Technology platforms for remote monitoring of vital signs in the new era of telemedicine.
Zhao, Fang; Li, Meng; Tsien, Joe Z
2015-07-01
Driven by healthcare cost and home healthcare need, the development of remote monitoring technologies is poised to improve and revolutionize healthcare delivery and accessibility. This paper reviews the recent progress in the field of remote monitoring technologies that may have the potential to become the basic platforms for telemedicine. In particular, key techniques and devices for monitoring cardiorespiratory activity, blood pressure and blood glucose concentration are summarized and discussed. In addition, the US FDA approved remote vital signs monitoring devices currently available on the market are presented.
Remote patient monitoring in chronic heart failure.
Palaniswamy, Chandrasekar; Mishkin, Aaron; Aronow, Wilbert S; Kalra, Ankur; Frishman, William H
2013-01-01
Heart failure (HF) poses a significant economic burden on our health-care resources with very high readmission rates. Remote monitoring has a substantial potential to improve the management and outcome of patients with HF. Readmission for decompensated HF is often preceded by a stage of subclinical hemodynamic decompensation, where therapeutic interventions would prevent subsequent clinical decompensation and hospitalization. Various methods of remote patient monitoring include structured telephone support, advanced telemonitoring technologies, remote monitoring of patients with implanted cardiac devices such as pacemakers and defibrillators, and implantable hemodynamic monitors. Current data examining the efficacy of remote monitoring technologies in improving outcomes have shown inconsistent results. Various medicolegal and financial issues need to be addressed before widespread implementation of this exciting technology can take place.
JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.
1991-01-17
Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,
Effective technologies for noninvasive remote monitoring in heart failure.
Conway, Aaron; Inglis, Sally C; Clark, Robyn A
2014-06-01
Trials of new technologies to remotely monitor for signs and symptoms of worsening heart failure are continually emerging. The extent to which technological differences impact the effectiveness of noninvasive remote monitoring for heart failure management is unknown. This study examined the effect of specific technology used for noninvasive remote monitoring of people with heart failure on all-cause mortality and heart failure-related hospitalizations. A subanalysis of a large systematic review and meta-analysis was conducted. Studies were stratified according to the specific type of technology used, and separate meta-analyses were performed. Four different types of noninvasive remote monitoring technologies were identified, including structured telephone calls, videophone, interactive voice response devices, and telemonitoring. Only structured telephone calls and telemonitoring were effective in reducing the risk of all-cause mortality (relative risk [RR]=0.87; 95% confidence interval [CI], 0.75-1.01; p=0.06; and RR=0.62; 95% CI, 0.50-0.77; p<0.0001, respectively) and heart failure-related hospitalizations (RR=0.77; 95% CI, 0.68-0.87; p<0.001; and RR=0.75; 95% CI, 0.63-0.91; p=0.003, respectively). More research data are required for videophone and interactive voice response technologies. This subanalysis identified that only two of the four specific technologies used for noninvasive remote monitoring in heart failure improved outcomes. When results of studies that involved these disparate technologies were combined in previous meta-analyses, significant improvements in outcomes were identified. As such, this study has highlighted implications for future meta-analyses of randomized controlled trials focused on evaluating the effectiveness of remote monitoring in heart failure.
Treskes, Roderick Willem; van der Velde, Enno Tjeerd; Barendse, Rogier; Bruining, Nico
2016-09-01
Recent developments in implantable cardioverter-defibrillators (ICDs) and smartphone technology have increased the possibilities for remote monitoring. It is the purpose of this review to give an overview of these new possibilities. Remote monitoring in ICD allows for early detection of lead fractures and remote follow-up of patients. Possible limitations are the lack of standardization and the possible unsafety of the data stored on the ICD. Secondly, remote monitoring of health parameters using smartphone compatible wearables and smartphone medical apps is addressed. Possible limitations include the fact that the majority of smartphone apps are unregulated by the regulatory authorities and privacy issues such as selling of app-generated data to third parties. Lastly, clinical studies with smartphone apps are discussed. Expert commentary: New technologies in ICDs and smartphones have the potential to be used for remote monitoring. However, unreliability of smartphone technology, inadequate legislation and lack of reimbursement impede implementation.
Investigation of the application of remote sensing technology to environmental monitoring
NASA Technical Reports Server (NTRS)
Rader, M. L. (Principal Investigator)
1980-01-01
Activities and results are reported of a project to investigate the application of remote sensing technology developed for the LACIE, AgRISTARS, Forestry and other NASA remote sensing projects for the environmental monitoring of strip mining, industrial pollution, and acid rain. Following a remote sensing workshop for EPA personnel, the EOD clustering algorithm CLASSY was selected for evaluation by EPA as a possible candidate technology. LANDSAT data acquired for a North Dakota test sight was clustered in order to compare CLASSY with other algorithms.
Downey, C L; Brown, J M; Jayne, D G; Randell, R
2018-06-01
Vital signs monitoring is used to identify deteriorating patients in hospital. The most common tool for vital signs monitoring is an early warning score, although emerging technologies allow for remote, continuous patient monitoring. A number of reviews have examined the impact of continuous monitoring on patient outcomes, but little is known about the patient experience. This study aims to discover what patients think of monitoring in hospital, with a particular emphasis on intermittent early warning scores versus remote continuous monitoring, in order to inform future implementations of continuous monitoring technology. Semi-structured interviews were undertaken with 12 surgical inpatients as part of a study testing a remote continuous monitoring device. All patients were monitored with both an early warning score and the new device. Interviews were audio-recorded, transcribed verbatim and analysed using thematic analysis. Patients can see the value in remote, continuous monitoring, particularly overnight. However, patients appreciate the face-to-face aspect of early warning score monitoring as it allows for reassurance, social interaction, and gives them further opportunity to ask questions about their medical care. Early warning score systems are widely used to facilitate detection of the deteriorating patient. Continuous monitoring technologies may provide added reassurance. However, patients value personal contact with their healthcare professionals and remote monitoring should not replace this. We suggest that remote monitoring is best introduced in a phased manner, and initially as an adjunct to usual care, with careful consideration of the patient experience throughout. Copyright © 2018 Elsevier B.V. All rights reserved.
Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology
NASA Astrophysics Data System (ADS)
Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao
2018-03-01
To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.
Development of sea ice monitoring with aerial remote sensing technology
NASA Astrophysics Data System (ADS)
Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei
2014-11-01
In the north China Sea district, sea ice disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the sea ice situation becomes too critical. The monitoring of sea ice is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor sea ice mainly include: first, shore observation; second, icebreaker monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the sea ice in the shore observation. The icebreaker monitoring means: the workers complete the test of the properties of sea ice, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get sea ice charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor sea ice. Aerial remote sensing is an important means in sea ice monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the sea ice monitoring using aerial remote sensing technology are discussed.
Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert
2011-07-01
Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. © 2011 Diabetes Technology Society.
Ono, Maki; Varma, Niraj
2017-05-01
Strong evidence exists for the utility of remote monitoring in cardiac implantable electronic devices for early detection of arrhythmias and evaluation of system performance. The application of remote monitoring for the management of chronic disease such as heart failure has been an active area of research. Areas covered: This review aims to cover the latest evidence of remote monitoring of implantable cardiac defibrillators in terms of heart failure prognosis. This article also updates the current technology relating to the method and discusses key factors to be addressed in order to better use the approach. PubMed and internet searches were conducted to acquire most recent data and technology information. Expert commentary: Multiparameter monitoring with automatic transmission is useful for heart failure management. Improved adherence to remote monitoring and an optimal algorithm for transmitted alerts and their management are warranted in the management of heart failure.
The intent of this handbook is to highlight information appropriate to small systems with an emphasis on filtration and disinfection technologies and how they can be "packaged" with remote monitoring and control technologies to provide a healthy and affordable solution for small ...
Applications of Remote Sensing to Emergency Management.
1980-02-15
Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.
Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert
2011-01-01
Objectives Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. Research Design and Methods The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Results Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Conclusions Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. PMID:21880237
Emerging role of digital technology and remote monitoring in the care of cardiac patients.
Banchs, Javier E; Scher, David Lee
2015-07-01
Current available mobile health technologies make possible earlier diagnosis and long-term monitoring of patients with cardiovascular diseases. Remote monitoring of patients with implantable devices and chronic diseases has resulted in better outcomes reducing health care costs and hospital admissions. New care models, which shift point of care to the outpatient setting and the patient's home, necessitate innovations in technology. Copyright © 2015 Elsevier Inc. All rights reserved.
Kurti, Allison N; Davis, Danielle R; Redner, Ryan; Jarvis, Brantley P; Zvorsky, Ivori; Keith, Diana R; Bolivar, Hypatia A; White, Thomas J; Rippberger, Peter; Markesich, Catherine; Atwood, Gary; Higgins, Stephen T
2016-06-01
Use of technology (e.g., Internet, cell phones) to allow remote implementation of incentives interventions for health-related behavior change is growing. To our knowledge, there has yet to be a systematic review of this literature reported. The present report provides a systematic review of the controlled studies where technology was used to remotely implement financial incentive interventions targeting substance use and other health behaviors published between 2004 and 2015. For inclusion in the review, studies had to use technology to remotely accomplish one of the following two aims alone or in combination: (a) monitor the target behavior, or (b) deliver incentives for achieving the target goal. Studies also had to examine financial incentives (e.g., cash, vouchers) for health-related behavior change, be published in peer-reviewed journals, and include a research design that allowed evaluation of the efficacy of the incentive intervention relative to another condition (e.g., non-contingent incentives, treatment as usual). Of the 39 reports that met inclusion criteria, 18 targeted substance use, 10 targeted medication adherence or home-based health monitoring, and 11 targeted diet, exercise, or weight loss. All 39 (100%) studies used technology to facilitate remote monitoring of the target behavior, and 26 (66.7%) studies also incorporated technology in the remote delivery of incentives. Statistically significant intervention effects were reported in 71% of studies reviewed. Overall, the results offer substantial support for the efficacy of remotely implemented incentive interventions for health-related behavior change, which have the potential to increase the cost-effectiveness and reach of this treatment approach.
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Rosenquist, A.; Milne, A. K.; Dobson, M. C.; Qi, J.
2000-01-01
An International workshop was held to address how remote sensing technology could be used to support the environmental monitoring requirements of the Kyoto Protocol. An overview of the issues addressed and the findings of the workshop are discussed.
ADVANCED REMOTE SENSING MONITORING OF MINE WASTE
The OEI-EAD and NERL-ESD have been cooperating on development of monitoring technologies and research to better use remote sensor-derived information and to ultimately disseminate that information to users. This work has focused on NASA'S airborne advanced remote sensor systems ...
Remote Monitoring of Cardiac Implantable Electronic Devices.
Cheung, Christopher C; Deyell, Marc W
2018-01-08
Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Xu, Zhi-min; Fang, Zu-Xiang; Lai, Da-Kun; Song, Hai-Lang
2007-05-01
A kind of real-time remote monitoring embedded terminal which is combined with mobile communication technology and GPS localization technology, has been developed. The results of preliminary experiments show that the terminal can transmit ECG signals and localization information in real time and continuously, supply a real-time monitoring of out-of-hospital cardiac patients and trace the patients.
NASA Astrophysics Data System (ADS)
Ma, Yi; Zhang, Jie; Zhang, Jingyu
2016-01-01
The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale hyperspectral images based on time sequence. The research results of this paper will help to break the traditional concept of remote sensing monitoring coastal wetlands by satellite and manned aerial vehicle, lead the trend of this monitoring technology, and put forward a new technical proposal for grasping the distribution of the coastal wetland and the changing trend and carrying out the protection and management of the coastal wetland.
Integrating Social Networks and Remote Patient Monitoring Systems to Disseminate Notifications.
Ribeiro, Hugo A; Germano, Eliseu; Carvalho, Sergio T; Albuquerque, Eduardo S
2017-01-01
Healthcare workforce shortage can be compensated by using information and communication technologies. Remote patient monitoring systems allow us to identify and communicate complications and anomalies. Integrating social networking services into remote patient monitoring systems enables users to manage their relationships. User defined relationships may be used to disseminate healthcare related notifications. Hence this integration leads to quicker interventions and may reduce hospital readmission rate. As a proof of concept, a module was integrated to a remote patient monitoring platform. A mobile application to manage relationships and receive notifications was also developed.
Remote physiological monitoring in an austere environment: a future for battlefield care provision?
Smyth, Matthew J; Round, J A; Mellor, A J
2018-05-14
Wearable technologies are making considerable advances into the mainstream as they become smaller and more user friendly. The global market for such devices is forecasted to be worth over US$5 billion in 2018, with one in six people owning a device. Many professional sporting teams use self-monitoring to assess physiological parameters and work rate on the pitch, highlighting the potential utility for military command chains. As size of device reduces and sensitivity improves, coupled with remote connectivity technology, integration into the military environment could be relatively seamless. Remote monitoring of personnel on the ground, giving live updates on their physiological status, would allow commanders or medical officers the ability to manage their soldiers appropriately and improve combat effectiveness. This paper explores a proof of concept for the use of a self-monitoring system in the austere high altitude environment of the Nepalese Himalayas, akin to those experienced by modern militaries fighting in remote locations. It also reviews, in part, the historical development of remote monitoring technologies. The system allowed for physiological recordings, plotted against GPS position, to be remotely monitored in Italy. Examples of the data recorded are given and the performance of the system is discussed, including limitations, potential areas of development and how systems like this one could be integrated into the military environment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Optical remote measurement of toxic gases
NASA Technical Reports Server (NTRS)
Grant, W. B.; Kagann, R. H.; McClenny, W. A.
1992-01-01
Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.
Tomasic, Ivan; Tomasic, Nikica; Trobec, Roman; Krpan, Miroslav; Kelava, Tomislav
2018-04-01
Remote patient monitoring should reduce mortality rates, improve care, and reduce costs. We present an overview of the available technologies for the remote monitoring of chronic obstructive pulmonary disease (COPD) patients, together with the most important medical information regarding COPD in a language that is adapted for engineers. Our aim is to bridge the gap between the technical and medical worlds and to facilitate and motivate future research in the field. We also present a justification, motivation, and explanation of how to monitor the most important parameters for COPD patients, together with pointers for the challenges that remain. Additionally, we propose and justify the importance of electrocardiograms (ECGs) and the arterial carbon dioxide partial pressure (PaCO 2 ) as two crucial physiological parameters that have not been used so far to any great extent in the monitoring of COPD patients. We cover four possibilities for the remote monitoring of COPD patients: continuous monitoring during normal daily activities for the prediction and early detection of exacerbations and life-threatening events, monitoring during the home treatment of mild exacerbations, monitoring oxygen therapy applications, and monitoring exercise. We also present and discuss the current approaches to decision support at remote locations and list the normal and pathological values/ranges for all the relevant physiological parameters. The paper concludes with our insights into the future developments and remaining challenges for improvements to continuous remote monitoring systems. Graphical abstract ᅟ.
Development of ship structure health monitoring system based on IOT technology
NASA Astrophysics Data System (ADS)
Yang, Sujun; Shi, Lei; Chen, Demin; Dong, Yuqing; Hu, Zhenyi
2017-06-01
It is very important to monitor the ship structure, because ships are affected by all kinds of wind wave and current environment factor. At the same time, internet of things (IOT) technology plays more and more important role of in the development of industrial process. In the paper, real-time online monitoring of the ship can be realized by means of IOT technology. Ship stress, vibration and dynamic parameters are measured. Meanwhile, data is transmitted to remote monitoring system through intelligent data gateway. Timely remote support can be realized for dangerous stage of ship. Safe navigation of ships is guaranteed through application of the system.
Cost efficiency and reimbursement of remote monitoring: a US perspective.
Slotwiner, David; Wilkoff, Bruce
2013-06-01
Demographic and technological changes are driving increased utilization of cardiac implantable electronic devices (CIEDs) remote monitoring. In the USA, fee-for-service model of healthcare delivery, services rendered are valued based upon time, intensity, and technical or practice expense costs. As a consequence of this perspective, and to contain spending, Medicare has grouped physician services into families. Spending within each family of services must, by law, remain budget neutral. Cardiac implantable electronic devices monitoring services, remote and in-person, are grouped into one family. As the volume of services within this family increases, the individual encounters are destined to be discounted into ever decreasing portions. However, if the value of remote monitoring is demonstrated to extend beyond the previous boundaries of in-person interrogations, a rational request can be made to reconsider the relative value of remote monitoring. Outcome data supporting the value-added benefits of remote monitoring are rapidly accumulating, including (i) patient convenience, with reduced use of office services, (ii) equal safety compared with in-person evaluation, (iii) shorter detection time to actionable events (arrhythmias, cardiovascular disease progression, and device malfunction), (iv) reduced length of stay for hospitalizations, (v) reduced inappropriate shocks, (vi) increased battery longevity, and (vii) a relative reduction in the risk of death. Fully automatic wireless technology, only recently widely implemented, will add considerable clinical efficiencies and further increase the value of remote monitoring. The U.S. challenge will be to appropriately define the relative value of CIEDs remote monitoring now that outcome data have demonstrated its value extends beyond in-person interrogation.
Distributed architecture and distributed processing mode in urban sewage treatment
NASA Astrophysics Data System (ADS)
Zhou, Ruipeng; Yang, Yuanming
2017-05-01
Decentralized rural sewage treatment facility over the broad area, a larger operation and management difficult, based on the analysis of rural sewage treatment model based on the response to these challenges, we describe the principle, structure and function in networking technology and network communications technology as the core of distributed remote monitoring system, through the application of case analysis to explore remote monitoring system features in a decentralized rural sewage treatment facilities in the daily operation and management. Practice shows that the remote monitoring system to provide technical support for the long-term operation and effective supervision of the facilities, and reduced operating, maintenance and supervision costs for development.
Satellite Remote Sensing for Monitoring and Assessment
Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Rollins, Katherine E.
2016-11-01
Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000more » survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.« less
Software design of a remote real-time ECG monitoring system
NASA Astrophysics Data System (ADS)
Yu, Chengbo; Tao, Hongyan
2005-12-01
Heart disease is one of the main diseases that threaten the health and lives of human beings. At present, the normal remote ECG monitoring system has the disadvantages of a short testing distance and limitation of monitoring lines. Because of accident and paroxysmal disease, ECG monitoring has extended from the hospital to the family. Therefore, remote ECG monitoring through the Internet has the actual value and significance. The principle and design method of software of the remote dynamic ECG monitor was presented and discussed. The monitoring software is programmed with Delphi software based on client-sever interactive mode. The application program of the system, which makes use of multithreading technology, is shown to perform in an excellent manner. The program includes remote link users and ECG processing, i.e. ECG data's receiving, real-time displaying, recording and replaying. The system can connect many clients simultaneously and perform real-time monitoring to patients.
Monitoring highway assets with remote technology.
DOT National Transportation Integrated Search
2014-07-01
The purpose of this research was to evaluate the benefits and costs of various remote sensing : technology options and compare them to the currently used manual data collection alternative. : The DMGs evaluation was used to determine how useful an...
Remote monitoring of lower-limb prosthetic socket fit using wireless technologies.
Sahandi, R; Sewell, P; Noroozi, S; Hewitt, M
2012-01-01
Accurate fitting of a lower-limb prosthetic socket is the most important factor affecting amputee satisfaction and rehabilitation. The technology is now available to allow real-time monitoring of in-service pressure distribution of prosthetic limbs. This paper proposes a remote interfacial pressure monitoring system necessary for the assessment of fit. The suitability of a wireless ZigBee network due to its relevant technical specification is investigated. The system enables remote monitoring of a prosthetic socket and its fit under different operating conditions thereby improving design, efficiency and effectiveness. The data can be used by prosthetists and may also be recorded for future training or for patient progress monitoring. This can minimize the number of iterations by getting it right first time, thereby minimizing the number of replacement prostheses. Copyright © 2012 Informa UK, Ltd.
A review on remote monitoring technology applied to implantable electronic cardiovascular devices.
Costa, Paulo Dias; Rodrigues, Pedro Pereira; Reis, António Hipólito; Costa-Pereira, Altamiro
2010-12-01
Implantable electronic cardiovascular devices (IECD) include a broad spectrum of devices that have the ability to maintain rhythm, provide cardiac resynchronization therapy, and/or prevent sudden cardiac death. The incidence of bradyarrhythmias and other cardiac problems led to a broader use of IECD, which turned traditional follow-up into an extremely heavy burden for healthcare systems to support. Our aim was to assess the impact of remote monitoring on the follow-up of patients with IECD. We performed a review through PubMed using a specific query. The paper selection process included a three-step approach in which title, abstract, and cross-references were analyzed. Studies were then selected using previously defined inclusion criteria and analyzed according to the country of origin of the study, year, and journal of publication; type of study; and main issues covered. Twenty articles were included in this review. Eighty percent of the selected papers addressed clinical issues, from which 94% referred clinical events identification, clinical stability, time savings, or physician satisfaction as advantages, whereas 38% referred disadvantages that included both legal and technical issues. Forty-five percent of the papers referred patient issues, from which 89% presented advantages, focusing on patient acceptance/satisfaction, and patient time-savings. The main downsides were technical issues but patient privacy was also addressed. All the papers dealing with economic issues (20%) referred both advantages and disadvantages equally. Remote monitoring is presently a safe technology, widely accepted by patients and physicians, for its convenience, reassurance, and diagnostic potential. This review summarizes the principles of remote IECD monitoring presenting the current state-of-the-art. Patient safety and device interaction, applicability of current technology, and limitations of remote IECD monitoring are also addressed. The use of remote monitor should consider the selection of patients, the type of disease, and centers' availability to receive, interpret and respond to device alerts. Before remote IECD monitoring can be routinely used, technical, procedure, and ethical/legal issues should be addressed.
[A wireless mobile monitoring system based on bluetooth technology].
Sun, Shou-jun; Wu, Kai; Wu, Xiao-Ming
2006-09-01
This paper presents a wireless mobile monitoring system based on Bluetooth technology. This system realizes the remote mobile monitoring of multiple physiological parameters, and has the characters of easy use, low cost, good reliability and strong capability of anti-jamming.
Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors
Steenweg, Robin; Hebblewhite, Mark; Kays, Roland; Ahumada, Jorge A.; Fisher, Jason T.; Burton, Cole; Townsend, Susan E.; Carbone, Chris; Rowcliffe, J. Marcus; Whittington, Jesse; Brodie, Jedediah; Royle, Andy; Switalski, Adam; Clevenger, Anthony P.; Heim, Nicole; Rich, Lindsey N.
2017-01-01
Countries committed to implementing the Convention on Biological Diversity's 2011–2020 strategic plan need effective tools to monitor global trends in biodiversity. Remote cameras are a rapidly growing technology that has great potential to transform global monitoring for terrestrial biodiversity and can be an important contributor to the call for measuring Essential Biodiversity Variables. Recent advances in camera technology and methods enable researchers to estimate changes in abundance and distribution for entire communities of animals and to identify global drivers of biodiversity trends. We suggest that interconnected networks of remote cameras will soon monitor biodiversity at a global scale, help answer pressing ecological questions, and guide conservation policy. This global network will require greater collaboration among remote-camera studies and citizen scientists, including standardized metadata, shared protocols, and security measures to protect records about sensitive species. With modest investment in infrastructure, and continued innovation, synthesis, and collaboration, we envision a global network of remote cameras that not only provides real-time biodiversity data but also serves to connect people with nature.
Remote health monitoring using mobile phones and Web services.
Agarwal, Sparsh; Lau, Chiew Tong
2010-06-01
Diabetes and hypertension have become very common perhaps because of increasingly busy lifestyles, unhealthy eating habits, and a highly competitive workplace. The rapid advancement of mobile communication technologies offers innumerable opportunities for the development of software and hardware applications for remote monitoring of such chronic diseases. This study describes a remote health-monitoring service that provides an end-to-end solution, that is, (1) it collects blood pressure readings from the patient through a mobile phone; (2) it provides these data to doctors through a Web interface; and (3) it enables doctors to manage the chronic condition by providing feedback to the patients remotely. This article also aims at understanding the requirements and expectations of doctors and hospitals from such a remote health-monitoring service.
Remote Sensing is a scientific discipline of non-contact monitoring. It includes a range of technologies that span from aerial photography to advanced spectral imaging and analytical methods. This Session is designed to demonstrate contemporary practical applications of remote se...
Riaz, Muhammad Safwan; Atreja, Ashish
2016-01-01
With increased access to high-speed Internet and smartphone devices, patients have started to use mobile applications (apps) for various health needs. These mobile apps are now increasingly used in integration with telemedicine and wearables to support fitness, health education, symptom tracking, and collaborative disease management and care coordination. More recently, evidence (especially around remote patient monitoring) has started to build in some chronic diseases, and some of the digital health technologies have received approval from the Food and Drug Administration. With the changing healthcare landscape and push for value-based care, adoption of these digital health initiatives among providers is bound to increase. Although so far there is a dearth of published evidence about effectiveness of these apps in gastroenterology care, there are ongoing trials to determine whether remote patient monitoring can lead to improvement in process metrics or outcome metrics for patients with chronic gastrointestinal diseases. PMID:27189911
[Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing].
Wang, Li-Wen; Wei, Ya-Xing
2013-10-01
Nitrogen is the necessary element in life activity of vegetation, which takes important function in biosynthesis of protein, nucleic acid, chlorophyll, and enzyme etc, and plays a key role in vegetation photosynthesis. The technology about inversion of vegetation nitrogen concentration by hyperspectral remote sensing has been the research hotspot since the 70s of last century. With the development of hyperspectral remote sensing technology in recent years, the advantage of spectral bands subdivision in a certain spectral region provides the powerful technology measure for correlative spectral characteristic research on vegetation nitrogen. In the present paper, combined with the newest research production about monitoring vegetation nitrogen concentration by hyperspectral remote sensing published in main geography science literature in recent several years, the principle and correlated problem about monitoring vegetation nitrogen concentration by hyperspectral remote sensing were introduced. From four aspects including vegetation nitrogen spectral index, vegetation nitrogen content inversion based on chlorophyll index, regression model, and eliminating influence factors to inversion of vegetation nitrogen concentration, main technology methods about inversion of vegetation nitrogen concentration by hyperspectral remote sensing were detailedly introduced. Correlative research conclusions were summarized and analyzed, and research development trend was discussed.
Cronin, Edmond M; Varma, Niraj
2012-07-01
Traditional follow-up of cardiac implantable electronic devices involves the intermittent download of largely nonactionable data. Remote monitoring represents a paradigm shift from episodic office-based follow-up to continuous monitoring of device performance and patient and disease state. This lessens device clinical burden and may also lead to cost savings, although data on economic impact are only beginning to emerge. Remote monitoring technology has the potential to improve the outcomes through earlier detection of arrhythmias and compromised device integrity, and possibly predict heart failure hospitalizations through integration of heart failure diagnostics and hemodynamic monitors. Remote monitoring platforms are also huge databases of patients and devices, offering unprecedented opportunities to investigate real-world outcomes. Here, the current status of the field is described and future directions are predicted.
NASA Technical Reports Server (NTRS)
2002-01-01
Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes. Archaeology through Space: Experience in Indian Subcontinent. The creation of a GIS Archaeological Site Location Catalogue in Yucatan: A Tool to preserve its Cultural Heritage. Mapping the Ancient Anasazi Roads of Southeast Utah. Remote Sensing and GIS Technology for Identification of Conservation and Heritage sites in Urban Planning. Mapping Angkor: For a new appraisal of the Angkor region. Angkor and radar imaging: seeing a vast pre-industrial low-density, dispersed urban complex. Technical and methodological aspects of archaeological CRM integrating high resolution satellite imagery. The contribution of satellite imagery to archaeological survey: an example from western Syria. The use of satellite images, digital elevation models and ground truth for the monitoring of land degradation in the "Cinque Terre" National park. Remote Sensing and GIS Applications for Protection and Conservation of World Heritage Site on the coast - Case Study of Tamil Nadu Coast, India. Multispectral high resolution satellite imagery in combination with "traditional" remote sensing and ground survey methods to the study of archaeological landscapes. The case study of Tuscany. Use of Remotely-Sensed Imagery in Cultural Landscape. Characterisation at Fort Hood, Texas. Heritage Learning and Data Collection: Biodiversity & Heritage Conservation through Collaborative Monitoring & Research. A collaborative project by UNESCO's WHC (World Heritage Center) & The GLOBE Program (Global Learning and Observations to Benefit the Environment). Practical Remote Sensing Activities in an Interdisciplinary Master-Level Space Course.
NASA Astrophysics Data System (ADS)
Zhu, Yunqiang; Zhu, Huazhong; Lu, Heli; Ni, Jianguang; Zhu, Shaoxia
2005-10-01
Remote sensing dynamic monitoring of land use can detect the change information of land use and update the current land use map, which is important for rational utilization and scientific management of land resources. This paper discusses the technological procedure of remote sensing dynamic monitoring of land use including the process of remote sensing images, the extraction of annual change information of land use, field survey, indoor post processing and accuracy assessment. Especially, we emphasize on comparative research on the choice of remote sensing rectifying models, image fusion algorithms and accuracy assessment methods. Taking Anning district in Lanzhou as an example, we extract the land use change information of the district during 2002-2003, access monitoring accuracy and analyze the reason of land use change.
[Remote sensing monitoring and screening for urban black and odorous water body: A review.
Shen, Qian; Zhu, Li; Cao, Hong Ye
2017-10-01
Continuous improvement of urban water environment and overall control of black and odorous water body are not merely national strategic needs with the action plan for prevention and treatment of water pollution, but also the hot issues attracting the attention of people. Most previous researches concentrated on the study of cause, evaluation and treatment measures of this phenomenon, and there are few researches on the monitoring using remote sensing, which is often a strain to meet the national needs of operational monitoring. This paper mainly summarized the urgent research problems, mainly including the identification and classification standard, research on the key technologies, and the frame of remote sensing screening systems for the urban black and odorous water body. The main key technologies were concluded too, including the high spatial resolution image preprocessing and extraction technique for black and odorous water body, the extraction of water information in city zones, the classification of the black and odorous water, and the identification and classification technique based on satellite-sky-ground remote sensing. This paper summarized the research progress and put forward research ideas of monitoring and screening urban black and odorous water body via high spatial resolution remote sensing technology, which would be beneficial to having an overall grasp of spatial distribution and improvement progress of black and odorous water body, and provide strong technical support for controlling urban black and odorous water body.
2010-08-31
Teleaudiology o FY08: Remote access of cochlear implants Teleaudiology DIACAP / FDA certification o FY08: Teleaudiology DIACAP and FDA certification to conduct...remote access, monitor, and adjust cochlear implants ECMO o FY05: Extra Corporeal Membrane Oxygenation (ECMO) o FY07 Pacific Rim ECMO/VAD...These dashboards were developed for use by appointed AFMS radiologists to monitor the flow and statistics of teleradiology. The dashboards are web
Monitoring technologies for ocean disposal of radioactive waste
NASA Astrophysics Data System (ADS)
Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.
1982-01-01
The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.
Kum, Hye-Chung; Gonzalez Coronado, Karla; Foster, Margaret J; Ortega, Pearl; Lawley, Mark A
2017-01-01
Background Diabetes self-management involves adherence to healthy daily habits typically involving blood glucose monitoring, medication, exercise, and diet. To support self-management, some providers have begun testing remote interventions for monitoring and assisting patients between clinic visits. Although some studies have shown success, there are barriers to widespread adoption. Objective The objective of our study was to identify and classify barriers to adoption of remote health for management of type 2 diabetes. Methods The following 6 electronic databases were searched for articles published from 2010 to 2015: MEDLINE (Ovid), Embase (Ovid), CINAHL, Cochrane Central, Northern Light Life Sciences Conference Abstracts, and Scopus (Elsevier). The search identified studies involving remote technologies for type 2 diabetes self-management. Reviewers worked in teams of 2 to review and extract data from identified papers. Information collected included study characteristics, outcomes, dropout rates, technologies used, and barriers identified. Results A total of 53 publications on 41 studies met the specified criteria. Lack of data accuracy due to input bias (32%, 13/41), limitations on scalability (24%, 10/41), and technology illiteracy (24%, 10/41) were the most commonly cited barriers. Technology illiteracy was most prominent in low-income populations, whereas limitations on scalability were more prominent in mid-income populations. Barriers identified were applied to a conceptual model of successful remote health, which includes patient engagement, patient technology accessibility, quality of care, system technology cost, and provider productivity. In total, 40.5% (60/148) of identified barrier instances impeded patient engagement, which is manifest in the large dropout rates cited (up to 57%). Conclusions The barriers identified represent major challenges in the design of remote health interventions for diabetes. Breakthrough technologies and systems are needed to alleviate the barriers identified so far, particularly those associated with patient engagement. Monitoring devices that provide objective and reliable data streams on medication, exercise, diet, and glucose monitoring will be essential for widespread effectiveness. Additional work is needed to understand root causes of high dropout rates, and new interventions are needed to identify and assist those at the greatest risk of dropout. Finally, future studies must quantify costs and benefits to determine financial sustainability. PMID:28193598
Remote glucose monitoring in cAMP setting reduces the risk of prolonged nocturnal hypoglycemia.
DeSalvo, Daniel J; Keith-Hynes, Patrick; Peyser, Thomas; Place, Jérôme; Caswell, Kim; Wilson, Darrell M; Harris, Breanne; Clinton, Paula; Kovatchev, Boris; Buckingham, Bruce A
2014-01-01
This study tested the feasibility and effectiveness of remote continuous glucose monitoring (CGM) in a diabetes camp setting. Twenty campers (7-21 years old) with type 1 diabetes were enrolled at each of three camp sessions lasting 5-6 days. On alternating nights, 10 campers were randomized to usual wear of a Dexcom (San Diego, CA) G4™ PLATINUM CGM system, and 10 were randomized to remote monitoring with the Dexcom G4 PLATINUM communicating with the Diabetes Assistant, a cell phone platform, to allow wireless transmission of CGM values. Up to 15 individual graphs and sensor values could be displayed on a single remote monitor or portable tablet. An alarm was triggered for values <70 mg/dL, and treatment was given for meter-confirmed hypoglycemia. The primary end point was to decrease the duration of hypoglycemic episodes <50 mg/dL. There were 320 nights of CGM data and 197 hypoglycemic events. Of the remote monitoring alarms, 79% were true (meter reading of <70 mg/dL). With remote monitoring, 100% of alarms were responded to, whereas without remote monitoring only 54% of alarms were responded to. The median duration of hypoglycemic events <70 mg/dL was 35 min without remote monitoring and 30 min with remote monitoring (P=0.078). Remote monitoring significantly decreased prolonged hypoglycemic events, eliminating all events <50 mg/dL lasting longer than 30 min as well as all events <70 mg/dL lasting more than 2 h. Remote monitoring is feasible at diabetes camps and effective in reducing the risk of prolonged nocturnal hypoglycemia. This technology will facilitate forthcoming studies to evaluate the efficacy of automated closed-loop systems in the camp setting.
Masterson Creber, Ruth M; Hickey, Kathleen T; Maurer, Mathew S
2016-10-01
Older adults with heart failure have multiple chronic conditions and a large number and range of symptoms. A fundamental component of heart failure self-care management is regular symptom monitoring. Symptom monitoring can be facilitated by cost-effective, easily accessible technologies that are integrated into patients' lives. Technologies that are tailored to older adults by incorporating gerontological design principles are called gerontechnologies. Gerontechnology is an interdisciplinary academic and professional field that combines gerontology and technology with the goals of improving prevention, care, and enhancing the quality of life for older adults. The purpose of this article is to discuss the role of gerontechnologies, specifically the use of mobile applications available on smartphones and tablets as well as remote monitoring systems, for outpatient disease management among older adults with heart failure. While largely unproven, these rapidly developing technologies have great potential to improve outcomes among older persons.
DOT National Transportation Integrated Search
2017-05-31
The overarching goal of this project was to integrate data from commercial remote sensing and spatial information (CRS&SI) technologies to create a novel data-driven decision making framework that empowers the railroad industry to monitor, assess, an...
Remote sensing technology has the potential to inform and accelerate the engagement of communities and managers in the implementation and performance of best management practices. Over the last few decades, satellite technology has allowed measurements on a global scale over long...
Design and implementation of Remote Digital Energy Meter (RDEM) based on GSM technology
NASA Astrophysics Data System (ADS)
Khan, Muhammad Waseem; Wang, Jie; Irfan, Muhammad; Shiraz, M.; Khan, Ali Hassan
2017-11-01
Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.
COSMO-SkyMed and GIS applications
NASA Astrophysics Data System (ADS)
Milillo, Pietro; Sole, Aurelia; Serio, Carmine
2013-04-01
Geographic Information Systems (GIS) and Remote Sensing have become key technology tools for the collection, storage and analysis of spatially referenced data. Industries that utilise these spatial technologies include agriculture, forestry, mining, market research as well as the environmental analysis . Synthetic Aperture Radar (SAR) is a coherent active sensor operating in the microwave band which exploits relative motion between antenna and target in order to obtain a finer spatial resolution in the flight direction exploiting the Doppler effect. SAR have wide applications in Remote Sensing such as cartography, surface deformation detection, forest cover mapping, urban planning, disasters monitoring , surveillance etc… The utilization of satellite remote sensing and GIS technology for this applications has proven to be a powerful and effective tool for environmental monitoring. Remote sensing techniques are often less costly and time-consuming for large geographic areas compared to conventional methods, moreover GIS technology provides a flexible environment for, analyzing and displaying digital data from various sources necessary for classification, change detection and database development. The aim of this work si to illustrate the potential of COSMO-SkyMed data and SAR applications in a GIS environment, in particular a demostration of the operational use of COSMO-SkyMed SAR data and GIS in real cases will be provided for what concern DEM validation, river basin estimation, flood mapping and landslide monitoring.
LOCATING BURIED WORLD WAR 1 MUNITIONS WITH REMOTE SENSING AND GIS
Remote Sensing is a scientific discipline of non-contact monitoring. It includes a range of technologies that span from aerial photography to advanced spectral imaging and analytical methods. This Session is designed to demonstrate contemporary practical applications of remote ...
NASA Technical Reports Server (NTRS)
Velez-Rodriguez, Linda L. (Principal Investigator)
1996-01-01
Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.
A Remote Monitoring System for Voltage, Current, Power and Temperature Measurements
NASA Astrophysics Data System (ADS)
Barakat, E.; Sinno, N.; Keyrouz, C.
This paper presents a study and design of a monitoring system for the continuous measurement of electrical energy parameters such as voltage, current, power and temperature. This system is designed to monitor the data remotely over internet. The electronic power meter is based on a microcontroller from Microchip Technology Inc. PIC family. The design takes into consideration the correct operation in the event of an outage or brown out by recording the electrical values and the temperatures in EEPROM internally available in the microcontroller. Also a digital display is used to show the acquired measurements. A computer will remotely monitor the data over internet.
Land border monitoring with remote sensing technologies
NASA Astrophysics Data System (ADS)
Malinowski, Radoslaw
2010-09-01
The remote sensing technology has many practical applications in different fields of science and industry. There is also a need to examine its usefulness for the purpose of land border surveillance. This research started with analysis of potential direct use of Earth Observation technology for monitoring migrations of people and preventing smuggling. The research, however, proved that there are still many fields within which the EO technology needs to be improved. From that point the analysis focused on improving Border Permeability Index which utilizes EO techniques as a source of information. The result of BPI analysis with use of high resolution data provides new kind of information which can support and make more effective work of authorities from security domain.
Marciniuk, Darcy
2016-01-01
The challenges of providing quality respiratory care to persons living in rural or remote communities can be daunting. These populations are often vulnerable in terms of both health status and access to care, highlighting the need for innovation in service delivery. The rapidly expanding options available using telehealthcare technologies have the capacity to allow patients in rural and remote communities to connect with providers at distant sites and to facilitate the provision of diagnostic, monitoring, and therapeutic services. Successful implementation of telehealthcare programs in rural and remote settings is, however, contingent upon accounting for key technical, organizational, social, and legal considerations at the individual, community, and system levels. This review article discusses five types of telehealthcare delivery that can facilitate respiratory care for residents of rural or remote communities: remote monitoring (including wearable and ambient systems; remote consultations (between providers and between patients and providers), remote pulmonary rehabilitation, telepharmacy, and remote sleep monitoring. Current and future challenges related to telehealthcare are discussed. PMID:26902542
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPA′s Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
Use of remote sensing in agriculture
NASA Technical Reports Server (NTRS)
Pettry, D. E.; Powell, N. L.; Newhouse, M. E.
1974-01-01
Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated.
Electronic Assessment of Physical Decline in Geriatric Cancer Patients.
Fallahzadeh, Ramin; Ghasemzadeh, Hassan; Shahrokni, Armin
2018-03-08
The purpose of this review is to explore state-of-the-art remote monitoring and emerging new sensing technologies for in-home physical assessment and their application/potential in cancer care. In addition, we discuss the main functional and non-functional requirements and research challenges of employing such technologies in real-world settings. With rapid growth in aging population, effective and efficient patient care has become an important topic. Advances in remote monitoring and in its forefront in-home physical assessment technologies play a fundamental role in reducing the cost and improving the quality of care by complementing the traditional in-clinic healthcare. However, there is a gap in medical research community regarding the applicability and potential outcomes of such systems. While some studies reported positive outcomes using remote assessment technologies, such as web/smart phone-based self-reports and wearable sensors, the cancer research community is still lacking far behind. Thorough investigation of more advanced technologies in cancer care is warranted.
Remote Arrhythmia Monitoring System Developed
NASA Technical Reports Server (NTRS)
York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.
2004-01-01
Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.
Remotely Accessed Vehicle Traffic Management System
NASA Astrophysics Data System (ADS)
Al-Alawi, Raida
2010-06-01
The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.
Seto, Emily; Leonard, Kevin J; Masino, Caterina; Cafazzo, Joseph A; Barnsley, Jan; Ross, Heather J
2010-11-29
Mobile phone-based remote patient monitoring systems have been proposed for heart failure management because they are relatively inexpensive and enable patients to be monitored anywhere. However, little is known about whether patients and their health care providers are willing and able to use this technology. The objective of our study was to assess the attitudes of heart failure patients and their health care providers from a heart function clinic in a large urban teaching hospital toward the use of mobile phone-based remote monitoring. A questionnaire regarding attitudes toward home monitoring and technology was administered to 100 heart failure patients (94/100 returned a completed questionnaire). Semi-structured interviews were also conducted with 20 heart failure patients and 16 clinicians to determine the perceived benefits and barriers to using mobile phone-based remote monitoring, as well as their willingness and ability to use the technology. The survey results indicated that the patients were very comfortable using mobile phones (mean rating 4.5, SD 0.6, on a five-point Likert scale), even more so than with using computers (mean 4.1, SD 1.1). The difference in comfort level between mobile phones and computers was statistically significant (P< .001). Patients were also confident in using mobile phones to view health information (mean 4.4, SD 0.9). Patients and clinicians were willing to use the system as long as several conditions were met, including providing a system that was easy to use with clear tangible benefits, maintaining good patient-provider communication, and not increasing clinical workload. Clinicians cited several barriers to implementation of such a system, including lack of remuneration for telephone interactions with patients and medicolegal implications. Patients and clinicians want to use mobile phone-based remote monitoring and believe that they would be able to use the technology. However, they have several reservations, such as potential increased clinical workload, medicolegal issues, and difficulty of use for some patients due to lack of visual acuity or manual dexterity.
NASA Astrophysics Data System (ADS)
Han, Xiuzhen; Ma, Jianwen; Bao, Yuhai
2006-12-01
Currently the function of operational locust monitor system mainly focused on after-hazards monitoring and assessment, and to found the way effectively to perform early warning and prediction has more practical meaning. Through 2001, 2002 two years continuously field sample and statistics for locusts eggs hatching, nymph growth, adults 3 phases observation, sample statistics and calculation, spectral measurements as well as synchronically remote sensing data processing we raise the view point of Remote Sensing three stage monitor the locust hazards. Based on the point of view we designed remote sensing monitor in three stages: (1) during the egg hitching phase remote sensing can retrieve parameters of land surface temperature (LST) and soil moisture; (2) during nymph growth phase locust increases appetite greatly and remote sensing can calculate vegetation index, leaf area index, vegetation cover and analysis changes; (3) during adult phase the locust move and assembly towards ponds and water ditches as well as less than 75% vegetation cover areas and remote sensing combination with field data can monitor and predicts potential areas for adult locusts to assembly. In this way the priority of remote sensing technology is elaborated effectively and it also provides technique support for the locust monitor system. The idea and techniques used in the study can also be used as reference for other plant diseases and insect pests.
NASA Astrophysics Data System (ADS)
Lee, Stephen
2017-05-01
Embedded combat medical personnel require accurate and timely biometric data to ensure appropriate life saving measures. Injured warfighter's operating in remote environments require both assessment and monitoring often while still engaged with enemy forces. Small wearable devices that can be placed on injured personnel capable of collecting essential biometric data, including the capacity to remotely deliver collected data in real-time, would allow additional medical monitoring and triage that will greatly help the medic in the battlefield. These new capabilities will provide a force multiplier through remote assessment, increased survivability, and in freeing engaged warfighter's from direct monitoring thus improving combat effectiveness and increasing situational awareness. Key questions around what information does the medic require and how effective it can be relayed to support personnel are at their early stages of development. A low power biometric wearable device capable of reliable electrocardiogram (EKG) rhythm, temperature, pulse, and other vital data collection which can provide real-time remote monitoring are in development for the Soldier.
Application of remote sensing to state and regional problems. [for Mississippi
NASA Technical Reports Server (NTRS)
Miller, W. F.; Bouchillon, C. W.; Harris, J. C.; Carter, B.; Whisler, F. D.; Robinette, R.
1974-01-01
The primary purpose of the remote sensing applications program is for various members of the university community to participate in activities that improve the effective communication between the scientific community engaged in remote sensing research and development and the potential users of modern remote sensing technology. Activities of this program are assisting the State of Mississippi in recognizing and solving its environmental, resource and socio-economic problems through inventory, analysis, and monitoring by appropriate remote sensing systems. Objectives, accomplishments, and current status of the following individual projects are reported: (1) bark beetle project; (2) state park location planning; and (3) waste source location and stream channel geometry monitoring.
The challenges of remote monitoring of wetlands
Gallant, Alisa L.
2015-01-01
Wetlands are highly productive and support a wide variety of ecosystem goods and services. Various forms of global change impose compelling needs for timely and reliable information on the status of wetlands worldwide, but several characteristics of wetlands make them challenging to monitor remotely: they lack a single, unifying land-cover feature; they tend to be highly dynamic and their energy signatures are constantly changing; and steep environmental gradients in and around wetlands produce narrow ecotones that often are below the resolving capacity of remote sensors. These challenges and needs set the context for a special issue focused on wetland remote sensing. Contributed papers responded to one of three overarching questions aimed at improving remote, large-area monitoring of wetlands: (1) What approaches and data products are being developed specifically to support regional to global long-term monitoring of wetland landscapes? (2) What are the promising new technologies and sensor/multisensor approaches for more accurate and consistent detection of wetlands? (3) Are there studies that demonstrate how remote long-term monitoring of wetland landscapes can reveal changes that correspond with changes in land cover and land use and/or changes in climate?
NASA Astrophysics Data System (ADS)
Alyushin, M. V.; Kolobashkina, L. V.
2017-01-01
The education technology with continuous monitoring of the current functional and emotional students' states is suggested. The application of this technology allows one to increase the effectiveness of practice through informed planning of the training load. For monitoring the current functional and emotional students' states non-contact remote technologies of person bioparameters registration are encouraged to use. These technologies are based on recording and processing in real time the main person bioparameters in a purely passive mode. Experimental testing of this technology has confirmed its effectiveness.
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPAs Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
González, Fernando Cornelio Jimènez; Villegas, Osslan Osiris Vergara; Ramírez, Dulce Esperanza Torres; Sánchez, Vianey Guadalupe Cruz; Domínguez, Humberto Ochoa
2014-01-01
Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN) and mobile augmented reality (MAR). The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1) hardware such as Arduino microcontrollers (in the patient nodes), personal computers (for the nurse server), smartphones (for the mobile nurse monitor and the virtual patient file) and sensors (to measure body temperature and heart rate), (2) a network layer using WiFly technology, and (3) software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia. PMID:25230306
González, Fernando Cornelio Jiménez; Villegas, Osslan Osiris Vergara; Ramírez, Dulce Esperanza Torres; Sánchez, Vianey Guadalupe Cruz; Domínguez, Humberto Ochoa
2014-09-16
Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN) and mobile augmented reality (MAR). The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1) hardware such as Arduino microcontrollers (in the patient nodes), personal computers (for the nurse server), smartphones (for the mobile nurse monitor and the virtual patient file) and sensors (to measure body temperature and heart rate), (2) a network layer using WiFly technology, and (3) software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia.
Testing a small UAS for mapping artisanal diamond mining sites in Africa
Malpeli, Katherine C.; Chirico, Peter G.
2015-01-01
Remote sensing technology is advancing at an unprecedented rate. At the forefront of the new technological developments are unmanned aircraft systems (UAS). The advent of small, lightweight, low-cost, and user-friendly UAS is greatly expanding the potential applications of remote sensing technology and improving the set of tools available to researchers seeking to map and monitor terrain from above. In this article, we explore the applications of a small UAS for mapping informal diamond mining sites in Africa. We found that this technology provides aerial imagery of unparalleled resolution in a data-sparse, difficult to access, and remote terrain.
3.5G based mobile remote monitoring system.
Bajracharya, Aman; Gale, Timothy J; Stack, Clive R; Turner, Paul
2008-01-01
Low bandwidth has long been a reason for the unsuitability of wireless internet in telemedicine. However with the advent of extended third generation wireless as an economically accessible high speed network, more opportunities are being created in this area of telemedicine. This paper explores the opportunity created by the latest wireless broadband technology for remote monitoring of patients in the home.
NASA Astrophysics Data System (ADS)
Thompson Alves de Souza, Carlos Eduardo
Application of Earth Sciencés Technology in Mapping the of Brazilian Coast: Localization, Analysis & Monitoring of the Archaeological Sites with Remote Sensing & LiDAR Carlos Eduardo Thompson Alves de Souza cethompsoniii@hotmail.com Archaeologist Member of the European Association of Archaeologists B.A.Archaeology MA.Remote Sensing Abstract The Archaeological Research in Urban Environment with the Air Light Detection and Ranging is problematic for the Overlay Layers mixed with contexts concerning the Interpretation of Archaeological Data. However, in the Underwater Archaeology the results are excellent. This paper considers the application of Remote Sensing and Air Light Detection and Ranging (LIDAR) as separate things as well as Land Archaeology and the Underwater Archaeology. European Archaeologists know very little about Brazil and the article presents an Overview of Research in Brazil with Remote Sensing in Archaeology and Light Detection and Ranging in Land Archaeology and Underwater Archaeology, because Brazil has Continental Dimensions. Braziliańs Methodology for Location, Analysis and Monitoring of Archaeological Sites is necessarily more Complex and Innovative and therefore can serve as a New Paradigm for other archaeologists involved in the Advanced Management Heritage.
Realtime monitoring of bridge scour using remote monitoring technology
DOT National Transportation Integrated Search
2011-02-01
The research performed in this project focuses on the application of instruments including accelerometers : and tiltmeters to monitor bridge scour. First, two large scale laboratory experiments were performed. One : experiment is the simulation of a ...
The Real-Time Monitoring Service Platform for Land Supervision Based on Cloud Integration
NASA Astrophysics Data System (ADS)
Sun, J.; Mao, M.; Xiang, H.; Wang, G.; Liang, Y.
2018-04-01
Remote sensing monitoring has become the important means for land and resources departments to strengthen supervision. Aiming at the problems of low monitoring frequency and poor data currency in current remote sensing monitoring, this paper researched and developed the cloud-integrated real-time monitoring service platform for land supervision which enhanced the monitoring frequency by acquiring the domestic satellite image data overall and accelerated the remote sensing image data processing efficiency by exploiting the intelligent dynamic processing technology of multi-source images. Through the pilot application in Jinan Bureau of State Land Supervision, it has been proved that the real-time monitoring technical method for land supervision is feasible. In addition, the functions of real-time monitoring and early warning are carried out on illegal land use, permanent basic farmland protection and boundary breakthrough in urban development. The application has achieved remarkable results.
Remote Blood Glucose Monitoring in mHealth Scenarios: A Review.
Lanzola, Giordano; Losiouk, Eleonora; Del Favero, Simone; Facchinetti, Andrea; Galderisi, Alfonso; Quaglini, Silvana; Magni, Lalo; Cobelli, Claudio
2016-11-24
Glucose concentration in the blood stream is a critical vital parameter and an effective monitoring of this quantity is crucial for diabetes treatment and intensive care management. Effective bio-sensing technology and advanced signal processing are therefore of unquestioned importance for blood glucose monitoring. Nevertheless, collecting measurements only represents part of the process as another critical task involves delivering the collected measures to the treating specialists and caregivers. These include the clinical staff, the patient's significant other, his/her family members, and many other actors helping with the patient treatment that may be located far away from him/her. In all of these cases, a remote monitoring system, in charge of delivering the relevant information to the right player, becomes an important part of the sensing architecture. In this paper, we review how the remote monitoring architectures have evolved over time, paralleling the progress in the Information and Communication Technologies, and describe our experiences with the design of telemedicine systems for blood glucose monitoring in three medical applications. The paper ends summarizing the lessons learned through the experiences of the authors and discussing the challenges arising from a large-scale integration of sensors and actuators.
Remote Blood Glucose Monitoring in mHealth Scenarios: A Review
Lanzola, Giordano; Losiouk, Eleonora; Del Favero, Simone; Facchinetti, Andrea; Galderisi, Alfonso; Quaglini, Silvana; Magni, Lalo; Cobelli, Claudio
2016-01-01
Glucose concentration in the blood stream is a critical vital parameter and an effective monitoring of this quantity is crucial for diabetes treatment and intensive care management. Effective bio-sensing technology and advanced signal processing are therefore of unquestioned importance for blood glucose monitoring. Nevertheless, collecting measurements only represents part of the process as another critical task involves delivering the collected measures to the treating specialists and caregivers. These include the clinical staff, the patient’s significant other, his/her family members, and many other actors helping with the patient treatment that may be located far away from him/her. In all of these cases, a remote monitoring system, in charge of delivering the relevant information to the right player, becomes an important part of the sensing architecture. In this paper, we review how the remote monitoring architectures have evolved over time, paralleling the progress in the Information and Communication Technologies, and describe our experiences with the design of telemedicine systems for blood glucose monitoring in three medical applications. The paper ends summarizing the lessons learned through the experiences of the authors and discussing the challenges arising from a large-scale integration of sensors and actuators. PMID:27886122
Kalid, Naser; Zaidan, A A; Zaidan, B B; Salman, Omar H; Hashim, M; Muzammil, H
2017-12-29
The growing worldwide population has increased the need for technologies, computerised software algorithms and smart devices that can monitor and assist patients anytime and anywhere and thus enable them to lead independent lives. The real-time remote monitoring of patients is an important issue in telemedicine. In the provision of healthcare services, patient prioritisation poses a significant challenge because of the complex decision-making process it involves when patients are considered 'big data'. To our knowledge, no study has highlighted the link between 'big data' characteristics and real-time remote healthcare monitoring in the patient prioritisation process, as well as the inherent challenges involved. Thus, we present comprehensive insights into the elements of big data characteristics according to the six 'Vs': volume, velocity, variety, veracity, value and variability. Each of these elements is presented and connected to a related part in the study of the connection between patient prioritisation and real-time remote healthcare monitoring systems. Then, we determine the weak points and recommend solutions as potential future work. This study makes the following contributions. (1) The link between big data characteristics and real-time remote healthcare monitoring in the patient prioritisation process is described. (2) The open issues and challenges for big data used in the patient prioritisation process are emphasised. (3) As a recommended solution, decision making using multiple criteria, such as vital signs and chief complaints, is utilised to prioritise the big data of patients with chronic diseases on the basis of the most urgent cases.
Costa, Paulo Dias; Reis, A Hipólito; Rodrigues, Pedro P
2013-02-01
Traditional follow-up of patients with cardiovascular devices is still an activity that, in addition to serving an increasing population, requires a considerable amount of time and specialized human and technical resources. Our aim was to evaluate the applicability of the CareLink(®) (Medtronic, Minneapolis, MN) remote monitoring system as a complementary option to the follow-up of patients with implanted devices, between in-office visits. Evaluated outcomes included both clinical (event detection and time to diagnosis) and nonclinical (patient's satisfaction and economic costs) aspects. An observational, longitudinal, prospective study was conducted with patients from a Portuguese central hospital sampled by convenience during 1 week (43 patients). Data were collected in four moments: two in-office visits and two remote evaluations, reproducing 1 year of clinical follow-up. Data sources included health records, implant reports, initial demographic data collection, follow-up printouts, and a questionnaire. After selection criteria were verified, 15 patients (11 men [73%]) were included, 63.4±10.8 years old, representing 14.0±6.3 implant months. Clinically, 15 events were detected (9 by remote monitoring and 6 by patient-initiated activation), of which only 9 were symptomatic. We verified that remote monitoring could detect both symptomatic and asymptomatic events, whereas patient-initiated activation only detected symptomatic ones (p=0.028). Moreover, the mean diagnosis anticipation in patients with events was approximately 58 days (p<0.001). In nonclinical terms, we observed high or very high satisfaction (67% and 33%, respectively) with using remote monitoring technology, but still 8 patients (53%) stated they preferred in-office visits. Finally, the introduction of remote monitoring technology has the ability to reduce total follow-up costs for patients by 25%. We conclude that the use of this system constitutes a viable complementary option to the follow-up of patients with implantable devices, between in-office visits.
Test-bed for the remote health monitoring system for bridge structures using FBG sensors
NASA Astrophysics Data System (ADS)
Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog
2009-05-01
This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.
Handcock, Rebecca N.; Swain, Dave L.; Bishop-Hurley, Greg J.; Patison, Kym P.; Wark, Tim; Valencia, Philip; Corke, Peter; O'Neill, Christopher J.
2009-01-01
Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle. PMID:22412327
Design of a wearable device for ECG continuous monitoring using wireless technology.
Led, Santiago; Fernández, Jorge; Serrano, Luis
2004-01-01
This project focuses on the design and implementation of an intelligent wearable device for ECG continuous acquisition and transmission to some remote gateway using Bluetooth technology. The acquisition device has been designed for having very low power consumption and reduced size. The Analog Devices' ADuC831 Micro-Converter for achieving the analog to digital conversion and the CSR's BlueCore2 chip for the Bluetooth transmission are the core of the device. The designed device is an important component of a complete prototype for remote ECG continuous monitoring of patients with diverse cardiac diseases.
NASA Astrophysics Data System (ADS)
Azarbayejani, M.; Jalalpour, M.; El-Osery, A. I.; Reda Taha, M. M.
2011-08-01
In this paper, an innovative field application of a structural health monitoring (SHM) system using field programmable gate array (FPGA) technology and wireless communication is presented. The new SHM system was installed to monitor a reinforced concrete (RC) bridge on Interstate 40 (I-40) in Tucumcari, New Mexico. This newly installed system allows continuous remote monitoring of this bridge using solar power. Details of the SHM component design and installation are discussed. The integration of FPGA and solar power technologies make it possible to remotely monitor infrastructure with limited access to power. Furthermore, the use of FPGA technology enables smart monitoring where data communication takes place on-need (when damage warning signs are met) and on-demand for periodic monitoring of the bridge. Such a system enables a significant cut in communication cost and power demands which are two challenges during SHM operation. Finally, a three-dimensional finite element (FE) model of the bridge was developed and calibrated using a static loading field test. This model is then used for simulating damage occurrence on the bridge. Using the proposed automation process for SHM will reduce human intervention significantly and can save millions of dollars currently spent on prescheduled inspection of critical infrastructure worldwide.
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; Xu, Fuxiang; Song, Debin; Zheng, Xiangyu; Chen, Maosi
2017-09-01
This paper conducted dynamic monitoring over the green tide (large green alga—Ulva prolifera) occurred in the Yellow Sea in 2014 to 2016 by the use of multi-source remote sensing data, including GF-1 WFV, HJ-1A/1B CCD, CBERS-04 WFI, Landsat-7 ETM+ and Landsta-8 OLI, and by the combination of VB-FAH (index of Virtual-Baseline Floating macroAlgae Height) with manual assisted interpretation based on remote sensing and geographic information system technologies. The result shows that unmanned aerial vehicle (UAV) and shipborne platform could accurately monitor the distribution of Ulva prolifera in small spaces, and therefore provide validation data for the result of remote sensing monitoring over Ulva prolifera. The result of this research can provide effective information support for the prevention and control of Ulva prolifera.
NASA Astrophysics Data System (ADS)
Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie
2014-03-01
To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.
Design of temperature monitoring system based on CAN bus
NASA Astrophysics Data System (ADS)
Zhang, Li
2017-10-01
The remote temperature monitoring system based on the Controller Area Network (CAN) bus is designed to collect the multi-node remote temperature. By using the STM32F103 as main controller and multiple DS18B20s as temperature sensors, the system achieves a master-slave node data acquisition and transmission based on the CAN bus protocol. And making use of the serial port communication technology to communicate with the host computer, the system achieves the function of remote temperature storage, historical data show and the temperature waveform display.
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.; Yurchak, Boris S.; Sleptsov, Yuri A.; Turi, Johan Mathis; Mathlesen, Svein D.
2005-01-01
To adapt successfully to the major changes - climate, environment, economic, social and industrial - which have taken place across the Arctic. in recent years, indigenous communities such as reindeer herders must become increasingly empowered with the best available technologies to add to their storehouse of traditional knowledge. Remotely-sensed data and observations are providing increased capabilities for monitoring, risk mapping, and surveillance of parameters critical to the characterization of pasture quality and migratory routes, such as vegetation distribution, snow cover, infrastructure development, and pasture damages due to fires. This paper describes a series of remote sensing capabilities, which are useful to reindeer husbandry, and gives the results of the first year of a project, "Reindeer Mapper", which is a remote sensing and GIs-based system to bring together space technologies with indigenous knowledge for sustainable reindeer husbandry in the Russian Arctic. In this project, reindeer herders and scientists are joining together to utilize technologies to create a system for collecting and sharing space-based and indigenous knowledge in the Russian Arctic. The "Reindeer Mapper" system will help make technologies more readily available to the herder community for observing, data collection and analysis, monitoring, sharing, communications, and dissemination of information - to be integrated with traditional, local knowledge. This paper describes some of the technologies which comprise the system including an intranet system to enable to the team members to work together and share information electronically, remote sensing data for monitoring environmental parameters important to reindeer husbandry (e.g., SAR, Landsat, AVHRR, MODIS), indigenous knowledge about important environmental parameters, acquisition of ground- based measurements, and the integration of all useful data sets for more informed decision-making.
Distributed observing facility for remote access to multiple telescopes
NASA Astrophysics Data System (ADS)
Callegari, Massimo; Panciatici, Antonio; Pasian, Fabio; Pucillo, Mauro; Santin, Paolo; Aro, Simo; Linde, Peter; Duran, Maria A.; Rodriguez, Jose A.; Genova, Francoise; Ochsenbein, Francois; Ponz, J. D.; Talavera, Antonio
2000-06-01
The REMOT (Remote Experiment Monitoring and conTrol) project was financed by 1996 by the European Community in order to investigate the possibility of generalizing the remote access to scientific instruments. After the feasibility of this idea was demonstrated, the DYNACORE (DYNAmically, COnfigurable Remote Experiment monitoring and control) project was initiated as a REMOT follow-up. Its purpose is to develop software technology to support scientists in two different domains, astronomy and plasma physics. The resulting system allows (1) simultaneous multiple user access to different experimental facilities, (2) dynamic adaptability to different kinds of real instruments, (3) exploitation of the communication infrastructures features, (4) ease of use through intuitive graphical interfaces, and (5) additional inter-user communication using off-the-shelf projects such as video-conference tools, chat programs and shared blackboards.
Clinical benefits of remote versus transtelephonic monitoring of implanted pacemakers.
Crossley, George H; Chen, Jane; Choucair, Wassim; Cohen, Todd J; Gohn, Douglas C; Johnson, W Ben; Kennedy, Eleanor E; Mongeon, Luc R; Serwer, Gerald A; Qiao, Hongyan; Wilkoff, Bruce L
2009-11-24
The purpose of this study was to evaluate remote pacemaker interrogation for the earlier diagnosis of clinically actionable events compared with traditional transtelephonic monitoring and routine in-person evaluation. Pacemaker patient follow-up procedures have evolved from evaluating devices with little programmability and diagnostic information solely in person to transtelephonic rhythm strip recordings that allow monitoring of basic device function. More recently developed remote monitoring technology leverages expanded device capabilities, augmenting traditional transtelephonic monitoring to evaluate patients via full device interrogation. The time to first diagnosis of a clinically actionable event was compared in patients who were followed by remote interrogation (Remote) and those who were followed per standard of care with office visits augmented by transtelephonic monitoring (Control). Patients were randomized 2:1. Remote arm patients transmitted pacemaker information at 3-month intervals. Control arm patients with a single-chamber pacemaker transmitted at 2-month intervals. Control arm patients with dual-chamber devices transmitted at 2-month intervals with an office visit at 6 months. All patients were seen in office at 12 months. The mean time to first diagnosis of clinically actionable events was earlier in the Remote arm (5.7 months) than in the Control arm (7.7 months). Three (2%) of the 190 events in the Control arm and 446 (66%) of 676 events in the Remote arm were identified remotely. The strategic use of remote pacemaker interrogation follow-up detects actionable events that are potentially important more quickly and more frequently than transtelephonic rhythm strip recordings. The use of transtelephonic rhythm strips for pacemaker follow-up is of little value except for battery status determinations. (PREFER [Pacemaker Remote Follow-up Evaluation and Review]; NCT00294645).
Using a Web Application to Conduct and Investigate Syntheses of Methyl Orange Remotely
ERIC Educational Resources Information Center
van Rens, Lisette; van Dijk, Hans; Mulder, Jan; Nieuwland, Pieter
2013-01-01
Thirty-six pre-university chemistry students and two chemistry teachers used flow chemistry as a technology for the synthesis of methyl orange. FutureChemistry and VU University Amsterdam cooperatively created FlowStart Remote, a device that enabled the students to remotely conduct this synthesis and in real time monitor and control the device via…
Tapia-Conyer, Roberto; Lyford, Shelley; Saucedo, Rodrigo; Casale, Michael; Gallardo, Hector; Becerra, Karen; Mack, Jonathan; Mujica, Ricardo; Estrada, Daniel; Sanchez, Antonio; Sabido, Ramon; Meier, Carlos; Smith, Joseph
2015-01-01
Background. Fetal and neonatal morbidity and mortality are significant problems in developing countries; remote maternal-fetal monitoring offers promise in addressing this challenge. The Gary and Mary West Health Institute and the Instituto Carlos Slim de la Salud conducted a demonstration project of wirelessly enabled antepartum maternal-fetal monitoring in the state of Yucatán, Mexico, to assess whether there were any fundamental barriers preventing deployment and use. Methods. Following informed consent, high-risk pregnant women at 27–29 weeks of gestation at the Chemax primary clinic participated in remote maternal-fetal monitoring. Study participants were randomized to receive either prototype wireless monitoring or standard-of-care. Feasibility was evaluated by assessing technical aspects of performance, adherence to monitoring appointments, and response to recommendations. Results. Data were collected from 153 high-risk pregnant indigenous Mayan women receiving either remote monitoring (n = 74) or usual standard-of-care (n = 79). Remote monitoring resulted in markedly increased adherence (94.3% versus 45.1%). Health outcomes were not statistically different in the two groups. Conclusions. Remote maternal-fetal monitoring is feasible in resource-constrained environments and can improve maternal compliance for monitoring sessions. Improvement in maternal-fetal health outcomes requires integration of such technology into sociocultural context and addressing logistical challenges of access to appropriate emergency services. PMID:25691900
Saito, Kaoru; Nakamura, Kazuhiko; Ueta, Mutsuyuki; Kurosawa, Reiko; Fujiwara, Akio; Kobayashi, Hill Hiroki; Nakayama, Masaya; Toko, Ayako; Nagahama, Kazuyo
2015-11-01
We have developed a system that streams and archives live sound from remote areas across Japan via an unmanned automatic camera. The system was used to carry out pilot bird censuses in woodland; this allowed us to examine the use of live sound transmission and the role of social media as a mediator in remote scientific monitoring. The system has been streaming sounds 8 h per day for more than five years. We demonstrated that: (1) the transmission of live sound from a remote woodland could be used effectively to monitor birds in a remote location; (2) the simultaneous involvement of several participants via Internet Relay Chat to listen to live sound transmissions could enhance the accuracy of census data collection; and (3) interactions through Twitter allowed members of the public to engage or help with the remote monitoring of birds and experience inaccessible nature through the use of novel technologies.
Remote Sensing and Reflectance Profiling in Entomology.
Nansen, Christian; Elliott, Norman
2016-01-01
Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.
Remote Monitoring, Inorganic Monitoring
This chapter provides an overview of applicability, amenability, and operating parameter ranges for various inorganic parameters:this chapter will also provide a compilation of existing and new online technologies for determining inorganic compounds in water samples. A wide vari...
Integrated track stability assessment and monitoring system (ITSAMS).
DOT National Transportation Integrated Search
2006-10-01
The overall objective of project is to continue the development of remote sensing : technologies that can be integrated and deployed in a mobile inspection vehicle i.e. Integrated : Track Stability Assessment and Monitoring System (ITSAMS).
Slonecker, E. Terrence; Fisher, Gary B.
2011-01-01
This report presents the overhead imagery and field sampling results used to prepare U.S. Geological Survey Open-File Report 2011-1050, 'Evaluation of Traditional and Emerging Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites'. These graphic products were used in the evaluation of remote sensing technology in postclosure monitoring of hazardous waste sites and represent an ongoing research effort. Soil sampling results presented here were accomplished with field portable x-ray fluoresence (XRF) technology and are used as screening tools only representing the current conditions of metals and other contaminants at selected Superfund hazardous waste sites.
Application research for 4D technology in flood forecasting and evaluation
NASA Astrophysics Data System (ADS)
Li, Ziwei; Liu, Yutong; Cao, Hongjie
1998-08-01
In order to monitor the region which disaster flood happened frequently in China, satisfy the great need of province governments for high accuracy monitoring and evaluated data for disaster and improve the efficiency for repelling disaster, under the Ninth Five-year National Key Technologies Programme, the method was researched for flood forecasting and evaluation using satellite and aerial remoted sensed image and land monitor data. The effective and practicable flood forecasting and evaluation system was established and DongTing Lake was selected as the test site. Modern Digital photogrammetry, remote sensing and GIS technology was used in this system, the disastrous flood could be forecasted and loss can be evaluated base on '4D' (DEM -- Digital Elevation Model, DOQ -- Digital OrthophotoQuads, DRG -- Digital Raster Graph, DTI -- Digital Thematic Information) disaster background database. The technology of gathering and establishing method for '4D' disaster environment background database, application technology for flood forecasting and evaluation based on '4D' background data and experimental results for DongTing Lake test site were introduced in detail in this paper.
NASA Astrophysics Data System (ADS)
Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Sivignon, Jean-François; Miffre, Alain; Rairoux, Patrick
2018-04-01
Monitoring the emission of gases is difficult to achieve in industrial sites and in environments presenting poor infrastructures. Hence, robust methodologies should be developed and coupled to Lidar technology to allow remote sensing of gas emission. OSAS is a new methodology to evaluate gas concentration emission from spectrally integrated differential absorption measurements. Proof of concept of OSAS-Lidar for CH4 emission monitoring is here presented.
Remote Sensing Via Satellite: The Canadian Experience
ERIC Educational Resources Information Center
Classen, Hans George
1974-01-01
Describes the joint effort of Canada and NASA in monitoring the Canadian environment using remote-sensing techniques. The project involves the Earth Resources Technology Satellite and has been used to observe seasonal changes, extent of snow cover, crop growth, sea ice, and land use patterns. (GS)
Remote sensing monitoring and driving force analysis to forest and greenbelt in Zhuhai
NASA Astrophysics Data System (ADS)
Yuliang Qiao, Pro.
As an important city in the southern part of Chu Chiang Delta, Zhuhai is one of the four special economic zones which are opening up to the outside at the earliest in China. With pure and fresh air and trees shading the street, Zhuhai is a famous beach port city which is near the mountain and by the sea. On the basis of Garden City, the government of Zhuhai decides to build National Forest City in 2011, which firstly should understand the situation of greenbelt in Zhuhai in short term. Traditional methods of greenbelt investigation adopt the combination of field surveying and statistics, whose efficiency is low and results are not much objective because of artificial influence. With the adventure of the information technology such as remote sensing to earth observation, especially the launch of many remote sensing satellites with high resolution for the past few years, kinds of urban greenbelt information extraction can be carried out by using remote sensing technology; and dynamic monitoring to spatial pattern evolvement of forest and greenbelt in Zhuhai can be achieved by the combination of remote sensing and GIS technology. Taking Landsat5 TM data in 1995, Landsat7 ETM+ data in 2002, CCD and HR data of CBERS-02B in 2009 as main information source, this research firstly makes remote sensing monitoring to dynamic change of forest and greenbelt in Zhuhai by using the combination of vegetation coverage index and three different information extraction methods, then does a driving force analysis to the dynamic change results in 3 months. The results show: the forest area in Zhuhai shows decreasing tendency from 1995 to 2002, increasing tendency from 2002 to 2009; overall, the forest area show a small diminution tendency from 1995 to 2009. Through the comparison to natural and artificial driving force, the artificial driving force is the leading factor to the change of forest and greenbelt in Zhuhai. The research results provide a timely and reliable scientific basis for the Zhuhai Government in building National Forest City. Keywords: forest and greenbelt; remote sensing; dynamic monitoring; driving force; vegetation coverage
McGillicuddy, John William; Weiland, Ana Katherine; Frenzel, Ronja Maximiliane; Mueller, Martina; Brunner-Jackson, Brenda Marie; Taber, David James; Baliga, Prabhakar Kalyanpur; Treiber, Frank Anton
2013-01-08
Mobile phone based remote monitoring of medication adherence and physiological parameters has the potential of improving long-term graft outcomes in the recipients of kidney transplants. This technology is promising as it is relatively inexpensive, can include intuitive software and may offer the ability to conduct close patient monitoring in a non-intrusive manner. This includes the optimal management of comorbidities such as hypertension and diabetes. There is, however, a lack of data assessing the attitudes of renal transplant recipients toward this technology, especially among ethnic minorities. To assess the attitudes of renal transplant recipients toward mobile phone based remote monitoring and management of their medical regimen; and to identify demographic or clinical characteristics that impact on this attitude. After a 10 minute demonstration of a prototype mobile phone based monitoring system, a 10 item questionnaire regarding attitude toward remote monitoring and the technology was administered to the participants, along with the 10 item Perceived Stress Scale and the 7 item Morisky Medication Adherence Scale. Between February and April 2012, a total of 99 renal transplant recipients were identified and agreed to participate in the survey. The results of the survey indicate that while 90% (87/97) of respondents own a mobile phone, only 7% (7/98) had any prior knowledge of mobile phone based remote monitoring. Despite this, the majority of respondents, 79% (78/99), reported a positive attitude toward the use of a prototype system if it came at no cost to themselves. Blacks were more likely than whites to own smartphones (43.1%, 28/65 vs 20.6%, 7/34; P=.03) and held a more positive attitude toward free use of the prototype system than whites (4.25±0.88 vs 3.76±1.07; P=.02). The data demonstrates that kidney transplant recipients have a positive overall attitude toward mobile phone based health technology (mHealth). Additionally, the data demonstrates that most kidney transplant recipients own and are comfortable using mobile phones and that many of these patients already own and use smart mobile phones. The respondents felt that mHealth offers an opportunity for improved self-efficacy and improved provider driven medical management. Respondents were comfortable with the idea of being monitored using mobile technology and are confident that their privacy can be protected. The small subset of kidney transplant recipients who are less interested in mHealth may be less technologically adept as reflected by their lower mobile phone ownership rates. As a whole, kidney transplant recipients are receptive to the technology and believe in its utility.
Patient perceptions of a remote monitoring intervention for chronic disease management.
Wakefield, Bonnie J; Holman, John E; Ray, Annette; Scherubel, Melody
2011-04-01
Use of telecommunications technology to provide remote monitoring for people with chronic disease is becoming increasingly accepted as a means to improve patient outcomes and reduce resource use. The purpose of this project was to evaluate patient perceptions of a nurse-managed remote monitoring intervention to improve outcomes in veterans with comorbid diabetes and hypertension. Postintervention evaluation data were collected using a 12-item questionnaire and an open-ended question. Participants rated the program as generally positive on the questionnaire, but responses to the open-ended question revealed criticisms and suggestions for improvement not captured on the questionnaire. Interviewing participants in these programs may offer richer data for identifying areas for program improvement. Copyright 2011, SLACK Incorporated.
[Technological advances and hospital-at-home care].
Tibaldi, Vittoria; Aimonino Ricauda, Nicoletta; Rocco, Maurizio; Bertone, Paola; Fanton, Giordano; Isaia, Giancarlo
2013-05-01
Advances in the miniaturization and portability of diagnostic technologies, information technologies, remote monitoring, and long-distance care have increased the viability of home-based care, even for patients with serious conditions. Telemedicine and teleradiology projects are active at the Hospital at Home Service of Torino.
Olga N. Krankina; Mark E. Harmon; Warren B. Cohen; Doug R. Oetter; Olga Zyrina; Maureen V. Duane
2004-01-01
Forest inventories and remote sensing are the two principal data sources used to estimate carbon (C) stocks and fluxes for large forest regions. National governments have historically relied on forest inventories for assessments but developments in remote sensing technology provide additional opportunities for operational C monitoring. The estimate of total C stock in...
Jacob, Eufemia; Duran, Joana; Stinson, Jennifer; Lewis, Mary Ann; Zeltzer, Lonnie
2013-01-01
The purpose of this study was to examine (a) symptoms, (b) pain characteristics (intensity, location, quality), (c) pain medications and nonpharmacological strategies used for pain, (d) thoughts and feelings, and (e) healthcare visits. We also examined the relationship between pain and sleep. Pain and symptoms were entered on an electronic e-Diary using a smartphone and were remotely monitored by an advanced practice registered nurse (APRN). Sixty-seven children and adolescents (10-17 years) reported mild to severe pain at home that did not require healthcare visits. Symptoms reported were (a) general symptoms such as tiredness/fatigue (34.7%), headache (20.8%), yellowing of the eyes (28.4%); (b) respiratory symptoms such as sniffling (32.9%), coughing (19.1%), changes in breathing (10.0%); and (c) musculoskeletal symptoms such as stiffness in joints (15.8%). A significant negative correlation was found between pain and sleep (r = -.387, p = .024). Factors that predict pain included previous history of sickle cell disease (SCD) related events, symptoms, and negative thoughts. Pain and multiple symptoms entered on a web-based e-Diary were remotely monitored by an APRN and prompted communications, further evaluation, and recommendations. Remote monitoring using wireless technology may facilitate timely management of pain and symptoms and minimize negative consequences in SCD. ©2012 The Author(s) Journal compilation ©2012 American Association of Nurse Practitioners.
Jacob, Eufemia; Duran, Joana; Stinson, Jennifer; Lewis, Mary Ann; Zeltzer, Lonnie
2012-01-01
Purpose The purpose of this study was to examine 1) symptoms; 2) pain characteristics (intensity, location, quality); 3) pain medications and nonpharmacological strategies used for pain; 4) thoughts and feelings; and 5) health care visits. We also examined the relationship between pain and sleep. Data Sources Pain and symptoms were entered on an electronic e-Diary using a smartphone and were remotely monitored by an advanced practice registered nurse. Sixty-seven children and adolescents (10 to 17 years) reported mild to severe pain at home that did not require health care visits. Symptoms reported were: 1) general symptoms such as tiredness/fatigue (34.7%), headache (20.8%), yellowing of the eyes (28.4%); 2) respiratory symptoms such as sniffling (32.9%), coughing (19.1%), changes in breathing (10.0%); and 3) musculoskeletal symptoms such as stiffness in joints (15.8%). A significant negative correlation was found between pain and sleep (r = −0.387, p=0.024). Factors that predict pain included previous history of SCD related events, symptoms, and negative thoughts. Conclusion Pain and multiple symptoms entered on a web-based e-Diary were remotely monitored by an APRN and prompted communications, further evaluation, and recommendations. Implications for Practice Remote monitoring using wireless technology may facilitate timely management of pain and symptoms and minimize negative consequences in SCD. PMID:23279278
Reif, Molly K; Theel, Heather J
2017-07-01
Restoration monitoring is generally perceived as costly and time consuming, given the assumptions of successfully restoring ecological functions and services of a particular ecosystem or habitat. Opportunities exist for remote sensing to bolster the restoration science associated with a wide variety of injured resources, including resources affected by fire, hydropower operations, chemical releases, and oil spills, among others. In the last decade, the role of remote sensing to support restoration monitoring has increased, in part due to the advent of high-resolution satellite sensors as well as other sensor technology, such as lidar. Restoration practitioners in federal agencies require monitoring standards to assess restoration performance of injured resources. This review attempts to address a technical need and provides an introductory overview of spatial data and restoration metric considerations, as well as an in-depth review of optical (e.g., spaceborne, airborne, unmanned aerial vehicles) and active (e.g., radar, lidar) sensors and examples of restoration metrics that can be measured with remotely sensed data (e.g., land cover, species or habitat type, change detection, quality, degradation, diversity, and pressures or threats). To that end, the present article helps restoration practitioners assemble information not only about essential restoration metrics but also about the evolving technological approaches that can be used to best assess them. Given the need for monitoring standards to assess restoration success of injured resources, a universal monitoring framework should include a range of remote sensing options with which to measure common restoration metrics. Integr Environ Assess Manag 2017;13:614-630. Published 2016. This article is a US Government work and is in the public domain in the USA. Published 2016. This article is a US Government work and is in the public domain in the USA.
Vashist, Sandeep Kumar; Schneider, E. Marion; Luong, John H.T.
2014-01-01
Smartphone-based devices and applications (SBDAs) with cost effectiveness and remote sensing are the most promising and effective means of delivering mobile healthcare (mHealthcare). Several SBDAs have been commercialized for the personalized monitoring and/or management of basic physiological parameters, such as blood pressure, weight, body analysis, pulse rate, electrocardiograph, blood glucose, blood glucose saturation, sleeping and physical activity. With advances in Bluetooth technology, software, cloud computing and remote sensing, SBDAs provide real-time on-site analysis and telemedicine opportunities in remote areas. This scenario is of utmost importance for developing countries, where the number of smartphone users is about 70% of 6.8 billion cell phone subscribers worldwide with limited access to basic healthcare service. The technology platform facilitates patient-doctor communication and the patients to effectively manage and keep track of their medical conditions. Besides tremendous healthcare cost savings, SBDAs are very critical for the monitoring and effective management of emerging epidemics and food contamination outbreaks. The next decade will witness pioneering advances and increasing applications of SBDAs in this exponentially growing field of mHealthcare. This article provides a critical review of commercial SBDAs that are being widely used for personalized healthcare monitoring and management. PMID:26852680
Kakria, Priyanka; Tripathi, N K; Kitipawang, Peerapong
2015-01-01
Online telemedicine systems are useful due to the possibility of timely and efficient healthcare services. These systems are based on advanced wireless and wearable sensor technologies. The rapid growth in technology has remarkably enhanced the scope of remote health monitoring systems. In this paper, a real-time heart monitoring system is developed considering the cost, ease of application, accuracy, and data security. The system is conceptualized to provide an interface between the doctor and the patients for two-way communication. The main purpose of this study is to facilitate the remote cardiac patients in getting latest healthcare services which might not be possible otherwise due to low doctor-to-patient ratio. The developed monitoring system is then evaluated for 40 individuals (aged between 18 and 66 years) using wearable sensors while holding an Android device (i.e., smartphone under supervision of the experts). The performance analysis shows that the proposed system is reliable and helpful due to high speed. The analyses showed that the proposed system is convenient and reliable and ensures data security at low cost. In addition, the developed system is equipped to generate warning messages to the doctor and patient under critical circumstances.
Vashist, Sandeep Kumar; Schneider, E Marion; Luong, John H T
2014-08-18
Smartphone-based devices and applications (SBDAs) with cost effectiveness and remote sensing are the most promising and effective means of delivering mobile healthcare (mHealthcare). Several SBDAs have been commercialized for the personalized monitoring and/or management of basic physiological parameters, such as blood pressure, weight, body analysis, pulse rate, electrocardiograph, blood glucose, blood glucose saturation, sleeping and physical activity. With advances in Bluetooth technology, software, cloud computing and remote sensing, SBDAs provide real-time on-site analysis and telemedicine opportunities in remote areas. This scenario is of utmost importance for developing countries, where the number of smartphone users is about 70% of 6.8 billion cell phone subscribers worldwide with limited access to basic healthcare service. The technology platform facilitates patient-doctor communication and the patients to effectively manage and keep track of their medical conditions. Besides tremendous healthcare cost savings, SBDAs are very critical for the monitoring and effective management of emerging epidemics and food contamination outbreaks. The next decade will witness pioneering advances and increasing applications of SBDAs in this exponentially growing field of mHealthcare. This article provides a critical review of commercial SBDAs that are being widely used for personalized healthcare monitoring and management.
Kakria, Priyanka; Tripathi, N. K.; Kitipawang, Peerapong
2015-01-01
Online telemedicine systems are useful due to the possibility of timely and efficient healthcare services. These systems are based on advanced wireless and wearable sensor technologies. The rapid growth in technology has remarkably enhanced the scope of remote health monitoring systems. In this paper, a real-time heart monitoring system is developed considering the cost, ease of application, accuracy, and data security. The system is conceptualized to provide an interface between the doctor and the patients for two-way communication. The main purpose of this study is to facilitate the remote cardiac patients in getting latest healthcare services which might not be possible otherwise due to low doctor-to-patient ratio. The developed monitoring system is then evaluated for 40 individuals (aged between 18 and 66 years) using wearable sensors while holding an Android device (i.e., smartphone under supervision of the experts). The performance analysis shows that the proposed system is reliable and helpful due to high speed. The analyses showed that the proposed system is convenient and reliable and ensures data security at low cost. In addition, the developed system is equipped to generate warning messages to the doctor and patient under critical circumstances. PMID:26788055
Wearable Sensors for Remote Health Monitoring.
Majumder, Sumit; Mondal, Tapas; Deen, M Jamal
2017-01-12
Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.
Wearable Sensors for Remote Health Monitoring
Majumder, Sumit; Mondal, Tapas; Deen, M. Jamal
2017-01-01
Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed. PMID:28085085
Simons, Lucy; Valentine, Althea Z; Falconer, Caroline J; Groom, Madeleine; Daley, David; Craven, Michael P; Young, Zoe; Hall, Charlotte; Hollis, Chris
2016-03-23
Guidelines in the United Kingdom recommend that medication titration for attention deficit hyperactivity disorder (ADHD) should be completed within 4-6 weeks and include regular reviews. However, most clinicians think that weekly clinic contact is infeasible, and audits have shown that this timeline is rarely achieved. Thus, a more effective monitoring and review system is needed; remote monitoring technology (RMT) may be one way to improve current practice. However, little is known about whether patients with ADHD, their families, and clinicians would be interested in using RMT. To explore patients', parents', and health care professionals' views and attitudes toward using digital technology for remote monitoring during titration for ADHD. This was a qualitative study, and data were collected through 11 focus groups with adults and young people with ADHD, parents of children with ADHD, and health care professionals (N=59). All participant groups were positive about using RMT in the treatment of ADHD, but they were also aware of barriers to its use, especially around access to technology and integrating RMT into clinical care. They identified that RMT had the most potential for use in the ongoing management and support of ADHD, rather than during the distinct titration period. Participants identified features of RMT that could improve the quality of consultations and support greater self-management. RMT has the potential to augment support and care for ADHD, but it needs to go beyond the titration period and offer more to patients and families than monitoring through outcome measures. Developing and evaluating an mHealth app that incorporates the key features identified by end users is required.
Analysis on the application of background parameters on remote sensing classification
NASA Astrophysics Data System (ADS)
Qiao, Y.
Drawing accurate crop cultivation acreage, dynamic monitoring of crops growing and yield forecast are some important applications of remote sensing to agriculture. During the 8th 5-Year Plan period, the task of yield estimation using remote sensing technology for the main crops in major production regions in China once was a subtopic to the national research task titled "Study on Application of Remote sensing Technology". In 21 century in a movement launched by Chinese Ministry of Agriculture to combine high technology to farming production, remote sensing has given full play to farm crops' growth monitoring and yield forecast. And later in 2001 Chinese Ministry of Agriculture entrusted the Northern China Center of Agricultural Remote Sensing to forecast yield of some main crops like wheat, maize and rice in rather short time to supply information for the government decision maker. Present paper is a report for this task. It describes the application of background parameters in image recognition, classification and mapping with focuses on plan of the geo-science's theory, ecological feature and its cartographical objects or scale, the study of phrenology for image optimal time for classification of the ground objects, the analysis of optimal waveband composition and the application of background data base to spatial information recognition ;The research based on the knowledge of background parameters is indispensable for improving the accuracy of image classification and mapping quality and won a secondary reward of tech-science achievement from Chinese Ministry of Agriculture. Keywords: Spatial image; Classification; Background parameter
Gammon, D; Christiansen, E K; Wynn, R
2009-07-01
Patient self-management of disease is increasingly supported by technologies that can monitor a wide range of behavioural and biomedical parameters. Incorporated into everyday devices such as cell phones and clothes, these technologies become integral to the psychosocial aspects of everyday life. Many technologies are likely to be marketed directly to families with ill members, and families may enlist the support of clinicians in shaping use. Current ethical frameworks are mainly conceptualised from the perspective of caregivers, researchers, developers and regulators in order to ensure the ethics of their own practices. This paper focuses on families as autonomous decision-makers outside the regulated context of healthcare. We discuss some morally relevant issues facing families in their decisions to monitor the health-related behaviours of loved ones. An example - remote parental monitoring of adolescent blood glucose - is presented and discussed through the lens of two contrasting accounts of ethics; one reflecting the predominant focus on health outcomes within the health technology assessment (HTA) framework and the other that attends to the broader sociocultural contexts shaping technologies and their implications. Issues discussed include the focus of assessments, informed consent and child assent, and family co-creation of system characteristics and implications. The parents' decisions to remotely monitor their child has relational implications that are likely to influence conflict levels and thus also health outcomes. Current efforts to better integrate outcome assessments with social and ethical assessments are particularly relevant for informed decision-making about health monitoring technologies in families.
Digital monitoring and care: Virtual medicine.
Shinbane, Jerold S; Saxon, Leslie A
2016-11-01
Remote digital health monitoring technologies can be synergistically organized to create a virtual medical system providing more continuous care centered on the patient rather than the bricks and mortar medical complex. Utilization of the digitalized patient health monitoring can facilitate diagnosis, treatment plans, physician-patient interaction, and accelerate the progress of medical research, education, and training. The field of cardiac electrophysiology has been an early adopter of this shift in care and serves as a paradigm applicable to all areas of medicine. The overall impact of this remote virtual care model on the quality of medical care and patient experience requires greater study, as well as vigilance as to the differences between technology and care in order to preserve the intangible and immeasurable factors that bring humanity to the art and science of medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1980-01-01
A consistent approach was sought for both hardware and software which will handle the monitoring and control necessary to integrate a number of different DSG technologies into a common distribution dispatch network. It appears that the control of each of the DSG technologies is compatible with a supervisory control method of operation that lends itself to remote control from a distribution dispatch center.
A remote data access architecture for home-monitoring health-care applications.
Lin, Chao-Hung; Young, Shuenn-Tsong; Kuo, Te-Son
2007-03-01
With the aging of the population and the increasing patient preference for receiving care in their own homes, remote home care is one of the fastest growing areas of health care in Taiwan and many other countries. Many remote home-monitoring applications have been developed and implemented to enable both formal and informal caregivers to have remote access to patient data so that they can respond instantly to any abnormalities of in-home patients. The aim of this technology is to give both patients and relatives better control of the health care, reduce the burden on informal caregivers and reduce visits to hospitals and thus result in a better quality of life for both the patient and his/her family. To facilitate their widespread adoption, remote home-monitoring systems take advantage of the low-cost features and popularity of the Internet and PCs, but are inherently exposed to several security risks, such as virus and denial-of-service (DoS) attacks. These security threats exist as long as the in-home PC is directly accessible by remote-monitoring users over the Internet. The purpose of the study reported in this paper was to improve the security of such systems, with the proposed architecture aimed at increasing the system availability and confidentiality of patient information. A broker server is introduced between the remote-monitoring devices and the in-home PCs. This topology removes direct access to the in-home PC, and a firewall can be configured to deny all inbound connections while the remote home-monitoring application is operating. This architecture helps to transfer the security risks from the in-home PC to the managed broker server, on which more advanced security measures can be implemented. The pros and cons of this novel architecture design are also discussed and summarized.
NASA Technical Reports Server (NTRS)
Myles, R. L.
1975-01-01
Applications of remote sensing technology to wildlife preservation, pest control, strip mining, water quality monitoring, and wetlands mapping were discussed. Economic, political and social factors were also considered.
Telemonitoring in heart failure: Big Brother watching over you.
Dierckx, R; Pellicori, P; Cleland, J G F; Clark, A L
2015-01-01
Heart failure (HF) is a leading cause of hospitalisations in older people. Several strategies, supported by novel technologies, are now available to monitor patients' health from a distance. Although studies have suggested that remote monitoring may reduce HF hospitalisations and mortality, the study of different patient populations, the use of different monitoring technologies and the use of different endpoints limit the generalisability of the results of the clinical trials reported, so far. In this review, we discuss the existing home monitoring modalities, relevant trials and focus on future directions for telemonitoring.
Vital signs monitoring and patient tracking over a wireless network.
Gao, Tia; Greenspan, Dan; Welsh, Matt; Juang, Radford; Alm, Alex
2005-01-01
Patients at a disaster scene can greatly benefit from technologies that continuously monitor their vital status and track their locations until they are admitted to the hospital. We have designed and developed a real-time patient monitoring system that integrates vital signs sensors, location sensors, ad-hoc networking, electronic patient records, and web portal technology to allow remote monitoring of patient status. This system shall facilitate communication between providers at the disaster scene, medical professionals at local hospitals, and specialists available for consultation from distant facilities.
West Europe Report, Science and Technology
1986-01-16
Nicolas Rousseaux; ZERO UN INFORMATION HEBDO, 30 Sep 85) 93 TECHNOLOGY TRANSFER Briefs Renault Equipment to USSR 96 c - 16 January 1986 AEROSPACE...personnel and has a capacity of 200 persons. From the launch center, where monitoring and command systems are installed, the start up of the remote...supplying of propellants and fluids and hookup of monitoring and control systems -preparation for launch: countdown and launch -possible erection and
USDA/federal user of LANDSAT remote sensing
NASA Technical Reports Server (NTRS)
Allen, R.
1981-01-01
Developed and potential uses of remote sensing in crop condition and acreage assessment, renewable resources inventories, conservation practices, and water and forest management applications are described. Operational approaches, the adaptation of procedures to needs, and the agency's concern about data continuity and cost are discussed as well as support for future technology development for enhanced sensing capability. The use of improved camera systems for soil mapping and conservation monitoring from space shuttle, and of aerospace radar to improve soil moisture monitoring are mentioned.
Structural monitoring for rare events in remote locations
NASA Astrophysics Data System (ADS)
Hale, J. M.
2005-01-01
A structural monitoring system has been developed for use on high value engineering structures, which is particularly suitable for use in remote locations where rare events such as accidental impacts, seismic activity or terrorist attack might otherwise go undetected. The system comprises a low power intelligent on-site data logger and a remote analysis computer that communicate with one another using the internet and mobile telephone technology. The analysis computer also generates e-mail alarms and maintains a web page that displays detected events in near real-time to authorised users. The application of the prototype system to pipeline monitoring is described in which the analysis of detected events is used to differentiate between impacts and pressure surges. The system has been demonstrated successfully and is ready for deployment.
Remote sensing: Snow monitoring tool for today and tomorrow
NASA Technical Reports Server (NTRS)
Rango, A.
1977-01-01
Various types of remote sensing are now available or will be in the future for snowpack monitoring. Aircraft reconnaissance is now used in a conventional manner by various water resources agencies to obtain information on snowlines, depth, and melting of the snowpack for forecasting purposes. The use of earth resources satellites for mapping snowcovered area, snowlines, and changes in snowcover during the spring has increased during the last five years. Gamma ray aircraft flights, although confined to an extremely low altitude, provide a means for obtaining valuable information on snow water equivalent. The most recently developed remote sensing technology for snow, namely, microwave monitoring, has provided initial results that may eventually allow us to infer snow water equivalent or depth, snow wetness, and the hydrologic condition of the underlying soil.
Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long
2016-01-01
Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region. PMID:27869668
Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long
2016-11-17
Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region.
Adam J. Gaylord; Dana M. Sanchez
2014-01-01
Direct behavioral observations of multiple free-ranging animals over long periods of time and large geographic areas is prohibitively difficult. However, recent improvements in technology, such as Global Positioning System (GPS) collars equipped with motion-sensitive activity monitors, create the potential to remotely monitor animal behavior. Accelerometer-equipped...
Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach
Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab
2018-01-01
Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B/K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance (CR=6 and PRD=1.88) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring. PMID:29337892
Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.
Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab
2018-01-16
Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.
Assessing Green Infrastructure Performance Using Remote Hydologic Monitoring Measures
Two locations in Cincinnati were instrumented with level sensing technologies to measure stormwater flow in porous pavement and bioretention areas. Results indicate good performance of porous pavement and a cost effective application of technology to measure those flows. Result...
ERIC Educational Resources Information Center
El Shamy, Usama; Abdoun, Tarek; McMartin, Flora; Pando, Miguel A.
2013-01-01
We report the results of a pilot study aimed at developing, implementing, and assessing an educational module that integrates remote major research instrumentation into undergraduate classes. Specifically, this study employs Internet Web-based technologies to allow for real-time video monitoring and execution of cutting-edge experiments. The…
This article summarizes the use of remote sensing techniques and technology to monitor coastal and estuarine waters. These waters are rich in mineral particles stirred up from the seabed by tides and waves and dissolved organic matter transported by rivers. The majority of the li...
The review of dynamic monitoring technology for crop growth
NASA Astrophysics Data System (ADS)
Zhang, Hong-wei; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong
2010-10-01
In this paper, crop growth monitoring methods are described elaborately. The crop growth models, Netherlands-Wageningen model system, the United States-GOSSYM model and CERES models, Australia APSIM model and CCSODS model system in China, are introduced here more focus on the theories of mechanism, applications, etc. The methods and application of remote sensing monitoring methods, which based on leaf area index (LAI) and biomass were proposed by different scholars at home and abroad, are highly stressed in the paper. The monitoring methods of remote sensing coupling with crop growth models are talked out at large, including the method of "forced law" which using remote sensing retrieval state parameters as the crop growth model parameters input, and then to enhance the dynamic simulation accuracy of crop growth model and the method of "assimilation of Law" which by reducing the gap difference between the value of remote sensing retrieval and the simulated values of crop growth model and thus to estimate the initial value or parameter values to increasing the simulation accuracy. At last, the developing trend of monitoring methods are proposed based on the advantages and shortcomings in previous studies, it is assured that the combination of remote sensing with moderate resolution data of FY-3A, MODIS, etc., crop growth model, "3S" system and observation in situ are the main methods in refinement of dynamic monitoring and quantitative assessment techniques for crop growth in future.
High Data Rate Satellite Communications for Environmental Remote Sensing
NASA Astrophysics Data System (ADS)
Jackson, J. M.; Munger, J.; Emch, P. G.; Sen, B.; Gu, D.
2014-12-01
Satellite to ground communication bandwidth limitations place constraints on current earth remote sensing instruments which limit the spatial and spectral resolution of data transmitted to the ground for processing. Instruments such as VIIRS, CrIS and OMPS on the Soumi-NPP spacecraft must aggregate data both spatially and spectrally in order to fit inside current data rate constraints limiting the optimal use of the as-built sensors. Future planned missions such as HyspIRI, SLI, PACE, and NISAR will have to trade spatial and spectral resolution if increased communication band width is not made available. A number of high-impact, environmental remote sensing disciplines such as hurricane observation, mega-city air quality, wild fire detection and monitoring, and monitoring of coastal oceans would benefit dramatically from enabling the downlinking of sensor data at higher spatial and spectral resolutions. The enabling technologies of multi-Gbps Ka-Band communication, flexible high speed on-board processing, and multi-Terabit SSRs are currently available with high technological maturity enabling high data volume mission requirements to be met with minimal mission constraints while utilizing a limited set of ground sites from NASA's Near Earth Network (NEN) or TDRSS. These enabling technologies will be described in detail with emphasis on benefits to future remote sensing missions currently under consideration by government agencies.
Remote monitoring of fatigue-sensitive details on bridges : [part I and II].
DOT National Transportation Integrated Search
2015-03-01
Fatigue is one of the most critical problems for steel bridges as well as for any steel structures that needs : to be considered during design and operation. The objectives of this study are to explore monitoring : technologies, and to develop effect...
REAL-TIME REMOTE MONITORING OF DRINKING WATER QUALITY
Over the past eight years, the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) has funded the testing and evaluation of various online "real-time" technologies for monitoring drinking water quality. The events of 9/11 and subsequent threats t...
NASA Astrophysics Data System (ADS)
Leonelli, Joseph
1994-06-01
For the past 20 years, the Department of Defense has sponsored investigations and studies on the use of laser remote sensing techniques and light detection and ranging (lidar) methods for the detection, identification, and tracking of toxic and hazardous battlefield materials. The same lidar methods used by NASA, EPA, and several industry research groups to detect and measure the movement and concentration of air pollution near urban centers have been applied to the national security problem of detecting chemical and biological warfare agents that might be used on the modern battlefield. Significant government investment in the technology base and laser technology has resulted in advanced hardware configurations that are now available for demonstration and evaluation for industrial and environmental monitoring.
Mitchell, Lauren L; Peterson, Colleen M; Rud, Shaina R; Jutkowitz, Eric; Sarkinen, Andrielle; Trost, Sierra; Porta, Carolyn M; Finlay, Jessica M; Gaugler, Joseph E
2018-03-01
Technologies have emerged that aim to help older persons with Alzheimer's disease and related dementias (ADRDs) remain at home while also supporting their caregiving family members. However, the usefulness of these innovations, particularly in home-based care contexts, remains underexplored. The current study evaluated the acceptability and utility of an in-home remote activity monitoring (RAM) system for 30 family caregivers of persons with ADRD via quantitative survey data collected over a 6-month period and qualitative survey and interview data collected for up to 18 months. A parallel convergent mixed methods design was employed. The integrated qualitative and quantitative data suggested that RAM technology offered ongoing monitoring and provided caregivers with a sense of security. Considerable customization was needed so that RAM was most appropriate for persons with ADRD. The findings have important clinical implications when considering how RAM can supplement, or potentially substitute for, ADRD family care.
Tappan, G. Gray; Moore, Donald G.; Knauseberger, Walter I.
1991-01-01
Development programmes in Sahelian Africa are beginning to use geographic information system (GIS) technology. One of the GIS and remote sensing programmes introduced to the region in the late 1980s was the use of seasonal vegetation maps made from satellite data to support grasshopper and locust control. Following serious outbreaks of these pests in 1987, the programme addressed a critical need, by national and international crop protection organizations, to monitor site-specific dynamic vegetation conditions associated with grasshopper and locust breeding. The primary products used in assessing vegetation conditions were vegetation index (greenness) image maps derived from National Oceanic and Atmospheric Administration satellite imagery. Vegetation index data were integrated in a GIS with digital cartographic data of individual Sahelian countries. These near-real-time image maps were used regularly in 10 countries for locating potential grasshopper and locust habitats. The programme to monitor vegetation conditions is currently being institutionalized in the Sahel.
GEOSS, NEW TECHNOLOGY AND THE BIOSPHERE: REMOTE SENSING OF ENVIRONMENTAL INDICATORS
The international Global Earth Observation System of Systems (GEOSS) initiative combines science, technology and collaboration to improve our understanding and monitoring of the integrated earth system, and to see how humans can be better global environmental stewards. GEOSS inco...
Applications of space technology to water resources management
NASA Technical Reports Server (NTRS)
Salomonson, V. V.
1977-01-01
Space technology transfer is discussed in terms of applying visible and infrared remote sensing measurement to water resources management. Mapping and monitoring of snowcovered areas, hydrologic land use, and surface water areas are discussed, using information acquired from LANDSAT and NOAA satellite systems.
Rawstorn, Jonathan C; Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph
2016-06-24
Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients' exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial.
Applications of remote sensing to watershed management
NASA Technical Reports Server (NTRS)
Rango, A.
1975-01-01
Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.
Automated ground-water monitoring with Robowell: case studies and potential applications
NASA Astrophysics Data System (ADS)
Granato, Gregory E.; Smith, Kirk P.
2002-02-01
Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual- sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/
Automated ground-water monitoring with robowell-Case studies and potential applications
Granato, G.E.; Smith, K.P.; ,
2001-01-01
Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.
Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology
NASA Astrophysics Data System (ADS)
Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.
2014-02-01
Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.
NASA Astrophysics Data System (ADS)
Soeharwinto; Sinulingga, Emerson; Siregar, Baihaqi
2017-01-01
An accurate information can be useful for authorities to make good policies for preventive and mitigation after volcano eruption disaster. Monitoring of environmental parameters of post-eruption volcano provides an important information for authorities. Such monitoring system can be develop using the Wireless Network Sensor technology. Many application has been developed using the Wireless Sensor Network technology, such as floods early warning system, sun radiation mapping, and watershed monitoring. This paper describes the implementation of a remote environment monitoring system of mount Sinabung post-eruption. The system monitor three environmental parameters: soil condition, water quality and air quality (outdoor). Motes equipped with proper sensors, as components of the monitoring system placed in sample locations. The measured value from the sensors periodically sends to data server using 3G/GPRS communication module. The data can be downloaded by the user for further analysis.The measurement and data analysis results generally indicate that the environmental parameters in the range of normal/standard condition. The sample locations are safe for living and suitable for cultivation, but awareness is strictly required due to the uncertainty of Sinabung status.
Application of spatial technologies in wildlife biology.
Thomas A. O' Neil; Pete Bettinger; Bruce G. Marcot; B. Wayne Luscombe; Gregory T. Koeln; Howard J. Bruner; Charley Barrett; Jennifer A. Pollock; Susan Bernatas
2005-01-01
The Information Age is here, and technology has a large and important role in gathering, compiling, and synthesizing data. The old adage of analyzing wildlife data over "time and space" today entails using technologies to help gather, compile, and synthesize remotely sensed information, and to integrate results into research, monitoring and evaluation. Thus,...
Lee, Sang-Soo; Salole, Eugene
2017-01-01
In many developed countries with universal coverage healthcare systems, payers require new medical technologies to be assessed as safe, effective, and cost-effective through health technology assessment (HTA) before approval for reimbursement coverage and market access. However, in some cases, HTA is not the sole criterion for decision-making and other factors override the evidence. Remote patient monitoring (RPM) for cardiac implantable electronic devices, a novel technology recognized as safe, effective, and cost-effective, and the standard of care in many countries, is prohibited in South Korea. This peculiar situation is apparently due to deficiencies in healthcare policy and the delivery system and also to poor engagement between stakeholders. We propose that a higher level of engagement and trust between stakeholders needs to be developed, and healthcare providers should be involved in the early development of health policy, so that unnecessary barriers to access to useful medical technology are corrected, thereby allowing Koreans to enjoy the benefits available in other developed countries.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Zhang, Jia; Du, Xiangyang; Kang, Hou; Qiao, Minjuan
2017-11-01
Due to the rapid development of human economy and society, the resulting ecological problems are becoming more and more prominent, and the dynamic monitoring of the various elements in the ecosystem has become the focus of the current research. For the complex structure and function of the ecological environment monitoring, advanced technical means should be adopted. With the development of spatial information technology, the ecological monitoring technology based on GIS and RS is becoming more and more perfect, and spatial analysis will play an important role in the field of environmental protection. Based on the GIS and RS technology, this paper analyzes the general centralized ecological monitoring model, and makes an objective analysis of the current ecological monitoring trend of China. These are important for the protection and management of ecological environment in China.
Remote Sensing and the Kyoto Protocol: A Workshop Summary
NASA Technical Reports Server (NTRS)
Rosenqvist, Ake; Imhoff, Marc; Milne, Anthony; Dobson, Craig
2000-01-01
The Kyoto Protocol to the United Nations Framework Convention on Climate Change contains quantified, legally binding commitments to limit or reduce greenhouse gas emissions to 1990 levels and allows carbon emissions to be balanced by carbon sinks represented by vegetation. The issue of using vegetation cover as an emission offset raises a debate about the adequacy of current remote sensing systems and data archives to both assess carbon stocks/sinks at 1990 levels, and monitor the current and future global status of those stocks. These concerns and the potential ratification of the Protocol among participating countries is stimulating policy debates and underscoring a need for the exchange of information between the international legal community and the remote sensing community. On October 20-22 1999, two working groups of the International Society for Photogrammetry and Remote Sensing (ISPRS) joined with the University of Michigan (Michigan, USA) to convene discussions on how remote sensing technology could contribute to the information requirements raised by implementation of, and compliance with, the Kyoto Protocol. The meeting originated as a joint effort between the Global Monitoring Working Group and the Radar Applications Working Group in Commission VII of the ISPRS, co-sponsored by the University of Michigan. Tile meeting was attended by representatives from national government agencies and international organizations and academic institutions. Some of the key themes addressed were: (1) legal aspects of transnational remote sensing in the context of the Kyoto Protocol; (2) a review of the current and future and remote sensing technologies that could be applied to the Kyoto Protocol; (3) identification of areas where additional research is needed in order to advance and align remote sensing technology with the requirements and expectations of the Protocol; and 94) the bureaucratic and research management approaches needed to align the remote sensing community with both the science and policy communities.
Use hyperspectral remote sensing technique to monitoring pine wood nomatode disease preliminary
NASA Astrophysics Data System (ADS)
Qin, Lin; Wang, Xianghong; Jiang, Jing; Yang, Xianchang; Ke, Daiyan; Li, Hongqun; Wang, Dingyi
2016-10-01
The pine wilt disease is a devastating disease of pine trees. In China, the first discoveries of the pine wilt disease on 1982 at Dr. Sun Yat-sen's Mausoleum in Nanjing. It occurred an area of 77000 hm2 in 2005, More than 1540000 pine trees deaths in the year. Many districts of Chongqing in Three Gorges Reservoir have different degrees of pine wilt disease occurrence. It is a serious threat to the ecological environment of the reservoir area. Use unmanned airship to carry high spectrum remote sensing monitoring technology to develop the study on pine wood nematode disease early diagnosis and early warning and forecasting in this study. The hyper spectral data and the digital orthophoto map data of Fuling District Yongsheng Forestry had been achieved In September 2015. Using digital image processing technology to deal with the digital orthophoto map, the number of disease tree and its distribution is automatic identified. Hyper spectral remote sensing data is processed by the spectrum comparison algorithm, and the number and distribution of disease pine trees are also obtained. Two results are compared, the distribution area of disease pine trees are basically the same, indicating that using low air remote sensing technology to monitor the pine wood nematode distribution is successful. From the results we can see that the hyper spectral data analysis results more accurate and less affected by environmental factors than digital orthophoto map analysis results, and more environment variable can be extracted, so the hyper spectral data study is future development direction.
NASA Technical Reports Server (NTRS)
Liszka, Kathy J.; Mackin, Michael A.; Liehter, Michael J.; York, David W.; Pillai, Dilip; Rosenbaum, David S.
2005-01-01
Feel the relief of a patient suffering from heart arrhythmia, who is able to return home while having her heart monitored by health professionals 24 hours a day, without the fear that she will miss an important indicator and suffer a fatal heart attack - using technology originally developed to conduct experiments on the Space Shuttle. Approximately 400,000 Americans die every year from sudden heart attacks . Medical research revealed that patterns of electrical activity in the heart can act as predictors of these lethal cardiac events known as arrhythmias. Fortunately, certain arrhythmias such as ventricular fibrillation (loss of regular heartbeat and subsequent loss of function) and ventricular tachycardia (rapid heartbeats), can be detected and appropriately treated. Today, patients at moderate risk of arrhythmias can benefit from technology that would permit long- term continuous monitoring of electrical cardiac rhythms outside the hospital environment in the comfort of their own homes. Medical telemetry systems, also known as telemedicine, are evolving rapidly as wireless communication technology advances, evidenced by the commercial products and research prototypes for remote health monitoring that have appeared in recent years. Wireless systems allow patients to move freely in their home and work environment while being monitored remotely by health care professionals.
Ten ways remote sensing can contribute to conservation
Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara
2014-01-01
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?
Ten ways remote sensing can contribute to conservation.
Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara
2015-04-01
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions? © 2014 Society for Conservation Biology.
Implementation of New Technologies to Monitor Phytoplankton Blooms in the South of Chile
NASA Astrophysics Data System (ADS)
Rodríguez-Benito, C.; Haag, C.; Alvial, A.
2004-05-01
A pilot project has been carried out to demonstrate the applicability of remote sensing in the Xth region of Chile, related to the monitoring of algal blooms. Most of the fish farms of the country are located in this area, where considerable economic losses for this activity are the consequence of algal blooms. The implementation of new technologies to monitor this natural disaster is one of the main goals of local institutions. The project has been developed using ENVISAT/MERIS and AATSR images and oceanographic instrumentation in order to improve the information of the ongoing coastal monitoring programs.
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments
Ghamari, Mohammad; Janko, Balazs; Sherratt, R. Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-01-01
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments.
Ghamari, Mohammad; Janko, Balazs; Sherratt, R Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-06-07
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robitaille, H.; Capelle, G.; Di Benedetto, J.
1996-12-31
In September of 1994, the US Department of Energy (DOE), Environmental Management, Office of Science and Technology for (OST) and Epcot{reg_sign} in the WALT DISNEY WORLD{reg_sign} Resort (Epcot) signed an agreement to cooperate on the research, development, and public communication and display of environmental technologies. Although Epcot and OST have distinctive missions, certain areas of their respective research and development efforts are common, including the integration of remote sensors with robotics platforms, airborne surveys for environmental characterization and monitoring, and ground based measurements of vegetation stress. The first area of cooperative R&D pursued under the agreement is the evaluation ofmore » laser-induced fluorescence imaging (LIFI), a technology developed by OST and proven effective for uranium detection. This paper describes the efforts being conducted under the Epcot-OST agreement and presents initial results. An appendix describing LIFI technology is also included.« less
Monitoring Architectural Heritage by Wireless Sensors Networks: San Gimignano — A Case Study
Mecocci, Alessandro; Abrardo, Andrea
2014-01-01
This paper describes a wireless sensor network (WSN) used to monitor the health state of architectural heritage in real-time. The WSN has been deployed and tested on the “Rognosa” tower in the medieval village of San Gimignano, Tuscany, Italy. This technology, being non-invasive, mimetic, and long lasting, is particularly well suited for long term monitoring and on-line diagnosis of the conservation state of heritage buildings. The proposed monitoring system comprises radio-equipped nodes linked to suitable sensors capable of monitoring crucial parameters like: temperature, humidity, masonry cracks, pouring rain, and visual light. The access to data is granted by a user interface for remote control. The WSN can autonomously send remote alarms when predefined thresholds are reached. PMID:24394600
Science, technology, and application of THz air photonics
NASA Astrophysics Data System (ADS)
Lu, X. F.; Clough, B.; Ho, I.-C.; Kaur, G.; Liu, J.; Karpowicz, N.; Dai, J. M.; Zhang, X.-C.
2010-11-01
The significant scientific and technological potential of terahertz (THz) wave sensing and imaging has been attracted considerable attention within many fields of research. However, the development of remote, broadband THz wave sensing technology is lagging behind the compelling needs that exist in the areas of astronomy, global environmental monitoring, and homeland security. This is due to the challenge posed by high absorption of ambient moisture in the THz range. Although various time-domain THz detection techniques have recently been demonstrated, the requirement for an on-site bias or forward collection of the optical signal inevitably prohibits their applications for remote sensing. The objective of this paper is to report updated THz air-plasma technology to meet this great challenge of remote sensing. A focused optical pulse (mJ pulse energy and femtosecond pulse duration) in gas creates a plasma, which can serve to generate intense, broadband, and directional THz waves in the far field.
Evans, Jarrett; Papadopoulos, Amy; Silvers, Christine Tsien; Charness, Neil; Boot, Walter R; Schlachta-Fairchild, Loretta; Crump, Cindy; Martinez, Michele; Ent, Carrie Beth
2016-06-01
Remote health monitoring technology has been suggested as part of an early intervention and prevention care model. Older adults with a chronic health condition have been shown to benefit from remote monitoring but often have challenges with complex technology. The current study reports on the usability of and adherence with an integrated, real-time monitoring system over an extended period of time by older adults with and without a chronic health condition. Older adults 55 years of age and over with and without heart failure participated in a study in which a telehealth system was used for 6 months each. The system consisted of a wireless wristwatch-based monitoring device that continuously collected temperature and motion data. Other health information was collected daily using a weight scale, blood pressure cuff, and tablet that participants used for health surveys. Data were automatically analyzed and summarized by the system and presented to study nurses. Forty-one older adults participated. Seventy-one percent of surveys, 75% of blood pressure readings, and 81% of daily weight measurements were taken. Participants wore the watch monitor 77% of the overall 24/7 time requested. The weight scale had the highest usability rating in both groups. The groups did not otherwise differ on device usage. The findings indicate that a health monitoring system designed for older adults can and will be used for an extended period of time and may help older adults with chronic conditions reside longer in their own homes in partnership with the healthcare system.
NASA Technical Reports Server (NTRS)
Young, Steven D.; Harrah, Steven D.; deHaag, Maarten Uijt
2002-01-01
Terrain Awareness and Warning Systems (TAWS) and Synthetic Vision Systems (SVS) provide pilots with displays of stored geo-spatial data (e.g. terrain, obstacles, and/or features). As comprehensive validation is impractical, these databases typically have no quantifiable level of integrity. This lack of a quantifiable integrity level is one of the constraints that has limited certification and operational approval of TAWS/SVS to "advisory-only" systems for civil aviation. Previous work demonstrated the feasibility of using a real-time monitor to bound database integrity by using downward-looking remote sensing technology (i.e. radar altimeters). This paper describes an extension of the integrity monitor concept to include a forward-looking sensor to cover additional classes of terrain database faults and to reduce the exposure time associated with integrity threats. An operational concept is presented that combines established feature extraction techniques with a statistical assessment of similarity measures between the sensed and stored features using principles from classical detection theory. Finally, an implementation is presented that uses existing commercial-off-the-shelf weather radar sensor technology.
Satellite, environmental, and medical information applied to epidemiological monitoring
NASA Technical Reports Server (NTRS)
Roberts, Donald R.; Legters, Llewellyn J.
1991-01-01
Improved communications and space-science technologies, such as remote sensing, offer hope of new, more holistic approaches to combating many arthropod-borne disease problems. The promise offered by these technologies has surfaced at a time when global and national efforts at disease control are in decline. Indeed, these programs seem to be losing ground against the arthropod-borne diseases just as rapidly as we seem to be moving forward in technological development. Given these circumstances, we can only hope that remote sensing and geographic information system (GIS) technologies can be pressed into service to help target the temporal and spatial application of control measures and to help in developing new control strategies.
NASA Technical Reports Server (NTRS)
Dastoor, M. N.; Evans, D. L.
1996-01-01
The paper will review the application of NASA developed remote sensing technology towards the monitoring and mitigation of natural hazards. The overview will be followed by recent data on three specific natural hazard applications.
Role of remote sensing in desert locust early warning
NASA Astrophysics Data System (ADS)
Cressman, Keith
2013-01-01
Desert locust (Schistocerca gregaria, Forskål) plagues have historically had devastating consequences on food security in Africa and Asia. The current strategy to reduce the frequency of plagues and manage desert locust infestations is early warning and preventive control. To achieve this, the Food and Agriculture Organization of the United Nations operates one of the oldest, largest, and best-known migratory pest monitoring systems in the world. Within this system, remote sensing plays an important role in detecting rainfall and green vegetation. Despite recent technological advances in data management and analysis, communications, and remote sensing, monitoring desert locusts and preventing plagues in the years ahead will continue to be a challenge from a geopolitical and financial standpoint for affected countries and the international donor community. We present an overview of the use of remote sensing in desert locust early warning.
Home medical monitoring network based on embedded technology
NASA Astrophysics Data System (ADS)
Liu, Guozhong; Deng, Wenyi; Yan, Bixi; Lv, Naiguang
2006-11-01
Remote medical monitoring network for long-term monitoring of physiological variables would be helpful for recovery of patients as people are monitored at more comfortable conditions. Furthermore, long-term monitoring would be beneficial to investigate slowly developing deterioration in wellness status of a subject and provide medical treatment as soon as possible. The home monitor runs on an embedded microcomputer Rabbit3000 and interfaces with different medical monitoring module through serial ports. The network based on asymmetric digital subscriber line (ADSL) or local area network (LAN) is established and a client - server model, each embedded home medical monitor is client and the monitoring center is the server, is applied to the system design. The client is able to provide its information to the server when client's request of connection to the server is permitted. The monitoring center focuses on the management of the communications, the acquisition of medical data, and the visualization and analysis of the data, etc. Diagnosing model of sleep apnea syndrome is built basing on ECG, heart rate, respiration wave, blood pressure, oxygen saturation, air temperature of mouth cavity or nasal cavity, so sleep status can be analyzed by physiological data acquired as people in sleep. Remote medical monitoring network based on embedded micro Internetworking technology have advantages of lower price, convenience and feasibility, which have been tested by the prototype.
Remote sensing information for fire management and fire effects assessment
NASA Astrophysics Data System (ADS)
Chuvieco, Emilio; Kasischke, Eric S.
2007-03-01
Over the past decade, much research has been carried out on the utilization of advanced geospatial technologies (remote sensing and geographic information systems) in the fire science and fire management disciplines. Recent advances in these technologies were the focus of a workshop sponsored by the EARSEL special interest group (SIG) on forest fires (FF-SIG) and the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) fire implementation team. Here we summarize the framework and the key findings of papers submitted from this meeting and presented in this special section. These papers focus on the latest advances for near real-time monitoring of active fires, prediction of fire hazards and danger, monitoring of fuel moisture, mapping of fuel types, and postfire assessment of the impacts from fires.
Remote humidity and temperature real time monitoring system for studying seed biology
NASA Astrophysics Data System (ADS)
Balachandran, Thiruparan
This thesis discusses the design, prototyping, and testing of a remote monitoring system that is used to study the biology of seeds under various controlled conditions. Seed scientists use air-tight boxes to maintain relative humidity, which influences seed longevity and seed dormancy break. The common practice is the use of super-saturated solutions either with different chemicals or different concentrations of LiCl to create various relative humidity. Theretofore, no known system has been developed to remotely monitor the environmental conditions inside these boxes in real time. This thesis discusses the development of a remote monitoring system that can be used to accurately monitor and measure the relative humidity and temperature inside sealed boxes for the study of seed biology. The system allows the remote and real-time monitoring of these two parameters in five boxes with different conditions. It functions as a client that is connected to the internet using Wireless Fidelity (Wi-Fi) technology while Google spreadsheet is used as the server for uploading and plotting the data. This system directly gets connected to the Google sever through Wi-Fi and uploads the sensors' values in a Google spread sheet. Application-specific software is created and the user can monitor the data in real time and/or download the data into Excel for further analyses. Using Google drive app the data can be viewed using a smart phone or a tablet. Furthermore, an electronic mail (e-mail) alert is also integrated into the system. Whenever measured values go beyond the threshold values, the user will receive an e-mail alert.
Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph
2016-01-01
Background Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. Objective We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. Methods An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. Results The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients’ exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. Conclusions The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial. PMID:27342791
Rawstorn, Jonathan C; Gant, Nicholas; Warren, Ian; Doughty, Robert Neil; Lever, Nigel; Poppe, Katrina K; Maddison, Ralph
2015-03-20
Remote telemonitoring holds great potential to augment management of patients with coronary heart disease (CHD) and atrial fibrillation (AF) by enabling regular physiological monitoring during physical activity. Remote physiological monitoring may improve home and community exercise-based cardiac rehabilitation (exCR) programs and could improve assessment of the impact and management of pharmacological interventions for heart rate control in individuals with AF. Our aim was to evaluate the measurement validity and data transmission reliability of a remote telemonitoring system comprising a wireless multi-parameter physiological sensor, custom mobile app, and middleware platform, among individuals in sinus rhythm and AF. Participants in sinus rhythm and with AF undertook simulated daily activities, low, moderate, and/or high intensity exercise. Remote monitoring system heart rate and respiratory rate were compared to reference measures (12-lead ECG and indirect calorimeter). Wireless data transmission loss was calculated between the sensor, mobile app, and remote Internet server. Median heart rate (-0.30 to 1.10 b∙min -1 ) and respiratory rate (-1.25 to 0.39 br∙min -1 ) measurement biases were small, yet statistically significant (all P≤.003) due to the large number of observations. Measurement reliability was generally excellent (rho=.87-.97, all P<.001; intraclass correlation coefficient [ICC]=.94-.98, all P<.001; coefficient of variation [CV]=2.24-7.94%), although respiratory rate measurement reliability was poor among AF participants (rho=.43, P<.001; ICC=.55, P<.001; CV=16.61%). Data loss was minimal (<5%) when all system components were active; however, instability of the network hosting the remote data capture server resulted in data loss at the remote Internet server during some trials. System validity was sufficient for remote monitoring of heart and respiratory rates across a range of exercise intensities. Remote exercise monitoring has potential to augment current exCR and heart rate control management approaches by enabling the provision of individually tailored care to individuals outside traditional clinical environments. ©Jonathan C Rawstorn, Nicholas Gant, Ian Warren, Robert Neil Doughty, Nigel Lever, Katrina K Poppe, Ralph Maddison. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 20.03.2015.
NASA Technical Reports Server (NTRS)
Zaitzeff, J. B. (Editor); Cornillon, P. (Editor); Aubrey, D. A. (Editor)
1980-01-01
Presentations were grouped in the following categories: (1) a technical orientation of Earth resources remote sensing including data sources and processing; (2) a review of the present status of remote sensing technology applicable to the coastal and marine environment; (3) a description of data and information needs of selected coastal and marine activities; and (4) an outline of plans for marine monitoring systems for the east coast and a concept for an east coast remote sensing facility. Also discussed were user needs and remote sensing potentials in the areas of coastal processes and management, commercial and recreational fisheries, and marine physical processes.
Peterson, Courtney M; Apolzan, John W; Wright, Courtney; Martin, Corby K
2016-11-01
We conducted two studies to test the validity, reliability, feasibility and acceptability of using video chat technology to quantify dietary and pill-taking (i.e. supplement and medication) adherence. In study 1, we investigated whether video chat technology can accurately quantify adherence to dietary and pill-taking interventions. Mock study participants ate food items and swallowed pills, while performing randomised scripted 'cheating' behaviours to mimic non-adherence. Monitoring was conducted in a cross-over design, with two monitors watching in-person and two watching remotely by Skype on a smartphone. For study 2, a twenty-two-item online survey was sent to a listserv with more than 20 000 unique email addresses of past and present study participants to assess the feasibility and acceptability of the technology. For the dietary adherence tests, monitors detected 86 % of non-adherent events (sensitivity) in-person v. 78 % of events via video chat monitoring (P=0·12), with comparable inter-rater agreement (0·88 v. 0·85; P=0·62). However, for pill-taking, non-adherence trended towards being more easily detected in-person than by video chat (77 v. 60 %; P=0·08), with non-significantly higher inter-rater agreement (0·85 v. 0·69; P=0·21). Survey results from study 2 (n 1076 respondents; ≥5 % response rate) indicated that 86·4 % of study participants had video chatting hardware, 73·3 % were comfortable using the technology and 79·8 % were willing to use it for clinical research. Given the capability of video chat technology to reduce participant burden and outperform other adherence monitoring methods such as dietary self-report and pill counts, video chatting is a novel and promising platform to quantify dietary and pill-taking adherence.
Dynamic Self-adaptive Remote Health Monitoring System for Diabetics
Suh, Myung-kyung; Moin, Tannaz; Woodbridge, Jonathan; Lan, Mars; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid
2016-01-01
Diabetes is the seventh leading cause of death in the United States. In 2010, about 1.9 million new cases of diabetes were diagnosed in people aged 20 years or older. Remote health monitoring systems can help diabetics and their healthcare professionals monitor health-related measurements by providing real-time feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the remote health monitoring. This paper presents a task optimization technique used in WANDA (Weight and Activity with Blood Pressure and Other Vital Signs); a wireless health project that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. WANDA applies data analytics in real-time to improving the quality of care. The developed algorithm minimizes the number of daily tasks required by diabetic patients using association rules that satisfies a minimum support threshold. Each of these tasks maximizes information gain, thereby improving the overall level of care. Experimental results show that the developed algorithm can reduce the number of tasks up to 28.6% with minimum support 0.95, minimum confidence 0.97 and high efficiency. PMID:23366365
Monitoring activities of daily living based on wearable wireless body sensor network.
Kańtoch, E; Augustyniak, P; Markiewicz, M; Prusak, D
2014-01-01
With recent advances in microprocessor chip technology, wireless communication, and biomedical engineering it is possible to develop miniaturized ubiquitous health monitoring devices that are capable of recording physiological and movement signals during daily life activities. The aim of the research is to implement and test the prototype of health monitoring system. The system consists of the body central unit with Bluetooth module and wearable sensors: the custom-designed ECG sensor, the temperature sensor, the skin humidity sensor and accelerometers placed on the human body or integrated with clothes and a network gateway to forward data to a remote medical server. The system includes custom-designed transmission protocol and remote web-based graphical user interface for remote real time data analysis. Experimental results for a group of humans who performed various activities (eg. working, running, etc.) showed maximum 5% absolute error compared to certified medical devices. The results are promising and indicate that developed wireless wearable monitoring system faces challenges of multi-sensor human health monitoring during performing daily activities and opens new opportunities in developing novel healthcare services.
NASA Astrophysics Data System (ADS)
Ham, J. M.
2016-12-01
New microprocessor boards, open-source sensors, and cloud infrastructure developed for the Internet of Things (IoT) can be used to create low-cost monitoring systems for environmental research. This project describes two applications in soil science and hydrology: 1) remote monitoring of the soil temperature regime near oil and gas operations to detect the thermal signature associated with the natural source zone degradation of hydrocarbon contaminants in the vadose zone, and 2) remote monitoring of soil water content near the surface as part of a global citizen science network. In both cases, prototype data collection systems were built around the cellular (2G/3G) "Electron" microcontroller (www.particle.io). This device allows connectivity to the cloud using a low-cost global SIM and data plan. The systems have cellular connectivity in over 100 countries and data can be logged to the cloud for storage. Users can view data real time over any internet connection or via their smart phone. For both projects, data logging, storage, and visualization was done using IoT services like Thingspeak (thingspeak.com). The soil thermal monitoring system was tested on experimental plots in Colorado USA to evaluate the accuracy and reliability of different temperature sensors and 3D printed housings. The soil water experiment included comparison opens-source capacitance-based sensors to commercial versions. Results demonstrate the power of leveraging IoT technology for field research.
Designing a patient monitoring system for bipolar disorder using Semantic Web technologies.
Thermolia, Chryssa; Bei, Ekaterini S; Petrakis, Euripides G M; Kritsotakis, Vangelis; Tsiknakis, Manolis; Sakkalis, Vangelis
2015-01-01
The new movement to personalize treatment plans and improve prediction capabilities is greatly facilitated by intelligent remote patient monitoring and risk prevention. This paper focuses on patients suffering from bipolar disorder, a mental illness characterized by severe mood swings. We exploit the advantages of Semantic Web and Electronic Health Record Technologies to develop a patient monitoring platform to support clinicians. Relying on intelligently filtering of clinical evidence-based information and individual-specific knowledge, we aim to provide recommendations for treatment and monitoring at appropriate time or concluding into alerts for serious shifts in mood and patients' non response to treatment.
McClure, Erin; Baker, Nathaniel; Carpenter, Matthew J; Treiber, Frank A; Gray, Kevin
2017-06-01
Despite the public health relevance of smoking in adolescents and emerging adults, this group remains understudied and underserved. High technology utilization among this group may be harnessed as a tool for better understanding of smoking, yet little is known regarding the acceptability of mobile health (mHealth) integration. Participants (ages 14-21) enrolled in a smoking cessation clinical trial provided feedback on their technology utilization, perceptions, and attitudes; and interest in remote monitoring for smoking. Characteristics that predicted greater technology acceptability for smoking treatment were also explored. Participants (N=87) averaged 19 years old and were mostly male (67%). Technology utilization was high for smart phone ownership (93%), Internet use (98%), and social media use (94%). Despite this, only one-third of participants had ever searched the Internet for cessation tips or counseling (33%). Participants showed interest in mHealth-enabled treatment (48%) and felt that it could be somewhat helpful (83%). Heavier smokers had more favorable attitudes toward technology-based treatment, as did those with smartphones and unlimited data. Our results demonstrate high technology utilization, favorable attitudes towards technology, and minimal concerns. Technology integration among this population should be pursued, though in a tailored fashion, to accomplish the goal of providing maximally effective, just-in-time interventions.
Environmental statement for Applications Technology Satellite program
NASA Technical Reports Server (NTRS)
1971-01-01
The experiments, environmental impact, and applications of data collected by ATS are discussed. Data cover communications, navigation, meteorology, data collection (including data from small unattended remote stations such as buoys, seismology and hydrology monitors, etc.), geodesy, and scientific experiments to define the environment at synchronous orbit, and to monitor emissions from the sun.
Application of remote sensing to monitoring and studying dispersion in ocean dumping
NASA Technical Reports Server (NTRS)
Johnson, R. W.; Ohlhorst, C. W.
1981-01-01
Remotely sensed wide area synoptic data provides information on ocean dumping that is not readily available by other means. A qualitative approach has been used to map features, such as river plumes. Results of quantitative analyses have been used to develop maps showing quantitative distributions of one or more water quality parameters, such as suspended solids or chlorophyll a. Joint NASA/NOAA experiments have been conducted at designated dump areas in the U.S. coastal zones to determine the applicability of aircraft remote sensing systems to map plumes resulting from ocean dumping of sewage sludge and industrial wastes. A second objective is related to the evaluation of previously developed quantitative analysis techniques for studying dispersion of materials in these plumes. It was found that plumes resulting from dumping of four waste materials have distinctive spectral characteristics. The development of a technology for use in a routine monitoring system, based on remote sensing techniques, is discussed.
Mendez, Ivar; Jong, Michael; Keays-White, Debra; Turner, Gail
2013-01-01
Objective To evaluate the feasibility of remote presence for improving the health of residents in a remote northern Inuit community. Study design A pilot study assessed patient's, nurse's and physician's satisfaction with and the use of the remote presence technology aiding delivery of health care to a remote community. A preliminary cost analysis of this technology was also performed. Methods This study deployed a remote presence RP-7 robot to the isolated Inuit community of Nain, Newfoundland and Labrador for 15 months. The RP-7 is wirelessly controlled by a laptop computer equipped with audiovisual capability and a joystick to maneuver the robot in real time to aid in the assessing and care of patients from a distant location. Qualitative data on physician's, patient's, caregiver's and staff's satisfaction were collected as well as information on its use and characteristics and the number of air transports required to the referral center and associated costs. Results A total of 252 remote presence sessions occurred during the study period, with 89% of the sessions involving direct patient assessment or monitoring. Air transport was required in only 40% of the cases that would have been otherwise transported normally. Patients and their caregivers, nurses and physicians all expressed a high level of satisfaction with the remote presence technology and deemed it beneficial for improved patient care, workloads and job satisfaction. Conclusions These results show the feasibility of deploying a remote presence robot in a distant northern community and a high degree of satisfaction with the technology. Remote presence in the Canadian North has potential for delivering a cost-effective health care solution to underserviced communities reducing the need for the transport of patients and caregivers to distant referral centers. PMID:23984292
Mendez, Ivar; Jong, Michael; Keays-White, Debra; Turner, Gail
2013-01-01
To evaluate the feasibility of remote presence for improving the health of residents in a remote northern Inuit community. A pilot study assessed patient's, nurse's and physician's satisfaction with and the use of the remote presence technology aiding delivery of health care to a remote community. A preliminary cost analysis of this technology was also performed. This study deployed a remote presence RP-7 robot to the isolated Inuit community of Nain, Newfoundland and Labrador for 15 months. The RP-7 is wirelessly controlled by a laptop computer equipped with audiovisual capability and a joystick to maneuver the robot in real time to aid in the assessing and care of patients from a distant location. Qualitative data on physician's, patient's, caregiver's and staff's satisfaction were collected as well as information on its use and characteristics and the number of air transports required to the referral center and associated costs. A total of 252 remote presence sessions occurred during the study period, with 89% of the sessions involving direct patient assessment or monitoring. Air transport was required in only 40% of the cases that would have been otherwise transported normally. Patients and their caregivers, nurses and physicians all expressed a high level of satisfaction with the remote presence technology and deemed it beneficial for improved patient care, workloads and job satisfaction. These results show the feasibility of deploying a remote presence robot in a distant northern community and a high degree of satisfaction with the technology. Remote presence in the Canadian North has potential for delivering a cost-effective health care solution to underserviced communities reducing the need for the transport of patients and caregivers to distant referral centers.
Nußbeck, Gunnar; Gök, Murat
2013-01-01
This review gives a comprehensive overview on the technical perspective of personal health monitoring. It is designed to build a mutual basis for the project partners of the PHM-Ethics project. A literature search was conducted to screen pertinent literature databases for relevant publications. All review papers that were retrieved were analyzed. The increasing number of publications that are published per year shows that the field of personal health monitoring is of growing interest in the research community. Most publications deal with telemonitoring, thus forming the core technology of personal health monitoring. Measured parameters, fields of application, participants and stakeholders are described. Moreover an outlook on information and communication technology that foster the integration possibilities of personal health monitoring into decision making and remote monitoring of individual people's health is provided. The removal of the technological barriers opens new perspectives in health and health care delivery using home monitoring applications.
Advancing Partnerships Towards an Integrated Approach to Oil Spill Response
NASA Astrophysics Data System (ADS)
Green, D. S.; Stough, T.; Gallegos, S. C.; Leifer, I.; Murray, J. J.; Streett, D.
2015-12-01
Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, and remote sensing is playing a growing critical role in the detection and monitoring of oil spills, as well as facilitating validation of remote sensing oil spill products. The FOSTERRS (Federal Oil Science Team for Emergency Response Remote Sensing) interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft/instruments) and analysis techniques are quickly, effectively, appropriately, and seamlessly available to oil spills responders. Yet significant challenges remain for addressing oils spanning a vast range of chemical properties that may be spilled from the Tropics to the Arctic, with algorithms and scientific understanding needing advances to keep up with technology. Thus, FOSTERRS promotes enabling scientific discovery to ensure robust utilization of available technology as well as identifying technologies moving up the TRL (Technology Readiness Level). A recent FOSTERRS facilitated support activity involved deployment of the AVIRIS NG (Airborne Visual Infrared Imaging Spectrometer- Next Generation) during the Santa Barbara Oil Spill to validate the potential of airborne hyperspectral imaging to real-time map beach tar coverage including surface validation data. Many developing airborne technologies have potential to transition to space-based platforms providing global readiness.
NOAA National Ocean Service Remote Sensing Applications and Concept of Operations
2007-01-01
remote sensing technologies to monitor harmful algal blooms, hypoxia, coral bleaching , contamination, land use changes and bathymetry, and making the...NOAA’s Polar Environmental Satellites are used to help predict the likelihood of mass coral bleaching events. Both intensity and duration of...abnormally warm surface temperatures are used to help predict coral bleaching events. When a temperature anomaly reaches a critically high value or
NASA Astrophysics Data System (ADS)
Ramsey, Michael S.; Harris, Andrew J. L.
2013-01-01
Volcanological remote sensing spans numerous techniques, wavelength regions, data collection strategies, targets, and applications. Attempting to foresee and predict the growth vectors in this broad and rapidly developing field is therefore exceedingly difficult. However, we attempted to make such predictions at both the American Geophysical Union (AGU) meeting session entitled Volcanology 2010: How will the science and practice of volcanology change in the coming decade? held in December 2000 and the follow-up session 10 years later, Looking backward and forward: Volcanology in 2010 and 2020. In this summary paper, we assess how well we did with our predictions for specific facets of volcano remote sensing in 2000 the advances made over the most recent decade, and attempt a new look ahead to the next decade. In completing this review, we only consider the subset of the field focused on thermal infrared remote sensing of surface activity using ground-based and space-based technology and the subsequent research results. This review keeps to the original scope of both AGU presentations, and therefore does not address the entire field of volcanological remote sensing, which uses technologies in other wavelength regions (e.g., ultraviolet, radar, etc.) or the study of volcanic processes other than the those associated with surface (mostly effusive) activity. Therefore we do not consider remote sensing of ash/gas plumes, for example. In 2000, we had looked forward to a "golden age" in volcanological remote sensing, with a variety of new orbital missions both planned and recently launched. In addition, exciting field-based sensors such as hand-held thermal cameras were also becoming available and being quickly adopted by volcanologists for both monitoring and research applications. All of our predictions in 2000 came true, but at a pace far quicker than we predicted. Relative to the 2000-2010 timeframe, the coming decade will see far fewer new orbital instruments with direct applications to volcanology. However ground-based technologies and applications will continue to proliferate, and unforeseen technology promises many exciting possibilities that will advance volcano thermal monitoring and science far beyond what we can currently envision.
Evolution of telemedicine in the space program and earth applications.
Nicogossian, A E; Pober, D F; Roy, S A
2001-01-01
Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.
Evolution of telemedicine in the space program and earth applications
NASA Technical Reports Server (NTRS)
Nicogossian, A. E.; Pober, D. F.; Roy, S. A.
2001-01-01
Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.
Laser Induced Fluorescence (LIF) as a Remote Sensing Tool: A Review
NASA Technical Reports Server (NTRS)
Chappelle, E. W.; Kim, M. S.; Mulchi, C. L.; Daughtry, C. S. T.; McMurtrey, J.; Corp, L.
1998-01-01
Vegetational changes are primary indicators of the present and future ecological status of the globe. These are changes which not only impact upon the primary productivity, but the total of the biogeochemical processes occurring on the planet. The impacts of global climatic and other environmental changes on vegetation must be monitored by some means in order to develop models which will allow us to predict long term effects. Large scale monitoring is now possible only with remote sensing systems, primarily passive reflectance, obtained by the use of satellite and aircraft platforms. However, passive reflectance techniques at this time are limited in their ability to detect subtle changes in the concentration and oxidation states of the many compounds involved in the light reactions of photosynthesis. Knowledge of these changes we consider to be fundamental in the remote assessment of both the rate and efficiency of photosynthesis and also the early detection of stress damage. The above factors pointed to the desirability of a sensing technique with the sensitivity and specificity necessary for detecting and quantifying those biological entities involved in photosynthesis. Another optical technique for vegetation monitoring is fluorescence. Previously, the lack of adequate excitation light sources and detector technologies have limited the use of fluorescence on intact plant leaves in the field. It is only recently with the advent of lasers with short pulse duration and advanced detector technologies that fluorescence measurements in the remote mode have become possible in the presence of ambient light.
Place, Jérôme; Robert, Antoine; Ben Brahim, Najib; Keith-Hynes, Patrick; Farret, Anne; Pelletier, Marie-Josée; Buckingham, Bruce; Breton, Marc; Kovatchev, Boris; Renard, Eric
2013-11-01
Developments in an artificial pancreas (AP) for patients with type 1 diabetes have allowed a move toward performing outpatient clinical trials. "Home-like" environment implies specific protocol and system adaptations among which the introduction of remote monitoring is meaningful. We present a novel tool allowing multiple patients to monitor AP use in home-like settings. We investigated existing systems, performed interviews of experienced clinical teams, listed required features, and drew several mockups of the user interface. The resulting application was tested on the bench before it was used in three outpatient studies representing 3480 h of remote monitoring. Our tool, called DiAs Web Monitoring (DWM), is a web-based application that ensures reception, storage, and display of data sent by AP systems. Continuous glucose monitoring (CGM) and insulin delivery data are presented in a colored chart to facilitate reading and interpretation. Several subjects can be monitored simultaneously on the same screen, and alerts are triggered to help detect events such as hypoglycemia or CGM failures. In the third trial, DWM received approximately 460 data per subject per hour: 77% for log messages, 5% for CGM data. More than 97% of transmissions were achieved in less than 5 min. Transition from a hospital setting to home-like conditions requires specific AP supervision to which remote monitoring systems can contribute valuably. DiAs Web Monitoring worked properly when tested in our outpatient studies. It could facilitate subject monitoring and even accelerate medical and technical assessment of the AP. It should now be adapted for long-term studies with an enhanced notification feature. © 2013 Diabetes Technology Society.
ATHENA: Remote Sensing Science Center for Cultural Heritage in Cyprus
NASA Astrophysics Data System (ADS)
Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriakos; Cuca, Branka; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter
2016-04-01
The Cultural Heritage (CH) sector, especially those of monuments and sites has always been facing a number of challenges from environmental pressure, pollution, human intervention from tourism to destruction by terrorism.Within this context, CH professionals are seeking to improve currently used methodologies, in order to better understand, protect and valorise the common European past and common identity. "ATHENA" H2020-TWINN-2015 project will seek to improve and expand the capabilities of the Cyprus University of Technology, involving professionals dealing with remote sensing technologies for supporting CH sector from the National Research Center of Italy (CNR) and German Aerospace Centre (DLR). The ATHENA centre will be devoted to the development, introduction and systematic use of advanced remote sensing science and technologies in the field of archaeology, built cultural heritage, their multi-temporal analysis and interpretation and the distant monitoring of their natural and anthropogenic environment in the area of Eastern Mediterranean.
Remote Sensing Technologies Mitigate Drought
NASA Technical Reports Server (NTRS)
2015-01-01
Ames Research Center has partnered with the California Department of Water Resources to develop satellite-based technologies to mitigate drought conditions. One project aims to help water managers adjust their irrigation to match the biological needs of each crop, and another involves monitoring areas where land is fallow so emergency relief can more quickly aid affected communities.
Ceccato, P; Connor, S J; Jeanne, I; Thomson, M C
2005-03-01
Despite over 30 years of scientific research, algorithm development and multitudes of publications relating Remote Sensing (RS) information with the spatial and temporal distribution of malaria, it is only in recent years that operational products have been adopted by malaria control decision-makers. The time is ripe for the wealth of research knowledge and products from developed countries be made available to the decision-makers in malarious regions of the globe where this information is urgently needed. This paper reviews the capability of RS to provide useful information for operational malaria early warning systems. It also reviews the requirements for monitoring the major components influencing emergence of malaria and provides examples of applications that have been made. Discussion of the issues that have impeded implementation on a global scale and how those barriers are disappearing with recent economic, technological and political developments are explored; and help pave the way for implementation of an integrated Malaria Early Warning System framework using RS technologies.
Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review
Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J. M.; Skidmore, Andrew K.; Toxopeus, Bert A. G.
2013-01-01
Movement ecology is a field which places movement as a basis for understanding animal behavior. To realize this concept, ecologists rely on data collection technologies providing spatio-temporal data in order to analyze movement. Recently, wireless sensor networks have offered new opportunities for data collection from remote places through multi-hop communication and collaborative capability of the nodes. Several technologies can be used in such networks for sensing purposes and for collecting spatio-temporal data from animals. In this paper, we investigate and review technological solutions which can be used for collecting data for wildlife monitoring. Our aim is to provide an overview of different sensing technologies used for wildlife monitoring and to review their capabilities in terms of data they provide for modeling movement behavior of animals. PMID:23666132
Research on cloud-based remote measurement and analysis system
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; He, Lingsong; Su, Wei; Wang, Can; Zhang, Changfan
2015-02-01
The promising potential of cloud computing and its convergence with technologies such as cloud storage, cloud push, mobile computing allows for creation and delivery of newer type of cloud service. Combined with the thought of cloud computing, this paper presents a cloud-based remote measurement and analysis system. This system mainly consists of three parts: signal acquisition client, web server deployed on the cloud service, and remote client. This system is a special website developed using asp.net and Flex RIA technology, which solves the selective contradiction between two monitoring modes, B/S and C/S. This platform supplies customer condition monitoring and data analysis service by Internet, which was deployed on the cloud server. Signal acquisition device is responsible for data (sensor data, audio, video, etc.) collection and pushes the monitoring data to the cloud storage database regularly. Data acquisition equipment in this system is only conditioned with the function of data collection and network function such as smartphone and smart sensor. This system's scale can adjust dynamically according to the amount of applications and users, so it won't cause waste of resources. As a representative case study, we developed a prototype system based on Ali cloud service using the rotor test rig as the research object. Experimental results demonstrate that the proposed system architecture is feasible.
NASA Astrophysics Data System (ADS)
Shao, Honglan; Xie, Feng; Liu, Chengyu; Liu, Zhihui; Zhang, Changxing; Yang, Gui; Wang, Jianyu
2016-04-01
The cooling water discharged from the coastal plants flow into the sea continuously, whose temperature is higher than original sea surface temperature (SST). The fact will have non-negligible influence on the marine environment in and around where the plants site. Hence, it's significant to monitor the temporal and spatial variation of the warm-water discharge for the assessment of the effect of the plant on its surrounding marine environment. The paper describes an approach for the dynamic monitoring of the warm-water discharge of coastal plants based on the airborne high-resolution thermal infrared remote sensing technology. Firstly, the geometric correction was carried out for the thermal infrared remote sensing images acquired on the aircraft. Secondly, the atmospheric correction method was used to retrieve the sea surface temperature of the images. Thirdly, the temperature-rising districts caused by the warm-water discharge were extracted. Lastly, the temporal and spatial variations of the warm-water discharge were analyzed through the geographic information system (GIS) technology. The approach was applied to Qinshan nuclear power plant (NPP), in Zhejiang Province, China. In considering with the tide states, the diffusion, distribution and temperature-rising values of the warm-water discharged from the plant were calculated and analyzed, which are useful to the marine environment assessment.
Strouthidis, N G; Chandrasekharan, G; Diamond, J P; Murdoch, I E
2014-01-01
Telemedicine technologies and services allow today's ophthalmic clinicians to remotely diagnose, manage and monitor several ophthalmic conditions from a distance. But is this the case for glaucomas? There has been a proliferation of telemedicine friendly devices in recent years that improves the capabilities of the clinician in managing glaucomas. The existing instruments still need to align themselves with accepted industry standards. There are successful programmes running in several areas of the world. The safety and efficacy of these programmes needs further exploration. The inability of a single device or test to diagnose glaucomas satisfactorily has also hampered progress in remotely diagnosing these conditions. There is, however, significant potential for telemedicine-friendly devices to remotely monitor the progress of glaucoma and, thereby, reduce some of the workload on an overstretched health service. PMID:24723617
Polarimetric Remote Sensing of Atmospheric Particulate Pollutants
NASA Astrophysics Data System (ADS)
Li, Z.; Zhang, Y.; Hong, J.
2018-04-01
Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.
Development of a Remote Consultation System Using Avatar Technology
NASA Astrophysics Data System (ADS)
Ohnishi, Tatsuya; Yajima, Hiroshi; Sawamoto, Jun
The chance to use the Internet as a communications tool has been increasing, and the consultation businesses for customers at remote places are diversifying in their communication media and forms. In the remote consultation, the lack of non-verbal information is reported as one of the reasons for inefficiency and customer's dissatisfaction compared with the face-to-face consultation. The technique for supplementing non-verbal information with a TV telephone is proposed, and helps to confirm understanding degree or the utterance timing by watching the movement of the face. But the displayed face of the partner causes strong feeling of strain between strangers and the participants also care about background scene displayed on the monitor producing risks in the consultation tasks. In this paper, we propose a remote consultation method that uses avatar technology in the virtual space in order to provide non-verbal information and also avoiding the problem of TV telephone at the same time. The effectiveness of the proposed remote consultation method is confirmed by experiments.
[Telemetry in the clinical setting].
Hilbel, Thomas; Helms, Thomas M; Mikus, Gerd; Katus, Hugo A; Zugck, Christian
2008-09-01
Telemetric cardiac monitoring was invented in 1949 by Norman J Holter. Its clinical use started in the early 1960s. In the hospital, biotelemetry allows early mobilization of patients with cardiovascular risk and addresses the need for arrhythmia or oxygen saturation monitoring. Nowadays telemetry either uses vendor-specific UHF band broadcasting or the digital ISM band (Industrial, Scientific, and Medical Band) standardized Wi-Fi network technology. Modern telemetry radio transmitters can measure and send multiple physiological parameters like multi-channel ECG, NIPB and oxygen saturation. The continuous measurement of oxygen saturation is mandatory for the remote monitoring of patients with cardiac pacemakers. Real 12-lead ECG systems with diagnostic quality are an advantage for monitoring patients with chest pain syndromes or in drug testing wards. Modern systems are light-weight and deliver a maximum of carrying comfort due to optimized cable design. Important for the system selection is a sophisticated detection algorithm with a maximum reduction of artifacts. Home-monitoring of implantable cardiac devices with telemetric functionalities are becoming popular because it allows remote diagnosis of proper device functionality and also optimization of the device settings. Continuous real-time monitoring at home for patients with chronic disease may be possible in the future using Digital Video Broadcasting Terrestrial (DVB-T) technology in Europe, but is currently not yet available.
Utilizing a Homecare Platform for Remote Monitoring of Patients with Idiopathic Pulmonary Fibrosis.
Panagopoulos, Christos; Malli, Foteini; Menychtas, Andreas; Smyrli, Efstathia-Petrina; Georgountzou, Aikaterini; Daniil, Zoe; Gourgoulianis, Konstantinos I; Tsanakas, Panayiotis; Maglogiannis, Ilias
2017-01-01
Homecare and home telemonitoring are a focal point of emerging healthcare schemes, with proven benefits for both patients, caregivers and providers, including reduction of healthcare costs and improved patients' quality of life, especially in the case of chronic disease management. Studies have evaluated solutions for remote monitoring of chronic patients based on technologies that allow daily symptom and vital signs monitoring, tailored to the needs of specific diseases. In this work, we present an affordable home telemonitoring system for patients with idiopathic pulmonary fibrosis (IPF), based on an application for mobile devices and Bluetooth-enabled sensors for pulse oximetry and blood pressure measurements. Besides monitoring of vital signs, the system incorporates communication via videoconferencing and emergency response, with support from a helpdesk service. A pilot study was conducted, in order to verify the proposed solution's feasibility. The results support the utilization of the system for effective monitoring of patients with IPF.
Slonecker, E. Terrence; Fisher, Gary B.
2009-01-01
This project is a research collaboration between the U.S. Environmental Protection Agency (EPA) Office of Inspector General (OIG) and the U.S. Geological Survey (USGS) Eastern Geographic Science Center (EGSC), for the purpose of evaluating the utility of hyperspectral remote sensing technology for post-closure monitoring of residual contamination at delisted and closed hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act [CERCLA (also known as 'Superfund')] of 1980 and the Superfund Amendments and Reauthorization Act (SARA) of 1986.
Digitise This! A Quick and Easy Remote Sensing Method to Monitor the Daily Extent of Dredge Plumes
Evans, Richard D.; Murray, Kathy L.; Field, Stuart N.; Moore, James A. Y.; Shedrawi, George; Huntley, Barton G.; Fearns, Peter; Broomhall, Mark; McKinna, Lachlan I. W.; Marrable, Daniel
2012-01-01
Technological advancements in remote sensing and GIS have improved natural resource managers’ abilities to monitor large-scale disturbances. In a time where many processes are heading towards automation, this study has regressed to simple techniques to bridge a gap found in the advancement of technology. The near-daily monitoring of dredge plume extent is common practice using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and associated algorithms to predict the total suspended solids (TSS) concentration in the surface waters originating from floods and dredge plumes. Unfortunately, these methods cannot determine the difference between dredge plume and benthic features in shallow, clear water. This case study at Barrow Island, Western Australia, uses hand digitising to demonstrate the ability of human interpretation to determine this difference with a level of confidence and compares the method to contemporary TSS methods. Hand digitising was quick, cheap and required very little training of staff to complete. Results of ANOSIM R statistics show remote sensing derived TSS provided similar spatial results if they were thresholded to at least 3 mg L−1. However, remote sensing derived TSS consistently provided false-positive readings of shallow benthic features as Plume with a threshold up to TSS of 6 mg L−1, and began providing false-negatives (excluding actual plume) at a threshold as low as 4 mg L−1. Semi-automated processes that estimate plume concentration and distinguish between plumes and shallow benthic features without the arbitrary nature of human interpretation would be preferred as a plume monitoring method. However, at this stage, the hand digitising method is very useful and is more accurate at determining plume boundaries over shallow benthic features and is accessible to all levels of management with basic training. PMID:23240055
Monitoring and telemedicine support in remote environments and in human space flight.
Cermack, M
2006-07-01
The common features of remote environments are geographical separation, logistic problems with health care delivery and with patient retrieval, extreme natural conditions, artificial environment, or combination of all. The exposure can have adverse effects on patients' physiology, on care providers' performance and on hardware functionality. The time to definite treatment may vary between hours as in orbital space flight, days for remote exploratory camp, weeks for polar bases and months to years for interplanetary exploration. The generic system architecture, used in any telematic support, consists of data acquisition, data-processing and storage, telecommunications links, decision-making facilities and the means of command execution. At the present level of technology, a simple data transfer and two-way voice communication could be established from any place on the earth, but the current use of mobile communication technologies for telemedicine applications is still low, either for logistic, economic and political reasons, or because of limited knowledge about the available technology and procedures. Criteria for selection of portable telemedicine terminals in remote terrestrial places, characteristics of currently available mobile telecommunication systems, and the concept of integrated monitoring of physiological and environmental parameters are mentioned in the first section of this paper. The second part describes some aspects of emergency medical support in human orbital spaceflight, the limits of telemedicine support in near-Earth space environment and mentions some open issues related to long-term exploratory missions beyond the low Earth orbit.
Proceedings of the Eleventh International Symposium on Remote Sensing of Environment, volume 1
NASA Technical Reports Server (NTRS)
1977-01-01
The application of modern sensor technology and associated data processing capabilities to the assessment of earth resources and environmental monitoring is described. Problems associated with meeting future needs are explored.
Meet EPA Scientist Blake Schaeffer, Ph.D.
EPA research ecologist Blake Schaeffer, Ph.D. focuses on ways to use satellite remote sensing technology to monitor water quality. His research interests broadly include deriving water quality parameters in coasts, estuaries, and lakes using satellites
Stuckey, Melanie; Russell-Minda, Elizabeth; Read, Emily; Munoz, Claudio; Shoemaker, Kevin; Kleinstiver, Peter; Petrella, Robert
2011-01-01
Objective: An increasingly aged, overweight, and sedentary population has resulted in elevated risk of cardiovascular disease (CVD). The escalating incidence of diabetes and other chronic illnesses, deficits in health care budgets, and physician shortages, especially in rural communities, have prompted investigations of feasible solutions. The Diabetes and Technology for Increased Activity (DaTA) study was designed to test the effectiveness of a lifestyle intervention driven by self-monitoring of blood glucose (BG), blood pressure (BP), physical activity (PA), and weight to positively impact CVD risk factors in a medically underserviced rural population with a high incidence of metabolic syndrome (MS). Research Design and Methods: Conducted in a community-based research setting, this single-center open feasibility study used smart phones to transmit BP, BG, pedometer, weight, heart rate, and activity measurements to a database. Technology allowed participants to interface with the clinical team and self-monitor their personal health indicators. Results Twenty-four participants aged 30 to 71 years completed the 8-week intervention. Participants had significant improvement in clinic (p = .046) and self-monitored diastolic BP (p = .001), body mass index (p = .002), and total cholesterol (p = .009), and steps per day. Daily PA increased as well as participants' interest in and willingness to make lifestyle changes that impact health outcomes. Conclusions The DaTA study demonstrated that self-monitoring of the risk factors for MS and increased PA improved the participant's CVD risk profile. Considering the 8-week time period of this intervention, results are encouraging. This lifestyle intervention, which uses education and technology as tools, confirms the utility of remote health monitoring. PMID:21880236
Space Technology for Patient Monitoring
NASA Technical Reports Server (NTRS)
1989-01-01
A contract for the development of an astronaut monitoring system in the early days of the space program provided Mennen Medical, Inc. with a foundation in telemetry that led to the development of a computerized medical electronic system used by hospitals. Mennen was the first company to adopt solid state design in patient monitoring and to offer multipatient telemetry monitoring. Telemetry converts instrument data to electrical signals and relays them to a remote receiver where they are displayed. From a central station, a nurse can monitor several patients. Company products include VISTA systems and Horizon 2000 Monitor.
Wildlife monitoring program plan
NASA Technical Reports Server (NTRS)
Sebesta, P.; Arno, R.
1979-01-01
A plan for integrating the various requirements for wildlife monitoring with modern aerospace technology is presented. This plan is responsive to user needs, recognizes legal requirements, and is based on an evolutionary growth from domestic animals and larger animals to smaller, more scarce and remote species. The basis for animal study selection was made from the 1973 Santa Cruz Summer Study on Wildlife Monitoring. As techniques are developed the monitoring and management tasks will be interfaced with and eventually operated by the user agencies. Field efforts, aircraft and satellites, will be supplemented by laboratory investigations. Sixty percent of the effort will be in hardware research and development (satellite technology, microminiaturization) and the rest for gathering and interpreting data.
Making Sense of Remotely Sensed Ultra-Spectral Infrared Data
NASA Technical Reports Server (NTRS)
2001-01-01
NASA's Jet Propulsion Laboratory (JPL), Pasadena, California, Earth Observing System (EOS) programs, the Deep Space Network (DSN), and various Department of Defense (DOD) technology demonstration programs, combined their technical expertise to develop SEASCRAPE, a software program that obtains data when thermal infrared radiation passes through the Earth's atmosphere and reaches a sensor. Licensed by the California Institute of Technology (Caltech), SEASCRAPE automatically inverts complex infrared data and makes it possible to obtain estimates of the state of the atmosphere along the ray path. Former JPL staff members created a small entrepreneurial firm, Remote Sensing Analysis Systems, Inc., of Altadena, California, to commercialize the product. The founders believed that a commercial version of the software was needed for future U.S. government missions and the commercial monitoring of pollution. With the inversion capability of this software and remote sensing instrumentation, it is possible to monitor pollution sources from safe and secure distances on a noninterfering, noncooperative basis. The software, now know as SEASCRAPE_Plus, allows the user to determine the presence of pollution products, their location and their abundance along the ray path. The technology has been cleared by the Department of Commerce for export, and is currently used by numerous research and engineering organizations around the world.
The impact of using mobile-enabled devices on patient engagement in remote monitoring programs.
Agboola, Stephen; Havasy, Rob; Myint-U, Khinlei; Kvedar, Joseph; Jethwani, Kamal
2013-05-01
Different types of data transmission technologies are used in remote monitoring (RM) programs. This study reports on a retrospective analysis of how participants engage, based on the type of data transfer technology used in a blood pressure (BP) RM program, and its potential impact on RM program design and outcomes. Thirty patients, aged 23-84 years (62 ± 14 years), who had completed at least 2 months in the program and were not participating in any other clinical trial were identified from the Remote Monitoring Data Repository. Half of these patients used wireless-based data transfer devices [wireless-based device (WBD)] while the other half used telephone modem-based data transfer devices [modem-based device (MBD)]. Participants were matched by practice and age. Engagement indices, which include frequency of BP measurements, frequency of data uploads, time to first BP measurement, and time to first data upload, were compared in both groups using the Wilcoxon-Mann-Whitney two-sample rank-sum test. Help desk call data were analyzed by Chi square test. The frequency of BP measurements and data uploads was significantly higher in the WBD group versus the MBD group [median = 0.66 versus 0.2 measurements/day (p = .01) and 0.46 versus 0.01 uploads/day (p < .001), respectively]. Time to first upload was significantly lower in the WBD group (median = 4 versus 7 days; p = .02), but time to first BP measurement did not differ between the two groups (median = 2 versus 1 day; p = .98). Wireless transmission ensures instantaneous transmission of readings, providing clinicians timely data to intervene on. Our findings suggest that mobile-enabled wireless technologies can positively impact patient engagement, outcomes, and operational workflow in RM programs. © 2013 Diabetes Technology Society.
NASA Technical Reports Server (NTRS)
1975-01-01
The organization, objectives, and accomplishments of the panel on Land Use Planning are reported. Technology developments, and projected developments are discussed along with anticipated information requirements. The issues for users, recommended remote sensing programs, and space systems are presented. It was found that remote sensing systems are useful in future land use planning. It is recommended that a change detection system for monitoring land use and critical environmental areas be developed by 1979.
Lidar Remote Sensing for Industry and Environment Monitoring
NASA Technical Reports Server (NTRS)
Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)
2000-01-01
Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space Station. 13. Space lidar II: Using coherent Doppler lidar to estimate river discharge. 14. Poster session: Lidar technology, optics for lidar. Laser for lidar. Middle atmosphere observations. Tropospheric observations (aerosols, clouds). Boundary layer, urban pollution. Differential absorption lidar. Doppler lidar. and Space lidar.
Sustainable Biosphere Initiative Project
NASA Technical Reports Server (NTRS)
1997-01-01
The goal of the Advanced Technology in Ecological Sciences project is to gain broad participation within the environmental scientific community in developing a research agenda addressing the development and refinement of technologies instrumental to research that responds to these challenges (e.g. global climate change, unsustainable resource use, and threats to biological diversity). The following activities have been completed: (1) A listserve 'eco-tech was set up to serve as a clearinghouse of information about activities and events relating to advanced technologies; (2) A series of conference calls were organized on specific topics including data visualization and spatial analysis, and remote sensing; and (3) Two meetings were organized at the 19% ESA Annual Meeting in Providence, Rhode Island. Topics covered included concerns about tool and data sharing; interest in expanded development of ground-based remote sensing technologies for monitoring; issues involved in training for using new technologies and increasing data streams, and- associated implications of data processing capabilities; questions about how to develop appropriate standards (i.e. surface morphology classification standards) that facilitate the exchange and comparison of analytical results; and some thoughts about remote sensing platforms and vehicles.
2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladden, J.B.
2003-08-28
Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is amore » United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay- caps on the Mixed Waste Management Facility (MWMF). This report first describes the principles of hyperspectral remote sensing. In situ measurement and hyperspectral remote sensing methods used to analyze hazardous waste sites on the Savannah River Site are then presented.« less
Long-term monitoring on environmental disasters using multi-source remote sensing technique
NASA Astrophysics Data System (ADS)
Kuo, Y. C.; Chen, C. F.
2017-12-01
Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.
McClure, Erin; Baker, Nathaniel; Carpenter, Matthew J.; Treiber, Frank A.; Gray, Kevin
2015-01-01
Introduction Despite the public health relevance of smoking in adolescents and emerging adults, this group remains understudied and underserved. High technology utilization among this group may be harnessed as a tool for better understanding of smoking, yet little is known regarding the acceptability of mobile health (mHealth) integration. Methods Participants (ages 14–21) enrolled in a smoking cessation clinical trial provided feedback on their technology utilization, perceptions, and attitudes; and interest in remote monitoring for smoking. Characteristics that predicted greater technology acceptability for smoking treatment were also explored. Results Participants (N=87) averaged 19 years old and were mostly male (67%). Technology utilization was high for smart phone ownership (93%), Internet use (98%), and social media use (94%). Despite this, only one-third of participants had ever searched the Internet for cessation tips or counseling (33%). Participants showed interest in mHealth-enabled treatment (48%) and felt that it could be somewhat helpful (83%). Heavier smokers had more favorable attitudes toward technology-based treatment, as did those with smartphones and unlimited data. Conclusions Our results demonstrate high technology utilization, favorable attitudes towards technology, and minimal concerns. Technology integration among this population should be pursued, though in a tailored fashion, to accomplish the goal of providing maximally effective, just-in-time interventions. PMID:28580019
Utilization of robotic "remote presence" technology within North American intensive care units.
Reynolds, Eliza M; Grujovski, Andre; Wright, Tim; Foster, Michael; Reynolds, H Neal
2012-09-01
To describe remote presence robotic utilization and examine perceived physician impact upon care in the intensive care unit (ICU). Data were obtained from academic, university, community, and rural medical facilities in North America with remote presence robots used in ICUs. Objective utilization data were extracted from a continuous monitoring system. Physician data were obtained via an Internet-based survey. As of 2010, 56 remote presence robots were deployed in 25 North American ICUs. Of 10,872 robot activations recorded, 10,065 were evaluated. Three distinct utilization patterns were discovered. Combining all programs revealed a pattern that closely reflects diurnal ICU activity. The physician survey revealed staff are senior (75% >40 years old, 60% with >16 years of clinical practice), trained in and dedicated to critical care. Programs are mature (70% >3 years old) and operate in a decentralized system, originating from cities with >50,000 population and provided to cities >50,000 (80%). Of the robots, 46.6% are in academic facilities. Most physicians (80%) provide on-site and remote ICU care, with 60% and 73% providing routine or scheduled rounds, respectively. All respondents (100%) believed patient care and patient/family satisfaction were improved. Sixty-six percent perceived the technology was a "blessing," while 100% intend to continue using the technology. Remote presence robotic technology is deployed in ICUs with various patterns of utilization that, in toto, simulate normal ICU work flow. There is a high rate of deployment in academic ICUs, suggesting the intensivists shortage also affects large facilities. Physicians using the technology are generally senior, experienced, and dedicated to critical care and highly support the technology.
Improving compliance in remote healthcare systems through smartphone battery optimization.
Alshurafa, Nabil; Eastwood, Jo-Ann; Nyamathi, Suneil; Liu, Jason J; Xu, Wenyao; Ghasemzadeh, Hassan; Pourhomayoun, Mohammad; Sarrafzadeh, Majid
2015-01-01
Remote health monitoring (RHM) has emerged as a solution to help reduce the cost burden of unhealthy lifestyles and aging populations. Enhancing compliance to prescribed medical regimens is an essential challenge to many systems, even those using smartphone technology. In this paper, we provide a technique to improve smartphone battery consumption and examine the effects of smartphone battery lifetime on compliance, in an attempt to enhance users' adherence to remote monitoring systems. We deploy WANDA-CVD, an RHM system for patients at risk of cardiovascular disease (CVD), using a wearable smartphone for detection of physical activity. We tested the battery optimization technique in an in-lab pilot study and validated its effects on compliance in the Women's Heart Health Study. The battery optimization technique enhanced the battery lifetime by 192% on average, resulting in a 53% increase in compliance in the study. A system like WANDA-CVD can help increase smartphone battery lifetime for RHM systems monitoring physical activity.
Quality assurance and stability reference (QUASAR) monitoring concept for calibration/validation
NASA Astrophysics Data System (ADS)
Teillet, Philippe M.; Horler, D. N.; O'Neill, Norman T.
1997-12-01
The paper introduces the concept that calibration/validation (cal/val) can play an essential role in bringing remote sensing to mainstream consumers in an information-based society, provided that cal/val is an integral part of a quality-assurance strategy. A market model for remote sensing is introduced and used to demonstrate that quality assurance is the key to bridging the gap between early adopters of technology and mainstream markets. The paper goes on to propose the semi-continuous monitoring of quality assurance and stability reference (QUASAR) sites as an important first step towards a cal/val infrastructure beneficial to mainstream users. Prospective QUASAR test sites are described.
A guide to LIDAR data acquisition and processing for the forests of the Pacific Northwest.
Demetrios Gatziolis; Hans-Erik Andersen
2008-01-01
Light detection and ranging (LIDAR) is an emerging remote-sensing technology with promising potential to assist in mapping, monitoring, and assessment of forest resources. Continuous technological advancement and substantial reductions in data acquisition cost have enabled acquisition of laser data over entire states and regions. These developments have triggered an...
Monitoring highway assets using remote sensing technology : research spotlight.
DOT National Transportation Integrated Search
2014-04-01
Collecting inventory data about roadway assets is a critical part of : MDOTs asset management efforts, which help the department operate, : maintain and upgrade these assets cost-effectively. Federal law requires : that states develop a risk-based...
Freifeld, Barry; Daley, Tom; Cook, Paul; ...
2014-12-31
Understanding the impacts caused by injection of large volumes of CO 2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO 2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Boreholemore » Monitoring (MBM) Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO 2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned within the initial MBM work scope, the fibre-optic cable was able to also be used for the emergent technology of distributed acoustic sensing. The MBM monitoring string was installed in March, 2012. To date, the Citronelle MBM instruments continue to operate reliably. Results and lessons learned from the Citronelle MBM deployment are addressed along with examples of data being collected.« less
Global data collection and the surveillance of active volcanoes
Ward, P.L.
1990-01-01
Data relay systems on existing earth-orbiting satellites provide an inexpensive way to collect environmental data from numerous remote sites around the world. This technology could be used effectively for fundamental monitoring of most of the world's active volcanoes. Such global monitoring would focus attention on the most dangerous volcanoes that are likely to significantly impact the geosphere and the biosphere. ?? 1990.
USDA-ARS?s Scientific Manuscript database
Site-specific crop management is a promising approach to maximize crop yield with optimal use of rapidly depleting natural resources. Availability of high resolution crop data at critical growth stages is a key for real-time data-driven decisions during the production season. The goal of this study ...
State-of-the-art technologies of forest inventory and monitoring in Taiwan
Fong-Long Feng
2000-01-01
Ground surveys, remote sensing (RS), global positioning systems (GPS), geographic information systems (GIS), and permanent sampling plots (PSP) were used to inventory and monitor forests in the development of an ecosystem management plan for the island of Taiwan. While the entire island has been surveyed, this study concentrates on the Hui-Sun and Hsin-Hua Experimental...
Remote monitoring of implantable cardiac devices: current state and future directions.
Ganeshan, Raj; Enriquez, Alan D; Freeman, James V
2018-01-01
Recent evidence has demonstrated substantial benefits associated with remote monitoring of cardiac implantable electronic devices (CIEDs), and treatment guidelines have endorsed the use of remote monitoring. Familiarity with the features of remote monitoring systems and the data supporting its use are vital for physicians' care for patients with CEIDs. Remote monitoring remains underutilized, but its use is expanding including in new practice settings including emergency departments. Patient experience and outcomes are positive, with earlier detection of clinical events such as atrial fibrillation, reductions in inappropriate implantable cardioverter-defibrillator (ICD) shocks and potentially a decrease in mortality with frequent remote monitoring utilizaiton. Rates of hospitalization are reduced among remote monitoring users, and the replacement of outpatient follow-up visits with remote monitoring transmissions has been shown to be well tolerated. In addition, health resource utilization is lower and remote monitoring has been associated with considerable cost savings. A dose relationship exists between use of remote monitoring and patient outcomes, and those with early and high transmission rates have superior outcomes. Remote monitoring provides clinicians with the ability to provide comprehensive follow-up care for patients with CIEDs. Patient outcomes are improved, and resource utilization is decreased with appropriate use of remote monitoring. Future efforts must focus on improving the utilization and efficiency of remote monitoring.
Remote monitoring of left ventricular assist device parameters after HeartAssist-5 implantation.
Pektok, Erman; Demirozu, Zumrut Tuba; Arat, Nurcan; Yildiz, Omer; Oklu, Emine; Eker, Deniz; Ece, Ferah; Ciftci, Cavlan; Yazicioglu, Nuran; Bayindir, Osman; Kucukaksu, Deniz Suha
2013-09-01
Although several left ventricular assist devices (LVADs) have been used widely, remote monitoring of LVAD parameters has been available only recently. We present our remote monitoring experience with an axial-flow LVAD (HeartAssist-5, MicroMed Cardiovascular, Inc., Houston, TX, USA). Five consecutive patients who were implanted a HeartAssist-5 LVAD because of end-stage heart failure due to ischemic (n=4) or idiopathic (n=1) cardiomyopathy, and discharged from hospital between December 2011 and January 2013 were analyzed. The data (pump speed, pump flow, power consumption) obtained from clinical visits and remote monitoring were studied. During a median follow-up of 253 (range: 80-394) days, fine tuning of LVADs was performed at clinical visits. All patients are doing well and are in New York Heart Association Class-I/II. A total of 39 alarms were received from three patients. One patient was hospitalized for suspected thrombosis and was subjected to physical examinations as well as laboratory and echocardiographic evaluations; however, no evidence of thrombus washout or pump thrombus was found. The patient was treated conservatively. Remaining alarms were due to insufficient water intake and were resolved by increased water consumption at night and summer times, and fine tuning of pump speed. No alarms were received from the remaining two patients. We believe that remote monitoring is a useful technology for early detection and treatment of serious problems occurring out of hospital thereby improving patient care. Future developments may ease troubleshooting, provide more data from the patient and the pump, and eventually increase physician and patient satisfaction. Despite all potential clinical benefits, remote monitoring should be taken as a supplement to rather than a substitute for routine clinical visits for patient follow-up. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
Web-Based Remote Monitoring Systems for Self-Managing Type 2 Diabetes: A Systematic Review.
Mushcab, Hayat; Kernohan, W George; Wallace, Jonathan; Martin, Suzanne
2015-07-01
This systematic review aims to evaluate evidence for viability and impact of Web-based telemonitoring for managing type 2 diabetes mellitus. A review protocol included searching Medline, EMBASE, CINAHL, AMED, the Cochrane Library, and PubMed using the following terms: telemonitoring, type 2 diabetes mellitus, self-management, and web-based Internet solutions. The technology used, trial design, quality of life measures, and the glycated hemoglobin (HbA1c) levels were extracted. This review identified 426 publications; of these, 19 met preset inclusion criteria. Ten quasi-experimental research designs were found, of which seven were pre-posttest studies, two were cohort studies, and one was an interrupted time-series study; in addition, there were nine randomized controlled trials. Web-based remote monitoring from home to hospital is a viable approach for healthcare delivery and enhances patients' quality of life. Six of these studies were conducted in South Korea, five in the United States, three in the United Kingdom, two in Taiwan, and one each in Spain, Poland, and India. The duration of the studies varied from 4 weeks to 18 months, and the participants were all adults. Fifteen studies showed positive improvement in HbA1c levels. One study showed high acceptance of the technology among participants. It remains challenging to identify clear evidence of effectiveness in the rapidly changing area of remote monitoring in diabetes care. Both the technology and its implementations are complex. The optimal design of a telemedicine system is still uncertain, and the value of the real-time blood glucose transmissions is still controversial.
Bluetooth-based sensor networks for remotely monitoring the physiological signals of a patient.
Zhang, Ying; Xiao, Hannan
2009-11-01
Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.
Peterson, Courtney M.; Apolzan, John W.; Wright, Courtney; Martin, Corby K.
2017-01-01
We conducted a pair of studies to test the validity, reliability, feasibility, and acceptability of using video chat technology as a novel method to quantify dietary and pill-taking (i.e., supplement and medication) adherence. In the first study, we investigated whether video chat technology can accurately quantify adherence to dietary and pill-taking interventions. Mock study participants ate food items and swallowed pills while performing randomized scripted “cheating” behaviors design to mimic non-adherence. Monitoring was conducted in a crossover design, with two monitors watching in-person and two watching remotely by Skype on a smartphone. For the second study, a 22-question online survey was sent to an email listserv with more than 20,000 unique email addresses of past and present study participants to assess the feasibility and acceptability of the technology. For the dietary adherence tests, monitors detected 86% of non-adherent events (sensitivity) in-person versus 78% of events via video chat monitoring (p=0.12), with comparable inter-rater agreement (0.88 vs. 0.85; p=0.62). However, for pill-taking, non-adherence trended towards being more easily detected in-person than by video chat (77% vs. 60%; p=0.08), with non-significantly higher inter-rater agreement (0.85 vs. 0.69; p=0.21). Survey results from the second study (N=1,076 respondents; at least a 5% response rate) indicated that 86.4% of study participants had video chatting hardware, 73.3% were comfortable using the technology; and 79.8% were willing to use it for clinical research. Given the capability of video chat technology to reduce participant burden and to outperform other adherence monitoring methods such as dietary self-report and pill counts, video chatting is a novel and highly promising platform to quantify dietary and pill-taking adherence. PMID:27753427
DOT National Transportation Integrated Search
1998-03-30
The purpose of this project is to integrate a variety of geographic information systems : capabilities and telecommunication technologies for potential use in geographic network and : visualization applications. The specific technical goals of the pr...
Airborne lidar experiments at the Savannah River Plant
NASA Technical Reports Server (NTRS)
Krabill, William B.; Swift, Robert N.
1985-01-01
The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.
Flat Surface Damage Detection System (FSDDS)
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina
2013-01-01
The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.
The future of remote ECG monitoring systems.
Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su
2016-09-01
Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring.
Modeling of afforestation possibilities on one part of Hungary
NASA Astrophysics Data System (ADS)
Bozsik, Éva; Riczu, Péter; Tamás, János; Burriel, Charles; Helilmeier, Hermann
2015-04-01
Agroforestry systems are part of the history of the European Union rural landscapes, but the regional increase of size of agricultural parcels had a significant effect on European land use in the 20th century, thereby it has radically reduced the coverage of natural forest. However, this cause conflicts between interest of agricultural and forestry sectors. The agroforestry land uses could be a solution of this conflict management. One real - ecological - problem with the remnant forests and new forest plantation is the partly missing of network function without connecting ecological green corridors, the other problem is verifiability for the agroforestry payment system, monitoring the arable lands and plantations. Remote sensing methods are currently used to supervise European Union payments. Nowadays, next to use satellite imagery the airborne hyperspectral and LiDAR (Light Detection And Ranging) remote sensing technologies are becoming more widespread use for nature, environmental, forest, agriculture protection, conservation and monitoring and it is an effective tool for monitoring biomass production. In this Hungarian case study we made a Spatial Decision Support System (SDSS) to create agroforestry site selection model. The aim of model building was to ensure the continuity of ecological green corridors, maintain the appropriate land use of regional endowments. The investigation tool was the more widely used hyperspectral and airborne LiDAR remote sensing technologies which can provide appropriate data acquisition and data processing tools to build a decision support system
Remote personal health monitoring with radio waves
NASA Astrophysics Data System (ADS)
Nguyen, Andrew
2008-03-01
We present several techniques utilizing radio-frequency identification (RFID) technology for personal health monitoring. One technique involves using RFID sensors external to the human body, while another technique uses both internal and external RFID sensors. Simultaneous monitoring of many patients in a hospital setting can also be done using networks of RFID sensors. All the monitoring are done wirelessly, either continuously or periodically in any interval, in which the sensors collect information on human parts such as the lungs or heart and transmit this information to a router, PC or PDA device connected to the internet, from which patient's condition can be diagnosed and viewed by authorized medical professionals in remote locations. Instantaneous information allows medical professionals to intervene properly and timely to prevent possible catastrophic effects to patients. The continuously monitored information provides medical professionals more complete and long-term studies of patients. All of these result in not only enhancement of the health treatment quality but also significant reduction of medical expenditure. These techniques demonstrate that health monitoring of patients can be done wirelessly at any time and any place without interfering with the patients' normal activities. Implementing the RFID technology would not only help reduce the enormous and significantly growing medical costs in the U.S.A., but also help improve the health treatment capability as well as enhance the understanding of long-term personal health and illness.
Slonecker, E. Terrence; Fisher, Gary B.
2014-01-01
This evaluation was conducted to assess the potential for using both traditional remote sensing, such as aerial imagery, and emerging remote sensing technology, such as hyperspectral imaging, as tools for postclosure monitoring of selected hazardous waste sites. Sixteen deleted Superfund (SF) National Priorities List (NPL) sites in Pennsylvania were imaged with a Civil Air Patrol (CAP) Airborne Real-Time Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) sensor between 2009 and 2012. Deleted sites are those sites that have been remediated and removed from the NPL. The imagery was processed to radiance and atmospherically corrected to relative reflectance with standard software routines using the Environment for Visualizing Imagery (ENVI, ITT–VIS, Boulder, Colorado) software. Standard routines for anomaly detection, endmember collection, vegetation stress, and spectral analysis were applied.
Application of Aquaculture Monitoring System Based on CC2530
NASA Astrophysics Data System (ADS)
Chen, H. L.; Liu, X. Q.
In order to improve the intelligent level of aquaculture technology, this paper puts forward a remote wireless monitoring system based on ZigBee technology, GPRS technology and Android mobile phone platform. The system is composed of wireless sensor network (WSN), GPRS module, PC server, and Android client. The WSN was set up by CC2530 chips based on ZigBee protocol, to realize the collection of water quality parameters such as the water level, temperature, PH and dissolved oxygen. The GPRS module realizes remote communication between WSN and PC server. Android client communicates with server to monitor the level of water quality. The PID (proportion, integration, differentiation) control is adopted in the control part, the control commands from the android mobile phone is sent to the server, the server again send it to the lower machine to control the water level regulating valve and increasing oxygen pump. After practical testing to the system in Liyang, Jiangsu province, China, temperature measurement accuracy reaches 0.5°C, PH measurement accuracy reaches 0.3, water level control precision can be controlled within ± 3cm, dissolved oxygen control precision can be controlled within ±0.3 mg/L, all the indexes can meet the requirements, this system is very suitable for aquaculture.
Intelligent model-based diagnostics for vehicle health management
NASA Astrophysics Data System (ADS)
Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki
2003-08-01
The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.
Future Applications of Remote Sensing to Archeological Research
NASA Technical Reports Server (NTRS)
Sever, Thomas L.
2003-01-01
Archeology was one of the first disciplines to use aerial photography in its investigations at the turn of the 20th century. However, the low resolution of satellite technology that became available in the 1970 s limited their application to regional studies. That has recently changed. The arrival of the high resolution, multi-spectral capabilities of the IKONOS and QUICKBIRD satellites and the scheduled launch of new satellites in the next few years provides an unlimited horizon for future archeological research. In addition, affordable aerial and ground-based remote sensing instrumentation are providing archeologists with information that is not available through traditional methodologies. Although many archeologists are not yet comfortable with remote sensing technology a new generation has embraced it and is accumulating a wealth of new evidence. They have discovered that through the use of remote sensing it is possible to gather information without disturbing the site and that those cultural resources can be monitored and protected for the future.
Potential of Sentinel Satellites for Schistosomiasis Monitoring
NASA Astrophysics Data System (ADS)
Li, C.-R.; Tang, L.-L.; Niu, H.-B.; Zhou, X.-N.; Liu, Z.-Y.; Ma, L.-L.; Zhou, Y.-S.
2012-04-01
Schistosomiasis is a parasitic disease that menaces human health. In terms of impact this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis is the unique intermediate host of Schistosoma, and hence monitoring and controlling of the number of oncomelania is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to oncomelania breeding and reproduction, such as temperature, moisture, vegetation, soil, and rainfall, and can also provide the efficient information to determine the location, area, and spread tendency of oncomelania. Many studies show that the correlation coefficient between oncomelania densities and remote sensing environmental factors depends largely on suitable and high quality remote sensing data used in retrieve environmental factors. Research achievements on retrieving environmental factors (which are related to the living, multiplying and transmission of oncomelania) by multi-source remote data are shown firstly, including: (a) Vegetation information (e.g., Modified Soil-Adjusted Vegetation Index, Normalized Difference Moisture Index, Fractional Vegetation Cover) extracted from optical remote sensing data, such as Landsat TM, HJ-1A/HSI image; (b) Surface temperature retrieval from Thermal Infrared (TIR) and passive-microwave remote sensing data; (c) Water region, soil moisture, forest height retrieval from synthetic aperture radar data, such as Envisat SAR, DLR's ESAR image. Base on which, the requirements of environmental factor accuracy for schistosomiasis monitoring will be analyzed and summarized. Our work on applying remote sensing technique to schistosomiasis monitoring is then presented. The fuzzy information theory is employed to analyze the sensitivity and feasibility relation between oncomelania densities and environmental factors. Then a mechanism model of predicting oncomelania distribution and densities is developed. The new model is validated with field data of Dongting Lake and the dynamic monitoring of schistosomiasis breeding in Dongting Lake region is presented. Finally, emphasis are placed on analyzing the potential of Sentinel satellites for schistosomiasis monitoring. The requirements of optical high resolution data on spectral resolution, spatial resolution, radiometric resolution/accuracy, as well as the requirements of synthetic aperture radar data on operation frequency, spatial resolution, polarization, radiometric accuracy, repeat cycle are presented and then compared with the parameters of Sentinel satellites. The parameters of Sentinel satellites are also compared with those of available remote satellites, such as Envisat, Landsat, whose data are being used for schistosomiasis monitoring. The application potential of Sentinel satellites for the schistosomiasis monitoring will be concluded in the end, which will benefit for the mission operation, model development, etc.
Integrated Geospatial Education and Technology Training (iGETT) for Workforce Development
NASA Astrophysics Data System (ADS)
Allen, J. E.; Johnson, A.; Headley, R. K.
2009-12-01
The increasing availability of no-cost remote sensing data and improvements in analysis software have presented an unprecedented opportunity for the integration of geospatial technologies into a wide variety of disciplines for learning and teaching at community colleges and Tribal colleges. These technologies magnify the effectiveness of problem solving in agriculture, disaster management, environmental sciences, urbanization monitoring, and multiple other domains for societal benefit. This session will demonstrate the approach and lessons learned by federal and private industry partners leading a professional development program, “Integrated Geospatial Education and Technology Training” (iGETT; http://igett.delmar.edu), 2007-2010. iGETT is funded by the National Science Foundation’s Advanced Technological Education Program, (NSF DUE 0703185). 40 participants were selected from a nationwide pool and received training in how to understand, identify, download, and integrate federal land remote sensing data into existing Geographic Information Systems programs to address specific issues of concern to the local workforce. Each participant has authored a “Learning Unit” that covers at least two weeks of class time. All training resources and Learning Units are publicly available on the iGETT Web site. A follow-on project is under consideration to develop core competencies for the remote sensing technician. Authors: Jeannie Allen, Sigma Space Corp. for NASA Landsat, at Goddard Space Flight Center; Ann Johnson, ESRI Higher Education; Rachel Headley, USGS EROS Land Remote Sensing Program
[Crop geometry identification based on inversion of semiempirical BRDF models].
Zhao, Chun-jiang; Huang, Wen-jiang; Mu, Xu-han; Wang, Jin-diz; Wang, Ji-hua
2009-09-01
With the rapid development of remote sensing technology, the application of remote sensing has extended from single view angle to multi-view angles. It was studied for the qualitative and quantitative effect of average leaf angle (ALA) on crop canopy reflected spectrum. Effect of ALA on canopy reflected spectrum can not be ignored with inversion of leaf area index (LAI) and monitoring of crop growth condition by remote sensing technology. Investigations of the effect of erective and horizontal varieties were conducted by bidirectional canopy reflected spectrum and semiempirical bidirectional reflectance distribution function (BRDF) models. The sensitive analysis was done based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso) at red band (680 nm) and near infrared band (800 nm). By combining the weights of the red and near-infrared bands, the semiempirical models can obtain structural information by retrieving biophysical parameters from the physical BRDF model and a number of bidirectional observations. So, it will allow an on-site and non-sampling mode of crop ALA identification, which is useful for using remote sensing for crop growth monitoring and for improving the LAI inversion accuracy, and it will help the farmers in guiding the fertilizer and irrigation management in the farmland without a priori knowledge.
NASA Astrophysics Data System (ADS)
Liu, Zhaoyan; Li, Chuanrong; Tang, Lingli; Zhou, Xiaonong; Ma, Lingling
2014-11-01
Schistosomiasis is a parasitic disease that menaces human health. In terms of impact, this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis (snail) is the unique intermediate host of schistosoma, so monitoring and controlling of the number of snail is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to snail breeding and reproduction, and can also provide the efficient information to determine the location, area, and spread tendency of snail. Based on the T-S (Takagi-Sugeno) fuzzy information theory, a quantitative remote sensing monitoring model of snail has been developed in previous wok. In a case study, this paper will take Xinmin beach, Gaoyou Lake as new research area, carry out 20 years (1990 - 2010) dynamic monitoring, to further validate the effectiveness of the T-S Fuzzy RS snail monitoring model.
NASA Astrophysics Data System (ADS)
Liu, Zhaoyan; Li, Chuanrong; Tang, Lingli; Zhou, Xiaonong; Ma, Lingling
2014-11-01
Schistosomiasis is a parasitic disease that menaces human health. In terms of impact, this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis (snail) is the unique intermediate host of schistosoma, so monitoring and controlling of the number of snail is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to snail breeding and reproduction, and can also provide the efficient information to determine the location, area, and spread tendency of snail. Based on the T-S (Takagi-Sugeno) fuzzy information theory, a quantitative remote sensing monitoring model of snail has been developed in previous wok. In a case study, this paper will take Xinmin beach, Gaoyou Lake as new research area, carry out 20 years (1990 - 2010) dynamic monitoring, to further validate the effectiveness of the T-S Fuzzy RS snail monitoring model.
Centralized remote structural monitoring and management of real-time data
NASA Astrophysics Data System (ADS)
Han, Liting; Newhook, John P.; Mufti, Aftab A.
2004-07-01
Structural health monitoring (SHM) activities in civil engineering are increasing at a rapid pace in both research and field applications. This paper addresses the specific issue of incorporating internet technology into a structural health monitoring program. The issue of data volume versus communication speed is discussed along with a practical solution employed by ISIS Canada. The approach is illustrated through reference to several current case studies which include two bridges and a statue. It is seen that although the specifics of the projects and monitoring needs are different, the manner in which on-line monitoring can be conducted is very similar and easily allows for centralized monitoring. A general framework for website construction integrating sensing data and web camera options are presented. Issues related to simple real-time performance indices versus more comprehensive complex data analysis are discussed. Examples of on-line websites which allow visualization of new and historic data are presented. The paper also discusses future activities and research needs related to centralized remote structural monitoring and management of real-time data.
Strouthidis, N G; Chandrasekharan, G; Diamond, J P; Murdoch, I E
2014-12-01
Telemedicine technologies and services allow today's ophthalmic clinicians to remotely diagnose, manage and monitor several ophthalmic conditions from a distance. But is this the case for glaucomas? There has been a proliferation of telemedicine friendly devices in recent years that improves the capabilities of the clinician in managing glaucomas. The existing instruments still need to align themselves with accepted industry standards. There are successful programmes running in several areas of the world. The safety and efficacy of these programmes needs further exploration. The inability of a single device or test to diagnose glaucomas satisfactorily has also hampered progress in remotely diagnosing these conditions. There is, however, significant potential for telemedicine-friendly devices to remotely monitor the progress of glaucoma and, thereby, reduce some of the workload on an overstretched health service. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey
Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang
2008-01-01
New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation. PMID:18604301
Ubiquitous computing for remote cardiac patient monitoring: a survey.
Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang
2008-01-01
New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation.
7th IGRSM International Remote Sensing & GIS Conference and Exhibition
NASA Astrophysics Data System (ADS)
Shariff, Abdul Rashid Mohamed
2014-06-01
IGRSM This proceedings consists of the peer-reviewed papers from the 7th IGRSM International Conference and Exhibition on Remote Sensing & GIS (IGRSM 2014), which was held on 21-22 April 2014 at Berjaya Times Square Hotel, Kuala Lumpur, Malaysia. The conference, with the theme Geospatial Innovation for Nation Building was aimed at disseminating knowledge, and sharing expertise and experiences in geospatial sciences in all aspects of applications. It also aimed to build linkages between local and international professionals in this field with industries. Highlights of the conference included: Officiation by Y B Datuk Dr Abu Bakar bin Mohamad Diah, Deputy Minister of Minister of Science, Technology & Innovation Keynote presentations by: Associate Professor Dr Francis Harvey, Chair of the Geographic Information Science Commission at the International Geographical Union (IGU) and Director of U-Spatial, University of Minnesota, US: The Next Age of Discovery and a Future in a Post-GIS World. Professor Dr Naoshi Kondo, Bio-Sensing Engineering, University of Kyoto, Japan: Mobile Fruit Grading Machine for Precision Agriculture. Datuk Ir Hj Ahmad Jamalluddin bin Shaaban, Director-General, National Hydraulic Research Institute of Malaysia (NAHRIM), Malaysia: Remote Sensing & GIS in Climate Change Analyses. Oral and poster presentations from 69 speakers, from both Malaysia (35) and abroad (34), covering areas of water resources management, urban sprawl & social mobility, agriculture, land use/cover mapping, infrastructure planning, disaster management, technology trends, environmental monitoring, atmospheric/temperature monitoring, and space applications for the environment. Post-conference workshops on: Space Applications for Environment (SAFE), which was be organised by the Japan Aerospace Exploration Agency (JAXA) Global Positioning System (GPS) Receiver Evaluation Using GPS Simulation, which was be organised by the Science & Technology Research Institute for Defence (STRIDE), and sponsored by RFI Technologies Sdn. Bhd. and Aeroflex Inc. Two awards were presented by Dr Noordin Ahmad, Director-General of the National Space Agency during the conference's closing ceremony: Best Paper Award: Dr Rizatus Shofiyati, Indonesian Center for Agricultural Land Resources Research and Development (ICALRD), Indonesia: Indonesian Drought Monitoring from Space. A Report of SAFE Activity: Assessment of Drought Impact on Rice Production in Indonesia by Satellite Remote Sensing and Dissemination with Web-GIS Best Student Paper Award: Rosnani Rahman, Space Science Centre (ANGKASA), Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM), Malaysia: Monitoring the Variability of Precipitable Water Vapor Over the Klang Valley, Malaysia During Flash Flood The success of the IGRSM 2014 was due to commitments of many: authors, keynote speakers, session chairpersons, the organising and technical programme committees, student volunteers from Universiti Putra Malaysia (UPM), and many others of various roles. We acknowledge the sponsors of IGRSM 2014, namely Antaragrafik Systems Sdn. Bhd. and Geospatial Media and Communications Sdn. Bhd. We also thank all exhibitors and contributors: E J Motiwalla, Fajar Saintifik Sdn. Bhd., Bandwork GPS Solutions Sdn. Bhd., Tenaga Nasional Bhd., TSKAY Technology Sdn. Bhd., Geo Spatial Solutions Sdn. Bhd. and Accutac Sdn. Bhd. Associate Professor Sr Dr Abdul Rashid Mohamed Shariff Chairman 7th IGRSM International Remote Sensing & GIS Conference and Exhibition (IGRSM2014) President Institution of Geospatial and Remote Sensing Malaysia (IGRSM), 2012-2014
Unmanned Aircraft Systems for Monitoring Department of the Interior Lands
NASA Astrophysics Data System (ADS)
Hutt, M. E.; Quirk, B.
2013-12-01
Unmanned Aircraft Systems (UAS) technology is quickly evolving and will have a significant impact on Earth science research. The U.S. Geological Survey (USGS) is conducting an operational test and evaluation of UAS to see how this technology supports the mission of the Department of the Interior (DOI). Over the last 4 years, the USGS, working with many partners, has been actively conducting proof of concept UAS operations, which are designed to evaluate the potential of UAS technology to support the mandated DOI scientific, resource and land management missions. UAS technology is being made available to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Using small UAS (sUAS), the USGS is able to tailor solutions to meet project requirements by obtaining very high resolution video data, acquiring thermal imagery, detecting chemical plumes, and generating digital terrain models at a fraction of the cost of conventional surveying methods. UAS technology is providing a mechanism to collect timely remote sensing data at a low cost and at low risk over DOI lands that can be difficult to monitor and consequently enhances our ability to provide unbiased scientific information to better enable decision makers to make informed decisions. This presentation describes the UAS technology and infrastructure being employed, the application projects already accomplished, lessons learned and future of UAS within the DOI. We fully expect that by 2020 UAS will emerge as a primary platform for all DOI remote sensing applications. Much like the use of Internet technology, Geographic Information Systems (GIS) and Global Positioning Systems (GPS), UAS have the potential of enabling the DOI to be better stewards of the land.
U.S. Geological Survey shrub/grass products provide new approach to shrubland monitoring
Young, Steven M.
2017-12-11
In the Western United States, shrubland ecosystems provide vital ecological, hydrological, biological, agricultural, and recreational services. However, disturbances such as livestock grazing, exotic species invasion, conversion to agriculture, climate change, urban expansion, and energy development are altering these ecosystems.Improving our understanding of how shrublands are distributed, where they are changing, the extent of the historical change, and likely future change directions is critical for successful management of these ecosystems. Remote-sensing technologies provide the most likely data source for large-area monitoring of ecosystem disturbance—both near-real time and historically. A monitoring framework supported by remote-sensing data can offer efficient and accurate analysis of change across a range of spatial and temporal scales.The U.S. Geological Survey has been working to develop new remote-sensing data, tools, and products to characterize and monitor these changing shrubland landscapes. Nine individual map products (components) have been developed that quantify the percent of shrub, sagebrush, big sagebrush, herbaceous, annual herbaceous, litter, bare ground, shrub height, and sagebrush height at 1-percent intervals in each 30-meter grid cell. These component products are designed to be combined and customized to widely support different applications in rangeland monitoring, analysis of wildlife habitat, resource inventory, adaptive management, and environmental review.
Lin, Pao-Hwa; Intille, Stephen; Bennett, Gary; Bosworth, Hayden B; Corsino, Leonor; Voils, Corrine; Grambow, Steven; Lazenka, Tony; Batch, Bryan C; Tyson, Crystal; Svetkey, Laura P
2015-01-01
Background/Aims The obesity epidemic has spread to young adults, and obesity is a significant risk factor for cardiovascular disease. The prominence and increasing functionality of mobile phones may provide an opportunity to deliver longitudinal and scalable weight management interventions in young adults. The aim of this manuscript is to describe the design and development of the intervention tested in the Cell Phone Intervention for You (CITY) study and to highlight the importance of adaptive intervention design (AID) that made it possible. The CITY study was an NHLBI-sponsored, controlled 24-month randomized clinical trial (RCT) comparing two active interventions to a usual-care control group. Participants were 365 overweight or obese (BMI ≥ 25 kg/m2) young adults. Methods Both active interventions were designed based on social cognitive theory and incorporated techniques for behavioral self-management and motivational enhancement. Initial intervention development occurred during a 1-year formative phase utilizing focus groups and iterative, participatory design. During the intervention testing, AID, where an intervention is updated or extended throughout a trial while assuring the delivery of exactly the same intervention to each cohort, was employed. The AID strategy distributed technical work and allowed introduction of novel components in phases intended to help promote and sustain participant engagement. AID was made possible by exploiting the mobile phone's remote data capabilities so that adoption of particular application components could be continuously monitored and components subsequently added or updated remotely. Results The cellphone intervention was delivered almost entirely via cell phone and was always-present, proactive, and interactive – providing passive and active reminders, frequent opportunities for knowledge dissemination, and multiple tools for self-tracking and receiving tailored feedback. The intervention changed over two years to promote and sustain engagement. The personal coaching intervention, alternatively, was primarily personal coaching with trained coaches based on a proven intervention, enhanced with a mobile application, but where all interaction with the technology was participant-initiated. Conclusions The complexity and length of the technology-based RCT created challenges in engagement and technology adaptation, which were generally discovered using novel remote monitoring technology and addressed using the AID. Investigators should plan to develop tools and procedures that explicitly support continuous remote monitoring of interventions to support AID in long-term, technology-based studies, as well as developing the interventions themselves. PMID:26229119
Remote sensing monitoring of green tide in the Yellow Sea in 2015 based on GF-1 WFV data
NASA Astrophysics Data System (ADS)
Zheng, Xiangyu; Gao, Zhiqiang; Ning, Jicai; Xu, Fuxiang; Liu, Chaoshun; Sun, Zhibin
2016-09-01
In this paper, the green tide (Large green algae-Ulva prolifera) in the Yellow Sea in 2015 is monitored which is based on remote sensing and geographic information system technology, using GF-1 WFV data, combined with the virtual baseline floating algae height index (VB-FAH) and manual assisted interpretation method. The results show that GF-1 data with high spatial resolution can accurately monitoring the Yellow Sea Ulva prolifera disaster, the Ulva prolifera was first discovered in the eastern waters of Yancheng in May 12th, afterwards drifted from the south to the north and affected the neighboring waters of Shandong Peninsula. In early July, the Ulva prolifera began to enter into a recession, the coverage area began to decrease, by the end of August 6th, the Ulva prolifera all died.
Versteeg, H; Pedersen, S S; Mastenbroek, M H; Redekop, W K; Schwab, J O; Mabo, P; Meine, M
2014-10-01
Remote patient monitoring is a safe and effective alternative for the in-clinic follow-up of patients with cardiovascular implantable electronic devices (CIEDs). However, evidence on the patient perspective on remote monitoring is scarce and inconsistent. The primary objective of the REMOTE-CIED study is to evaluate the influence of remote patient monitoring versus in-clinic follow-up on patient-reported outcomes. Secondary objectives are to: 1) identify subgroups of patients who may not be satisfied with remote monitoring; and 2) investigate the cost-effectiveness of remote monitoring. The REMOTE-CIED study is an international randomised controlled study that will include 900 consecutive heart failure patients implanted with an implantable cardioverter defibrillator (ICD) compatible with the Boston Scientific LATITUDE® Remote Patient Management system at participating centres in five European countries. Patients will be randomised to remote monitoring or in-clinic follow-up. The In-Clinic group will visit the outpatient clinic every 3-6 months, according to standard practice. The Remote Monitoring group only visits the outpatient clinic at 12 and 24 months post-implantation, other check-ups are performed remotely. Patients are asked to complete questionnaires at five time points during the 2-year follow-up. The REMOTE-CIED study will provide insight into the patient perspective on remote monitoring in ICD patients, which could help to support patient-centred care in the future.
Satellite mapping of crop water demand in California
USDA-ARS?s Scientific Manuscript database
Surface delivery of irrigation water in the San Joaquin Valley is becoming increasingly restricted due to urbanization and environmental regulation, and the strain is projected to worsen under most climate change scenarios. Remote sensing technology offers the potential to monitor crop evapotranspi...
Ciani, Oriana; Piccini, Luca; Parini, Sergio; Rullo, Alessia; Bagnoli, Franco; Marti, Patrizia; Andreoni, Giuseppe
2008-01-01
Pervasive computing research is introducing new perspectives in a wide range of applications, including healthcare domain. In this study we explore the possibility to realize a prototype of a system for unobtrusive recording and monitoring of multiple biological parameters on premature newborns hospitalized in the Neonatal Intensive Care Unit (NICU). It consists of three different units: a sensitized belt for Electrocardiogram (ECG) and chest dilatation monitoring, augmented with extrinsic transducers for temperature and respiratory activity measure, a device for signals pre-processing, sampling and transmission through Bluetooth(R) (BT) technology to a remote PC station and a software for data capture and post-processing. Preliminary results obtained by monitoring babies just discharged from the ward demonstrated the feasibility of the unobtrusive monitoring on this kind of subjects and open a new scenario for premature newborns monitoring and developmental cares practice in NICU.
Technology and the future of medical equipment maintenance.
Wear, J O
1999-05-01
Maintenance of medical equipment has been changing rapidly in the past few years. It is changing more rapidly in developed countries, but changes are also occurring in developing countries. Some of the changes may permit improved maintenance on the higher technology equipment in developing countries, since they do not require onsite expertise. Technology has had an increasing impact on the development of medical equipment with the increased use of microprocessors and computers. With miniaturization from space technology and electronic chip design, powerful microprocessors and computers have been built into medical equipment. The improvement in manufacturing technology has increased the quality of parts and therefore the medical equipment. This has resulted in increased mean time between failures and reduced maintenance needs. This has made equipment more reliable in remote areas and developing countries. The built-in computers and advances in software design have brought about self-diagnostics in medical equipment. The technicians now have a strong tool to be used in maintenance. One problem in this area is getting access to the self-diagnostics. Some manufacturers will not readily provide this access to the owner of the equipment. Advances in telecommunications in conjunction with self-diagnostics make available remote diagnosis and repair. Since components can no longer be repaired, a remote repair technician can instruct an operator or an on-site repairman on board replacement. In case of software problems, the remote repair technician may perform the repairs over the telephone. It is possible for the equipment to be monitored remotely by modern without interfering with the operation of the equipment. These changes in technology require the training of biomedical engineering technicians (BMETs) to change. They must have training in computers and telecommunications. Some of this training can be done with telecommunications and computers.
China Report, Science and Technology
1987-04-29
remote sensing technologies have been used in territorial renovation , urban planning, railway track selection, catastrophic weather monitoring...GAONENG WULI YU HE WULI [PHYSICA ENERGIAE FORTIS ET PHYSICA NUCLEARIS] in Chinese Vol 10, No 4, Jul 86 pp 385-392 [Article by Wang Taijie [3769 3141 2638...systems, which the state has made part of the plan and for which special funds are disbursed. Second is new construction, renovation and expansion
Demystifying LiDAR technologies for temperate rainforest in the Pacific Northwest
Rhonda Mazza; Demetrios Gatziolis
2013-01-01
Light detection and ranging (LiDAR), also known as airborne laser scanning, is a rapidly emerging technology for remote sensing. Used to help map, monitor, and assess natural resources, LiDAR data were first embraced by forestry professionals in Scandinavia as a tool for conducting forest inventories in the mid to late 1990s. Thus early LiDAR theory and applications...
Remote sensing based approach for monitoring urban growth in Mexico city, Mexico: A case study
NASA Astrophysics Data System (ADS)
Obade, Vincent
The world is experiencing a rapid rate of urban expansion, largely contributed by the population growth. Other factors supporting urban growth include the improved efficiency in the transportation sector and increasing dependence on cars as a means of transport. The problems attributed to the urban growth include: depletion of energy resources, water and air pollution; loss of landscapes and wildlife, loss of agricultural land, inadequate social security and lack of employment or underemployment. Aerial photography is one of the popular techniques for analyzing, planning and minimizing urbanization related problems. However, with the advances in space technology, satellite remote sensing is increasingly being utilized in the analysis and planning of the urban environment. This article outlines the strengths and limitations of potential remote sensing techniques for monitoring urban growth. The selected methods include: Principal component analysis, Maximum likelihood classification and "decision tree". The results indicate that the "classification tree" approach is the most promising for monitoring urban change, given the improved accuracy and smooth transition between the various land cover classes
A potential hyperspectral remote sensing imager for water quality measurements
NASA Astrophysics Data System (ADS)
Zur, Yoav; Braun, Ofer; Stavitsky, David; Blasberger, Avigdor
2003-04-01
Utilization of Pan Chromatic and Multi Spectral Remote Sensing Imagery is wide spreading and becoming an established business for commercial suppliers of such imagery like ISI and others. Some emerging technologies are being used to generate Hyper-Spectral imagery (HSI) by aircraft as well as other platforms. The commercialization of such technology for Remote Sensing from space is still questionable and depends upon several parameters including maturity, cost, market reception and many others. HSI can be used in a variety of applications in agriculture, urban mapping, geology and others. One outstanding potential usage of HSI is for water quality monitoring, a subject studied in this paper. Water quality monitoring is becoming a major area of interest in HSI due to the increase in water demand around the globe. The ability to monitor water quality in real time having both spatial and temporal resolution is one of the advantages of Remote Sensing. This ability is not limited only for measurements of oceans and inland water, but can be applied for drinking and irrigation water reservoirs as well. HSI in the UV-VNIR has the ability to measure a wide range of constituents that define water quality. Among the constituents that can be measured are the pigment concentration of various algae, chlorophyll a and c, carotenoids and phycocyanin, thus enabling to define the algal phyla. Other parameters that can be measured are TSS (Total Suspended Solids), turbidity, BOD (Biological Oxygen Demand), hydrocarbons, oxygen demand. The study specifies the properties of such a space borne device that results from the spectral signatures and the absorption bands of the constituents in question. Other parameters considered are the repetition of measurements, the spatial aspects of the sensor and the SNR of the sensor in question.
The Federal Oil Spill Team for Emergency Response Remote Sensing (FOSTERRS)
NASA Astrophysics Data System (ADS)
Stough, T.; Jones, C. E.; Leifer, I.; Lindsay, F. E.; Murray, J. J.; Ramirez, E. M.; Salemi, A.; Streett, D.
2014-12-01
Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, for which remote sensing plays a critical role in detection and monitoring of oil spills. The FOSTERRS interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft) and analysis techniques are quickly, effectively and seamlessly available to oil spills responders. FOSTERRS enables cooperation between agencies with core environmental remote sensing assets and capabilities and academic and industry experts to act as an oil spill remote sensing information clearinghouse. The US government and its collaborators have a broad variety of aircraft and satellite sensors, imagery interrogation techniques and other technology that can provide indispensable remote sensing information to agencies, emergency responders and the public during an oil spill. Specifically, FOSTERRS will work to ensure that (1) suitable aircraft and satellite imagery and radar observations are quickly made available in a manner that can be integrated into oil spill detection and mitigation efforts, (2) existing imagery interrogation techniques are in the hands of those who will provide the 24 x 7 operational support and (3) efforts are made to develop new technology where the existing techniques do not provide oil spills responders with important information they need. The FOSTERRS mission goal places it in an ideal place for identification of critical technological needs, and identifying bottlenecks in technology acceptance. The core FOSTERRS team incorporates representation for operations and science for agencies with relevant instrumental and platform assets (NASA, NOAA, USGS, NRL). FOSTERRS membership will open to a wide range of end-user agencies and planned observer status from industry and academic experts, and eventually international partners. Through these collaborations, FOSTERRS facilitates interagency and cooperation and communication to the larger end-user community on remote sensing and its best use.
[Application of hyper-spectral remote sensing technology in environmental protection].
Zhao, Shao-Hua; Zhang, Feng; Wang, Qiao; Yao, Yun-Jun; Wang, Zhong-Ting; You, Dai-An
2013-12-01
Hyper-spectral remote sensing (RS) technology has been widely used in environmental protection. The present work introduces its recent application in the RS monitoring of pollution gas, green-house gas, algal bloom, water quality of catch water environment, safety of drinking water sources, biodiversity, vegetation classification, soil pollution, and so on. Finally, issues such as scarce hyper-spectral satellites, the limits of data processing and information extract are related. Some proposals are also presented, including developing subsequent satellites of HJ-1 satellite with differential optical absorption spectroscopy, greenhouse gas spectroscopy and hyper-spectral imager, strengthening the study of hyper-spectral data processing and information extraction, and promoting the construction of environmental application system.
NASA Astrophysics Data System (ADS)
Chinellato, Giulia; Kenner, Robert; Iasio, Christian; Mair, Volkmar; Mosna, David; Mulas, Marco; Phillips, Marcia; Strada, Claudia; Zischg, Andreas
2014-05-01
In high mountain regions the choice of appropriate sites for infrastructure such as roads, railways, cable cars or hydropower dams is often very limited. In parallel, the increasing demand for supply infrastructure in the Alps induces a continuous transformation of the territory. The new role played by the precautionary monitoring in the risk governance becomes fundamental and may overcome the modeling of future events, which represented so far the predominant approach to these sort of issues. Furthermore the consequence of considering methodologies alternative to those more exclusive allow to reduce costs and increasing the frequency of measurements, updating continuously the cognitive framework of existing hazard condition in most susceptible territories. The scale factor of the observed area and the multiple purpose of such regional ordinary surveys make it convenient to adopt Radar Satellite-based systems, but they need to be integrated with terrestrial systems for validation and eventual early warning purposes. Significant progress over the past decade in Remote Sensing (RS), Proximal Sensing and integration-based sensor networks systems now provide technologies, that allow to implement monitoring systems for ordinary surveys of extensive areas or regions, which are affected by active natural processes and slope instability. The Interreg project SloMove aims to provide solutions for such challenges and focuses on using remote sensing monitoring techniques for the monitoring of mass movements in two test sites, in South Tyrol (Italy) and in Grisons Canton (Switzerland). The topics faced in this project concern mass movements and slope deformation monitoring techniques, focusing mainly on the integration of multi-temporal interferometry, new generation of terrestrial technologies for differential digital terrain model elaboration provided by laser scanner (TLS), and GNSS-based topographic surveys, which are used not only for validation purpose, but also for adding value and information to the whole monitoring survey. The test sites are currently observed by an original integrated methodology specifically developed within the aim of the project. The integrated monitoring design includes reference targets for the different monitoring systems placed together on the same point or rigid foundation, to facilitate the comparison of the data and, in the operational use, to be able to switch consistently from one to the other system. The principal goal of the project is to define a shared procedure to select scalable technologies, best practices and institutional action plans more adequate to deal with different sort of hazard related to ground displacement, in densely populated mountain areas containing recreational and critical infrastructures. Keywords: integrated monitoring, multi-temporal interferometry, artificial reflectors; mass movement, SloMove.eu
Testing telehealth using technology-enhanced nurse monitoring.
Grant, Leslie A; Rockwood, Todd; Stennes, Leif
2014-10-01
Technology-enhanced nurse monitoring is a telehealth solution that helps nurses with assessment, diagnosis, and triage of older adults living in community-based settings. This technology links biometric and nonbiometric sensors to a data management system that is monitored remotely by RNs and unlicensed support staff. Nurses faced a number of challenges related to data interpretation, including making clinical inferences from nonbiometric data, integrating data generated by three different telehealth applications into a clinically meaningful cognitive framework, and figuring out how best to use nursing judgment to make valid inferences from online reporting systems. Nurses developed expertise over the course of the current study. The sponsoring organization achieved a high degree of organizational knowledge about how to use these systems more effectively. Nurses saw tremendous value in the telehealth applications. The challenges, learning curve, and organizational improvements are described. Copyright 2014, SLACK Incorporated.
Construction of an unmanned aerial vehicle remote sensing system for crop monitoring
NASA Astrophysics Data System (ADS)
Jeong, Seungtaek; Ko, Jonghan; Kim, Mijeong; Kim, Jongkwon
2016-04-01
We constructed a lightweight unmanned aerial vehicle (UAV) remote sensing system and determined the ideal method for equipment setup, image acquisition, and image processing. Fields of rice paddy (Oryza sativa cv. Unkwang) grown under three different nitrogen (N) treatments of 0, 50, or 115 kg/ha were monitored at Chonnam National University, Gwangju, Republic of Korea, in 2013. A multispectral camera was used to acquire UAV images from the study site. Atmospheric correction of these images was completed using the empirical line method, and three-point (black, gray, and white) calibration boards were used as pseudo references. Evaluation of our corrected UAV-based remote sensing data revealed that correction efficiency and root mean square errors ranged from 0.77 to 0.95 and 0.01 to 0.05, respectively. The time series maps of simulated normalized difference vegetation index (NDVI) produced using the UAV images reproduced field variations of NDVI reasonably well, both within and between the different N treatments. We concluded that the UAV-based remote sensing technology utilized in this study is potentially an easy and simple way to quantitatively obtain reliable two-dimensional remote sensing information on crop growth.
Wireless remote monitoring of toxic gases in shipbuilding.
Pérez-Garrido, Carlos; González-Castaño, Francisco J; Chaves-Díeguez, David; Rodríguez-Hernández, Pedro S
2014-02-14
Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness).
Wireless Remote Monitoring of Toxic Gases in Shipbuilding
Pérez-Garrido, Carlos; González-Castaño, Francisco J.; Chaves-Diéguez, David; Rodríguez-Hernández, Pedro S.
2014-01-01
Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness). PMID:24534919
Sun, Zhong Yu; Chen, Yan Qiao; Yang, Long; Tang, Guang Liang; Yuan, Shao Xiong; Lin, Zhi Wen
2017-02-01
Low-altitude unmanned aerial vehicles (UAV) remote sensing system overcomes the deficiencies of space and aerial remote sensing system in resolution, revisit period, cloud cover and cost, which provides a novel method for ecological research on mesoscale. This study introduced the composition of UAV remote sensing system, reviewed its applications in species, population, community and ecosystem ecology research. Challenges and opportunities of UAV ecology were identified to direct future research. The promising research area of UAV ecology includes the establishment of species morphology and spectral characteristic data base, species automatic identification, the revelation of relationship between spectral index and plant physiological processes, three-dimension monitoring of ecosystem, and the integration of remote sensing data from multi resources and multi scales. With the development of UAV platform, data transformation and sensors, UAV remote sensing technology will have wide application in ecology research.
NASA Astrophysics Data System (ADS)
Bressler, R. D.
1981-11-01
This quarterly technical report describes work on the development of and experimentation with packet broadcast by satellite; on development of Pluribus Satellite IMPs; on a study of the technology of Remote Site Maintenance; on Internetwork monitoring; on shipboard satellite communications; and on the development of Transmission Control Protocols for the HP3000, TAC, and VAX-UNIX.
Assessment of remote sensing technologies to discover and characterize waste sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-03-11
This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once the sites and problems have been located and characterized and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated waste forms in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirement for long-term monitoring.
Features and application of wearable biosensors in medical care
Ajami, Sima; Teimouri, Fotooheh
2015-01-01
One of the new technologies in the field of health is wearable biosensor, which provides vital signs monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in impassable regions far from health and medical services. The aim of this study was to explain features and applications of wearable biosensors in medical services. This was a narrative review study that done in 2015. Search conducted with the help of libraries, books, conference proceedings, through databases of Science Direct, PubMed, Proquest, Springer, and SID (Scientific Information Database). In our searches, we employed the following keywords and their combinations; vital sign monitoring, medical smart shirt, smart clothing, wearable biosensors, physiological monitoring system, remote detection systems, remote control health, and bio-monitoring system. The preliminary search resulted in 54 articles, which published between 2002 and 2015. After a careful analysis of the content of each paper, 41 sources selected based on their relevancy. Although the use of wearable in healthcare is still in an infant stage, it could have a magic effect on healthcare. Smart wearable in the technology industry for 2015 is one that is looking to be a big and profitable market. Wearable biosensors capable of continuous vital signs monitoring and feedback to the user will be significantly effective in timely prevention, diagnosis, treatment, and control of diseases. PMID:26958058
Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review
Tran, Melody; Angelaccio, Michele; Arcona, Steve
2017-01-01
Abstract Background: We conducted a systematic literature review to identify key trends associated with remote patient monitoring (RPM) via noninvasive digital technologies over the last decade. Materials and Methods: A search was conducted in EMBASE and Ovid MEDLINE. Citations were screened for relevance against predefined selection criteria based on the PICOTS (Population, Intervention, Comparator, Outcomes, Timeframe, and Study Design) format. We included studies published between January 1, 2005 and September 15, 2015 that used RPM via noninvasive digital technology (smartphones/personal digital assistants [PDAs], wearables, biosensors, computerized systems, or multiple components of the formerly mentioned) in evaluating health outcomes compared to standard of care or another technology. Studies were quality appraised according to Critical Appraisal Skills Programme. Results: Of 347 articles identified, 62 met the selection criteria. Most studies were randomized control trials with older adult populations, small sample sizes, and limited follow-up. There was a trend toward multicomponent interventions (n = 26), followed by smartphones/PDAs (n = 12), wearables (n = 11), biosensor devices (n = 7), and computerized systems (n = 6). Another key trend was the monitoring of chronic conditions, including respiratory (23%), weight management (17%), metabolic (18%), and cardiovascular diseases (16%). Although substantial diversity in health-related outcomes was noted, studies predominantly reported positive findings. Conclusions: This review will help decision makers develop a better understanding of the current landscape of peer-reviewed literature, demonstrating the utility of noninvasive RPM in various patient populations. Future research is needed to determine the effectiveness of RPM via noninvasive digital technologies in delivering patient healthcare benefits and the feasibility of large-scale implementation. PMID:27116181
Slonecker, E. Terrence; Fisher, Gary B.
2011-01-01
This report represents a remote sensing research effort conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (EPA) for the EPA Office of Inspector General. The objective of this investigation was to explore the efficacy of remote sensing as a technology for postclosure monitoring of hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (Public Law 96-510, 42 U.S.C. §9601 et seq.), also known as \\"Superfund.\\" Five delisted Superfund sites in Maryland and Virginia were imaged with a hyperspectral sensor and visited for collection of soil, water, and spectral samples and inspection of general site conditions. This report evaluates traditional and hyperspectral imagery and field spectroscopic measurement techniques in the characterization and analysis of fugitive (anthropogenic, uncontrolled) contamination at previously remediated hazardous waste disposal sites.
Distributive, Non-destructive Real-time System and Method for Snowpack Monitoring
NASA Technical Reports Server (NTRS)
Frolik, Jeff (Inventor); Skalka, Christian (Inventor)
2013-01-01
A ground-based system that provides quasi real-time measurement and collection of snow-water equivalent (SWE) data in remote settings is provided. The disclosed invention is significantly less expensive and easier to deploy than current methods and less susceptible to terrain and snow bridging effects. Embodiments of the invention include remote data recovery solutions. Compared to current infrastructure using existing SWE technology, the disclosed invention allows more SWE sites to be installed for similar cost and effort, in a greater variety of terrain; thus, enabling data collection at improved spatial resolutions. The invention integrates a novel computational architecture with new sensor technologies. The invention's computational architecture is based on wireless sensor networks, comprised of programmable, low-cost, low-powered nodes capable of sophisticated sensor control and remote data communication. The invention also includes measuring attenuation of electromagnetic radiation, an approach that is immune to snow bridging and significantly reduces sensor footprints.
CYCLOPE remote sensing: a multipurpose optronic payload and the associated subsystem
NASA Astrophysics Data System (ADS)
Hamon, Christian H.
1996-10-01
The SAGEM Group has been involved for more than 30 years in the field of remote sensing, especially via line-scanning sensors. Today, the SAGEM Group develops and manufactures optronic sensors with spectral bandwidths ranging from ultraviolet up to long-wave infrared (LWIR). Their name is CYCLOPE. Twenty five years ago, a four-channel infrared linescanner was delivered to the French Space Agency, CNES, for remote sensing evaluation and future specification of related spaceborne system. At the same time, a version was delivered to the French Administration for maritime oil pollution monitoring. This equipment is still in use and second-generation equipment was purchased in 1995 by the French Customs. The payload is described as well as the feasibility of such payload for spaceborne applications. Design-driving parameters and technologies are discussed. Emerging technologies make it possible now to propose such systems.
Civil mini-RPA's for the 1980's: Avionics design considerations. [remotely piloted vehicles
NASA Technical Reports Server (NTRS)
Karmarkar, J. S.
1975-01-01
A number of remote sensing or surveillance tasks (e.g., fire fighting, crop monitoring) in the civilian sector of our society may be performed in a cost effective manner by use of small remotely piloted aircraft (RPA). This study was conducted to determine equipment (and the associated technology) that is available, and that could be applied to the mini-RPA and to examine the potential applications of the mini-RPA with special emphasis on the wild fire surveillance mission. The operational considerations of using the mini-RPA as affected by government regulatory agencies were investigated. These led to equipment requirements (e.g., infra-red sensors) over and above those for the performance of the mission. A computer technology survey and forecast was performed. Key subsystems were identified, and a distributed microcomputer configuration, that was functionally modular, was recommended. Areas for further NASA research and development activity were also identified.
A survey for the use of remote sensing in the Chesapeake Bay region
NASA Technical Reports Server (NTRS)
Ulanowicz, R. E.
1974-01-01
Environmental problem areas concerning the Chesapeake Bay region are reviewed along with ongoing remote sensing programs pertaining to these problems, and recommendations are presented to help fill lacunae in present research and to utilize the remote sensing capabilities of NASA to their fullest. A list of interested organizations and individuals is presented for each category. The development of technologies to monitor dissolved nutrients in bay waters, the initiation of a census of the disappearing rooted acquatic plants in the littoral zones, and the mapping of natural building constraints in the growth regions of the states of Maryland and Virginia are among the recommendations presented.
USDA-ARS?s Scientific Manuscript database
Spatio-temporal measurements of landform evolution provide the basis for process-based theory formulation and validation. Overtime, field measurement of landforms has increased significantly worldwide, driven primarily by the availability of new surveying technologies. However, there is not a standa...
DOT National Transportation Integrated Search
2017-09-01
Over time, many Louisiana highway embankments have experienced surface sliding failures, a safety issue causing traffic disruptions. Since no advance-warning system is available for these highway embankment failures, the Louisiana Department of Trans...
Harnett, B M; Satava, R; Angood, P; Merriam, N R; Doarn, C R; Merrell, R C
2001-12-01
The ability to continuously monitor the vital signs of a person can be beneficial especially if the environment is hazardous or a person simply has general health concerns. We wanted to ascertain if, by integrating the Internet, ubiquitous switching technologies and off-the-shelf tools, this "suite of services" could provide a topology to enable remote monitoring in extreme and remote locations. An evaluation of this approach was conducted at the base camp of Mount Everest in the spring of 1999. Three climbers were outfitted with wireless, wearable sensors and transmitters for 24 h as they ascended through the Khumbu Icefall toward Camp One. The physiologic data was forwarded to the receiving station at Base Camp where it was forwarded to the U.S. mainland. Two of the three devices delivered physiologic data 95%-100% of the time while the third unit operated at only 78%. According to the climbers, the devices were unobtrusive, however, any additional weight while climbing Everest must provide advantage.
RESTful M2M Gateway for Remote Wireless Monitoring for District Central Heating Networks
Cheng, Bo; Wei, Zesan
2014-01-01
In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST) Machine-to-Machine (M2M) gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi) technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS) guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API) set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented. PMID:25436650
RESTful M2M gateway for remote wireless monitoring for district central heating networks.
Cheng, Bo; Wei, Zesan
2014-11-27
In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST) Machine-to-Machine (M2M) gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi) technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS) guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API) set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented.
Lin, Shih-Sung; Hung, Min-Hsiung; Tsai, Chang-Lung; Chou, Li-Ping
2012-12-01
The study aims to provide an ease-of-use approach for senior patients to utilize remote healthcare systems. An ease-of-use remote healthcare system (RHS) architecture using RFID (Radio Frequency Identification) and networking technologies is developed. Specifically, the codes in RFID tags are used for authenticating the patients' ID to secure and ease the login process. The patient needs only to take one action, i.e. placing a RFID tag onto the reader, to automatically login and start the RHS and then acquire automatic medical services. An ease-of-use emergency monitoring and reporting mechanism is developed as well to monitor and protect the safety of the senior patients who have to be left alone at home. By just pressing a single button, the RHS can automatically report the patient's emergency information to the clinic side so that the responsible medical personnel can take proper urgent actions for the patient. Besides, Web services technology is used to build the Internet communication scheme of the RHS so that the interoperability and data transmission security between the home server and the clinical server can be enhanced. A prototype RHS is constructed to validate the effectiveness of our designs. Testing results show that the proposed RHS architecture possesses the characteristics of ease to use, simplicity to operate, promptness in login, and no need to preserve identity information. The proposed RHS architecture can effectively increase the willingness of senior patients who act slowly or are unfamiliar with computer operations to use the RHS. The research results can be used as an add-on for developing future remote healthcare systems.
NASA Astrophysics Data System (ADS)
Kouhartsiouk, Demetris; Agapiou, Athos; Lynsadrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Hadjimitsis, Diofantos G.; Lasaponara, Rosa; Masini, Nicola; Brcic, Ramon; Eineder, Michael; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter
2017-04-01
Non-invasive landscape investigation for archaeological purposes includes a wide range of survey techniques, most of which include in-situ methods. In the recent years, a major advance in the non-invasive surveying techniques has been the introduction of active remote sensing technologies. One of such technologies is spaceborne radar, known as Synthetic Aperture Radar (SAR). SAR has proven to be a valuable tool in the analysis of potential archaeological marks and in the systematic cultural heritage site monitoring. With the use of SAR, it is possible to monitor slight variations in vegetation and soil often interpreted as archaeological signs, while radar sensors frequently having penetrating capabilities offering an insight into shallow underground remains. Radar remote sensing for immovable cultural heritage and archaeological applications has been recently introduced to Cyprus through the currently ongoing ATHENA project. ATHENA project, under the Horizon 2020 programme, aims at building a bridge between research institutions of the low performing Member States and internationally-leading counterparts at EU level, mainly through training workshops and a series of knowledge transfer activities, frequently taking place on the basis of capacity development. The project is formed as the consortium of the Remote Sensing and Geo-Environment Research Laboratory of the Cyprus University of Technology (CUT), the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR). As part of the project, a number of cultural heritage sites in Cyprus have been studied testing different methodologies involving SAR imagery such as Amplitude Change Detection, Coherence Calculation and fusion techniques. The ATHENA's prospective agenda includes the continuation of the capacity building programme with upcoming training workshops to take place while expanding the knowledge of radar applications on conservation and risk monitoring of cultural heritage sites through SAR Interferometry. The current paper presents some preliminary results from the archaeological site of "Nea Paphos", addressing the potential use of the radar technology.
Chemical-biological defense remote sensing: what's happening
NASA Astrophysics Data System (ADS)
Carrico, John P.
1998-08-01
The proliferation of weapons of mass destruction (WMD) continues to be a serious threat to the security of the US. Proliferation of chemical and biological (CB) weapons is particularly disturbing, and the threats posed can be devastating. Critical elements of the US efforts to reduce and counter WMD proliferation include: (1) the location and characterization of WMD facilities and capabilities worldwide; (2) the ability to rapidly detect and identify the use of CB weapons for expeditious warning and reporting on the battlefield; and (3) the capability to mitigate deleterious consequences of a CB incident through effective protective and medical treatment measures. Remote sensing has been touted as a key technology in these efforts. Historically, the role of remote sensing in CB defense has been to provide early warning of an attack from an extended distance. However, additional roles for remote sensing in CB defense, as well as applications in related missions, are possible and should be pursued. This paper examines what has been happening in remote sensing over the past decade to address needs in this area. Accomplishments, emerging technologies, programmatic issues, and opportunities for the future are covered. The Department of Defence chemical- biological, the Department of Energy's Chemical Analysis by Laser Interrogation of Proliferation Effluents, and other agency related programs are examined. Also, the status of remote sensing in the commercial market arena for environmental monitoring, its relevance to the WMD counterproliferation program, and opportunities for technology transfer are discussed. A course of action for the future is recommended.
Remote Sensing Application in Oil and Gas Industry
NASA Astrophysics Data System (ADS)
Sizov, Oleg; Aloltsov, Alexander; Rubtsova, Natalia
2014-05-01
The main environmental problems of the Khanty-Mansi Autonomous Okrug (a federal subject of Russia) related to the activities of oil and gas industry (82 active companies which hold 77,000 oil wells). As on the 1st of January 2013 the subject produces more than 50% of all oil in Russia. The principle of environmental responsibility makes it necessary to minimize human impact and ecological impact. One of the most effective tools for environmental monitoring is remote sensing. The main advantages of such approach are: wide coverage of areas of interest, high temporal resolution, precise location, automatic processing, large set of extracted parameters, etc. Authorities of KhMAO are interested in regular detection of the impact on the environment by processing satellite data and plan to increase the coverage from 434.9 to 659.9 square kilometers with resolution not less than 10 m/pixel. Years of experience of our company shows the significant potential to expand the use of such remote sensing data in the solution of environmental problems. The main directions are: monitoring of rational use of associated petroleum gas (detection of all gas flares and volumes of burned gas), monitoring of soil pollution (detection of areas of oil pollution, assess of the extent of pollution, planning of reclamation activities and assessment of their efficiency, detection of potential areas of pipelines corrosion), monitoring of status of sludge pits (inventory of all sludge pits, assessment of their liquidation), monitoring of technogenic impact (detection of changes), upgrading of a geospatial database (topographic map of not less than 1:50000 scale). Implementation of modeling, extrapolation and remote analysis techniques based on satellite images will help to reduce unnecessary costs for instrumental methods. Thus, the introduction of effective remote monitoring technology to the activity of oil and gas companies promotes environmental responsibility of these companies.
Remote maintenance monitoring system
NASA Technical Reports Server (NTRS)
Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)
1992-01-01
A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.
Bluetooth low energy: wireless connectivity for medical monitoring.
Omre, Alf Helge
2010-03-01
Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. (c) 2010 Diabetes Technology Society.
McClure, Erin A; Tomko, Rachel L; Carpenter, Matthew J; Treiber, Frank A; Gray, Kevin M
2018-05-08
Similar to adult smokers, quit attempts among younger smokers almost inevitably result in relapse. Unlike adults, less is known about the process of relapse in this younger age group. A technology-based remote monitoring system may allow for detailed and accurate characterization of smoking and abstinence and would help to improve cessation strategies. This study describes a mobile system that captures smoking using breath carbon monoxide (CO) and real-time self-reports of smoking behavior. Compliance, feasibility, acceptability, and accuracy of the system were measured during a quit attempt and subsequent monitoring period. The mobile application (My Mobile Monitor, M 3 ) combined breath CO with ecological momentary assessment, delivered via smartphone. Participants (N = 16; 75% female) were daily smokers between the ages of 19 and 25, who used the app for 11 days during which they agreed to make a quit attempt. Acceptability, compliance, and abstinence were measured. Participants averaged 22.3 ± 2.0 years old and smoked an average of 13.0 ± 6.1 cigarettes per day. Overall session compliance was 69% and during the quit attempt, 56% of participants abstained from smoking for at least 24 hours. Agreement between self-reported smoking compared to breath CO was generally high, when available for comparison, though underreporting of cigarettes was likely. This study demonstrates feasibility of a remote monitoring app with younger smokers, though improvements to promote compliance are needed. Remote monitoring to detect smoking and abstinence represents a step forward in the improvement of cessation strategies, but user experience and personalization are vital.
Security and privacy issues with health care information technology.
Meingast, Marci; Roosta, Tanya; Sastry, Shankar
2006-01-01
The face of health care is changing as new technologies are being incorporated into the existing infrastructure. Electronic patient records and sensor networks for in-home patient monitoring are at the current forefront of new technologies. Paper-based patient records are being put in electronic format enabling patients to access their records via the Internet. Remote patient monitoring is becoming more feasible as specialized sensors can be placed inside homes. The combination of these technologies will improve the quality of health care by making it more personalized and reducing costs and medical errors. While there are benefits to technologies, associated privacy and security issues need to be analyzed to make these systems socially acceptable. In this paper we explore the privacy and security implications of these next-generation health care technologies. We describe existing methods for handling issues as well as discussing which issues need further consideration.
NASA Technical Reports Server (NTRS)
Jones, W. L.
1977-01-01
Major areas of research and development in ergonomics technology for space environments are discussed. Attention is given to possible applications of the technology developed by NASA in industrial settings. A group of mass spectrometers for gas analysis capable of fully automatic operation has been developed for atmosphere control on spacecraft; a version for industrial use has been constructed. Advances have been made in personal cooling technology, remote monitoring of medical information, and aerosol particle control. Experience gained by NASA during the design and development of portable life support units has recently been applied to improve breathing equipment used by fire fighters.
Geospatial Image Mining For Nuclear Proliferation Detection: Challenges and New Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatsavai, Raju; Bhaduri, Budhendra L; Cheriyadat, Anil M
2010-01-01
With increasing understanding and availability of nuclear technologies, and increasing persuasion of nuclear technologies by several new countries, it is increasingly becoming important to monitor the nuclear proliferation activities. There is a great need for developing technologies to automatically or semi-automatically detect nuclear proliferation activities using remote sensing. Images acquired from earth observation satellites is an important source of information in detecting proliferation activities. High-resolution remote sensing images are highly useful in verifying the correctness, as well as completeness of any nuclear program. DOE national laboratories are interested in detecting nuclear proliferation by developing advanced geospatial image mining algorithms. Inmore » this paper we describe the current understanding of geospatial image mining techniques and enumerate key gaps and identify future research needs in the context of nuclear proliferation.« less
Wrist Pulse Rate Monitor Using Self-Injection-Locked Radar Technology
Wang, Fu-Kang; Tang, Mu-Cyun; Su, Sheng-Chao; Horng, Tzyy-Sheng
2016-01-01
To achieve sensitivity, comfort, and durability in vital sign monitoring, this study explores the use of radar technologies in wearable devices. The study first detected the respiratory rates and heart rates of a subject at a one-meter distance using a self-injection-locked (SIL) radar and a conventional continuous-wave (CW) radar to compare the sensitivity versus power consumption between the two radars. Then, a pulse rate monitor was constructed based on a bistatic SIL radar architecture. This monitor uses an active antenna that is composed of a SIL oscillator (SILO) and a patch antenna. When attached to a band worn on the subject’s wrist, the active antenna can monitor the pulse on the subject’s wrist by modulating the SILO with the associated Doppler signal. Subsequently, the SILO’s output signal is received and demodulated by a remote frequency discriminator to obtain the pulse rate information. PMID:27792176
Wrist Pulse Rate Monitor Using Self-Injection-Locked Radar Technology.
Wang, Fu-Kang; Tang, Mu-Cyun; Su, Sheng-Chao; Horng, Tzyy-Sheng
2016-10-26
To achieve sensitivity, comfort, and durability in vital sign monitoring, this study explores the use of radar technologies in wearable devices. The study first detected the respiratory rates and heart rates of a subject at a one-meter distance using a self-injection-locked (SIL) radar and a conventional continuous-wave (CW) radar to compare the sensitivity versus power consumption between the two radars. Then, a pulse rate monitor was constructed based on a bistatic SIL radar architecture. This monitor uses an active antenna that is composed of a SIL oscillator (SILO) and a patch antenna. When attached to a band worn on the subject's wrist, the active antenna can monitor the pulse on the subject's wrist by modulating the SILO with the associated Doppler signal. Subsequently, the SILO's output signal is received and demodulated by a remote frequency discriminator to obtain the pulse rate information.
The role of remotely sensed and relayed data in the Delaware River Basin
NASA Technical Reports Server (NTRS)
Paulson, R. W.
1970-01-01
A discussion is presented of the planned integration of the existing Delaware River Basin water quality monitoring and data processing systems with a data relay experiment proposed for the Earth Resources Technology Satellite (ERTS)-A, which will be launched in 1972. The experiment is designed to use ERTS-A as a data relay link for a maximum of 20 hydrologic stations in the basin, including streamgaging, reservoir level, ground water level,and water quality monitoring stations. This experiment has the potential for reducing the timelag between data collection and dissemination to less than 12 hours. At present there is a significant timelag between the time when the data are recorded at a monitoring site and the water resources agencies receive the data. The timelag exists because most of these instruments operate in remote locations without telementry, and the data records are removed manually, generally at a weekly frequency. For most water quality monitoring, the data do not reach water resources agencies for a period of 2 weeks to 2 months.
NASA Technical Reports Server (NTRS)
Blackwell, R. J.
1982-01-01
Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics.
Remote health monitoring of heart failure with data mining via CART method on HRV features.
Pecchia, Leandro; Melillo, Paolo; Bracale, Marcello
2011-03-01
Disease management programs, which use no advanced information and computer technology, are as effective as telemedicine but more efficient because less costly. We proposed a platform to enhance effectiveness and efficiency of home monitoring using data mining for early detection of any worsening in patient's condition. These worsenings could require more complex and expensive care if not recognized. In this letter, we briefly describe the remote health monitoring platform we designed and realized, which supports heart failure (HF) severity assessment offering functions of data mining based on the classification and regression tree method. The system developed achieved accuracy and a precision of 96.39% and 100.00% in detecting HF and of 79.31% and 82.35% in distinguishing severe versus mild HF, respectively. These preliminary results were achieved on public databases of signals to improve their reproducibility. Clinical trials involving local patients are still running and will require longer experimentation.
Vegetation Monitoring by Remote Sensing Technology for Uninhabited Islands of the Xisha Islands
NASA Astrophysics Data System (ADS)
Li, L.; Guo, Y.; Wu, X.
2018-04-01
The Xisha islands are tropical coral islands in the south sea of China, with special ecological environment. As far away from the inland, they are more sensitive to climate change than inland, and are looked as the window to reflect global environment changes. Since Sansha city established, some of islands were developed. The uninhabited islands are decreasing. To discover the changes of uninhabited islands become more impending. In order to find out the natural status of uninhabited islands, monitoring four years vegetation change of 2002, 2010, 2013 and 2016. In addition, monitoring the typical uninhabited island and sandbar vegetation by making the most of existed high resolution remote sensing data, nine years from 2002 to 2013 and six months in 2012. The results show that the sandbars are in stable growth stage, especially after 2010, the vegetation start appeared. Meanwhile, analysis the vegetation variation of the uninhabited islands and sandbars.
The massive destruction brought by Hurricanes Katrina and Rita also impacted the many chemical plants and refineries in the region. The achievement of this rapid analysis capability highlights the advancement of this technology for air quality assessment and monitoring. Case st...
Soil Moisture Remote Sensing: Status and Outlook
USDA-ARS?s Scientific Manuscript database
Satellite-based passive microwave sensors have been available for thirty years and provide the basis for soil moisture monitoring and mapping. The approach has reached a level of maturity that is now limited primarily by technology and funding. This is a result of extensive research and development ...
Handheld Diagnostic Device Delivers Quick Medical Readings
NASA Technical Reports Server (NTRS)
2014-01-01
To monitor astronauts' health remotely, Glenn Research Center awarded SBIR funding to Cambridge, Massachusetts-based DNA Medical Institute, which developed a device capable of analyzing blood cell counts and a variety of medical biomarkers. The technology will prove especially useful in rural areas without easy access to labs.
Compressed television transmission: A market survey
NASA Technical Reports Server (NTRS)
Lizak, R. M.; Cagan, L. Q.
1981-01-01
NASA's compressed television transmission technology is described, and its potential market is considered; a market that encompasses teleconferencing, remote medical diagnosis, patient monitoring, transit station surveillance, as well as traffic management and control. In addition, current and potential television transmission systems and their costs and potential manufacturers are considered.
Although remote sensing technology has long been used in wetland inventory and monitoring, the accuracy and detail level of derived wetland maps were limited or often unsatisfactory largely due to the relatively coarse spatial resolution of conventional satellite imagery. This re...
Criteria for Space-Based Sensor Applied to Bt Crop Monitoring
A joint agro-ecosystem research effort of NASA and USEPA has focused on the development of a decision support system designed to predict the development of insect pest resistance to transgenic toxins in maize. The use of NASA-developed remote sensing technologies that significant...
Reducing fugitive emissions of hazardous air pollutants from industrial facilities is an ongoing priority for the U.S. Environmental Protection Agency (EPA). Unlike stack emissions, fugitive releases are difficult to detect due to their spatial extent and inherent temporal variab...
Utility of thermal remote sensing for evapotranspiration estimation of vineyards
USDA-ARS?s Scientific Manuscript database
Given the limited water availability in much of California, particularly the Central Valley where many of the crops are grown, improvements in water management of irrigated croplands is desperately needed. This requires the development of tools and technologies for monitoring water use and improving...
Applications of remote-sensing technology to environmental problems of Delaware and Delaware Bay
NASA Technical Reports Server (NTRS)
Bartlett, D.; Klemas, V.; Philpot, W.; Rogers, R.
1975-01-01
Digital processing of multispectral LANDSAT data was used to develop a computerized model for predicting oil slick movement within the Delaware Bay. LANDSAT imagery was also used to monitor offshore waste disposal sites for mapping of wetlands, and charting of tidal currents.
Unmanned aircraft systems (UAS) activities at the Department of the Interior
Quirk, Bruce K.; Hutt, Michael E.
2014-01-01
The U.S. Department of the Interior (DOI) is responsible for protecting and managing the natural resources and heritage on almost 20% of the land in the United States. The DOI’s mission requires access to remotely sensed data over vast lands, including areas that are remote and potentially dangerous to access. Unmanned Aircraft Systems (UAS) technology has the potential to enable the DOI to be a better steward of the land by: (1) Improving natural hazard forecasting and the analysis of the impacts. (2) Improving the understanding of climate change to better plan for likely impacts. (3) Developing precipitation and evaporation forecasting to better manage water resources. (4) Monitoring Arctic ice change and its impacts on ecosystems, coasts, and transportation. (5) Increasing safety and effectiveness of wildland fire management. (6) Enhancing search and rescue capabilities. (7) Broadening the abilities to monitor environmental or landscape conditions and changes. (8) Better understanding and protecting the Nation’s ecosystems. The initial operational testing and evaluations performed by the DOI have proven that UAS technology can be used to support many of the Department’s activities. UAS technology provides scientists a way to look longer, closer and more frequently at some of Earth’s most remote areas—places that were previously too dangerous or expensive to monitor in detail. The flexibility of operations and relative low cost to purchase and operate Small Unmanned Aerial System (sUAS) enhances the ability to track long-term landscape and environmental change. The initial testing indicates the operational costs are approximately 10% of traditional manned aircraft. In addition, users can quickly assess landscape-altering events such as wildland fires, floods and volcanoes. UAS technology will allow the DOI to do more with less and in the process enhance the Department’s ability to provide unbiased scientific information to help stakeholders make informed decisions. It will also provide a digital baseline record that can be archived and used when monitoring future events or conditions. One possible future scenario has scientists carrying sUAS into the field allowing quick deployment and operation to observe the environment or for emergency response. This scenario could also include a persistent monitoring capability provided by a UAS that can stay airborne over a small geographic area for days or weeks, or possibly longer. While the DOI focus is on sUAS, the Department recognizes that larger UAS systems will also play a role in meeting its mission. The Department anticipates meeting long-duration or specialized acquisition commitments, such as state or national aerial photography, by collaboration with other agencies or through commercial contracts. Even though the DOI continues to evaluate UAS and sensor technology to meet the Department’s mission, some of its bureaus are already moving towards an operational capability. The authors fully anticipate that by 2020 UAS will emerge as one of the primary platforms for DOI remote sensing applications.
Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks †
Hayajneh, Thaier; Mohd, Bassam J; Imran, Muhammad; Almashaqbeh, Ghada; Vasilakos, Athanasios V.
2016-01-01
There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes. PMID:27023540
Mairesse, Georges H; Braunschweig, Frieder; Klersy, Katherine; Cowie, Martin R; Leyva, Francisco
2015-05-01
Remote monitoring (RM) of cardiac implantable electronic devices (CIEDs) permits early detection of arrhythmias, device, and lead failure and may also be useful in risk-predicting patient-related outcomes. Financial benefits for patients and healthcare organizations have also been shown. We sought to assess the implementation and funding of RM of CIEDs, including conventional pacemakers (PMs), implantable cardioverter defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices in Europe. Electronic survey from 43 centres in 15 European countries. In the study sample, RM was available in 22% of PM patients, 74% of ICD patients, and 69% of CRT patients. The most significant perceived benefits were the early detection of atrial arrhythmias in pacemaker patients, lead failure in ICD patients, and worsening heart failure in CRT patients. Remote monitoring was reported to lead a reduction of in-office follow-ups for all devices. The most important reported barrier to the implementation of RM for all CIEDs was lack of reimbursement (80% of centres). Physicians regard RM of CIEDs as a clinically useful technology that affords significant benefits for patients and healthcare organizations. Remote monitoring, however, is perceived as increasing workload. Reimbursement for RM is generally perceived as a major barrier to implementation. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks.
Hayajneh, Thaier; Mohd, Bassam J; Imran, Muhammad; Almashaqbeh, Ghada; Vasilakos, Athanasios V
2016-03-24
There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes.
Kennedy, Robert E.; Cohen, Warren B.; Kirschbaum, Alan A.; Haunreiter, Erik
2007-01-01
Background and Objectives As part of the National Park Service's larger goal of developing long-term monitoring programs in response to the Natural Resource Challenge of 2000, the parks of the North Coast and Cascades Network (NCCN) have determined that monitoring of landscape dynamics is necessary to track ecosystem health (Weber and others, 2005). Landscape dynamics refer to a broad suite of ecological, geomorphological, and anthropogenic processes occurring across broad spatial scales. The NCCN has sought protocols that would leverage remote-sensing technologies to aid in monitoring landscape dynamics.
Kim, Young Ju; Xiao, Yan; Hu, Peter; Dutton, Richard
2009-08-01
To understand staff acceptance of a remote video monitoring system for operating room (OR) coordination. Improved real-time remote visual access to OR may enhance situational awareness but also raises privacy concerns for patients and staff. Survey. A system was implemented in a six-room surgical suite to display OR monitoring video at an access restricted control desk area. Image quality was manipulated to improve staff acceptance. Two months after installation, interviews and a survey were conducted on staff acceptance of video monitoring. About half of all OR personnel responded (n = 63). Overall levels of concerns were low, with 53% rated no concerns and 42% little concern. Top two reported uses of the video were to see if cases are finished and to see if a room is ready. Viewing the video monitoring system as useful did not reduce levels of concern. Staff in supervisory positions perceived less concern about the system's impact on privacy than did those supervised (p < 0.03). Concerns for patient privacy correlated with concerns for staff privacy and performance monitoring. Technical means such as manipulating image quality helped staff acceptance. Manipulation of image quality resulted overall acceptance of monitoring video, with residual levels of concerns. OR nurses may express staff privacy concern in the form of concerns over patient privacy. This study provided suggestions for technological and implementation strategies of video monitoring for coordination use in OR. Deployment of communication technology and integration of clinical information will likely raise concerns over staff privacy and performance monitoring. The potential gain of increased information access may be offset by negative impact of a sense of loss of autonomy.
Lim, Paul Chun Yih; Lee, Audry Shan Yin; Chua, Kelvin Chi Ming; Lim, Eric Tien Siang; Chong, Daniel Thuan Tee; Tan, Boon Yew; Ho, Kah Leng; Teo, Wee Siong; Ching, Chi Keong
2016-07-01
Remote monitoring of cardiac implantable electronic devices (CIED) has been shown to improve patient safety and reduce in-office visits. We report our experience with remote monitoring via the Medtronic CareLink(®) network. Patients were followed up for six months with scheduled monthly remote monitoring transmissions in addition to routine in-office checks. The efficacy of remote monitoring was evaluated by recording compliance to transmissions, number of device alerts requiring intervention and time from transmission to review. Questionnaires were administered to evaluate the experiences of patients, physicians and medical technicians. A total of 57 patients were enrolled; 16 (28.1%) had permanent pacemakers, 34 (59.6%) had implantable cardioverter defibrillators and 7 (12.3%) had cardiac resynchronisation therapy defibrillators. Overall, of 334 remote transmissions scheduled, 73.7% were on time, 14.5% were overdue and 11.8% were missed. 84.6% of wireless transmissions were on time, compared to 53.8% of non-wireless transmissions. Among all transmissions, 4.4% contained alerts for which physicians were informed and only 1.8% required intervention. 98.6% of remote transmissions were reviewed by the second working day. 73.2% of patients preferred remote monitoring. Physicians agreed that remote transmissions provided information equivalent to in-office checks 97.1% of the time. 77.8% of medical technicians felt that remote monitoring would help the hospital improve patient management. No adverse events were reported. Remote monitoring of CIED is safe and feasible. It has possible benefits to patient safety through earlier detection of arrhythmias or device malfunction, permitting earlier intervention. Wireless remote monitoring, in particular, may improve compliance to device monitoring. Patients may prefer remote monitoring due to possible improvements in quality of life. Copyright: © Singapore Medical Association.
Lim, Paul Chun Yih; Lee, Audry Shan Yin; Chua, Kelvin Chi Ming; Lim, Eric Tien Siang; Chong, Daniel Thuan Tee; Tan, Boon Yew; Ho, Kah Leng; Teo, Wee Siong; Ching, Chi Keong
2016-01-01
INTRODUCTION Remote monitoring of cardiac implantable electronic devices (CIED) has been shown to improve patient safety and reduce in-office visits. We report our experience with remote monitoring via the Medtronic CareLink® network. METHODS Patients were followed up for six months with scheduled monthly remote monitoring transmissions in addition to routine in-office checks. The efficacy of remote monitoring was evaluated by recording compliance to transmissions, number of device alerts requiring intervention and time from transmission to review. Questionnaires were administered to evaluate the experiences of patients, physicians and medical technicians. RESULTS A total of 57 patients were enrolled; 16 (28.1%) had permanent pacemakers, 34 (59.6%) had implantable cardioverter defibrillators and 7 (12.3%) had cardiac resynchronisation therapy defibrillators. Overall, of 334 remote transmissions scheduled, 73.7% were on time, 14.5% were overdue and 11.8% were missed. 84.6% of wireless transmissions were on time, compared to 53.8% of non-wireless transmissions. Among all transmissions, 4.4% contained alerts for which physicians were informed and only 1.8% required intervention. 98.6% of remote transmissions were reviewed by the second working day. 73.2% of patients preferred remote monitoring. Physicians agreed that remote transmissions provided information equivalent to in-office checks 97.1% of the time. 77.8% of medical technicians felt that remote monitoring would help the hospital improve patient management. No adverse events were reported. CONCLUSION Remote monitoring of CIED is safe and feasible. It has possible benefits to patient safety through earlier detection of arrhythmias or device malfunction, permitting earlier intervention. Wireless remote monitoring, in particular, may improve compliance to device monitoring. Patients may prefer remote monitoring due to possible improvements in quality of life. PMID:27439396
Patel, Shyamal; Chen, Bor-Rong; Buckley, Thomas; Rednic, Ramona; McClure, Doug; Tarsy, Daniel; Shih, Ludy; Dy, Jennifer; Welsh, Matt; Bonato, Paolo
2010-01-01
Objective long-term health monitoring can improve the clinical management of several medical conditions ranging from cardiopulmonary diseases to motor disorders. In this paper, we present our work toward the development of a home-monitoring system. The system is currently used to monitor patients with Parkinson's disease who experience severe motor fluctuations. Monitoring is achieved using wireless wearable sensors whose data are relayed to a remote clinical site via a web-based application. The work herein presented shows that wearable sensors combined with a web-based application provide reliable quantitative information that can be used for clinical decision making.
The web-rhetoric of companies offering home-based personal health monitoring.
Nordgren, Anders
2012-06-01
In this paper I investigate the web-rhetoric of companies offering home-based personal health monitoring to patients and elderly people. Two main rhetorical methods are found, namely a reference to practical benefits and a use of prestige words like "quality of life" and "independence". I interpret the practical benefits in terms of instrumental values and the prestige words in terms of final values. I also reconstruct the arguments on the websites in terms of six different types of argument. Finally, I articulate a general critique of the arguments, namely that the websites neglect the context of use of personal health monitoring technologies. Whether or not a technology is good depends on the use of the technology by a particular individual in a particular context. The technology is not good-or bad-in itself. I support this critique with a number of more specific arguments such as the risk for reduced personal contact. For some elderly people social contact with care providers is more valuable than the independent living made possible by remote monitoring, for others independence is more important.
Advanced Networks in Motion Mobile Sensorweb
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, David H.
2011-01-01
Advanced mobile networking technology applicable to mobile sensor platforms was developed, deployed and demonstrated. A two-tier sensorweb design was developed. The first tier utilized mobile network technology to provide mobility. The second tier, which sits above the first tier, utilizes 6LowPAN (Internet Protocol version 6 Low Power Wireless Personal Area Networks) sensors. The entire network was IPv6 enabled. Successful mobile sensorweb system field tests took place in late August and early September of 2009. The entire network utilized IPv6 and was monitored and controlled using a remote Web browser via IPv6 technology. This paper describes the mobile networking and 6LowPAN sensorweb design, implementation, deployment and testing as well as wireless systems and network monitoring software developed to support testing and validation.
Rice Crop Monitoring Using Microwave and Optical Remotely Sensed Image Data
NASA Astrophysics Data System (ADS)
Suga, Y.; Konishi, T.; Takeuchi, S.; Kitano, Y.; Ito, S.
Hiroshima Institute of Technology HIT is operating the direct down-links of microwave and optical satellite data in Japan This study focuses on the validation for rice crop monitoring using microwave and optical remotely sensed image data acquired by satellites referring to ground truth data such as height of crop ratio of crop vegetation cover and leaf area index in the test sites of Japan ENVISAT-1 ASAR data has a capability to capture regularly and to monitor during the rice growing cycle by alternating cross polarization mode images However ASAR data is influenced by several parameters such as landcover structure direction and alignment of rice crop fields in the test sites In this study the validation was carried out combined with microwave and optical satellite image data and ground truth data regarding rice crop fields to investigate the above parameters Multi-temporal multi-direction descending and ascending and multi-angle ASAR alternating cross polarization mode images were used to investigate rice crop growing cycle LANDSAT data were used to detect landcover structure direction and alignment of rice crop fields corresponding to the backscatter of ASAR As the result of this study it was indicated that rice crop growth can be precisely monitored using multiple remotely sensed data and ground truth data considering with spatial spectral temporal and radiometric resolutions
The NASA Carbon Monitoring System
NASA Astrophysics Data System (ADS)
Hurtt, G. C.
2015-12-01
Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder engagement, 6) partnerships with other U.S. agencies and international partners, and 7) modeling and data assimilation.
NASA Astrophysics Data System (ADS)
McDonald, K. C.; Kimball, J. S.
2004-12-01
The transition of the landscape between predominantly frozen and non-frozen conditions in seasonally frozen environments impacts climate, hydrological, ecological and biogeochemical processes profoundly. Satellite microwave remote sensing is uniquely capable of detecting and monitoring a range of related biophysical processes associated with the measurement of landscape freeze/thaw status. We present the development, physical basis, current techniques and selected hydrological applications of satellite-borne microwave remote sensing of landscape freeze/thaw states for the terrestrial cryosphere. Major landscape hydrological processes embracing the remotely-sensed freeze/thaw signal include timing and spatial dynamics of seasonal snowmelt and associated soil thaw, runoff generation and flooding, ice breakup in large rivers and lakes, and timing and length of vegetation growing seasons and associated productivity and trace gas exchange. Employing both active and passive microwave sensors, we apply a selection of temporal change classification algorithms to examine a variety of hydrologic processes. We investigate contemporaneous and retrospective applications of the QuikSCAT scatterometer, and the SSM/I and SMMR radiometers to this end. Results illustrate the strong correspondence between regional thawing, seasonal ice break up for rivers, and the springtime pulse in river flow. We present the physical principles of microwave sensitivity to landscape freeze/thaw state, recent progress in applying these principles toward satellite remote sensing of freeze/thaw processes over broad regions, and potential for future global monitoring of this significant phenomenon of the global cryosphere. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and at the University of Montana, Missoula, under contract to the National Aeronautics and Space Administration.
SMS-Based Medical Diagnostic Telemetry Data Transmission Protocol for Medical Sensors
Townsend, Ben; Abawajy, Jemal; Kim, Tai-Hoon
2011-01-01
People with special medical monitoring needs can, these days, be sent home and remotely monitored through the use of data logging medical sensors and a transmission base-station. While this can improve quality of life by allowing the patient to spend most of their time at home, most current technologies rely on hardwired landline technology or expensive mobile data transmissions to transmit data to a medical facility. The aim of this paper is to investigate and develop an approach to increase the freedom of a monitored patient and decrease costs by utilising mobile technologies and SMS messaging to transmit data from patient to medico. To this end, we evaluated the capabilities of SMS and propose a generic communications protocol which can work within the constraints of the SMS format, but provide the necessary redundancy and robustness to be used for the transmission of non-critical medical telemetry from data logging medical sensors. PMID:22163845
Baroi, Sidney; McNamara, Renae J; McKenzie, David K; Gandevia, Simon; Brodie, Matthew A
2018-06-01
Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality. Advances in remote technologies and telemedicine provide new ways to monitor respiratory function and improve chronic disease management. However, telemedicine does not always include remote respiratory assessments, and the current state of knowledge for people with COPD has not been evaluated. Systematically review the use of remote respiratory assessments in people with COPD, including the following questions: What devices have been used? Can acute exacerbations of chronic obstructive pulmonary disease (AECOPD) be predicted by using remote devices? Do remote respiratory assessments improve health-related outcomes? The review protocol was registered (PROSPERO 2016:CRD42016049333). MEDLINE, EMBASE, and COMPENDEX databases were searched for studies that included remote respiratory assessments in people with COPD. A narrative synthesis was then conducted by two reviewers according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Fifteen studies met the inclusion criteria. Forced expiratory volume assessed daily by using a spirometer was the most common modality. Other measurements included resting respiratory rate, respiratory sounds, and end-tidal carbon dioxide level. Remote assessments had high user satisfaction. Benefits included early detection of AECOPD, improved health-related outcomes, and the ability to replace hospital care with a virtual ward. Remote respiratory assessments are feasible and when combined with sufficient organizational backup can improve health-related outcomes in some but not all cohorts. Future research should focus on the early detection, intervention, and rehabilitation for AECOPD in high-risk people who have limited access to best care and investigate continuous as well as intermittent monitoring.
Proceedings of the 8th International Symposium on Remote Sensing of Environment, volume 1
NASA Technical Reports Server (NTRS)
Cook, J. J.
1972-01-01
These Proceedings contain papers presented at the Eighth International Symposium on Remote Sensing of Environment, held October 2nd through 6th, 1972, on the campus of the University of Michigan. The symposium was conducted by the Center for Remote Sensing Information and Analysis of the Environmental Research Institute of Michigan (formerly the University of Michigan's Willow Run Laboratories) as a part of a continuing program investigating current activities in the field of remote sensing. Presentations include those on the use of this technology by regional governmental units and by federal governmental agencies, as well as various applications in monitoring and managing the earth's resources and man's global environment. Ground-based, airborne, and spaceborne sensor systems and manual and machine-assisted data analysis and interpretation are included.
Printed soft-electronics for remote body monitoring
NASA Astrophysics Data System (ADS)
Mantysalo, Matti; Vuorinen, Tiina; Jeihani, Vala; Vehkaoja, Antti
2017-08-01
Wearable electronics has emerged into the consumer markets over the past few years. Wrist worn and textile integrated devices are the most common apparatuses for unobtrusive monitoring in sports and wellness sectors. Disposable patches and bandages, however, represent the new era of wearable electronics. Soft and stretchable electronics is the enabling technology of this paradigm shift. It can conform to temporary transfer tattoo and deform with the skin without detachment or fracture. In this paper, we focus on screen-printed soft-electronics for remote body monitoring. We will present a fabrication process of a skin conformable electrode bandage designed for long-term outpatient electrocardiography (ECG) monitoring. The soft bandage is designed to be attached to the patient chest and miniaturized data collection device is connected to the bandage via Micro-USB connector. The fabricated bandage is tested in short exercise as well as continued long-term (72 hours) monitoring during normal daily activities. The attained quality of the measured ECG signals is fully satisfactory for rhythm-based cardiac analysis also during moderate-intensity exercise. After pre-processing, the signals could be used also for more profound morphological analysis of ECG wave shapes.
Lessons Learned from a Collaborative Sensor Web Prototype
NASA Technical Reports Server (NTRS)
Ames, Troy; Case, Lynne; Krahe, Chris; Hess, Melissa; Hennessy, Joseph F. (Technical Monitor)
2002-01-01
This paper describes the Sensor Web Application Prototype (SWAP) system that was developed for the Earth Science Technology Office (ESTO). The SWAP is aimed at providing an initial engineering proof-of-concept prototype highlighting sensor collaboration, dynamic cause-effect relationship between sensors, dynamic reconfiguration, and remote monitoring of sensor webs.
Web Based Seismological Monitoring (wbsm)
NASA Astrophysics Data System (ADS)
Giudicepietro, F.; Meglio, V.; Romano, S. P.; de Cesare, W.; Ventre, G.; Martini, M.
Over the last few decades the seismological monitoring systems have dramatically improved tanks to the technological advancements and to the scientific progresses of the seismological studies. The most modern processing systems use the network tech- nologies to realize high quality performances in data transmission and remote controls. Their architecture is designed to favor the real-time signals analysis. This is, usually, realized by adopting a modular structure that allow to easy integrate any new cal- culation algorithm, without affecting the other system functionalities. A further step in the seismic processing systems evolution is the large use of the web based appli- cations. The web technologies can be an useful support for the monitoring activities allowing to automatically publishing the results of signals processing and favoring the remote access to data, software systems and instrumentation. An application of the web technologies to the seismological monitoring has been developed at the "Os- servatorio Vesuviano" monitoring center (INGV) in collaboration with the "Diparti- mento di Informatica e Sistemistica" of the Naples University. A system named Web Based Seismological Monitoring (WBSM) has been developed. Its main objective is to automatically publish the seismic events processing results and to allow displaying, analyzing and downloading seismic data via Internet. WBSM uses the XML tech- nology for hypocentral and picking parameters representation and creates a seismic events data base containing parametric data and wave-forms. In order to give tools for the evaluation of the quality and reliability of the published locations, WBSM also supplies all the quality parameters calculated by the locating program and allow to interactively display the wave-forms and the related parameters. WBSM is a modular system in which the interface function to the data sources is performed by two spe- cific modules so that to make it working in conjunction with a generic data source it is sufficient to modify or substitute the interface modules. WBSM is running at the "Osservatorio Vesuviano" Monitoring Center since the beginning of 2001 and can be visited at http://ov.ingv.it.
Hernández-Madrid, Antonio; Lewalter, Thorsten; Proclemer, Alessandro; Pison, Laurent; Lip, Gregory Y H; Blomstrom-Lundqvist, Carina
2014-01-01
The aim of this European Heart Rhythm Association survey was to provide an insight into the current use of remote monitoring for cardiac implantable electronic devices in Europe. The following topics were explored: use of remote monitoring, infrastructure and organization, patient selection and benefits. Centres using remote monitoring reported performing face-to-face visits less frequently. In many centres (56.9%), a nurse reviews all the data and forwards them to the responsible physician. The majority of the centres (91.4%) stated that remote monitoring is best used in patients with implantable cardioverter-defibrillators and those live far from the hospital (76.6% top benefit). Supraventricular and ventricular arrhythmias were reported to be the major events detected earlier by remote monitoring. Remote monitoring will have a significant impact on device management.
Real-Time Mapping Spectroscopy on the Ground, in the Air, and in Space
NASA Astrophysics Data System (ADS)
Thompson, D. R.; Allwood, A.; Chien, S.; Green, R. O.; Wettergreen, D. S.
2016-12-01
Real-time data interpretation can benefit both remote in situ exploration and remote sensing. Basic analyses at the sensor can monitor instrument performance and reveal invisible science phenomena in real time. This promotes situational awareness for remote robotic explorers or campaign decision makers, enabling adaptive data collection, reduced downlink requirements, and coordinated multi-instrument observations. Fast analysis is ideal for mapping spectrometers providing unambiguous, quantitative geophysical measurements. This presentation surveys recent computational advances in real-time spectroscopic analysis for Earth science and planetary exploration. Spectral analysis at the sensor enables new operations concepts that significantly improve science yield. Applications include real-time detection of fugitive greenhouse emissions by airborne monitoring, real-time cloud screening and mineralogical mapping by orbital spectrometers, and adaptive measurement by the PIXL instrument on the Mars 2020 rover. Copyright 2016 California Institute of Technology. All Rights Reserved. We acknowledge support of the US Government, NASA, the Earth Science Division and Terrestrial Ecology program.
Remote Imaging Applied to Schistosomiasis Control: The Anning River Project
NASA Technical Reports Server (NTRS)
Seto, Edmund Y. W.; Maszle, Don R.; Spear, Robert C.; Gong, Peng
1997-01-01
The use of satellite imaging to remotely detect areas of high risk for transmission of infectious disease is an appealing prospect for large-scale monitoring of these diseases. The detection of large-scale environmental determinants of disease risk, often called landscape epidemiology, has been motivated by several authors (Pavlovsky 1966; Meade et al. 1988). The basic notion is that large-scale factors such as population density, air temperature, hydrological conditions, soil type, and vegetation can determine in a coarse fashion the local conditions contributing to disease vector abundance and human contact with disease agents. These large-scale factors can often be remotely detected by sensors or cameras mounted on satellite or aircraft platforms and can thus be used in a predictive model to mark high risk areas of transmission and to target control or monitoring efforts. A review of satellite technologies for this purpose was recently presented by Washino and Wood (1994) and Hay (1997) and Hay et al. (1997).
Böttcher, Hannes; Eisbrenner, Katja; Fritz, Steffen; Kindermann, Georg; Kraxner, Florian; McCallum, Ian; Obersteiner, Michael
2009-01-01
Background Negotiations on a future climate policy framework addressing Reduced Emissions from Deforestation and Degradation (REDD) are ongoing. Regardless of how such a framework will be designed, many technical solutions of estimating forest cover and forest carbon stock change exist to support policy in monitoring and accounting. These technologies typically combine remotely sensed data with ground-based inventories. In this article we assess the costs of monitoring REDD based on available technologies and requirements associated with key elements of REDD policy. Results We find that the design of a REDD policy framework (and specifically its rules) can have a significant impact on monitoring costs. Costs may vary from 0.5 to 550 US$ per square kilometre depending on the required precision of carbon stock and area change detection. Moreover, they follow economies of scale, i.e. single country or project solutions will face relatively higher monitoring costs. Conclusion Although monitoring costs are relatively small compared to other cost items within a REDD system, they should be shared not only among countries but also among sectors, because an integrated monitoring system would have multiple benefits for non-REDD management. Overcoming initialization costs and unequal access to monitoring technologies is crucial for implementation of an integrated monitoring system, and demands for international cooperation. PMID:19709413
A TinyOS-based wireless neural interface.
Farshchi, Shahin; Mody, Istvan; Judy, Jack W
2004-01-01
The overlay of a neural interface upon a TinyOS-based sensing and communication platform is described. The system amplifies, digitally encodes, and transmits two EEG channels of neural signals from an un-tethered subject to a remote gateway, which routes the signals to a client PC. This work demonstrates the viability of the TinyOS-based sensor technology as a foundation for chronic remote biological monitoring applications, and thus provides an opportunity to create a system that can leverage from the frequent networking and communications advancements being made by the global TinyOS-development community.
NASA Technical Reports Server (NTRS)
Caudill, C. E.; Hatch, R. E.
1985-01-01
An account is given of the activities and accomplishments to date of the U.S. Department of Agriculture's Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS) program, which is a cooperative venture with NASA and the Departments of the Interior and of Commerce. AgRISTARS research activities encompass early warning and crop condition assessment, inventory technology development for production forecasting, crop yield model development, soil moisture monitoring, domestic crops and land cover sensing, renewable resources inventory, and conservation and pollution assessment.
Advancements in remote physiological measurement and applications in human-computer interaction
NASA Astrophysics Data System (ADS)
McDuff, Daniel
2017-04-01
Physiological signals are important for tracking health and emotional states. Imaging photoplethysmography (iPPG) is a set of techniques for remotely recovering cardio-pulmonary signals from video of the human body. Advances in iPPG methods over the past decade combined with the ubiquity of digital cameras presents the possibility for many new, lowcost applications of physiological monitoring. This talk will highlight methods for recovering physiological signals, work characterizing the impact of video parameters and hardware on these measurements, and applications of this technology in human-computer interfaces.
NASA Astrophysics Data System (ADS)
Moskalenko, Irina V.; Shecheglov, Djolinard A.; Rogachev, Aleksei P.; Avdonin, Aleksandr A.; Molodtsov, Nikolai A.
1999-01-01
The lidar remote sensing techniques are powerful for monitoring of gaseous toxic species in atmosphere over wide areas. The paper presented describes design, development and field testing of Mobile Lidar System (MLS) based on utilization of Differential Absorption Lidar (DIAL) technique. The activity is performed by Russian Research Center 'Kurchatov Institute' and Research Institute of Pulse Technique within the project 'Mobile Remote SEnsing System Based on Tunable Laser Transmitter for Environmental Monitoring' under funding of International Scientific and Technology Center Moscow. A brief description of MLS is presented including narrowband transmitter, receiver, system steering, data acquisition subsystem and software. MLS is housed in a mobile truck and is able to provide 3D mapping of gaseous species. Sulfur dioxide and elemental mercury were chosen as basic atmospheric pollutants for field test of MLS. The problem of anthropogenic ozone detection attracts attention due to increase traffic in Moscow. The experimental sites for field testing are located in Moscow Region. Examples of field DIAL measurements will be presented. Application of remote sensing to toxic species near-real time measurements is now under consideration. The objective is comparison of pollution level in working zone with maximum permissible concentration of hazardous pollutant.
Lidar system for air-pollution monitoring over urban areas
NASA Astrophysics Data System (ADS)
Moskalenko, Irina V.; Shcheglov, Djolinard A.; Molodtsov, Nikolai A.
1997-05-01
The atmospheric environmental situation over the urban area of a large city is determined by a complex combination of anthropogenic pollution and meteorological factors. The efficient way to provide three-dimensional mapping of gaseous pollutants over wide areas is utilization of lidar systems employing tunable narrowband transmitters. The paper presented describes activity of RRC 'Kurchatov Institute' in the field of lidar atmospheric monitoring. The project 'mobile remote sensing system based on tunable laser transmitter for environmental monitoring' is developed under financial support of International Scientific and Technology Center (Moscow). The objective of the project is design, construction and field testing of a DIAL-technique system. The lidar transmitter consists of an excimer laser pumping dye laser, BBO crystal frequency doubler, and scanning flat mirror. Sulfur dioxide and atomic mercury have been selected as pollutants for field tests of the lidar system under development. A recent large increase in Moscow traffic stimulated taking into consideration also the remote sensing of lower troposphere ozone because of the photochemical smog problem. The status of the project is briefly discussed. The current activity includes also collecting of environmental data relevant to lidar remote sensing. Main attention is paid to pollutant concentration levels over Moscow city and Moscow district areas.
Locusts and remote sensing: a review
NASA Astrophysics Data System (ADS)
Latchininsky, Alexandre V.
2013-01-01
A dozen species of locusts (Orthoptera: Acrididae) are a major threat to food security worldwide. Their outbreaks occur on every continent except Antarctica, threatening the livelihood of 10% of the world's population. The locusts are infamous for their voracity, polyphagy, and capacity for long-distance migrations. Decades of research revealed very complex bio-ecology of locusts. They exist in two, inter-convertible and density-dependent states, or "phases." Despite the evident progress in understanding locust behavior, our ability to predict and manage locust outbreaks remains insufficient, as evidenced by locust plagues still occurring during the 21st century. One of the main reasons is that locusts typically inhabit remote and scarcely populated areas, and their distribution ranges often spread across continents. This creates tremendous obstacles for locust population monitoring and control. Traditional ground locust surveys are inadequate to address the enormous spatial scale of the locust problem in a limited window of time dictated by the pest's development. Remote sensing (satellite information) appears a promising tool in locust monitoring. Satellite data are increasingly used for monitoring and forecasting two locust species, the desert and the Australian plague locust. However, applications of this geospatial technology to other locust species remain rare.
Rationale and design of the health economics evaluation registry for remote follow-up: TARIFF.
Ricci, Renato P; D'Onofrio, Antonio; Padeletti, Luigi; Sagone, Antonio; Vicentini, Alfredo; Vincenti, Antonio; Morichelli, Loredana; Cavallaro, Ciro; Ricciardi, Giuseppe; Lombardi, Leonida; Fusco, Antonio; Rovaris, Giovanni; Silvestri, Paolo; Guidotto, Tiziana; Pollastrelli, Annalisa; Santini, Massimo
2012-11-01
The aims of the study are to develop a cost-minimization analysis from the hospital perspective and a cost-effectiveness analysis from the third payer standpoint, based on direct estimates of costs and QOL associated with remote follow-ups, using Merlin@home and Merlin.net, compared with standard ambulatory follow-ups, in the management of ICD and CRT-D recipients. Remote monitoring systems can replace ambulatory follow-ups, sparing human and economic resources, and increasing patient safety. TARIFF is a prospective, controlled, observational study aimed at measuring the direct and indirect costs and quality of life (QOL) of all participants by a 1-year economic evaluation. A detailed set of hospitalized and ambulatory healthcare costs and losses of productivity that could be directly influenced by the different means of follow-ups will be collected. The study consists of two phases, each including 100 patients, to measure the economic resources consumed during the first phase, associated with standard ambulatory follow-ups, vs. the second phase, associated with remote follow-ups. Remote monitoring systems enable caregivers to better ensure patient safety and the healthcare to limit costs. TARIFF will allow defining the economic value of remote ICD follow-ups for Italian hospitals, third payers, and patients. The TARIFF study, based on a cost-minimization analysis, directly comparing remote follow-up with standard ambulatory visits, will validate the cost effectiveness of the Merlin.net technology, and define a proper reimbursement schedule applicable for the Italian healthcare system. NCT01075516.
Perspectives of methods of laser monitoring of the atmosphere and sea surface
NASA Astrophysics Data System (ADS)
Pashayev, Arif; Tunaboylu, Bahadir; Usta, Metin; Sadixov, Ilham; Allahverdiyev, Kerim
2016-01-01
Laser monitoring (remote sensing) may be considered as the science of collecting and interpreting information about the atmosphere, earth and sea using sensors on earth, on platforms in our atmosphere (airplanes, balloons) or in space (satellites) without being in direct physical contact with them. Remote sensing by LIDARs (Light Identification Detection and Ranging) has wide applications as technique to probe the Earth's atmosphere, ocean and land surfaces. LIDARs are widely used to get knowledge of spatial and temporal variations in meteorological quantities (e.g. temperature, humidity, clouds and aerosol properties) and to monitor the changes in these quantities on different timescales. Subject of the present work is quite wide. It is rather difficult to perform analysis and to provide full knowledge about existing information. In the present work, in addition to the literature data, the information will be provided also about KA-09 aerosol LIDAR developed at the Marmara Research Centre of TÜBITAK (Turkish Scientific and technological Research Council) and also about KA-14 LIDAR developed at the National Aviation Academy of Azerbaijan for remote sensing of contaminations on water surfaces taking place during oil-gas production. The main goal of this paper is to give students insight in different remote sensing instruments and techniques (including their perspectives) that are used for the derivation of meteorological quantities and obtaining the information about water surface.
Lin, Pao-Hwa; Intille, Stephen; Bennett, Gary; Bosworth, Hayden B; Corsino, Leonor; Voils, Corrine; Grambow, Steven; Lazenka, Tony; Batch, Bryan C; Tyson, Crystal; Svetkey, Laura P
2015-12-01
The obesity epidemic has spread to young adults, and obesity is a significant risk factor for cardiovascular disease. The prominence and increasing functionality of mobile phones may provide an opportunity to deliver longitudinal and scalable weight management interventions in young adults. The aim of this article is to describe the design and development of the intervention tested in the Cell Phone Intervention for You study and to highlight the importance of adaptive intervention design that made it possible. The Cell Phone Intervention for You study was a National Heart, Lung, and Blood Institute-sponsored, controlled, 24-month randomized clinical trial comparing two active interventions to a usual-care control group. Participants were 365 overweight or obese (body mass index≥25 kg/m2) young adults. Both active interventions were designed based on social cognitive theory and incorporated techniques for behavioral self-management and motivational enhancement. Initial intervention development occurred during a 1-year formative phase utilizing focus groups and iterative, participatory design. During the intervention testing, adaptive intervention design, where an intervention is updated or extended throughout a trial while assuring the delivery of exactly the same intervention to each cohort, was employed. The adaptive intervention design strategy distributed technical work and allowed introduction of novel components in phases intended to help promote and sustain participant engagement. Adaptive intervention design was made possible by exploiting the mobile phone's remote data capabilities so that adoption of particular application components could be continuously monitored and components subsequently added or updated remotely. The cell phone intervention was delivered almost entirely via cell phone and was always-present, proactive, and interactive-providing passive and active reminders, frequent opportunities for knowledge dissemination, and multiple tools for self-tracking and receiving tailored feedback. The intervention changed over 2 years to promote and sustain engagement. The personal coaching intervention, alternatively, was primarily personal coaching with trained coaches based on a proven intervention, enhanced with a mobile application, but where all interactions with the technology were participant-initiated. The complexity and length of the technology-based randomized clinical trial created challenges in engagement and technology adaptation, which were generally discovered using novel remote monitoring technology and addressed using the adaptive intervention design. Investigators should plan to develop tools and procedures that explicitly support continuous remote monitoring of interventions to support adaptive intervention design in long-term, technology-based studies, as well as developing the interventions themselves. © The Author(s) 2015.
Zhang, Pu; Kumabe, Akinoubu; Kogure, Yuichi; Akutagawa, Masatake; Kinouchi, Yohsuke; Zhang, Qinyu
2008-01-01
As a combination of medical information and Telecommunication technologies, telemedicine plays a more and more important role in supporting doctors to diagnose and taking care of people's daily health. It is also an appropriate means to solve the conflict between aging of population and inadequacy of doctors, which are the actual condition and inevitable developing trend of the society not only in developed countries. In this paper, some new functions are developed for a ICU/CCU Remote Monitoring System using a 3G mobile phone. Furthermore, some evaluations of the system have been implied on several different mobile phones. The system is anticipated to be adopted by hospitals for its accuracy and real-time performance to supporting telediagnosis for patients in ICU/CCU.
Remote battlefield observer technology (REBOT)
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco O.; Uhlmann, Jeffrey K.; Julier, Simon J.; Kuo, Eddy
1999-07-01
Battlefield situation awareness is the most fundamental prerequisite for effective command and control. Information about the state of the battlefield must be both timely and accurate. Imagery data is of particular importance because it can be directly used to monitor the deployment of enemy forces in a given area of interest, the traversability of the terrain in that area, as well as many other variables that are critical for tactical and force level planning. In this paper we describe prototype REmote Battlefield Observer Technology (REBOT) that can be deployed at specified locations and subsequently tasked to transmit high resolution panoramic imagery of its surrounding area. Although first generation REBOTs will be stationary platforms, the next generation will be autonomous ground vehicles capable of transporting themselves to specified locations. We argue that REBOT fills a critical gap in present situation awareness technologies. We expect to provide results of REBOT tests to be conducted at the 1999 Marines Advanced Warfighting Demonstration.
Application of Sensor Technology for the Efficient Positioningand Assembling of Ship Blocks
NASA Astrophysics Data System (ADS)
Lee, Sangdon; SeongbaeEun; Jung, Jai Jin; Song, Hacheol
2010-09-01
This paper proposes the application of sensor technology to assemble ship blocks efficiently. A sensor-based monitoring system is designed and implemented to improve shipbuilding productivity by reducing the labor cost for the adjustment of adequate positioning between ship blocks during pre-erection or erection stage. For the real-time remote monitoring of relative distances between two ship blocks, sensor nodes are applied to measure the distances between corresponding target points on the blocks. Highly precise positioning data can be transferred to a monitoring server via wireless network, and analyzed to support the decision making which needs to determine the next construction process; further adjustment or seam welding between the ship blocks. The developed system is expected to put to practical use, and increase the productivity during ship blocks assembly.
Remote monitoring of heart failure: benefits for therapeutic decision making.
Martirosyan, Mihran; Caliskan, Kadir; Theuns, Dominic A M J; Szili-Torok, Tamas
2017-07-01
Chronic heart failure is a cardiovascular disorder with high prevalence and incidence worldwide. The course of heart failure is characterized by periods of stability and instability. Decompensation of heart failure is associated with frequent and prolonged hospitalizations and it worsens the prognosis for the disease and increases cardiovascular mortality among affected patients. It is therefore important to monitor these patients carefully to reveal changes in their condition. Remote monitoring has been designed to facilitate an early detection of adverse events and to minimize regular follow-up visits for heart failure patients. Several new devices have been developed and introduced to the daily practice of cardiology departments worldwide. Areas covered: Currently, special tools and techniques are available to perform remote monitoring. Concurrently there are a number of modern cardiac implantable electronic devices that incorporate a remote monitoring function. All the techniques that have a remote monitoring function are discussed in this paper in detail. All the major studies on this subject have been selected for review of the recent data on remote monitoring of HF patients and demonstrate the role of remote monitoring in the therapeutic decision making for heart failure patients. Expert commentary: Remote monitoring represents a novel intensified follow-up strategy of heart failure management. Overall, theoretically, remote monitoring may play a crucial role in the early detection of heart failure progression and may improve the outcome of patients.
Assessment of Technologies Used to Characterize Wildlife Populations in the Offshore Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duberstein, Corey A.; Tagestad, Jerry D.; Larson, Kyle B.
Wind energy development in the offshore environment can have both direct and indirect effects on wildlife, yet little is known about most species that use near-shore and offshore waters due in part to the difficulty involved in studying animals in remote, challenging environments. Traditional methods to characterize offshore wildlife populations include shipboard observations. Technological advances have provided researches with an array of technologies to gather information about fauna from afar. This report describes the use and application of radar, thermal and optical imagery, and acoustic detection technologies for monitoring birds, bats, and marine mammals in offshore environments.
Present statue of Japanese ERS-1 Project
NASA Technical Reports Server (NTRS)
Ishiwada, Yasufumi; Nemoto, Yoshiaki
1986-01-01
Earth Resources Satellite 1 (ERS-1) will be launched in the FY 1990 with the H-1 rocket from Tanegashima Space Center. ERS-1 will seek to firmly establish remote sensing technologies from space by using synthetic aperture radar and optical sensors, as well as primarily exploring for non-renewable resources and also monitoring for land use, agriculture, forestry, fishery, conservation of environment, prevention of disasters, and surveillance of coastal regions. ERS-1 is a joint project in which the main responsibility for the development of the mission equipment is assumed by the Agency of Industrial Science and Technology, MITI, and the Technology Research Association of Resources Remote Sensing System, while that for the satellite itself and launching rocket is assumed by the Science and Technology Agency (STA) and the National Space Development Agency (NASDA). In relation to this project, users have maintained a close working relationship with the manufacturers after submitting their requirements in 1984 on the specifications of the mission equipments. This missions parameters are outlined.
Aerospace technology can be applied to exploration 'back on earth'. [offshore petroleum resources
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1977-01-01
Applications of aerospace technology to petroleum exploration are described. Attention is given to seismic reflection techniques, sea-floor mapping, remote geochemical sensing, improved drilling methods and down-hole acoustic concepts, such as down-hole seismic tomography. The seismic reflection techniques include monitoring of swept-frequency explosive or solid-propellant seismic sources, as well as aerial seismic surveys. Telemetry and processing of seismic data may also be performed through use of aerospace technology. Sea-floor sonor imaging and a computer-aided system of geologic analogies for petroleum exploration are also considered.
Bluetooth Low Energy: Wireless Connectivity for Medical Monitoring
Omre, Alf Helge
2010-01-01
Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report “Worldwide Bluetooth Semiconductor 2008-2012 Forecast,” published November 2008, a forthcoming radio frequency communication (“wireless connectivity”) standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. PMID:20307407
Remote Sensing Applications with High Reliability in Changjiang Water Resource Management
NASA Astrophysics Data System (ADS)
Ma, L.; Gao, S.; Yang, A.
2018-04-01
Remote sensing technology has been widely used in many fields. But most of the applications cannot get the information with high reliability and high accuracy in large scale, especially for the applications using automatic interpretation methods. We have designed an application-oriented technology system (PIR) composed of a series of accurate interpretation techniques,which can get over 85 % correctness in Water Resource Management from the view of photogrammetry and expert knowledge. The techniques compose of the spatial positioning techniques from the view of photogrammetry, the feature interpretation techniques from the view of expert knowledge, and the rationality analysis techniques from the view of data mining. Each interpreted polygon is accurate enough to be applied to the accuracy sensitive projects, such as the Three Gorge Project and the South - to - North Water Diversion Project. In this paper, we present several remote sensing applications with high reliability in Changjiang Water Resource Management,including water pollution investigation, illegal construction inspection, and water conservation monitoring, etc.
Proceedings of the twelfth international symposium on remote sensing of environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This is the third of three volumes of the proceedings of the Twelfth International Symposium on Remote Sensing of Environment, held 20 to 26 April 1978 in Manila, Philippines. This symposium is part of a continuing program investigating current activities in the field of remote sensing. The meeting is intended to promote increased international cooperation in research, development and application of this technology, and to stimulate an exchange of information on all aspects of this multidisciplinary field through the presentation of reports on work planned, in progress or completed. Presentations include those concerned with the utilization of this technology inmore » various national and international programs as well as in numerous applications for monitoring and managing the earth's resources and man's global environment. Ground-based, airborne, and spaceborne sensor systems and both manual and machine-assisted data analysis and interpretation are included. All papers included in their entirety were abstracted and indexed for EDB/ERA.« less
Remote voice training: A case study on space shuttle applications, appendix C
NASA Technical Reports Server (NTRS)
Mollakarimi, Cindy; Hamid, Tamin
1990-01-01
The Tile Automation System includes applications of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. An integrated set of rapid prototyping testbeds was developed which include speech recognition and synthesis, laser imaging systems, distributed Ada programming environments, distributed relational data base architectures, distributed computer network architectures, multi-media workbenches, and human factors considerations. Remote voice training in the Tile Automation System is discussed. The user is prompted over a headset by synthesized speech for the training sequences. The voice recognition units and the voice output units are remote from the user and are connected by Ethernet to the main computer system. A supervisory channel is used to monitor the training sequences. Discussions include the training approaches as well as the human factors problems and solutions for this system utilizing remote training techniques.
NASA Technical Reports Server (NTRS)
Hall, J. B., Jr. (Compiler); Pearson, A. O. (Compiler)
1977-01-01
A cooperative operation was conducted in the New York Bight to evaluate the role of remote sensing technology to monitor ocean dumping. Six NASA remote sensing experiments were flown on the C-54, U-2, and C-130 NASA aircraft, while NOAA obtained concurrent sea truth information using helicopters and surface platforms. The experiments included: (1) a Radiometer/Scatterometer (RADSCAT), (2) an Ocean Color Scanner (OCS), (3) a Multichannel Ocean Color Sensor (MOCS), (4) four Hasselblad cameras, (5) an Ebert spectrometer; and (6) a Reconafax IV infrared scanner and a Precision Radiation Thermometer (PRT-5). The results of these experiments relative to the use of remote sensors to detect, quantify, and determine the dispersion of pollutants dumped into the New York Bight are presented.
There are approximately 160,000 small community and non-community drinking water treatment systems in the United States. According to recent estimates, small systems contribute to 94% of the Safe Drinking Water Act violations annually. A majority of these are for microbiological ...
There are approximately 160,000 small community and non-community drinking water treatment systems in the United States. According to recent estimates, small systems contribute to 94% of the Safe Drinking Water Act violations annually. A majority of these are for microbiological...
Techniques and Considerations for FIA forest fragmentation analysis
Andrew J. Lister; Tonya W. Lister; Rachel Riemann; Mike Hoppus
2002-01-01
The Forest Inventory and Analysis unit of the Northeastern Research Station (NEFIA) is charged with inventorying and monitoring the Nation's forests. NEFIA has not gathered much information on forest fragmentation, but recent developments in computing and remote sensing technologies now make it possible to assess forest fragmentation on a regional basis. We...
The biotransformation of the collected solid waste will be remotely monitored by measuring the accumulation of H2, CH4 and CO2 gases in the head-space of the collection chamber using an online gas analyzer. These gas levels will indicate the state of decomposition, which will ...
Smart homes - current features and future perspectives.
Chan, Marie; Campo, Eric; Estève, Daniel; Fourniols, Jean-Yves
2009-10-20
In an ageing world, maintaining good health and independence for as long as possible is essential. Instead of hospitalization or institutionalization, the elderly and disabled can be assisted in their own environment 24h a day with numerous 'smart' devices. The concept of the smart home is a promising and cost-effective way of improving home care for the elderly and the disabled in a non-obtrusive way, allowing greater independence, maintaining good health and preventing social isolation. Smart homes are equipped with sensors, actuators, and/or biomedical monitors. The devices operate in a network connected to a remote centre for data collection and processing. The remote centre diagnoses the ongoing situation and initiates assistance procedures as required. The technology can be extended to wearable and in vivo implantable devices to monitor people 24h a day both inside and outside the house. This review describes a selection of projects in developed countries on smart homes examining the various technologies available. Advantages and disadvantages, as well as the impact on modern society, are discussed. Finally, future perspectives on smart homes as part of a home-based health care network are presented.
Educational activities of remote sensing archaeology (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasilki; Themistocleous, Kyriacos; Cuca, Branka; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter
2016-10-01
Remote sensing science is increasingly being used to support archaeological and cultural heritage research in various ways. Satellite sensors either passive or active are currently used in a systematic basis to detect buried archaeological remains and to systematic monitor tangible heritage. In addition, airborne and low altitude systems are being used for documentation purposes. Ground surveys using remote sensing tools such as spectroradiometers and ground penetrating radars can detect variations of vegetation and soil respectively, which are linked to the presence of underground archaeological features. Education activities and training of remote sensing archaeology to young people is characterized of highly importance. Specific remote sensing tools relevant for archaeological research can be developed including web tools, small libraries, interactive learning games etc. These tools can be then combined and aligned with archaeology and cultural heritage. This can be achieved by presenting historical and pre-historical records, excavated sites or even artifacts under a "remote sensing" approach. Using such non-form educational approach, the students can be involved, ask, read, and seek to learn more about remote sensing and of course to learn about history. The paper aims to present a modern didactical concept and some examples of practical implementation of remote sensing archaeology in secondary schools in Cyprus. The idea was built upon an ongoing project (ATHENA) focused on the sue of remote sensing for archaeological research in Cyprus. Through H2020 ATHENA project, the Remote Sensing Science and Geo-Environment Research Laboratory at the Cyprus University of Technology (CUT), with the support of the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR) aims to enhance its performance in all these new technologies.
NASA Astrophysics Data System (ADS)
Becker-Reshef, I.; Justice, C. O.
2012-12-01
Earth observation data, owing to their synoptic, timely and repetitive coverage, have long been recognized as an indispensible tool for agricultural monitoring at local to global scales. Research and development over the past several decades in the field of agricultural remote sensing has led to considerable capacity for crop monitoring within the current operational monitoring systems. These systems are relied upon nationally and internationally to provide crop outlooks and production forecasts as the growing season progresses. This talk will discuss the legacy and current state of operational agricultural monitoring using earth observations. In the US, the National Aeronautics and Space Administration (NASA) and the US Department of Agriculture (USDA) have been collaborating to monitor global agriculture from space since the 1970s. In 1974, the USDA, NASA and National Oceanic and Atmospheric Administration (NOAA) initiated the Large Area Crop Inventory Experiment (LACIE) which demonstrated that earth observations could provide vital information on crop production, with unprecedented accuracy and timeliness, prior to harvest. This experiment spurred many agencies and researchers around the world to further develop and evaluate remote sensing technologies for timely, large area, crop monitoring. The USDA and NASA continue to closely collaborate. More recently they jointly initiated the Global Agricultural Monitoring Project (GLAM) to enhance the agricultural monitoring and the crop-production estimation capabilities of the USDA Foreign Agricultural Service by using the new generation of NASA satellite observations including from MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments. Internationally, in response to the growing calls for improved agricultural information, the Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted by the G20 as part of the action plan on food price volatility and agriculture. The goal of GEOGLAM is to enhance agricultural production estimates through leveraging advances in the research domain and in satellite technologies, and integrating these into the existing operational monitoring systems.
Arctic Glass: Innovative Consumer Technology in Support of Arctic Research
NASA Astrophysics Data System (ADS)
Ruthkoski, T.
2015-12-01
The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.
Nanosatellite program at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, D.A.; Kern, J.P.; Schoeneman, J.L.
1999-11-11
The concept of building extremely small satellites which, either independently or as a collective, can perform missions which are comparable to their much larger cousins, has fascinated scientists and engineers for several years now. In addition to the now commonplace microelectronic integrated circuits, the more recent advent of technologies such as photonic integrated circuits (PIC's) and micro-electromechanical systems (MEMS) have placed such a goal within their grasp. Key to the acceptance of this technology will be the ability to manufacture these very small satellites in quantity without sacrificing their performance or versatility. In support of its nuclear treaty verification, proliferationmore » monitoring and other remote sensing missions, Sandia National laboratories has had a 35-year history of providing highly capable systems, densely packaged for unintrusive piggyback missions on government satellites. As monitoring requirements have become more challenging and remote sensing technologies become more sophisticated, packaging greater capability into these systems has become a requirement. Likewise, dwindling budgets are pushing satellite programs toward smaller and smaller platforms, reinforcing the need for smaller, cheaper satellite systems. In the next step of its miniaturization plan, Sandia has begun development of technologies for a highly integrated miniature satellite. The focus of this development is to achieve nanosat or smaller dimensions while maintaining significant capability utilizing semiconductor wafer-level integration and, at the same time promoting affordability through modular generic construction.« less
The growing impact of satellite data in daily life
NASA Astrophysics Data System (ADS)
Stramondo, Salvatore
2015-04-01
Satellite images have a growing role in our daily life. Weather previsions, telecommunications, environmental planning, disaster mitigation and monitoring: these are only some of the fieldworks where space remote sensing data, and related processing techniques, provide extremely useful information to policy/decision makers, scientists, or to the "simple" citizen. The demonstration of the level of attention provided by the International Community to the impact of new technologies and satellite Earth Observation, in particular, onto everyday life is testified by the recent and forthcoming project calls. Horizon 2020, for instance, identified "Societal challenges" and "Science with and for Society" among the main pillars. In sub-themes we may read references to the "Environment", "Secure societies", "Climate changes", and many others, most of which soliciting the use of remote sensing technologies. In such scenario the scientists should be conscious about the capabilities and the implications in applying new technologies. Recent examples might be explanatory. Satellite data properly managed can be used to measure millimetric and/or centimetric movements of buildings and infrastructures. It has been demonstrated how long term monitoring of urban areas detecting pre-collapse deformations might provide useful hints to prevent such dramatic events. Or, in different frameworks, satellite data can be an advanced instrument for intelligence and military purposes. With such premises, ethic issues assume a key role to properly address the use of satellite technologies.
Hughes, Laurie; Wang, Xinheng; Chen, Tao
2012-01-01
The issues inherent in caring for an ever-increasing aged population has been the subject of endless debate and continues to be a hot topic for political discussion. The use of hospital-based facilities for the monitoring of chronic physiological conditions is expensive and ties up key healthcare professionals. The introduction of wireless sensor devices as part of a Wireless Body Area Network (WBAN) integrated within an overall eHealth solution could bring a step change in the remote management of patient healthcare. Sensor devices small enough to be placed either inside or on the human body can form a vital part of an overall health monitoring network. An effectively designed energy efficient WBAN should have a minimal impact on the mobility and lifestyle of the patient. WBAN technology can be deployed within a hospital, care home environment or in the patient's own home. This study is a review of the existing research in the area of WBAN technology and in particular protocol adaptation and energy efficient cross-layer design. The research reviews the work carried out across various layers of the protocol stack and highlights how the latest research proposes to resolve the various challenges inherent in remote continual healthcare monitoring. PMID:23202185
Research on optimal path planning algorithm of task-oriented optical remote sensing satellites
NASA Astrophysics Data System (ADS)
Liu, Yunhe; Xu, Shengli; Liu, Fengjing; Yuan, Jingpeng
2015-08-01
GEO task-oriented optical remote sensing satellite, is very suitable for long-term continuous monitoring and quick access to imaging. With the development of high resolution optical payload technology and satellite attitude control technology, GEO optical remote sensing satellites will become an important developing trend for aerospace remote sensing satellite in the near future. In the paper, we focused on GEO optical remote sensing satellite plane array stare imaging characteristics and real-time leading mission of earth observation mode, targeted on satisfying needs of the user with the minimum cost of maneuver, and put forward the optimal path planning algorithm centered on transformation from geographic coordinate space to Field of plane, and finally reduced the burden of the control system. In this algorithm, bounded irregular closed area on the ground would be transformed based on coordinate transformation relations in to the reference plane for field of the satellite payload, and then using the branch and bound method to search for feasible solutions, cutting off the non-feasible solution in the solution space based on pruning strategy; and finally trimming some suboptimal feasible solutions based on the optimization index until a feasible solution for the global optimum. Simulation and visualization presentation software testing results verified the feasibility and effectiveness of the strategy.
Bart, Mark; Williams, David E; Ainslie, Bruce; McKendry, Ian; Salmond, Jennifer; Grange, Stuart K; Alavi-Shoshtari, Maryam; Steyn, Douw; Henshaw, Geoff S
2014-04-01
A cost-efficient technology for accurate surface ozone monitoring using gas-sensitive semiconducting oxide (GSS) technology, solar power, and automated cell-phone communications was deployed and validated in a 50 sensor test-bed in the Lower Fraser Valley of British Columbia, over 3 months from May-September 2012. Before field deployment, the entire set of instruments was colocated with reference instruments for at least 48 h, comparing hourly averaged data. The standard error of estimate over a typical range 0-50 ppb for the set was 3 ± 2 ppb. Long-term accuracy was assessed over several months by colocation of a subset of ten instruments each at a different reference site. The differences (GSS-reference) of hourly average ozone concentration were normally distributed with mean -1 ppb and standard deviation 6 ppb (6000 measurement pairs). Instrument failures in the field were detected using network correlations and consistency checks on the raw sensor resistance data. Comparisons with modeled spatial O3 fields demonstrate the enhanced monitoring capability of a network that was a hybrid of low-cost and reference instruments, in which GSS sensors are used both to increase station density within a network as well as to extend monitoring into remote areas. This ambitious deployment exposed a number of challenges and lessons, including the logistical effort required to deploy and maintain sites over a summer period, and deficiencies in cell phone communications and battery life. Instrument failures at remote sites suggested that redundancy should be built into the network (especially at critical sites) as well as the possible addition of a "sleep-mode" for GSS monitors. At the network design phase, a more objective approach to optimize interstation distances, and the "information" content of the network is recommended. This study has demonstrated the utility and affordability of the GSS technology for a variety of applications, and the effectiveness of this technology as a means substantially and economically to extend the coverage of an air quality monitoring network. Low-cost, neighborhood-scale networks that produce reliable data can be envisaged.
Remote Monitoring to Reduce Heart Failure Readmissions.
Emani, Sitaramesh
2017-02-01
Rehospitalization for heart failure remains a challenge in the treatment of affected patients. The ability to remotely monitor patients for worsening heart failure may provide an avenue through which therapeutic interventions can be made to prevent a rehospitalization. Available data on remote monitoring to reduce heart failure rehospitalizations are reviewed within. Strategies to reduce readmissions include clinical telemonitoring, bioimpedance changes, biomarkers, and remote hemodynamic monitoring. Telemonitoring is readily available, but has low sensitivity and adherence. No data exist to demonstrate the efficacy of this strategy in reducing admissions. Bioimpedance offers improved sensitivity compared to telemonitoring, but has not demonstrated an ability to reduce hospitalizations and is currently limited to those patients who have separate indications for an implantable device. Biomarker levels have shown variable results in the ability to reduce hospitalizations and remain without definitive proof supporting their utilization. Remote hemodynamic monitoring has shown the strongest ability to reduce heart failure readmissions and is currently approved for this purpose. However, remote hemodynamic monitoring requires an invasive procedure and may not be cost-effective. All currently available strategies to reduce hospitalizations with remote monitoring have drawbacks and challenges. Remote hemodynamic monitoring is currently the most efficacious based on data, but is not without its own imperfections.
An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael
A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth{sup TM} technology to a PC.
An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components
NASA Astrophysics Data System (ADS)
Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael
2005-04-01
A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth™ technology to a PC.
NASA Astrophysics Data System (ADS)
Sudhakar, P.; Kalavathi, P.; Ramakrishna Rao, D.; Satyanarayna, M.
2014-12-01
Industrialization can no longer sustain without internalization of the concerns of the receiving environment and land-use. Increased awareness and public pressure, coupled with regulatory instruments and bodies exert constant pressure on industries to control their emissions to a level acceptable to the receiving environment. However, when a group of industries come-up together as an industrial estate, the cumulative impacts of all the industries together often challenges the expected/desired quality of receiving environment, requiring stringent pollution control and monitoring measures. Laser remote sensing techniques provide powerful tools for environmental monitoring. These methods provide range resolved measurements of concentrations of various gaseous pollutants and suspended particulate matter (SPM) not only in the path of the beam but over the entire area. A three dimensional mapping of the pollutants and their dispersal can be estimated using the laser remote sensing methods on a continuous basis. Laser Radar (Lidar) systems are the measurements technology used in the laser remote sensing methods. Differential absorption lidar (DIAL) and Raman Lidar technologies have proved to be very useful for remote sensing of air pollutants. DIAL and Raman lidar systems can be applied for range resolved measurements of molecules like SO2, NO2, O3 Hg, CO, C2H4, H2O, CH4, hydrocarbons etc. in real time on a continuous basis. This paper describes the design details of the DAIL and Raman lidar techniques for measurement of various hazardous air pollutants which are being released into the atmosphere by the chemical industries operating in the Bachupally industrial Estate area at Hyderabad, India. The relative merits of the two techniques have been studied and the minimum concentration of pollutants that can be measured using these systems are presented. A dispersion model of the air pollutants in the selected chemical industrial estates at Hyderabad has been developed.
Characterization, monitoring, and sensor technology catalogue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matalucci, R.V.; Esparza-Baca, C.; Jimenez, R.D.
1995-12-01
This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community.more » Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.« less
Investigating User Identification in Remote Patient Monitoring Devices.
Ondiege, Brian; Clarke, Malcolm
2017-09-13
With the increase in the number of people having a chronic disease, there is an increase in households having more than a single person suffering from the same chronic illness. One problem of monitoring such patients in their own home is that current devices have a limitation in the number of people who can use a single device. This study investigates the use of Near Field Communication (NFC) for identification in a multi-user environment. A mixed-method qualitative and quantitative approach was adopted, including focus groups, observations and a field trial. Data were collected in three phases. In Phase 1, five focus groups were conducted with patients to determine their beliefs, concerns and issues with using identification in remote patient monitoring devices. In Phase 2, participants were given a blood pressure monitor modified to include an NFC reader to enable identification. The modified device was given to patients living as a couple in the same household and both suffering from hypertension. Both patients used the device for a period of two weeks to observe their acceptance of the technology and determine their experience of usage. A total of 40 (20 couples) patients participated in the trial. Non-adherence to the full monitoring regimen was low and was mainly due to usability issues or commitments taking them away from the home and thus unable to take readings. After the trial period participants were invited to discuss their experiences with the technology in a focus group discussion (Phase 3), a total of five focus groups were conducted. Focus group discussions with the patients revealed that most participants liked using the system and were not apprehensive towards Healthcare Information Technology (HIT). The participants also had suggestions for improvements that could be made to the modified blood pressure monitor (such as, rechargeable in place batteries, integrate the components, easier to use cuff, and increased sensitivity of the NFC reader) that might improve the overall experience of the proposed technology and its acceptance. The study proposes a new framework, the Senior Patient Technology Acceptance Model (SPTAM) that offers an understanding of the needs of the elderly towards technology use and the factors that influence its acceptance. SPTAM emphasises that involving the patient in the early stages of development can lead to a more user-centred technology and help in identifying any underlying issues at an early stage, thus avoiding adding features which patients do not need. The findings from this empirical research can be used as recommendations to improve current RPM devices, save the NHS costs, inform standardization groups.
Investigating User Identification in Remote Patient Monitoring Devices
Clarke, Malcolm
2017-01-01
With the increase in the number of people having a chronic disease, there is an increase in households having more than a single person suffering from the same chronic illness. One problem of monitoring such patients in their own home is that current devices have a limitation in the number of people who can use a single device. This study investigates the use of Near Field Communication (NFC) for identification in a multi-user environment. Methods: A mixed-method qualitative and quantitative approach was adopted, including focus groups, observations and a field trial. Data were collected in three phases. In Phase 1, five focus groups were conducted with patients to determine their beliefs, concerns and issues with using identification in remote patient monitoring devices. In Phase 2, participants were given a blood pressure monitor modified to include an NFC reader to enable identification. The modified device was given to patients living as a couple in the same household and both suffering from hypertension. Both patients used the device for a period of two weeks to observe their acceptance of the technology and determine their experience of usage. A total of 40 (20 couples) patients participated in the trial. Non-adherence to the full monitoring regimen was low and was mainly due to usability issues or commitments taking them away from the home and thus unable to take readings. After the trial period participants were invited to discuss their experiences with the technology in a focus group discussion (Phase 3), a total of five focus groups were conducted. Focus group discussions with the patients revealed that most participants liked using the system and were not apprehensive towards Healthcare Information Technology (HIT). The participants also had suggestions for improvements that could be made to the modified blood pressure monitor (such as, rechargeable in place batteries, integrate the components, easier to use cuff, and increased sensitivity of the NFC reader) that might improve the overall experience of the proposed technology and its acceptance. Conclusion: The study proposes a new framework, the Senior Patient Technology Acceptance Model (SPTAM) that offers an understanding of the needs of the elderly towards technology use and the factors that influence its acceptance. SPTAM emphasises that involving the patient in the early stages of development can lead to a more user-centred technology and help in identifying any underlying issues at an early stage, thus avoiding adding features which patients do not need. The findings from this empirical research can be used as recommendations to improve current RPM devices, save the NHS costs, inform standardization groups. PMID:28952556
Suggestions for Formulating Collaborative Remote Sensing Emergency Plan Based on Case Studies
NASA Astrophysics Data System (ADS)
Liu, B.; Wang, F.; Zheng, X.; Qi, M.
2017-09-01
With the rapid development of the Remote Sensing (RS) technology, Remote Sensing Services for Emergency Monitoring (RSSEM) are playing a more and more important role in the field of emergency management, where the collaborative RS approaches (including such as Space-Air-Ground platforms) can provide the decision-makers a quick access to the detailed, real-time information about the emergencies. However, there are still some problems in the current mechanism of RSSEM, for example, the inappropriate choices of the collaborative RS approaches, the miscellaneous procedures and so on. It is urgent to formulate a collaborative RS emergency plan for regulating the applications of the RS monitoring approaches in order to be well prepared for the emergency management. In our studies, creating a good collaborative RS emergency plan is the main research objective. This paper is divided into four parts. The Part Ⅰ gives a brief introduction about the research background. The Part Ⅱ investigates four case studies to analyze the applications of the RS technologies under the guidance of the available RS related emergency plans, and then points out the existing problems in the mechanism of the RSSEM. The Part Ⅲ proposes our suggestions for formulating the collaborative RS emergency plan to explore the countermeasures of the problems pointed out in the Part Ⅱ. The last part concludes this paper and discusses the future work of the collaborative RS emergency plan.
Pacemaker remote monitoring in the pediatric population: is it a real solution?
Leoni, Loira; Padalino, Massimo; Biffanti, Roberta; Ferretto, Sonia; Vettor, Giulia; Corrado, Domenico; Stellin, Giovanni; Milanesi, Ornella; Iliceto, Sabino
2015-05-01
Clinical utility of remote monitoring of implantable cardiac devices has been previously demonstrated in several trials in the adult population. The aim of this study was to assess the clinical utility of remote monitoring in a pediatric population undergoing pacemakers implantation. The study population included 73 consecutive pediatric patients who received an implantable pacemaker. The remote device check was programmed for every 3 months and all patients had a yearly out-patient visit. Data on device-related events, hospitalization, and other clinical information were collected during remote checks and out-patient visits. During a mean follow-up of 18 ± 10 months, 470 remote transmissions were collected and analyzed. Two deaths were reported. Eight transmissions (1.7%) triggered an urgent out-patient visit. Twenty percent of transmissions reported evidence of significant clinical or technical events. All young patients and their families were very satisfied when using remote monitoring to replace out-patient visits. The ease in use, together with satisfaction and acceptance of remote monitoring in pediatric patients, brought very good results. The remote management of our pediatric population was safe and remote monitoring adequately replaced the periodic out-patient device checks without compromising patient safety. ©2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Meyer, F. J.; McAlpin, D. B.; Gong, W.; Ajadi, O.; Arko, S.; Webley, P. W.; Dehn, J.
2015-02-01
Remote sensing plays a critical role in operational volcano monitoring due to the often remote locations of volcanic systems and the large spatial extent of potential eruption pre-cursor signals. Despite the all-weather capabilities of radar remote sensing and its high performance in monitoring of change, the contribution of radar data to operational monitoring activities has been limited in the past. This is largely due to: (1) the high costs associated with radar data; (2) traditionally slow data processing and delivery procedures; and (3) the limited temporal sampling provided by spaceborne radars. With this paper, we present new data processing and data integration techniques that mitigate some of these limitations and allow for a meaningful integration of radar data into operational volcano monitoring decision support systems. Specifically, we present fast data access procedures as well as new approaches to multi-track processing that improve near real-time data access and temporal sampling of volcanic systems with SAR data. We introduce phase-based (coherent) and amplitude-based (incoherent) change detection procedures that are able to extract dense time series of hazard information from these data. For a demonstration, we present an integration of our processing system with an operational volcano monitoring system that was developed for use by the Alaska Volcano Observatory (AVO). Through an application to a historic eruption, we show that the integration of SAR into systems such as AVO can significantly improve the ability of operational systems to detect eruptive precursors. Therefore, the developed technology is expected to improve operational hazard detection, alerting, and management capabilities.
Carter, William Douglas; Paulson, Richard W.
1979-01-01
The rapid development of satellite technology, especially in the area of radio transmission and imaging systems, makes it possible to monitor dynamic surface phenomena of the Earth in considerable detail. The monitoring systems that have been developed are compatible with standard monitoring systems such as snow, stream, and rain gages; wind, temperature and humidity measuring instruments; tiltmeters and seismic event counters. Supported by appropriate power, radios and antennae, remote stations can be left unattended for at least 1 year and consistently relay local information via polar orbiting or geostationary satellites. These data, in conjunction with timely Landsat images, can provide a basis for more accurate estimates on snowfall, water runoff, reservoir level changes, flooding, drought effects, and vegetation trends and may be of help in forecasting volcanic eruptions. These types of information are critical for resource inventory and development, especially in developing countries where remote regions are commonly difficult to access. This paper introduces the reader to the systems available, describes their features and limitations, and provides suggestions on how to employ them. An extensive bibliography is provided for those who wish more information.
Assessment of polar climate change using satellite technology
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.
1988-01-01
Using results of selected studies, this paper highlights some of the problems that exist in the remote sensing of snow and ice, and demonstrates the importance of remote sensing for the study of snow and ice in determining the effect of temperature increase, due to the atmospheric CO2 increase, on the cryospheric features. Evidence obtained from NOAA, Nimbus, and other satellites, that may already indicate a global or at least a regional warming, includes an increase in permafrost temperature in northern Alaska and the retreat of many of the world's small glaciers in the last 100 years. It is emphasized that remote sensing is of major importance as the method of obtaining data for monitoring future changes in cryospheric features.
Passive in-home health and wellness monitoring: overview, value and examples.
Alwan, Majd
2009-01-01
Modern sensor and communication technology, coupled with advances in data analysis and artificial intelligence techniques, is causing a paradigm shift in remote management and monitoring of chronic disease. In-home monitoring technology brings the added benefit of measuring individualized health status and reporting it to the care provider and caregivers alike, allowing timely and targeted preventive interventions, even in home and community based settings. This paper presents a paradigm for geriatric care based on monitoring older adults passively in their own living settings through placing sensors in their living environments or the objects they use. Activity and physiological data can be analyzed, archived and mined to detect indicators of early disease onset or changes in health conditions at various levels. Examples of monitoring systems are discussed and results from field evaluation pilot studies are summarized. The approach has shown great promise for a significant value proposition to all the stakeholders involved in caring for older adults. The paradigm would allow care providers to extend their services into the communities they serve.
NASA Technical Reports Server (NTRS)
Stute, Robert A. (Inventor); Galloway, F. Houston (Inventor); Medelius, Pedro J. (Inventor); Swindle, Robert W. (Inventor); Bierman, Tracy A. (Inventor)
1996-01-01
A remote monitor alarm system monitors discrete alarm and analog power supply voltage conditions at remotely located communications terminal equipment. A central monitoring unit (CMU) is connected via serial data links to each of a plurality of remote terminal units (RTUS) that monitor the alarm and power supply conditions of the remote terminal equipment. Each RTU can monitor and store condition information of both discrete alarm points and analog power supply voltage points in its associated communications terminal equipment. The stored alarm information is periodically transmitted to the CMU in response to sequential polling of the RTUS. The number of monitored alarm inputs and permissible voltage ranges for the analog inputs can be remotely configured at the CMU and downloaded into programmable memory at each RTU. The CMU includes a video display, a hard disk memory, a line printer and an audio alarm for communicating and storing the alarm information received from each RTU.
Marziniak, Martin; Brichetto, Giampaolo; Feys, Peter; Meyding-Lamadé, Uta; Vernon, Karen
2018-01-01
Despite recent advances in multiple sclerosis (MS) care, many patients only infrequently access health care services, or are unable to access them easily, for reasons such as mobility restrictions, travel costs, consultation and treatment time constraints, and a lack of locally available MS expert services. Advances in mobile communications have led to the introduction of electronic health (eHealth) technologies, which are helping to improve both access to and the quality of health care services. As the Internet is now readily accessible through smart mobile devices, most people can take advantage of eHealth apps. The development of digital applications and remote communication technologies for patients with MS has increased rapidly in recent years. These apps are intended to complement traditional in-clinic approaches and can bring significant benefits to both patients with MS and health care providers (HCPs). For patients, such eHealth apps have been shown to improve outcomes and increase access to care, disease information, and support. These apps also help patients to participate actively in self-management, for example, by tracking adherence to treatment, changes in bladder and bowel habits, and activity and mood. For HCPs, MS eHealth solutions can simplify the multidisciplinary approaches needed to tailor MS management strategies to individual patients; facilitate remote monitoring of patient symptoms, adverse events, and outcomes; enable the efficient use of limited resources and clinic time; and potentially allow more timely intervention than is possible with scheduled face-to-face visits. These benefits are important because MS is a long-term, multifaceted chronic condition that requires ongoing monitoring, assessment, and management. We identified in the literature 28 eHealth solutions for patients with MS that fall within the four categories of screening and assessment, disease monitoring and self-management, treatment and rehabilitation, and advice and education. We review each solution, focusing on any clinical evidence supporting their use from prospective trials (including ASSESS MS, Deprexis, MSdialog, and the Multiple Sclerosis Performance Test) and consider the opportunities, barriers to adoption, and potential pitfalls of eHealth technologies in routine health care. PMID:29691208
Meyer, Michael L; Huey, Greg M
2006-05-01
This study utilized telemetric systems to sample microbes and pathogens in forest, burned forest, rangeland, and urban watersheds to assess surface water quality in northern New Mexico. Four sites included remote mountainous watersheds, prairie rangelands, and a small urban area. The telemetric system was linked to dataloggers with automated event monitoring equipment to monitor discharge, turbidity, electrical conductivity, water temperature, and rainfall during base flow and storm events. Site data stored in dataloggers was uploaded to one of three types of telemetry: 1) radio in rangeland and urban settings; 2) a conventional phone/modem system with a modem positioned at the urban/forest interface; and 3) a satellite system used in a remote mountainous burned forest watershed. The major variables affecting selection of each system were site access, distance, technology, and cost. The systems were compared based on operation and cost. Utilization of telecommunications systems in this varied geographic area facilitated the gathering of hydrologic and water quality data on a timely basis.
New problems and opportunities of oil spill monitoring systems
NASA Astrophysics Data System (ADS)
Barenboim, G. M.; Borisov, V. M.; Golosov, V. N.; Saveca, A. Yu.
2015-04-01
Emergency oil and oil products spills represent a great danger to the environment, including ecosystems, and to the population. New problems of such dangerous spills and methods of early detection are discussed in this paper. It is proposed to conduct assessment of biological hazards of such spills on the basis of data on the distribution of individual oil hydrocarbons within the column of the water body and computer predictions of their toxicity. Oil radioactivity, which is associated with uranium and thorium, is seen as the important aspect of the oil spill danger, especially in watercourses. The need for an automated monitoring system for the early detection of oil spills in water bodies is analysed. The proposed system consists of three subsystems. The first remote sensing subsystem is based on powerful fluorescent lidars; experimental results on lidar registration of oil pollution of water are reported. The second subsystem uses a network of automatic monitoring stations with contact detectors. The third subsystem is the combined sensor system based on remote and contact technologies.
Hale, Timothy M; Jethwani, Kamal; Kandola, Manjinder Singh; Saldana, Fidencio; Kvedar, Joseph C
2016-04-17
Heart failure (HF) is a chronic condition affecting nearly 5.7 million Americans and is a leading cause of morbidity and mortality. With an aging population, the cost associated with managing HF is expected to more than double from US $31 billion in 2012 to US $70 billion by 2030. Readmission rates for HF patients are high-25% are readmitted at 30 days and nearly 50% at 6 months. Low medication adherence contributes to poor HF management and higher readmission rates. Remote telehealth monitoring programs aimed at improved medication management and adherence may improve HF management and reduce readmissions. The primary goal of this randomized controlled pilot study is to compare the MedSentry remote medication monitoring system versus usual care in older HF adult patients who recently completed a HF telemonitoring program. We hypothesized that remote medication monitoring would be associated with fewer unplanned hospitalizations and emergency department (ED) visits, increased medication adherence, and improved health-related quality of life (HRQoL) compared to usual care. Participants were randomized to usual care or use of the remote medication monitoring system for 90 days. Twenty-nine participants were enrolled and the final analytic sample consisted of 25 participants. Participants completed questionnaires at enrollment and closeout to gather data on medication adherence, health status, and HRQoL. Electronic medical records were reviewed for data on baseline classification of heart function and the number of unplanned hospitalizations and ED visits during the study period. Use of the medication monitoring system was associated with an 80% reduction in the risk of all-cause hospitalization and a significant decrease in the number of all-cause hospitalization length of stay in the intervention arm compared to usual care. Objective device data indicated high adherence rates (95%-99%) among intervention group participants despite finding no significant difference in self-reported adherence between study arms. The intervention group had poorer heart function and HRQoL at baseline, and HRQoL declined significantly in the intervention group compared to controls. The MedSentry medication monitoring system is a promising technology that merits continued development and evaluation. The MedSentry medication monitoring system may be useful both as a standalone system for patients with complex medication regimens or used to complement existing HF telemonitoring interventions. We found significant reductions in risk of all-cause hospitalization and the number of all-cause length of stay in the intervention group compared to controls. Although HRQoL deteriorated significantly in the intervention group, this may have been due to the poorer HF-functioning at baseline in the intervention group compared to controls. Telehealth medication adherence technologies, such as the MedSentry medication monitoring system, are a promising method to improve patient self-management,the quality of patient care, and reduce health care utilization and expenditure for patients with HF and other chronic diseases that require complex medication regimens. ClinicalTrials.gov NCT01814696; https://clinicaltrials.gov/ct2/show/study/NCT01814696 (Archived by WebCite® at http://www.webcitation.org/6giqAVhno).
Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric; Cottineau, Louis-Marie; Cuomo, Vincenzo; Della Vecchia, Pietro; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric
2010-01-01
The ISTIMES project, funded by the European Commission in the frame of a joint Call "ICT and Security" of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project.
Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project
Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric.; Cottineau, Louis-Marie; Cuomo, Vincenzo; Vecchia, Pietro Della; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric
2010-01-01
The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project. PMID:22163489
From Antarctica to space: Use of telepresence and virtual reality in control of remote vehicles
NASA Technical Reports Server (NTRS)
Stoker, Carol; Hine, Butler P., III; Sims, Michael; Rasmussen, Daryl; Hontalas, Phil; Fong, Terrence W.; Steele, Jay; Barch, Don; Andersen, Dale; Miles, Eric
1994-01-01
In the Fall of 1993, NASA Ames deployed a modified Phantom S2 Remotely-Operated underwater Vehicle (ROV) into an ice-covered sea environment near McMurdo Science Station, Antarctica. This deployment was part of the antarctic Space Analog Program, a joint program between NASA and the National Science Foundation to demonstrate technologies relevant for space exploration in realistic field setting in the Antarctic. The goal of the mission was to operationally test the use of telepresence and virtual reality technology in the operator interface to a remote vehicle, while performing a benthic ecology study. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research Center. Local control of the vehicle was accomplished using the standard Phantom control box containing joysticks and switches, with the operator viewing stereo video camera images on a stereo display monitor. Remote control of the vehicle over the satellite link was accomplished using the Virtual Environment Vehicle Interface (VEVI) control software developed at NASA Ames. The remote operator interface included either a stereo display monitor similar to that used locally or a stereo head-mounted head-tracked display. The compressed video signal from the vehicle was transmitted to NASA Ames over a 768 Kbps satellite channel. Another channel was used to provide a bi-directional Internet link to the vehicle control computer through which the command and telemetry signals traveled, along with a bi-directional telephone service. In addition to the live stereo video from the satellite link, the operator could view a computer-generated graphic representation of the underwater terrain, modeled from the vehicle's sensors. The virtual environment contained an animate graphic model of the vehicle which reflected the state of the actual vehicle, along with ancillary information such as the vehicle track, science markers, and locations of video snapshots. The actual vehicle was driven either from within the virtual environment or through a telepresence interface. All vehicle functions could be controlled remotely over the satellite link.
Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón
2014-01-02
This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.
Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón
2014-01-01
This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461
SQUID: sensorized shirt with smartphone interface for exercise monitoring and home rehabilitation.
Farjadian, Amir B; Sivak, Mark L; Mavroidis, Constantinos
2013-06-01
Stroke is a leading cause of serious long-term disability in the United States. There is a need for new technological adjuncts to expedite patients' scheduled discharge from hospital and pursue rehabilitation procedure at home. SQUID is a low-cost, smart shirt that incorporates a six-channel electromyography (EMG) and heart rate data acquisition module to deliver objective audiovisual and haptic biofeedback to the patient. The sensorized shirt is interfaced with a smartphone application, for the subject's usage at home, as well as the online database, for the therapist's remote supervision from hospital. A single healthy subject was recruited to investigate the system functionality during improperly performed exercise. The system can potentially be used in automated, remote monitoring of variety of physical therapy exercises, rooted in strength or coordination training of specific muscle groups.
NASA Technical Reports Server (NTRS)
1997-01-01
Under a Small Business Innovation Research contract from Langley Research Center, OPOTEK, Inc. developed a laser transmitter for remote sensing of water vapor in the upper atmosphere. As a leader in developing and using Differential Absorption Lidar, a remote sensing technique to monitor ozone and water vapor in the atmosphere, NASA was interested in upgrading the capabilities of its airborn laser systems. The laser transmitter developed for NASA was used for measuring water vapor in the infrared region. By broadening this concept to other wavelengths, OPOTEK believes a range of industrial applications can be met. In addition, the tunable laser system can be used by the Drug Enforcement Administration to discern the by-products from illegal drug manufacturing. A host of other government, university, and industrial laboratory uses for the technology are also being examined as follow-up by the company.
Hyperspectral remote sensing study of harmful algal blooms in the Chesapeake Bay
NASA Astrophysics Data System (ADS)
Nie, Yixiang
Recent development of hyperspectral remote sensing provides capability to identify and classify harmful algal blooms beyond the estimation of chlorophyll concentrations. This study uses hyperspectral data to extract spectral signatures, classify algal blooms, and map the spatial distribution of the algal blooms in the upper Chesapeake Bay. Furthermore, water quality parameters from ground stations have been used together with remote sensing data to provide better understanding of the formation and transformation of the life cycle of harmful algal blooms, and the cause of their outbreaks in the upper Chesapeake Bay. The present results show a strong and significant positive correlation between chlorophyll concentrations and total organic nitrogen concentrations. This relation suggests that total organic nitrogen played an important role in triggering the harmful algal blooms in the upper Chesapeake Bay in this study. This study establishes an integrated approach which combines hyperspectral imaging with multispectral ocean color remote sensing data and traditional water quality monitoring system in the study of harmful algal blooms in small water bodies such as the Chesapeake Bay. Presently, remote sensing is well integrated into the research community, but is less commonly used by resource managers. This dissertation couples remote sensing technologies with specific monitoring programs. The present results will help natural resource managers, local authorities, and the public to utilize an integrated approach in order to better understand, evaluate, preserve, and restore the health of the Chesapeake Bay waters and habitats.
Parker, Alton; Rubinfeld, Ilan; Azuh, Ogochukwu; Blyden, Dionne; Falvo, Anthony; Horst, Mathilda; Velanovich, Vic; Patton, Pat
2010-03-01
Technology currently exists for the application of remote guidance in the laparoscopic operating suite. However, these solutions are costly and require extensive preparation and reconfiguration of current hardware. We propose a solution from existing technology, to send video of laparoscopic cholecystectomy to the Blackberry Pearl device (RIM Waterloo, ON, Canada) for remote guidance purposes. This technology is time- and cost-efficient, as well as reliable. After identification of the critical maneuver during a laparoscopic cholecystectomy as the division of the cystic duct, we captured a segment of video before it's transection. Video was captured using the laparoscopic camera input sent via DVI2USB Solo Frame Grabber (Epiphan Ottawa, Canada) to a video recording application on a laptop. Seven- to 40-second video clips were recorded. The video clip was then converted to an .mp4 file and was uploaded to our server and a link was then sent to the consultant via e-mail. The consultant accessed the file via Blackberry for viewing. After reviewing the video, the consultant was able to confidently comment on the operation. Approximately 7 to 40 seconds of 10 laparoscopic cholecystectomies were recorded and transferred to the consultant using our method. All 10 video clips were reviewed and deemed adequate for decision making. Remote guidance for laparoscopic cholecystectomy with existing technology can be accomplished with relatively low cost and minimal setup. Additional evaluation of our methods will aim to identify reliability, validity, and accuracy. Using our method, other forms of remote guidance may be feasible, such as other laparoscopic procedures, diagnostic ultrasonography, and remote intensive care unit monitoring. In addition, this method of remote guidance may be extended to centers with smaller budgets, allowing ubiquitous use of neighboring consultants and improved safety for our patients. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Initial in vitro and in vivo evaluation of a self-monitoring prosthetic bypass graft.
Neville, Richard F; Gupta, Samit K; Kuraguntla, David J
2017-06-01
Prosthetic grafts used for lower extremity revascularization and dialysis access fail because of hyperplastic stenosis and thrombosis. Graft surveillance is advocated to monitor function; however, graft failure can occur between episodic examinations. An innovative sensor with wireless, microchip technology allows automated surveillance with assessment of graft function using a "cloud"-based algorithm. We performed proof-of-concept experiments with in vitro and in vivo models to assess the feasibility such a real-time graft surveillance system. A self-monitoring graft system was evaluated consisting of a prosthetic conduit of expanded polytetrafluoroethylene and a sensor unit, and a microsensor, microelectronics, battery, and remote processor with a monitor. The sensor unit was integrated on the extraluminal surface of expanded polytetrafluoroethylene grafts without compromise to the lumen of the conduit. The grafts were tested in vitro in a pulsatile, recirculating flow system under physiologic flow parameters. The hemodynamic parameters were varied to assess the ability to obtain wireless signal acquisition reflecting real-time flow properties in vitro. Segments of custom tubing with reduced diameters were inserted into the model to mimic stenosis proximal and distal to the grafts. After characterization of the initial data, the self-monitoring grafts were implanted in an ovine carotid model to assess proof of concept in vivo with 30-day follow-up of signal acquisition as well as arteriographic and histologic analysis. In vitro flow data demonstrated the device was able to determine factors related to prosthetic graft function under varied hemodynamic flow conditions. Wireless signal acquisition using Bluetooth technology (Bluetooth SIG, Inc, Kirkland, Wash) allowed remote data analysis reflecting graft flow parameters through changes in microsensor voltage and frequency. Waveform analysis was applied to construct an algorithm using proprietary software and determine a parameter for graft flow characteristics. This algorithm allowed determination of the degree of stenosis and location of stenosis location (proximal or distal) for display on a remote monitor in real time. Subsequent in vivo experiments confirmed the ability of the system to generate signal acquisition through skin and soft tissue under biologic conditions with no arteriographic stenosis and a favorable healing response at 30-day harvest. Initial in vitro and in vivo experiments demonstrate the ability for a self-monitoring graft system to remotely monitor hemodynamic parameters reflecting graft function using wireless data transmission. This automated system shows promise to deliver real-time data that can be analyzed by cloud-based algorithms alerting the clinician of a change in graft function or development of stenosis for further diagnostic study or intervention before graft failure. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
US Army Soldiers With Type 1 Diabetes Mellitus.
Choi, Y Sammy; Cucura, Jon
2018-04-01
US Army soldiers diagnosed with type 1 diabetes were previously considered unfit for duty. For highly motivated soldiers, current advanced technologies allow the possibility of not only retention on active duty, but military deployment. We present our experience at Fort Bragg, North Carolina, taking care of soldiers newly diagnosed with type 1 diabetes mellitus. Through intensive diabetes education, extensive military and physical training, optimization of diabetes technology, and remote real-time monitoring, soldiers are able to continue to serve their country in the most specialized roles.
NASA Astrophysics Data System (ADS)
Li, J.; Wen, G.; Li, D.
2018-04-01
Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.
Land cover change map comparisons using open source web mapping technologies
Erik Lindblom; Ian Housman; Tony Guay; Mark Finco; Kevin Megown
2015-01-01
The USDA Forest Service is evaluating the status of current landscape change maps and assessing gaps in their information content. These activities have been occurring under the auspices of the Landscape Change Monitoring System (LCMS) project, which is a joint effort between USFS Research, USFS Remote Sensing Applications Center (RSAC), USGS Earth Resources...
On the use of RADARSAT-1 for monitoring malaria risk in Kenya
NASA Astrophysics Data System (ADS)
Ross, S. G.; Thomson, M. C.; Pultz, T.; Mbogo, C. M.; Regens, J. L.; Swalm, C.; Githure, J.; Yan, G.; Gu, W.; Beier, J. C.
2002-01-01
The incidence and spread of vector-borne infectious diseases are increasing concerns in many parts of the world. Earth obervation techniques provide a recognised means for monitoring and mapping disease risk as well as correlating environmental indicators with various disease vectors. Because the areas most impacted by vector-borne disease are remote and not easily monitored using traditional, labor intensive survey techniques, high spatial and temporal coverage provided by spaceborne sensors allows for the investigation of large areas in a timely manner. However, since the majority of infectious diseases occur in tropical areas, one of the main barriers to earth observation techniques is persistent cloud-cover. Synthetic Aperture Radar (SAR) technology offers a solution to this problem by providing all-weather, day and night imaging capability. Based on SAR's sensitivity to target moisture conditions, sensors such as RADARSAT-1 can be readily used to map wetland and swampy areas that are conducive to functioning as aquatic larval habitats. Irrigation patterns, deforestation practises and the effects of local flooding can be monitored using SAR imagery, and related to potential disease vector abundance and proximity to populated areas. This paper discusses the contribution of C-band radar remote sensing technology to monitoring and mapping malaria. Preliminary results using RADARSAT-1 for identifying areas of high mosquito (Anopheles gambiae s.l.) abundance along the Kenya coast will be discussed. The authors consider the potential of RADARSAT-1 data based on SAR sensor characteristics and the preliminary results obtained. Further potential of spaceborne SAR data for monitoring vector-borne disease is discussed with respect to future advanced SAR sensors such as RADARSAT-2.
A GPS-based Real-time Road Traffic Monitoring System
NASA Astrophysics Data System (ADS)
Tanti, Kamal Kumar
In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.
Advanced technology development for remote triage applications in bleeding combat casualties.
Ryan, Kathy L; Rickards, Caroline A; Hinojosa-Laborde, Carmen; Gerhardt, Robert T; Cain, Jeffrey; Convertino, Victor A
2011-01-01
Combat developers within the Army have envisioned development of a "wear-and-forget" physiological status monitor (PSM) that will enhance far forward capabilities for assessment of Warrior readiness for battle, as well as for remote triage, diagnosis and decision-making once Soldiers are injured. This paper will review recent work testing remote triage system prototypes in both the laboratory and during field exercises. Current PSM prototypes measure the electrocardiogram and respiration, but we have shown that information derived from these measurements alone will not be suited for specific, accurate triage of combat injuries. Because of this, we have suggested that development of a capability to provide a metric of circulating blood volume status is required for remote triage. Recently, volume status has been successfully modeled using low-level physiological signals obtained from wearable devices as input to machine-learning algorithms; these algorithms are already able to discriminate between a state of physical activity (common in combat) and that of central hypovolemia, and thus show promise for use in wearable remote triage devices.
Study on environment detection and appraisement of mining area with RS
NASA Astrophysics Data System (ADS)
Yang, Fengjie; Hou, Peng; Zhou, Guangzhu; Li, Qingting; Wang, Jie; Cheng, Jianguang
2006-12-01
In this paper, the big coal mining area Yanzhou is selected as the typical research area. According to the special dynamic change characteristic of the environment in the mining area, the environmental dynamic changes are timely monitored with the remote sensing detection technology. Environmental special factors, such as vegetation, water, air, land-over, are extracted by the professional remote sensing image processing software, then the spatial information is managed and analyzed in the geographical information system (GIS) software. As the result, the dynamic monitor and query for change information is achieved, and the special environmental factor dynamic change maps are protracted. On the base of the data coming from the remote sensing image, GIS and the traditional environment monitoring, the environmental quality is appraised with the method of indistinct matrix analysis, the multi-index and the analytical hierarchy process. At last, those provide the credible science foundation for the local environment appraised and the sustained development. In addition, this paper apply the hyper spectrum graphs by the FieldSpec Pro spectroradiometer, together with the analytical data from environmental chemical, to study the growth of vegetation which were seed in the land-over consisting of gangue, which is a new method to study the impact to vegetation that are growing in the soil.
Albahri, O S; Albahri, A S; Mohammed, K I; Zaidan, A A; Zaidan, B B; Hashim, M; Salman, Omar H
2018-03-22
The new and ground-breaking real-time remote monitoring in triage and priority-based sensor technology used in telemedicine have significantly bounded and dispersed communication components. To examine these technologies and provide researchers with a clear vision of this area, we must first be aware of the utilised approaches and existing limitations in this line of research. To this end, an extensive search was conducted to find articles dealing with (a) telemedicine, (b) triage, (c) priority and (d) sensor; (e) comprehensively review related applications and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were checked for articles on triage and priority-based sensor technology in telemedicine. The retrieved articles were filtered according to the type of telemedicine technology explored. A total of 150 articles were selected and classified into two categories. The first category includes reviews and surveys of triage and priority-based sensor technology in telemedicine. The second category includes articles on the three-tiered architecture of telemedicine. Tier 1 represents the users. Sensors acquire the vital signs of the users and send them to Tier 2, which is the personal gateway that uses local area network protocols or wireless body area network. Medical data are sent from Tier 2 to Tier 3, which is the healthcare provider in medical institutes. Then, the motivation for using triage and priority-based sensor technology in telemedicine, the issues related to the obstruction of its application and the development and utilisation of telemedicine are examined on the basis of the findings presented in the literature.
PM2.5 monitoring system based on ZigBee wireless sensor network
NASA Astrophysics Data System (ADS)
Lin, Lukai; Li, Xiangshun; Gu, Weiying
2017-06-01
In the view of the haze problem, aiming at improving the deficiency of the traditional PM2.5 monitoring methods, such as the insufficient real-time monitoring, limited transmission distance, high cost and the difficulty to maintain, the atmosphere PM2.5 monitoring system based on ZigBee technology is designed. The system combines the advantages of ZigBee’s low cost, low power consumption, high reliability and GPRS/Internet’s capability of remote transmission of data. Furthermore, it adopts TI’s Z-Stack protocol stack, and selects CC2530 chip and TI’s MSP430 microcontroller as the core, which establishes the air pollution monitoring network that is helpful for the early prediction of major air pollution disasters.
Marziniak, Martin; Brichetto, Giampaolo; Feys, Peter; Meyding-Lamadé, Uta; Vernon, Karen; Meuth, Sven G
2018-04-24
Despite recent advances in multiple sclerosis (MS) care, many patients only infrequently access health care services, or are unable to access them easily, for reasons such as mobility restrictions, travel costs, consultation and treatment time constraints, and a lack of locally available MS expert services. Advances in mobile communications have led to the introduction of electronic health (eHealth) technologies, which are helping to improve both access to and the quality of health care services. As the Internet is now readily accessible through smart mobile devices, most people can take advantage of eHealth apps. The development of digital applications and remote communication technologies for patients with MS has increased rapidly in recent years. These apps are intended to complement traditional in-clinic approaches and can bring significant benefits to both patients with MS and health care providers (HCPs). For patients, such eHealth apps have been shown to improve outcomes and increase access to care, disease information, and support. These apps also help patients to participate actively in self-management, for example, by tracking adherence to treatment, changes in bladder and bowel habits, and activity and mood. For HCPs, MS eHealth solutions can simplify the multidisciplinary approaches needed to tailor MS management strategies to individual patients; facilitate remote monitoring of patient symptoms, adverse events, and outcomes; enable the efficient use of limited resources and clinic time; and potentially allow more timely intervention than is possible with scheduled face-to-face visits. These benefits are important because MS is a long-term, multifaceted chronic condition that requires ongoing monitoring, assessment, and management. We identified in the literature 28 eHealth solutions for patients with MS that fall within the four categories of screening and assessment, disease monitoring and self-management, treatment and rehabilitation, and advice and education. We review each solution, focusing on any clinical evidence supporting their use from prospective trials (including ASSESS MS, Deprexis, MSdialog, and the Multiple Sclerosis Performance Test) and consider the opportunities, barriers to adoption, and potential pitfalls of eHealth technologies in routine health care. ©Martin Marziniak, Giampaolo Brichetto, Peter Feys, Uta Meyding-Lamadé, Karen Vernon, Sven G. Meuth. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 24.04.2018.
Bangladesh Agro-Climatic Environmental Monitoring Project
NASA Technical Reports Server (NTRS)
Vermillion, C.; Maurer, H.; Williams, M.; Kamowski, J.; Moore, T.; Maksimovich, W.; Obler, H.; Gilbert, E.
1988-01-01
The Agro-Climatic Environmental Monitoring Project (ACEMP) is based on a Participating Agency Service Agreement (PASA) between the Agency for International Development (AID) and the National Oceanic and Atmospheric Administration (NOAA). In FY80, the Asia Bureau and Office of Federal Disaster Assistance (OFDA), worked closely to develop a funding mechanism which would meet Bangladesh's needs both for flood and cyclone warning capability and for application of remote sensing data to development problems. In FY90, OFDA provided for a High Resolution Picture Transmission (HRPT) receiving capability to improve their forecasting accuracy for cyclones, flooding and storm surges. That equipment is primarily intended as a disaster prediction and preparedness measure. The ACEM Project was designed to focus on the development applications of remote sensing technology. Through this Project, AID provided to the Bangladesh Government (BDG) the equipment, technical assistance, and training necessary to collect and employ remote sensing data made available by satellites as well as hydrological data obtained from data collection platforms placed in major rivers. The data collected will enable the BDG to improve the management of its natural resources.
Kim, Yoon-Nyun; Shin, Dong Gu; Park, Sungha; Lee, Chang Hee
2015-07-01
The effectiveness of remote patient monitoring and physician care for the treatment of hypertension has not been demonstrated in a randomized clinical trial. The objective of this study was to evaluate the effectiveness of remote patient monitoring with or without remote physician care in reducing office blood pressure in patients with hypertension. A total of 374 hypertensive patients over 20 years of age were randomized into the following three groups: group (1) control, the patients received usual clinical care with home BP monitoring; group (2) the patients were remotely monitored and received office follow-up; and group (3) the patients received remote monitoring without physician office care using the remote monitoring device. For each group, in-office follow-up care was scheduled every 8 weeks for 24 weeks. The primary end point was the difference in sitting SBP at the 24-week follow-up. No difference between the three groups was observed in the primary end point (adjusted mean sitting SBP was as follows: group 1: -8.9±15.5 mm Hg, group 2: -11.3±15.9 mm Hg, group 3: -11.6±19.8 mm Hg, (NS). Significant differences in achieving the target BP at the 24th week of follow-up were observed between groups 1 and 2. The subjects over 55-years old had a significant decrease in the adjusted mean sitting SBP in groups 2 and 3 compared with that of the control group. Remote monitoring alone or remote monitoring coupled with remote physician care was as efficacious as the usual office care for reducing blood pressure with comparable safety and efficacy in hypertensive patients.
Dynamic Task Optimization in Remote Diabetes Monitoring Systems.
Suh, Myung-Kyung; Woodbridge, Jonathan; Moin, Tannaz; Lan, Mars; Alshurafa, Nabil; Samy, Lauren; Mortazavi, Bobak; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid
2012-09-01
Diabetes is the seventh leading cause of death in the United States, but careful symptom monitoring can prevent adverse events. A real-time patient monitoring and feedback system is one of the solutions to help patients with diabetes and their healthcare professionals monitor health-related measurements and provide dynamic feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the domain of remote health monitoring. This paper presents a wireless health project (WANDA) that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. The WANDA dynamic task management function applies data analytics in real-time to discretize continuous features, applying data clustering and association rule mining techniques to manage a sliding window size dynamically and to prioritize required user tasks. The developed algorithm minimizes the number of daily action items required by patients with diabetes using association rules that satisfy a minimum support, confidence and conditional probability thresholds. Each of these tasks maximizes information gain, thereby improving the overall level of patient adherence and satisfaction. Experimental results from applying EM-based clustering and Apriori algorithms show that the developed algorithm can predict further events with higher confidence levels and reduce the number of user tasks by up to 76.19 %.
Dynamic Task Optimization in Remote Diabetes Monitoring Systems
Suh, Myung-kyung; Woodbridge, Jonathan; Moin, Tannaz; Lan, Mars; Alshurafa, Nabil; Samy, Lauren; Mortazavi, Bobak; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid
2016-01-01
Diabetes is the seventh leading cause of death in the United States, but careful symptom monitoring can prevent adverse events. A real-time patient monitoring and feedback system is one of the solutions to help patients with diabetes and their healthcare professionals monitor health-related measurements and provide dynamic feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the domain of remote health monitoring. This paper presents a wireless health project (WANDA) that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. The WANDA dynamic task management function applies data analytics in real-time to discretize continuous features, applying data clustering and association rule mining techniques to manage a sliding window size dynamically and to prioritize required user tasks. The developed algorithm minimizes the number of daily action items required by patients with diabetes using association rules that satisfy a minimum support, confidence and conditional probability thresholds. Each of these tasks maximizes information gain, thereby improving the overall level of patient adherence and satisfaction. Experimental results from applying EM-based clustering and Apriori algorithms show that the developed algorithm can predict further events with higher confidence levels and reduce the number of user tasks by up to 76.19 %. PMID:27617297
Remote Sensing of Terrestrial Water Storage and Application to Drought Monitoring
NASA Technical Reports Server (NTRS)
Rodell, Matt
2007-01-01
Terrestrial water storage (TWS) consists of groundwater, soil moisture and permafrost, surface water, snow and ice, and wet biomass. TWS variability tends to be dominated by snow and ice in polar and alpine regions, by soil moisture in mid-latitudes, and by surface water in wet, tropical regions such as the Amazon (Rodell and Famiglietti, 2001; Bates et al., 2007). Drought may be defined as a period of abnormally dry weather long enough to cause significant deficits in one or more of the TWS components. Thus, along with observations of the agricultural and socioeconomic impacts, measurements of TWS and its components enable quantification of drought severity. Each of the TWS components exhibits significant spatial variability, while installation and maintenance of sufficiently dense monitoring networks is costly and labor-intensive. Thus satellite remote sensing is an appealing alternative to traditional measurement techniques. Several current remote sensing instruments are able to detect variations in one or more TWS variables, including the Advanced Microwave Scanning Radiometer (AMSR) on NASA's Aqua satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra and Aqua. Future satellite missions have been proposed to improve this capability, including the European Space Agency's Soil Moisture Ocean Salinity mission (SMOS) and the Soil Moisture Active Passive (SMAP), Surface Water Ocean Topography (SWOT), and Snow and Cold Land Processes (SCLP) missions recommended by the US National Academy of Science's Decadal Survey for Earth Science (NRC, 2007). However, only one remote sensing technology is able to monitor changes in TWS from the land surface to the base of the deepest aquifer: satellite gravimetry. This paper focuses on NASA's Gravity Recovery and Climate Experiment mission (GRACE; http://www.csr.utexas.edu/grace/) and its potential as a tool for drought monitoring.
NASA Astrophysics Data System (ADS)
Gershenzon, V.; Gershenzon, O.; Sergeeva, M.; Ippolitov, V.; Targulyan, O.
2012-04-01
Keywords: Remote Sensing, UniScan ground station, Education, Monitoring. Remote Sensing Centers allowing real-time imagery acquisition from Earth observing satellites within the structure of Universities provides proper environment for innovative education. It delivers the efficient training for scientific and academic and teaching personnel, secure the role of the young professionals in science, education and hi-tech, and maintain the continuity of generations in science and education. Article is based on experience for creation such centers in more than 20 higher education institutions in Russia, Kazakhstan, and Spain on the base of UniScan ground station by R&D Center ScanEx. These stations serve as the basis for Earth monitoring from space providing the training and advanced training to produce the specialists having the state-of-the-art knowledge in Earth Remote Sensing and GIS, as well as the land-use monitoring and geo-data service for the economic operators in such diverse areas as the nature resource management, agriculture, land property management, disasters monitoring, etc. Currently our proposal of UniScan for universities all over the world allows to receive low resolution free of charge MODIS data from Terra and Aqua satellites, VIIRS from the NPP mission, and also high resolution optical images from EROS A and radar images from Radarsat-1 satellites, including the telemetry for the first year of operation, within the footprint of up to 2,500 kilometers in radius. Creation remote sensing centers at universities will lead to a new quality level for education and scientific studies and will enable to make education system in such innovation institutions open to modern research work and economy.
Swartwout, Ellen; Deyo, Patsy; El-Zein, Ashley
2016-05-01
The quantitative objective is to identify the effectiveness of technology use for self-care behavior management and the patient engagement levels in health care.More specifically, the objectives are to identify: 1) the effectiveness of technology use (includes mobile health applications, text messages, telemedicine/video conferences between providers and people with chronic disease, remote monitoring and websites) in health care for engaging community-dwelling adults with chronic disease in self-care management, and 2) the patient engagement levels in health care.
Temporal Informative Analysis in Smart-ICU Monitoring: M-HealthCare Perspective.
Bhatia, Munish; Sood, Sandeep K
2016-08-01
The rapid introduction of Internet of Things (IoT) Technology has boosted the service deliverance aspects of health sector in terms of m-health, and remote patient monitoring. IoT Technology is not only capable of sensing the acute details of sensitive events from wider perspectives, but it also provides a means to deliver services in time sensitive and efficient manner. Henceforth, IoT Technology has been efficiently adopted in different fields of the healthcare domain. In this paper, a framework for IoT based patient monitoring in Intensive Care Unit (ICU) is presented to enhance the deliverance of curative services. Though ICUs remained a center of attraction for high quality care among researchers, still number of studies have depicted the vulnerability to a patient's life during ICU stay. The work presented in this study addresses such concerns in terms of efficient monitoring of various events (and anomalies) with temporal associations, followed by time sensitive alert generation procedure. In order to validate the system, it was deployed in 3 ICU room facilities for 30 days in which nearly 81 patients were monitored during their ICU stay. The results obtained after implementation depicts that IoT equipped ICUs are more efficient in monitoring sensitive events as compared to manual monitoring and traditional Tele-ICU monitoring. Moreover, the adopted methodology for alert generation with information presentation further enhances the utility of the system.
NASA Astrophysics Data System (ADS)
Birdsey, R.; Hurtt, G. C.; Dubayah, R.; Hagen, S. C.; Vargas, R.; Nehrkorn, T.; Domke, G. M.; Houghton, R. A.
2015-12-01
Measurement, Reporting, and Verification (MRV) is a broad concept guiding the application of monitoring technology to the needs of countries or entities for reporting and verifying reductions in greenhouse gas emissions or increases in greenhouse gas sinks. Credibility, cost-effectiveness, and compatibility are important features of global MRV efforts that can support implementation of climate change mitigation programs such as Reducing Emissions from Deforestation and Forest Degradation and Sustainable Forest Management (REDD+). Applications of MRV technology may be tailored to individual country circumstances following guidance provided by the Intergovernmental Panel on Climate Change; hence, there is no single approach that is uniquely viable but rather a range of ways to integrate new MRV methods. MRV technology is advancing rapidly with new remote sensing and advanced measurement of atmospheric CO2, and in situ terrestrial and ocean measurements, coupled with improvements in data analysis, modeling, and assessing uncertainty. Here we briefly summarize some of the most application-ready MRV technologies being developed under NASA's Carbon Monitoring System (CMS) program, and illustrate how these technologies may be applied for monitoring forests using several case studies that span a range of scales, country circumstances, and stakeholder reporting requirements. We also include remarks about the potential role of advanced monitoring technology in the context of the global climate accord that is expected to result from the 21st session of the Conference of the Parties to the United Nations Framework Convention on Climate Change, which is expected to take place in December 2015, in Paris, France.
Remote Sensing Terminology in a Global and Knowledge-Based World
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana
The paper is devoted to terminology issues related to all aspects of remote sensing research and applications. Terminology is the basis for a better understanding among people. It is crucial to keep up with the latest developments and novelties of the terminology in advanced technology fields such as aerospace science and industry. This is especially true in remote sensing and geoinformatics which develop rapidly and have ever extending applications in various domains of science and human activities. Remote sensing terminology issues are directly relevant to the contemporary worldwide policies on information accessibility, dissemination and utilization of research results in support of solutions to global environmental challenges and sustainable development goals. Remote sensing and spatial information technologies are an integral part of the international strategies for cooperation in scientific, research and application areas with a particular accent on environmental monitoring, ecological problems natural resources management, climate modeling, weather forecasts, disaster mitigation and many others to which remote sensing data can be put. Remote sensing researchers, professionals, students and decision makers of different counties and nationalities should fully understand, interpret and translate into their native language any term, definition or acronym found in papers, books, proceedings, specifications, documentation, and etc. The importance of the correct use, precise definition and unification of remote sensing terms refers not only to people working in this field but also to experts in a variety of disciplines who handle remote sensing data and information products. In this paper, we draw the attention on the specifics, peculiarities and recent needs of compiling specialized dictionaries in the area of remote sensing focusing on Earth observations and the integration of remote sensing with other geoinformation technologies such as photogrammetry, geodesy, GIS, etc. Our belief is that the elaboration of bilingual and multilingual dictionaries and glossaries in this spreading, most technically advanced and promising field of human expertise is of great practical importance. The work on an English-Bulgarian Dictionary of Remote Sensing Terms is described including considerations on its scope, structure, information content, sellection of terms, and etc. The vision builds upon previous national and international experience and makes use of ongoing activities on the subject. Any interest in cooperation and initiating suchlike collaborative projects is welcome and highly appreciated.
Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review.
Block, Valerie A J; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A C; Allen, Diane D; Gelfand, Jeffrey M
2016-01-01
To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability.
Use of Mobile Apps Among Medical and Nursing Students in Iran.
Sheikhtaheri, Abbas; Kermani, Farzaneh
2018-01-01
Mobile technologies have a positive impact on patient care and cause to improved decision making, reduced medical errors and improved communication in care team. The purpose of this study was to investigate the use of mobile technologies by medical and nursing students and their tendency in future. This study was conducted among 372 medical and nursing students of Tehran University of Medical Science. Respectively, 60.8% and 62.4% of medical and nursing students use smartphone. The most commonly used apps among medical students were medical dictionary, drug apps, medical calculators and anatomical atlases and among nursing students were medical dictionary, anatomical atlases and nursing care guides. Also, the use of decision support systems, remote monitoring, patient imagery and remote diagnosis, patient records documentation, diagnostic guidelines and laboratory tests will be increased in the future.
NASA Astrophysics Data System (ADS)
Pikelnaya, O.; Polidori, A.; Wimmer, R.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Andersson, P.; Brohede, S.; Izos, O.
2017-12-01
Industrial facilities such as refineries and oil processing facilities can be sources of chemicals adversely affecting human health, for example aromatic hydrocarbons and formaldehyde. In an urban setting, such as the South Coast Air Basin (SCAB), exposure to harmful air pollutants (HAP's) for residents of communities neighboring such facilities is of serious concern. Traditionally, exposure assessments are performed by modeling a community exposure using emission inventories and data collected at fixed air monitoring sites. However, recent field measurements found that emission inventories may underestimate HAP emissions from refineries; and HAP measurements data from fixed sites is lacking spatial resolution; as a result, the impact of HAP emissions on communities is highly uncertain. The next generation air monitoring technologies can help address these challenges. For example, dense "low-cost" sensors allow continuous monitoring of concentrations of pollutants within communities with high temporal- and spatial- resolution, and optical remote sensing (ORS) technologies offer measurements of emission fluxes and real-time ground-concentration mapping of HAPs. South Coast Air Quality Management District (SCAQMD) is currently conducting a multi-year study using ORS methods and "low-cost" Volatile Organic Compounds (VOCs) sensors to monitor HAP emissions from selected industrial facilities in the SCAB and their ambient concentrations in neighboring communities. For this purpose, quarterly mobile ORS surveys are conducted to quantify facility-wide emissions for VOCs, aromatic hydrocarbons and HCHO, and to collect ground-concentration profiles of these pollutants inside neighboring communities. Additionally, "low-cost" sensor nodes for deployment in neighborhood(s) downwind of the facilities have been developed in order to obtain long-term, granular data on neighborhood VOC concentrations, During this presentation we will discuss initial results of quarterly ORS surveys and pilot "low-cost" sensor deployments. We will also outline benefits of using a combination of mobile ORS surveys and "low-cost" sensor networks for community exposure monitoring.
NASA Astrophysics Data System (ADS)
Skoog, R. A.
2007-12-01
Web pages are ubiquitous and accessible, but when compared to stand-alone applications they are limited in capability. The Alaska Volcano Observatory (AVO) Remote Sensing Group has implemented web pages and supporting server software that provide relatively advanced features to any user able to meet basic requirements. Anyone in the world with access to a modern web browser (such as Mozilla Firefox 1.5 or Internet Explorer 6) and reasonable internet connection can fully use the tools, with no software installation or configuration. This allows faculty, staff and students at AVO to perform many aspects of volcano monitoring from home or the road as easily as from the office. Additionally, AVO collaborators such as the National Weather Service and the Anchorage Volcanic Ash Advisory Center are able to use these web tools to quickly assess volcanic events. Capabilities of this web software include (1) ability to obtain accurate measured remote sensing data values on an semi- quantitative compressed image of a large area, (2) to view any data from a wide time range of data swaths, (3) to view many different satellite remote sensing spectral bands and combinations, to adjust color range thresholds, (4) and to export to KML files which are viewable virtual globes such as Google Earth. The technologies behind this implementation are primarily Javascript, PHP, and MySQL which are free to use and well documented, in addition to Terascan, a commercial software package used to extract data from level-0 data files. These technologies will be presented in conjunction with the techniques used to combine them into the final product used by AVO and its collaborators for operational volcanic monitoring.
Integrated Sustainable Planning for Industrial Region Using Geospatial Technology
NASA Astrophysics Data System (ADS)
Tiwari, Manish K.; Saxena, Aruna; Katare, Vivek
2012-07-01
The Geospatial techniques and its scope of applications have undergone an order of magnitude change since its advent and now it has been universally accepted as a most important and modern tool for mapping and monitoring of various natural resources as well as amenities and infrastructure. The huge and voluminous spatial database generated from various Remote Sensing platforms needs proper management like storage, retrieval, manipulation and analysis to extract desired information, which is beyond the capability of human brain. This is where the computer aided GIS technology came into existence. A GIS with major input from Remote Sensing satellites for the natural resource management applications must be able to handle the spatiotemporal data, supporting spatiotemporal quarries and other spatial operations. Software and the computer-based tools are designed to make things easier to the user and to improve the efficiency and quality of information processing tasks. The natural resources are a common heritage, which we have shared with the past generations, and our future generation will be inheriting these resources from us. Our greed for resource and our tremendous technological capacity to exploit them at a much larger scale has created a situation where we have started withdrawing from the future stocks. Bhopal capital region had attracted the attention of the planners from the beginning of the five-year plan strategy for Industrial development. However, a number of projects were carried out in the individual Districts (Bhopal, Rajgarh, Shajapur, Raisen, Sehore) which also gave fruitful results, but no serious efforts have been made to involve the entire region. No use of latest Geospatial technique (Remote Sensing, GIS, GPS) to prepare a well structured computerized data base without which it is very different to retrieve, analyze and compare the data for monitoring as well as for planning the developmental activities in future.
Intelligent device management in the selfcare marketplace.
Biniaris, Christos G; Marsh, Andrew J
2008-01-01
Over the last ten years the Internet has emerged as a key infrastructure for service innovation, enabling IP (Internet Protocol) to become the wide area network communication protocol of choice. The natural result of this choice is that service providers and their customers are looking for ways to optimise costs by migrating existing services and applications onto IP as well. A good example is the medical industry, which is transitioning to Internet-based communications as the field of telemedicine broadens to preventative and self healthcare. However, technology is changing quickly and consumers face an array of choices to satisfy their healthcare needs with numerous devices from different vendors. Seamless healthcare device networking can play a major role in automating and safeguarding the process of collecting and transferring medical data, remote patient monitoring and reducing costs through remote equipment monitoring. In this scope, we describe an approach augmenting the Session Initiation Protocol (SIP) with healthcare services in order to form a framework for efficient collection and storage of measurements, aiming to address the issues of the lack of a standardised data interface for consumer healthcare technologies (including hardware and protocols) and the lack of a standardised format for self-collected healthcare data (including the storage medium). In this framework, measurements can be seamlessly collected and stored as XML notes located virtually anywhere, such as the user's home or mobile device. Additionally, these notes can be accessed locally or remotely by doctors and specialists. Also, we discuss how this approach supports user mobility by proxying and redirecting requests to the user's current location and how it can remove the complexity of using consumer healthcare technologies from different vendors connected to different devices and the opportunities for Independent Software Vendors to develop additional services.
A software control system for the ACTS high-burst-rate link evaluation terminal
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Daugherty, Elaine S.
1991-01-01
Control and performance monitoring of NASA's High Burst Rate Link Evaluation Terminal (HBR-LET) is accomplished by using several software control modules. Different software modules are responsible for controlling remote radio frequency (RF) instrumentation, supporting communication between a host and a remote computer, controlling the output power of the Link Evaluation Terminal and data display. Remote commanding of microwave RF instrumentation and the LET digital ground terminal allows computer control of various experiments, including bit error rate measurements. Computer communication allows system operators to transmit and receive from the Advanced Communications Technology Satellite (ACTS). Finally, the output power control software dynamically controls the uplink output power of the terminal to compensate for signal loss due to rain fade. Included is a discussion of each software module and its applications.
Reaping the space investment. [Shuttle era geosynchronous satellite based technological trends
NASA Technical Reports Server (NTRS)
Calio, A. J.
1979-01-01
By 1999 operational space systems will be implemented routinely on a worldwide scale in many areas vital to human survival and life quality. Geosynchronous-based monitoring and observation will be extensively used. The Shuttle era will bring in the capability to allow monitoring and identifying pollution sources which fail to stay within required limits. Remotely sensed data over land masses will provide needed facts on renewable and nonrenewable earth resources. New instruments and techniques will have been developed to provide geologists with clues to the declining number of deposits of fuels and minerals. Also, practical methods for predicting earthquakes will have been elaborated by 1999. Communications will see implementation of many of the technological goals of 1978.
Design of Plant Eco-physiology Monitoring System Based on Embedded Technology
NASA Astrophysics Data System (ADS)
Li, Yunbing; Wang, Cheng; Qiao, Xiaojun; Liu, Yanfei; Zhang, Xinlu
A real time system has been developed to collect plant's growth information comprehensively. Plant eco-physiological signals can be collected and analyzed effectively. The system adopted embedded technology: wireless sensors network collect the eco-physiological information. Touch screen and ARM microprocessor make the system work independently without PC. The system is versatile and all parameters can be set by the touch screen. Sensors' intelligent compensation can be realized in this system. Information can be displayed by either graphically or in table mode. The ARM microprocessor provides the interface to connect with the internet, so the system support remote monitoring and controlling. The system has advantages of friendly interface, flexible construction and extension. It's a good tool for plant's management.
NASA Astrophysics Data System (ADS)
Yu, F.; Chen, H.; Tu, K.; Wen, Q.; He, J.; Gu, X.; Wang, Z.
2018-04-01
Facing the monitoring needs of emergency responses to major disasters, combining the disaster information acquired at the first time after the disaster and the dynamic simulation result of the disaster chain evolution process, the overall plan for coordinated planning of spaceborne, airborne and ground observation resources have been designed. Based on the analysis of the characteristics of major disaster observation tasks, the key technologies of spaceborne, airborne and ground collaborative observation project are studied. For different disaster response levels, the corresponding workflow tasks are designed. On the basis of satisfying different types of disaster monitoring demands, the existing multi-satellite collaborative observation planning algorithms are compared, analyzed, and optimized.
Early warning and crop condition assessment research
NASA Technical Reports Server (NTRS)
Boatwright, G. O.; Whitehead, V. S.
1986-01-01
The Early Warning Crop Condition Assessment Project of AgRISTARS was a multiagency and multidisciplinary effort. Its mission and objectives were centered around development and testing of remote-sensing techniques that enhance operational methodologies for global crop-condition assessments. The project developed crop stress indicators models that provide data filter and alert capabilities for monitoring global agricultural conditions. The project developed a technique for using NOAA-n satellite advanced very-high-resolution radiometer (AVHRR) data for operational crop-condition assessments. This technology was transferred to the Foreign Agricultural Service of the USDA. The project developed a U.S. Great Plains data base that contains various meteorological parameters and vegetative index numbers (VIN) derived from AVHRR satellite data. It developed cloud screening techniques and scan angle correction models for AVHRR data. It also developed technology for using remotely acquired thermal data for crop water stress indicator modeling. The project provided basic technology including spectral characteristics of soils, water, stressed and nonstressed crop and range vegetation, solar zenith angle, and atmospheric and canopy structure effects.
Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua
2009-08-01
Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.
36 Years of Remote Oceanographic Laser Fluorosensing: Findings, Challenges and Pathways to Explore
NASA Astrophysics Data System (ADS)
Chekalyuk, A. M.
2009-12-01
Since its initial bright start in early 70s, the oceanographic applications of laser remote fluorosensing have been mostly driven by the enthusiastic laser geeks, who tried to transfer the recent technological advances from their laboratory breadboards to the real world. This communication provides an overview of the key milestones and advances in the oceanographic applications of remote laser fluorosensing that is used for qualitative and quantitative characterization of the key aquatic constituents, including chromophoric dissolved organic matter, phytoplankton pigments, their biomass, community structure, and photo-physiological status. The basic principles and analytical techniques, including fluorescence excitation and emission measurements, as well as active control over the media to retrieve additional information (“super-active remote sensing”), are briefly discussed and illustrated with examples of practical applications. The laser excitation sources (including solid state, tunable lasers and optical parametric oscillators) and signal detectors and analyzers (including multi-spectral and hyperspectral systems) are discussed. The advantages and limitations of various platforms (stationary settings, ships, airplanes, helicopters, unmanned autonomous vehicles (UAV), and satellites) are analyzed. The recent findings, methodological and technological developments in oceanographic applications of laser fluorescence indicate that there is a significant, still underexplored potential of remote fluorosensing that may provide new observational capabilities and serve as a useful tool for oceanographic research, bio-environmental monitoring, and validation of passive satellite retrievals.
CONTACT: An Air Force technical report on military satellite control technology
NASA Astrophysics Data System (ADS)
Weakley, Christopher K.
1993-07-01
This technical report focuses on Military Satellite Control Technologies and their application to the Air Force Satellite Control Network (AFSCN). This report is a compilation of articles that provide an overview of the AFSCN and the Advanced Technology Program, and discusses relevant technical issues and developments applicable to the AFSCN. Among the topics covered are articles on Future Technology Projections; Future AFSCN Topologies; Modeling of the AFSCN; Wide Area Communications Technology Evolution; Automating AFSCN Resource Scheduling; Health & Status Monitoring at Remote Tracking Stations; Software Metrics and Tools for Measuring AFSCN Software Performance; Human-Computer Interface Working Group; Trusted Systems Workshop; and the University Technical Interaction Program. In addition, Key Technology Area points of contact are listed in the report.
Benefits of information technology-enabled diabetes management.
Bu, Davis; Pan, Eric; Walker, Janice; Adler-Milstein, Julia; Kendrick, David; Hook, Julie M; Cusack, Caitlin M; Bates, David W; Middleton, Blackford
2007-05-01
To determine the financial and clinical benefits of implementing information technology (IT)-enabled disease management systems. A computer model was created to project the impact of IT-enabled disease management on care processes, clinical outcomes, and medical costs for patients with type 2 diabetes aged >25 years in the U.S. Several ITs were modeled (e.g., diabetes registries, computerized decision support, remote monitoring, patient self-management systems, and payer-based systems). Estimates of care process improvements were derived from published literature. Simulations projected outcomes for both payer and provider organizations, scaled to the national level. The primary outcome was medical cost savings, in 2004 U.S. dollars discounted at 5%. Secondary measures include reduction of cardiovascular, cerebrovascular, neuropathy, nephropathy, and retinopathy clinical outcomes. All forms of IT-enabled disease management improved the health of patients with diabetes and reduced health care expenditures. Over 10 years, diabetes registries saved $14.5 billion, computerized decision support saved $10.7 billion, payer-centered technologies saved $7.10 billion, remote monitoring saved $326 million, self-management saved $285 million, and integrated provider-patient systems saved $16.9 billion. IT-enabled diabetes management has the potential to improve care processes, delay diabetes complications, and save health care dollars. Of existing systems, provider-centered technologies such as diabetes registries currently show the most potential for benefit. Fully integrated provider-patient systems would have even greater potential for benefit. These benefits must be weighed against the implementation costs.
Remote monitoring of electromagnetic signals and seismic events using smart mobile devices
NASA Astrophysics Data System (ADS)
Georgiadis, Pantelis; Cavouras, Dionisis; Sidiropoulos, Konstantinos; Ninos, Konstantinos; Nomicos, Constantine
2009-06-01
This study presents the design and development of a novel mobile wireless system to be used for monitoring seismic events and related electromagnetic signals, employing smart mobile devices like personal digital assistants (PDAs) and wireless communication technologies such as wireless local area networks (WLANs), general packet radio service (GPRS) and universal mobile telecommunications system (UMTS). The proposed system enables scientists to access critical data while being geographically independent of the sites of data sources, rendering it as a useful tool for preliminary scientific analysis.
Impact of Shutting Down En Route Primary Radars within CONUS Interior
1993-06-01
Remote Control Interface Unit ( RCIU ) RMS software for the primary radar will be deleted. Any dependency of the secondary radar on the primary radar data...Generators RCIU Remote Control and Interface Unit RMM Remote Monitoring and Maintenance RMMS Remote Maintenance Monitoring System RMS Remote Maintenance
A New mHealth Communication Framework for Use in Wearable WBANs and Mobile Technologies
Hamida, Sana Tmar-Ben; Hamida, Elyes Ben; Ahmed, Beena
2015-01-01
Driven by the development of biomedical sensors and the availability of high mobile bandwidth, mobile health (mHealth) systems are now offering a wider range of new services. This revolution makes the idea of in-home health monitoring practical and provides the opportunity for assessment in “real-world” environments producing more ecologically valid data. In the field of insomnia diagnosis, for example, it is now possible to offer patients wearable sleep monitoring systems which can be used in the comfort of their homes over long periods of time. The recorded data collected from body sensors can be sent to a remote clinical back-end system for analysis and assessment. Most of the research on sleep reported in the literature mainly looks into how to automate the analysis of the sleep data and does not address the problem of the efficient encoding and secure transmissions of the collected health data. This article reviews the key enabling communication technologies and research challenges for the design of efficient mHealth systems. An end-to-end mHealth system architecture enabling the remote assessment and monitoring of patient's sleep disorders is then proposed and described as a case study. Finally, various mHealth data serialization formats and machine-to-machine (M2M) communication protocols are evaluated and compared under realistic operating conditions. PMID:25654718
Fabregat-Andres, Oscar; Munoz-Macho, Adolfo; Adell-Beltran, Guillermo; Ibanez-Catala, Xavier; Macia, Agustin; Facila, Lorenzo
2014-08-01
Prevention of cardiac events during competitive sports is fundamental. New technologies with remote monitoring systems integrated into clothing could facilitate the screening of heart disease. Our aim was to evaluate the feasibility of Nuubo system during a field stress test performed by soccer players, comparing results with treadmill ergospirometry as test reference. Nineteen male professional soccer players (19.2 ± 1.6 years) were studied. Wireless electrocardiographic monitoring during a Yo-Yo intermittent recovery test level 1 in soccer field and subsequent analysis of arrhythmias were firstly performed. Subsequently, in a period no longer than 4 weeks, each player underwent cardiopulmonary exercise testing in hospital. During Yo-Yo test, electrocardiogram (ECG) signal was interpretable in 16 players (84.2%). In the other three players, ECG artifacts did not allow a proper analysis. Estimation of maximum oxygen consumption was comparable between two exercise tests (VO 2 max 53.3 ± 2.4 vs. 53.7 ± 3.0 mL/kg/min for Yo-Yo test and ergometry respectively; intra-class correlation coefficient 0.84 (0.63 - 0.93), P < 0.001). No arrhythmias were detected in any player during both tests. The use of Nuubo's technology allows an accurate single-lead electrocardiographic recording and estimation of reliable performance variables during exercise testing in field, and provides a new perspective to cardiac remote monitoring in collective sports.
Dubner, Sergio; Auricchio, Angelo; Steinberg, Jonathan S; Vardas, Panos; Stone, Peter; Brugada, Josep; Piotrowicz, Ryszard; Hayes, David L; Kirchhof, Paulus; Breithardt, Günter; Zareba, Wojciech; Schuger, Claudio; Aktas, Mehmet K; Chudzik, Michal; Mittal, Suneet; Varma, Niraj
2012-02-01
We are in the midst of a rapidly evolving era of technology-assisted medicine. The field of telemedicine provides the opportunity for highly individualized medical management in a way that has never been possible before. Evolving medical technologies using cardiac implantable devices (CIEDs) with capabilities for remote monitoring permit evaluation of multiple parameters of cardiovascular physiology and risk, including cardiac rhythm, device function, blood pressure values, the presence of myocardial ischaemia, and the degree of compensation of congestive heart failure. Cardiac risk, device status, and response to therapies can now be assessed with these electronic systems of detection and reporting. This document reflects the extensive experience from investigators and innovators around the world who are shaping the evolution of this rapidly expanding field, focusing in particular on implantable pacemakers (IPGs), implantable cardioverter-defibrillators (ICDs), devices for cardiac resynchronization therapy (CRT) (both, with and without defibrillation properties), loop recorders, and haemodynamic monitoring devices. This document covers the basic methodologies, guidelines for their use, experience with existing applications, and the legal and reimbursement aspects associated with their use. To adequately cover this important emerging topic, the International Society for Holter and Noninvasive Electrocardiology (ISHNE) and the European Heart Rhythm Association (EHRA) combined their expertise in this field. We hope that the development of this field can contribute to improve care of our cardiovascular patients.
A new mHealth communication framework for use in wearable WBANs and mobile technologies.
Hamida, Sana Tmar-Ben; Hamida, Elyes Ben; Ahmed, Beena
2015-02-03
Driven by the development of biomedical sensors and the availability of high mobile bandwidth, mobile health (mHealth) systems are now offering a wider range of new services. This revolution makes the idea of in-home health monitoring practical and provides the opportunity for assessment in "real-world" environments producing more ecologically valid data. In the field of insomnia diagnosis, for example, it is now possible to offer patients wearable sleep monitoring systems which can be used in the comfort of their homes over long periods of time. The recorded data collected from body sensors can be sent to a remote clinical back-end system for analysis and assessment. Most of the research on sleep reported in the literature mainly looks into how to automate the analysis of the sleep data and does not address the problem of the efficient encoding and secure transmissions of the collected health data. This article reviews the key enabling communication technologies and research challenges for the design of efficient mHealth systems. An end-to-end mHealth system architecture enabling the remote assessment and monitoring of patient's sleep disorders is then proposed and described as a case study. Finally, various mHealth data serialization formats and machine-to-machine (M2M) communication protocols are evaluated and compared under realistic operating conditions.
A global change data base using Thematic Mapper data - Earth Monitoring Educational System (EMES)
NASA Technical Reports Server (NTRS)
D'Antoni, Hector L.; Peterson, David L.
1992-01-01
Some of the main directions in creating an education program in earth system science aimed at combining top science and technology with high academic performance are presented. The creation of an Earth Monitoring Educational System (EMES) integrated with the research interests of the NASA Ames Research Center and one or more universities is proposed. Based on the integration of a global network of cooperators to build a global data base for assessments of global change, EMES would promote degrees at all levels in global ecology at associated universities and colleges, and extracurricular courses for multilevel audiences. EMES objectives are to: train specialists; establish a tradition of solving regional problems concerning global change in a systemic manner, using remote sensing technology as the monitoring tool; and transfer knowledge on global change to the national and world communities. South America is proposed as the pilot continent for the project.
Remote monitoring as a tool in condition assessment of a highway bridge
NASA Astrophysics Data System (ADS)
Tantele, Elia A.; Votsis, Renos A.; Onoufriou, Toula; Milis, Marios; Kareklas, George
2016-08-01
The deterioration of civil infrastructure and their subsequent maintenance is a significant problem for the responsible managing authorities. The ideal scenario is to detect deterioration and/or structural problems at early stages so that the maintenance cost is kept low and the safety of the infrastructure remains undisputed. The current inspection regimes implemented mostly via visual inspection are planned at specific intervals but are not always executed on time due to shortcomings in expert personnel and finance. However the introduction of technological advances in the assessment of infrastructures provides the tools to alleviate this problem. This study describes the assessment of a highway RC bridge's structural condition using remote structural health monitoring. A monitoring plan is implemented focusing on strain measurements; as strain is a parameter influenced by the environmental conditions supplementary data are provided from temperature and wind sensors. The data are acquired using wired sensors (deployed at specific locations) which are connected to a wireless sensor unit installed at the bridge. This WSN application enables the transmission of the raw data from the field to the office for processing and evaluation. The processed data are then used to assess the condition of the bridge. This case study, which is part of an undergoing RPF research project, illustrates that remote monitoring can alleviate the problem of missing structural inspections. Additionally, shows its potential to be the main part of a fully automated smart procedure of obtaining structural data, processed them and trigger an alarm when certain undesirable conditions are met.
Cost-Effectiveness of Remote Cardiac Monitoring With the CardioMEMS Heart Failure System.
Schmier, Jordana K; Ong, Kevin L; Fonarow, Gregg C
2017-07-01
Heart failure (HF) is a leading cause of cardiovascular mortality in the United States and presents a substantial economic burden. A recently approved implantable wireless pulmonary artery pressure remote monitor, the CardioMEMS HF System, has been shown to be effective in reducing hospitalizations among New York Heart Association (NYHA) class III HF patients. The objective of this study was to estimate the cost-effectiveness of this remote monitoring technology compared to standard of care treatment for HF. A Markov cohort model relying on the CHAMPION (CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients) clinical trial for mortality and hospitalization data, published sources for cost data, and a mix of CHAMPION data and published sources for utility data, was developed. The model compares outcomes over 5 years for implanted vs standard of care patients, allowing patients to accrue costs and utilities while they remain alive. Sensitivity analyses explored uncertainty in input parameters. The CardioMEMS HF System was found to be cost-effective, with an incremental cost-effectiveness ratio of $44,832 per quality-adjusted life year (QALY). Sensitivity analysis found the model was sensitive to the device cost and to whether mortality benefits were sustained, although there were no scenarios in which the cost/QALY exceeded $100,000. Compared with standard of care, the CardioMEMS HF System was cost-effective when leveraging trial data to populate the model. © 2017 Wiley Periodicals, Inc.
Sensing underground coal gasification by ground penetrating radar
NASA Astrophysics Data System (ADS)
Kotyrba, Andrzej; Stańczyk, Krzysztof
2017-12-01
The paper describes the results of research on the applicability of the ground penetrating radar (GPR) method for remote sensing and monitoring of the underground coal gasification (UCG) processes. The gasification of coal in a bed entails various technological problems and poses risks to the environment. Therefore, in parallel with research on coal gasification technologies, it is necessary to develop techniques for remote sensing of the process environment. One such technique may be the radar method, which allows imaging of regions of mass loss (voids, fissures) in coal during and after carrying out a gasification process in the bed. The paper describes two research experiments. The first one was carried out on a large-scale model constructed on the surface. It simulated a coal seam in natural geological conditions. A second experiment was performed in a shallow coal deposit maintained in a disused mine and kept accessible for research purposes. Tests performed in the laboratory and in situ conditions showed that the method provides valuable data for assessing and monitoring gasification surfaces in the UCG processes. The advantage of the GPR method is its high resolution and the possibility of determining the spatial shape of various zones and forms created in the coal by the gasification process.
Rosner, Mitchell H; Lew, Susie Q; Conway, Paul; Ehrlich, Jennifer; Jarrin, Robert; Patel, Uptal D; Rheuban, Karen; Robey, R Brooks; Sikka, Neal; Wallace, Eric; Brophy, Patrick; Sloand, James
2017-11-07
Telehealth and remote monitoring of a patient's health status has become more commonplace in the last decade and has been applied to conditions such as heart failure, diabetes mellitus, hypertension, and chronic obstructive pulmonary disease. Conversely, uptake of these technologies to help engender and support home RRTs has lagged. Although studies have looked at the role of telehealth in RRT, they are small and single-centered, and both outcome and cost-effectiveness data are needed to inform future decision making. Furthermore, alignment of payer and government (federal and state) regulations with telehealth procedures is needed along with a better understanding of the viewpoints of the various stakeholders in this process (patients, caregivers, clinicians, payers, dialysis organizations, and government regulators). Despite these barriers, telehealth has great potential to increase the acceptance of home dialysis, and improve outcomes and patient satisfaction while potentially decreasing costs. The Kidney Health Initiative convened a multidisciplinary workgroup to examine the current state of telehealth use in home RRTs as well as outline potential benefits and drawbacks, impediments to implementation, and key unanswered questions. Copyright © 2017 by the American Society of Nephrology.
NASA Astrophysics Data System (ADS)
Themistocleous, Kyriacos; Neocleous, Kyriacos; Pilakoutas, Kypros; Hadjimitsis, Diofantos G.
2014-08-01
The predominant approach for conducting road condition surveys and analyses is still largely based on extensive field observations. However, visual assessment alone cannot identify the actual extent and severity of damage. New non-invasive and cost-effective non-destructive (NDT) remote sensing technologies can be used to monitor road pavements across their life cycle, including remotely sensed aerial and satellite visual and thermal image (AI) data, Unmanned Aerial Vehicles (UAVs), Spectroscopy and Ground Penetrating Radar (GRP). These non-contact techniques can be used to obtain surface and sub-surface information about damage in road pavements, including the crack depth, and in-depth structural failure. Thus, a smart and cost-effective methodology is required that integrates several of these non-destructive/ no-contact techniques for the damage assessment and monitoring at different levels. This paper presents an overview of how an integration of the above technologies can be used to conduct detailed road condition surveys. The proposed approach can also be used to predict the future needs for road maintenance; this information is proven to be valuable to a strategic decision making tools that optimizes maintenance based on resources and environmental issues.
Monitoring glacier change: advances in cross-disciplinary research and data sharing methods
NASA Astrophysics Data System (ADS)
Arendt, A. A.; O'Neel, S.; Cogley, G.; Hill, D. F.; Hood, E. W.
2016-12-01
Recent studies have emphasized the importance of understanding interactions between glacier change and downstream ecosystems, ocean dynamics and human infrastructure. Despite the need for integrated assessments, few in-situ and remote sensing glacier monitoring studies also collect concurrent data on surrounding systems affected by glacier change. In addition, the sharing of glacier datasets across disciplines has often been hampered by limitations in data sharing technologies and a lack of data standardization. Here we provide an overview of recent efforts to facilitate distribution of glacier inventory/change datasets under the framework provided by the Global Terrestrial Network for Glaciers (GTN-G). New, web accessible data products include glacier thickness data and updated glacier extents from the Randolph Glacier Inventory. We also highlight a 2016 data collection effort led by the US Geological Survey on the Wolverine Glacier watershed, Alaska, USA. A large international team collected glaciological, water quality, snow cover, firn composition, vegetation and freshwater ecology data, using remote sensing/in-situ data and model simulations. We summarize preliminary results and outline our use of cloud-computing technologies to coordinate the integration of complex data types across multiple research teams.
NASA Astrophysics Data System (ADS)
Keonuchan, Ammala; Liu, Yaolin
2008-12-01
Forest resource is the important material foundation of national sustainable development. And it need to master the status and change of forest resource timely for reasonable exploitation of forest and its renewal. Laos is located in the heart of the Indochinese peninsular, in southeast Asia, latitude 14° to 23 °north and longitude 100°to 108°east, covered a total 236, 800 square kilometers, and country of nearly 6 million people. The forest of Laos dropped from close to two-third in the 1970's to less than half by the 1990's. This deforestation has been attributed to two human activities : a traditional of shifting cultivation or slash and burn farming, and logging without reforestation. Remote sensing and GIS are the most modern technologies which have been widely used in the field of natural resource management and monitoring. These technologies provide very powerful tools to observe and collect information on natural resources and dynamic phenomenon on the earth surface, and ability to integrate different data and present data in different formats. In this study, using forest cover map and Landsat 7 ETM data, we analyze and compare forest cover change from 1997 to 2002. And the maximum likelihood method of supervised classification was used to classify the remote sensing data, we processed Spectral Enhancement, including Normalized Difference Vegetation Index (NDVI) ,and re-classify data again base on Principle Components Analysis (PCA) and NDVI.
NASA Astrophysics Data System (ADS)
Zhan, Jinliang; Lu, Pei
2006-11-01
Since the quality of traditional Chinese medicine products are affected by raw material, machining and many other factors, it is difficult for traditional Chinese medicine production process especially the extracting process to ensure the steady and homogeneous quality. At the same time, there exist some quality control blind spots due to lacking on-line quality detection means. But if infrared spectrum analysis technology was used in traditional Chinese medicine production process on the basis of off-line analysis to real-time detect the quality of semi-manufactured goods and to be assisted by advanced automatic control technique, the steady and homogeneous quality can be obtained. It can be seen that the on-line detection of extracting process plays an important role in the development of Chinese patent medicines industry. In this paper, the design and implement of a traditional Chinese medicine extracting process monitoring experiment system which is based on PROFIBUS-DP field bus, OPC, and Internet technology is introduced. The system integrates intelligence node which gathering data, superior sub-system which achieving figure configuration and remote supervisory, during the process of traditional Chinese medicine production, monitors the temperature parameter, pressure parameter, quality parameter etc. And it can be controlled by the remote nodes in the VPN (Visual Private Network). Experiment and application do have proved that the system can reach the anticipation effect fully, and with the merits of operational stability, real-time, reliable, convenient and simple manipulation and so on.
QWIP technology for both military and civilian applications
NASA Astrophysics Data System (ADS)
Gunapala, Sarath D.; Kukkonen, Carl A.; Sirangelo, Mark N.; McQuiston, Barbara K.; Chehayeb, Riad; Kaufmann, M.
2001-10-01
Advanced thermal imaging infrared cameras have been a cost effective and reliable method to obtain the temperature of objects. Quantum Well Infrared Photodetector (QWIP) based thermal imaging systems have advanced the state-of-the-art and are the most sensitive commercially available thermal systems. QWIP Technologies LLC, under exclusive agreement with Caltech University, is currently manufacturing the QWIP-ChipTM, a 320 X 256 element, bound-to-quasibound QWIP FPA. The camera performance falls within the long-wave IR band, spectrally peaked at 8.5 μm. The camera is equipped with a 32-bit floating-point digital signal processor combined with multi- tasking software, delivering a digital acquisition resolution of 12-bits using nominal power consumption of less than 50 Watts. With a variety of video interface options, remote control capability via an RS-232 connection, and an integrated control driver circuit to support motorized zoom and focus- compatible lenses, this camera design has excellent application in both the military and commercial sector. In the area of remote sensing, high-performance QWIP systems can be used for high-resolution, target recognition as part of a new system of airborne platforms (including UAVs). Such systems also have direct application in law enforcement, surveillance, industrial monitoring and road hazard detection systems. This presentation will cover the current performance of the commercial QWIP cameras, conceptual platform systems and advanced image processing for use in both military remote sensing and civilian applications currently being developed in road hazard monitoring.
NASA Technical Reports Server (NTRS)
Price, Kevin P.; Nellis, M. Duane
1996-01-01
The purpose of this project was to develop a practical protocol that employs multitemporal remotely sensed imagery, integrated with environmental parameters to model and monitor agricultural and natural resources in the High Plains Region of the United States. The value of this project would be extended throughout the region via workshops targeted at carefully selected audiences and designed to transfer remote sensing technology and the methods and applications developed. Implementation of such a protocol using remotely sensed satellite imagery is critical for addressing many issues of regional importance, including: (1) Prediction of rural land use/land cover (LULC) categories within a region; (2) Use of rural LULC maps for successive years to monitor change; (3) Crop types derived from LULC maps as important inputs to water consumption models; (4) Early prediction of crop yields; (5) Multi-date maps of crop types to monitor patterns related to crop change; (6) Knowledge of crop types to monitor condition and improve prediction of crop yield; (7) More precise models of crop types and conditions to improve agricultural economic forecasts; (8;) Prediction of biomass for estimating vegetation production, soil protection from erosion forces, nonpoint source pollution, wildlife habitat quality and other related factors; (9) Crop type and condition information to more accurately predict production of biogeochemicals such as CO2, CH4, and other greenhouse gases that are inputs to global climate models; (10) Provide information regarding limiting factors (i.e., economic constraints of pumping, fertilizing, etc.) used in conjunction with other factors, such as changes in climate for predicting changes in rural LULC; (11) Accurate prediction of rural LULC used to assess the effectiveness of government programs such as the U.S. Soil Conservation Service (SCS) Conservation Reserve Program; and (12) Prediction of water demand based on rural LULC that can be related to rates of draw-down of underground water supplies.
Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review
Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.
2016-01-01
Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611
Rapid deployable global sensing hazard alert system
Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M
2015-04-28
A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.
e-phenology: monitoring leaf phenology and tracking climate changes in the tropics
NASA Astrophysics Data System (ADS)
Morellato, Patrícia; Alberton, Bruna; Almeida, Jurandy; Alex, Jefersson; Mariano, Greice; Torres, Ricardo
2014-05-01
The e-phenology is a multidisciplinary project combining research in Computer Science and Phenology. Its goal is to attack theoretical and practical problems involving the use of new technologies for remote phenological observation aiming to detect local environmental changes. It is geared towards three objectives: (a) the use of new technologies of environmental monitoring based on remote phenology monitoring systems; (b) creation of a protocol for a Brazilian long term phenology monitoring program and for the integration across disciplines, advancing our knowledge of seasonal responses within tropics to climate change; and (c) provide models, methods and algorithms to support management, integration and analysis of data of remote phenology systems. The research team is composed by computer scientists and biology researchers in Phenology. Our first results include: Phenology towers - We set up the first phenology tower in our core cerrado-savanna 1 study site at Itirapina, São Paulo, Brazil. The tower received a complete climatic station and a digital camera. The digital camera is set up to take daily sequence of images (five images per hour, from 6:00 to 18:00 h). We set up similar phenology towers with climatic station and cameras in five more sites: cerrado-savanna 2 (Pé de Gigante, SP), cerrado grassland 3 (Itirapina, SP), rupestrian fields 4 ( Serra do Cipo, MG), seasonal forest 5 (Angatuba, SP) and Atlantic raiforest 6 (Santa Virginia, SP). Phenology database - We finished modeling and validation of a phenology database that stores ground phenology and near-remote phenology, and we are carrying out the implementation with data ingestion. Remote phenology and image processing - We performed the first analyses of the cerrado sites 1 to 4 phenology derived from digital images. Analysis were conducted by extracting color information (RGB Red, Green and Blue color channels) from selected parts of the image named regions of interest (ROI). using the green color channel. We analyzed a daily sequence of images (6:00 to 18:00 h). Our results are innovative and indicate the great variation in color change response for tropical trees. We validate the camera phenology with our on the ground direct observation in the core cerrado site 1. We are developing a Image processing software to authomatic process the digital images and to generate the time series for further analyses. New techniques and image features have been used to extract seasonal features from data and for data processing, such as machine learning and visual rhythms. Machine learning was successful applied to identify similar species within the image. Visual rhythms show up as a new analytic tool for phenological interpretation. Next research steps include the analyses of longer data series, correlation with local climatic data, analyses and comparison of patterns among different vegetation sites, prepare a compressive protocol for digital camera phenology and develop new technologies to access vegetation changes using digital cameras. Support: FAPESP-Micorsoft Research, CNPq, CAPES.
Water environmental management with the aid of remote sensing and GIS technology
NASA Astrophysics Data System (ADS)
Chen, Xiaoling; Yuan, Zhongzhi; Li, Yok-Sheung; Song, Hong; Hou, Yingzi; Xu, Zhanhua; Liu, Honghua; Wai, Onyx W.
2005-01-01
Water environment is associated with many disciplinary fields including sciences and management which makes it difficult to study. Timely observation, data getting and analysis on water environment are very important for decision makers who play an important role to maintain the sustainable development. This study focused on developing a plateform of water environment management based on remote sensing and GIS technology, and its main target is to provide with necessary information on water environment through spatial analysis and visual display in a suitable way. The work especially focused on three points, and the first one is related to technical issues of spatial data organization and communication with a combination of GIS and statistical software. A data-related model was proposed to solve the data communication between the mentioned systems. The second one is spatio-temporal analysis based on remote sensing and GIS. Water quality parameters of suspended sediment concentration and BOD5 were specially analyzed in this case, and the results suggested an obvious influence of land source pollution quantitatively in a spatial domain. The third one is 3D visualization of surface feature based on RS and GIS technology. The Pearl River estuary and HongKong's coastal waters in the South China Sea were taken as a case in this study. The software ARCGIS was taken as a basic platform to develop a water environmental management system. The sampling data of water quality in 76 monitoring stations of coastal water bodies and remote sensed images were selected in this study.
14 CFR 171.259 - Performance requirements: General.
Code of Federal Regulations, 2011 CFR
2011-01-01
... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...
14 CFR 171.259 - Performance requirements: General.
Code of Federal Regulations, 2013 CFR
2013-01-01
... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...
14 CFR 171.259 - Performance requirements: General.
Code of Federal Regulations, 2012 CFR
2012-01-01
... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...
14 CFR 171.259 - Performance requirements: General.
Code of Federal Regulations, 2014 CFR
2014-01-01
... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...
Intelligent instrumentation applied in environment management
NASA Astrophysics Data System (ADS)
Magheti, Mihnea I.; Walsh, Patrick; Delassus, Patrick
2005-06-01
The use of information and communications technology in environment management and research has witnessed a renaissance in recent years. From optical sensor technology, expert systems, GIS and communications technologies to computer aided harvesting and yield prediction, these systems are increasable used for applications developing in the management sector of natural resources and biodiversity. This paper presents an environmental decision support system, used to monitor biodiversity and present a risk rating for the invasion of pests into the particular systems being examined. This system will utilise expert mobile technology coupled with artificial intelligence and predictive modelling, and will emphasize the potential for expansion into many areas of intelligent remote sensing and computer aided decision-making for environment management or certification. Monitoring and prediction in natural systems, harnessing the potential of computing and communication technologies is an emerging technology within the area of environmental management. This research will lead to the initiation of a hardware and software multi tier decision support system for environment management allowing an evaluation of areas for biodiversity or areas at risk from invasive species, based upon environmental factors/systems.
Early Forest Fire Detection Using Radio-Acoustic Sounding System
Sahin, Yasar Guneri; Ince, Turker
2009-01-01
Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong
2015-01-01
The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-micron laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-micron integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.
Smart home-based health platform for behavioral monitoring and alteration of diabetes patients.
Helal, Abdelsalam; Cook, Diane J; Schmalz, Mark
2009-01-01
Researchers and medical practitioners have long sought the ability to continuously and automatically monitor patients beyond the confines of a doctor's office. We describe a smart home monitoring and analysis platform that facilitates the automatic gathering of rich databases of behavioral information in a manner that is transparent to the patient. Collected information will be automatically or manually analyzed and reported to the caregivers and may be interpreted for behavioral modification in the patient. Our health platform consists of five technology layers. The architecture is designed to be flexible, extensible, and transparent, to support plug-and-play operation of new devices and components, and to provide remote monitoring and programming opportunities. The smart home-based health platform technologies have been tested in two physical smart environments. Data that are collected in these implemented physical layers are processed and analyzed by our activity recognition and chewing classification algorithms. All of these components have yielded accurate analyses for subjects in the smart environment test beds. This work represents an important first step in the field of smart environment-based health monitoring and assistance. The architecture can be used to monitor the activity, diet, and exercise compliance of diabetes patients and evaluate the effects of alternative medicine and behavior regimens. We believe these technologies are essential for providing accessible, low-cost health assistance in an individual's own home and for providing the best possible quality of life for individuals with diabetes. © Diabetes Technology Society
``Low Power Wireless Technologies: An Approach to Medical Applications''
NASA Astrophysics Data System (ADS)
Bellido O., Francisco J.; González R., Miguel; Moreno M., Antonio; de La Cruz F, José Luis
Wireless communication supposed a great both -quantitative and qualitative, jump in the management of the information, allowing the access and interchange of it without the need of a physical cable connection. The wireless transmission of voice and information has remained in constant evolution, arising new standards like BluetoothTM, WibreeTM or ZigbeeTM developed under the IEEE 802.15 norm. These newest wireless technologies are oriented to systems of communication of short-medium distance and optimized for a low cost and minor consume, becoming recognized as a flexible and reliable medium for data communications across a broad range of applications due to the potential that the wireless networks presents to operate in demanding environments providing clear advantages in cost, size, power, flexibility, and distributed intelligence. About the medical applications, the remote health or telecare (also called eHealth) is getting a bigger place into the manufacturers and medical companies, in order to incorporate products for assisted living and remote monitoring of health parameteres. At this point, the IEEE 1073, Personal Health Devices Working Group, stablish the framework for these kind of applications. Particularly, the 1073.3.X describes the physical and transport layers, where the new ultra low power short range wireless technologies can play a big role, providing solutions that allow the design of products which are particularly appropriate for monitor people’s health with interoperability requirements.
Real-time bioacoustics monitoring and automated species identification.
Aide, T Mitchell; Corrada-Bravo, Carlos; Campos-Cerqueira, Marconi; Milan, Carlos; Vega, Giovany; Alvarez, Rafael
2013-01-01
Traditionally, animal species diversity and abundance is assessed using a variety of methods that are generally costly, limited in space and time, and most importantly, they rarely include a permanent record. Given the urgency of climate change and the loss of habitat, it is vital that we use new technologies to improve and expand global biodiversity monitoring to thousands of sites around the world. In this article, we describe the acoustical component of the Automated Remote Biodiversity Monitoring Network (ARBIMON), a novel combination of hardware and software for automating data acquisition, data management, and species identification based on audio recordings. The major components of the cyberinfrastructure include: a solar powered remote monitoring station that sends 1-min recordings every 10 min to a base station, which relays the recordings in real-time to the project server, where the recordings are processed and uploaded to the project website (arbimon.net). Along with a module for viewing, listening, and annotating recordings, the website includes a species identification interface to help users create machine learning algorithms to automate species identification. To demonstrate the system we present data on the vocal activity patterns of birds, frogs, insects, and mammals from Puerto Rico and Costa Rica.
Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators
Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Rossi, Camilla Baj; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali
2016-01-01
Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine. PMID:26928456
Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators
NASA Astrophysics Data System (ADS)
Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Rossi, Camilla Baj; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali
2016-03-01
Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine.
Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators.
Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Baj Rossi, Camilla; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali
2016-03-01
Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine.
NASA Technical Reports Server (NTRS)
Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan
2011-01-01
This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.
NASA Astrophysics Data System (ADS)
Freer, J. E.; Richardson, T.; Yang, Z.
2012-12-01
Recent advances in remote sensing and geographic information has led the way for the development of hyperspectral sensors and cloud scanning LIDAR (Light Detection And Ranging). Both these technologies can be used to sense environmental processes and capture detailed spatial information, they are often deployed in ground, aircraft and satellite based systems. Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that is currently being investigated by researchers and scientists with regard to the detection and identification of landscapes, terrestrial vegetation, and manmade materials and backgrounds. There are many applications that could take advantages of hyperspectral remote sensing coupled to detailed surface feature mapping using LIDAR. This embryonic project involves developing the engineering solutions and post processing techniques needed to realise an ultra high resolution helicopter based environmental sensing platform which can fly at lower altitudes than aircraft systems and can be deployed more frequently. We aim to present this new technology platform in this special session (the only one of it's kind in the UK). Initial applications are planned on a range of environmental sensing problems that would benefit from such complex and detailed data.We look forward to being able to display and discuss this initiative with colleagues and any potential interest in future collaborative projects.
NASA Astrophysics Data System (ADS)
Freer, J.; Richardson, T. S.
2012-04-01
Recent advances in remote sensing and geographic information has led the way for the development of hyperspectral sensors and cloud scanning LIDAR (Light Detection And Ranging). Both these technologies can be used to sense environmental processes and capture detailed spatial information, they are often deployed in ground, aircraft and satellite based systems. Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that is currently being investigated by researchers and scientists with regard to the detection and identification of landscapes, terrestrial vegetation, and manmade materials and backgrounds. There are many applications that could take advantages of hyperspectral remote sensing coupled to detailed surface feature mapping using LIDAR. This embryonic project involves developing the engineering solutions and post processing techniques needed to realise an ultra high resolution helicopter based environmental sensing platform which can fly at lower altitudes than aircraft systems and can be deployed more frequently. We aim to display this new technology platform in this special session (the only one of it's kind in the UK). Initial applications are planned on a range of environmental sensing problems that would benefit from such complex and detailed data. We look forward to being able to display and discuss this initiative with colleagues and any potential interest in future collaborative projects.
LACIE - A look to the future. [Large Area Crop Inventory Experiment
NASA Technical Reports Server (NTRS)
Macdonald, R. B.; Hall, F. G.
1977-01-01
The Large Area Crop Inventory Experiment (LACIE) is a 'proof of concept' project designed to demonstrate the applicability of remote sensing technology to the global monitoring of wheat. This paper discusses the need for more timely and reliable monitoring of food and fiber supplies, reviews the monitoring systems currently utilized by the USDA and United Nations Food and Agriculture Organization in the United States and in foreign countries, and elucidates the fundamentals involved in assessing the impact of variable weather and economic conditions on wheat acreage, yield, and production. The experiment's approach to production monitoring is described briefly, and its status is reviewed as of the conclusion of 2 years of successful operation. Examples of acreage and yield monitoring in the Soviet Union are used to illustrate the experiment's approach.
Remote-Reading Safety and Safeguards Surveillance System for 3013 Containers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lechelt, W. M.; Skorpik, J. R.; Silvers, K. L.
2002-02-26
At Hanford's Plutonium Finishing Plant (PFP), plutonium oxide is being loaded into stainless steel containers for long-term storage on the Hanford Site. These containers consist of two weld-sealed stainless steel cylinders nested one within the other. A third container holds the plutonium within the inner cylinder. This design meets the U.S. Department of Energy (DOE) storage standard, DOE-STD- 3013-2000, which anticipates a 50-year storage lifetime. The 3013 standard also requires a container surveillance program to continuously monitor pressure and to assure safeguards are adequate. However, the configuration of the container system makes using conventional measurement and monitoring methods difficult. Tomore » better meet the 3013 monitoring requirements, a team from Fluor Hanford (who manages the PFP), Pacific Northwest National Laboratory (PNNL), and Vista Engineering Technologies, LLC, developed a safer, cost-efficient, remote PFP 3013 container surveillance system. This new surveillance system is a combination of two successfully deployed technologies: (1) a magnetically coupled pressure gauge developed by Vista Engineering and (2) a radio frequency (RF) tagging device developed by PNNL. This system provides continuous, 100% monitoring of critical parameters with the containers in place, as well as inventory controls. The 3013 container surveillance system consists of three main elements: (1) an internal magnetic pressure sensor package, (2) an instrument pod (external electronics package), and (3) a data acquisition storage and display computer. The surveillance system described in this paper has many benefits for PFP and DOE in terms of cost savings and reduced personnel exposure. In addition, continuous safety monitoring (i.e., internal container pressure and temperature) of every container is responsible nuclear material stewardship and fully meets and exceeds DOE's Integrated Surveillance Program requirements.« less
Development of Decision Support System for Remote Monitoring of PIP Corn
The EPA is developing a multi-level approach that utilizes satellite and airborne remote sensing to locate and monitor genetically modified corn in the agricultural landscape and pest infestation. The current status of the EPA IRM monitoring program based on remote sensed imager...
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; O'Neal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2007-01-01
Scientists within NASA#s Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists have used the SSC V&V site to characterize thermal infrared systems. Enhancements are being considered to characterize active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. Similar techniques are used to characterize moderate spatial resolution sensing systems at selected nearby locations. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
NASA Astrophysics Data System (ADS)
Crawford, T. N.; Schaeffer, B. A.
2016-12-01
Anthropogenic nutrient pollution is a major stressor of aquatic ecosystems around the world. In the United States, states and tribes can adopt numeric water quality values (i.e. criteria) into their water quality management standards to protect aquatic life from eutrophication impacts. However, budget and resource constraints have limited the ability of many states and tribes to collect the water quality monitoring data needed to derive numeric criteria. Over the last few decades, satellite technology has provided water quality measurements on a global scale over long time periods. Water quality managers are finding the data provided by satellite technology useful in managing eutrophication impacts in coastal waters, estuaries, lakes, and reservoirs. In recent years EPA has worked with states and tribes to derive remotely sensed numeric Chl-a criteria for coastal waters with limited field-based data. This approach is now being expanded and used to derive Chl-a criteria in freshwater systems across the United States. This presentation will cover EPA's approach to derive numeric Chl-a criteria using satellite remote sensing, recommendations to improve satellite sensors to expand applications, potential areas of interest, and the challenges of using remote sensing to establish water quality management goals, as well as provide a case in which this approach has been applied.
PREFACE: 35th International Symposium on Remote Sensing of Environment (ISRSE35)
NASA Astrophysics Data System (ADS)
2014-03-01
35th International Symposium on Remote Sensing of Environment (ISRSE35) 22-26 April, 2013, Beijing, China The 35th International Symposium on Remote Sensing of Environment (ISRSE35) was successfully convened in Beijing, China, from April 22nd to 26th, 2013. This was the first event in the ISRSE series being held in China. The symposium was hosted by the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, and co-organized by the International Center for Remote Sensing of Environment (ICRSE), the International Society for Photogrammetry and Remote Sensing (ISPRS), the Group on Earth Observations (GEO), the International Society for Digital Earth (ISDE) and the Chinese Academy of Sciences (CAS). The theme of the symposium was ''Earth Observation and Global Environmental Change''. Back in 1962, the first ISRSE was convened at the University of Michigan, USA. Over the past 50 years, Earth observation has advanced significantly, and remote sensing has become a mature technology for observing the Earth and monitoring global environmental change. At present, remote sensing has already entered an era of integrated, coordinated and sustainable global Earth observation and rapid development of spatial information services. It is very exciting to see that remote sensing technologies have become indispensable tools in numerous fields of Earth systems science, and are playing more and more important roles in areas such as land resources surveying and mapping, crop and forest monitoring, mineral exploration, urban development, ocean and coastlines resources surveillance, and in the monitoring and assessment of floods, droughts, forest fires, landslides and earthquakes. Thus, remote sensing has made great contributions to the socio-economic development of the world and it is anticipated that it will provide more powerful support in advancing the fields of Earth systems science and global change research. The 35th ISRSE was a platform for scientists and young scholars to exchange their research results from the cutting-edge frontiers of spatial information sciences, to review the history of remote sensing development and to consider the prospects for the future development of geospatial information. Therefore, this symposium was dedicated to marking the 50th anniversary of remote sensing especially focused on earth observation and global environmental change. The 35th ISRSE attracted over a thousand scientists and researchers from 56 countries and regions. The Technical Program Committee selected 346 oral presentations and 376 poster presentations, out of 1249 submitted abstracts. In order that the papers from this symposium could be published on a well-recognized platform, the organizers decided to produce refereed papers in IOP EES and invited all presenters to contribute to these proceedings. Each submitted paper was refereed by two anonymous reviewers, following the guidelines of the IOP's Peer Review Policy. The final collection of 279 papers covers a broad range of topics under 14 headings, which not only reflects the diversity of the presentations prompted by the current research hotspots related to remote sensing of the environment, but also witnesses to the increasingly mature development of the discipline. We would like to take this opportunity of the publication of the ISRSE35 Proceedings to express our gratitude to all the participants, especially those who contributed with presentations and manuscripts, for making ISRSE35 such a successful conference. Our thanks also go to our colleagues for their support and encouragement, particularly to the reviewers who worked very hard in reviewing the papers and provided thoughtful comments on the manuscripts. Finally, we sincerely hope that 35th ISRSE will prove to be a significant step forward in Earth observation technologies as applied to addressing the persistent challenges related to global sustainable development. Thank you for your interest and please enjoy the Proceedings. Editor-in-Chief: GUO Huadong Executive Editors: WANG Changlin, JING Linhai, WANG Lizhe, and CHEN Fang Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences The organizing structure of the 35th International Symposium on Remote Sensing of Environment can be found in the PDF.
A design of wireless sensor networks for a power quality monitoring system.
Lim, Yujin; Kim, Hak-Man; Kang, Sanggil
2010-01-01
Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator.
IMS: a new technology to develop a telemedicine system.
Uceda, J D; Elena, M; Blasco, S; Tarrida, C L; Quero, J M
2008-01-01
The emergent IMS (Internet Protocol Multimedia Subsystem) technology appears to improve the current communication technologies. Its characteristics, such as Quality of Service (QoS), make it an advantageous system for innovative applications. Providing integrated services to users is one of the main reasons for the existence of IMS. Operators provide the technology as an open source, to be able to use services developed by researchers. Combining and integrating them, users will receive completely new services. Our proposal of use for IMS is the development of a telemedicine platform, designed to support not only remote biological signal monitoring, but value-added services for diagnosis and medical care, both of these working in real time.
WiSPH: a wireless sensor network-based home care monitoring system.
Magaña-Espinoza, Pedro; Aquino-Santos, Raúl; Cárdenas-Benítez, Néstor; Aguilar-Velasco, José; Buenrostro-Segura, César; Edwards-Block, Arthur; Medina-Cass, Aldo
2014-04-22
This paper presents a system based on WSN technology capable of monitoring heart rate and the rate of motion of seniors within their homes. The system is capable of remotely alerting specialists, caretakers or family members via a smartphone of rapid physiological changes due to falls, tachycardia or bradycardia. This work was carried out using our workgroup's WiSe platform, which we previously developed for use in WSNs. The proposed WSN architecture is flexible, allowing for greater scalability to better allow event-based monitoring. The architecture also provides security mechanisms to assure that the monitored and/or stored data can only be accessed by authorized individuals or devices. The aforementioned characteristics provide the network versatility and solidity required for use in health applications.
NASA Astrophysics Data System (ADS)
Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.
2013-12-01
The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.
NASA Astrophysics Data System (ADS)
Katsuhama, N.; Ikeda, K.; Imai, M.; Watanabe, K.; Marpaung, F.; Yoshii, T.; Naruse, N.; Takahashi, Y.
2016-12-01
Since 2008, coffee leaf rust fungus (Hemileia vastatrix) has expanded its infection in Latin America, and early trimming and burning infected trees have been only effective countermeasures to prevent spreading infection. Although some researchers reported a case about the monitoring of coffee leaf rust using satellite remote sensing in 1970s, the spatial resolution was unsatisfied, and therefore, further technological development has been required. The purpose of this research is to develop effective method of discovering coffee leaf rust infected areas using satellite remote sensing. Annual changes of vegetation indices, i.e. Normalized Difference Vegetation Index (NDVI) and Modified Structure Insensitive Pigment Index (MSIPI), around Cuchumatanes Mountains, Republic of Guatemala, were analyzed by Landsat 7 images. Study fields in the research were limited by the coffee farm areas based on a previous paper about on site surveys in different damage areas. As the result of the analysis, the annual change of NDVI at the coffee farm areas with damages tended to be lower than those without damages. Moreover, the decline of NDVI appear from 2008 before the damage was reported. On the other hand, the change of MSIPI had no significant difference. NDVI and MSIPI are mainly related to the amount of chlorophyll and carotenoid in the leaves respectively. This means that the infected coffee leaves turned yellow without defoliation. This situation well matches the symptom of coffee leaf rust. The research concluded that the property of infected leaves turning yellow is effective to monitoring of infection areas by satellite remote sensing.
Applications of geophysical methods to volcano monitoring
Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.
2006-01-01
The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley caldera in collaboration with the US Forest Service.
Assessing the quality of activities in a smart environment.
Cook, Diane J; Schmitter-Edgecombe, M
2009-01-01
Pervasive computing technology can provide valuable health monitoring and assistance technology to help individuals live independent lives in their own homes. As a critical part of this technology, our objective is to design software algorithms that recognize and assess the consistency of activities of daily living that individuals perform in their own homes. We have designed algorithms that automatically learn Markov models for each class of activity. These models are used to recognize activities that are performed in a smart home and to identify errors and inconsistencies in the performed activity. We validate our approach using data collected from 60 volunteers who performed a series of activities in our smart apartment testbed. The results indicate that the algorithms correctly label the activities and successfully assess the completeness and consistency of the performed task. Our results indicate that activity recognition and assessment can be automated using machine learning algorithms and smart home technology. These algorithms will be useful for automating remote health monitoring and interventions.
NASA Astrophysics Data System (ADS)
Hwang, Jeonghwan; Lee, Jiwoong; Lee, Hochul; Yoe, Hyun
The wireless sensor networks (WSN) technology based on low power consumption is one of the important technologies in the realization of ubiquitous society. When the technology would be applied to the agricultural field, it can give big change in the existing agricultural environment such as livestock growth environment, cultivation and harvest of agricultural crops. This research paper proposes the 'Pig Farm Integrated Management System' based on WSN technology, which will establish the ubiquitous agricultural environment and improve the productivity of pig-raising farmers. The proposed system has WSN environmental sensors and CCTV at inside/outside of pig farm. These devices collect the growth-environment related information of pigs, such as luminosity, temperature, humidity and CO2 status. The system collects and monitors the environmental information and video information of pig farm. In addition to the remote-control and monitoring of the pig farm facilities, this system realizes the most optimum pig-raising environment based on the growth environmental data accumulated for a long time.
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Swissler, Thomas J.
1991-01-01
The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.
Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377
Implantable cardiac devices: the utility of remote monitoring in a paediatric and CHD population.
Olen, Melissa M; Dechert-Crooks, Brynn
2017-01-01
Remote monitoring in the modern era has improved outcomes for patients with cardiac implantable electronic devices. There are many advantages to remote monitoring, including improved quality of life for patients, decreased need for in-office interrogation, and secondary reduced costs. Patient safety and enhanced survival remain the most significant benefit. With most of the published literature on this topic being focussed on adults, paediatric outcomes continue to be defined. This is a review of the benefits of remote monitoring in paediatrics and in patients with CHD.
Design and implementation of a wireless sensor network-based remote water-level monitoring system.
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).
Riley, William T; Keberlein, Pamela; Sorenson, Gigi; Mohler, Sailor; Tye, Blake; Ramirez, A Susana; Carroll, Mark
2015-03-01
Remote monitoring for heart failure (HF) has had mixed and heterogeneous effects across studies, necessitating further evaluation of remote monitoring systems within specific healthcare systems and their patient populations. "Care Beyond Walls and Wires," a wireless remote monitoring program to facilitate patient and care team co-management of HF patients, served by a rural regional medical center, provided the opportunity to evaluate the effects of this program on healthcare utilization. Fifty HF patients admitted to Flagstaff Medical Center (Flagstaff, AZ) participated in the project. Many of these patients lived in underserved and rural communities, including Native American reservations. Enrolled patients received mobile, broadband-enabled remote monitoring devices. A matched cohort was identified for comparison. HF patients enrolled in this program showed substantial and statistically significant reductions in healthcare utilization during the 6 months following enrollment, and these reductions were significantly greater compared with those who declined to participate but not when compared with a matched cohort. The findings from this project indicate that a remote HF monitoring program can be successfully implemented in a rural, underserved area. Reductions in healthcare utilization were observed among program participants, but reductions were also observed among a matched cohort, illustrating the need for rigorous assessment of the effects of HF remote monitoring programs in healthcare systems.
The Science and Technology in Future Remote Sensing Space Missions of Alenia Aerospazio
NASA Astrophysics Data System (ADS)
Angino, G.; Borgarelli, L.
1999-12-01
The Space Division of Alenia Aerospazio, a Finmeccanica company, is the major Italian space industry. It has, in seven plants, design facilities and laboratories for advanced technological research that are amongst the most modern and well equipped in Europe. With the co-ordinated companies Alenia Aerospazio is one of Europe's largest space industries. In the field of Remote Sensing, i.e. the acquisition of information about objects without being in physical contact with them, the Space Division has proven their capability to manage all of the techniques from space (ranging from active instruments as Synthetic Aperture Radar, Radar Altimeter, Scatterometer, etc… to passive ones as radiometer) in different programs with the main international industries and agencies. Space techniques both for Monitoring/Observation (i.e. operational applications) and Exploration (i.e. research for science demonstration) according to the most recent indication from international committees constitute guidelines. The first is devoted to market for giving innovation, added-value to services and, globally, enhancement of quality of life. The second has the basic purpose of pursuing the scientific knowledge. Advanced technology allows to design for multi-functions instruments (easy in configuration, adaptable to impredictable environment), to synthesise, apparently, opposite concepts (see for instance different requirement from military and civil applications). Space Division of Alenia Aerospazio has knowledge and capability to face the challenge of new millennium in space missions sector. In this paper, it will be described main remote sensing missions in which Space Division is involved both in terms of science and technology definition. Two main segments can be defined: Earth and interplanetary missions. To the first belong: ENVISAT (Earth surface), LIGHTSAR (Earth imaging), CRYOSAT (Earth ice) and to the second: CASSINI (study of Titan and icy satellites), MARS EXPRESS (detection and localisation of water under planet surface) and EUROPA (water detection and localisation). Particular mention is for the leading program of the Space Division: COSMO/SkyMed mission. A complete constellation of remote sensing satellites (with microwave and optical payloads) is going to be designed for science, civil and military applications. Driving objective of the COSMO/ SkyMed mission is the observation, remote sensing and data exploitation for risks management, coastal zone monitoring and sea pollution control. However a broad spectrum of other important applications, in the field of the resource management, land use and law enforcement, etc., may be satisfied at the same time with the same mission design.
Marcantoni, Lina; Toselli, Tiziano; Urso, Giulia; Pratola, Claudio; Ceconi, Claudio; Bertini, Matteo
2015-11-01
In the last decade, there has been an exponential increase in cardioverter-defibrillator (ICD) implants. Remote monitoring systems, allow daily follow-ups of patients with ICD. To evaluate the impact of remote monitoring on the management of cardiovascular events associated with supraventricular and ventricular arrhythmias during long-term follow-up. A total of 207 patients undergoing ICD implantation/replacement were enrolled: 79 patients received remote monitoring systems and were followed up every 12 months, and 128 patients were followed up conventionally every 6 months. All patients were followed up and monitored for the occurrence of supraventricular and ventricular arrhythmia-related cardiovascular events (ICD shocks and/or hospitalizations). During a median follow-up of 842 days (interquartile range 476-1288 days), 32 (15.5%) patients experienced supraventricular arrhythmia-related events and 51 (24.6%) patients experienced ventricular arrhythmia-related events. Remote monitoring had a significant role in the reduction of supraventricular arrhythmia-related events, but it had no effect on ventricular arrhythmia-related events. In multivariable analysis, remote monitoring remained as an independent protective factor, reducing the risk of supraventricular arrhythmia-related events of 67% [hazard ratio, 0.33; 95% confidence interval (CI), 0.13-0.82; P = 0.017]. Remote monitoring systems improved outcomes in patients with supraventricular arrhythmias by reducing the risk of cardiovascular events, but no benefits were observed in patients with ventricular arrhythmias.
Schenk, Robert J; Schenk, Jenna
2011-01-01
A pharmacist-delivered, outpatient-focused medication therapy management (MTM) program is using a remote blood glucose (BG) meter upload device to provide better care and to improve outcomes for its patients with diabetes. Sharing uploaded BG meter data, presented in easily comprehensible graphs and charts, enables patients, caregivers, and the medical team to better understand how the patients' diabetes care is progressing. Pharmacists are becoming increasingly more active in helping to manage patients' complex medication regimens in an effort to help detect and avoid medication-related problems. Working together with patients and their physicians as part of an interdisciplinary health care team, pharmacists are helping to improve medication outcomes. This article focuses on two case studies highlighting the Diabetes Monitoring Program, one component of the Meridian Pharmacology Institute MTM service, and discusses the clinical application of a unique BG meter upload device. © 2010 Diabetes Technology Society.
NASA Astrophysics Data System (ADS)
Domiri, D. D.
2017-01-01
Rice crop is the most important food crop for the Asian population, especially in Indonesia. During the growth of rice plants have four main phases, namely the early planting or inundation phase, the vegetative phase, the generative phase, and bare land phase. Monitoring the condition of the rice plant needs to be conducted in order to know whether the rice plants have problems or not in its growth. Application of remote sensing technology, which uses satellite data such as Landsat 8 and others which has a spatial and temporal resolution is high enough for monitoring the condition of crops such as paddy crop in a large area. In this study has been made an algorithm for monitoring rapidly of rice growth condition using Maximum of Vegetation Index (EVI Max). The results showed that the time of early planting can be estimated if known when EVI Max occurred. The value of EVI Max and when it occured can be known by trough spatial analysis of multitemporal EVI Landsat 8 or other medium spatial resolution satellites.
Satellite-based monitoring of cotton evapotranspiration
NASA Astrophysics Data System (ADS)
Dalezios, Nicolas; Dercas, Nicholas; Tarquis, Ana Maria
2016-04-01
Water for agricultural use represents the largest share among all water uses. Vulnerability in agriculture is influenced, among others, by extended periods of water shortage in regions exposed to droughts. Advanced technological approaches and methodologies, including remote sensing, are increasingly incorporated for the assessment of irrigation water requirements. In this paper, remote sensing techniques are integrated for the estimation and monitoring of crop evapotranspiration ETc. The study area is Thessaly central Greece, which is a drought-prone agricultural region. Cotton fields in a small agricultural sub-catchment in Thessaly are used as an experimental site. Daily meteorological data and weekly field data are recorded throughout seven (2004-2010) growing seasons for the computation of reference evapotranspiration ETo, crop coefficient Kc and cotton crop ETc based on conventional data. Satellite data (Landsat TM) for the corresponding period are processed to estimate cotton crop coefficient Kc and cotton crop ETc and delineate its spatiotemporal variability. The methodology is applied for monitoring Kc and ETc during the growing season in the selected sub-catchment. Several error statistics are used showing very good agreement with ground-truth observations.
Remote modulation of neural activities via near-infrared triggered release of biomolecules.
Li, Wei; Luo, Rongcong; Lin, Xudong; Jadhav, Amol D; Zhang, Zicong; Yan, Li; Chan, Chung-Yuan; Chen, Xianfeng; He, Jufang; Chen, Chia-Hung; Shi, Peng
2015-10-01
The capability to remotely control the release of biomolecules provides an unique opportunity to monitor and regulate neural signaling, which spans extraordinary spatial and temporal scales. While various strategies, including local perfusion, molecular "uncaging", or photosensitive polymeric materials, have been applied to achieve controlled releasing of neuro-active substances, it is still challenging to adopt these technologies in many experimental contexts that require a straightforward but versatile loading-releasing mechanism. Here, we develop a synthetic strategy for remotely controllable releasing of neuro-modulating molecules. This platform is based on microscale composite hydrogels that incorporate polypyrrole (PPy) nanoparticles as photo-thermal transducers and is triggered by near-infrared-light (NIR) irradiation. Specifically, we first demonstrate the utility of our technology by recapitulating the "turning assay" and "collapse assay", which involve localized treatment of chemotactic factors (e.g. Netrin or Semaphorin 3A) to subcellular neural elements and have been extensively used in studying axonal pathfinding. On a network scale, the photo-sensitive microgels are also validated for light-controlled releasing of neurotransmitters (e.g. glutamate). A single NIR-triggered release is sufficient to change the dynamics of a cultured hippocampal neuron network. Taking the advantage of NIR's capability to penetrate deep into live tissue, this technology is further shown to work similarly well in vivo, which is evidenced by synchronized spiking activity in response to NIR-triggered delivery of glutamate in rat auditory cortex, demonstrating remote control of brain activity without any genetic modifications. Notably, our nano-composite microgels are capable of delivering various molecules, ranging from small chemicals to large proteins, without involving any crosslinking chemistry. Such great versatility and ease-of-use will likely make our optically-controlled delivery technology a general and important tool in cell biology research. Copyright © 2015 Elsevier Ltd. All rights reserved.
Meeting the challenges of case management with remote patient monitoring technology.
Cherry, J C; Colliflower, S J; Tsiperfal, A
2000-01-01
The article presents an overview of some of the current trends in health care and the challenges faced by nurse case managers who are providing disease management services. It discusses some of the emerging technologies available today for innovative case management. In particular, this article describes a program run by a healthcare system in Sacramento, California that uses an Internet-based technology to enhance their nurse case management model. The article demonstrates how the Health Hero platform enables interactive communication between nurse case managers and their patients, thereby meeting some of the challenges the nurse case managers are faced with in the modern disease-management world.
NASA Astrophysics Data System (ADS)
Fan, Dehui; Gao, Shan
This paper implemented an intelligent cold chain distribution system based on the technology of Internet of things, and took the protoplasmic beer logistics transport system as example. It realized the remote real-time monitoring material status, recorded the distribution information, dynamically adjusted the distribution tasks and other functions. At the same time, the system combined the Internet of things technology with weighted filtering algorithm, realized the real-time query of condition curve, emergency alarming, distribution data retrieval, intelligent distribution task arrangement, etc. According to the actual test, it can realize the optimization of inventory structure, and improve the efficiency of cold chain distribution.
From Pixels to Population Stress: Global Multispectral Remote Sensing for Vulnerable Communities
NASA Astrophysics Data System (ADS)
Prashad, L.; Kaplan, E.; Letouze, E.; Kirkpatrick, R.; Luengo-Oroz, M.; Christensen, P. R.
2011-12-01
The Arizona State University (ASU) School of Earth and Space Exploration's Mars Space Flight Facility (MSFF) and 100 Cities Project, in collaboration with the United Nations Global Pulse initiative are utilizing NASA multispectral satellite data to visualize and analyze socioeconomic characteristics and human activity in Uganda. The Global Pulse initiative is exploring how new kinds of real-time data and innovative technologies can be leveraged to detect early social impacts of slow-onset crisis and global shocks. Global Pulse is developing a framework for real-time monitoring, assembling an open-source toolkit for analyzing new kinds of data and establishing a global network of country-level "Pulse Labs" where governments, UN agencies, academia and the private sector learn together how to harness the new world of "big data" to protect the vulnerable with targeted and agile policy responses. The ASU MSFF and 100 Cities Project are coordinating with the Global Pulse team to utilize NASA remote sensing data in this effort. Human behavior and socioeconomic parameters have been successfully studied via proxy through remote sensing of the physical environment by measuring the growth of city boundaries and transportation networks, crop health, soil moisture, and slum development from visible and infrared imagery. The NASA/ NOAA image of Earth's "Lights at Night" is routinely used to estimate economic development and population density. There are many examples of the conventional uses of remote sensing in humanitarian-related projects including the Famine Early Warning System Network (FEWS NET) and the UN's operational satellite applications programme (UNOSAT), which provides remote sensing for humanitarian and disaster relief. Since the Global Pulse project is focusing on new, innovative uses of technology for early crisis detection, we are focusing on three non-conventional uses of satellite remote sensing to understand what role NASA multispectral satellites can play in monitoring underlying socioeconomic and human parameters. These are: 1) measuring and visualizing changes in agriculture and fertilizer use in Ugandan villages in order to assist policymakers in designing land use policies and evaluating the impact of fertilizer use on smallholder farmers in developing countries; 2) monitoring the size and composition of large scale rubbish dumps to determine correlation with changes in policy and economic growth; 3) measuring the size and shape of open air markets, or proxies related to the markets, to determine if changes can be detected that correspond to fluctuations in economic activity. The ASU MSFF open source geographical information systems (GIS) platform, J-Earth, will be used to provide easy access to and analytical tools for the data and imagery resulting from this project. J-Earth is a part of the Java Mission-planning and Analysis for Remote Sensing (JMARS) suite of software first developed for targeting NASA instruments on planetary missions.