg, Stephen J.; Lawrence, R. W.
2005-01-01
In February 2004, a NASA-Langley GPS Remote Sensor (GPSRS) unit was flown on an Aerosonde unmanned aerial vehicle (UAV) from the Wallops Flight Facility (WFF) in Virginia. Using direct and surface-reflected 1.575 GHz coarse acquisition (C/A) coded GPS signals, remote sensing measurements were obtained over land and portions of open water. The strength of the surface-reflected GPS signal is proportional to the amount of moisture in the surface, and is also influenced by surface roughness. Amplitude and other characteristics of the reflected signal allow an estimate of wind speed over open water. In this paper we provide a synopsis of the instrument accommodation requirements, installation procedures, and preliminary results from what is likely the first-ever flight of a GPS remote sensing instrument on a UAV. The correct operation of the GPSRS unit on this flight indicates that Aerosonde-like UAV's can serve as platforms for future GPS remote sensing science missions.
NASA Astrophysics Data System (ADS)
Rinaldi, M.; Castrignanò, A.; Mastrorilli, M.; Rana, G.; Ventrella, D.; Acutis, M.; D'Urso, G.; Mattia, F.
2006-08-01
An efficient management of water resources is crucial point for Italy and in particular for southern areas characterized by Mediterranean climate in order to improve the economical and environmental sustainability of the agricultural activity. A three-year Project (2005-2008) has been funded by the Italian Ministry of Agriculture and Forestry Policies; it involves four Italian research institutions: the Agricultural Research Council (ISA, Bari), the National Research Council (ISSIA, Bari) and two Universities (Federico II-Naples and Milan). It is focused on the remote sensing, the plant and the climate and, for interdisciplinary relationships, the project working group consists of agronomists, engineers and physicists. The aims of the Project are: a) to produce a Decision Support System (DSS) combining remote sensing information, spatial data and simulation models to manage water resources in irrigation districts; b) to simulate irrigation scenarios to evaluate the effects of water stress on crop yield using agro-ecological indicators; c) to identify the most sensitive areas to drought risk in Southern Italy. The tools used in this Project will be: 1. Remote sensing images, topographic maps, soil and land use maps; 2. Geographic Information Systems; 3. Geostatistic methodologies; 4. Ground truth measurements (land use, canopy and soil temperatures, soil and plant water status, Normalized Difference Vegetation Index, Crop Water Stress Index, Leaf Area Index, actual evapotranspiration, crop coefficients, crop yield, agro-ecological indicators); 5. Crop simulation models. The Project is structured in four work packages with specific objectives, high degree of interaction and information exchange: 1) Remote Sensing and Image Analysis; 2) Cropping Systems; 3) Modelling and Softwares Development; 4) Stakeholders. The final product will be a DSS with the purpose of integrating remote sensing images, to estimate crop and soil variables related to drought, to assimilate these variables into a simulation model at district scale and, finally, to estimate evapotranspiration, plant water status and drought indicators. A project Web home page, a technical course about DSS for the employers of irrigation authorities and dissemination of results (meetings, publications, reports), are also planned.
Multi- and hyperspectral remote sensing of tropical marine benthic habitats
NASA Astrophysics Data System (ADS)
Mishra, Deepak R.
Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was consistently more accurate (84%) including finer definition of geomorphological features than the satellite sensors. IKONOS (81%) and QuickBird (81%) sensors showed similar accuracy to AISA, however, such similarity was only reached at the coarse classification levels of 5 and 6 habitats. These results confirm the potential of an effective combination of high spectral and spatial resolution sensor, for accurate benthic habitat mapping.
Inroads of remote sensing into hydrologic science during the WRR era
NASA Astrophysics Data System (ADS)
Lettenmaier, Dennis P.; Alsdorf, Doug; Dozier, Jeff; Huffman, George J.; Pan, Ming; Wood, Eric F.
2015-09-01
The first issue of WRR appeared eight years after the launch of Sputnik, but by WRR's 25th anniversary, only seven papers that used remote sensing had appeared. Over the journal's second 25 years, that changed remarkably, and remote sensing is now widely used in hydrology and other geophysical sciences. We attribute this evolution to production of data sets that scientists not well versed in remote sensing can use, and to educational initiatives like NASA's Earth System Science Fellowship program that has supported over a thousand scientists, many in hydrology. We review progress in remote sensing in hydrology from a water balance perspective. We argue that progress is primarily attributable to a creative use of existing and past satellite sensors to estimate such variables as evapotranspiration rates or water storage in lakes and reservoirs and to new and planned missions. Recent transforming technologies include the Gravity Recovery and Climate Experiment (GRACE), the European Soil Moisture and Ocean Salinity (SMOS) and U.S. Soil Moisture Active Passive (SMAP) missions, and the Global Precipitation Measurement (GPM) mission. Future missions include Surface Water and Ocean Topography (SWOT) to measure river discharge and lake, reservoir, and wetland storage. Measurement of some important hydrologic variables remains problematic: retrieval of snow water equivalent (SWE) from space remains elusive especially in mountain areas, even though snow cover extent is well observed, and was the topic of 4 of the first 5 remote sensing papers published in WRR. We argue that this area deserves more strategic thinking from the hydrology community.
Leib, Kenneth J.; Mast, M. Alisa; Wright, Winfield G.
2003-01-01
One of the important types of information needed to characterize water quality in streams affected by historical mining is the seasonal pattern of toxic trace-metal concentrations and loads. Seasonal patterns in water quality are estimated in this report using a technique called water-quality profiling. Water-quality profiling allows land managers and scientists to assess priority areas to be targeted for characterization and(or) remediation by quantifying the timing and magnitude of contaminant occurrence. Streamflow and water-quality data collected at 15 sites in the upper Animas River Basin during water years 1991?99 were used to develop water-quality profiles. Data collected at each sampling site were used to develop ordinary least-squares regression models for streamflow and constituent concentrations. Streamflow was estimated by correlating instantaneous streamflow measured at ungaged sites with continuous streamflow records from streamflow-gaging stations in the subbasin. Water-quality regression models were developed to estimate hardness and dissolved cadmium, copper, and zinc concentrations based on streamflow and seasonal terms. Results from the regression models were used to calculate water-quality profiles for streamflow, constituent concentrations, and loads. Quantification of cadmium, copper, and zinc loads in a stream segment in Mineral Creek (sites M27 to M34) was presented as an example application of water-quality profiling. The application used a method of mass accounting to quantify the portion of metal loading in the segment derived from uncharacterized sources during different seasonal periods. During May, uncharacterized sources contributed nearly 95 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 85 percent of the zinc load at M34. During September, uncharacterized sources contributed about 86 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 52 percent of the zinc load at M34. Characterized sources accounted for more of the loading gains estimated in the example reach during September, possibly indicating the presence of diffuse inputs during snowmelt runoff. The results indicate that metal sources in the upper Animas River Basin may change substantially with season, regardless of the source.
High-frequency remote monitoring of large lakes with MODIS 500 m imagery
McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.
2012-01-01
Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.
NASA Astrophysics Data System (ADS)
Abramson, Adam; Adar, Eilon; Lazarovitch, Naftali
2014-06-01
Groundwater is often the most or only feasible safe drinking water source in remote, low-resource areas, yet the economics of its development have not been systematically outlined. We applied AWARE (Assessing Water Alternatives in Remote Economies), a recently developed Decision Support System, to investigate the costs and benefits of groundwater access and abstraction for non-networked, rural supplies. Synthetic profiles of community water services (n = 17,962), defined across 13 parameters' values and ranges relevant to remote areas, were applied to the decision framework, and the parameter effects on economic outcomes were investigated. Regressions and analysis of output distributions indicate that the most important factors determining the cost of water improvements include the technological approach, the water service target, hydrological parameters, and population density. New source construction is less cost-effective than the use or improvement of existing wells, but necessary for expanding access to isolated households. We also explored three financing approaches - willingness-to-pay, -borrow, and -work - and found that they significantly impact the prospects of achieving demand-driven cost recovery. The net benefit under willingness to work, in which water infrastructure is coupled to community irrigation and cash payments replaced by labor commitments, is impacted most strongly by groundwater yield and managerial factors. These findings suggest that the cost-benefit dynamics of groundwater-based water supply improvements vary considerably by many parameters, and that the relative strengths of different development strategies may be leveraged for achieving optimal outcomes.
Engineering Remotely Triggered Liposomes to Target Triple Negative Breast Cancer
Sneider, Alexandra; Jadia, Rahul; Piel, Brandon; VanDyke, Derek; Tsiros, Christopher; Rai, Prakash
2017-01-01
Triple Negative Breast Cancer (TNBC) continues to present a challenge in the clinic, as there is still no approved targeted therapy. TNBC is the worst sub-type of breast cancer in terms of prognosis and exhibits a deficiency in estrogen, progesterone, and human epidermal growth factor 2 (HER2) receptors. One possible option for the treatment of TNBC is chemotherapy. The issue with many chemotherapy drugs is that their effectiveness is diminished due to poor water solubility, and the method of administration directly or with a co-solvent intravenously can lead to an increase in toxicity. The issues of drug solubility can be avoided by using liposomes as a drug delivery carrier. Liposomes are engineered, biological nanoconstructs that possess the ability to encapsulate both hydrophobic and hydrophilic drugs and have been clinically approved to treat cancer. Specific targeting of cancer cell receptors through the use of ligands conjugated to the surface of drug-loaded liposomes could lessen damage to normal, healthy tissue. This study focuses on polyethylene glycol (PEG)-coated, folate conjugated, benzoporphyrin derivative (BPD)-loaded liposomes for treatment via photodynamic therapy (PDT). The folate receptor is over expressed on TNBC cells so these liposomes are targeted for greater uptake into cancer cells. PDT involves remotely irradiating light at 690 nm to trigger BPD, a hydrophobic photosensitive drug, to form reactive oxygen species that cause tumor cell death. BPD also displays a fluorescence signal when excited by light making it possible to image the fluorescence prior to PDT and for theranostics. In this study, free BPD, non-targeted and folate-targeted PEGylated BPD-loaded liposomes were introduced to a metastatic breast cancer cell line (MDA-MB-231) in vitro. The liposomes were reproducibly synthesized and characterized for size, polydispersity index (PDI), zeta potential, stability, and BPD release kinetics. Folate competition tests, fluorescence confocal imaging, and MTT assay were used to observe and quantify targeting effectiveness. The toxicity of BPD before and after PDT in monolayer and 3D in vitro cultures with TNBC cells was observed. This study may contribute to a novel nanoparticle-mediated approach to target TNBC using PDT. PMID:28174679
Removing sun glint from optical remote sensing images of shallow rivers
Overstreet, Brandon T.; Legleiter, Carl
2017-01-01
Sun glint is the specular reflection of light from the water surface, which often causes unusually bright pixel values that can dominate fluvial remote sensing imagery and obscure the water-leaving radiance signal of interest for mapping bathymetry, bottom type, or water column optical characteristics. Although sun glint is ubiquitous in fluvial remote sensing imagery, river-specific methods for removing sun glint are not yet available. We show that existing sun glint-removal methods developed for multispectral images of marine shallow water environments over-correct shallow portions of fluvial remote sensing imagery resulting in regions of unreliable data along channel margins. We build on existing marine glint-removal methods to develop a river-specific technique that removes sun glint from shallow areas of the channel without overcorrection by accounting for non-negligible water-leaving near-infrared radiance. This new sun glint-removal method can improve the accuracy of spectrally-based depth retrieval in cases where sun glint dominates the at-sensor radiance. For an example image of the gravel-bed Snake River, Wyoming, USA, observed-vs.-predicted R2 values for depth retrieval improved from 0.66 to 0.76 following sun glint removal. The methodology presented here is straightforward to implement and could be incorporated into image processing workflows for multispectral images that include a near-infrared band.
DOT National Transportation Integrated Search
1980-05-28
An evaluation of the utility of lighter-than-air vehicles (airships) for Alaskan service suggests that very large vehicles operating at low speeds would transport heavy loads to remote areas with excellent fuel economy, but that the potential market ...
NASA Technical Reports Server (NTRS)
Rediess, Herman A.; Hewett, M. D.
1991-01-01
The requirements are assessed for the use of remote computation to support HRV flight testing. First, remote computational requirements were developed to support functions that will eventually be performed onboard operational vehicles of this type. These functions which either cannot be performed onboard in the time frame of initial HRV flight test programs because the technology of airborne computers will not be sufficiently advanced to support the computational loads required, or it is not desirable to perform the functions onboard in the flight test program for other reasons. Second, remote computational support either required or highly desirable to conduct flight testing itself was addressed. The use is proposed of an Automated Flight Management System which is described in conceptual detail. Third, autonomous operations is discussed and finally, unmanned operations.
Woods, Gwen C; Trenholm, Rebecca A; Hale, Bruce; Campbell, Zeke; Dickenson, Eric R V
2015-07-01
Nitrosamines are considered to pose greater health risks than currently regulated DBPs and are subsequently listed as a priority pollutant by the EPA, with potential for future regulation. Denver Water, as part of the EPA's Unregulated Contaminant Monitoring Rule 2 (UCMR2) monitoring campaign, found detectable levels of N-nitrosodimethylamine (NDMA) at all sites of maximum residency within the distribution system. To better understand the occurrence of nitrosamines and nitrosamine precursors, Denver Water undertook a comprehensive year-long monitoring campaign. Samples were taken every two weeks to monitor for NDMA in the distribution system, and quarterly sampling events further examined 9 nitrosamines and nitrosamine precursors throughout the treatment and distribution systems. NDMA levels within the distribution system were typically low (>1.3 to 7.2 ng/L) with a remote distribution site (frequently >200 h of residency) experiencing the highest concentrations found. Eight other nitrosamines (N-nitrosomethylethylamine, N-nitrosodiethylamine, N-nitroso-di-n-propylamine, N-nitroso-di-n-butylamine, N-nitroso-di-phenylamine, N-nitrosopyrrolidine, N-nitrosopiperidine, N-nitrosomorpholine) were also monitored but none of these 8, or precursors of these 8 [as estimated with formation potential (FP) tests], were detected anywhere in raw, partially-treated or distribution samples. Throughout the year, there was evidence that seasonality may impact NDMA formation, such that lower temperatures (~5-10°C) produced greater NDMA than during warmer months. The year of sampling further provided evidence that water quality and weather events may impact NDMA precursor loads. Precursor loading estimates demonstrated that NDMA precursors increased during treatment (potentially from cationic polymer coagulant aids). The precursor analysis also provided evidence that precursors may have increased further within the distribution system itself. This comprehensive study of a large-scale drinking water system provides insight into the variability of NDMA occurrence in a chloraminated system, which may be impacted by seasonality, water quality changes and/or the varied origins of NDMA precursors within a given system. Copyright © 2015 Elsevier B.V. All rights reserved.
Characterizing water resources of the Nile Basin using remotely sensed data
NASA Astrophysics Data System (ADS)
Mekonnen, Z. T.; Gebremichael, M.; Demissie, S. S.
2015-12-01
The Nile is one of the largest river basin in the world with a rich biodiversity as well supporting the lives of 450 million people residing within the 11 riparian countries. This vital resource is under a growing stress due to population growth, rapid development and climate change. In this work, we explore the use of the latest various remote sensing products to capture the water resource of the basin: rainfall from GPM and TRMM, soil moisture from SMAP and SMOS, evapotranspiration from MODIS and EUMETSAT LSA-SAF, and total water storage variations from GRACE. The satellite estimates were supplemented and checked by ground measurements whenever possible. Our results show that spatiotemporal variations of the basin's water resources characteristics are well captured by remote sensing products rather than the scarce point measurements that currently exist. Several aspects of our results will be presented and discussed.
NASA Astrophysics Data System (ADS)
Ye, Huping; Li, Junsheng; Zhu, Jianhua; Shen, Qian; Li, Tongji; Zhang, Fangfang; Yue, Huanyin; Zhang, Bing; Liao, Xiaohan
2017-10-01
The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values in situ using the nine-wavelength absorption and attenuation meter AC9. Establishing the correction always fails in Case 2 water when the correction assumes zero absorption in the near-infrared (NIR) region and underestimates the absorption coefficient in the red region, which affect processes such as semi-analytical remote sensing inversion. In this study, the scattering contribution was evaluated by an exponential fitting approach using AC9 measurements at seven wavelengths (412, 440, 488, 510, 532, 555, and 715 nm) and by applying scattering correction. The correction was applied to representative in situ data of moderately turbid coastal water, highly turbid coastal water, eutrophic inland water, and turbid inland water. The results suggest that the absorption levels in the red and NIR regions are significantly higher than those obtained using standard scattering error correction procedures. Knowledge of the deviation between this method and the commonly used scattering correction methods will facilitate the evaluation of the effect on satellite remote sensing of water constituents and general optical research using different scattering-correction methods.
Generating electricity while walking with loads.
Rome, Lawrence C; Flynn, Louis; Goldman, Evan M; Yoo, Taeseung D
2005-09-09
We have developed the suspended-load backpack, which converts mechanical energy from the vertical movement of carried loads (weighing 20 to 38 kilograms) to electricity during normal walking [generating up to 7.4 watts, or a 300-fold increase over previous shoe devices (20 milliwatts)]. Unexpectedly, little extra metabolic energy (as compared to that expended carrying a rigid backpack) is required during electricity generation. This is probably due to a compensatory change in gait or loading regime, which reduces the metabolic power required for walking. This electricity generation can help give field scientists, explorers, and disaster-relief workers freedom from the heavy weight of replacement batteries and thereby extend their ability to operate in remote areas.
Monitoring rice (oryza sativa L.) growth using multifrequency microwave scatterometers
USDA-ARS?s Scientific Manuscript database
Microwave remote sensing can help monitor the land surface water cycle and crop growth. This type of remote sensing has great potential over conventional remote sensing using the visible and infrared regions due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-b...
Frontiers of Remote Sensing of the Oceans and Troposphere from Air and Space Platforms
NASA Technical Reports Server (NTRS)
1984-01-01
Several areas of remote sensing are addressed including: future satellite systems; air-sea interaction/wind; ocean waves and spectra/S.A.R.; atmospheric measurements (particulates and water vapor); synoptic and weather forecasting; topography; bathymetry; sea ice; and impact of remote sensing on synoptic analysis/forecasting.
Evapotranspiration estimates derived using multi-platform remote sensing in a semiarid region
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) is a key component of the water balance, especially in arid and semiarid regions. The current study takes advantage of spatially-distributed, near real-time information provided by satellite remote sensing to develop a regional scale ET product derived from remotely-sensed ob...
Application of remote sensing to solution of ecological problems
NASA Technical Reports Server (NTRS)
Adelman, A.
1972-01-01
The application of remote sensing techniques to solving ecological problems is discussed. The three phases of environmental ecological management are examined. The differences between discovery and exploitation of natural resources and their ecological management are described. The specific application of remote sensing to water management is developed.
Robertson, Dale M.; Rose, William J.; Saad, David A.
2005-01-01
Several empirical water-quality models were used to simulate how the East and Upper East Bays of the lake should respond to reductions in phosphorus loading from Muskellunge Creek. Simulation results indicated that reductions in tributary loading could improve the water quality of the East and Upper East Bays. Improving the water quality of these bays would also improve the water quality of the South and Second South Bays because of the flow of water through the lake. However, even with phosphorus loading from Muskellunge Creek completely eliminated, most of the lake would remain borderline mesotrophic/eutrophic because of the contributions of phosphorus from ground water.
Estimating wildfire risk on a Mojave Desert landscape using remote sensing and field sampling
Van Linn, Peter F.; Nussear, Kenneth E.; Esque, Todd C.; DeFalco, Lesley A.; Inman, Richard D.; Abella, Scott R.
2013-01-01
Predicting wildfires that affect broad landscapes is important for allocating suppression resources and guiding land management. Wildfire prediction in the south-western United States is of specific concern because of the increasing prevalence and severe effects of fire on desert shrublands and the current lack of accurate fire prediction tools. We developed a fire risk model to predict fire occurrence in a north-eastern Mojave Desert landscape. First we developed a spatial model using remote sensing data to predict fuel loads based on field estimates of fuels. We then modelled fire risk (interactions of fuel characteristics and environmental conditions conducive to wildfire) using satellite imagery, our model of fuel loads, and spatial data on ignition potential (lightning strikes and distance to roads), topography (elevation and aspect) and climate (maximum and minimum temperatures). The risk model was developed during a fire year at our study landscape and validated at a nearby landscape; model performance was accurate and similar at both sites. This study demonstrates that remote sensing techniques used in combination with field surveys can accurately predict wildfire risk in the Mojave Desert and may be applicable to other arid and semiarid lands where wildfires are prevalent.
NASA Astrophysics Data System (ADS)
Fabricius, K. E.; Logan, M.; Weeks, S. J.; Lewis, S. E.; Brodie, J.
2016-05-01
Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5°-19.0°S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management.
Hydrological research in Ethiopia
NASA Astrophysics Data System (ADS)
Gebremichael, M.
2012-12-01
Almost all major development problems in Ethiopia are water-related: food insecurity, low economic development, recurrent droughts, disastrous floods, poor health conditions, and low energy condition. In order to develop and manage existing water resources in a sustainable manner, knowledge is required about water availability, water quality, water demand in various sectors, and the impacts of water resource projects on health and the environment. The lack of ground-based data has been a major challenge for generating this knowledge. Current advances in remote sensing and computer simulation technology could provide alternative source of datasets. In this talk, I will present the challenges and opportunities in using remote sensing datasets and hydrological models in regions such as Africa where ground-based datasets are scarce.
NASA Technical Reports Server (NTRS)
Grant, W. B.; Gary, B. L.; Shumate, M. S.
1983-01-01
Several advanced atmospheric remote sensing systems developed at the Jet Propulsion Laboratory were demonstrated under various field conditions to determine how useful they would be for general use by the California Air Resources Board and local air quality districts. One of the instruments reported on is the Laser Absorption Spectrometer (LAS). It has a pair of carbon dioxide lasers with a transmitter and receiver and can be flown in an aircraft to measure the column abundance of such gases as ozone. From an aircraft, it can be used to rapidly survey a large region. The LAS is usually operated from an aircraft, although it can also be used at a fixed location on the ground. Some tests were performed with the LAS to measure ozone over a 2-km horizontal path. Another system reported on is the Microwave Atmospheric Remote Sensing System (MARS). It is tuned to microwave emissions from water vapor, liquid water, and oxygen molecules (for atmospheric temperature). It can measure water vapor and liquid water in the line-of-sight, and can measure the vertical temperature profile.
Griffiths, Ronald E.; Topping, David J.; Andrews, Timothy; Bennett, Glenn E.; Sabol, Thomas A.; Melis, Theodore S.
2012-01-01
Management of sand and finer sediment in fluvial settings has become increasingly important for reasons ranging from endangered-species habitat to transport of sediment-associated contaminants. In all rivers, some fraction of the suspended load is transported as washload, and some as suspended bed material. Typically, the washload is composed of silt-and-clay-size sediment, and the suspended bed material is composed of sand-size sediment. In most rivers, as a result of changes in the upstream supply of silt and clay, large, systematic changes in the concentration of the washload occur over time, independent of changes in water discharge. Recent work has shown that large, systematic, discharge-independent changes in the concentration of the suspended bed material are also present in many rivers. In bedrock canyon rivers, such as the Colorado River in Grand Canyon National Park, changes in the upstream tributary supply of sand may cause large changes in the grain-size distribution of the bed sand, resulting in changes in both the concentration and grain-size distribution of the sand in suspension. Large discharge-independent changes in suspended-sand concentration coupled to discharge-independent changes in the grain-size distribution of the suspended sand are not unique to bedrock canyon rivers, but also occur in large alluvial rivers, such as the Mississippi River. These systematic changes in either suspended-silt-and-clay concentration or suspended-sand concentration may not be detectable by using conventional equal-discharge- or equal-width-increment measurements, which may be too infrequently collected relative to the time scale over which these changes in the sediment load are occurring. Furthermore, because large discharge-independent changes in both suspended-silt-and-clay and suspended-sand concentration are possible in many rivers, methods using water discharge as a proxy for suspended-sediment concentration (such as sediment rating curves) may not produce sufficiently accurate estimates of sediment loads. Finally, conventional suspended-sediment measurements are both labor and cost intensive and may not be possible at the resolution required to resolve discharge-independent changes in suspended-sediment concentration, especially in more remote locations. For these reasons, the U.S. Geological Survey has pursued the use of surrogate technologies (such as acoustic and laser diffraction) for providing higher-resolution measurements of suspended-sediment concentration and grain size than are possible by using conventional suspended-sediment measurements alone. These factors prompted the U.S. Geological Survey's Grand Canyon Monitoring and Research Center to design and construct a network to automatically measure suspended-sediment transport at 15-minute intervals by using acoustic and laser-diffraction surrogate technologies at remote locations along the Colorado River within Marble and Grand Canyons in Grand Canyon National Park. Because of the remoteness of the Colorado River in this reach, this network also included the design of a broadband satellite-telemetry system to communicate with the instruments deployed at each station in this network. Although the sediment-transport monitoring network described in this report was developed for the Colorado River in Grand Canyon National Park, the design of this network can easily be adapted for use on other rivers, no matter how remote. In the Colorado River case-study example described in this report, suspended-sediment concentration and grain size are measured at five remote stations. At each of these stations, surrogate measurements of suspended-sediment concentration and grain size are made at 15-minute intervals using an array of different single-frequency acoustic-Doppler side-looking profilers. Laser-diffraction instruments are also used at two of these stations to measure both suspended-sediment concentrations and grain-size distributions. Cross-section calibrations of these instruments have been constructed and verified by using either equal-discharge-increment (EDI) or equal-width-increment (EWI) measurements of the velocity-weighted suspended-sediment concentration and grain-size distribution. The suspended-silt-and-clay concentration parts of these calibration relations have also included information from EDI- or EWI-calibrated samples collected by automatic pump samplers. Three of the monitoring stations are equipped with two-way satellite broadband telemetry systems that operate once a day to remotely monitor and program the instruments and download data. Data from these stations are typically downloaded twice per month; data from stations without satellite-telemetry systems are downloaded during site visits, which occur every 2 months or semiannually, depending on the remoteness of the site. Upon downloading and processing, suspended-silt-and-clay concentration, suspended-sand concentration, and suspended-sand median grain size are posted on the World Wide Web. Satellite telemetry in combination with the high-resolution sediment surrogate measurements can generate near-real-time suspended-sediment-concentration and grain-size data (limited only by the time required to download the instruments and process the data). The approach for measuring suspended-sediment concentration and grain size using this monitoring network is more practical, and can be done at a much lower cost and with higher temporal resolution, than any other method.
NASA Technical Reports Server (NTRS)
Deutsch, M. (Editor); Wiesnet, D. R.; Rango, A.
1981-01-01
Philosophical and technical backgrounds for the application of remote sensing by earth scientists are presented. Interests and activities of participating agencies of the United States and Canadian governments, universities, and the private sector in implementing satellite technology in a diverse array of water-related programs are described. Consideration is then given to applications of satellite data to the various aspects of the hydrologic cycle and man's impact on it: meteorology, snow and ice, surface water, soil moisture, ground water, wetlands, coastal zone, water quality and environment, and water use and management.
Operational monitoring of turbidity in rivers: how satellites can contribute
NASA Astrophysics Data System (ADS)
Hucke, Dorothee; Hillebrand, Gudrun; Winterscheid, Axel; Kranz, Susanne; Baschek, Björn
2016-10-01
The applications of remote sensing in hydrology are diverse and offer significant benefits for water monitoring. Up to now, operational river monitoring and sediment management in Germany mainly rely on in-situ measurements and on results obtained from numerical modelling. Remote sensing by satellites has a great potential to supplement existing data with two-dimensional information on near-surface turbidity distributions at greater spatial scales than in-situ measurements can offer. Within the project WasMon-CT (WaterMonitoring-Chlorophyll/Turbidity), the Federal Institute of Hydrology (BfG) aims at the implementation of an operational monitoring of turbidity distributions based on satellite images (esp. Sentinel-2, Landsat7 and 8). Initially, selected federal inland and estuarine waterways will be addressed: Rhine, Elbe, Ems, Weser. WasMon-CT is funded within the German Copernicus activities. Within the project, a database of atmospherically corrected, geo-referenced turbidity data will be assembled. The collected corresponding meta-data will include aspects of satellite data as well as hydrological data, e.g. cloud cover and river run-off. Based on this catalogue of spatially linked meta-data, the satellite data will be selected by e.g. cloud cover or run-off. The permanently updated database will include past as well as recent satellite images. It is designed with a long-term perspective to optimize the existing in-situ measurement network, which will serve partly for calibration and partly as validation data set. The aim is to extend, but not to substitute, the existing frequent point measurements with spatially extensive, satellite-derived data from the near surface part of the water column. Here, turbidity is used as proxy for corresponding suspended sediment concentrations. For this, the relationship between turbidity and suspended sediment concentrations will be investigated. Products as e.g. longitudinal profiles or virtual measurement stations will be developed from an application toolbox to specifically match requirements of operational monitoring tasks and to allow for a better integration into the existing monitoring system. The toolbox demonstrates the benefits of remote sensing by applying the established processing chain to diverse hydrological questions, such as for the investigation of tidal-affected sediment loads or mixing processes at river confluences. This new application will be of great value to assess, evaluate and monitor the status or the change of large-scale sediment processes at the system level. Accordingly, the satellite-derived turbidity data will strongly enhance federal consulting activities and thus ensure a modern river monitoring of Germany's federal water ways.
Remote sensing of water quality in reservoirs and lakes in semi-arid climates
NASA Technical Reports Server (NTRS)
Anderson, H. M.; Horne, A. J.
1975-01-01
Overlake measurements using aerial cameras (remote sensing) combined with water truth collected from boats most economically provided wide-band photographs rather than precise spectra. With use of false color infrared film (400-950 nm), the reflected spectral signatures seen from hundreds to thousands of meters above the lake merged to produce various color tones. Such colors were easily and inexpensively obtained and could be recognized by lake management personnel without any prior training. The characteristic spectral signatures of various algal types were also recognizable in part by the color tone produced by remote sensing.
Remote analysis of biological invasion and biogeochemical change
Asner, Gregory P.; Vitousek, Peter M.
2005-01-01
We used airborne imaging spectroscopy and photon transport modeling to determine how biological invasion altered the chemistry of forest canopies across a Hawaiian montane rain forest landscape. The nitrogen-fixing tree Myrica faya doubled canopy nitrogen concentrations and water content as it replaced native forest, whereas the understory herb Hedychium gardnerianum reduced nitrogen concentrations in the forest overstory and substantially increased aboveground water content. This remote sensing approach indicates the geographic extent, intensity, and biogeochemical impacts of two distinct invaders; its wider application could enhance the role of remote sensing in ecosystem analysis and management. PMID:15761055
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, R. Michael; Turner, David D.
A review of remote sensing technology for lower tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer—usually characterized by an inversion—and the lowermore » troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global navigation satellite system, as well as water vapor and temperature Raman lidar and water vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
Remote sensing of snow and ice: A review of the research in the United States 1975 - 1978
NASA Technical Reports Server (NTRS)
Rango, A.
1979-01-01
Research work in the United States from 1975-1978 in the field of remote sensing of snow and ice is reviewed. Topics covered include snowcover mapping, snowmelt runoff forecasting, demonstration projects, snow water equivalent and free water content determination, glaciers, river and lake ice, and sea ice. A bibliography of 200 references is included.
Continuous Water Vapor Profiles from Operational Ground-Based Active and Passive Remote Sensors
NASA Technical Reports Server (NTRS)
Turner, D. D.; Feltz, W. F.; Ferrare, R. A.
2000-01-01
The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote sensors as well as traditional in situ radiosonde measurements. Remote sensing technologies include an automated Raman lidar and an automated Atmospheric Emitted Radiance Interferometer (AERI), which are able to retrieve water vapor profiles operationally through the lower troposphere throughout the diurnal cycle. Comparisons of these two water vapor remote sensing methods to each other and to radiosondes over an 8-month period are presented and discussed, highlighting the accuracy and limitations of each method. Additionally, the AERI is able to retrieve profiles of temperature while the Raman lidar is able to retrieve aerosol extinction profiles operationally. These data, coupled with hourly wind profiles from a 915-MHz wind profiler, provide complete specification of the state of the atmosphere in noncloudy skies. Several case studies illustrate the utility of these high temporal resolution measurements in the characterization of mesoscale features within a 3-day time period in which passage of a dryline, warm air advection, and cold front occurred.
High-Resolution Remote Sensing Image Building Extraction Based on Markov Model
NASA Astrophysics Data System (ADS)
Zhao, W.; Yan, L.; Chang, Y.; Gong, L.
2018-04-01
With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.
Using NetMeeting for remote configuration of the Otto Bock C-Leg: technical considerations.
Lemaire, E D; Fawcett, J A
2002-08-01
Telehealth has the potential to be a valuable tool for technical and clinical support of computer controlled prosthetic devices. This pilot study examined the use of Internet-based, desktop video conferencing for remote configuration of the Otto Bock C-Leg. Laboratory tests involved connecting two computers running Microsoft NetMeeting over a local area network (IP protocol). Over 56 Kbs(-1), DSL/Cable, and 10 Mbs(-1) LAN speeds, a prosthetist remotely configured a user's C-Leg by using Application Sharing, Live Video, and Live Audio. A similar test between sites in Ottawa and Toronto, Canada was limited by the notebook computer's 28 Kbs(-1) modem. At the 28 Kbs(-1) Internet-connection speed, NetMeeting's application sharing feature was not able to update the remote Sliders window fast enough to display peak toe loads and peak knee angles. These results support the use of NetMeeting as an accessible and cost-effective tool for remote C-Leg configuration, provided that sufficient Internet data transfer speed is available.
Scalable loading of a two-dimensional trapped-ion array
Bruzewicz, Colin D.; McConnell, Robert; Chiaverini, John; Sage, Jeremy M.
2016-01-01
Two-dimensional arrays of trapped-ion qubits are attractive platforms for scalable quantum information processing. Sufficiently rapid reloading capable of sustaining a large array, however, remains a significant challenge. Here with the use of a continuous flux of pre-cooled neutral atoms from a remotely located source, we achieve fast loading of a single ion per site while maintaining long trap lifetimes and without disturbing the coherence of an ion quantum bit in an adjacent site. This demonstration satisfies all major criteria necessary for loading and reloading extensive two-dimensional arrays, as will be required for large-scale quantum information processing. Moreover, the already high loading rate can be increased by loading ions in parallel with only a concomitant increase in photo-ionization laser power and no need for additional atomic flux. PMID:27677357
Role of remote sensing in documenting living resources
NASA Technical Reports Server (NTRS)
Wagner, P. E.; Anderson, R. R.; Brun, B.; Eisenberg, M.; Genys, J. B.; Lear, D. W., Jr.; Miller, M. H.
1978-01-01
Specific cases of known or potentially useful applications of remote sensing in assessing biological resources are discussed. It is concluded that the more usable remote sensing techniques relate to the measurement of population fluctuations in aquatic systems. Sensing of the flora and the fauna of the Bay is considered with emphasis on direct sensing of aquatic plant populations and of water quality. Recommendations for remote sensing projects are given.
What is a picture worth? A history of remote sensing
Moore, Gerald K.
1979-01-01
Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.
Microcomputer software development facilities
NASA Technical Reports Server (NTRS)
Gorman, J. S.; Mathiasen, C.
1980-01-01
A more efficient and cost effective method for developing microcomputer software is to utilize a host computer with high-speed peripheral support. Application programs such as cross assemblers, loaders, and simulators are implemented in the host computer for each of the microcomputers for which software development is a requirement. The host computer is configured to operate in a time share mode for multiusers. The remote terminals, printers, and down loading capabilities provided are based on user requirements. With this configuration a user, either local or remote, can use the host computer for microcomputer software development. Once the software is developed (through the code and modular debug stage) it can be downloaded to the development system or emulator in a test area where hardware/software integration functions can proceed. The microcomputer software program sources reside in the host computer and can be edited, assembled, loaded, and then downloaded as required until the software development project has been completed.
Elimination of current spikes in buck power converters
NASA Technical Reports Server (NTRS)
Mclyman, W. T. (Inventor)
1981-01-01
Current spikes in a buck power converter due to commutating diode turn-off time are eliminated by using a tapped inductor in the converter with the tap connected to the switching transistor. The commutating diode is not in the usual place, but is instead connected to conduct current from one end of the tapped inductor remote from the load during the interval in which the transistor is not conducting. In the case of a converter having a center-tapped (primary and secondary) transformer between two switching power transistors operated in a push-pull mode and two rectifying diodes in the secondary circuit, current spikes due to transformer saturation are also eliminated by using a tapped inductor in the converter with the tap connected to the rectifying diodes and a diode connected to conduct current from one end of the tapped inductor remote from the load during the interval in which the transistors are not conducting.
Automatic remote-integration metering center. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippidis, P.A.; Weinreb, M.; de Gil, B.F.
1988-11-01
The report documents a multi-phase program for the development and demonstration of a unique automatic and remote metering system. The system consists of a solid-state meter module to provide electrical consumption data, tamper detection, and load control functions; a central master station to interrogate the meter modules for their data and also to transmit load control signals; and a data display module to be accessible to tenants wishing to obtain their meter readings. The system has the capability to measure and allocate demand and to process time of use rates. It also has a meter accuracy self-test feature. The systemmore » is suitable for both direct metering of multi-family buildings and the sub-metering of master-metered apartment buildings. In addition to describing the system, the report documents the results of a 371-point field trial at Scott Tower, a cooperative apartment building in the Bronx, New York.« less
Evolution of Large-Scale Magnetic Fields and State Transitions in Black Hole X-Ray Binaries
NASA Astrophysics Data System (ADS)
Wang, Ding-Xiong; Huang, Chang-Yin; Wang, Jiu-Zhou
2010-04-01
The state transitions of black hole (BH) X-ray binaries are discussed based on the evolution of large-scale magnetic fields, in which the combination of three energy mechanisms are involved: (1) the Blandford-Znajek (BZ) process related to the open field lines connecting a rotating BH with remote astrophysical loads, (2) the magnetic coupling (MC) process related to the closed field lines connecting the BH with its surrounding accretion disk, and (3) the Blandford-Payne (BP) process related to the open field lines connecting the disk with remote astrophysical loads. It turns out that each spectral state of the BH binaries corresponds to each configuration of magnetic field in BH magnetosphere, and the main characteristics of low/hard (LH) state, hard intermediate (HIM) state and steep power law (SPL) state are roughly fitted based on the evolution of large-scale magnetic fields associated with disk accretion.
A random optimization approach for inherent optic properties of nearshore waters
NASA Astrophysics Data System (ADS)
Zhou, Aijun; Hao, Yongshuai; Xu, Kuo; Zhou, Heng
2016-10-01
Traditional method of water quality sampling is time-consuming and highly cost. It can not meet the needs of social development. Hyperspectral remote sensing technology has well time resolution, spatial coverage and more general segment information on spectrum. It has a good potential in water quality supervision. Via the method of semi-analytical, remote sensing information can be related with the water quality. The inherent optical properties are used to quantify the water quality, and an optical model inside the water is established to analysis the features of water. By stochastic optimization algorithm Threshold Acceptance, a global optimization of the unknown model parameters can be determined to obtain the distribution of chlorophyll, organic solution and suspended particles in water. Via the improvement of the optimization algorithm in the search step, the processing time will be obviously reduced, and it will create more opportunity for the increasing the number of parameter. For the innovation definition of the optimization steps and standard, the whole inversion process become more targeted, thus improving the accuracy of inversion. According to the application result for simulated data given by IOCCG and field date provided by NASA, the approach model get continuous improvement and enhancement. Finally, a low-cost, effective retrieval model of water quality from hyper-spectral remote sensing can be achieved.
NASA Astrophysics Data System (ADS)
Subiyanto, Sawitri; Ramadhanis, Zainab; Baktiar, Aditya Hafidh
2018-02-01
One of the waters that has been contaminated by industrial waste and domestic waste is the waters in estuaries inlet of Semarang Eastern Flood Canal which is the estuary of the river system, which passes through the eastern city of Semarang which is dense with residential and industrial. So it is necessary to have information about the assessment of water quality in Estuaries Inlet of Semarang Eastern Flood Canal. Remote sensing technology can analyze the results of recording the spectral characteristics of water with water quality parameters. One of the parameters for assessing water quality is Chlorophyll-a and Total Suspended Solid, can be estimated through remote sensing technology using multispectral Sentinel-2A Satellite images. In this research there are 3 algorithms that will be used in determining the content of chlorophyll a, and for determining TSS. Image accuracy test is done to find out how far the image can give information about Chlorophyll-a and TSS in the waters. The results of the image accuracy test will be compared with the value of chlorophyll-a and TSS that have been tested through laboratory analysis. The result of this research is the distribution map of chlorophyll-a and TSS content in the waters.
Remote assessment of ocean color for interpretation of satellite visible imagery: A review
NASA Technical Reports Server (NTRS)
Gordon, H. R.; Morel, A. Y.
1983-01-01
An assessment is presented of the state-of-the-art of remote, (satellite-based) Coastal Zone Color (CZCS) Scanning of color variations in the ocean due to phytoplankton. Attention is given to physical problems associated with ocean color remote sensing, in-water algorithms for the correction of atmospheric effects, constituent retrieval algorithms and application of the algorithms to CZCS imagery. The applicability of CZCS to both near-coast and mid-ocean waters is considered, and it is concluded that while differences between the two environments are complex, universal algorithms can be used for the case of mid-ocean waters, and site-specific algorithms are adequate for CZCS imaging of the near-coast oceanic environment. A short description of CVCS and some sample photographs are provided in an appendix.
Remote sensing: Snow monitoring tool for today and tomorrow
NASA Technical Reports Server (NTRS)
Rango, A.
1977-01-01
Various types of remote sensing are now available or will be in the future for snowpack monitoring. Aircraft reconnaissance is now used in a conventional manner by various water resources agencies to obtain information on snowlines, depth, and melting of the snowpack for forecasting purposes. The use of earth resources satellites for mapping snowcovered area, snowlines, and changes in snowcover during the spring has increased during the last five years. Gamma ray aircraft flights, although confined to an extremely low altitude, provide a means for obtaining valuable information on snow water equivalent. The most recently developed remote sensing technology for snow, namely, microwave monitoring, has provided initial results that may eventually allow us to infer snow water equivalent or depth, snow wetness, and the hydrologic condition of the underlying soil.
Water safety in the bush: strategies for addressing training needs in remote areas.
Beattie, N; Shaw, P; Larson, A
2008-01-01
This article describes a unique, remote, water safety-training program delivered to 11 remote Australian communities during 2006-2007. The program, known as 'Water Safety in the Bush', was developed by Combined Universities Centre for Rural Health in Geraldton Western Australia in consultation with the Commonwealth Government Department of Health and Ageing, and the Royal Life Saving Society of Australia. Drowning and near drowning are major causes of childhood death and injury in rural and remote Australia, making improved water safety awareness and skills a public health priority. Water Safety in the Bush employed a flexible, community development model to meet the special requirements of remote and isolated communities. The model had three elements: coordination by a local organisation; a water safety instruction program based on a Royal Life Saving Society of Australia curriculum adapted to meet local priorities; and strategies for sustainability. In the delivery of the program a total of 873 children and 219 adults received swimming and water safety instruction; 47 adults and older children received first-aid training; and 38 community members became AUSTAWIM (the Australian Council for the Teaching of Swimming and Water Safety) accredited instructors. Project evaluation showed parents and community organisations were very satisfied with the program which met a real need. Parents and instructors gave evidence of children's increased skills in water safety, swimming ability, life-saving and water confidence. Training programs with greater contact hours showed greater skill gains. Sustainability strategies included accreditation of local AUSTSWIM instructors, the erection of water safety signs, sourcing of continuing funding, and the introduction of water safety theory into the school curriculum. Flexibility was the major success factor. Within the parameters of minimum guidelines, communities were encouraged to choose the timing, venue and delivery mode of the training to ensure the program was best suited to the local community. Community ownership was achieved by requiring that local organisations design and implement the projects. Designing programs that addressed local constraints ensured high participation rates. A number of challenges were also identified. Not all community organisations had the capacity to take on the coordinating role, and struggled to effectively deliver a sustainable program. Other models may be needed for these communities. Accessing appropriately qualified water safety instructors in local areas also proved difficult at several of the sites. Further, designing standardised outcome evaluation strategies that could be implemented across all participating sites was problematic. Remote and isolated communities have a pressing need to gain the knowledge and skills necessary for water safety and survival. Standard training programs, which in the case of swimming and water safety instruction are generally run in two-week blocks, are often not feasible. Models for delivering training, which give resources and power to local organisations to find innovative ways to meet their priorities, build capacity and ensure high participation rates.
Bringing the Coastal Zone into Finer Focus
NASA Astrophysics Data System (ADS)
Guild, L. S.; Hooker, S. B.; Kudela, R. M.; Morrow, J. H.; Torres-Perez, J. L.; Palacios, S. L.; Negrey, K.; Dungan, J. L.
2015-12-01
Measurements over extents from submeter to 10s of meters are critical science requirements for the design and integration of remote sensing instruments for coastal zone research. Various coastal ocean phenomena operate at different scales (e.g. meters to kilometers). For example, river plumes and algal blooms have typical extents of 10s of meters and therefore can be resolved with satellite data, however, shallow benthic ecosystem (e.g., coral, seagrass, and kelp) biodiversity and change are best studied at resolutions of submeter to meter, below the pixel size of typical satellite products. The delineation of natural phenomena do not fit nicely into gridded pixels and the coastal zone is complicated by mixed pixels at the land-sea interface with a range of bio-optical signals from terrestrial and water components. In many standard satellite products, these coastal mixed pixels are masked out because they confound algorithms for the ocean color parameter suite. In order to obtain data at the land/sea interface, finer spatial resolution satellite data can be achieved yet spectral resolution is sacrificed. This remote sensing resolution challenge thwarts the advancement of research in the coastal zone. Further, remote sensing of benthic ecosystems and shallow sub-surface phenomena are challenged by the requirements to sense through the sea surface and through a water column with varying light conditions from the open ocean to the water's edge. For coastal waters, >80% of the remote sensing signal is scattered/absorbed due to the atmospheric constituents, sun glint from the sea surface, and water column components. In addition to in-water measurements from various platforms (e.g., ship, glider, mooring, and divers), low altitude aircraft outfitted with high quality bio-optical radiometer sensors and targeted channels matched with in-water sensors and higher altitude platform sensors for ocean color products, bridge the sea-truth measurements to the pixels acquired from satellite and high altitude platforms. We highlight a novel NASA airborne calibration, validation, and research capability for addressing the coastal remote sensing resolution challenge.
Monitoring vegetation dynamics in the Amazon with RapidScat
NASA Astrophysics Data System (ADS)
van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron C.; van de Giesen, Nick
2017-04-01
Several studies affiliated diurnal variations in radar backscatter over the Amazon [1,2] with vegetation water stress. Recent studies on tree and corn canopies [3,4] have demonstrated that during periods of low soil moisture availability, the total radar backscatter is primarily sensitive to changes in leaf water content, highlighting the potential of radar for water stress detection. The RapidScat mission (Ku-band, 13.4GHz), mounted on the International Space Station, observes the Earth in a non-sun-synchronous orbit [5]. This unique orbit allows for reconstructing diurnal cycles of radar backscatter. We hypothesize that the state of the canopy is a significant portion of the diurnal variations observed in the radar backscatter. Recent, yet inconclusive, analyses support the theory of the impact of vegetation water content on diurnal variation in RapidScat radar backscatter over the Amazon and Congo. Linking ground measurements of canopy dynamics to radar backscatter will allow further exploration of the possibilities for monitoring vegetation dynamics. Our presentation focuses of two parts. First, we reconstruct diurnal cycles of RapidScat backscatter over the Amazon, and study its variation over time. Second, we analyze the pre-dawn backscatter over time. The water content at this time of day is a measure of water stress, and might therefore be visible in the backscatter time series. References [1] Frolking, S., et al.: "Tropical forest backscatter anomaly evident in SeaWinds scatterometer morning overpass data during 2005 drought in Amazonia", Remote Sensing of Environment, 2011. [2] Jaruwatanadilok, S., and B. Stiles: "Trends and variation in Ku-band backscatter of natural targets on land observed in QuikSCAT data", IEEE Transactions on Geoscience and Remote Sensing , 2014. [3] Steele-Dunne, S., et al.: "Using diurnal variation in backscatter to detect vegetation water stress", IEEE Transactions on Geoscience and Remote Sensing, 2012. [4] van Emmerik, T., et al.: "Impact of diurnal variation in vegetation water content on radar backscatter from maize during water stress", IEEE Transactions on Geoscience and Remote Sensing, 2015. [5] Paget, A., et al.: "RapidScat Diurnal Cycles Over Land", IEEE Transactions on Geoscience and Remote Sensing, 2016.
NASA Technical Reports Server (NTRS)
Li, Rong-Rong; Kaufman, Yoram J.
2002-01-01
We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 micron that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
NASA Astrophysics Data System (ADS)
Podest, E.; De La Torre Juarez, M.; McDonald, K. C.; Jensen, K.; Ceccato, P.
2014-12-01
Predicting the risk of vector-borne disease outbreaks is a required step towards their control and eradication. Satellite observations can provide needed data to support agency decisions with respect to deployment of preventative measures and control resources. The coverage and persistence of open water is one of the primary indicators of conditions suitable for mosquito breeding habitats. This is currently a poorly measured variable due to its spatial and temporal variability across landscapes, especially in remote areas. Here we develop a methodology for monitoring these conditions through optical remote sensing images from Landsat. We pansharpen the images and apply a decision tree classification approach using Random Forests to generate 15 meter resolution maps of open water. In addition, since some mosquitos breed in clear water while others in turbid water, we classify water bodies according to their water color properties and we validate the results using field knowledge. We focus in East Africa where we assses the usefulness of these products to improve prediction of malaria outbreaks. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Li, R.; Kaufman, Y.
2002-12-01
ABSTRACT We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 æm that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
NASA Astrophysics Data System (ADS)
Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.
2017-12-01
To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters through mixing. Finally, the combination of a higher lead fraction and thinner ice cover, driven in part by storms, helped facilitate an early under-ice phytoplankton bloom in May, far inside the ice pack. In summary the storms entail significant effects on the ice pack that may last much longer than the short-lived storm events.
NASA Technical Reports Server (NTRS)
Gao, B.-C.; Goetz, A. F. H.; Westwater, Ed R.; Conel, J. E.; Green, R. O.
1993-01-01
Remote sensing of troposheric water vapor profiles from current geostationary weather satellites is made using a few broadband infrared (IR) channels in the 6-13 micron region. Uncertainties greater than 20% exist in derived water vapor values just above the surface from the IR emission measurements. In this paper, we propose three near-IR channels, one within the 0.94-micron water vapor band absorption region, and the other two in nearby atmospheric windows, for remote sensing of precipitable water vapor over land areas, excluding lakes and rivers, during daytime from future geostationary satellite platforms. The physical principles are as follows. The reflectance of most surface targets varies approximately linearly with wavelength near 1 micron. The solar radiation on the sun-surface-sensor ray path is attenuated by atmospheric water vapor. The ratio of the radiance from the absorption channel with the radiances from the two window channels removes the surface reflectance effects and yields approximately the mean atmospheric water vapor transmittance of the absorption channel. The integrated water vapor amount from ground to space can be obtained with a precision of better than 5% from the mean transmittance. Because surface reflectances vary slowly with time, temporal variation of precipitable water vapor can be determined reliably. High spatial resolution, precipitable water vapor images are derived from spectral data collected by the Airborne Visable-Infrared Imaging Spectrometer, which measures solar radiation reflected by the surface in the 0.4-2.5 micron region in 10-nm channels and has a ground instantaneous field of view of 20 m from its platform on an ER-2 aircraft at 20 km. The proposed near-IR reflectance technique would complement the IR emission techniques for remote sensing of water vapor profiles from geostationary satellite platforms, especially in the boundary layer where most of the water vapor is located.
Power management of remote microgrids considering battery lifetime
NASA Astrophysics Data System (ADS)
Chalise, Santosh
Currently, 20% (1.3 billion) of the world's population still lacks access to electricity and many live in remote areas where connection to the grid is not economical or practical. Remote microgrids could be the solution to the problem because they are designed to provide power for small communities within clearly defined electrical boundaries. Reducing the cost of electricity for remote microgrids can help to increase access to electricity for populations in remote areas and developing countries. The integration of renewable energy and batteries in diesel based microgrids has shown to be effective in reducing fuel consumption. However, the operational cost remains high due to the low lifetime of batteries, which are heavily used to improve the system's efficiency. In microgrid operation, a battery can act as a source to augment the generator or a load to ensure full load operation. In addition, a battery increases the utilization of PV by storing extra energy. However, the battery has a limited energy throughput. Therefore, it is required to provide balance between fuel consumption and battery lifetime throughput in order to lower the cost of operation. This work presents a two-layer power management system for remote microgrids. First layer is day ahead scheduling, where power set points of dispatchable resources were calculated. Second layer is real time dispatch, where schedule set points from the first layer are accepted and resources are dispatched accordingly. A novel scheduling algorithm is proposed for a dispatch layer, which considers the battery lifetime in optimization and is expected to reduce the operational cost of the microgrid. This method is based on a goal programming approach which has the fuel and the battery wear cost as two objectives to achieve. The effectiveness of this method was evaluated through a simulation study of a PV-diesel hybrid microgrid using deterministic and stochastic approach of optimization.
Mapping of submerged vegetation using remote sensing technology
NASA Technical Reports Server (NTRS)
Savastano, K. J.; Faller, K. H.; Mcfadin, L. W.; Holley, H.
1981-01-01
Techniques for mapping submerged sea grasses using aircraft supported remote sensors are described. The 21 channel solid state array spectroradiometer was successfully used as a remote sensor in the experiment in that the system operated without problem and obtained data. The environmental conditions of clear water, bright sandy bottom and monospecific vegetation (Thalassia) were ideal.
USDA-ARS?s Scientific Manuscript database
Recent developments in wireless sensor technology and remote sensing algorithms, coupled with increased use of center pivot irrigation systems, have removed several long-standing barriers to adoption of remote sensing for real-time irrigation management. One remote sensing-based algorithm is a two s...
NASA Astrophysics Data System (ADS)
Budy, Phaedra; Baker, Matthew; Dahle, Samuel K.
2011-10-01
Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.
NASA Technical Reports Server (NTRS)
Merewitz, L.
1973-01-01
The following step-wise procedure for making a benefit-cost analysis of using remote sensing techniques could be used either in the limited context of California water resources, or a context as broad as the making of integrated resource surveys of the entire earth resource complex on a statewide, regional, national, or global basis. (1) Survey all data collection efforts which can be accomplished by remote sensing techniques. (2) Carefully inspect the State of California budget and the Budget of the United States Government to find annual cost of data collection efforts. (3) Decide the extent to which remote sensing can obviate each of the collection efforts. (4) Sum the annual costs of all data collection which can be equivalently accomplished through remote sensing. (5) Decide what additional data could and would be collected through remote sensing. (6) Estimate the value of this information. It is not harmful to do a benefit-cost analysis so long as its severe limitations are recalled and it is supplemented with socio-economic impact studies.
2012-01-01
Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling approach based on remotely sensed information is potentially useful for counter measures that are putting on at the environmental side, namely vector larvae control via larviciding and water body reforming. PMID:22443452
Dambach, Peter; Machault, Vanessa; Lacaux, Jean-Pierre; Vignolles, Cécile; Sié, Ali; Sauerborn, Rainer
2012-03-23
The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling approach based on remotely sensed information is potentially useful for counter measures that are putting on at the environmental side, namely vector larvae control via larviciding and water body reforming. © 2012 Dambach et al; licensee BioMed Central Ltd.
NASA Astrophysics Data System (ADS)
Miller, W. P.; Bender, S.; Painter, T. H.; Bernard, B.
2016-12-01
Water and resource management agencies can benefit from hydrologic forecasts during both flood and drought conditions. Improved predictions of seasonal snowmelt-driven runoff volume and timing can assist operational water managers with decision support and efficient resource management within the spring runoff season. Using operational models and forecasting systems, NOAA's Colorado Basin River Forecast Center (CBRFC) produces hydrologic forecasts for stakeholders and water management groups in the western United States. Collaborative incorporation of research-oriented remote sensing data into CBRFC operational models and systems is one route by which CBRFC forecasts can be improved, ultimately for the benefit of water managers. Successful navigation of research-oriented remote sensing products across the "research-to-operations"/R2O gap (also known as the "valley of death") to operational destinations requires dedicated personnel on both the research and operations sides, working in a highly collaborative environment. Since 2012, the operational CBRFC has collaborated with the research-oriented Jet Propulsion Laboratory (JPL) under funding from NASA to transition remotely-sensed snow data into CBRFC's operational models and forecasting systems. Two specific datasets from JPL, the MODIS Dust Radiative Forcing in Snow (MODDRFS) and the MODIS Snow Covered-Area and Grain size (MODSCAG) products, are used in CBRFC operations as of 2016. Over the past several years, JPL and CBRFC have worked together to analyze patterns in JPL's remote sensing snow datasets from the operational perspective of the CBRFC and to develop techniques to bridge the R2O gap. Retrospective and real-time analyses have yielded valuable insight into the remotely-sensed snow datasets themselves, CBRFC's operational systems, and the collaborative R2O process. Examples of research-oriented JPL snow data, as used in CBRFC operations, are described. A timeline of the collaboration, challenges encountered during the journey across the R2O gap, or "valley of death", and solutions to those challenges are also illustrated.
Dai, Qian; Pan, De-lu; He, Xian-qiang; Zhu, Qian-kun; Gong, Fang; Huang, Hai-qing
2015-11-01
In situ measurement of water spectrum is the basis of the validation of the ocean color remote sensing. The traditional method to obtain the water spectrum is based on the shipboard measurement at limited stations, which is difficult to meet the requirement of validation of ocean color remote sensing in the highly dynamic coastal waters. To overcome this shortage, continuously observing systems of water spectrum have been developed in the world. However, so far, there are still few high-frequency observation systems of the water spectrum in coastal waters, especially in the highly turbid and high-dynamic waters. Here, we established a high-frequency water-spectrum observing system based on tower in the Hangzhou Bay. The system measures the water spectrum at a step of 3 minutes, which can fully match the satellite observation. In this paper, we primarily developed a data processing method for the tower-based high-frequency water spectrum data, to realize automatic judgment of clear sky, sun glint, platform shadow, and weak illumination, etc. , and verified the processing results. The results show that the normalized water-leaving radiance spectra obtained through tower observation have relatively high consistency with the shipboard measurement results, with correlation coefficient of more than 0. 99, and average relative error of 9.96%. In addition, the long-term observation capability of the tower-based high-frequency water-spectrum observing system was evaluated, and the results show that although the system has run for one year, the normalized water-leaving radiance obtained by this system have good consistency with the synchronously measurement by Portable spectrometer ASD in respect of spectral shape and value, with correlation coefficient of more than 0.90 and average relative error of 6.48%. Moreover, the water spectra from high-frequency observation by the system can be used to effectively monitor the rapid dynamic variation in concentration of suspended materials with tide. The tower-based high-frequency water-spectrum observing system provided rich in situ spectral data for the validation of ocean color remote sensing in turbid waters, especially for validation of the high temporal-resolution geostationary satellite ocean color remote sensing.
Southern California Bight 2003 Regional Monitoring Program: V. water quality
Nezlin, Nikolay P.; DiGiacomo, Paul M.; Weisberg, Stephen B.; Diehl, Dario W.; Warrick, Jonathan A.; Mengel, Michael J.; Jones, Burton H.; Reifel, Kristen M.; Johnson, Scott C.; Ohlmann, J. Carter; Washburn, Libe; Terrill, Eric J.
2007-01-01
More than $30 million is expended annually on environmental monitoring in the Southern California Bight (SCB), yet only 5% of the Bight is monitored on an ongoing basis. Therefore, environmental managers in the SCB decided to expand their monitoring program and, starting in 1994, decided to conduct periodic regional assessments of ecosystem condition and assess the overall health of the SCB. Sixty-five different organizations collaborated in 2003 to create the third SCB Regional Monitoring Program (Bight '03). Bight '03 was designed to be integrated regional monitoring program that encompasses regulatory, academic, and non-governmental agencies. Bight '03 had three components: Coastal Ecology, Shoreline Microbiology, and Water Quality. This report addresses the purpose, approach, findings, and recommendations from the Water Quality component, which focused on contamination-laden stormwater runoff, in particularly its variability in time and space as well as its short-term ecological impacts. Specifically, the Bight '03 Water Quality component had three primary goals, the first of which was to described the temporal evolution of stormwater plumes produced by the major southern California rivers. Specifically, the study was intended to determine how far offshore the plumes extended, how rapidly they advected, how long before the plumes dispersed and how these properties differed among storms and river systems. The second goal was to describe how the physical properties (e.g., turbidity, temperature, salinity) of the plume related to biogeochemical and ecological properties that are of more direct concern to the water quality management community. Accomplished primarily through ship-based sampling of water quality parameters, this second goal was to describe how far offshore, and for how ;long after the storm, elevated bacterial concentrations, toxicity, and nutrients could be detected. Similar to the fist goal, the study also addressed how these answers differed among storms and river systems. The final goal was to determine whether relationships between environmental indicators derived from coincident satellite remote sensing and in situ data sets are sufficiently robust for remote sensing to become a routine water quality monitoring programs. Remote sensing data potentially provide coastal managers with synoptic near-real time regional information about prevailing ocean conditions and hazards that would complement existing field-based sampling protocols, but only if there is a thorough understanding of how to interpret and utilize the proxy measures, such as ocean color. The understanding of these priorities through Bight '03 sampling is intended to provide the basis for developing more efficient, widespread and coast-effective coastal ocean monitoring techniques. Water quality data were collected across eight major river systems within four geographic regions of southern California. Field measurements included the primary contaminants of interest, i.e., bacterial concentrations, water toxicity, and nutrients, as well as related parameters such as temperatures, salinity, total suspended solids, transmissivity, chlorophyll, and colored dissolved organic material (CDOM) concentrations. For each of the four major regions, i.e., Santa Clara/Ventura Rivers, Ballona Creek/Santa Monica Bay, San Pedro Shelf, and the San Diego, Tijuana Rivers, two stormwater events were sampled for up to three days by ship resulting in 574 water column CTD+ profiles and 705 discrete water samples during 36 ship-days. These data were analyzed in combination with MODIS ocean color satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns, dynamics, and impacts of the freshwater runoff plumes. Based on these data and resulting analyses, the principal conclusions were as follow: - Stormwater runoff turbidity plumes were found to be spatially extensive, covering up to 2500 km2 within the Southern California Bight nearshore zone, and persisting over the entire duration of the post-storm sampling period (at least 3 days). - The spatial and temporal extent of the portion of the plume with contaminants was far less than that of the turbidity plume, typically representing - Pseudo-nitzschia, a harmful algae that produces domoic acid, was found to be more abundant than previously reported. - Accurately describing stormwater runoff plumes requires a combination of in situ and remote sensing assessment tools, with satellite data providing valuable synoptic information. From these conclusions, the following recommendations are provided: - Future studies designed to describe stormwater plumes should include a combination of ship - and remote sensing-based methods. - CDOM is a good proxy of the freshwater runoff plume and should be added as a standard measurement parameter on water quality instrument packages. - Investigations are needed that assess on a local basis the spatial extent of ecological effects of stormwater plumes early in the storm, ideally accompanied by airborne imagery to provide improved temporal & spatial resolution, to fill in knowledge gaps. The next Bight regional monitoring program should focus on quantifying nutrient loadings and dynamics in association with stormwater runoff and other sources, and characterize their attendant ecosystem impacts such as phytoplankton blooms.
InSAR Remote Sensing of Localized Surface Layer Subsidence in New Orleans, LA
NASA Astrophysics Data System (ADS)
An, K.; Jones, C. E.; Blom, R. G.; Kent, J. D.; Ivins, E. R.
2015-12-01
More than half of Louisiana's drinking water is dependent on groundwater, and extraction of these resources along with high oil and gas production has contributed to localized subsidence in many parts of New Orleans. This increases the vulnerability of levee failure during intense storms such as Hurricane Katrina in 2005, before which rapid subsidence had already been identified and contributed to the failing levees and catastrophic flooding. An interferogram containing airborne radar data from NASA's UAVSAR was combined with local geographic information systems (GIS) data for 2009-12 to help identify the sources of subsidence and mask out unrelated features such as surface water. We have observed the highest vertical velocity rates at the NASA Michoud Assembly Facility (high water use) and Norco (high oil/gas production). Many other notable features such as the: Bonnet-Carre Spillway, MRGO canal, levee lines along the Lower 9th Ward and power plants, are also showing concerning rates of subsidence. Even new housing loads, soil type differences, and buried beach sands seem to have modest correlations with patterns seen in UAVSAR. Current hurricane protection and coastal restoration efforts still have not incorporated late 20th century water level and geodetic data into their projections. Using SAR interferometry and local GIS datasets, areas of subsidence can be identified in a more efficient and economical manner, especially for emergency response.
Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA
NASA Astrophysics Data System (ADS)
Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.
2012-12-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.
Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA
NASA Astrophysics Data System (ADS)
Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.
2012-08-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologues data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and interferences from humidity are the leading error sources. We introduce an a posteriori correction method of the humidity interference error and we recommend applying it for isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.
Lee, H; Min, Y M; Park, C H; Park, Y H
2004-01-01
Many small-size wastewater treatment plants in Korea's rural communities are designed to remove organic and suspended matter only, and they generally show a large fluctuation in the influent loading compared to municipal wastewater treatment plants (MWWTPs). They also have no professional engineers stationed for efficient operation against mechanical breakdown. For those reasons, the wastewater treatment plants have low efficiency in treatment of nitrogen and phosphorus as well as organic matter. In order to solve those problems, this study developed an automatic control system and RMS (remote monitoring system), which can keep efficiency stable despite any change in the small plants' loading rates and are capable of removing nutrient materials such as nitrogen or phosphorus. According to the results of the Experimental SBR system of the automatic control program, complete nitrification was made under oxic conditions and denitrification occurred as NO3-N concentration decreased by 0.5 mg/l in anoxic conditions and excellent nitrogen removal efficiency was seen generally. The Experimental SBR system created "phosphate release and uptake" effectively and displayed phosphate-removing efficiency up to more than 80% as the concentration of effluent was kept low by 0.4 mg/l. RMS developed in this study transmits a plant's data and operation states to clients in remote locations in real-time interval through the Internet. Therefore, although you are in a remote location, it allows you to see if a plant is properly operated or there is any breakdown.
NASA Technical Reports Server (NTRS)
Sayres, D.S.; Pittman, J. V.; Smith, J. B.; Weinstock, E. M.; Anderson, J. G.; Heymsfield, G.; Li, L.; Fridlind, A.; Ackerman, A. S.
2004-01-01
Remote sensing observations, such as those from AURA, are necessary to understand the role of cirrus in determining the radiative and humidity budgets of the upper troposphere. Using these measurements quantitatively requires comparisons with in situ measurements that have previously been validated. However, a direct comparison of remote and in situ measurements is difficult due to the requirement that the spatial and temporal overlap be sufficient in order to guarantee that both instruments are measuring the same air parcel. A difficult as this might be for gas phase intercomparisons, cloud inhomogeneities significantly exacerbate the problem for cloud ice water content measurements. The CRYSTAL-FACE mission provided an opportunity to assess how well such intercomparisons can be performed and to establish flight plans that will be necessary for validation of future satellite instruments. During CRYSTAL-FACE, remote and in situ instruments were placed on different aircraft (NASA's ER-2 and WB-59, and the two planes flew in tandem so that the in situ payload flew in the field of view of the remote instruments. We show here that, even with this type of careful flight planning, it is not always possible to guarantee that remote and in situ instruments are viewing the same air parcel. We use ice water data derived from the in situ Harvard Total Water (HV-TW) instrument, and the remote Goddard Cloud Radar System (CRS) and show that agreement between HV-TW and CRS is a strong function of the horizontal separation and the time delay between the aircraft transects. We also use a cloud model to simulate possible trajectories through a cloud and evaluate the use of statistical analysis in determining the agreement between the two instruments. This type of analysis should guide flight planning for future intercomparison efforts, whether for aircraft or satellite-borne instrumentation.
Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K.; Utzinger, Jürg; Raso, Giovanna
2015-01-01
Background Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. Methodology We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d’Ivoire and validated against readily available survey data from school-aged children. Principal Findings Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d’Ivoire. Conclusions/Significance A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data. PMID:26587839
Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K; Utzinger, Jürg; Raso, Giovanna
2015-11-01
Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d'Ivoire and validated against readily available survey data from school-aged children. Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d'Ivoire. A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data.
NASA Astrophysics Data System (ADS)
Zilberman, Arkadi; Ben Asher, Jiftah; Kopeika, Norman S.
2016-10-01
The advancements in remote sensing in combination with sensor technology (both passive and active) enable growers to analyze an entire crop field as well as its local features. In particular, changes of actual evapo-transpiration (ET) as a function of water availability can be measured remotely with infrared radiometers. Detection of crop water stress and ET and combining it with the soil water flow model enable rational irrigation timing and application amounts. Nutrient deficiency, and in particular nitrogen deficiency, causes substantial crop losses. This deficiency needs to be identified immediately. A faster the detection and correction, a lesser the damage to the crop yield. In the present work, to retrieve ET a novel deterministic approach was used which is based on the remote sensing data. The algorithm can automatically provide timely valuable information on plant and soil water status, which can improve the management of irrigated crops. The solution is capable of bridging between Penman-Monteith ET model and Richards soil water flow model. This bridging can serve as a preliminary tool for expert irrigation system. To support decisions regarding fertilizers the greenness of plant canopies is assessed and quantified by using the spectral reflectance sensors and digital color imaging. Fertilization management can be provided on the basis of sampling and monitoring of crop nitrogen conditions using RS technique and translating measured N concentration in crop to kg/ha N application in the field.
NASA Remote Sensing Observations for Water Resource and Infrastructure Management
NASA Astrophysics Data System (ADS)
Granger, S. L.; Armstrong, L.; Farr, T.; Geller, G.; Heath, E.; Hyon, J.; Lavoie, S.; McDonald, K.; Realmuto, V.; Stough, T.; Szana, K.
2008-12-01
Decision support tools employed by water resource and infrastructure managers often utilize data products obtained from local sources or national/regional databases of historic surveys and observations. Incorporation of data from these sources can be laborious and time consuming as new products must be identified, cleaned and archived for each new study site. Adding remote sensing observations to the list of sources holds promise for a timely, consistent, global product to aid decision support at regional and global scales by providing global observations of geophysical parameters including soil moisture, precipitation, atmospheric temperature, derived evapotranspiration, and snow extent needed for hydrologic models and decision support tools. However, issues such as spatial and temporal resolution arise when attempting to integrate remote sensing observations into existing decision support tools. We are working to overcome these and other challenges through partnerships with water resource managers, tool developers and other stakeholders. We are developing a new data processing framework, enabled by a core GIS server, to seamlessly pull together observations from disparate sources for synthesis into information products and visualizations useful to the water resources community. A case study approach is being taken to develop the system by working closely with water infrastructure and resource managers to integrate remote observations into infrastructure, hydrologic and water resource decision tools. We present the results of a case study utilizing observations from the PALS aircraft instrument as a proxy for NASA's upcoming Soil Moisture Active Passive (SMAP) mission and an existing commercial decision support tool.
NASA Astrophysics Data System (ADS)
Fluet-Chouinard, E.; Lehner, B.; Aires, F.; Prigent, C.; McIntyre, P. B.
2017-12-01
Global surface water maps have improved in spatial and temporal resolutions through various remote sensing methods: open water extents with compiled Landsat archives and inundation with topographically downscaled multi-sensor retrievals. These time-series capture variations through time of open water and inundation without discriminating between hydrographic features (e.g. lakes, reservoirs, river channels and wetland types) as other databases have done as static representation. Available data sources present the opportunity to generate a comprehensive map and typology of aquatic environments (deepwater and wetlands) that improves on earlier digitized inventories and maps. The challenge of classifying surface waters globally is to distinguishing wetland types with meaningful characteristics or proxies (hydrology, water chemistry, soils, vegetation) while accommodating limitations of remote sensing data. We present a new wetland classification scheme designed for global application and produce a map of aquatic ecosystem types globally using state-of-the-art remote sensing products. Our classification scheme combines open water extent and expands it with downscaled multi-sensor inundation data to capture the maximal vegetated wetland extent. The hierarchical structure of the classification is modified from the Cowardin Systems (1979) developed for the USA. The first level classification is based on a combination of landscape positions and water source (e.g. lacustrine, riverine, palustrine, coastal and artificial) while the second level represents the hydrologic regime (e.g. perennial, seasonal, intermittent and waterlogged). Class-specific descriptors can further detail the wetland types with soils and vegetation cover. Our globally consistent nomenclature and top-down mapping allows for direct comparison across biogeographic regions, to upscale biogeochemical fluxes as well as other landscape level functions.
Effect of Loading Efficiency on the Process of Consolidation in Unsaturated Soils
NASA Astrophysics Data System (ADS)
Lo, W. C.; Lee, J. W.; Deng, J. H.; Liu, J. H.
2016-12-01
Loading efficiency is an undrained poroelastic coefficient that causes an increase in the pore pressure due to an increase in the compressive axial stress. In order to illustrate the importance of loading efficiency on the process of consolidation in unsaturated soils, we utilize two assumptions proposed by Biot (1941) and Terzaghi (1943) to formulate the initial conditions taking account of loading efficiency and without consideration of loading efficiency, respectively. In Biot's theory (1941), he suggested that water is not allowed to escape when the external loading is instantly applied on a porous medium. Accordingly, the soil texture sample is considered to be undrained, and the linearized increment of the fluid content is equal to zero. For this reason, water and air can sustain an external loading only partially at the moment it is imposed, leading to an immediate one-dimensional consolidation. On the contrary, Terzaghi (1943) posited that as the external loading is initially applied, it is entirely sustained by the pore fluid. Thus, the initial water and air pressures are equal to the stress of external loading. Numerical calculations of excess pore water pressure and total settlement were made for a soil with clay texture as an illustrative example. A comparative study shows that in the early stage of consolidation, the model of considering loading efficiency generates larger time-dependent total settlement and also has the highest value of excess pore water pressure initially. The physical cause behind this difference is that the initial conditions established from Biot's theory is much smaller, reflecting the soil skeleton to carry most of external load at the moment it is imposed. Our results indicate that, in terms of the initial conditions for water and air pressures, the loading efficiency must be taken into account in the early stage of consolidation.
Evaluation of high-voltage, high-power, solid-state remote power controllers for amps
NASA Technical Reports Server (NTRS)
Callis, Charles P.
1987-01-01
The Electrical Power Branch at Marshall Space Flight Center has a Power System Development Facility where various power circuit breadboards are tested and evaluated. This project relates to the evaluation of a particular remote power controller (RPC) energizing high power loads. The Facility equipment permits the thorough testing and evaluation of high-voltage, high-power solid-state remote power controllers. The purpose is to evaluate a Type E, 30 Ampere, 200 V dc remote power controller. Three phases of the RPC evaluation are presented. The RPC is evaluated within a low-voltage, low-power circuit to check its operational capability. The RPC is then evaluated while performing switch/circuit breaker functions within a 200 V dc, 30 Ampere power circuit. The final effort of the project relates to the recommended procedures for installing these RPC's into the existing Autonomously Managed Power System (AMPS) breadboard/test facility at MSFC.
Respirable particulate monitoring with remote sensors. (Public health ecology: Air pollution)
NASA Technical Reports Server (NTRS)
Severs, R. K.
1974-01-01
The feasibility of monitoring atmospheric aerosols in the respirable range from air or space platforms was studied. Secondary reflectance targets were located in the industrial area and near Galveston Bay. Multichannel remote sensor data were utilized to calculate the aerosol extinction coefficient and thus determine the aerosol size distribution. Houston Texas air sampling network high volume data were utilized to generate computer isopleth maps of suspended particulates and to establish the mass loading of the atmosphere. In addition, a five channel nephelometer and a multistage particulate air sampler were used to collect data. The extinction coefficient determined from remote sensor data proved more representative of wide areal phenomena than that calculated from on site measurements. It was also demonstrated that a significant reduction in the standard deviation of the extinction coefficient could be achieved by reducing the bandwidths used in remote sensor.
NASA Technical Reports Server (NTRS)
Grimes, C. A.; Kouzoudis, D.; Dickey, E. C.; Qian, D.; Anderson, M. A.; Shahidain, R.; Lindsey, M.; Green, L.
2000-01-01
Ribbonlike magnetoelastic sensors can be considered the magnetic analog of an acoustic bell; in response to an externally applied magnetic field impulse the sensors emit magnetic flux with a characteristic resonant frequency. The magnetic flux can be detected external to the test area using a pick-up coil, enabling query remote monitoring of the sensor. The characteristic resonant frequency of a magnetoelastic sensor changes in response to mass loads. [L.D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, New York, 1986). p. 100].Therefore, remote query chemical sensors can be fabricated by combining the magnetoelastic sensors with a mass changing, chemically responsive layer. In this work magnetoelastic sensors are coated with humidity-sensitive thin films of ceramic, nanodimensionally porous TiO2 to make remote query humidity sensors. c2000 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Abramson, A.; Lazarovitch, N.; Adar, E.
2013-12-01
Groundwater is often the most or only feasible drinking water source in remote, low-resource areas. Yet the economics of its development have not been systematically outlined. We applied CBARWI (Cost-Benefit Analysis for Remote Water Improvements), a recently developed Decision Support System, to investigate the economic, physical and management factors related to the costs and benefits of non-networked groundwater supply in remote areas. Synthetic profiles of community water services (n = 17,962), defined across 14 parameters' values and ranges relevant to remote areas, were imputed into the decision framework, and the parameter effects on economic outcomes were investigated through regression analysis (Table 1). Several approaches were included for financing the improvements, after Abramson et al, 2011: willingness-to -pay (WTP), -borrow (WTB) and -work (WTW) in community irrigation (';water-for-work'). We found that low-cost groundwater development approaches are almost 7 times more cost-effective than conventional boreholes fitted with handpumps. The costs of electric, submersible borehole pumps are comparable only when providing expanded water supplies, and off-grid communities pay significantly more for such expansions. In our model, new source construction is less cost-effective than improvement of existing wells, but necessary for expanding access to isolated households. The financing approach significantly impacts the feasibility of demand-driven cost recovery; in our investigation, benefit exceeds cost in 16, 32 and 48% of water service configurations financed by WTP, WTB and WTW, respectively. Regressions of total cost (R2 = 0.723) and net benefit under WTW (R2 = 0.829) along with analysis of output distributions indicate that parameters determining the profitability of irrigation are different from those determining costs and other measures of net benefit. These findings suggest that the cost-benefit outcomes associated with groundwater-based water supply improvements vary considerably by many parameters. Thus, a wide variety of factors should be included to inform water development strategies. Abramson, A. et al (2011), Willingness to pay, borrow and work for water service improvements in developing countries, Water Resour Res, 47Table 1: Descriptions, investigated values and regression coefficients of parameters included in our analysis. Rank of standardized β indicates relative importance. Regression dependent variables are in [($ household-1) y-1]. * Parameters relevant to water-for-work program only.† p <.0001‡ p <.05
NASA Astrophysics Data System (ADS)
Hill, A. F.; Wilson, A. M.; Williams, M. W.
2016-12-01
The future of mountain water resources in High Asia is of high interest to water managers, development organizations and policy makers given large populations downstream reliant on snow and ice sourced river flow. Together with historical and cultural divides among ex-Soviet republics, a lack of central water management following the Soviet break-up has led to water stress as trans-boundary waters weave through and along borders. New upstream hydropower development, a thirsty downstream agricultural sector and a shrinking Aral Sea has led to increasing tension in the region. Despite these pressures and in contrast to eastern High Asia's Himalayan basins (Ganges, Brahmaputra), little attention has been given to western High Asia draining the Pamir and Tien Shan ranges (Syr Darya and Amu Darya basins) to better understand the hydrology of this vast and remote area. Difficult access and challenging terrain exacerbate challenges to working in this remote mountain region. As part of the Contributions to High Asia Runoff from Ice and Snow (CHARIS) project, we asked how does river flow source water composition change over an alpine-to-plains domain of Kyrgyzstan's Naryn River in the Syr Darya basin? In addition, what may the future hold for river flow in Central Asia given the differing responses of snow and ice to climate changes? Utilizing a Rapid Hydrologic Assessment methodology including a suite of pre-field mapping techniques we collected in situ water chemistry data at targeted, remote mountain sites over 450km of the Naryn River over an elevation gradient from glacial headwaters to the lower lying areas - places where people, hydropower and agriculture utilize water. Chemical and isotope tracers were used to separate stream flow to understand relative dependency on melt waters as the river moves downstream from glaciers and snow covered areas. This case study demonstrates a technique to acquire field data over large scales in remote regions that facilitates regional basin wide hydrologic characterization. The arid hydro-climatology of the Naryn basin also serves as an important comparison to the monsoon-dominated eastern Himalaya studies, thereby providing bookends to anticipating possible hydrologic futures across the High Asian mountain arc.
Zhang, Di; Tao, Yi; Liu, Xiaoning; Zhou, Kuiyu; Yuan, Zhenghao; Wu, Qianyuan; Zhang, Xihui
2016-01-01
Urban wastewater treatment plant (WWTP) effluent as reclaimed water provides an alternative water resource for urban rivers and effluent will pose a significant influence on the water quality of rivers. The objective of this study was to investigate the spatial and temporal variations of water quality in XZ River, an artificial urban river in Shenzhen city, Guangdong Province, China, after receiving reclaimed water from WWTP effluent. The water samples were collected monthly at different sites of XZ River from April 2013 to September 2014. Multivariate statistical techniques and a box-plot were used to assess the variations of water quality and to identify the main pollution factor. The results showed the input of WWTP effluent could effectively increase dissolved oxygen, decrease turbidity, phosphorus load and organic pollution load of XZ River. However, total nitrogen and nitrate pollution loads were found to remain at higher levels after receiving reclaimed water, which might aggravate eutrophication status of XZ River. Organic pollution load exhibited the lowest value on the 750 m downstream of XZ River, while turbidity and nutrient load showed the lowest values on the 2,300 m downstream. There was a higher load of nitrogen and phosphorus pollution in the dry season and at the beginning of wet season.
Using Remote Sensing to Estimate Crop Water Use to Improve Irrigation Water Management
NASA Astrophysics Data System (ADS)
Reyes-Gonzalez, Arturo
Irrigation water is scarce. Hence, accurate estimation of crop water use is necessary for proper irrigation managements and water conservation. Satellite-based remote sensing is a tool that can estimate crop water use efficiently. Several models have been developed to estimate crop water requirement or actual evapotranspiration (ETa) using remote sensing. One of them is the Mapping EvapoTranspiration at High Resolution using Internalized Calibration (METRIC) model. This model has been compared with other methods for ET estimations including weighing lysimeters, pan evaporation, Bowen Ratio Energy Balance System (BREBS), Eddy Covariance (EC), and sap flow. However, comparison of METRIC model outputs to an atmometer for ETa estimation has not yet been attempted in eastern South Dakota. The results showed a good relationship between ETa estimated by the METRIC model and estimated with atmometer (r2 = 0.87 and RMSE = 0.65 mm day-1). However, ETa values from atmometer were consistently lower than ET a values from METRIC. The verification of remotely sensed estimates of surface variables is essential for any remote-sensing study. The relationships between LAI, Ts, and ETa estimated using the remote sensing-based METRIC model and in-situ measurements were established. The results showed good agreement between the variables measured in situ and estimated by the METRIC model. LAI showed r2 = 0.76, and RMSE = 0.59 m2 m -2, Ts had r2 = 0.87 and RMSE 1.24 °C and ETa presented r2= 0.89 and RMSE = 0.71 mm day -1. Estimation of ETa using energy balance method can be challenging and time consuming. Thus, there is a need to develop a simple and fast method to estimate ETa using minimum input parameters. Two methods were used, namely 1) an energy balance method (EB method) that used input parameters of the Landsat image, weather data, a digital elevation map, and a land cover map and 2) a Kc-NDVI method that use two input parameters: the Landsat image and weather data. A strong relationship was found between the two methods with r2 of 0.97 and RMSE of 0.37 mm day -1. Hence, the Kc-NDVI method performed well for ET a estimations, indicating that Kc-NDVI method can be a robust and reliable method to estimate ETa in a short period of time. Estimation of crop evapotranspiration (ETc) using satellite remote sensing-based vegetation index such as the Normalized Difference Vegetation Index (NDVI). The NDVI was calculated using near-infrared and red wavebands. The relationship between NDVI and tabulated Kc's was used to generate Kc maps. ETc maps were developed as an output of Kc maps multiplied by reference evapotranspiration (ETr). Daily ETc maps helped to explain the variability of crop water use during the growing season. Based on the results we can conclude that ETc maps developed from remotely sensed multispectral vegetation indices are a useful tool for quantifying crop water use at regional and field scales.
Improvements in agricultural water decision support using remote sensing
NASA Astrophysics Data System (ADS)
Marshall, M. T.
2012-12-01
Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of these tools into two new decision support systems: FEWSNET Early Warning Explorer (http://earlywarning.usgs.gov/fews/ewxindex.php) and the NASA Terrestrial Observation and Prediction System (http://ecocast.arc.nasa.gov/) for the first and second project respectively.
NASA Astrophysics Data System (ADS)
Zhu, H.; Zhao, H. L.; Jiang, Y. Z.; Zang, W. B.
2018-05-01
Soil moisture is one of the important hydrological elements. Obtaining soil moisture accurately and effectively is of great significance for water resource management in irrigation area. During the process of soil moisture content retrieval with multiremote sensing data, multi- remote sensing data always brings multi-spatial scale problems which results in inconformity of soil moisture content retrieved by remote sensing in different spatial scale. In addition, agricultural water use management has suitable spatial scale of soil moisture information so as to satisfy the demands of dynamic management of water use and water demand in certain unit. We have proposed to use land parcel unit as the minimum unit to do soil moisture content research in agricultural water using area, according to soil characteristics, vegetation coverage characteristics in underlying layer, and hydrological characteristic into the basis of study unit division. We have proposed division method of land parcel units. Based on multi thermal infrared and near infrared remote sensing data, we calculate the ndvi and tvdi index and make a statistical model between the tvdi index and soil moisture of ground monitoring station. Then we move forward to study soil moisture remote sensing retrieval method on land parcel unit scale. And the method has been applied in Hetao irrigation area. Results show that compared with pixel scale the soil moisture content in land parcel unit scale has displayed stronger correlation with true value. Hence, remote sensing retrieval method of soil moisture content in land parcel unit scale has shown good applicability in Hetao irrigation area. We converted the research unit into the scale of land parcel unit. Using the land parcel units with unified crops and soil attributes as the research units more complies with the characteristics of agricultural water areas, avoids the problems such as decomposition of mixed pixels and excessive dependence on high-resolution data caused by the research units of pixels, and doesn't involve compromises in the spatial scale and simulating precision like the grid simulation. When the application needs are met, the production efficiency of products can also be improved at a certain degree.
NASA Astrophysics Data System (ADS)
Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.
2014-04-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in-situ datasets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing dataset is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, mid-latitudes, and arctic) and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier-Transform InfraRed) remote sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study is both, a theoretical and an empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.
NASA Astrophysics Data System (ADS)
Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.
2014-08-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in situ data sets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing data set is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, midlatitudes, and Arctic), and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote-sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier Transform InfraRed) remote-sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study presents theoretical and empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.
Mapping CDOM Concentration in Waters Influenced by the Mississippi River Plume
NASA Technical Reports Server (NTRS)
Miller, Richard L.; DelCastillo, Carlos E.; Powell, Rodney T.; DSa, Eurico; Spiering, Bruce
2002-01-01
Colored dissolved organic matter (CDOM) is often an important component of the organic carbon pool in river-dominated coastal margins. CDOM directly influences remote sensing applications through its strong absorption in the UV and blue regions of the spectrum. This effect can complicate the use of chlorophyll a retrieval algorithms and phytoplankton production models that are based on remotely sensed ocean color. As freshwater input is the principle source of CDOM in coastal margins, CDOM distribution can often be described by conservative mixing with open ocean waters and may serve as an optical tracer of riverine water. Hence, there is considerable interest in the ability to accurately measure and map CDOM concentrations as well as understand the processes that govern the optical properties and distribution of CDOM in coastal environments. We are examining CDOM dynamics in the waters influenced by the Mississippi River plume. Our program incorporates discrete samples, flow-through measurements, and remote sensing. CDOM absorption spectra of discrete samples are measured at sea using a portable, multiple pathlength waveguide system. A SAFire multi-spectral fluorescence meter provides spectral characterization of CDOM (fluorescence and absorption) using a ship flow-through system for continuous surface mapping. In situ reflectance spectra are obtained by a hand held spectroradiometer. Remotely sensed images are obtained from the SeaWiFS and CRIS (Coastal Research Imaging Spectrometer) instruments. We describe here the instruments used, sampling protocols employed, and the relationships derived between in situ measurements and remotely sensed data for this optically complex environment.
NASA Astrophysics Data System (ADS)
Bracher, Astrid; Taylor, Bettina; Taylor, Marc; Steinmetz, Francois; Dinter, Tilman; Röttgers, Rüdiger
2014-05-01
Phytoplankton pigments play a major role in photosynthesis and photoprotection. Their composition and abundance give information on characteristics of a phytoplankton community in respect to its acclimation to light, overall biomass and composition of major phytoplankton groups. Most phytoplankton pigments can be measured by applying HPLC techniques to filtered water samples. This method like other mathods analysing water samples in the laboratory is time consuming and therefore only a limited number of samples can be obtained. In order to obtain information on phytoplankton pigment composition with a better temporal and spatial composition, the rationale was to develop a method to get from continuous optical measurements pigment concentrations. We have used remote sensing reflectances (RRS) derived from ship-based hyper-spectral underwater radiometric and from satellite MERIS measurements (using the POLYMER algorithm developed by Steinmetz et al. 2011), sampled in the Eastern Tropical Atlantic, to predict the water surface concentration of various pigments or pigment groups in this area. A statistical model based on Empirical Orthogonal Function (EOF) analysis of these RRS spectra was developed. Then subsequently linear models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables were constructed. The model results, which have been verified by cross validation, show that from the ship-based RRS measurements the surface concentrations of a suite of pigments and pigment groups can be well predicted, even when only a multi-spectral resolution of RRS data is chosen. Based on the MERIS reflectance data, only concentrations of total chlorophyll-a (chl-a), monovinyl-chl-a and the groups of photoprotective and photosynthetic carotenoids can be obtained with high quality. The model constructed on the satellite reflectances as input was also applied to one month of MERIS POLYMER data to predict for the whole Eastern Tropical Atlantic area the concentration of those pigments. Finally, the potential, limitations and future perspectives for the application of our generic method are discussed.
Empirical validation and proof of added value of MUSICA's tropospheric δD remote sensing products
NASA Astrophysics Data System (ADS)
Schneider, M.; González, Y.; Dyroff, C.; Christner, E.; Wiegele, A.; Barthlott, S.; García, O. E.; Sepúlveda, E.; Hase, F.; Andrey, J.; Blumenstock, T.; Guirado, C.; Ramos, R.; Rodríguez, S.
2014-07-01
The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) integrates tropospheric water vapour isototopologue remote sensing and in-situ observations. This paper presents a first empirical validation of MUSICA's H2O and δD remote sensing products (generated from ground-based FTIR, Fourier Transform InfraRed, spectrometer and space-based IASI, Infrared Atmospheric Sounding Interferometer, observation). As reference we use well calibrated in-situ measurements made aboard an aircraft (between 200 and 6800 m a.s.l.) by the dedicated ISOWAT instrument and on the island of Tenerife at two different altitudes (at Izaña, 2370 m a.s.l., and at Teide, 3550 m a.s.l.) by two commercial Picarro L2120-i water isotopologue analysers. The comparison to the ISOWAT profile measurements shows that the remote sensors can well capture the variations in the water vapour isotopologues and the scatter with respect to the in-situ references suggests a δD random uncertainty for the FTIR product of much better than 45‰ in the lower troposphere and of about 15‰ for the middle troposphere. For the middle tropospheric IASI δD product the study suggests a respective uncertainty of about 15‰. In addition, we find indications for a positive δD bias in the remote sensing products. The δD data are scientifically interesting only if they add information to the H2O observations. We are able to qualitatively demonstrate the added value of the MUSICA δD remote sensing data by comparing δD-vs.-H2O curves. First, we show that the added value of δD as seen in the Picarro data is similarly seen in FTIR data measured in coincidence. Second, we document that the δD-vs.-H2O curves obtained from the different in-situ and remote sensing data sets (ISOWAT, Picarro at Izaña and Teide, FTIR, and IASI) consistently identify two different moisture transport pathways to the subtropical north eastern Atlantic free troposphere.
NASA Technical Reports Server (NTRS)
Ryerson, Charles C.
2000-01-01
Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to convert sensed conditions into a measure of icing potential. Technology development also requires refinement of inversion techniques. These goals can be accomplished with collaboration among federal agencies including NASA, the FAA, the National Center for Atmospheric Research, NOAA, and the Department of Defense. This report reviews operational, meteorological, and technological considerations in developing the capability to remotely map in-flight icing conditions from the ground and from the air.
River Platform for Monitoring Erosion (RIPLE) in mountainous rivers
NASA Astrophysics Data System (ADS)
Michielin, Yoann; Nord, Guillaume; Esteves, Michel; Geay, Thomas; Hauet, Alexandre
2017-04-01
The RIPLE platform has been developed to allow a continuous monitoring at high temporal frequency ( 10 min) of water and solid fluxes in mountainous rivers. The scientific context of this development is defined as follows: (i) the simultaneous measurements of water discharge, bedload, suspension load and river bed topography contribute to the establishment of comprehensive mass balance at the catchment scale; (ii) measurements of the physical properties of fine sediments (size, shape, composition) provide information on the spatial origin of sediments within the catchment, the conditions for erosion and sedimentation processes within the river and the potential to transport other substances such as nutrients, metals, microorganisms. For the design of the platform, priority has been given to non-intrusive instruments due to their robustness. The basic prototype of the platform integrates the following instruments: water level and surface velocity radars, turbidimeters, conductivity probe, hydrophone, cameras, automatic water sampler and depth sounder. Other instruments are progressively integrated, such as the SCAF (system characterizing the sediment's settling velocity), an acoustic Doppler profiler and a spectrophotometer. A wireless telecommunication has been set up to allow remote interactions with the platform and data transmission. The RIPLE platform has been designed to facilitate its use and maintenance: user interface allowing data monitoring and remote configuration, sending alerts (SMS, mail) according to programmed conditions, flexibility of on-site installation and energy autonomy allowing to easily move the platform from one site to another site. In September 2016, the RIPLE platform was installed on a bridge across the Romanche river at Bourg d'Oisans (45.1159 °N, 6.0135 °E) for a testing period. After a presentation of the architecture of the platform, the first results derived from in situ measurements are discussed: the intercomparison of surface velocity measurements (velocity radar versus Large Scale Particle Image Velocimetry), the direct estimation of water discharge using the surface velocity and water level measurements and the comparison with the historical stage-discharge rating curve, the intercomparison of turbidity measurements and the calibration of the turbidity-SSC (suspended sediment concentration) relationships, the investigation of periods with bedload transport and the characterization of the corresponding hydraulic conditions. The next steps in the exploitation of the results of the RIPLE platform are finally addressed.
Bio-Optics of the Chesapeake Bay from Measurements and Radiative Transfer Calculations
NASA Technical Reports Server (NTRS)
Tzortziou, Maria; Herman, Jay R.; Gallegos, Charles L.; Neale, Patrick J.; Subramaniam, Ajit; Harding, Lawrence W., Jr.; Ahmad, Ziauddin
2005-01-01
We combined detailed bio-optical measurements and radiative transfer (RT) modeling to perform an optical closure experiment for optically complex and biologically productive Chesapeake Bay waters. We used this experiment to evaluate certain assumptions commonly used when modeling bio-optical processes, and to investigate the relative importance of several optical characteristics needed to accurately model and interpret remote sensing ocean-color observations in these Case 2 waters. Direct measurements were made of the magnitude, variability, and spectral characteristics of backscattering and absorption that are critical for accurate parameterizations in satellite bio-optical algorithms and underwater RT simulations. We found that the ratio of backscattering to total scattering in the mid-mesohaline Chesapeake Bay varied considerably depending on particulate loading, distance from land, and mixing processes, and had an average value of 0.0128 at 530 nm. Incorporating information on the magnitude, variability, and spectral characteristics of particulate backscattering into the RT model, rather than using a volume scattering function commonly assumed for turbid waters, was critical to obtaining agreement between RT calculations and measured radiometric quantities. In situ measurements of absorption coefficients need to be corrected for systematic overestimation due to scattering errors, and this correction commonly employs the assumption that absorption by particulate matter at near infrared wavelengths is zero.
The Combat-System/Ship-System Interface,
1982-02-01
sequence initiated by removal of the load shed signal. Re-eneAgize capabitiLty. Provide remotely controlled reclosable power control devices to...signal from the electrical plant control equipment. The power controllers would replace existing circuit breakers and incorporate reclose capability
2007-02-01
on/off control), trending and trend reports, load shedding/load manage- ment, remote setpoint adjustment, initial diagnosis of a service call and...building-specific operational data such as on/off scheduling com- mands, setpoints , and outside air temperature. With help from several other agencies and...interface for monitoring 3. Provide one interface for device/system management/configuration 4. ( Optimally ) provide one interface for device
2007-02-01
on/off control), trending and trend reports, load shedding/load manage- ment, remote setpoint adjustment, initial diagnosis of a service call and...building-specific operational data such as on/off scheduling com- mands, setpoints , and outside air temperature. With help from several other agencies and...interface for monitoring 3. Provide one interface for device/system management/configuration 4. ( Optimally ) provide one interface for device
A potential hyperspectral remote sensing imager for water quality measurements
NASA Astrophysics Data System (ADS)
Zur, Yoav; Braun, Ofer; Stavitsky, David; Blasberger, Avigdor
2003-04-01
Utilization of Pan Chromatic and Multi Spectral Remote Sensing Imagery is wide spreading and becoming an established business for commercial suppliers of such imagery like ISI and others. Some emerging technologies are being used to generate Hyper-Spectral imagery (HSI) by aircraft as well as other platforms. The commercialization of such technology for Remote Sensing from space is still questionable and depends upon several parameters including maturity, cost, market reception and many others. HSI can be used in a variety of applications in agriculture, urban mapping, geology and others. One outstanding potential usage of HSI is for water quality monitoring, a subject studied in this paper. Water quality monitoring is becoming a major area of interest in HSI due to the increase in water demand around the globe. The ability to monitor water quality in real time having both spatial and temporal resolution is one of the advantages of Remote Sensing. This ability is not limited only for measurements of oceans and inland water, but can be applied for drinking and irrigation water reservoirs as well. HSI in the UV-VNIR has the ability to measure a wide range of constituents that define water quality. Among the constituents that can be measured are the pigment concentration of various algae, chlorophyll a and c, carotenoids and phycocyanin, thus enabling to define the algal phyla. Other parameters that can be measured are TSS (Total Suspended Solids), turbidity, BOD (Biological Oxygen Demand), hydrocarbons, oxygen demand. The study specifies the properties of such a space borne device that results from the spectral signatures and the absorption bands of the constituents in question. Other parameters considered are the repetition of measurements, the spatial aspects of the sensor and the SNR of the sensor in question.
NASA Astrophysics Data System (ADS)
Kappas, Martin; Nguyen Hong, Quang; Thanh, Nga Pham Thi; Thu, Hang Le Thi; Nguyen Vu, Giang; Degener, Jan; Rafiei Emam, Ammar
2017-04-01
There has been an increasing attention to the large trans-boundary Mekong river basin due to various problems related to water management and flood control, for instance. Vietnam Mekong delta is located at the downstream of the river basin where is affected most by this human-induced reduction in flows from the upstream. On the other hand, the flood plain of nine anastomosing channels is increasingly effected by the seawater intrusion due to sea level rising of climate change. This results in negative impacts of salinization, drought, and floods, while formerly flooding had frequently brought positive natural gain of irrigation water and alluvial aggradation. In this research, our aim is to predict flooding for the better water management adaptation and control. We applied the model HEC-SSP 2.1 to analyze flood flow frequency, two-dimensional unsteady flow calculations in HEC-RAS 5.0 for simulating a floodplain inundation. Remote sensing-based water level (Jason-2) and inundation map were used for validation and comparison with the model simulations. The results revealed a reduction of water level at all the monitoring stations, particularly in the last decade. In addition, a trend of the inundation extension gradually declined, but in some periods it remained severe due to water release from upstream reservoirs during the rainy season (October-November). We found an acceptable agreement between the HEC-RAS and remote sensing flooding maps (around 70%). Based on the flood routine analysis, we could conclude that the water level will continue lower and lead to a trend of drought and salinization harsher in the near future. Keywords: Mekong delta, flood control, inundation, water management, hydrological modelling, remote sensing
Unthank, Michael D.; Newson, Jeremy K.; Williamson, Tanja N.; Nelson, Hugh L.
2012-01-01
Flow- and load-duration curves were constructed from the model outputs of the U.S. Geological Survey's Water Availability Tool for Environmental Resources (WATER) application for streams in Kentucky. The WATER application was designed to access multiple geospatial datasets to generate more than 60 years of statistically based streamflow data for Kentucky. The WATER application enables a user to graphically select a site on a stream and generate an estimated hydrograph and flow-duration curve for the watershed upstream of that point. The flow-duration curves are constructed by calculating the exceedance probability of the modeled daily streamflows. User-defined water-quality criteria and (or) sampling results can be loaded into the WATER application to construct load-duration curves that are based on the modeled streamflow results. Estimates of flow and streamflow statistics were derived from TOPographically Based Hydrological MODEL (TOPMODEL) simulations in the WATER application. A modified TOPMODEL code, SDP-TOPMODEL (Sinkhole Drainage Process-TOPMODEL) was used to simulate daily mean discharges over the period of record for 5 karst and 5 non-karst watersheds in Kentucky in order to verify the calibrated model. A statistical evaluation of the model's verification simulations show that calibration criteria, established by previous WATER application reports, were met thus insuring the model's ability to provide acceptably accurate estimates of discharge at gaged and ungaged sites throughout Kentucky. Flow-duration curves are constructed in the WATER application by calculating the exceedence probability of the modeled daily flow values. The flow-duration intervals are expressed as a percentage, with zero corresponding to the highest stream discharge in the streamflow record. Load-duration curves are constructed by applying the loading equation (Load = Flow*Water-quality criterion) at each flow interval.
[Fluorescence peak shift corresponding to high chlorophyll concentrations in inland water].
Duan, Hong-Tao; Ma, Rong-Hua; Zhang, Yuan-Zhi; Zhang, Bai
2009-01-01
Hyperspectral remote sensing offers the potential to detect water quality variables such as Chl-a by using narrow spectral channels of less than 10 nm, which could otherwise be masked by broadband satellites such as Landsat TM. Fluorescence peak of the red region is very important for the remote sensing of inland and coastal waters, which is unique to phytoplankton Chl-a that takes place in this region. Based on in situ water sampling and field spectral measurement from 2004 to 2006 in Nanhu Lake, the features of the spectral reflectance were analyzed in detail with peak position shift. The results showed: An exponential fitting model, peak position = a(Chl-a)b, was developed between chlorophyll-a concentration and fluorescence peak shift, where a varies between 686.11 and 686.29, while b between 0.0062 and 0.0065. It was found that the better the spectral resolution, the higher the precision of the model. Except that, the average of peak shift showed a high correlation with the average of different Chl-a grades, and the determination coefficient (R2) was higher than 0.81. It contributed significantly to the increase in the accuracy of the derivation of chlorophyll values from remote sensing data in Nanhu Lake. There is satisfactory correspondence between hyperspectral models and chl-a concentration, therefore, it is possible to monitor the water quality of Nanhu lake throngh the hyperspetral remote sensing data.
NASA Astrophysics Data System (ADS)
Davies, Gwendolyn E.
Acid mine drainage (AMD) resulting from the oxidation of sulfides in mine waste is a major environmental issue facing the mining industry today. Open pit mines, tailings ponds, ore stockpiles, and waste rock dumps can all be significant sources of pollution, primarily heavy metals. These large mining-induced footprints are often located across vast geographic expanses and are difficult to access. With the continuing advancement of imaging satellites, remote sensing may provide a useful monitoring tool for pit lake water quality and the rapid assessment of abandoned mine sites. This study explored the applications of laboratory spectroscopy and multi-season hyperspectral remote sensing for environmental monitoring of mine waste environments. Laboratory spectral experiments were first performed on acid mine waters and synthetic ferric iron solutions to identify and isolate the unique spectral properties of mine waters. These spectral characterizations were then applied to airborne hyperspectral imagery for identification of poor water quality in AMD ponds at the Leviathan Mine Superfund site, CA. Finally, imagery varying in temporal and spatial resolutions were used to identify changes in mineralogy over weathering overburden piles and on dry AMD pond liner surfaces at the Leviathan Mine. Results show the utility of hyperspectral remote sensing for monitoring a diverse range of surfaces associated with AMD.
14 CFR 23.527 - Hull and main float load factors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and main float load factors. 23.527... Water Loads § 23.527 Hull and main float load factors. (a) Water reaction load factors nw must be...=seaplane landing weight in pounds. (6) K1=empirical hull station weighing factor, in accordance with figure...
Nutrient loading to Lewisville Lake, north-central Texas, 1984-87
Gain, W.S.; Baldys, Stanley
1995-01-01
The estimated long-term (1974-89 water years) average annual total nitrogen load (excluding loads from sewage-treatment plants in ungaged areas) is 11,800 pounds per day. The estimated long-term (1974 89 water years) average annual total phosphorus load (excluding loads from sewage-treatment plants in ungaged areas) is 1,100 pounds per day.
Leaf Relative Water Content Estimated from Leaf Reflectance and Transmittance
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2016-01-01
Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. In the research we report here, we used optical polarization techniques to monitor the light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both change nonlinearly. The result show that the nonlinearities cancel in the ratio R/T, which appears linearly related to RWC for RWC less than 90%. The results suggest that potentially leaf water status and perhaps even canopy water status could be monitored starting from leaf and canopy optical measurements.
NASA Technical Reports Server (NTRS)
Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.
1976-01-01
Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.
Water supply studies. [management and planning of water supplies in California
NASA Technical Reports Server (NTRS)
Burgy, R. H.; Algazi, V. R.; Draeger, W. C.; Churchman, C. W.; Thomas, R. W.; Lauer, D. T.; Hoos, I.; Krumpe, P. F.; Nichols, J. D.; Gialdini, M. J.
1973-01-01
The primary test site for water supply investigations continues to be the Feather River watershed in northeastern California. This test site includes all of the area draining into and including the Oroville Reservoir. The principal effort is to determine the extent to which remote sensing techniques, when properly employed, can provide information useful to those persons concerned with the management and planning of lands and facilities for the production of water, using the Oroville Reservoir and the California Water Project as the focus for the study. In particular, emphasis is being placed on determining the cost effectiveness of information derived through remote sensing as compared with that currently being derived through more conventional means.
Chen, Lan; Li, Jiezhen; ThanhThuy, T Tran; Zhou, Liping; Huang, Chen'an; Yuan, Lijuan; Cai, Qingyun
2014-02-15
A wireless, remote query octachlorostyrene (OCS) biosensor was fabricated by coating a mass-sensitive magnetoelastic ribbon with anti-OCS antibody. In response to a time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic resonance frequency which inversely depends on the sensor mass loading. As the magnetoelastic film is magnetostrictive itself, the vibrations launch magnetic flux that can be remotely detected using a pickup coil. Au nanoparticles (NPs) were used to amplify the mass loading. In a sample solution containing OCS target and OCS-modified AuNPs (OCS-AuNPs), both OCS and OCS-AuNPs react with the anti-OCS antibody immobilized on the sensor surface in a competition mode. The bound OCS-AuNPs amount is inversely proportional to the OCS target concentration. The reduction of bound OCS-AuNPs induced by free OCS results in significant change in mass loading, which amplifies the responses. The biosensor demonstrates a linear shift in resonance frequency with OCS concentration between 7.4 μM and 9 nM, with a detection limit of 2.8 nM. © 2013 Published by Elsevier B.V.
Influence of crop load on almond tree water status and its importance in irrigation scheduling
NASA Astrophysics Data System (ADS)
Puerto Conesa, Pablo; Domingo Miguel, Rafael; Torres Sánchez, Roque; Pérez Pastor, Alejandro
2014-05-01
In the Mediterranean area water is the main factor limiting crop production and therefore irrigation is essential to achieve economically viable yields. One of the fundamental techniques to ensure that irrigation water is managed efficiently with maximum productivity and minimum environmental impact is irrigation scheduling. The fact that the plant water status integrates atmospheric demand and soil water content conditions encourages the use of plant-based water status indicators. Some researchers have successfully scheduled irrigation in certain fruit trees by maintaining the maximum daily trunk diameter shrinkage (MDS) signal intensity at threshold values to generate (or not) water stress. However MDS not only depends on the climate and soil water content, but may be affected by tree factors such as age, size, phenological stage and fruit load. There is therefore a need to quantify the influence of these factors on MDS. The main objective of this work was to study the effects of crop load on tree water relations for scheduling purposes. We particularly focused on MDS vs VPD10-15 (mean air vapor pressure deficit during the period 10.00-15.00 h solar time) for different loads and phenological phases under non-limiting soil water conditions. The experiment was carried out in 2011 in a 1 ha plot in SE Spain with almond trees (Prunus dulcis (Mill.) D.A. Webb cv. 'Marta'). Three crop load treatments were studied according to three crop load levels, i) T100, high crop load, characteristic crop load, ii) T50, medium crop load, in which 50% of the fruits were removed and iii) T0, practically without fruits. Fruits were manually thinned. Each treatment, randomly distributed in blocks, was run in triplicate. Plant water status was assessed from midday stem water potential (Ψs), MDS, daily trunk growth rate (TGR), leaf turgor potential Ψp, fruit water potential (Ψf), stomatal conductance (gs) and photosynthesis (Pn) and transpiration rates (E). Yield, pruning weights and reserve sugar concentration were also evaluated. Trees were drip irrigated in order to satisfy the maximum crop water requirements. Variations in MDS were compared with changes in Ψs and VPD10-15 in the three treatments at the end of fruit growth stage (stage III), kernel filling stage (stage IV) and postharvest (stage V). Our results highlighted that crop load affects almond tree water status. We observed a greater effect of crop load on MDS and TGR than on Ψs. In T0 trees, Ψs was 16% higher than in T50 and T100. MDS was 36% and 49% lower in the low (T50) and almost nil-cropping trees (T0) than in the high-cropping trees (T100). The slope of MDS vs VPD10-15 forced to the origin increased with crop load, suggesting that different relationships are needed to estimate tree water status. TGR was 33% higher in T0 than in the cropping trees. In the same way, the presence of fruits, as reflected by the source/sink relationship, increased gas exchange parameters. Also pruning weights reflected competition between fruits and shoots for photoassimilates. Nevertheless the reserve sugar concentration at the base of the main branches was unaffected by the crop load. All this implies that it is necessary to consider the crop load in irrigation scheduling based on MDS signal intensity.
Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.
Simis, Stefan G H; Ylöstalo, Pasi; Kallio, Kari Y; Spilling, Kristian; Kutser, Tiit
2017-01-01
Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are provided as supplementary data.
Reconstruction of time-varying tidal flat topography using optical remote sensing imageries
NASA Astrophysics Data System (ADS)
Tseng, Kuo-Hsin; Kuo, Chung-Yen; Lin, Tang-Huang; Huang, Zhi-Cheng; Lin, Yu-Ching; Liao, Wen-Hung; Chen, Chi-Farn
2017-09-01
Tidal flats (TFs) occupy approximately 7% of the total coastal shelf areas worldwide. However, TFs are unavailable in most global digital elevation models (DEMs) due to water-impermeable nature of existing remote sensing approaches (e.g., radar used for WorldDEM™ and Shuttle Radar Topography Mission DEM and optical stereo-pairs used for ASTER Global Digital Elevation Map Version 2). However, this problem can be circumvented using remote sensing imageries to observe land exposure at different tidal heights during each revisit. This work exploits Landsat-4/-5/-7/-8 Thematic Mapper (TM)/Enhanced TM Plus/Operational Land Imager imageries to reconstruct topography of a TF, namely, Hsiang-Shan Wetland in Taiwan, to unveil its formation and temporal changes since the 1980s. We first classify water areas by applying modified normalized difference water index to each Landsat image and normalize chances of water exposure to create an inundation probability map. This map is then scaled by tidal amplitudes extracted from DTU10 tide model to convert the probabilities into actual elevations. After building DEM at intertidal zone, a water level-area curve is established, and accuracy of DEM is validated by sea level (SL) at the timing of each Landsat snapshot. A 22-year (1992-2013) dataset composed of 227 Landsat scenes are analyzed and compared with tide gauge data. Root-mean-square differences of SL reaches 48 cm with a correlation coefficient of 0.93, indicating that the present technique is useful for constructing accurate coastal DEMs, and that products can be utilized for estimating instant SL. This study shows the possibility of exploring evolution of intertidal zones using an archive of optical remote sensing imageries. The technique developed in the present study potentially helps in quantifying SL from the start of optical remote sensing era.
NASA Astrophysics Data System (ADS)
Han, P.; Long, D.
2017-12-01
Snow water equivalent (SWE) and total water storage (TWS) changes are important hydrological state variables over cryospheric regions, such as China's Upper Yangtze River (UYR) basin. Accurate simulation of these two state variables plays a critical role in understanding hydrological processes over this region and, in turn, benefits water resource management, hydropower development, and ecological integrity over the lower reaches of the Yangtze River, one of the largest rivers globally. In this study, an improved CREST model coupled with a snow and glacier melting module was used to simulate SWE and TWS changes over the UYR, and to quantify contributions of snow and glacier meltwater to the total runoff. Forcing, calibration, and validation data are mainly from multi-source remote sensing observations, including satellite-based precipitation estimates, passive microwave remote sensing-based SWE, and GRACE-derived TWS changes, along with streamflow measurements at the Zhimenda gauging station. Results show that multi-source remote sensing information can be extremely valuable in model forcing, calibration, and validation over the poorly gauged region. The simulated SWE and TWS changes and the observed counterparts are highly consistent, showing NSE coefficients higher than 0.8. The results also show that the contributions of snow and glacier meltwater to the total runoff are 8% and 6%, respectively, during the period 2003‒2014, which is an important source of runoff. Moreover, from this study, the TWS is found to increase at a rate of 5 mm/a ( 0.72 Gt/a) for the period 2003‒2014. The snow melting module may overestimate SWE for high precipitation events and was improved in this study. Key words: CREST model; Remote Sensing; Melting model; Source Region of the Yangtze River
NASA Astrophysics Data System (ADS)
Asal Kzar, Ahmed; Mat Jafri, M. Z.; Hwee San, Lim; Al-Zuky, Ali A.; Mutter, Kussay N.; Hassan Al-Saleh, Anwar
2016-06-01
There are many techniques that have been given for water quality problem, but the remote sensing techniques have proven their success, especially when the artificial neural networks are used as mathematical models with these techniques. Hopfield neural network is one type of artificial neural networks which is common, fast, simple, and efficient, but it when it deals with images that have more than two colours such as remote sensing images. This work has attempted to solve this problem via modifying the network that deals with colour remote sensing images for water quality mapping. A Feed-forward Hopfield Neural Network Algorithm (FHNNA) was modified and used with a satellite colour image from type of Thailand earth observation system (THEOS) for TSS mapping in the Penang strait, Malaysia, through the classification of TSS concentrations. The new algorithm is based essentially on three modifications: using HNN as feed-forward network, considering the weights of bitplanes, and non-self-architecture or zero diagonal of weight matrix, in addition, it depends on a validation data. The achieved map was colour-coded for visual interpretation. The efficiency of the new algorithm has found out by the higher correlation coefficient (R=0.979) and the lower root mean square error (RMSE=4.301) between the validation data that were divided into two groups. One used for the algorithm and the other used for validating the results. The comparison was with the minimum distance classifier. Therefore, TSS mapping of polluted water in Penang strait, Malaysia, can be performed using FHNNA with remote sensing technique (THEOS). It is a new and useful application of HNN, so it is a new model with remote sensing techniques for water quality mapping which is considered important environmental problem.
Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry
NASA Technical Reports Server (NTRS)
Wilson, William C.; Moore, Jason P.; Juarez, Peter D.
2016-01-01
NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.
NASA Astrophysics Data System (ADS)
Tran, Annelise; Goutard, Flavie; Chamaillé, Lise; Baghdadi, Nicolas; Lo Seen, Danny
2010-02-01
Recent studies have highlighted the potential role of water in the transmission of avian influenza (AI) viruses and the existence of often interacting variables that determine the survival rate of these viruses in water; the two main variables are temperature and salinity. Remote sensing has been used to map and monitor water bodies for several decades. In this paper, we review satellite image analysis methods used for water detection and characterization, focusing on the main variables that influence AI virus survival in water. Optical and radar imagery are useful for detecting water bodies at different spatial and temporal scales. Methods to monitor the temperature of large water surfaces are also available. Current methods for estimating other relevant water variables such as salinity, pH, turbidity and water depth are not presently considered to be effective.
Hippocampal activation during the recall of remote spatial memories in radial maze tasks.
Schlesiger, Magdalene I; Cressey, John C; Boublil, Brittney; Koenig, Julie; Melvin, Neal R; Leutgeb, Jill K; Leutgeb, Stefan
2013-11-01
Temporally graded retrograde amnesia is observed in human patients with medial temporal lobe lesions as well as in animal models of medial temporal lobe lesions. A time-limited role for these structures in memory recall has also been suggested by the observation that the rodent hippocampus and entorhinal cortex are activated during the retrieval of recent but not of remote memories. One notable exception is the recall of remote memories for platform locations in the water maze, which requires an intact hippocampus and results in hippocampal activation irrespective of the age of the memory. These findings raise the question whether the hippocampus is always involved in the recall of spatial memories or, alternatively, whether it might be required for procedural computations in the water maze task, such as for calculating a path to a hidden platform. We performed spatial memory testing in radial maze tasks to distinguish between these possibilities. Radial maze tasks require a choice between spatial locations on a center platform and thus have a lesser requirement for navigation than the water maze. However, we used a behavioral design in the radial maze that retained other aspects of the standard water maze task, such as the use of multiple start locations and retention testing in a single trial. Using the immediate early gene c-fos as a marker for neuronal activation, we found that all hippocampal subregions were more activated during the recall of remote compared to recent spatial memories. In areas CA3 and CA1, activation during remote memory testing was higher than in rats that were merely reexposed to the testing environment after the same time interval. Conversely, Fos levels in the dentate gyrus were increased after retention testing to the extent that was also observed in the corresponding exposure control group. This pattern of hippocampal activation was also obtained in a second version of the task that only used a single start arm instead of multiple start arms. The CA3 and CA1 activation during remote memory recall is consistent with the interpretation that an older memory might require increased pattern completion and/or relearning after longer time intervals. Irrespective of whether the hippocampus is required for remote memory recall, the hippocampus might engage in computations that either support recall of remote memories or that update remote memories. Copyright © 2013 Elsevier Inc. All rights reserved.
Flight performance, energetics and water turnover of tippler pigeons with a harness and dorsal load
Gessaman, J.A.; Workman, G.W.; Fuller, M.R.
1991-01-01
We measured carbon dioxide production and water efflux of 12 tippler pigeons (Columba spp.) during seven experimental flights using the doubly labeled water (DLW) method. Prior to the experiment birds were randomly assigned to one of two groups. One group flew as controls (no load or harness) on all seven flights. The other group wore a harness on two flights, a dorsal load/harness package (weighing about 5% of a bird's mass) on two flights, and they were without a load in three flights. Flight duration of pigeons with only a harness and with a dorsal load/harness package was 21 and 26% less, respectively, than the controls. Pigeons wearing a harness, or wearing a dorsal load/harness package lost water 50-90%, and 57-100% faster, respectively, than control pigeons. The mean CO2 production of pigeons wearing a harness or a load/harness package was not significantly different than pigeons without a harness or load. The small sample sizes and large variability in DLW measuremets precluded a good test of the energetic cost of flying with a harness and dorsal load.
Flight performance energetics and water turnovers of Tippler Pigeons with a harness and doorsal load
Gessaman, James A.; Workman, Gar W.; Fuller, Mark R.
1991-01-01
We measured carbon dioxide production and water efflux of 12 tippler pigeons (Columba spp.) during seven experimental flights using the doubly labeled water (DLW) method. Prior to the experiment birds were randomly assigned to one of two groups. One group flew as controls (no load or harness) on all seven flights. The other group wore a harness on two flights, a dorsal load/harness package (weighing about 5% of a birda??s mass) on two flights, and they were without a load in three flights. Plight duration of pigeons with only a harness and with a dorsal load/harness package was 21 and 26% less, respectively, than the controls. Pigeons wearing a harness, or wearing a dorsal load/harness package lost water 50-90%, and 57-100% faster, respectively, than control pigeons. The mean CO, production of pigeons wearing a harness or a load/harness package was not significantly different than pigeons without a harness or load. The small sample sizes and large variability in DLW measurements precluded a good test of the energetic cost of flying with a harness and dorsal load.
Remote sensing of suspended sediment water research: principles, methods, and progress
NASA Astrophysics Data System (ADS)
Shen, Ping; Zhang, Jing
2011-12-01
In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, K.; Wu, Z.; Guan, X.
2017-12-01
In recent years, with the prominent of water environment problem and the relative increase of point source pollution governance, especially the agricultural non-point source pollution problem caused by the extensive use of fertilizers and pesticides has become increasingly aroused people's concern and attention. In order to reveal the quantitative relationship between agriculture water and fertilizer and non-point source pollution, on the basis of elm field experiment and combined with agricultural drainage irrigation model, the agricultural irrigation water and the relationship between fertilizer and fertilization scheme and non-point source pollution were analyzed and calculated by field emission intensity index. The results show that the variation of displacement varies greatly under different irrigation conditions. When the irrigation water increased from 22cm to 42cm, the irrigation water increased by 20 cm while the field displacement increased by 11.92 cm, about 66.22% of the added value of irrigation water. Then the irrigation water increased from 42 to 68, irrigation water increased 26 cm, and the field displacement increased by 22.48 cm, accounting for 86.46% of irrigation water. So there is an "inflection point" between the irrigation water amount and field displacement amount. The load intensity increases with the increase of irrigation water and shows a significant power correlation. Under the different irrigation condition, the increase amplitude of load intensity with the increase of irrigation water is different. When the irrigation water is smaller, the load intensity increase relatively less, and when the irrigation water increased to about 42 cm, the load intensity will increase considerably. In addition, there was a positive correlation between the fertilization and load intensity. The load intensity had obvious difference in different fertilization modes even with same fertilization level, in which the fertilizer field unit load intensity increased the most in July. The results provide some basis for the field control and management of agricultural non-point source pollution.
Remote sensing - A new view for public health
NASA Technical Reports Server (NTRS)
Morrison, D. R.; Barnes, C. M.; Fuller, C. E.
1973-01-01
It is shown that the technology of remote sensing can be of great importance to the field of public health. This possibility is based on the deepened understanding of the biologies and ecologies of the vector/organism/host interelationships of arthropod-, soil-, and water-borne diseases to result from the information that remote sensing can provide.
A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques.
Gholizadeh, Mohammad Haji; Melesse, Assefa M; Reddi, Lakshmi
2016-08-16
Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water's surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).
Mud deposit formation on the open coast of the larger Patos Lagoon-Cassino Beach system
NASA Astrophysics Data System (ADS)
Vinzon, S. B.; Winterwerp, J. C.; Nogueira, R.; de Boer, G. J.
2009-03-01
This paper proposes an explanation of the mud deposits on the inner Shelf of Cassino Beach, South Brazil, by using computational modeling. These mud deposits are mainly formed by sediments delivered from Patos Lagoon, a coastal lagoon connected to the Shelf, next to Cassino Beach. The deposits are characterized by (soft) mud layers of about 1 m thick and are found between the -5 and -20 isobaths. Two hydrodynamic models of the larger Patos Lagoon-Cassino Beach system were calibrated against water elevation measured for a 5 months period, and against currents and salinity measured for a week period. The circulation patterns and water exchange through the mouth were analyzed as a function of local and remote wind effects, and river discharges. The remote wind effect mainly governs the quantity of water exchange with the Lagoon through its effect on mean sea level as a result of Ekman dynamics, while river discharges are important for the salinity of the exchanged water masses. Local winds augment the export-import rates by set-up and set-down within the Lagoon, but their effects are much smaller than those of the remote wind. Currents patterns on the inner Shelf during water outflow revealed a recirculation zone south of the Lagoon, induced by the local geometry and bathymetry of the system. This recirculation zone coincides with observed locations of mud deposition. Water, hence suspended sediment export occurs when remote and local winds are from the N-E, which explains why fine sediment deposits are mainly found south of the Lagoon's breakwater. A sensitivity analysis with the numerical model quantified the contribution of the various mechanisms driving the transport and fate of the fine suspended sediments, i.e. the effects of remote and local wind, of the astronomical tide, of river discharge and fresh-salt water-induced density currents, and of earth rotation. It is concluded that gravitational circulation and earth rotation affects the further dispersion of the deposits largely, whereas the remote wind effect has the largest influence on the amount of sediment released from the Lagoon. It is noted that this paper analyzes the initial deposition patterns induced by current effects only. However, in reality, these deposits are further redistributed over the Shelf by wave effects—these are subject of a next study on the sediment dynamics of the larger Patos Lagoon-Cassino Beach system.
Remote Sensing of Terrestrial Snow and Ice for Global Change Studies
NASA Technical Reports Server (NTRS)
Kelly, Richard; Hall, Dorothy K.
2007-01-01
Snow and ice play a significant role in the Earth's water cycle and are sensitive and informative indicators climate change. Significant changes in terrestrial snow and ice water storage are forecast, and while evidence of large-scale changes is emerging, in situ measurements alone are insufficient to help us understand and explain these changes. Imaging remote sensing systems are capable of successfully observing snow and ice in the cryosphere. This chapter examines how those remote sensing sensors, that now have more than 35 years of observation records, are capable of providing information about snow cover, snow water equivalent, snow melt, ice sheet temperature and ice sheet albedo. While significant progress has been made, especially in the last five years, a better understanding is required of the records of satellite observations of these cryospheric variables.
Contribution of Phycoerythrin-Containing Phytoplankton to Remotely Sensed Signals in the Ocean
NASA Technical Reports Server (NTRS)
Vernet, Maria; Iturriaga, Rodolfo
1997-01-01
The purpose of this project was to evaluate the importance of phycoerythrin-containing phytoplankton, in particular coccoid cyanobacteria, to remote sensing. We proposed to estimate cyanobacteria abundance and pigmentation and their relationship to water-column optics. We have estimated the contribution of cyanobacteria to scattering and backscattering in both open ocean (Sargasso Sea) and coastal waters (western coast of North Atlantic and the California Current). Sampling and data processing is performed. Relationship between water column optics and phycoerythrin concentration and algorithms development are being carried out.
Thomas, Judith C.; Leib, Kenneth J.; Mayo, John W.
2008-01-01
Elevated selenium concentrations in streams are a water-quality concern in western Colorado. The U.S. Geologic Survey, in cooperation with the Colorado Department of Public Health and Environment, summarized selenium loading in the Lower Gunnison River Basin to support the development of total maximum daily selenium loads at sites that represent the cumulative contribution to U.S. Environmental Protection Agency 303(d) list segments. Analysis of selenium loading included quantifying loads and determining the amount of load that would need to be reduced to bring the site into compliance, referred to as 'the load reduction,' with the State chronic aquatic-life standard for dissolved selenium [85th percentile selenium concentration not to exceed 4.6 ?g/L (micrograms per liter)], referred to as 'the water-quality standard.' Streamflow and selenium concentration data for 54 historical water-quality/water-quantity monitoring sites were compiled from U.S. Geological Survey and Colorado Department of Public Health and Environment data sources. Three methods were used for analysis of selenium concentration data to address the variable data density among sites. Mean annual selenium loads were determined for only 10 of the 54 sites due to data availability limitations. Twenty-two sites had 85th percentile selenium concentrations that exceeded the water-quality standard, 3 sites had 85th percentile selenium concentrations less than the State standard, and 29 sites could not be evaluated with respect to 85th percentile selenium concentration (sample count less than 5). To bring selenium concentrations into compliance with the water-quality standard, more than 80 percent of the mean annual selenium load would need to be reduced at Red Rock Canyon, Dry Cedar Creek, Cedar Creek, Loutzenhizer Arroyo, Sunflower Drain, and Whitewater Creek. More than 50 percent of the mean annual load would need to be reduced at Dry Creek to bring the site into compliance with the water-quality standard. The Uncompahgre River, Gunnison River at Delta, and Gunnison River near Grand Junction would require 69, 34 and 53 percent, respectively, of the mean annual load to be reduced for water years 2001 through 2005 to meet the water-quality standard. Mean annual load reductions can be further reduced by targeting the periods of time when selenium would be removed from streams by remediation. During a previous study of selenium loads in the Lower Gunnison River Basin, mean annual load reductions were estimated at the Gunnison River near Grand Junction for the 1997?2001 study period. Mean annual load reductions estimated for this study period were less than those estimated for the 2001?05 study period, emphasizing the importance of understanding that different study periods can result in different load reduction estimates.
Back-Face Strain for Monitoring Stable Crack Extension in Precracked Flexure Specimens
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Ghosn, Louis J.
2010-01-01
Calibrations relating back-face strain to crack length in precracked flexure specimens were developed for different strain gage sizes. The functions were verified via experimental compliance measurements of notched and precracked ceramic beams. Good agreement between the functions and experiments occurred, and fracture toughness was calculated via several operational methods: maximum test load and optically measured precrack length; load at 2 percent crack extension and optical precrack length; maximum load and back-face strain crack length. All the methods gave vary comparable results. The initiation toughness, K(sub Ii) , was also estimated from the initial compliance and load.The results demonstrate that stability of precracked ceramics specimens tested in four-point flexure is a common occurrence, and that methods such as remotely-monitored load-point displacement are only adequate for detecting stable extension of relatively deep cracks.
Measuring Environmental Stress
ERIC Educational Resources Information Center
Walker, John E.; Dahm, Douglas B.
1975-01-01
Infrared remote sensors, plus photometric interpretation and digital data analysis are being used to record the stresses on air, water, vegetation and soil. Directly recorded photographic information has been the most effective recording media for remote sensing. (BT)
NASA Astrophysics Data System (ADS)
Chris, Chafer; Doerr, Stefan; Santin, Cristina
2017-04-01
The impacts of wildfire ash, the powdery residue from fuel burning, on post-fire ecosystems are many and diverse. Ash is a source of nutrients and can help the recovery of vegetation. It can also contain substantial amounts of recalcitrant carbon and thus contribute to long-term carbon storage. In its initial state, the ash layer on the ground can protect the bare soil, mitigating post-fire water erosion by runoff. However, when the adsorbent capability of this layer is exceeded, ash can be transported into the hydrological network and be a major contributor to water contamination. Ash can also contribute to post-fire mass movements such as debris flows. The eco-hydro-geomorphic impacts of ash on post-fire ecosystems are therefore important, but remain poorly quantified. A fundamental step in that direction is the understanding of ash production and distribution at the landscape scale, which would allow incorporating ash as a key parameter into post-fire risk models. We have developed a new spectral index (NWAI) using Landsat imagery to model the spatial distribution of ash loads in the post-fire landscape. It was developed based on a severe wildfire that burnt 13,000 ha of dry eucalyptus forest near Sydney and has also been tested for a forested area burnt by the catastrophic 2009 Black Saturday fires near Melbourne. Although ecosystem and fire characteristics differed substantially between the Sydney and Melbourne fires, our NWAI index performs well. In this contribution we will discuss the (i) the principles of the NWAI and (ii) its potential for pollution risk forecasting.
NASA Astrophysics Data System (ADS)
Wan, Hao; Zhang, Yi; Liu, Zheyi; Xu, Guiju; Huang, Guang; Ji, Yongsheng; Xiong, Zhichao; Zhang, Quanqing; Dong, Jing; Zhang, Weibing; Zou, Hanfa
2014-07-01
Remote-controlled nanocarriers for drug delivery are of great promise to provide timely, sensitive and spatiotemporally selective treatments for cancer therapy. Due to convenient and precise manipulation, deep penetration through tissues and excellent biocompatibility, near-infrared (NIR) irradiation is a preferred external stimulus for triggering the release of loaded drugs. In this work, for spatiotemporally controlled chemo-photothermal synergistic cancer therapy, a NIR responsive nanocarrier was fabricated using reduced graphene oxide nanosheets (rNGO) decorated with mesoporous silica shell and the subsequent functionalization of the thermoresponsive polymer brushes (pNIPAM-co-pAAm) at the outlet of the silica pore channels. rNGO, which combined with the mesoporous silica shell provide a high loading capacity for anticancer drugs (doxorubicin, DOX), was assigned to sense NIR irradiation for the manipulation of pNIPAM-co-pAAm valve to control the diffusion of loaded DOX. Under NIR irradiation, rNGO would generate heat, which could not only elevate the surrounding temperature over the low critical solution temperature (LCST) of pNIPAM-co-pAAm to open the thermoresponsive polymer valve and promote the diffusion of DOX, but also kill the cancer cells through the hypothermia effect. By manipulating NIR irradiation, the nanocarrier exhibited efficiently controlled release of loaded DOX both in the buffer and in living HeLa cells (the model cancer cells), providing powerful and site-targeted treatments, which can be attributed to synergistic effects of chemo-photothermal therapy. To sum up, this novel nanocarrier is an excellent drug delivery platform in remote-controlled chemo-photothermal synergistic cancer therapy via NIR irradiation.Remote-controlled nanocarriers for drug delivery are of great promise to provide timely, sensitive and spatiotemporally selective treatments for cancer therapy. Due to convenient and precise manipulation, deep penetration through tissues and excellent biocompatibility, near-infrared (NIR) irradiation is a preferred external stimulus for triggering the release of loaded drugs. In this work, for spatiotemporally controlled chemo-photothermal synergistic cancer therapy, a NIR responsive nanocarrier was fabricated using reduced graphene oxide nanosheets (rNGO) decorated with mesoporous silica shell and the subsequent functionalization of the thermoresponsive polymer brushes (pNIPAM-co-pAAm) at the outlet of the silica pore channels. rNGO, which combined with the mesoporous silica shell provide a high loading capacity for anticancer drugs (doxorubicin, DOX), was assigned to sense NIR irradiation for the manipulation of pNIPAM-co-pAAm valve to control the diffusion of loaded DOX. Under NIR irradiation, rNGO would generate heat, which could not only elevate the surrounding temperature over the low critical solution temperature (LCST) of pNIPAM-co-pAAm to open the thermoresponsive polymer valve and promote the diffusion of DOX, but also kill the cancer cells through the hypothermia effect. By manipulating NIR irradiation, the nanocarrier exhibited efficiently controlled release of loaded DOX both in the buffer and in living HeLa cells (the model cancer cells), providing powerful and site-targeted treatments, which can be attributed to synergistic effects of chemo-photothermal therapy. To sum up, this novel nanocarrier is an excellent drug delivery platform in remote-controlled chemo-photothermal synergistic cancer therapy via NIR irradiation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01044b
Kimball, Briant A.; Johnson, Kevin K.; Runkel, Robert L.; Steiger, Judy I.
2004-01-01
The Silver Maple Claims area along Silver Creek, near Park City, Utah, is administered by the Bureau of Land Management. To quantify possible sources of elevated zinc concentrations in Silver Creek that exceed water-quality standards, the U.S. Geological Survey conducted a mass-loading study in May 2002 along a 1,400-meter reach of Silver Creek that included the Silver Maple Claims area. Additional samples were collected upstream and downstream from the injection reach to investigate other possible sources of zinc and other metals to the stream. Many metals were investigated in the study, but zinc is of particular concern for water-quality standards. The total loading of zinc along the study reach from Park City to Wanship, Utah, was about 49 kilograms per day. The Silver Maple Claims area contributed about 38 percent of this load. The Silver Creek tailings discharge pipe, which empties just inside the Silver Maple Claims area, contributed more than half the load of the Silver Maple Claims area. Substantial zinc loads also were added to Silver Creek downstream from the Silver Maple Claims area. Ground-water discharge upstream from the waste-water treatment plant contributed 20 percent of the total zinc load, and another 17 percent was contributed near the waste-water treatment plant. By identifying the specific areas where zinc and other metal loads are contributed to Silver Creek, it is possible to assess the needs of a remediation plan. For example, removing the tailings from the Silver Maple Claims area could contribute to lowering the zinc concentration in Silver Creek, but without also addressing the loading from the Silver Creek tailings discharge pipe and the ground-water discharge farther downstream, the zinc concentration could not be lowered enough to meet water-quality standards. Additional existing sources of zinc loading downstream from the Silver Maple Claims area could complicate the process of lowering zinc concentration to meet water-quality standards.
Vitamin C-driven epirubicin loading into liposomes.
Lipka, Dominik; Gubernator, Jerzy; Filipczak, Nina; Barnert, Sabine; Süss, Regine; Legut, Mateusz; Kozubek, Arkadiusz
2013-01-01
The encapsulation of anticancer drugs in a liposome structure protects the drug during circulation and increases drug accumulation in the cancer tissue and antitumor activity while decreasing drug toxicity. This paper presents a new method of active drug loading based on a vitamin C pH/ion gradient. Formulations were characterized in terms of the following parameters: optimal external pH, time and drug-to-lipid ratio for the purpose of remote loading, and in vitro stability. In the case of the selected drug, epirubicin (EPI), its coencapsulation increases its anticancer activity through a possibly synergistic effect previously reported by other groups for a free nonencapsulated drug/vitamin C cocktail. The method also has another advantage over other remote-loading methods: it allows faster drug release through liposome destabilization at the tumor site, thanks to the very good solubility of the EPI vitamin C salt, as seen on cryogenic transmission electron microscopy images. This influences the drug-release process and increases the anticancer activity of the liposome formulation. The liposomes are characterized as stable, with very good pharmacokinetics (half-life 18.6 hours). The antitumor activity toward MCF-7 and 4T-1 breast cancer cells was higher in the case of EPI loaded via our gradient than via an ammonium sulfate gradient. Finally, the EPI liposomal formulation and the free drug were tested using the murine 4T-1 breast cancer model. The antitumor activity of the encapsulated drug was confirmed (tumor-growth inhibition over 40% from day 16 until the end of the experiment), and the free drug was shown to have no anticancer activity at the tested dose.
Reversible fastener clamp load monitor with continuous visual or remote readout
NASA Astrophysics Data System (ADS)
Hodge, Malcolm H.; Kausel, Theodore C., Jr.; Begley, Matthew R.
1998-03-01
SIMS has developed a simple means for detecting and monitoring both absolute and relative clamp load, or bolt tension, in fastener systems. More than twenty-five percent of automotive failures are known to be due to undetected loss of fastener clamp load. While the equivalent aerospace maintenance statistics are not known, the average automobile has 3,500 fasteners while a Boeing 747 has closer to one million. It is therefore anticipated that the new SensaBolt clamp load tracking system could find wide applications in the aerospace arena. We describe a visually-evident and retrofitted clamp load monitoring design which is based on the differential joint substrate compression at, and immediately adjacent to, the fastener location. This intrinsically-accurate indicator does not necessarily require alteration in either the bolt or nut geometries, thereby facilitating product introduction and retrofit in aging aircraft applications. In addition, SensaBolt's sole reliance on substrate compression renders it more accurate then torque wrench or turn-of-nut techniques. Readout may be accomplished by any of three principal methods: for those applications with ease of access to the sensor, loss of tension can be determined by direct visual inspection. Application of a standard wrench can then be made to restore the fastener's proper tightness, per the SensaBolt indicators. In those instances where line-of-sight is unimpeded and more formal inspection is desired, the SensaBolt may be interrogated by a laser scanner bar code reader. Finally, SensaBolt may be addressed by the SIMS fiber optic harness for those instances where full-time remote interrogation is desired.
Estimating Leaf Water Status from Vis-Nir Reflectance and Transmittance
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2017-01-01
Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Established approaches involve measurements in the thermal infrared and the 900-2000nm reflective infrared. Less popular UV-visible-NIR techniques presumably deserve research attention, because photochemical changes linked to plant water status manifest spectral light scattering and absorption changes. Here we monitored the visible and NIR light reflected from the leaf interior as well as the leaf transmittance as the relative water content of corn (Zeamays L.) leaves decreased. Our results highlight the importance of both scattering effects and effects due to absorption by leaf pigments.
NASA Technical Reports Server (NTRS)
Ghovanlou, A. H.; Gupta, J. N.; Henderson, R. G.
1977-01-01
The development of quantitative analytical procedures for relating scattered signals, measured by a remote sensor, was considered. The applications of a Monte Carlo simulation model for radiative transfer in turbid water are discussed. The model is designed to calculate the characteristics of the backscattered signal from an illuminated body of water as a function of the turbidity level, and the spectral properties of the suspended particulates. The optical properties of the environmental waters, necessary for model applications, were derived from available experimental data and/or calculated from Mie formalism. Results of applications of the model are presented.
NASA Astrophysics Data System (ADS)
Mougenot, Bernard
2016-04-01
The Mediterranean region is affected by water scarcity. Some countries as Tunisia reached the limit of 550 m3/year/capita due overexploitation of low water resources for irrigation, domestic uses and industry. A lot of programs aim to evaluate strategies to improve water consumption at regional level. In central Tunisia, on the Merguellil catchment, we develop integrated water resources modelisations based on social investigations, ground observations and remote sensing data. The main objective is to close the water budget at regional level and to estimate irrigation and water pumping to test scenarios with endusers. Our works benefit from French, bilateral and European projects (ANR, MISTRALS/SICMed, FP6, FP7…), GMES/GEOLAND-ESA) and also network projects as JECAM and AERONET, where the Merguellil site is a reference. This site has specific characteristics associating irrigated and rainfed crops mixing cereals, market gardening and orchards and will be proposed as a new environmental observing system connected to the OMERE, TENSIFT and OSR systems respectively in Tunisia, Morocco and France. We show here an original and large set of ground and remote sensing data mainly acquired from 2008 to present to be used for calibration/validation of water budget processes and integrated models for present and scenarios: - Ground data: meteorological stations, water budget at local scale: fluxes tower, soil fluxes, soil and surface temperature, soil moisture, drainage, flow, water level in lakes, aquifer, vegetation parameters on selected fieds/month (LAI, height, biomass, yield), land cover: 3 times/year, bare soil roughness, irrigation and pumping estimations, soil texture. - Remote sensing data: remote sensing products from multi-platform (MODIS, SPOT, LANDSAT, ASTER, PLEIADES, ASAR, COSMO-SkyMed, TerraSAR X…), multi-wavelength (solar, micro-wave and thermal) and multi-resolution (0.5 meters to 1 km). Ground observations are used (1) to calibrate soil-vegetation-atmosphere models at field scale on different compartment and irrigated and rainfed land during a limited time (seasons or set of dry and wet years), (2) to calibrate and validate particularly evapotranspiration derived from multi-wavelength satellite data at watershed level in relationships with the aquifer conditions: pumping and recharge rate. We will point out some examples.
View of the shuttle orbiter Discovery's payload bay during RMS checkout
1997-02-12
S82-E-5014 (12 Feb. 1997) --- Space Shuttle Discovery's Remote Manipulator System (RMS) gets a preliminary workout in preparation for a busy work load later in the week. The crewmembers are preparing for a scheduled Extravehicular Activity (EVA) with the Hubble Space Telescope (HST), which will be pulled into the Space Shuttle Discovery's cargo bay with the aid of the Remote Manipulator System (RMS). A series of EVA's will be required to properly service the giant telescope. This view was taken with an Electronic Still Camera (ESC).
Combined pressure regulator and shutoff valve
NASA Technical Reports Server (NTRS)
Koch, E. F. (Inventor)
1974-01-01
A remotely operable pressure regulator and shutoff valve particularly suited for achieving high resolution and flow control, and positive shutoff is described. The valve is characterized by a spring-loaded ball coaxially aligned with a fluid port to be sealed, a spring-loaded pintle extended through the port into engagement with the ball, for controlling the position, a spring-loaded diaphragm for controlling the position of the pintle, and an axially displaceable spring supported by a movable stop which, in turn, is repositioned by a selectively operable stepper motor. Thus, the pressure-response characteristics for the valve can be varied through a selective repositioning of the stop.
NASA Astrophysics Data System (ADS)
Cochrane, T. A.; Arias, M. E.; Oeurng, C.; Arnaiz, M.; Piman, T.
2016-12-01
The Tonle Sap Lake is Southeast Asia's most productive freshwater fishery, but the productivity of this valuable ecosystem is under threat from extensive development in the lower Mekong. With dams potentially blocking all major tributaries along the lower Mekong River, the role of local Tonle Sap basin tributaries for maintaining environmental flows, sediment loads, and fish recruitment is becoming increasingly critical. Development within the Tonle Sap basin, however, is not stagnant. Developers are proposing extensive dam development in key Tonle Sap tributaries (see Figure). Some dams will provide hydroelectricity and others will provide opportunities for large-scale irrigation resulting in agro-industrial expansion. There is thus an immediate need to assess the current situation and understand future effects of dam development and land use conversion under climate change on local riverine ecosystems. A combination of remote sensing, field visits, and hydro-meteorological data analyses enabled an assessment of water infrastructure and agricultural development in the basin. The application of SWAT for modelling flows and water quality combined with HEC-RESSIM for reservoir operations enabled for a holistic modelling approach. Initial results show that dams and land use change dominate flow and water quality responses, when compared to climate change. Large ongoing dam and irrigation development in the Pursat and Battambang subbasins will critically alter the natural river flows to the Tonle Sap Lake. Some of the observed dams did not have provisions for sediment flushing, clearing of flooded areas, fish passages, or other environmental protection measures. Poor planning and operation of this infrastructure could have dire consequences on the fragile riverine ecosystem of Tonle Sap tributaries, resulting in fish migration barriers, losses in aquatic habitats, and ecological degradation. The seemingly chaotic development in the Tonle Sap basin induces a great level of complexity in the prediction of future change in flows, sediment, and nutrients to the Tonle Sap, which needs to be overcome with improved data gathering through tools such as remote sensing. Timely interventions to the current development is needed in order to alleviate future environmental pressures.
NASA Technical Reports Server (NTRS)
1973-01-01
Remote sensing techniques are being used in Minnesota to study: (1) forest disease detection and control; (2) water quality indicators; (3) forest vegetation classification and management; (4) detection of saline soils in the Red River Valley; (5) corn defoliation; and (6) alfalfa crop productivity. Results of progress, and plans for future work in these areas, are discussed.
Simplified multiple scattering model for radiative transfer in turbid water
NASA Technical Reports Server (NTRS)
Ghovanlou, A. H.; Gupta, G. N.
1978-01-01
Quantitative analytical procedures for relating selected water quality parameters to the characteristics of the backscattered signals, measured by remote sensors, require the solution of the radiative transport equation in turbid media. Presented is an approximate closed form solution of this equation and based on this solution, the remote sensing of sediments is discussed. The results are compared with other standard closed form solutions such as quasi-single scattering approximations.
Zhao, Yifei; Zou, Xinqing; Liu, Qing; Yao, Yulong; Li, Yali; Wu, Xiaowei; Wang, Chenglong; Yu, Wenwen; Wang, Teng
2017-12-31
The water discharge and sediment load of rivers are changing substantially under the impacts of climate change and human activities, becoming a hot issue in hydro-environmental research. In this study, the water discharge and sediment load in the mainstream and seven tributaries of the Yangtze River were investigated by using long-term hydro-meteorological data from 1953 to 2013. The non-parametric Mann-Kendall test and double mass curve (DMC) were used to detect trends and abrupt change-points in water discharge and sediment load and to quantify the effects of climate change and human activities on water discharge and sediment load. The results are as follows: (1) the water discharge showed a non-significant decreasing trend at most stations except Hukou station. Among these, water discharge at Dongting Lake and the Min River basin shows a significant decreasing trend with average rates of -13.93×10 8 m 3 /year and -1.8×10 8 m 3 /year (P<0.05), respectively. However, the sediment load exhibited a significant decreasing trend in all tributaries of the Yangtze River. (2) No significant abrupt change-points were detected in the time series of water discharge for all hydrological stations. In contrast, significant abrupt change-points were detected in sediment load, most of these changes appeared in the late 1980s. (3) The water discharge was mainly influenced by precipitation in the Yangtze River basin, whereas sediment load was mainly affected by climate change and human activities; the relative contribution ratios of human activities were above 70% for the Yangtze River. (4) The decrease of sediment load has directly impacted the lower Yangtze River and the delta region. These results will provide a reference for better resource management in the Yangtze River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.
Purchase, Cromwell; Napier, Kathryn R; Nicolson, Susan W; McWhorter, Todd J; Fleming, Patricia A
2013-05-01
Nectarivores face a constant challenge in terms of water balance, experiencing water loading or dehydration when switching between food plants or between feeding and fasting. To understand how whitebellied sunbirds and New Holland honeyeaters meet the challenges of varying preformed water load, we used the elimination of intramuscular-injected [(14)C]-l-glucose and (3)H2O to quantify intestinal and renal water handling on diets varying in sugar concentration. Both sunbirds and honeyeaters showed significant modulation of intestinal water absorption, allowing excess water to be shunted through the intestine when on dilute diets. Despite reducing their fractional water absorption, both species showed linear increases in water flux and fractional body water turnover as water intake increased (both afternoon and morning), suggesting that the modulation of fractional water absorption was not sufficient to completely offset dietary water loads. In both species, glomerular filtration rate was independent of water gain (but was higher for the afternoon), as was renal fractional water reabsorption (measured in the afternoon). During the natural overnight fast, both sunbirds and honeyeaters arrested whole kidney function. Evaporative water loss in sunbirds was variable but correlated with water gain. Both sunbirds and honeyeaters appear to modulate intestinal water absorption as an important component of water regulation to help deal with massive preformed water loads. Shutting down glomerular filtration rate during the overnight fast is another way of saving energy for osmoregulatory function. Birds maintain osmotic balance on diets varying markedly in preformed water load by varying both intestinal water absorption and excretion through the intestine and kidneys.
NASA Astrophysics Data System (ADS)
Subiyanto, Sawitri
2017-12-01
One of the waters that has been contaminated by industrial waste and domestic waste is the waters of West Flood Canal in Semarang City which is the estuary of the river system, which passes through the Western City of Semarang which is dense with residential and industrial. So, it is necessary to have information about the assessment of water quality in the estuary of the West Flood Canal. Remote sensing technology can analyze the results of recording the spectral characteristics of water with water quality parameters. One of the parameters for assessing water quality is Chlorophyll-a and Total Suspended Solid, can be estimated through remote sensing technology using multispectral Lansat-8 Satellite images data from April, June, and August, 2017 and there are three selected algorithms. Based on the results of TSS and Chlorophyll-A processing, the TSS shows values greater than or equal to 100 which can be said that West Flood Canal is damaged (hypertrophic). While the chlorophyll-a shows a value less than 100 indicating Eutrophic status (threatened). This is caused by the number of suspended materials in the water surface and also because of the disturbance of water vegetation in the form of weeds that destroy the function of the actual West Canal Flood.
Schiffer, D.M.
1994-01-01
Nutrient-rich water enters Lake Beauclair and other lakes downstream from Lake Apopka in the Ocklawaha River chain of lakes in central Florida. Two sources of the nutrient-rich water are Lake Apopka outflow and drainage from farming operations adjacent to the Apopka-Beauclair Canal. Two flow and water- quality monitoring sites were established to measure nutrient and dissolved-solids loads at the outflow from lake Apopka and at a control structure on the Apopka-Beauclair Canal downstream from farming activities. Samples were collected biweekly for analysis of nutrients and monthly for analysis of major ions for 4 years. Most of the nutrient load transported through the lock and dam on the Apopka-Beauclair Canal was transported during periods of high discharge. In April 1987, when discharges were as high as 589 cubic feet per second, loads transported through the lock and dam accounted for 59 percent of the ammonia-plus- organic nitrogen load, 61 percent of the total nitrogen load, and 59 percent of the phosphorus load transported during the 1987 water year. Constituent concentrations in annual bottom sediment samples from the canal indicated that most of the constituent load is not being transported down- stream. An alternative approach was derived for determining the relative constituent load from farm input along the canal: Load computations using this approach indicated that, with the exception of phosphorus, nutrient and dissolved-solids loads due to farm activity along the canal account for 10 percent or less of the total load at the Apopka-Beauclair canal lock and dam. (USGS)
Butler, D.L.
2001-01-01
Selenium and salinity are water-quality issues in the Upper Colorado River Basin. Certain water bodies in the lower Gunnison River Basin, including the lower Gunnison River and the Uncompahgre River, exceed the State standard for selenium of 5 micrograms per liter. Remediation methods to reduce selenium and salt loading in the lower Gunnison River Basin were examined. A demonstration project in Montrose Arroyo, located in the Uncompahgre River Basin near Montrose, was done during 1998-2000 to determine the effects on selenium and salt loads in Montrose Arroyo from replacing 8.5 miles of open-ditch irrigation laterals with 7.5 miles of pipe. The participants in the project were the National Irrigation Water Quality Program, the Colorado River Basin Salinity Control Program, the Uncompahgre Valley Water Users Association, and the U.S. Geological Survey. The placing of five laterals in pipe significantly decreased selenium loads in Montrose Arroyo. The selenium load at the outflow monitoring site was about 194 pounds per year less (28-percent decrease) in the period after the laterals were placed in pipe. More than 90 percent of the decrease in selenium load was attributed to a decrease in ground-water load. Salt loads also decreased because of the lateral project, but by a smaller percentage than the selenium loads. The salt load at the outflow site on Montrose Arroyo was about 1,980 tons per year less in the post-project period than in the pre-project period. All of the effects of the demonstration project on selenium and salt loads probably were not measured by this study because some of the lateral leakage that was eliminated had not necessarily discharged to Montrose Arroyo upstream from the monitoring sites. A greater decrease in selenium loads relative to salt loads may have been partially the result of decreases in selenium concentrations in ground water in some areas.