Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System
NASA Technical Reports Server (NTRS)
Bualat, Maria G.; Fong, Terrence; Allan, Mark; Bouyssounouse, Xavier; Cohen, Tamar; Kobayashi, Linda
2013-01-01
In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and operational risks. These assumptions, however, have not been grounded by experimental data. Moreover, to date, no crew-controlled surface telerobot has been fully tested in a high-fidelity manner. To address these issues, we developed the "Surface Telerobotics" tests to do three things: 1) Demonstrate interactive crew control of a mobile surface telerobot in the presence of short communications delay. 2) Characterize a concept of operations for a single astronaut remotely operating a planetary rover with limited support from ground control. 3) Characterize system utilization and operator work-load for a single astronaut remotely operating a planetary rover with limited support from ground control.
Traverse Planning Experiments for Future Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.; Voels, Stephen A.; Mueller, Robert P.; Lee, Pascal C.
2012-01-01
The purpose of the investigation is to evaluate methodology and data requirements for remotely-assisted robotic traverse of extraterrestrial planetary surface to support human exploration program, assess opportunities for in-transit science operations, and validate landing site survey and selection techniques during planetary surface exploration mission analog demonstration at Haughton Crater on Devon Island, Nunavut, Canada. Additionally, 1) identify quality of remote observation data sets (i.e., surface imagery from orbit) required for effective pre-traverse route planning and determine if surface level data (i.e., onboard robotic imagery or other sensor data) is required for a successful traverse, and if additional surface level data can improve traverse efficiency or probability of success (TRPF Experiment). 2) Evaluate feasibility and techniques for conducting opportunistic science investigations during this type of traverse. (OSP Experiment). 3) Assess utility of remotely-assisted robotic vehicle for landing site validation survey. (LSV Experiment).
Frost grain size metamorphism - Implications for remote sensing of planetary surfaces
NASA Technical Reports Server (NTRS)
Clark, R. N.; Fanale, F. P.; Zent, A. P.
1983-01-01
The effective grain size of a material on a planetary surface affects the strength of absorption features observed in the reflectance of a particulate surface. In the case of a planetary surface containing volatile ices, the absorption characteristics can change in connection with processes leading to a change in the grain size of the material. The present investigation is concerned with an evaluation regarding the occurrence of such processes and the implications for remote sensing applications. It is found that quantitative modeling of the kinetics of grain growth and destruction by thermal and nonthermal processes can provide a means to reconcile apparent optical paths in the volatile portions of planetary surfaces with the physical history of those surfaces. Attention is also given to conditions in the case of the Pluto/Triton system, Uranus and Saturnian satellites, and the Galilean system.
A Compact Instrument for Remote Raman and Fluorescence Measurements to a Radial Distance of 100 m
NASA Technical Reports Server (NTRS)
Sharma, S. K.; Misra, A. K.; Lucey, P. g.; McKay, C. P.
2005-01-01
Compact remote spectroscopic instruments that could provide detailed information about mineralogy, organic and biomaterials on a planetary surface over a relatively large area are desirable for NASA s planetary exploration program. Ability to explore a large area on the planetary surfaces as well as in impact craters from a fixed location of a rover or lander will enhance the probability of selecting target rocks of high scientific contents as well as desirable sites in search of organic compounds and biomarkers on Mars and other planetary bodies. We have developed a combined remote inelastic scattering (Raman) and laser-induced fluorescence emission (LIFE) compact instrument capable of providing accurate information about minerals, organic and biogenic materials to a radial distance of 100 m. Here we present the Raman and LIFE (R-LIFE) data set.
Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System
NASA Technical Reports Server (NTRS)
Fong, Terry; Bualat, Maria; Allan, Mark B; Bouyssounouse, Xavier; Cohen, Tamar
2013-01-01
During Summer 2013, we conducted a series of tests to examine how astronauts in the In- ternational Space Station (ISS) can remotely operate a planetary rover. The tests simulated portions of a proposed mission, in which an astronaut in lunar orbit remotely operates a planetary rover to deploy a radio telescope on the lunar farside. In this paper, we present the design, implementation, and preliminary test results.
NASA Technical Reports Server (NTRS)
Diak, George R.
1994-01-01
This final report from the University of Wisconsin-Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS) summarizes a research program designed to improve our knowledge of the water and energy balance of the land surface through the application of remote sensing and in-situ data sources. The remote sensing data source investigations to be detailed involve surface radiometric ('skin') temperatures and also high-spectral-resolution infrared radiance data from atmospheric sounding instruments projected to be available at the end of the decade, which have shown promising results for evaluating the land-surface water and energy budget. The in-situ data types to be discussed are measurements of the temporal changes of the height of the planetary boundary layer and measurements of air temperature within the planetary boundary layer. Physical models of the land surface, planetary boundary layer and free atmosphere have been used as important tools to interpret the in-situ and remote sensing signals of the surface energy balance. A prototype 'optimal' system for combining multiple data sources into a three-dimensional estimate of the surface energy balance was developed and first results from this system will be detailed. Potential new sources of data for this system and suggested continuation research will also be discussed.
NASA Technical Reports Server (NTRS)
Trombka, J. I.; Floyd, S.; Ruitberg, A.; Evans, L.; Starr, R.; Metzger, A.; Reedy, R.; Drake, D.; Moss, C.; Edwards, B.
1993-01-01
An important part of the investigation of planetary origin and evolution is the determination of the surface composition of planets, comets, and asteroids. Measurements of discrete line X-ray and gamma ray emissions from condensed bodies in space can be used to obtain both qualitative and quantitative elemental composition information. The Planetary Instrumentation Definition and Development Program (PIDDP) X-Ray/Gamma Ray Team has been established to develop remote sensing and in situ technologies for future planetary exploration missions.
Reports of planetary geology program, 1979 - 1980. [bibliographies
NASA Technical Reports Server (NTRS)
Wirth, P.; Greeley, R.; Dalli, R.
1980-01-01
Abstracts of 145 reports are compiled addressing the morphology, geochemistry, and stratigraphy of planetary surfaces with some specific examinations of volcanic, aeolian, fluvial, and periglacial processes and landforms. In addition, reports on cartography and remote sensing of planet surfaces are included.
NASA Technical Reports Server (NTRS)
Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick
2005-01-01
The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.
NASA Technical Reports Server (NTRS)
Kosmo, Joseph J.
2006-01-01
This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.
Remote microscopy and volumetric imaging on the surface of icy satellites
NASA Astrophysics Data System (ADS)
Soto, Alejandro; Nowicki, Keith; Howett, Carly; Feldkhun, Daniel; Retherford, Kurt D.
2017-10-01
With NASA PIDDP support we have applied recent advancements in Fourier-domain microscopy to develop an instrument capable of microscopic imaging from meter-scale distances for use on a planetary lander on the surface of an icy satellite or other planetary bodies. Without moving parts, our instrument projects dynamic patterns of laser light onto a distant target using a lightweight large-aperture reflector, which then collects the light scattered or fluoresced by the target on a fast photon-bucket detector. Using Fourier Transform based techniques, we reconstruct an image from the detected light. The remote microscope has been demonstrated to produce 2D images with better than 15 micron lateral resolution for targets at a distance of 5 meters and is capable of linearly proportionally higher resolution at shorter distances. The remote microscope is also capable of providing three-dimensional (3D) microscopic imaging capabilities, allowing future surface scientists to explore the morphology of microscopic features in surface ices, for example. The instrument enables microscopic in-situ imaging during day or night without the use of a robotic arm, greatly facilitating the surface operations for a lander or rover while expanding the area of investigation near a landing site for improved science targeting. We are developing this remote microscope for in-situ planetary exploration as a collaboration between the Southwest Research Institute, LambdaMetrics, and the University of Colorado.
Introduction to the physics and techniques of remote sensing
NASA Technical Reports Server (NTRS)
Elachi, Charles
1987-01-01
This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.
Conceptual design of a multiple cable crane for planetary surface operations
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Yang, Li-Farn
1991-01-01
A preliminary design study is presented of a mobile crane suitable for conducting remote, automated construction operations on planetary surfaces. A cursory study was made of earth based mobile cranes and the needs for major improvements were identified. Current earth based cranes have a single cable supporting the payload, and precision positioning is accomplished by the use of construction workers controlling the payload by the use of tethers. For remote, autonomous operations on planetary surfaces it will be necessary to perform the precision operations without the use of humans. To accomplish this the payload must be stabilized relative to the crane. One approach for accomplishing this is to suspend the payload on multiple cable. A 3-cable suspension system crane concept is discussed. An analysis of the natural frequency of the system is presented which verifies the legitimacy of the concept.
NASA Technical Reports Server (NTRS)
Parkin, K. M.; Burns, R. G.
1980-01-01
It is pointed out that transition metal ions in silicate minerals, glasses, and crystalline and amorphous oxyhydroxides and salts contribute to the visible-near infrared spectral profiles of planetary surfaces. Investigations are conducted to obtain spectral information which might be helpful in the interpretation of the remote-sensed spectra of planetary surfaces. A description is presented of the results of high temperature crystal field spectral measurements of a variety of heated minerals containing Cr(3+), Fe(3+), Fe(++), and Mn(++) ions in different coordination symmetries, taking into account a correlation of the temperature-induced variations with those previously observed for octahedrally coordinated Fe(++)-bearing silicates. The employed experimental methods are also discussed, giving attention to the preparation of the samples, the determination of the absorption spectra, electron microprobe analyses, and the curve fitting procedure.
Robotic Technology Development at Ames: The Intelligent Robotics Group and Surface Telerobotics
NASA Technical Reports Server (NTRS)
Bualat, Maria; Fong, Terrence
2013-01-01
Future human missions to the Moon, Mars, and other destinations offer many new opportunities for exploration. But, astronaut time will always be limited and some work will not be feasible for humans to do manually. Robots, however, can complement human explorers, performing work autonomously or under remote supervision from Earth. Since 2004, the Intelligent Robotics Group has been working to make human-robot interaction efficient and effective for space exploration. A central focus of our research has been to develop and field test robots that benefit human exploration. Our approach is inspired by lessons learned from the Mars Exploration Rovers, as well as human spaceflight programs, including Apollo, the Space Shuttle, and the International Space Station. We conduct applied research in computer vision, geospatial data systems, human-robot interaction, planetary mapping and robot software. In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and likely operational and functional risks. These assumptions, however, are not grounded by actual experimental data. Moreover, no crew-controlled surface telerobotic system has yet been fully tested, or rigorously validated, through flight testing. During Summer 2013, we conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover across short time delays. The tests simulated portions of a proposed human-robotic Lunar Waypoint mission, in which astronauts in lunar orbit remotely operate a planetary rover on the lunar Farside to deploy a radio telescope array. We used these tests to obtain baseline-engineering data.
NASA Technical Reports Server (NTRS)
Greer, Lawrence (Inventor); Krasowski, Michael (Inventor)
2017-01-01
A robust ground traction (drive) assembly for remotely controlled vehicles, which not only operates smoothly on surfaces that are flat, but also upon surfaces that include rugged terrain, snow, mud, and sand, is provided. The assembly includes a sun gear and a braking gear. The sun gear is configured to cause rotational force to be applied to second planetary gears through a coupling of first planetary gears. The braking gear is configured to cause the assembly (or the second planetary gears) to rotate around the braking gear when an obstacle or braking force is applied.
NASA Technical Reports Server (NTRS)
Diak, George R.; Stewart, Tod R.
1989-01-01
A method is presented for evaluating the fluxes of sensible and latent heating at the land surface, using satellite-measured surface temperature changes in a composite surface layer-mixed layer representation of the planetary boundary layer. The basic prognostic model is tested by comparison with synoptic station information at sites where surface evaporation climatology is well known. The remote sensing version of the model, using satellite-measured surface temperature changes, is then used to quantify the sharp spatial gradient in surface heating/evaporation across the central United States. An error analysis indicates that perhaps five levels of evaporation are recognizable by these methods and that the chief cause of error is the interaction of errors in the measurement of surface temperature change with errors in the assigment of surface roughness character. Finally, two new potential methods for remote sensing of the land-surface energy balance are suggested which will relay on space-borne instrumentation planned for the 1990s.
Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph
2010-01-01
The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.
Robotic vehicles for planetary exploration
NASA Astrophysics Data System (ADS)
Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry
A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.
Robotic vehicles for planetary exploration
NASA Technical Reports Server (NTRS)
Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry
1992-01-01
A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.
Results from Testing Crew-Controlled Surface Telerobotics on the International Space Station
NASA Technical Reports Server (NTRS)
Bualat, Maria; Schreckenghost, Debra; Pacis, Estrellina; Fong, Terrence; Kalar, Donald; Beutter, Brent
2014-01-01
During Summer 2013, the Intelligent Robotics Group at NASA Ames Research Center conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover. The tests simulated portions of a proposed lunar mission, in which an astronaut in lunar orbit would remotely operate a planetary rover to deploy a radio telescope on the lunar far side. Over the course of Expedition 36, three ISS astronauts remotely operated the NASA "K10" planetary rover in an analogue lunar terrain located at the NASA Ames Research Center in California. The astronauts used a "Space Station Computer" (crew laptop), a combination of supervisory control (command sequencing) and manual control (discrete commanding), and Ku-band data communications to command and monitor K10 for 11 hours. In this paper, we present and analyze test results, summarize user feedback, and describe directions for future research.
NASA Technical Reports Server (NTRS)
Merril, R. B.
1977-01-01
Solar system processes are considered along with the origin and evolution of the moon, planetary geophysics, lunar basins and crustal layering, lunar magnetism, the lunar surface as a planetary probe, remote observations of lunar and planetary surfaces, earth-based measurements, integrated studies, physical properties of lunar materials, and asteroids, meteorites, and the early solar system. Attention is also given to studies of mare basalts, the kinetics of basalt crystallization, topical studies of mare basalts, highland rocks, experimental studies of highland rocks, geochemical studies of highland rocks, studies of materials of KREEP composition, a consortium study of lunar breccia 73215, topical studies on highland rocks, Venus, and regional studies of the moon. Studies of surface processes, are reported, taking into account cratering mechanics and fresh crater morphology, crater statistics and surface dating, effects of exposure and gardening, and the chemistry of surfaces.
Geochemical and spectral characterization of naturally altered rock surfaces
NASA Technical Reports Server (NTRS)
Chang, L. L. Y.; Sommer, S. E.; Buckingham, W. F.
1981-01-01
The possibility of using the visible-near infrared region for compositional analysis of remotely sensed rock surfaces is studied. This would allow mapping rock type both on the Earth's surface and on other planetary surfaces. Reflectance spectroscopy, economic geology, optical depth determination, and X-ray diffraction mineralogy are discussed.
Advances in planetary geology, volume 2
NASA Technical Reports Server (NTRS)
1986-01-01
This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons.
Stopar, Julie D; Lucey, Paul G; Sharma, Shiv K; Misra, Anupam K; Taylor, G Jeffrey; Hubble, Hugh W
2005-08-01
Raman spectroscopy is a powerful technique for materials analysis, and we are developing and analyzing a remote Raman system for use on a planetary lander or rover. We have acquired data at a distance of 10m from a variety of geologic materials using different instrument designs. We have employed a pulsed laser with both an ungated detector and a gated detector. A gated detector can reduce long-lived fluorescence while still collecting all Raman signal. In order to design a flight instrument, we need to quantify how natural surfaces will respond to laser stimulus. We define remote Raman efficiency of natural surfaces as the ratio of radiant exitance leaving a natural surface to the irradiance of the incident laser. The radiant exitance of a natural surface is the product of the sample radiance, the projected solid angle, and the full-width-half-maximum of the Raman signal. We have determined the remote Raman efficiency for a variety of rocks and minerals. The best efficiencies are achieved for large, clear, single crystals that produce the most radiant exitance, while darker fine-grained mineral mixtures produce lower efficiencies. By implementing a pulsed laser, gated detector system we have improved the signal detection and have generally decreased the integration time necessary to detect Raman signal from natural surfaces.
A multidisciplinary study of planetary, solar and astrophysical radio emissions
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Calvert, W.; Fielder, R.; Goertz, C.; Grabbe, C.; Kurth, W.; Mutel, R.; Sheerin, J.; Mellott, M.; Spangler, S.
1986-01-01
Combination of the related fields of planetary, solar, and astrophysical radio emissions was attempted in order to more fully understand the radio emission processes. Topics addressed include: remote sensing of astrophysical plasma turbulence; Alfven waves; astrophysical shock waves; surface waves; very long base interferometry results; very large array observations; solar magnetic flux; and magnetohydrodynamic waves as a tool for solar corona diagnostics.
The Role of Remote Sensing Displays in Earth Climate and Planetary Atmospheric Research
NASA Technical Reports Server (NTRS)
DelGenio, Anthony D.; Hansen, James E. (Technical Monitor)
2001-01-01
The communities of scientists who study the Earth's climate and the atmospheres of the other planets barely overlap, but the types of questions they pose and the resulting implications for the use and interpretation of remote sensing data sets have much in common. Both seek to determine the characteristic behavior of three-dimensional fluids that also evolve in time. Climate researchers want to know how and why the general patterns that define our climate today might be different in the next century. Planetary scientists try to understand why circulation patterns and clouds on Mars, Venus, or Jupiter are different from those on Earth. Both disciplines must aggregate large amounts of data covering long time periods and several altitudes to have a representative picture of the rapidly changing atmosphere they are studying. This emphasis separates climate scientists from weather forecasters, who focus at any one time on a limited number of images. Likewise, it separates planetary atmosphere researchers from planetary geologists, who rely primarily on single images (or mosaics of images covering the globe) to study two-dimensional planetary surfaces that are mostly static over the duration of a spacecraft mission yet reveal dynamic processes acting over thousands to millions of years. Remote sensing displays are usually two-dimensional projections that capture an atmosphere at an instant in time. How scientists manipulate and display such data, how they interpret what they see, and how they thereby understand the physical processes that cause what they see, are the challenges I discuss in this chapter. I begin by discussing differences in how novices and experts in the field relate displays of data to the real world. This leads to a discussion of the use and abuse of image enhancement and color in remote sensing displays. I then show some examples of techniques used by scientists in climate and planetary research to both convey information and design research strategies using remote sensing displays.
Special Software for Planetary Image Processing and Research
NASA Astrophysics Data System (ADS)
Zubarev, A. E.; Nadezhdina, I. E.; Kozlova, N. A.; Brusnikin, E. S.; Karachevtseva, I. P.
2016-06-01
The special modules of photogrammetric processing of remote sensing data that provide the opportunity to effectively organize and optimize the planetary studies were developed. As basic application the commercial software package PHOTOMOD™ is used. Special modules were created to perform various types of data processing: calculation of preliminary navigation parameters, calculation of shape parameters of celestial body, global view image orthorectification, estimation of Sun illumination and Earth visibilities from planetary surface. For photogrammetric processing the different types of data have been used, including images of the Moon, Mars, Mercury, Phobos, Galilean satellites and Enceladus obtained by frame or push-broom cameras. We used modern planetary data and images that were taken over the years, shooting from orbit flight path with various illumination and resolution as well as obtained by planetary rovers from surface. Planetary data image processing is a complex task, and as usual it can take from few months to years. We present our efficient pipeline procedure that provides the possibilities to obtain different data products and supports a long way from planetary images to celestial body maps. The obtained data - new three-dimensional control point networks, elevation models, orthomosaics - provided accurate maps production: a new Phobos atlas (Karachevtseva et al., 2015) and various thematic maps that derived from studies of planetary surface (Karachevtseva et al., 2016a).
Mineralogy and Astrobiology Detection Using Laser Remote Sensing Instrument
NASA Technical Reports Server (NTRS)
Abedin, M. Nurul; Bradley, Arthur T.; Sharma, Shiv K.; Misra, Anupam K.; Lucey, Paul G.; Mckay, Chistopher P.; Ismail, Syed; Sandford, Stephen P.
2015-01-01
A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters. OCIS codes: (120.0280) Remote sensing and sensors; (130.0250) Optoelectronics; (280.3640) Lidar; (300.2530) Fluorescence, laser-induced; (300.6450) Spectroscopy, Raman; (300.6365) Spectroscopy, laser induced breakdown
Development of a theory of the spectral reflectance of minerals, part 4
NASA Technical Reports Server (NTRS)
Aronson, J. R.; Emslie, A. G.; Smith, E. M.
1972-01-01
A theory of the spectral reflectance or emittance of particulate minerals was developed. The theory is expected to prove invaluable in the interpretation of the remote infrared spectra of planetary surfaces.
Mineralogy and astrobiology detection using laser remote sensing instrument.
Abedin, M Nurul; Bradley, Arthur T; Sharma, Shiv K; Misra, Anupam K; Lucey, Paul G; McKay, Christopher P; Ismail, Syed; Sandford, Stephen P
2015-09-01
A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters.
Report of the December 2009 Titan Planetary Protection workshop
NASA Astrophysics Data System (ADS)
Raulin, Francois; Rummel, John; Kminek, Gerhard; Conley, Catharine; Ehrenfreund, Pascale
The status of planning for space missions to explore the outer solar system has identified the need to define the proper planetary protection categories and implementation guidelines for outer planet satellites. A COSPAR planetary protection workshop was held in Vienna in April 2009 on that subject, and a consensus was found regarding the planetary protection status of many of these objects. However, it was determined that for the planetary protection categorization of Titan further data and studies were required, to conclude whether there is only a remote (Cat. II) or significant (Cat. III) chance that contamination carried by a spacecraft could jeopardize future exploration. The main issue to be resolved is the uncertainty surrounding the communication between the surface and the potentially liquid water in the subsurface with regard to (feasible) processes and associated time frames. It was thus decided to have a planetary protection workshop fully dedicated to the case of Titan, both to focus greater expertise on the subject and to make use of additional Cassini-Huygens mission data. A two days Titan Planetary Protection workshop was thus organized at Caltech, on December 9 and 10, 2009. The meeting was sponsored by NASA and ESA, with the participation of the COSPAR Panel on Planetary Protection. It was attended by 25 participants. The goal of this workshop was to resolve the mission category for Titan (and Ganymede) and develop a consensus on the Category II (remote chance that contamination jeopardize future exploration) versus II+ /III (less remote or significant chance of contamination jeopardize future exploration) dichotomy, taking into account both the conservative nature of planetary protection policy and the physical constraints on the Titan and Ganymede systems. The outcome of this workshop will be presented and discussed during the PPP1 session of the COSPAR General Assembly meeting in Bremen. Note: all participants of the Titan PP workshop are associated to this presentation.
Surface Spectroscopy Center Of Excellence Project
NASA Technical Reports Server (NTRS)
Wooden, Diane
2014-01-01
We propose to develop a national center of excellence in Regolith Radiative Transfer (RRT), i.e., in modeling spectral reflectivity and emissivity of grainy or structured surfaces. The focus is the regime where the structural elements of grainy surfaces have grain sizes and separations of tens of microns, comparable to the wavelengths carrying diagnostic compositional information. This regime is of fundamental interest to remote sensing of planetary and terrestrial surfaces.
NASA Technical Reports Server (NTRS)
Love, Stan
2013-01-01
NASA astronaut Stan Love shared his experiences with the Antarctic Search for Meteorites (ANSMET), an annual expedition to the southern continent to collect valuable samples for research in planetary science. ANSMET teams operate from isolated, remote field camps on the polar plateau, where windchill factors often reach -40? F. Several astronaut participants have noted ANSMET's similarity to a space mission. Some of the operational concepts, tools, and equipment employed by ANSMET teams may offer valuable insights to designers of future planetary surface exploration hardware.
A Theoretical and Experimental Study of Emission Spectroscopy of Planetary Surfaces
NASA Astrophysics Data System (ADS)
Henderson, Bradley Gray
1995-01-01
This thesis explores the spectral emissivity of particulate materials on planetary surfaces through theoretical modeling and supporting laboratory and field investigations. In the first part of the thesis, I develop a Monte Carlo ray tracing model to calculate the directional and spectral emissivity and the polarization state of the radiation emitted from a particulate, isothermal surface for emission angles 0^circ-90^ circ and wavelengths 7-16 mu m. The results show that roughness and scattering significantly affect the character of the emitted radiation field and should be taken into account when interpreting the physical properties of a planetary surface from IR spectrophotometry or spectropolarimetry. The remainder of the thesis focuses on understanding near-surface thermal gradients and their effects on emission spectra for different planetary environments. These gradients are formed by radiative cooling in the top few hundred microns of low conductivity particulate materials on planetary surfaces with little or no atmosphere. I model the heat transfer by conduction and radiation in the top few millimeters of a planetary regolith for scattering and non-scattering media. In conjunction with the modeling, I measure emission spectra of fine-grained quartz in an environment chamber designed to simulate the conditions on other planetary surfaces. The results show that significant thermal gradients will form in the near surface of materials on the surface of the Moon and Mercury. Their presence increases spectral contrast and creates emission maxima in the transparent regions of the spectrum. Thermal gradients are shown to be responsible for the observed wavelength shifts of the Christiansen emission peak with variations in thermal conductivity and grain size. The results are also used to analyze recent telescopic spectra of the Moon and Mercury and can explain certain features seen in those data. Thermal gradients are shown to be minor for the surface of Mars and negligible on Earth. I conclude that the spectral effects created by near-surface thermal gradients are predictable and might even provide an extra source of information about the physical nature of a planetary surface, and mid-IR emission spectroscopy should therefore prove to be useful for remote sensing of airless bodies.
Remote sensor support requirements for planetary missions
NASA Technical Reports Server (NTRS)
Weddell, J. B.; Wheeler, A. E.
1971-01-01
The study approach, methods, results, and conclusions of remote sensor support requirements for planetary missions are summarized. Major efforts were made to (1) establish the scientific and engineering knowledge and observation requirements for planetary exploration in the 1975 to 1985 period; (2) define the state of the art and expected development of instrument systems appropriate for sensing planetary environments; (3) establish scaling laws relating performance and support requirements of candidate remote sensor systems; (4) establish fundamental remote sensor system capabilities, limitations, and support requirements during encounter and other dynamical conditions for specific missions; and (5) construct families of candidate remote sensors compatible with selected missions. It was recommended that these data be integrated with earlier results to enhance utility, and that more restrictions be placed on the system.
Laer-induced Breakdown Spectroscopy Instrument for Element Analysis of Planetary Surfaces
NASA Technical Reports Server (NTRS)
Blacic, J.; Pettit, D.; Cremers, D.; Roessler, N.
1993-01-01
One of the most fundamental pieces of information about any planetary body is the elemental and mineralogical composition of its surface materials. We are developing an instrument to obtain such data at ranges of up to several hundreds of meters using the technique of Laser-Induced Breakdown Spectroscopy (LIBS). We envision our instrument being used from a spacecraft in close rendezvous with small bodies such as comets and asteroids, or deployed on surface-rover vehicles on large bodies such as Mars and the Moon. The elemental analysis is based on atomic emission spectroscopy of a laser-induced plasma or spark. A pulsed, diode pumped Nd:YAG laser of several hundred millijoules optical energy is used to vaporize and electronically excite the constituent elements of a rock surface remotely located from the laser. Light emitted from the excited plasma is collected and introduced to the entrance slit of a small grating spectrometer. The spectrally dispersed spark light is detected with either a linear photo diode array or area CCD array. When the latter detector is used, the optical and spectrometer components of the LIBS instrument can also be used in a passive imaging mode to collect and integrate reflected sunlight from the same rock surface. Absorption spectral analysis of this reflected light gives mineralogical information that provides a remote geochemical characterization of the rock surface. We performed laboratory calibrations in air and in vacuum on standard rock powders to quantify the LIBS analysis. We performed preliminary field tests using commercially available components to demonstrate remote LIBS analysis of terrestrial rock surfaces at ranges of over 25 m, and we have demonstrated compatibility with a six-wheeled Russian robotic rover vehicle. Based on these results, we believe that all major and most minor elements expected on planetary surfaces can be measured with absolute accuracy of 10-15 percent and much higher relative accuracy. We have performed preliminary systems analysis of a LIBS instrument to evaluate probable mass and power requirements; results of this analysis are summarized.
The Explorer's Guide to Impact Craters
NASA Technical Reports Server (NTRS)
Chuang, F.; Pierazzo, E.; Osinski, G.
2005-01-01
Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: How do scientists learn about impact cratering? , and What information do impact craters provide in understanding the evolution of a planetary surface? Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering.
Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces
NASA Technical Reports Server (NTRS)
Blake, David F.; DeVincenzi, D. (Technical Monitor)
1999-01-01
The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.
The Blue Dot Workshop: Spectroscopic Search for Life on Extrasolar Planets
NASA Technical Reports Server (NTRS)
Des Marais, David J. (Editor)
1997-01-01
This workshop explored the key questions and challenges associated with detecting life on an extrasolar planet. The final product will be a NASA Conference Publication which includes the abstracts from 21 talks, summaries of key findings, and recommendations for future research. The workshop included sessions on three related topics: the biogeochemistry of biogenic gases in the atmosphere, the chemistry and spectroscopy of planetary atmospheres, and the remote sensing of planetary atmospheres and surfaces. With the observation that planetary formation is probably a common phenomenon, together with the advent of the technical capability to locate and describe extrasolar planets, this research area indeed has an exciting future.
Berlin Reflectance Spectral Library (BRSL)
NASA Astrophysics Data System (ADS)
Henckel, D.; Arnold, G.; Kappel, D.; Moroz, L. V.; Markus, K.
2017-09-01
The Berlin Reflectance Spectral Library (BRSL) provides a collection of reflectance spectra between 0.3 and 17 µm. It was originally dedicated to support space missions to small solar system bodies. Meanwhile the library includes selections of biconical reflectance spectra for spectral data analysis of other planetary bodies as well. The library provides reference spectra of well-characterized terrestrial analogue materials and meteorites for interpretation of remote sensing reflectance spectra of planetary surfaces. We introduce the BRSL, summarize the data available, and access to use them for further relevant applications.
Traverse Planning Experiments for Future Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Hoffman, S. J.; Voels, S. A.; Mueller, R. P.; Lee, P. C.
2011-01-01
This paper describes the results of a recent (July-August 2010 and July 2011) planetary surface traverse planning experiment. The purpose of this experiment was to gather data relevant to robotically repositioning surface assets used for planetary surface exploration. This is a scenario currently being considered for future human exploration missions to the Moon and Mars. The specific scenario selected was a robotic traverse on the lunar surface from an outpost at Shackleton Crater to the Malapert Massif. As these are exploration scenarios, the route will not have been previously traversed and the only pre-traverse data sets available will be remote (orbital) observations. Devon Island was selected as an analog location where a traverse route of significant length could be planned and then traveled. During the first half of 2010, a team of engineers and scientists who had never been to Devon Island used remote sensing data comparable to that which is likely to be available for the Malapert region (eg., 2-meter/pixel imagery, 10-meter interval topographic maps and associated digital elevation models, etc.) to plan a 17-kilometer (km) traverse. Surface-level imagery data was then gathered on-site that was provided to the planning team. This team then assessed whether the route was actually traversable or not. Lessons learned during the 2010 experiment were then used in a second experiment in 2011 for which a much longer traverse (85 km) was planned and additional surface-level imagery different from that gathered in 2010 was obtained for a comparative analysis. This paper will describe the route planning techniques used, the data sets available to the route planners and the lessons learned from the two traverses planned and carried out on Devon Island.
Remote sensing and geologic studies of the planetary crusts
NASA Technical Reports Server (NTRS)
Hawke, B. R.
1983-01-01
Dark haloed craters and regions of the Moon which were sites of ancient volcanism were remotely sensed as well as KREEP deposits in the Inbrium region. The relationship between geology and geochemistry in the Undarum/Spumans region was also examined. Results are summarized for observations of the Reiner Gamma formation, studies of impact cratering mechanics and processes, spectral variations of asteroidal surfaces, albedo and color variations on Ganymede, and studies of lunar impact structures.
NASA Technical Reports Server (NTRS)
Stoker, Carol
1994-01-01
This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary geologists participated in the mission simulation. The scientific goal of the science mission was to determine what could be learned about the geologic context of the site using the capabilities of imaging and mobility provided by the Marsokhod system in these two modes of operation. I will discuss the lessons learned from these experiments in terms of the strategy for performing Mars surface exploration using rovers. This research is supported by the Solar System Exploration Exobiology, Geology, and Advanced Technology programs.
Automatic Feature Extraction from Planetary Images
NASA Technical Reports Server (NTRS)
Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.
2010-01-01
With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.
Fourier transform spectrometers for remote sensing of planetary atmospheres and surfaces
NASA Astrophysics Data System (ADS)
Shakun, Alexey; Korablev, Oleg; Moshkin, Boris; Grigoriev, Alexey; Ignatiev, Nikolay; Maslov, Igor; Sazonov, Oleg; Patsaev, Dmitry; Kungurov, Andrey; Santos-Skripko, Alexander; Zharkov, Alexander; Stupin, Igor; Merzlyakov, Dmitry; Makarov, Vladislav; Martinovich, Fedor; Nikolskiy, Yuri; Shashkin, Victor
2017-12-01
In planetary research, Fourier transform infrared spectrometers (FTIR) solve a number of important scientific goals related both to the atmosphere and to the surface sounding. For remote orbital measurements, these goals are the thermal sounding of the atmosphere using, in particular, the 15-µm CO2 band, sensitive detections of minor gaseous species and aerosol characterization. FTIR can address similar atmospheric science goals when observing from a planetary surface allowing for better-resolved boundary layer and achieving greater accuracy (longer integration) for minor species detection. For studies of planetary surfaces, characterization of mineralogical composition in a wide IR range including sensitive measurements of hydration of the soil on airless bodies can be done. We outline a family of FTIR instruments dedicated to studies of Mars and the Moon. TIRVIM is a channel of ACS on ExoMars TGO (in orbit around Mars since October 2016). It is a 2-inch interferometer for nadir and solar occultation measurements of Mars' atmosphere. It covers a spectral range of 1.7-17 µm with spectral resolution up to 0.13 cm-1. LUMIS is a similar instrument for Luna-Resource Orbiter (Luna-26) Roscosmos mission dedicated to the search for hydration of the lunar regolith in the 6-µm band. The spectral range of LUMIS is broad (1.7-17 µm), but its sensitivity is optimized for the 4-8 µm region. The spectral resolution is 50 cm-1. We also describe recent developments focused on technical solutions for miniaturized FTIR instruments with a very high spectral resolution (0.05 cm-1 and higher). The prototype targets measurements of minor atmospheric species from the surface of Mars using the Sun tracking. One important task is to provide a high precision of interferometer's mirror movement. Another task is the development of a precise two-coordinate mechanism to seek for and follow the Sun.
NASA Astrophysics Data System (ADS)
Warren, T. J.; Bowles, N. E.; Donaldson Hanna, K.; Thomas, I. R.
2017-12-01
Measurements of the light scattering behaviour of the regoliths of airless bodies via remote sensing techniques in the Solar System, across wavelengths from the visible to the far infrared, are essential in understanding their surface properties. A key parameter is knowledge of the angular behaviour of scattered light, usually represented mathematically by a phase function. The phase function is believed to be dependent on many factors including the following: surface composition, surface roughness across all length scales, and the wavelength of radiation. Although there have been many phase function measurements of regolith analog materials across visible wavelengths, there have been no equivalent measurements made in the thermal infrared (TIR). This may have been due to a lack of TIR instruments as part of planetary remote sensing payloads. However, since the launch of Diviner to the Moon in 2009, OSIRIS-Rex to the asteroid Bennu in 2016, and the planned launch of BepiColombo to Mercury in 2018, there is now a large quantity of TIR remote sensing data that need to be interpreted. It is therefore important to extend laboratory phase function measurements to the TIR. This paper describes the design, build, calibration, and initial measurements from a new laboratory instrument that is able to make phase function measurements of analog planetary regoliths across wavelengths from the visible to the TIR.
Proceedings of the 38th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2007-01-01
The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects, Galilean Satellites: Geology and Mapping, Titan, Volcanism and Tectonism on Saturnian Satellites, Early Solar System, Achondrite Hodgepodge, Ordinary Chondrites, Carbonaceous Chondrites, Impact Cratering from Observations and Interpretations, Impact Cratering from Experiments and Modeling, SMART-1, Planetary Differentiation, Mars Geology, Mars Volcanism, Mars Tectonics, Mars: Polar, Glacial, and Near-Surface Ice, Mars Valley Networks, Mars Gullies, Mars Outflow Channels, Mars Sediments and Geochemistry: Spirit and Opportunity, Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Mars Reconnaissance Orbiter: Geology, Layers, and Landforms, Oh, My!, Mars Reconnaissance Orbiter: Viewing Mars Through Multicolored Glasses; Mars Science Laboratory, Phoenix, and ExoMars: Science, Instruments, and Landing Sites; Planetary Analogs: Chemical and Mineral, Planetary Analogs: Physical, Planetary Analogs: Operations, Future Mission Concepts, Planetary Data, Imaging, and Cartography, Outer Solar System, Presolar/Solar Grains, Stardust Mission; Interplanetary Dust, Genesis, Asteroids and Comets: Models, Dynamics, and Experiments, Venus, Mercury, Laboratory Instruments, Methods, and Techniques to Support Planetary Exploration; Instruments, Techniques, and Enabling Techologies for Planetary Exploration; Lunar Missions and Instruments, Living and Working on the Moon, Meteoroid Impacts on the Moon, Lunar Remote Sensing, Lunar Samples and Experiments, Lunar Atmosphere, Moon: Soils, Poles, and Volatiles, Lunar Topography and Geophysics, Lunar Meteorites, Chondrites: Secondary Processes, Chondrites, Martian Meteorites, Mars Cratering, Mars Surface Processes and Evolution, Mars Sediments and Geochemistry: Regolith, Spectroscopy, and Imaging, Mars Sediments and Geochemistry: Analogs and Mineralogy, Mars: Magnetics and Atmosphere, Mars Aeolian Geomorphology, Mars Data Processing and Analyses, Astrobiology, Engaging Student Educators and the Public in Planetary Science,
Lidar observations of the planetary boundary layer during FASINEX
NASA Technical Reports Server (NTRS)
Melfi, S. H.; Boers, R.; Palm, S. P.
1988-01-01
Data are presented on the planetary boundary layer (PBL) over the ocean acquired with an airborne downward-looking lidar during the Frontal Air-Sea Interaction Experiment (FASINEX) with the purpose of studying the impact of an ocean front on air-sea interactions. No changes in the PBL structure were detected by lidar. Lidar data were then used along with other readily available remotely-sensed data and a one-dimensional boundary-layer-growth model to infer the mean PBL moisture and temperature structure and to estimate the surface fluxes of heat and moisture.
NASA Technical Reports Server (NTRS)
Love, Stan
2013-01-01
NASA astronaut Stan Love shared his experiences with the Antarctic Search for Meteorites (ANSMET), an annual expedition to the southern continent to collect valuable samples for research in planetary science. ANSMET teams operate from isolated, remote field camps on the polar plateau, where windchill factors often reach -40 F. Several astronaut participants have noted ANSMET's similarity to a space mission. Some of the operational concepts, tools, and equipment employed by ANSMET teams may offer valuable insights to designers of future planetary surface exploration hardware.
Earth-based remote sensing of planetary surfaces and atmospheres at radio wavelengths
NASA Technical Reports Server (NTRS)
Dickel, J. R.
1982-01-01
Two reasons for remote sensing from the Earth are given: (1) space exploration, particularly below the surfaces or underneath cloud layers, is limited to only a very few planets; and (2) a program of regular monitoring, currently impractical with a limited number of space probes, is required. Reflected solar and nonthermal radiation are discussed. Relativistic electrons, trapped in large magnetospheres on Saturn and Jupiter, are discussed. These electrons produce synchrotron radiation and also interact with the ionosphere to produce bursts of low frequency emission. Because most objects are black-bodies, continuum radiometry is emphasized. Spectroscopic techniques and the measurement of nonthermal emission are also discussed.
From planets to crops and back: Remote sensing makes sense
NASA Astrophysics Data System (ADS)
Mustard, John F.
2017-04-01
Remotely sensed data and the instruments that acquire them are core parts of Earth and planetary observation systems. They are used to quantify the Earth's interconnected systems, and remote sensing is the only way to get a daily, or more frequent, snapshot of the status of the Earth. It really is the Earth's stethoscope. In a similar manner remote sensing is the rock hammer of the planetary scientist and the only way comprehensive data sets can be acquired. To risk offending many remotely sensed data acquired across the electromagnetic spectrum, it is the tricorder to explore known and unknown planets. Arriving where we are today in the use of remotely sensed data in the solar system has been a continually evolving synergy between Earth observation, planetary exploration, and fundamental laboratory work.
NASA Astrophysics Data System (ADS)
de Silva, Shanaka L.; Bailey, John E.
2017-08-01
Observations of terrestrial analogs are critical to aiding planetary mappers in interpreting surface lithologies on other planets. For instance, the presence of ignimbrites on Mars has been debated for over three decades and is supported by analogy with deposits on Earth. Critical evidence includes the geomorphic and surface expression of the deposits, and those in the Central Andes of South America are amongst the most-cited analogs. Herein we describe some prominent surface textures and patterns seen in ignimbrites on the scale of high-resolution remotely sensed data (10-1 m per pixel). These include pervasive joints and fractures that contribute to yardang form and development as well as prominent mounds, fissures, and fracture networks ("spiders", "bugs", "boxworks") on ignimbrite surfaces. While all these features are related to intrinsic cooling and degassing processes, the involvement of external water buried by hot pyroclastic flows enhances fumarolic activity, advective cooling, and joint development. Observations of these geomorphic expressions using remote sensing are only possible with the highest resolution data and limited surface erosion. For Mars, where similarly high resolution datasets are available (for example, the High Resolution Imaging Sensor Experiment or HiRISE) extensive dust cover may limit the recognition of similar features there. However significant relief on some of these features on Earth indicate they might still be detectable on Mars.
Remote sensing of the biosphere
NASA Technical Reports Server (NTRS)
1986-01-01
The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.
PROGRA2 experiment: New results for dust clouds and regoliths analogs
NASA Astrophysics Data System (ADS)
Hadamcik, E.; Renard, J.-B.; Levasseur-Regourd, A. C.; Worms, J.-C.
2006-01-01
With the PROGRA2 experience, linear polarization of scattered light is measured on various types of dust clouds lifted by microgravity, or by an air-draught. The aim is to compare the phase curves for dust analogs with those obtained in the Solar System (cometary comae, and solid particles in planetary atmospheres) by remote-sensing and in situ techniques. Measurements are also performed on layers of particles (on the ground) and compared with remote measurements on asteroidal regoliths and planetary surfaces. New phase curves have been obtained, e.g., for quartz samples, crystals, fluffy mixtures of silica and carbon blacks and a high porosity regolith analog made of micron-sized silica spheres. This work will contribute to the choice of the samples to be studied with the ICAPS experiment onboard the ISS and on the precursor experiment.
A high performance neutron spectrometer for planetary hydrogen measurement
NASA Astrophysics Data System (ADS)
Naito, Masayuki; Hasebe, Nobuyuki; Nagaoka, Hiroshi; Ishii, Junya; Aoki, Daisuke; Shibamura, Eido; Kim, Kyeong J.; Matias-Lopes, José A.; Martínez-Frías, Jesús
2017-08-01
The elemental composition and its distribution on planetary surface provide important constraints on the origin and evolution of the planetary body. The nuclear spectrometer consisting of a neutron spectrometer and a gamma-ray spectrometer obtains elemental compositions by remote sensing. Especially, the neutron spectrometer is able to determine the hydrogen concentration, a piece of information that plays an important role in thermal history of the planets. In this work, numerical and experimental studies on the neutron spectrometer for micro-satellite application were conducted. It is found that background count rate of neutron produced from micro-satellite is very small, which enables to obtain successful results in short time observation. The neutron spectrometer combining a lithium-6 glass scintillator with a boron loaded plastic scintillator was used to be able to detect neutrons in different energy ranges. It was experimentally confirmed that the neutron signals from these scintillators were successfully discriminated by the difference of scintillation decay time between two detectors. The measurement of neutron count rates of two scintillators is found to determine hydrogen concentration on the planetary surfaces in the future missions.
Photogrammetric Processing of Planetary Linear Pushbroom Images Based on Approximate Orthophotos
NASA Astrophysics Data System (ADS)
Geng, X.; Xu, Q.; Xing, S.; Hou, Y. F.; Lan, C. Z.; Zhang, J. J.
2018-04-01
It is still a great challenging task to efficiently produce planetary mapping products from orbital remote sensing images. There are many disadvantages in photogrammetric processing of planetary stereo images, such as lacking ground control information and informative features. Among which, image matching is the most difficult job in planetary photogrammetry. This paper designs a photogrammetric processing framework for planetary remote sensing images based on approximate orthophotos. Both tie points extraction for bundle adjustment and dense image matching for generating digital terrain model (DTM) are performed on approximate orthophotos. Since most of planetary remote sensing images are acquired by linear scanner cameras, we mainly deal with linear pushbroom images. In order to improve the computational efficiency of orthophotos generation and coordinates transformation, a fast back-projection algorithm of linear pushbroom images is introduced. Moreover, an iteratively refined DTM and orthophotos scheme was adopted in the DTM generation process, which is helpful to reduce search space of image matching and improve matching accuracy of conjugate points. With the advantages of approximate orthophotos, the matching results of planetary remote sensing images can be greatly improved. We tested the proposed approach with Mars Express (MEX) High Resolution Stereo Camera (HRSC) and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. The preliminary experimental results demonstrate the feasibility of the proposed approach.
Effects of Space Weathering on Lunar Rocks: Scanning Electron Microscope Petrography
NASA Technical Reports Server (NTRS)
Wentworth, Susan J.; Keller, Lindsay P.; McKay, David S.
1998-01-01
Lunar rocks that have undergone direct exposure to the space weathering environment at the surface of the Moon commonly have patinas on their surfaces. Patinas are characterized by visible darkening and other changes in spectral properties of rocks. They form as a result of bombardment by micrometeorites, solar wind, and solar flares. Processes of space weathering and patina production have clearly been significant in the formation and history of the lunar regolith. It is very likely that other planetary bodies without atmospheres have undergone similar alteration processes; therefore, it is critical to determine the relationship between patinas and their host rocks in view of future robotic and remote-sensing missions to the Moon and other planetary bodies.
A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.
2014-01-01
While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.
NASA Technical Reports Server (NTRS)
Colarco, P. R.; Schoeberl, M. R.; Doddridge, B. G.; Marufu, L. T.; Torres, O.; Welton, E. J.
2003-01-01
Smoke and pollutants from Canadian forest fires were transported over the northeastern United States in July 2002. Lidar observations at the NASA Goddard Space Flight Center show the smoke from these fires arriving in an elevated plume that was subsequently mixed to the surface. Trajectory and three-dimensional model calculations confirm the origin of the smoke and show that it mixed to the surface after it was intercepted by the turbulent planetary boundary layer. Modeled smoke optical properties agreed well with aircraft and remote sensing observations provided coagulation of smoke particles was accounted for in the model. Our results have important implications for the long-range transport of pollutants and their subsequent entrainment to the surface, as well as the evolving optical properties of smoke from boreal forest fires.
NASA Technical Reports Server (NTRS)
Colarco, P. R.; Schoeberl, M. R.; Marufu, L. T.; Torres, O.; Welton, E. J.; Doddridge, B. G.
2003-01-01
Smoke and pollutants from Canadian forest fires were transported over the northeastern United States in July 2002. Lidar observations at the NASA Goddard Space Flight Center show the smoke from these fires arriving in an elevated plume that was subsequently transported to the surface. Trajectory and three-dimensional model calculations confirm the origin of the smoke and show that it mixed to the surface after it was intercepted by the turbulent planetary boundary layer. Modeled smoke optical properties agreed well with aircraft and remote sensing observations provided coagulation of smoke particles was accounted for in the model. Our results have important implications for the long-range transport of pollutants and their subsequent entrainment to the surface, as well as the evolving optical properties of smoke from boreal forest fires.
NASA Technical Reports Server (NTRS)
Burns, Roger G.; Besancon, James R.; Pratt, Stephen F.
1991-01-01
The reflectance spectra of Fe(2+)-Mg(2+) disordered orthopyroxenes are relevant to surfaces of terrestrial planets onto which basaltic magma has been extruded. If cooling rates of basalt lava flows were fast, equilibrium iron intersite partitioning may not have been achieved so that abnormal enrichments of Fe(2+) ions in M1 sites would occur. The two intense pyroxene Fe(2+) site CF bands in the 1 micron and 2 micron regions would continue to dominate the the reflectance spectra so that the pyroxene composition and structure type would be readily identified in telescopic spectral profiles. However, abnormal intensification of the Fe(2+)/M1 site CF band at 1.20 microns could lead to the false identification of olivine in remote sensed spectra because in pyroxene-olivine mixtures the inflection around 1.20 microns is the only spectral feature for detecting the presence of olivine. The identification of iron-bearing plagioclase feldspars, too, would be obscured by the pyroxene Fe(2+)/M1 site CF band at 1.20 microns. Such interference would be a major problem if in situ reflectance spectra could be measured on the surface of Venus where ambient temperatures are as high as 475 C. Disordering of Fe(2+) and Mg(2+) ions comparable to that in the orthopyroxenes used in this spectral chemical study might be expected in low Ca pyroxenes occurring on the Venusian surface. Researchers conclude that Fe(2+)/M1 site spectral features need to be carefully assessed in remote-sensed spectra before deductions are made about the presence of olivine on planetary surfaces.
Photo-realistic Terrain Modeling and Visualization for Mars Exploration Rover Science Operations
NASA Technical Reports Server (NTRS)
Edwards, Laurence; Sims, Michael; Kunz, Clayton; Lees, David; Bowman, Judd
2005-01-01
Modern NASA planetary exploration missions employ complex systems of hardware and software managed by large teams of. engineers and scientists in order to study remote environments. The most complex and successful of these recent projects is the Mars Exploration Rover mission. The Computational Sciences Division at NASA Ames Research Center delivered a 30 visualization program, Viz, to the MER mission that provides an immersive, interactive environment for science analysis of the remote planetary surface. In addition, Ames provided the Athena Science Team with high-quality terrain reconstructions generated with the Ames Stereo-pipeline. The on-site support team for these software systems responded to unanticipated opportunities to generate 30 terrain models during the primary MER mission. This paper describes Viz, the Stereo-pipeline, and the experiences of the on-site team supporting the scientists at JPL during the primary MER mission.
Virtual reality and planetary exploration
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael W.
1992-01-01
Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.
Virtual reality and planetary exploration
NASA Astrophysics Data System (ADS)
McGreevy, Michael W.
Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.
Editorial Introduction: Fourth Planetary Dunes Workshop Special Issue
NASA Astrophysics Data System (ADS)
Chojnacki, Matthew; Telfer, Matt W.
2017-06-01
The Fourth International Planetary Dunes Workshop: Integrating Models, Remote Sensing, and Field Data was held May 19-22, 2015 in Boise, Idaho (see Final Announcement). More than 60 researchers and students participated in two and a half days of presentations and lively discussion, plus a full day field trip to Bruneau Dunes State Park. The workshop focused on the many landforms and deposits created by the dynamic interactions between granular material and airflow (aeolian processes). These processes are known to occur on several planetary bodies, including Earth, Mars, Titan, Venus, and possibly, cometary surfaces. The overarching purpose of this workshop was to provide a forum for discussion and the exchange of new ideas and approaches to gaining new insights into planetary aeolian processes. Meeting programs, abstracts, and E-Posters are all available at the workshop website (http://www.hou.usra.edu/meetings/dunes2015/)
Wind Streaks on Earth; Exploration and Interpretation
NASA Astrophysics Data System (ADS)
Cohen-Zada, Aviv Lee; Blumberg, Dan G.; Maman, Shimrit
2015-04-01
Wind streaks, one of the most common aeolian features on planetary surfaces, are observable on the surface of the planets Earth, Mars and Venus. Due to their reflectance properties, wind streaks are distinguishable from their surroundings, and they have thus been widely studied by remote sensing since the early 1970s, particularly on Mars. In imagery, these streaks are interpreted as the presence - or lack thereof - of small loose particles on the surface deposited or eroded by wind. The existence of wind streaks serves as evidence for past or present active aeolian processes. Therefore, wind streaks are thought to represent integrative climate processes. As opposed to the comprehensive and global studies of wind streaks on Mars and Venus, wind streaks on Earth are understudied and poorly investigated, both geomorphologically and by remote sensing. The aim of this study is, thus, to fill the knowledge gap about the wind streaks on Earth by: generating a global map of Earth wind streaks from modern high-resolution remotely sensed imagery; incorporating the streaks in a geographic information system (GIS); and overlaying the GIS layers with boundary layer wind data from general circulation models (GCMs) and data from the ECMWF Reanalysis Interim project. The study defines wind streaks (and thereby distinguishes them from other aeolian features) based not only on their appearance in imagery but more importantly on their surface appearance. This effort is complemented by a focused field investigation to study wind streaks on the ground and from a variety of remotely sensed images (both optical and radar). In this way, we provide a better definition of the physical and geomorphic characteristics of wind streaks and acquire a deeper knowledge of terrestrial wind streaks as a means to better understand global and planetary climate and climate change. In a preliminary study, we detected and mapped over 2,900 wind streaks in the desert regions of Earth distributed in approximately 500 sites. Most terrestrial wind streaks are formed on a relatively young geological surface and are concentrated along the equator (± 30°). They are categorized by the combination of their planform and reflectance; with linear-bright and dark are the most common. A site-specific examination of remote-sensing effects on wind streaks identification has been conducted. The results thus far, indicate that in images with varying spatial and spectral specifications some wind streaks are actually composed of other aeolian bedforms, especially dunes. Specific regions of the Earth were then compared qualitatively to surface wind data extracted from a general circulation model. Understanding the mechanism and spatial and temporal distribution of wind streak formation is important not only for understanding surface modifications in the geomorphological context but also for shedding light on past and present climatic processes and atmospheric circulation on Earth. This study yields an explanation for wind streaks as a geomorphological feature. Moreover, it is in this planet-wide geomorphological research ability to lay down the foundations for comparative planetary research.
A probabilistic approach to remote compositional analysis of planetary surfaces
Lapotre, Mathieu G.A.; Ehlmann, Bethany L.; Minson, Sarah E.
2017-01-01
Reflected light from planetary surfaces provides information, including mineral/ice compositions and grain sizes, by study of albedo and absorption features as a function of wavelength. However, deconvolving the compositional signal in spectra is complicated by the nonuniqueness of the inverse problem. Trade-offs between mineral abundances and grain sizes in setting reflectance, instrument noise, and systematic errors in the forward model are potential sources of uncertainty, which are often unquantified. Here we adopt a Bayesian implementation of the Hapke model to determine sets of acceptable-fit mineral assemblages, as opposed to single best fit solutions. We quantify errors and uncertainties in mineral abundances and grain sizes that arise from instrument noise, compositional end members, optical constants, and systematic forward model errors for two suites of ternary mixtures (olivine-enstatite-anorthite and olivine-nontronite-basaltic glass) in a series of six experiments in the visible-shortwave infrared (VSWIR) wavelength range. We show that grain sizes are generally poorly constrained from VSWIR spectroscopy. Abundance and grain size trade-offs lead to typical abundance errors of ≤1 wt % (occasionally up to ~5 wt %), while ~3% noise in the data increases errors by up to ~2 wt %. Systematic errors further increase inaccuracies by a factor of 4. Finally, phases with low spectral contrast or inaccurate optical constants can further increase errors. Overall, typical errors in abundance are <10%, but sometimes significantly increase for specific mixtures, prone to abundance/grain-size trade-offs that lead to high unmixing uncertainties. These results highlight the need for probabilistic approaches to remote determination of planetary surface composition.
Small Body Science via Swarms of Nano-Satellites
NASA Astrophysics Data System (ADS)
Ernst, Sebastian M.; Lewis, John S.
2015-04-01
Imagine you had a fleet of nano-satellites deployed around an asteroid or comet, or directly on its surface. What things could you do with it that you could not do any other way? Missions which transport a number of small spacecraft and deploy it near small bodes, moons or planets are becoming ever more feasible and realistic. While constellations of nano-satellites already carry a significant weight in terrestrial remote sensing, the potential of similar concepts for planetary science missions has not yet been extensively explored. There have been proposals for such scenarios for the past decades, though only now is there the technology to make them happen. Multiple types of sensor networks can be deployed around planetary bodies or onto their surface while they can interact with each other if required. Furthermore, individual spacecraft become expendable. We wish to call attention to all the research in this field which has been conducted so far and inspire the planetary science community to further investigate the possibies of such mission architechtures.
Low-latency teleoperations, planetary protection, and astrobiology
NASA Astrophysics Data System (ADS)
Lupisella, Mark L.
2018-07-01
The remote operation of an asset with time-delays short enough to allow for `real-time' or near real-time control - often referred to as low-latency teleoperations (LLT) - has important potential to address planetary protection concerns and to enhance astrobiology exploration. Not only can LLT assist with the search for extraterrestrial life and help mitigate planetary protection concerns as required by international treaty, but it can also aid in the real-time exploration of hazardous areas, robotically manipulate samples in real-time, and engage in precise measurements and experiments without the presence of crew in the immediate area. Furthermore, LLT can be particularly effective for studying `Special Regions' - areas of astrobiological interest that might be adversely affected by forward contamination from humans or spacecraft contaminants during activities on Mars. LLT can also aid human exploration by addressing concerns about backward contamination that could impact mission details for returning Martian samples and crew back to Earth.This paper provides an overview of LLT operational considerations and findings from recent NASA analyses and workshops related to planetary protection and human missions beyond Earth orbit. The paper focuses primarily on three interrelated areas of Mars operations that are particularly relevant to the planetary protection and the search for life: Mars orbit-to-surface LLT activities; Crew-on-surface and drilling LLT; and Mars surface science laboratory LLT. The paper also discusses several additional mission implementation considerations and closes with information on key knowledge gaps identified as necessary for the advance of LLT for planetary protection and astrobiology purposes on future human missions to Mars.
NASA Computational Case Study SAR Data Processing: Ground-Range Projection
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Rincon, Rafael
2013-01-01
Radar technology is used extensively by NASA for remote sensing of the Earth and other Planetary bodies. In this case study, we learn about different computational concepts for processing radar data. In particular, we learn how to correct a slanted radar image by projecting it on the surface that was sensed by a radar instrument.
NASA Technical Reports Server (NTRS)
Tishkovets, Victor P.; Mishchenko, Michael
2010-01-01
Although the note by Hapke and Nelson has virtually no relevance to our original publication, it contains a number of statements that are misleading and/or wrong. We, therefore, use this opportunity to dispel several profound misconceptions that continue to hinder the progress in remote sensing of planetary surfaces.
NASA Astrophysics Data System (ADS)
Grima, C.; Schroeder, D. M.; Blankenship, D. D.; Young, D. A.
2013-12-01
Geological and climatic processes shaping the landscape of planetary bodies imprint the surface with particular textures, i.e. continuous topographic entities at meters to decameters scales where the surface elevation is dominated by a stochastic behavior. The so-called roughness is a proxy to get insights into the type of surface terrain and its ongoing evolution. It is also an important descriptor involved in landing site selection processes to ensure the safe delivery of a lander/rover over a stable work zone. Planetary surface roughnesses are usually derived from point-to-point elevation models acquired by laser altimetry or stereo-imagery. However, in the last decade, nadir-looking penetrating radars have become another remote-sensing technology commonly used for planetary surface and sub-surface characterization (e.g. MARSIS/SHARAD on Mars, LRS on the Moon, and Ice Penetrating Radars for future missions to Europa). Here, we present a statistical method to extract the reflected and scattered components embedded in the surface echoes of HF (3-30 MHz) and VHF (30-300 MHz) penetrating radars in order to derive significant roughness information. We demonstrate the reliability of the method with an application to a radar dataset acquired during the 2004-05 austral summer campaign of the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica, (AGASEA) project with the High-Capability Radar Sounder (HiCARS, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG). Results are thoroughly compared with simultaneously acquired laser altimetry and nadir imagery of the surface. We emphasize the possibilities and advantages of the method in light of the future exploration of the Europa and Ganymede icy moons by multi-frequency ice penetrating radars.
Micro weather stations for in situ measurements in the Martian planetary boundary layer
NASA Technical Reports Server (NTRS)
Crisp, D.; Kaiser, W. J.; Kenny, T. W.; Vanzandt, T. R.; Tillman, J. E.
1992-01-01
Viking Lander meteorology measurements show that the Martian planetary boundary layer (PBL) has large diurnal and seasonal variations in pressure, wind velocity, relative humidity, and airborne dust loading. An even larger range of conditions was inferred from remote sensing observations acquired by the Mariner 9 and Viking orbiters. Numerical models indicate that these changes may be accompanied by dramatic vertical and horizontal wind shears (100 m/s/km) and rapid changes in the static stability. In-situ measurements from a relatively small number surface stations could yield global constraints on the Martian climate and atmospheric general circulation by providing ground truth for remote sensing instruments on orbiters. A more complete understanding of the meteorology of the PBL is an essential precursor to manned missions to Mars because this will be their working environment. In-situ measurements are needed for these studies because the spatial and temporal scales that characterize the important meteorological processes near the surface cannot be resolved from orbit. The Mars Environmental Survey (MESUR) Program will provide the first opportunity to deploy a network of surface weather stations for a comprehensive investigation of the Martian PBL. The feasibility and utility of a network of micro-weather stations for making in-situ meteorological measurements in the Martian PBL are assessed.
Smarter Instruments, Smarter Archives: Machine Learning for Tactical Science
NASA Astrophysics Data System (ADS)
Thompson, D. R.; Kiran, R.; Allwood, A.; Altinok, A.; Estlin, T.; Flannery, D.
2014-12-01
There has been a growing interest by Earth and Planetary Sciences in machine learning, visualization and cyberinfrastructure to interpret ever-increasing volumes of instrument data. Such tools are commonly used to analyze archival datasets, but they can also play a valuable real-time role during missions. Here we discuss ways that machine learning can benefit tactical science decisions during Earth and Planetary Exploration. Machine learning's potential begins at the instrument itself. Smart instruments endowed with pattern recognition can immediately recognize science features of interest. This allows robotic explorers to optimize their limited communications bandwidth, triaging science products and prioritizing the most relevant data. Smart instruments can also target their data collection on the fly, using principles of experimental design to reduce redundancy and generally improve sampling efficiency for time-limited operations. Moreover, smart instruments can respond immediately to transient or unexpected phenomena. Examples include detections of cometary plumes, terrestrial floods, or volcanism. We show recent examples of smart instruments from 2014 tests including: aircraft and spacecraft remote sensing instruments that recognize cloud contamination, field tests of a "smart camera" for robotic surface geology, and adaptive data collection by X-Ray fluorescence spectrometers. Machine learning can also assist human operators when tactical decision making is required. Terrestrial scenarios include airborne remote sensing, where the decision to re-fly a transect must be made immediately. Planetary scenarios include deep space encounters or planetary surface exploration, where the number of command cycles is limited and operators make rapid daily decisions about where next to collect measurements. Visualization and modeling can reveal trends, clusters, and outliers in new data. This can help operators recognize instrument artifacts or spot anomalies in real time. We show recent examples from science data pipelines deployed onboard aircraft as well as tactical visualizations for non-image instrument data.
Simulating airless and/or hot planetary surfaces in the Planetary Emissivity Laboratory (PEL)
NASA Astrophysics Data System (ADS)
Maturilli, A.; Helbert, J.; D'Amore, M.
2010-12-01
A complete and extensive mineralogical survey of extraterrestrial bodies is actually possible only by means of remote sensing spectrometers, measuring the planetary surfaces in a spectral range that goes from the visible to the far infrared. The list of instruments still active today, observing the most interesting planets and bodies in our solar system is far too long to list them in this abstract. The important message is that all of them are sending to Earth a huge amount of data that needs to be correctly analysed, to infer the mineralogical composition of the observed regions on different targets. This requires laboratory data of relevant analogue materials under relevant conditions measured on a wide spectral range. At the Planetary Emissivity Laboratory (PEL) of DLR in Berlin two separate instruments, a Bruker IFS 88 and a Bruker Vertex 80V are operated in parallel and independently to measure reflectance and emissivity of planetary analogue materials to cover the 0.4 to 100 µm spectral range. The older IFS 88 is used to measure under room pressure and for emissivity measurements from low to moderate temperatures (up to 180° C), while the new Vertex 80V can be evacuated (below 1 mbar) and used to measure emissivity of moderate to very hot surfaces, reaching temperatures typical of the daily Mercury (beyond 500° C). The laboratory set-up and the already obtained results will be described, together with details about the online-archival and the standardized structure of the existing dataset.
Contextualising and Analysing Planetary Rover Image Products through the Web-Based PRoGIS
NASA Astrophysics Data System (ADS)
Morley, Jeremy; Sprinks, James; Muller, Jan-Peter; Tao, Yu; Paar, Gerhard; Huber, Ben; Bauer, Arnold; Willner, Konrad; Traxler, Christoph; Garov, Andrey; Karachevtseva, Irina
2014-05-01
The international planetary science community has launched, landed and operated dozens of human and robotic missions to the planets and the Moon. They have collected various surface imagery that has only been partially utilized for further scientific purposes. The FP7 project PRoViDE (Planetary Robotics Vision Data Exploitation) is assembling a major portion of the imaging data gathered so far from planetary surface missions into a unique database, bringing them into a spatial context and providing access to a complete set of 3D vision products. Processing is complemented by a multi-resolution visualization engine that combines various levels of detail for a seamless and immersive real-time access to dynamically rendered 3D scenes. PRoViDE aims to (1) complete relevant 3D vision processing of planetary surface missions, such as Surveyor, Viking, Pathfinder, MER, MSL, Phoenix, Huygens, and Lunar ground-level imagery from Apollo, Russian Lunokhod and selected Luna missions, (2) provide highest resolution & accuracy remote sensing (orbital) vision data processing results for these sites to embed the robotic imagery and its products into spatial planetary context, (3) collect 3D Vision processing and remote sensing products within a single coherent spatial data base, (4) realise seamless fusion between orbital and ground vision data, (5) demonstrate the potential of planetary surface vision data by maximising image quality visualisation in 3D publishing platform, (6) collect and formulate use cases for novel scientific application scenarios exploiting the newly introduced spatial relationships and presentation, (7) demonstrate the concepts for MSL, (9) realize on-line dissemination of key data & its presentation by a web-based GIS and rendering tool named PRoGIS (Planetary Robotics GIS). PRoGIS is designed to give access to rover image archives in geographical context, using projected image view cones, obtained from existing meta-data and updated according to processing results, as a means to interact with and explore the archive. However PRoGIS is more than a source data explorer. It is linked to the PRoVIP (Planetary Robotics Vision Image Processing) system which includes photogrammetric processing tools to extract terrain models, compose panoramas, and explore and exploit multi-view stereo (where features on the surface have been imaged from different rover stops). We have started with the Opportunity MER rover as our test mission but the system is being designed to be multi-mission, taking advantage in particular of UCL MSSL's PDS mirror, and we intend to at least deal with both MER rovers and MSL. For the period of ProViDE until end of 2015 the further intent is to handle lunar and other Martian rover & descent camera data. The presentation discusses the challenges of integrating rover and orbital derived data into a single geographical framework, especially reconstructing view cones; our human-computer interaction intentions in creating an interface to the rover data that is accessible to planetary scientists; how we handle multi-mission data in the database; and a demonstration of the resulting system & its processing capabilities. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 PRoViDE.
Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration
NASA Technical Reports Server (NTRS)
Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.
2004-01-01
Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.
Planetary Evolution, Habitability and Life
NASA Astrophysics Data System (ADS)
Tilman, Spohn; Breuer, Doris; de Vera, Jean-Pierre; Jaumann, Ralf; Kuehrt, Ekkehard; Möhlmann, Diedrich; Rauer, Heike; Richter, Lutz
A Helmholtz Alliance has been established to study the interactions between life and the evo-lution of planets. The approach goes beyond current studies in Earth-System Sciences by including the entire planet from the atmosphere to the deep interior, going beyond Earth to include other Earth-like planets such as Mars and Venus and satellites in the solar system where ecosystems may exist underneath thick ice shells,considering other solar systems. The approach includes studies of the importance of plate tectonics and other tectonic regimes such as single plate tectonics for the development and for sustaining life and asks the question: If life can adapt to a planet, can a planet adapt to life? Can life be seen as a geological process and if so, can life shape the conditions on a planet such that life can flourish? The vision goes beyond the solar system by including the challenges that life would face in other solar systems. The Alliance uses theoretical modelling of feedback cycles and coupled planetary atmosphere and interior processes. These models are based on the results of remote sensing of planetary surfaces and atmospheres, laboratory studies on (meteorite) samples from other planets and on studies of life under extreme conditions. The Alliance uses its unique capabilities in remote sensing and in-situ exploration to prepare for empirical studies of the parameters affecting habitability. The Alliance aims to establish a network infrastructure in Germany to enable the most ad-vanced research in planetary evolution studies by including life as a planetary process. Finding extraterrestrial life is a task of fundamental importance to mankind, and its fulfilment will be philosophically profound. Evaluating the interactions between planetary evolution and life will help to put the evolution of our home planet (even anthropogenic effects) into perspective.
Virtual Planetary Analysis Environment for Remote Science
NASA Technical Reports Server (NTRS)
Keely, Leslie; Beyer, Ross; Edwards. Laurence; Lees, David
2009-01-01
All of the data for NASA's current planetary missions and most data for field experiments are collected via orbiting spacecraft, aircraft, and robotic explorers. Mission scientists are unable to employ traditional field methods when operating remotely. We have developed a virtual exploration tool for remote sites with data analysis capabilities that extend human perception quantitatively and qualitatively. Scientists and mission engineers can use it to explore a realistic representation of a remote site. It also provides software tools to "touch" and "measure" remote sites with an immediacy that boosts scientific productivity and is essential for mission operations.
Mobile Robot for Exploring Cold Liquid/Solid Environments
NASA Technical Reports Server (NTRS)
Bergh, Charles; Zimmerman, Wayne
2006-01-01
The Planetary Autonomous Amphibious Robotic Vehicle (PAARV), now at the prototype stage of development, was originally intended for use in acquiring and analyzing samples of solid, liquid, and gaseous materials in cold environments on the shores and surfaces, and at shallow depths below the surfaces, of lakes and oceans on remote planets. The PAARV also could be adapted for use on Earth in similar exploration of cold environments in and near Arctic and Antarctic oceans and glacial and sub-glacial lakes.
Geologic Studies of Planetary Surfaces Using Radar Polarimetric Imaging
NASA Technical Reports Server (NTRS)
Carter, Lynn M.; Campbell, Donald B.; Campbell, Bruce A.
2010-01-01
Radar is a useful remote sensing tool for studying planetary geology because it is sensitive to the composition, structure, and roughness of the surface and can penetrate some materials to reveal buried terrain. The Arecibo Observatory radar system transmits a single sense of circular polarization, and both senses of circular polarization are received, which allows for the construction of the Stokes polarization vector. From the Stokes vector, daughter products such as the circular polarization ratio, the degree of linear polarization, and linear polarization angle are obtained. Recent polarimetric imaging using Arecibo has included Venus and the Moon. These observations can be compared to radar data for terrestrial surfaces to better understand surface physical properties and regional geologic evolution. For example, polarimetric radar studies of volcanic settings on Venus, the Moon and Earth display some similarities, but also illustrate a variety of different emplacement and erosion mechanisms. Polarimetric radar data provides important information about surface properties beyond what can be obtained from single-polarization radar. Future observations using polarimetric synthetic aperture radar will provide information on roughness, composition and stratigraphy that will support a broader interpretation of surface evolution.
Collecting, Managing, and Visualizing Data during Planetary Surface Exploration
NASA Astrophysics Data System (ADS)
Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.
2017-12-01
While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.
An Improved Instrument for Investigating Planetary Regolith Microstructure
NASA Technical Reports Server (NTRS)
Nelson, R. M.; Hapke, B. W.; Smythe, W. D.; Manatt, K. S.; Eddy, J.
2005-01-01
The Opposition Effect (OE) is the non-linear increase in the intensity of light scattered from a surface as phase angle approaches 0 deg. It is seen in laboratory experiments and in remote sensing observations of planetary surfaces. Understanding the OE is a requirement for fitting photometric models which produce meaningful results about regolith texture. Previously we have reported measurements from the JPL long arm goniometer and we have shown that this instrument enables us to distinguish between two distinct processes which create the opposition surges, Shadow Hiding (SHOE) and Coherent Backscattering (CBOE). SHOE arises because, as phase angle approaches zero, shadows cast by regolith grains on other grains become invisible to the observer. CBOE results from constructive interference between rays traveling the same path but in opposite directions. Additional information is included in the original extended abstract.
LandingNav: a precision autonomous landing sensor for robotic platforms on planetary bodies
NASA Astrophysics Data System (ADS)
Katake, Anup; Bruccoleri, Chrisitian; Singla, Puneet; Junkins, John L.
2010-01-01
Increased interest in the exploration of extra terrestrial planetary bodies calls for an increase in the number of spacecraft landing on remote planetary surfaces. Currently, imaging and radar based surveys are used to determine regions of interest and a safe landing zone. The purpose of this paper is to introduce LandingNav, a sensor system solution for autonomous landing on planetary bodies that enables landing on unknown terrain. LandingNav is based on a novel multiple field of view imaging system that leverages the integration of different state of the art technologies for feature detection, tracking, and 3D dense stereo map creation. In this paper we present the test flight results of the LandingNav system prototype. Sources of errors due to hardware limitations and processing algorithms were identified and will be discussed. This paper also shows that addressing the issues identified during the post-flight test data analysis will reduce the error down to 1-2%, thus providing for a high precision 3D range map sensor system.
A Study by Remote Sensing Methods of Volcanism at Craters of the Moon National Park, Idaho
NASA Astrophysics Data System (ADS)
Haberle, C. W.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Lim, D. S. S.; Garry, B.; Sears, D. W. G.; Downs, M.; Busto, J.; Skok, J. R.; Elphic, R. C.; Kobayashi, L.; Heldmann, J. L.; Christensen, P. R.
2014-12-01
Craters of the Moon (COTM) National Park, on the eastern Snake River Plain, and its associated lava fields are currently a focus of the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team. COTM was selected for study owing to similarities with volcanic features observed on the Moon, Mars and Vesta. The COTM basaltic lava fields emanate from an 80 km long rift zone where at least eight eruptive episodes, occurring 15,000 to 2,000 BP, have created an expansive volcanic field covering an area of approximately 1,650 km2. This polygenetic volcanic field hosts a diverse collection of basaltic volcanic edifices such as phreatic explosion craters, eruptive fissures, cinder cones, spatter cones, shield volcanoes and expansive lava flows. Engineering challenges and high cost limit the number of robotic and human field investigations of planetary bodies and, due to these constraints, exhaustive remote sensing investigations of planetary surface properties are undertaken prior to field deployment. This creates an unavoidable dependence upon remote sensing, a critical difference between field investigations of planetary bodies and most terrestrial field investigations. Studies of this nature have utility in terrestrial investigations as they can help link spatially encompassing datasets and conserve field resources. We present preliminary results utilizing Earth orbital datasets to determine the efficacy of products derived from remotely sensed data when compared to geologic field observations. Multispectral imaging data (ASTER, AVIRIS, TIMS) collected at a range of spatial and spectral resolutions are paired with high resolution imagery from both orbit and unmanned aircraft systems. This enables the creation of derived products detailing morphology, compositional variation, mineralogy, relative age and vegetation. The surface morphology of flows within COTM differs from flow to flow and observations of these properties can aid in determining the driving mechanisms. The entirety of the COTM volcanic field is the target of this investigation although areas of interest have been selected for more focused investigation to support planned and ongoing field investigations at Highway A'a flow, North Crater cinder cone and King's Bowl phreatic explosion crater and flow.
NASA Technical Reports Server (NTRS)
Floyd, Samuel R.; Keller, John W.; Dworkin, Jason P.; Mildner, David F. R.
2004-01-01
Prompt Gamma Ray Activation Analysis (PGAA) from neutron capture is an important experimental method that yields information on the elemental abundance of target materials. Gamma ray analysis has been used in planetary exploration missions by taking advantage of the production of neutrons as a result of Galactic Cosmic Ray interaction within the planetary surfaces. The .gamma ray signal that can be obtained from the GCR production of neutrons is very low, so we seek a superior neutron source. NASA s Project Prometheus and the Dept. of Energy aim to develop a nuclear power system for planetary exploration. This provides us with a tremendous opportunity to harness the reactor as a source of neutrons that can be used for PGAA. We envision a narrow stream of neutrons from the reactor directed toward the surface of an asteroid or comet producing the prompt gamma ray signal for analysis. Under ideal conditions of neutron flux and spacecraft orbit, both the signal strength and the spatial resolution will improved by several orders of magnitude over previously missions.
Infrared and Raman spectroscopy on synthetic glasses as analogues of planetary surfaces.
NASA Astrophysics Data System (ADS)
Weber, Iris; Morlok, Andreas; Klemme, Stephan; Dittmer, Isabelle; Stojic, Aleksandra N.; Hiesinger, Harald; Sohn, Martin; Helbert, Jörn
2015-04-01
One of the fundamental aims of space mission is to understand the physical, chemical, and geologic processes and conditions of planetary formation and evolution. For this purpose, it is important to investigate analog material to correctly interpret the returned spacecraft data, including the spectral information from remote planetary surfaces. For example, mid-infrared spectroscopy provides detailed information on the mineralogical compositions of planetary surfaces via remote sensing. Data is affected by numerous factors such as grain size, illumination geometry, space weathering, and temperature. These features need to be systematically investigated on analog material in terrestrial laboratories in order to understand the mineralogy/composition of a planetary surface. In addition, Raman spectroscopy allows non-destructive analyses of planetary surfaces in the case of a landing mission. Our work at the IRIS (Infrared spectroscopy for Interplanetary Studies) laboratory at the Institut für Planetologie produces spectra for a database of the ESA/JAXA BepiColombo mission to Mercury. Onboard is a mid-infrared spectrometer (MERTIS-Mercury Radiometer and Thermal Infrared Spectrometer). This unique instrument allows us to map spectral features in the 7-14 µm range, with a spatial resolution of ~500 m [1-5]. Comparably, using our Raman spectrometer, we are continuously contributing to the Raman database for upcoming mission, e.g., the Raman Laser Spectrometer (RLS) onboard of ExoMars [6]. Material on the surface of Mercury and the other terrestrial bodies was exposed to heavy impact cratering [4]. Depending on the P/T conditions during the impact, minerals on planetary surfaces can react with the formation of glassy material. Thus, understanding the effects of impact shock and heat on the mineral structure and the resulting corresponding change in the spectral properties is of high interest for the MERTIS project. Here, we present spectral information on the first glass produced, based on the composition of the Ca- and Mg-rich and Al-poor G1 region identified on Mercury with the X-ray spectrometer on MESSENGER [7]. For in situ mid-IR specular reflectance analyses, a Bruker Hyperion 2000 System with a (1000×1000) µm2 sized aperture was used. A Bruker Vertex 70 IR system with a MCT detector was applied for analyses of areas >>1 mm under near vacuum conditions. Raman spectra will be collected with an OceanOptics IDR-Micro-532 spectrometer. Our results show that the micro-FTIR reflectance data of two glassy regions provide a smooth feature that is typical for amorphous materials. Only very weak sharper crystalline bands occur on top of the feature at 10.1-10.2 µm and 10.5-10.6 µm. These bands are probably resulting from crystalline forsterite within a glassy matrix, because the crystalline bands at 10.1 and 10.5 µm are characteristic for nearly pure forsterite [8]. The Christiansen feature is at 8.2 µm. The spectrum of a larger region is basically a 'bulk' spectrum. Achieved under near-vacuum conditions this spectrum displays essentially similar characteristics. References: [1] Maturilli A. (2006) Planet. Space Sci. 54, 1057-1064. [2] Helbert J. and Maturilli A. (2009) Earth Planet. Sci. Lett. 285, 347-354. [3] Benkhoff, J. et al. (2010) Planet. Space Sci. 58, 2-20. [4] Hiesinger H. et al. (2010) Planet. Space Sci. 58, 144-165. [5] Maturilli J. (2008) Planet. Space Sci. 56, 420-425. [6] Vago et al. (2012) Mars Concepts, Houston. [3] Hamilton V.E. (2010) Chem. Erde, 70, 7-33. [7] Charlier B. et al. (2013) Earth Planet. Sci. Lett. 363, 50-60.
Energetic charged particle interactions at icy satellites
NASA Astrophysics Data System (ADS)
Nordheim, T.; Hand, K. P.; Paranicas, C.; Howett, C.; Hendrix, A. R.
2016-12-01
Satellites embedded within planetary magnetospheres are typically exposed to bombardment by charged particles, from thermal plasma to more energetic particles at radiation belt energies. At many planetary satellites, energetic charged particles are typically unimpeded by patchy atmospheres or induced satellite magnetic fields and instead are stopped in the surface itself. Most of these primaries have ranges in porous water ice that are at most centimeters, but some of their secondary photons, emitted during the deceleration process, can reach meter depths [Paranicas et al., 2002, 2004; Johnson et al., 2004]. Examples of radiation-induced surface alteration includes sputtering, radiolysis and grain sintering, processes that are capable of significantly altering the physical properties of surface material. Thus, accurate characterization of energetic charged particle weathering at icy satellites is crucial to a more comprehensive understanding of these bodies. At Saturn's inner mid-size moons remote sensing observations by several instruments onboard the Cassini spacecraft have revealed distinct weathering patterns which have been attributed to energetic electron bombardment of the surface [Howett et al., 2011, 2012, 2014; Schenk et al., 2011; Paranicas et al., 2014]. In the Jovian system, radiolytic production of oxidants has been invoked as a potential source of energy for life which may reside in the sub-surface ocean of its satellite Europa [Johnson et al., 2003; Hand et al., 2007; Vance et al., 2016]. Here we will discuss the near-surface energetic charged particle environment of icy satellites, with particular emphasis on comparative studies between the Saturnian and Jovian systems and interpretation of remote sensing observations by instruments onboard missions such as Cassini and Galileo. In addition, we will discuss implications for surface sampling by future lander missions (e.g. the proposed Europa lander now under study).
Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop
NASA Technical Reports Server (NTRS)
Evans, N.
1984-01-01
Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.
The Explorer's Guide to Impact Craters
NASA Astrophysics Data System (ADS)
Pierazzo, E.; Osinski, G.; Chuang, F.
2004-12-01
Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, or fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: ``How do scientists learn about impact cratering?'', and ``What information do impact craters provide in understanding the evolution of a planetary surface?'' Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering. We will provide students, science teachers, and the general public an opportunity to experience the scientific endeavor of understanding and exploring impact craters through a multi-level approach including images, videos, and rock samples. This type of interactive learning can also be made available to the general public in the form of a website, which can be addressed worldwide at any time.
Europlanet Research Infrastructure: Planetary Simulation Facilities
NASA Astrophysics Data System (ADS)
Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.
2008-09-01
EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of pressures and temperatures and through provision of external UV light and or electrical discharge can be used to form the well known Titan Aerosol species, which can subsequently be analysed using one of several analytical techniques (UV-Vis, FTIR and mass spectrometry). Simulated surfaces can be produced (icy surfaces down to 15K) and subjected to a variety of light and particles (electron and ion) sources. Chemical and physical changes in the surface may be explored using remote spectroscopy. Planetary Simulation chamber for low density atmospheres INTA-CAB The planetary simulation chamber-ultra-high vacuum equipment (PSC-UHV) has been designed to study planetary surfaces and low dense atmospheres, space environments or any other hypothetic environment at UHV. Total pressure ranges from 7 mbar (Martian conditions) to 5x10-9 mbar. A residual gas analyzer regulates gas compositions to ppm precision. Temperature ranges from 4K to 325K and most operations are computer controlled. Radiation levels are simulated using a deuterium UV lamp, and ionization sources. 5 KV electron and noble-gas discharge UV allows measurement of IR and UV spectra and chemical compositions are determined by mass spectroscopy. Planetary Simulation chamber for high density planetary atmospheres at INTA-CAB The facility allows experimental study of planetary environments under high pressure, and was designed to include underground, seafloor and dense atmosphere environments. Analytical capabilities include Raman spectra, physicochemical properties of materials, e.a. thermal conductivity. P-T can be controlled as independent variables to allow monitoring of the tolerance of microorganisms and the stability of materials and their phase changes. Planetary Simulation chamber for icy surfaces at INTA-CAB This chamber is being developed to the growth of ice samples to simulate the chemical and physical properties of ices found on both planetary bodies and their moons. The goal is to allow measurement of the physical properties of ice samples formed under planetary conditions to assess how rheology varies with pressure and temperature and grain size to gain a far better understanding of how tectonics may operate on icy moons. Hot planetary surfaces simulation chamber at DLR The planetary simulation chamber is to study the behaviour of planetary analogue materials on the surface of hot (airless) bodies in the solar system. Samples can be heated up to temperatures of 500°C simulating conditions found on the surface of Mercury and Venus. This enables highly accurate thermal emission measurements using the integrated infrared spectrometer and calibrated sources. Thermal gradients can be applied to samples to simulate diurnal thermal cycles and examine thermal stresses in materials. The chamber can be placed under vacuum or purged with gas. In addition, to the high temperature chamber a number of further planetary simulation chambers are available equipped with LIBS and Raman-spectroscopy equipment. Dust analogue simulation chamber at INAF/OACN This facility produces and characterises dust analogues (arc discharge, laser ablation, grinding of minerals, ices) in a variety of simulation chambers under variable pressure (10-6 - 10-3 mbar), temperature (80 - 330 K) and gas composition. Dust and analogues are characterised by a variety of Spectroscopic (absorption, transmission, diffuse-specular reflectance) and imaging techniques (SEM) and can be subjected to thermal annealing, ion bombardment and UV irradiation. Dust accelerator facility at Max Planck Institüt Nuclear Physics, Heidelberg. This facility allows the investigation of hypervelocity dust impacts onto various materials. Dust grain materials from nano to micron sizes are accelerated using a 2 MV Vande- Graaff to velocities between 1 and 60 km/s comparable to the planetary rings of the giant gas planets and impact ejecta processes on the surface of small bodies (asteroids, comets) as well as moons and planetary surfaces. Potential phenomena for study include dust charging, dust magentosphere interactions, dust impact flashes and the possibility of obtaining compositional measurements of impact plasma plumes. Mars surface simulation Laboratory, Aberystwyth University. A Planetary Analogue Terrain Laboratory facilitates comprehensive mission operations emulation experiments designed to interpret and maximise scientific data return from robotic instruments. This facility includes Mars Soil Simulant and `science target' rocks that have been fully characterised. The terrain also has an area for sub-surface sampling. An Access Grid Node allows simulation of remote control operation and diminishes the need for direct onsite attendance. PAT Lab has a large selection of software tools for rover, robot arm and instrument modelling and simulation, and for the processing and visualisation of captured instrument data. Instrument motion is measured using a Vicon motion capture system with a resolution < 0.1 mm. Dusty wind tunnel at Aarhus University, Denmark The Aarhus wind tunnel simulates wind driven dust exposure on Mars. This allows study into analogue materials, dust/surface processes, meteorological condition and microbiological survival under Martian conditions. The multipurpose facility is used to quantify dust deposition (i.e. on optical surfaces, electrical or mechanical components) and examine the operation of instrumentation in dusty/windy environment under Martian conditions (pressure, gas composition & temperature). This includes calibration of wind flow instrumentation and dust sensors.
NASA Astrophysics Data System (ADS)
Stangarone, C.; Helbert, J.; Tribaudino, M.; Maturilli, A.; D'Amore, M.; Ferrari, S.; Prencipe, M.
2015-12-01
Spectral signatures of minerals are intimately related to the crystal structure; therefore they may represent a remote sensing model to determine surface composition of planetary bodies, by analysing their spectral reflectance and emission. However, one of the most critical point is data interpretation considering planetary surfaces, as Mercury, where the changes in spectral characteristics are induced by the high temperatures conditions (Helbert et al., 2013). The aim of this work is to interpret the experimental thermal emissivity spectra with an innovative approach: simulating IR spectra of the main mineral families that compose the surface of Mercury, focusing on pyroxenes (Sprague et al., 2002), both at room and high temperature, exploiting the accuracy of ab initio quantum mechanical calculations, by means of CRYSTAL14 code (Dovesi et al., 2014). The simulations will be compared with experimental emissivity measurements of planetary analogue samples at temperature up to 1000K, performed at Planetary Emissivity Laboratory (PEL) by Institute of Planetary Research (DLR, Berlin). Results will be useful to create a theoretical background to interpret HT-IR emissivity spectra that will be collected by the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS), a spectrometer developed by DLR that will be on board of the ESA BepiColombo Mercury Planetary Orbiter (MPO) scheduled for 2017. The goal is to point out the most interesting spectral features for a geological mapping of Mercury and other rocky bodies, simulating the environmental conditions of the inner planets of Solar System. Dovesi R., Saunders V. R., Roetti C., Orlando R., Zicovich-Wilson C. M., Pascale F., Civalleri B., Doll K., Harrison N. M., Bush I. J., D'Arco P., Llunell M., Causà M. & Noël Y. 2014. CRYSTAL14 User's Manual, University of Torino. Sprague, A. L., Emery, J. P., Donaldson, K. L., Russell, R. W., Lynch, D. K., & Mazuk, A. L. (2002). Mercury: Mid-infrared (3-13.5 μm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene. Meteoritics & Planetary Science, 37(9), 1255-1268.
NASA Technical Reports Server (NTRS)
Barsten, Kristina; Hurst, Victor, IV; Scheuring, Richard; Baumann, David K.; Johnson-Throop, Kathy
2010-01-01
Introduction: Analogue environments assist the NASA Human Research Program (HRP) in developing capabilities to mitigate high risk issues to crew health and performance for space exploration. The Habitat Demonstration Unit (HDU) is an analogue habitat used to assess space-related products for planetary missions. The Exploration Medical Capability (ExMC) element at the NASA Johnson Space Center (JSC) was tasked with developing planetary-relevant medical scenarios to evaluate the concept of operations for mitigating medical issues in such an environment. Methods: Two medical scenarios were conducted within the simulated planetary habitat with the crew executing two space flight-relevant procedures: Eye Examination with a corneal injury and Skin Laceration. Remote guidance for the crew was provided by a flight surgeon (FS) stationed at a console outside of the habitat. Audio and video data were collected to capture the communication between the crew and the FS, as well as the movements of the crew executing the procedures. Questionnaire data regarding procedure content and remote guidance performance also were collected from the crew immediately after the sessions. Results: Preliminary review of the audio, video, and questionnaire data from the two scenarios conducted within the HDU indicate that remote guidance techniques from an FS on console can help crew members within a planetary habitat mitigate planetary-relevant medical issues. The content and format of the procedures were considered concise and intuitive, respectively. Discussion: Overall, the preliminary data from the evaluation suggest that use of remote guidance techniques by a FS can help HDU crew execute space exploration-relevant medical procedures within a habitat relevant to planetary missions, however further evaluations will be needed to implement this strategy into the complete concept of operations for conducting general space medicine within similar environments
Reflectance spectroscopy in planetary science: Review and strategy for the future
NASA Technical Reports Server (NTRS)
Mccord, Thomas B. (Editor)
1987-01-01
Reflectance spectroscopy is a remote sensing technique used to study the surfaces and atmospheres of solar system bodies. It provides first-order information on the presence and amounts of certain ions, molecules, and minerals on a surface or in an atmosphere. Reflectance spectroscopy has become one of the most important investigations conducted on most current and planned NASA Solar System Exploration Program space missions. This book reviews the field of reflectance spectroscopy, including information on the scientific technique, contributions, present conditions, and future directions and needs.
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.
1994-01-01
Exploration of the Moon and planets began with telescopic studies of their surfaces, continued with orbiting spacecraft and robotic landers, and will culminate with manned exploration and sample return. For the Moon and Mars we also have accidental samples provided by impacts on their surfaces, the lunar and martian meteorites. How much would we know about the lunar surface if we only had lunar meteorites, orbital spacecraft, and robotic exploration, and not the Apollo and Luna returned samples? What does this imply for Mars? With martian meteorites and data from Mariner, Viking, and the future Pathfinder missions, how much could we learn about Mars? The basis of most of our detailed knowledge about the Moon is the Apollo samples. They provide ground truth for the remote mapping, timescales for lunar processes, and samples from the lunar interior. The Moon is the foundation of planetary science and the basis for our interpretation of the other planets. Mars is similar to the Moon in that impact and volcanism are the dominant processes, but Mars' surface has also been affected by wind and water, and hence has much more complex surface geology. Future geochemical or mineralogical mapping of Mars' surface should be able to tell us whether the dominant rock types of the ancient southern highlands are basaltic, anorthositic, granitic, or something else, but will not be able to tell us the detailed mineralogy, geochemistry, or age. Without many more martian meteorites or returned samples we will not know the diversity of martian rocks, and therefore will be limited in our ability to model martian geological evolution.
Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)
NASA Technical Reports Server (NTRS)
Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke
2004-01-01
The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.
Thermal conductivity of lunar regolith simulant JSC-1A under vacuum
NASA Astrophysics Data System (ADS)
Sakatani, Naoya; Ogawa, Kazunori; Arakawa, Masahiko; Tanaka, Satoshi
2018-07-01
Many air-less planetary bodies, including the Moon, asteroids, and comets, are covered by regolith. The thermal conductivity of the regolith is an essential parameter controlling the surface temperature variation. A thermal conductivity model applicable to natural soils as well as planetary surface regolith is required to analyze infrared remote sensing data. In this study, we investigated the temperature and compressional stress dependence of the thermal conductivity of the lunar regolith simulant JSC-1A, and the temperature dependence of sieved JSC-1A samples under vacuum conditions. We confirmed that a series of the experimental data for JSC-1A are fitted well by our analytical model of the thermal conductivity (Sakatani et al., 2017). Comparison with the calibration data of the sieved samples with those for original JSC-1A indicates that the thermal conductivity of natural samples with a wide grain size distribution can be modeled as mono-sized grains with a volumetric median size. The calibrated model can be used to estimate the volumetric median grain size from infrared remote sensing data. Our experiments and the calibrated model indicates that uncompressed JSC-1A has similar thermal conductivity to lunar top-surface materials, but the lunar subsurface thermal conductivity cannot be explained only by the effects of the density and self-weighted compressional stress. We infer that the nature of the lunar subsurface regolith grains is much different from JSC-1A and lunar top-surface regolith, and/or the lunar subsurface regolith is over-consolidated and the compressional stress higher than the hydrostatic pressure is stored in the lunar regolith layer.
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Jones, Thomas C.; Doggett, W. R.; Brady, Jeffrey S.; Berry, Felecia C.; Ganoe, George G.; Anderson, Eric; King, Bruce D.; Mercer, David C.
2011-01-01
The first generation of a versatile high performance device for performing payload handling and assembly operations on planetary surfaces, the Lightweight Surface Manipulation System (LSMS), has been designed and built. Over the course of its development, conventional crane type payload handling configurations and operations have been successfully demonstrated and the range of motion, types of operations and the versatility greatly expanded. This enhanced set of 1st generation LSMS hardware is now serving as a laboratory test-bed allowing the continuing development of end effectors, operational techniques and remotely controlled and automated operations. This paper describes the most recent LSMS and test-bed development activities, that have focused on two major efforts. The first effort was to complete a preliminary design of the 2nd generation LSMS that has the capability for limited mobility and can reposition itself between lander decks, mobility chassis, and fixed base locations. A major portion of this effort involved conducting a study to establish the feasibility of, and define, the specifications for a lightweight cable-drive waist joint. The second effort was to continue expanding the versatility and autonomy of large planetary surface manipulators using the 1st generation LSMS as a test-bed. This has been accomplished by increasing manipulator capabilities and efficiencies through both design changes and tool and end effector development. A software development effort has expanded the operational capabilities of the LSMS test-bed to include; autonomous operations based on stored paths, use of a vision system for target acquisition and tracking, and remote command and control over a communications bridge.
NASA Technical Reports Server (NTRS)
Coyle, D. Barry; Stysley, Paul R.; Poulios, Demetrios; Fredrickson, Robert M.; Kay, Richard B.; Cory, Kenneth C.
2014-01-01
We report on a newly solid state laser transmitter, designed and packaged for Earth and planetary space-based remote sensing applications for high efficiency, low part count, high pulse energy scalability/stability, and long life. Finally, we have completed a long term operational test which surpassed 2 Billion pulses with no measured decay in pulse energy.
NASA Technical Reports Server (NTRS)
Taylor, Lawrence A.; Pieters, Carle; McKay, David S.
1998-01-01
Inferences about the igneous and impact evolution of planetary bodies are based upon spectral remote sensing of their surfaces. However, it is not the rocks of a body that are seen by the remote sensing, but rather the regolith, that may contain small pieces of rock but also many other phases as well. Indeed, recent flybys of objects even as small as asteroid Ida have shown that these objects are covered by a regolith. Thus, spectral properties cannot be directly converted into information about the igneous history of the object. It is imperative to fully understand the nature of the regolith, particularly its finer fraction termed "soil," to appreciate the possible effects of "space weathering" on the reflectance spectra. We have initiated a study of our nearest, regolith-bearing body, the Moon, as "ground truth" for further probes of planetary and asteroidal surfaces. the foundation for remote chemical and mineralogical analyses lies in the physics underlying optical absorption and the linking of spectral properties of materials measured in the laboratory to well understood mineral species and their mixtures. From this statement, it is obvious that there should be a thorough integration of the material science of lunar rocks and soils with the remote-sensing observations. That is, the lunar samples returned by the Apollo missions provide a direct means for evaluation of spectral characteristics of the Moon. However, this marriage of the remote-sensing and lunar sample communities has suffered from a prolonged unconsummated betrothal, nurtured by an obvious complacency by both parties. To make more direct and quantitative links between soil chemistry/mineralogy and spectral properties, we have initiated a program to (1) obtain accurate characterization of the petrography of lunar soils (in terms relevant to remote analyses), coupled with (2) measurement of precise reflectance spectra, with testing and use of appropriate analytical tools that identify and characterize individual mineral and glass components. It is the finest-sized fractions of the bulk lunar soil that dominate the observed spectral signatures.
Human vs autonomous control of planetary roving vehicles
NASA Technical Reports Server (NTRS)
Whitney, W. M.
1974-01-01
Supervisory or semiautonomous control has some compelling advantages over step-by-step human command and verification for the operation of roving vehicles on remote planetary surfaces. There are also disadvantages in relation to the complex system that must be mobilized and the chain of events that must be enacted to conduct a mission. Which of the two control methods is better on technical grounds may not be the deciding factor in its acceptance or rejection. Some of the issues that affect changes in spacecraft design and operation are summarized. To accelerate the movement toward more autonomous machines, it will be necessary to understand and to address the problems that such autonomy will create for other elements of the control system and for the control process.
The role of CMEs in the refilling of Mercury's exosphere
NASA Astrophysics Data System (ADS)
Lichtenegger, H. I. M.; Lammer, H.; Kallio, E.; Mura, A.; Wurz, P.; Millio, A.; Torka, K.; Livi, S.; Barabash, S.; Orsini, S.
A better understanding of the connection between the solar plasma environment and surface particle release processes from Mercury is needed for planned exospheric and remote surface geochemical studies by the Neutral Particle Analyzer Ion Spectrometer sensors ELENA, STROFIO, MIPA and PICAM of the SERENA instrument on board of ESA's BepiColombo planetary orbiter MPO. We study the exosphere refilling of various elements caused by sputtering during the exposure of CMEs from Mercury's surface by applying a quasi-neutral hybrid model and by using a survey of potential surface analogues, which are based on laboratory studied Lunar surface regolith and hypothetical analogue materials as derived form experimental studies. The formation and refilling of Mercury's exosphere during CME exposure is compared with usual solar wind cases by considering various parameters, such as regolith porosity, binding energies and elemental fractionation of the surface minerals. For studying the influence of these parameters we use the derived geochemical surface composition and the exposed surface are as an input for a 3-D exospheric model for studying whether the measurements of exospheric particles by the particle detectors is feasible along the MPO spacecraft orbit. Finally we find a denser exosphere environment distributed over a larger planetary area during collisions of CMEs or magnetic clouds with Mercury.
NASA Astrophysics Data System (ADS)
Brown, R. A.
2005-08-01
This paper is adapted from a presentation at the session of the European Geophysical Society meeting in 2002 honouring Joost Businger. It documents the interaction of the non-linear planetary boundary-layer (PBL) model (UW-PBL) and satellite remote sensing of marine surface winds from verification and calibration studies for the sensor model function to the current state of verification of the model by satellite data. It is also a personal history where Joost Businger had seminal input to this research at several critical junctures. The first scatterometer in space was on SeaSat in 1978, while currently in orbit there are the QuikSCAT and ERS-2 scatterometers and the WindSat radiometer. The volume and detail of data from the scatterometers during the past decade are unprecedented, though the value of these data depends on a careful interpretation of the PBL dynamics. The model functions (algorithms) that relate surface wind to sensor signal have evolved from straight empirical correlation with simple surface-layer 10-m winds to satellite sensor model functions for surface pressure fields. A surface stress model function is also available. The validation data for the satellite model functions depended crucially on the PBL solution. The non-linear solution for the flow of fluid in the boundary layer of a rotating coordinate system was completed in 1969. The implications for traditional ways of measuring and modelling the PBL were huge and continue to this day. Unfortunately, this solution replaced an elegant one by Ekman with a stability/finite perturbation equilibrium solution. Consequently, there has been great reluctance to accept this solution. The verification of model predictions has been obtained from the satellite data.
Support requirements for remote sensor systems on unmanned planetary missions, phase 3
NASA Technical Reports Server (NTRS)
1971-01-01
The results of a study to determine the support requirements for remote sensor systems on unmanned planetary flyby and orbiter missions are presented. Sensors and experiment groupings for selected missions are also established. Computer programs were developed to relate measurement requirements to support requirements. Support requirements were determined for sensors capable of performing required measurements at various points along the trajectories of specific selected missions.
Atmospheric Environments for Entry, Descent and Landing (EDL)
NASA Technical Reports Server (NTRS)
Justus, Carl G.; Braun, Robert D.
2007-01-01
Scientific measurements of atmospheric properties have been made by a wide variety of planetary flyby missions, orbiters, and landers. Although landers can make in-situ observations of near-surface atmospheric conditions (and can collect atmospheric data during their entry phase), the vast majority of data on planetary atmospheres has been collected by remote sensing techniques from flyby and orbiter spacecraft (and to some extent by Earth-based remote sensing). Many of these remote sensing observations (made over a variety of spectral ranges), consist of vertical profiles of atmospheric temperature as a function of atmospheric pressure level. While these measurements are of great interest to atmospheric scientists and modelers of planetary atmospheres, the primary interest for engineers designing entry descent and landing (EDL) systems is information about atmospheric density as a function of geometric altitude. Fortunately, as described in in this paper, it is possible to use a combination of the gas-law relation and the hydrostatic balance relation to convert temperature-versus-pressure, scientific observations into density-versus-altitude data for use in engineering applications. The following section provides a brief introduction to atmospheric thermodynamics, as well as constituents, and winds for EDL. It also gives methodology for using atmospheric information to do "back-of-the-envelope" calculations of various EDL aeroheating parameters, including peak deceleration rate ("g-load"), peak convective heat rate. and total heat load on EDL spacecraft thermal protection systems. Brief information is also provided about atmospheric variations and perturbations for EDL guidance and control issues, and atmospheric issues for EDL parachute systems. Subsequent sections give details of the atmospheric environments for five destinations for possible EDL missions: Venus. Earth. Mars, Saturn, and Titan. Specific atmospheric information is provided for these destinations, and example results are presented for the "back-of-the-envelope" calculations mentioned above.
The Phobos Atlas and Geo-portal: geodesy and cartography approach for planetary exploration
NASA Astrophysics Data System (ADS)
Karachevtseva, Irina; Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Zubarev, Anatoliy; Nadezhdina, Irina; Patraty, Vyacheslav; Konopikhin, Anatoliy; Garov, Andrey
New Phobos mapping. Methods of image processing and modern GIS technologies provide the opportunity for high quality planetary mapping. The new Phobos DTM and global orthomosaic have been used for developing a geodatabase (Karachevtseva et al., 2012) which provides data for various surface spatial analyses: statistics of crater density, as well as studies of gravity field, geomorphology, and photometry. As mapping is the best way to visualize results of research based on spatial context we created the Phobos atlas. The new Phobos atlas includes: control points network which were calculated during photogrammetry processing of SRC images (Zubarev et al., 2012) and fundamental body parameters as a reference basis for Phobos research as well as GIS analyses of surface objects and geomorphologic studies. According to the structure of the atlas we used various scales and projections based on different coordinate system, including three-axial ellipsoid which parameters (a=13.24 km, b=11.49 km, c=9.48 km) derived from new Phobos shape model (Nadezhdina and Zubarev, 2014). The new Phobos atlas includes about 30 thematic original maps that illustrate the surface of the small body based on Mars Express data (Oberst et al., 2008) and illustrates results of various studies of Phobos:, geomorphology parameters of craters (Basilevsky et al., 2014), morphometry studies (Koknanov et al., 2012), statistics of crater size-frequency distributions based on multi-fractal approach (Uchaev Dm. et al., 2012). Phobos Geo-portal. The spatial data products which used for preparing maps for the Phobos atlas are available at the planetary data storage with access via Geo-portal (http://cartsrv.mexlab.ru/geoportal/), based on modern spatial and web-based technologies (Karachevtseva et al., 2013). Now we are developing Geodesy and Cartography node which can integrate various types of information not only for Phobos data, but other planets and their satellites, and it can be used for geo-spatial support of future missions to celestial bodies. Our technological solutions are open-source, which makes it possible to increase the functionality of the system, for example, using 3D-modeling. Phobos Geo-portal provides access to results of calculation of the gravity field parameters (Uchaev Dm. et al., 2013); catalog of craters and calculations of surface roughness (Karachevtseva et al., 2012); surface compositional studies based on HRSC color-channel data (Patsyn et al., 2012). Acknowledgments: The Phobos study was supported by RBRF under grant for “Geodesy, cartography and research satellites Phobos and Deimos” (Helmholtz-Russia Joint Research Group), grant agreement No. 11-05-91323. References: Basilevsky A.T., Lorenz C.A., Shingareva T.V., Head J.W., Ramsley K.R., Zubarev A.E. Surface Geology and Geomorphology of Phobos, 2014, Elsevier, Planetary and Space Science, in press. Karachevtseva I. P., Shingareva K. B., Konopikhin A. A., Mukabenova B. V., Nadezhdina I. E., Zubarev A. E., 2012. GIS mapping of Phobos on the results of data processing of remote sensing satellite Mars Express, Modern problems of remote sensing of the Earth from Space. Space Research Institute, Moscow, 304-311 (in Russian). Karachevtseva I.P., Oberst J., Zubarev A.E., Nadezhdina I.E., Kokhanov A.A., Garov A. S. Uchaev D.V., Uchaev Dm.V., Malinnikov V.A., Klimkin N.D. 2014, The Phobos information system. Elsevier, Planetary and Space Science. http://dx.doi.org/10.1016/j.pss.2013.12.015 Kokhanov A.A., Basilevsky A.T., Karachevtseva I.P., Nadezhdina I.E., Zubarev A.E. Depth/Diameter Ratio and Inner Walls Steepness of Large Phobos Craters. The 44th Lunar and Planetary Science Conference, The Woodlands, Texas, USA, March 18-22, 2013. Abstracts [#2289]. Nadezhdina I.E., Zubarev A.E. Create reference coordinate network as a basis for studying the physical parameters of Phobos. 2014, Solar System Research, Moscow, Nauka, in press. Oberst J., Schwarz, G., Behnke, T., Hoffmann, H., Matz, K.-D., Flohrer, J., Hirsch, H., Roatsch, T., Scholten, F., Hauber, E., Brinkmann, B., Jaumann, R., Williams, D., Kirk, R., Duxbury, T., Leu, C., Neukum, G., 2008. The imaging performance of the SRC on Mars Express. Planet. Space Sci. 56, 473-491. Patsyn V.S, Malinnikov V.A., Grechishev A.V. Research of spectrometric characteristics of the surface of Phobos on the HRSC data from the Mars Express spacecraft // Modern problems of remote the earth sensing from space, Space Research Institute, Moscow, 2012, V. 9, No. 4, pp. 312-318. (in Russian). Uchaev, Dm.V., Malinnikov, V.A., Oberst, J., 2012. Multifractal approach to crater distribution modelling according to their diameters. Izv. Vyssh. Uchevn. Zaved., Geod. Aerofotos"emka 6, 3-8. (in Russian). Uchaev, Dm.V., Uchaev, D. V., Prutov, I., 2013. Multiscale representation of gravitational fields of small celestial bodies. Izv. Vyssh. Uchevn. Zaved., Geod. Aerofotos"emka 4, 3-8. (In Russian). Zubarev, A. E., Nadezhdina, I.E., Konopikhin, A. A., 2012. Problems of processing of remote sensing data for modeling shapes of small bodies in the Solar system, Modern problems of remote sensing of the Earth from Space. Space Research Institute, Moscow, 277-285 (in Russian).
An age-colour relationship for main-belt S-complex asteroids.
Jedicke, Robert; Nesvorný, David; Whiteley, Robert; Ivezić Z, Zeljko; Jurić, Mario
2004-05-20
Asteroid collisions in the main belt eject fragments that may eventually land on Earth as meteorites. It has therefore been a long-standing puzzle in planetary science that laboratory spectra of the most populous class of meteorite (ordinary chondrites, OC) do not match the remotely observed surface spectra of their presumed (S-complex) asteroidal parent bodies. One of the proposed solutions to this perplexing observation is that 'space weathering' modifies the exposed planetary surfaces over time through a variety of processes (such as solar and cosmic ray bombardment, micro-meteorite bombardment, and so on). Space weathering has been observed on lunar samples, in Earth-based laboratory experiments, and there is good evidence from spacecraft data that the process is active on asteroid surfaces. Here, we present a measurement of the rate of space weathering on S-complex main-belt asteroids using a relationship between the ages of asteroid families and their colours. Extrapolating this age-colour relationship to very young ages yields a good match to the colour of freshly cut OC meteorite samples, lending strong support to a genetic relationship between them and the S-complex asteroids.
Desert Research and Technology Studies (RATS) 2007 Field Campaign Objectives and Results
NASA Technical Reports Server (NTRS)
Kosmo, Joseph; Romig, Barbara
2008-01-01
Desert "RATS" (Research and Technology Studies) is a combined, multi-discipline group of inter-NASA center scientists and engineers, net-working and collaborating with representatives of industry and academia, for the purpose of conducting planetary surface exploration-focused remote field exercises. These integrated testing exercises conducted under representative analog Lunar and Mars surface terrain conditions, provide NASA the capability to validate experimental prototype hardware and software systems as well as to evaluate and develop mission operational techniques in order to identify and establish technical requirements and identify potential technology "gaps" applicable for future planetary human exploration. The 2007 D-RATS field campaign test activities were initiated based on the major themes and objectives of a notional 5-year plan developed for conducting relative analog test activities in support of the engineering evaluation and assessment of various system architectural requirements, conceptual prototype support equipment and selected technologies necessary for the establishment of a lunar outpost. Specifically, the major objectives included measuring task efficiency during robot, human, and human-robot interactive tasks associated with lunar outpost site surveying and reconnaissance activities and deployment of a representative solar panel power and distribution system. In addition, technology demonstrations were conducted with a new Lithium-ion battery and autonomous software to coordinate multiple robot activities. Secondary objectives were evaluating airlock concept mockups and prototype removable space suit over-garment elements for dust mitigation, and upgrades to the prototype extravehicular activities (EVA) communication and information system. Dry run test activities, prior to testing at a designated remote field site location, were initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. Both the local JSC and remote field test sites have terrain conditions that are representative and characteristic of both the Moon and Mars, such as strewn rock and volcanic ash fields, craters, rolling plains, hills, gullies, slopes, and outcrops. The D-RATS 2007 field campaign, representing the completion of its tenth year of analog testing, was conducted at the large Cinder Lake volcanic ash bed area adjacent to Flagstaff, Arizona.
Review of exchange processes on Ganymede in view of its planetary protection categorization.
Grasset, O; Bunce, E J; Coustenis, A; Dougherty, M K; Erd, C; Hussmann, H; Jaumann, R; Prieto-Ballesteros, O
2013-10-01
In this paper, we provide a detailed review of Ganymede's characteristics that are germane to any consideration of its planetary protection requirements. Ganymede is the largest moon in our solar system and is the subject of one of the main science objectives of the JUICE mission to the jovian system. We explore the probability of the occurrence of potentially habitable zones within Ganymede at present, including those both within the deep liquid ocean and those in shallow liquid reservoirs. We consider the possible exchange processes between the surface and any putative habitats to set some constraints on the planetary protection approach for this moon. As a conclusion, the "remote" versus "significant" chance of contamination will be discussed, according to our current understanding of this giant icy moon. Based on the different estimates we investigate here, it appears extremely unlikely that material would be exchanged downward through the upper icy layer of Ganymede and, thus, bring material into the ocean over timescales consistent with the survival of microorganisms.
Remote sensing of the magnetic moment of uranus: predictions for voyager.
Hill, T W; Dessler, A J
1985-03-22
Power is supplied to a planet's magnetosphere from the kinetic energy of planetary spin and the energy flux of the impinging solar wind. A fraction of this power is available to drive numerous observable phenomena, such as polar auroras and planetary radio emissions. In this report our present understanding of these power transfer mechanisms is applied to Uranus to make specific predictions of the detectability of radio and auroral emissions by the planetary radio astronomy (PRA) and ultraviolet spectrometer (UVS) instruments aboard the Voyager spacecraft before its encounter with Uranus at the end of January 1986. The power available for these two phenomena is (among other factors) a function of the magnetic moment of Uranus. The date of earliest detectability also depends on whether the predominant power source for the magnetosphere is planetary spin or solar wind. The magnetic moment of Uranus is derived for each power source as a function of the date of first detection of radio emissions by the PRA instrument or auroral emissions by the UVS instrument. If we accept the interpretation of ultraviolet observations now available from the Earth-orbiting International Ultraviolet Explorer satellite, Uranus has a surface magnetic field of at least 0.6 gauss, and more probably several gauss, making it the largest or second-largest planetary magnetic field in the solar system.
Interactive Mapping on Virtual Terrain Models Using RIMS (Real-time, Interactive Mapping System)
NASA Astrophysics Data System (ADS)
Bernardin, T.; Cowgill, E.; Gold, R. D.; Hamann, B.; Kreylos, O.; Schmitt, A.
2006-12-01
Recent and ongoing space missions are yielding new multispectral data for the surfaces of Earth and other planets at unprecedented rates and spatial resolution. With their high spatial resolution and widespread coverage, these data have opened new frontiers in observational Earth and planetary science. But they have also precipitated an acute need for new analytical techniques. To address this problem, we have developed RIMS, a Real-time, Interactive Mapping System that allows scientists to visualize, interact with, and map directly on, three-dimensional (3D) displays of georeferenced texture data, such as multispectral satellite imagery, that is draped over a surface representation derived from digital elevation data. The system uses a quadtree-based multiresolution method to render in real time high-resolution (3 to 10 m/pixel) data over large (800 km by 800 km) spatial areas. It allows users to map inside this interactive environment by generating georeferenced and attributed vector-based elements that are draped over the topography. We explain the technique using 15 m ASTER stereo-data from Iraq, P.R. China, and other remote locations because our particular motivation is to develop a technique that permits the detailed (10 m to 1000 m) neotectonic mapping over large (100 km to 1000 km long) active fault systems that is needed to better understand active continental deformation on Earth. RIMS also includes a virtual geologic compass that allows users to fit a plane to geologic surfaces and thereby measure their orientations. It also includes tools that allow 3D surface reconstruction of deformed and partially eroded surfaces such as folded bedding planes. These georeferenced map and measurement data can be exported to, or imported from, a standard GIS (geographic information systems) file format. Our interactive, 3D visualization and analysis system is designed for those who study planetary surfaces, including neotectonic geologists, geomorphologists, marine geophysicists, and planetary scientists. The strength of our system is that it combines interactive rendering with interactive mapping and measurement of features observed in topographic and texture data. Comparison with commercially available software indicates that our system improves mapping accuracy and efficiency. More importantly, it enables Earth scientists to rapidly achieve a deeper level of understanding of remotely sensed data, as observations can be made that are not possible with existing systems.
NASA Technical Reports Server (NTRS)
Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.
2015-01-01
Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..
Illumination invariant feature point matching for high-resolution planetary remote sensing images
NASA Astrophysics Data System (ADS)
Wu, Bo; Zeng, Hai; Hu, Han
2018-03-01
Despite its success with regular close-range and remote-sensing images, the scale-invariant feature transform (SIFT) algorithm is essentially not invariant to illumination differences due to the use of gradients for feature description. In planetary remote sensing imagery, which normally lacks sufficient textural information, salient regions are generally triggered by the shadow effects of keypoints, reducing the matching performance of classical SIFT. Based on the observation of dual peaks in a histogram of the dominant orientations of SIFT keypoints, this paper proposes an illumination-invariant SIFT matching method for high-resolution planetary remote sensing images. First, as the peaks in the orientation histogram are generally aligned closely with the sub-solar azimuth angle at the time of image collection, an adaptive suppression Gaussian function is tuned to level the histogram and thereby alleviate the differences in illumination caused by a changing solar angle. Next, the suppression function is incorporated into the original SIFT procedure for obtaining feature descriptors, which are used for initial image matching. Finally, as the distribution of feature descriptors changes after anisotropic suppression, and the ratio check used for matching and outlier removal in classical SIFT may produce inferior results, this paper proposes an improved matching procedure based on cross-checking and template image matching. The experimental results for several high-resolution remote sensing images from both the Moon and Mars, with illumination differences of 20°-180°, reveal that the proposed method retrieves about 40%-60% more matches than the classical SIFT method. The proposed method is of significance for matching or co-registration of planetary remote sensing images for their synergistic use in various applications. It also has the potential to be useful for flyby and rover images by integrating with the affine invariant feature detectors.
Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc.
NASA Astrophysics Data System (ADS)
Blecka, Maria I.
2010-05-01
The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace aerosols like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the aerosols and dust in planetary atmospheres. Possibility of detection and identifications of biological aerosols with a passive InfraRed spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of aerosols, pollens and bacterias were used in modeling.
Interdisciplinary research produces results in understanding planetary dunes
Titus, Timothy N.; Hayward, Rosalyn K.; Dinwiddie, Cynthia L.
2012-01-01
Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes; Flagstaff, Arizona, 12–16 June 2012. This workshop, the third in a biennial series, was convened as a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research. The small-group setting facilitated intensive discussions of many problems associated with aeolian processes on Earth, Mars, Venus, Titan, Triton, and Pluto. The workshop produced a list of key scientifc questions about planetary dune felds.
Nomad rover field experiment, Atacama Desert, Chile 1. Science results overview
NASA Astrophysics Data System (ADS)
Cabrol, N. A.; Thomas, G.; Witzke, B.
2001-04-01
Nomad was deployed for a 45 day traverse in the Atacama Desert, Chile, during the summer of 1997. During this traverse, 1 week was devoted to science experiments. The goal of the science experiments was to test different planetary surface exploration strategies that included (1) a Mars mission simulation, (2) a science on the fly experiment, where the rover was kept moving 75% of the operation time. (The goal of this operation was to determine whether or not successful interpretation of the environment is related to the time spent on a target. The role of mobility in helping the interpretation was also assessed.) (3) a meteorite search using visual and instrumental methods to remotely identify meteorites in extreme environments, and (4) a time-delay experiment with and without using the panospheric camera. The results were as follow: the remote science team positively identified the main characteristics of the test site geological environment. The science on the fly experiment showed that the selection of appropriate targets might be even more critical than the time spent on a study area to reconstruct the history of a site. During the same operation the science team members identified and sampled a rock from a Jurassic outcrop that they proposed to be a fossil. The presence of paleolife indicators in this rock was confirmed later by laboratory analysis. Both visual and instrumental modes demonstrated the feasibility, in at least some conditions, of carrying out a field search for meteorites by using remote-controlled vehicles. Finally, metrics collected from the observation of the science team operations, and the use team members made of mission data, provided critical information on what operation sequences could be automated on board rovers in future planetary surface explorations.
Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters
NASA Technical Reports Server (NTRS)
Eppler, Dean B.
2010-01-01
The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.
Exploring Ocean-World Habitability within the Planned Europa Clipper Mission
NASA Astrophysics Data System (ADS)
Pappalardo, R. T.; Senske, D.; Korth, H.; Blaney, D. L.; Blankenship, D. D.; Collins, G. C.; Christensen, P. R.; Gudipati, M. S.; Kempf, S.; Lunine, J. I.; Paty, C. S.; Raymond, C. A.; Rathbun, J.; Retherford, K. D.; Roberts, J. H.; Schmidt, B. E.; Soderblom, J. M.; Turtle, E. P.; Waite, J. H., Jr.; Westlake, J. H.
2017-12-01
A key driver of planetary exploration is to understand the processes that lead to potential habitability across the solar system, including within oceans hosted by some icy satellites of the outer planets. In this context, it is the overarching science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three mission objectives: (1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; (2) Understand the habitability of Europa's ocean through composition and chemistry; and (3) Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. Folded into these objectives is the desire to search for and characterize any current activity, notably plumes and thermal anomalies. A suite of nine remote-sensing and in-situ observing instruments is being developed that synergistically addresses these objectives. The remote-sensing instruments are the Europa UltraViolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS), the Mapping Imaging Spectrometer for Europa (MISE), the Europa THErMal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The instruments providing in-situ observations are the Interior Characterization of Europa using Magnetometry (ICEMAG), the Plasma Instrument for Magnetic Sounding (PIMS), the MAss Spectrometer for Planetary EXploration (MASPEX), and the SUrface Dust Analyzer (SUDA). In addition, gravity science can be achieved via the spacecraft's telecommunication system, and the planned radiation monitoring system could provide information on Europa's energetic particle environment. Working together, the mission's robust investigation suite can be used to test hypotheses and enable discoveries relevant to the interior, composition, and geology of Europa, thereby addressing the potential habitability of this intriguing ocean world.
NASA Astrophysics Data System (ADS)
Byrnes, J. M.; Finnegan, D. C.; Nicoll, K.; Anderson, S. W.
2007-05-01
Remote sensing datasets enable planetary volcanologists to extract information regarding eruption processes. Long-lived effusive eruptions at sites such as Kilauea Volcano (HI) provide opportunities to collect rich observational data sets, including detailed measurements of topography and extrusion rates, that allow comparisons between lava flow surface morphologies and emplacement conditions for use in interpreting similar morphological features associated with planetary lava flows. On Mars, the emplacement of basaltic lava flows is a volumetrically and spatially important process, creating both large-scale and small-scale surface morphologies. On Earth, low effusion rate eruptions on relatively horizontal slopes tend to create inflated lava flows that display hummocky topography. To better understand the processes involved in creating observed surface characteristics, we repeatedly measured the surface topography of an actively flowing and inflating basaltic unit within the Pu'u O'o flow field over a 5-day period. We used a ground-based laser-scanner (LiDAR) system that provided vertical and horizontal accuracies of 4 mm. Comparing DEMs from repeated laser scans yielded the magnitudes and styles of constructional processes, allowing us to quantify the relationship between pre- and post-emplacement surface topography. Our study site (roughly 200 m x 200 m) experienced about 5 m of vertical inflation over a 3 day period and created a new hummocky surface containing several tumuli. The temporal and spatial patterns of inflation were complex and showed no obvious relationship with underlying topography. High-precision morphometric measurements acquired using ground-based LiDAR affords us the opportunity to capture the essential boundary conditions necessary for evaluating and comparing high-resolution planetary data sets, such as those acquired by the MOC, HRSC, and HiRISE instruments.
Highly Sensitive Tunable Diode Laser Spectrometers for In Situ Planetary Exploration
NASA Technical Reports Server (NTRS)
Vasudev, Ram; Mansour, Kamjou; Webster, Christopher R.
2013-01-01
This paper describes highly sensitive tunable diode laser spectrometers suitable for in situ planetary exploration. The technology developed at JPL is based on wavelength modulated cavity enhanced absorption spectroscopy. It is capable of sensitively detecting chemical signatures of life through the abundance of biogenic molecules and their isotopic composition, and chemicals such as water necessary for habitats of life. The technology would be suitable for searching for biomarkers, extinct life, potential habitats of extant life, and signatures of ancient climates on Mars; and for detecting biomarkers, prebiotic chemicals and habitats of life in the outer Solar System. It would be useful for prospecting for water on the Moon and asteroids, and characterizing its isotopic composition. Deployment on the Moon could provide ground truth to the recent remote measurements and help to uncover precious records of the early bombardment history of the inner Solar System buried at the shadowed poles, and elucidate the mechanism for the generation of near-surface water in the illuminated regions. The technology would also be useful for detecting other volatile molecules in planetary atmospheres and subsurface reservoirs, isotopic characterization of planetary materials, and searching for signatures of extinct life preserved in solid matrices.
Lunar & Planetary Science, 11.
ERIC Educational Resources Information Center
Geotimes, 1980
1980-01-01
Presents a summary of each paper presented at the Lunar and Planetary Science Conference at the Johnson Space Center, Houston in March 1980. Topics relate to Venus, Jupiter, Mars, asteroids, meteorites, regoliths, achondrites, remote sensing, and cratering studies. (SA)
NASA Astrophysics Data System (ADS)
Ozorovich, Yuri; Linkin, Vacheslav; Kosov, Alexandr; Fournier-Sicre, Alain; Klimov, Stanislav; Novikov, Denis; Ivanov, Anton; Skulachev, Dmitriy; Menshenin, Yaroslav
2016-04-01
This paper presents a new conceptual and methodological approach for geophysical survey of the planetary geoelectrical markers and oreols of the subsurface liquid ocean on the surface ice moons on the base "conceptual design phase" of the future space missions on the ice moons. At the design stage of such projects is considered the use of various space instruments and tools for the full the complex geophysical studies of the manifestations and planetary processes of the subsurface liquid ocean on the surface ice moons. The existence of various forms of the cryolithozone on terrestrial planets and their moons: advanced Martian permafrost zone in the form of existing of the frozen polar caps, subsurface frozen horizons, geological markers and oreols of the martian ancient (relict) ocean, subsurface oceans of Jupiter's and Saturn's moons-Europe and Enceladus, with the advanced form of permafrost freezes planetary caps, it allows to develop a common methodological basis and operational geophysical instruments (tools) for the future space program and planning space missions on these unique objects of the solar system, specialized for specific scientific problems of planetary missions. Geophysical practices and methodological principles, used in 1985-2015 by aurthors [ 1-5 ], respectively, as an example of the comprehensive geophysical experiment MARSES to study of the Martian permafrost zone and the martian ancient (relict) ocean, creating the preconditions for complex experimental setting and geo-physical monitoring of operational satellites of Jupiter and Saturn- Europe and Enceladus. This range of different planetary (like) planets with its geological history and prehistory of the common planetology formation processes of the planets formation and to define the role of a liquid ocean under the ice as a climate indicator of such planets, which is extremely important for the future construction of the geological and climatic history of the Earth. Main publications: [1]https://www.researchgate.net/publication/282151921_JUPITER%27S_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKER_AND_OREOLS_UNDER_ICE_SUBSUEFACE_OCEAN_ON_THE_SURFACE_OF_THE_JUPITER%27S_MOON_EUROPA?ev=prf_pub [2]https://www.researchgate.net/publication/281270655_YUPITERS_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKERS_AND_OREOPLS_OF_THE_LIQUID_OCEAN_UNDER_THE_ICE_ON_THE_SURFACE_OF_THE_YUPITERS_MOON_EUROPE [3] https://www.researchgate.net/publication/276005128_Science-technology_aspects_and_opportunities_of_em_sounding_frozen_%28_permafrost%29_soil [4]https://www.researchgate.net/publication/275638508_Cryolitozone_of_Mars_-_as_the_climatic_indicator_of_the_Martian_relict_ocean [5]https://www.researchgate.net/publication/275266762_Microwave_remote_sensing_of_Martian_cryolitozone
NASA Technical Reports Server (NTRS)
Witbeck, N. E. (Editor)
1984-01-01
A compilation is given of selected bibliographic data specifically relating to recent publications submitted by principle investigators and their associates, supported through NASA's Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program. Topics include the solar system, asteroids, volcanoes, stratigraphy, remote sensing, and planetary craters.
NASA Technical Reports Server (NTRS)
Jurgens, R. F.; Clark, P. E.; Goldstein, R. M.; Ostro, S. J.; Slade, M. A.; Thompson, T. W.; Saunders, R. S.
1986-01-01
Information is provided about physical nature planetary surfaces and their topography as well as dynamical properties such as orbits and spin states using ground based radar as a remote sensing tool. Accessible targets are the terrestrial planets: the Earth's Moon, Mercury, Venus and Mars, the outer planets rings and major moons, and many transient objects such as asteroids and comets. Data acquisition utilizes the unique facilities of the Goldstone Deep Space Network, occasionally the Arecibo radar, and proposed use of the VLA (very large array).
Space Telerobotics and Rover Research at JPL
NASA Technical Reports Server (NTRS)
Weisbin, C.; Hayati, S.; Rodriguez, G.
1995-01-01
The goal of our program is to develop, integrate and demonstrate the science and technology of remote telerobotics leading to increases in operational capability, safety, cost effectiveness and probability of success of NASA missions. To that end, the program fosters the development of innovative system concepts for on-orbit servicing and planetary surface missions which use telerobotic systems as an important central component. These concepts are carried forward into develoments which are used to evaluate and demonstrate technology in realistic flight and ground experiments.
Director's Discretionary Fund Report for Fiscal Year 1996
NASA Technical Reports Server (NTRS)
1997-01-01
Topics covered include: Waterproofing the Space Shuttle tiles, thermal protection system for Reusable Launch Vehicles, computer modeling of the thermal conductivity of cometary ice, effects of ozone depletion and ultraviolet radiation on plants, a novel telemetric biosensor to monitor blood pH on-line, ion mobility in polymer electrolytes for lithium-polymer batteries, a microwave-pumped far infrared photoconductor, and a new method for measuring cloud liquid vapor using near infrared remote sensing. Also included: laser-spectroscopic instrument for turbulence measurement, remote sensing of aircraft contrails using a field portable imaging interferometer, development of a silicon-micromachined gas chromatography system for determination of planetary surface composition, planar Doppler velocimetry, chaos in interstellar chemistry, and a limited pressure cycle engine for high-speed output.
Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-01-01
The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc. Separate abstracts have been prepared for articles from this report.
NASA Astrophysics Data System (ADS)
Harris, W. M.; Scope Team
2003-04-01
The Solar Connections Observatory for Planetary Environments (SCOPE) is a remote sensing facility designed to probe the nature of the relationship of planetary bodies and the local interstellar medium to the solar wind and UV-EUV radiation field. In particular, the SCOPE program seeks to comparatively monitor the near space environments and thermosphere/ionospheres of planets, planetesimals, and satellites under different magnetospheric configurations and as a function of heliocentric distance and solar activity. In addition, SCOPE will include the Earth as a science target, providing new remote observations of auroral and upper atmospheric phenomena and utilizing it as baseline for direct comparison with other planetary bodies. The observatory will be scheduled into discrete campaigns interleaving Target-Terrestrial observations to provide a comparative annual activity map over the course of a solar half cycle. The SCOPE science instrument consists of binocular UV (115-310 nm) and EUV (500-120 nm) telescopes and a side channel sky-mapping interferometer on a spacecraft stationed in a remote orbit. The telescope instruments provide a mix of capabilities including high spatial resolution narrow band imaging, moderate resolution broadband spectro-imaging, and high-resolution line spectroscopy. The side channel instrument will be optimized for line profile measurements of diagnostic terrestrial upper atmospheric, comet, interplanetary, and interstellar extended emissions.
NASA planetary data: applying planetary satellite remote sensing data in the classroom
NASA Technical Reports Server (NTRS)
Liggett, P.; Dobinson, E.; Sword, B.; Hughes, D.; Martin, M.; Martin, D.
2002-01-01
NASA supports several data archiving and distribution mechanisms that provide a means whereby scientists can participate in education and outreach through the use of technology for data and information dissemination. The Planetary Data System (PDS) is sponsored by NASA's Office of Space Science. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. In addition, the NASA Regional Planetary Image Facility (RPIF), an international system of planetary image libraries, maintains photographic and digital data as well as mission documentation and cartographic data.
The Canadian space agency planetary analogue materials suite
NASA Astrophysics Data System (ADS)
Cloutis, Edward A.; Mann, Paul; Izawa, Matthew R. M.; Applin, Daniel M.; Samson, Claire; Kruzelecky, Roman; Glotch, Timothy D.; Mertzman, Stanley A.; Mertzman, Karen R.; Haltigin, Timothy W.; Fry, Christopher
2015-12-01
The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25 μm. Thermal infrared emission spectra were collected from 5 to 50 μm. Raman spectra with 532 nm excitation, and laser-induced fluorescence spectra with 405 nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples. The CSA intends to make available sample powders (<45 μm and 45-1000 μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community. Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the definition, development and testing of new analytical instruments for use in planetary missions, as well as possible calibration and ground-truthing of remote sensing data sets. These materials may also be useful as reference materials for cross-calibration between different instruments and laboratories. Comparison of the analytical data for selected samples is useful for highlighting the relative strengths, weaknesses and synergies of different analytical techniques.
SPEX: a multi-angle Spectropolarimeter for Planetary EXploration
NASA Astrophysics Data System (ADS)
Smit, J. M.; Hasekamp, O. P.; Rietjens, J.; Stam, D.; Snik, F.; Van Harten, G.; Verlaan, A.; Voors, R.; Moon, S.; Wielinga, K.
2011-12-01
We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass multi-viewing angle spectropolarimeter designed to operate from an orbiting satellite platform. Its purpose is to simultaneously measure, with high accuracy, the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere or reflected by a planetary surface. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This results in a modulation of the radiance spectrum in both amplitude and phase by the degree and angle of the linear polarization spectrum, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an a-thermal multiple-order retarder, and a polarizing beam splitter. Such a configuration is implemented for a range of viewin directions, which allows sampling the full scattering phase function of each ground pixel under investigation, while orbiting the planetary body. The present design of SPEX is tuned to a Mars mission, as a payload on a satellite in a low orbit. However, the concept is perfectly applicable for Earth remote sensing from an orbiting platform like ISS or a dedicated mission, for which we are developing a breadboard. A similar concepts is under study for a mission to the Jovian system including the Galilean Moons. We will show first test results obtained with recently developed prototype of the SPEX instrument, demonstrating excellent performance and overall behavior as compared with design parameters and SPEX instrument simulator. In addition, we present results of multi-angle spectropolarimetric measurements of the Earth's atmosphere from the ground in conjunction with one of AERONET's sun photometers.
NASA Astrophysics Data System (ADS)
Schmidt, George R.; Landis, Geoffrey A.; Oleson, Steven R.
2012-11-01
This paper presents an exploration strategy for human missions beyond Low Earth Orbit (LEO) and the Moon that combines the best features of human and robotic spaceflight. This "Human Exploration using Real-time Robotic Operations" (HERRO) strategy refrains from placing humans on the surfaces of the Moon and Mars in the near-term. Rather, it focuses on sending piloted spacecraft and crews into orbit around Mars and other exploration targets of interest, and conducting astronaut exploration of the surfaces using telerobots and remotely-controlled systems. By eliminating the significant communications delay or "latency" with Earth due to the speed of light limit, teleoperation provides scientists real-time control of rovers and other sophisticated instruments. This in effect gives them a "virtual presence" on planetary surfaces, and thus expands the scientific return at these destinations. HERRO mitigates several of the major issues that have hindered the progress of human spaceflight beyond Low Earth Orbit (LEO) by: (1) broadening the range of destinations for near-term human missions; (2) reducing cost and risk through less complexity and fewer man-rated elements; (3) offering benefits of human-equivalent in-situ cognition, decision-making and field-work on planetary bodies; (4) providing a simpler approach to returning samples from Mars and planetary surfaces; and (5) facilitating opportunities for international collaboration through contribution of diverse robotic systems. HERRO provides a firm justification for human spaceflight—one that expands the near-term capabilities of scientific exploration while providing the space transportation infrastructure needed for eventual human landings in the future.
Lunar and Planetary Science XXXV: Outer Solar System
NASA Technical Reports Server (NTRS)
2004-01-01
The session 'Outer Solar System" inlcuded:Monte Carlo Modeling of [O I] 630 nm Auroral Emission on Io; The Detection of Iron Sulfide on Io; Io and Loki in 2003 as Seen from the Infrared Telescope Facility Using Mutual Satellite and Jupiter Occultations; Mapping of the Zamama-Thor Region of Io; First Solar System Results of the Spitzer Space Telescope; Mapping the Surface of Pluto with the Hubble Space Telescope; Experimental Study on Fischer-Tropsch Catalysis in the Circum-Saturnian Subnebula; New High-Pressure Phases of Ammonia Dihydrate; Gas Hydrate Stability at Low Temperatures and High Pressures with Applications to Mars and Europa; Laboratory UV Photolysis of Planetary Ice Analogs Containing H2O + CO2 (1:1); The OH Stretch Infrared Band of Water Ice and Its Temperature and Radiation Dependence; Band Position Variations in Reflectance Spectra of the Jovian Satellite Ganymede; Comparison of Porosity and Radar Models for Europa s Near Surface; Combined Effects of Diurnal and Nonsynchronous Surface Stresses on Europa; Europa s Northern Trailing Hemisphere: Lineament Stratigraphic Framework; Europa at the Highest Resolution: Implications for Surface Processes and Landing Sites; Comparison of Methods to Determine Furrow System Centers on Ganymede and Callisto; Resurfacing of Ganymede by Liquid-Water Volcanism; Layered Ejecta Craters on Ganymede: Comparisons with Martian Analogs; Evaluation of the Possible Presence of CO2-Clathrates in Europa s Icy Shell or Seafloor; Geosciences at Jupiter s Icy Moons: The Midas Touch; Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor); and In Situ Surveying of Saturn s Rings.
Reports of planetary geology program, 1983
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler)
1984-01-01
Several areas of the Planetary Geology Program were addressed including outer solar system satellites, asteroids, comets, Venus, cratering processes and landform development, volcanic processes, aeolian processes, fluvial processes, periglacial and permafrost processes, geomorphology, remote sensing, tectonics and stratigraphy, and mapping.
Interdisciplinary investigations of comparative planetology
NASA Technical Reports Server (NTRS)
Sagan, C.
1978-01-01
Research supported wholly or in part by NASA's Planetary Programs Office is summarized. Topics covered include: the evaporation of ice in planetary atmospheres: ice-covered rivers on Mars; reducing greenhouses and the temperature history of Earth and Mars; particle motion on Mars inferred from the Viking Lander cameras; the nature and visibility of crater-associated streaks on Mars; the equilibrium figure of Phobos and other small bodies; striations on Phobos; radiation pressure and Poynting-Robertson drag for small spherical particles; direct imaging of extra-solar planets with stationary occultations; the relation between planetology and conventional astrophysics; remote spectral studies and in situ X-ray fluorescence analysis of the Martian surface; small channels on Mars; junction angles of Martian channels; constraints on Aeolian phenomena on Mars; the geology of Mars; and the flow of erosional debris on the Martian terrain.
NASA Astrophysics Data System (ADS)
Weber, S. A.; Engel-Cox, J. A.; Hoff, R. M.; Prados, A.; Zhang, H.
2008-12-01
Integrating satellite- and ground-based aerosol optical depth (AOD) observations with surface total fine particulate (PM2.5) and sulfate concentrations allows for a more comprehensive understanding of local- and urban-scale air quality. This study evaluates the utility of integrated databases being developed for NOAA and EPA through the 3D-AQS project by examining the relationship between remotely-sensed AOD and PM2.5 concentrations for each platform for the summer of 2004 and the entire year of 2005. We compare results for the Baltimore, MD/Washington, DC metropolitan air shed, incorporating AOD products from the Terra and GOES-12 satellites, AERONET sunphotometer, and ground-based lidar, and PM2.5 concentrations from five surface monitoring sites. The satellite-derived products include AOD from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR), as well as the GOES Aerosol/Smoke Product (GASP). The vertical profile of lidar backscatter is used to retrieve the planetary boundary layer (PBL) height in an attempt to capture only that fraction of the AOD arising from near surface aerosols. Adjusting the AOD data using platform- and season-specific ratios, calculated using the parameters of the regression equations, for two case studies resulted in a more accurate representation of surface PM2.5 concentrations when compared to a constant ratio that is currently being used in the NOAA IDEA product. This work demonstrates that quantitative relationships between remotely-sensed and in-situ aerosol observations in an integrated database can be computed and applied to improve the use of remotely-sensed observations for estimating surface concentrations.
Compositional Mapping of Planetary moons by Mass Spectrometry of Dust Ejecta
NASA Astrophysics Data System (ADS)
Postberg, F.; Gruen, E.; Horanyi, M.; Kempf, S.; Krüger, H.; Schmidt, J.; Spahn, F.; Srama, R.; Sternovsky, Z.; Trieloff, M.
2011-12-01
Classical methods to analyze the surface composition of planetary objects from a space craft are IR and gamma ray spectroscopy and neutron backscatter measurements. We present a complementary method to analyze rocky or icy dust particles as samples of planetary objects from where they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets - they are enshrouded in clouds of ballistic dust particles. In situ mass spectroscopic analysis of these grains impacting on to a detector on a spacecraft reveals their composition as characteristic samples of planetary surfaces at flybys or from an orbiter. The well established approach of dust detection by impact ionization has recently shown its capabilities by analyzing ice particles expelled by subsurface salt water on Saturn's moon Enceladus. Applying the method on micro-meteoroid ejecta of less active moons would allow for the qualitative and quantitative analysis of a huge number of samples from various surface areas, thus combining the advantages of remote sensing and a lander. Utilizing the heritage of the dust detectors onboard Ghiotto, Ulysses, Galileo, and Cassini a variety of improved, low-mass lab-models have been build and tested. They allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since achievable detection rates are on the order of thousand per orbit, an orbiter can create a compositional map of samples taken from a greater part of the surface. Flybies allow an investigation of certain surface areas of interest. Dust impact velocities are in general sufficiently high for impact ionization at orbiters about planetary objects with a radius of at least 1000km and with only a thin or no atmosphere. Thus, this method is ideal on a spacecraft orbiting Earth's Moon or Jupiter's Galilean satellites. The approach has a ppm-level sensitivity to salts and many rock forming materials as well as water and organic compounds. It provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution. Regions which were subject to endogenic or exogenic alteration (resurfacing, radiation, old/new regions) could be distinguished and investigated. In particular exchange processes with subsurface ocean on the Galileian moons could be determined with high quantitative precision.
Remote Pulsed Laser Raman Spectroscopy System for Detecting Qater, Ice, and Hydrous Minerals
NASA Technical Reports Server (NTRS)
Garcia, Christopher S.; Abedin, M. Nuraul; Sharma, Shiv K.; Misra, Anupam K.; Ismail, Syed; Singh, Upendra; Refaat, Tamer F.; Elsayed-Ali, Hani; Sandford, Steve
2006-01-01
For exploration of planetary surfaces, detection of water and ice is of great interest in supporting existence of life on other planets. Therefore, a remote Raman spectroscopy system was demonstrated at NASA Langley Research Center in collaboration with University of Hawaii for detecting ice-water and hydrous minerals on planetary surfaces. In this study, a 532 nm pulsed laser is utilized as an excitation source to allow detection in high background radiation conditions. The Raman scattered signal is collected by a 4-inch telescope positioned in front of a spectrograph. The Raman spectrum is analyzed using a spectrograph equipped with a holographic super notch filter to eliminate Rayleigh scattering, and a holographic transmission grating that simultaneously disperses two spectral tracks onto the detector for higher spectral range. To view the spectrum, the spectrograph is coupled to an intensified charge-coupled device (ICCD), which allows detection of very weak Stokes line. The ICCD is operated in gated mode to further suppress effects from background radiation and long-lived fluorescence. The sample is placed at 5.6 m from the telescope, and the laser is mounted on the telescope in a coaxial geometry to achieve maximum performance. The system was calibrated using the spectral lines of a Neon lamp source. To evaluate the system, Raman standard samples such as calcite, naphthalene, acetone, and isopropyl alcohol were analyzed. The Raman evaluation technique was used to analyze water, ice and other hydrous minerals and results from these species are presented.
Exoplanets: A New Era of Comparative Planetology
NASA Astrophysics Data System (ADS)
Meadows, Victoria
2014-11-01
We now know of over 1700 planets orbiting other stars, and several thousand additional planetary candidates. These discoveries have the potential to revolutionize our understanding of planet formation and evolution, while providing targets for the search for life beyond the Solar System. Exoplanets display a larger diversity of planetary types than those seen in our Solar System - including low-density, low-mass objects. They are also found in planetary system architectures very different from our own, even for stars similar to our Sun. Over 20 potentially habitable planets are now known, and half of the M dwarfs stars in our Galaxy may harbor a habitable planet. M dwarfs are plentiful, and they are therefore the most likely habitable planet hosts, but their planets will have radiative and gravitational interactions with their star and sibling planets that are unlike those in our Solar System. Observations to characterize the atmospheres and surfaces of exoplanets are extremely challenging, and transit transmission spectroscopy has been used to measure atmospheric composition for a handful of candidates. Frustratingly, many of the smaller exoplanets have flat, featureless spectra indicative of planet-wide haze or clouds. The James Webb Space Telescope and future ground-based telescopes will improve transit transmission characterization, and enable the first search for signs of life in terrestrial exoplanet atmospheres. Beyond JWST, planned next-generation space telescopes will directly image terrestrial exoplanets, allowing surface and atmospheric characterization that is more robust to haze. Until these observations become available, there is a lot that we can do as planetary scientists to inform required measurements and future data interpretation. Solar System planets can be used as validation targets for extrasolar planet observations and models. The rich heritage of planetary science models can also be used to explore the potential diversity of exoplanet environments and star-planet interactions. And planetary remote-sensing can inform new techniques to identify environmental characteristics and biosignatures in exoplanet spectra.
Mars Science with Small Aircraft
NASA Technical Reports Server (NTRS)
Calvin, W. M.; Miralles, C.; Clark, B. C.; Wilson, G. R.
2000-01-01
The Mars program has articulated a strategy to answer the question "Could Life have arisen on Mars?" by pursuing an in depth understanding of the location, persistence and expression of water in the surface and sub-surface environments. In addition to the need to understand the role of water in climate and climate history, detailed understanding of the surface and interior of the planet is required as well. Return of samples from the Martian surface is expected to provide key answers and site selection to maximize the science gleaned from samples becomes critical. Current and past orbital platforms have revealed a surface and planetary history of surprising complexity. While these remote views significantly advance our understanding of the planet it is clear that detailed regional surveys can both answer specific open questions as well as provide initial reconnaissance for subsequent landed operations.
NASA Astrophysics Data System (ADS)
Curchin, John; Clark, R. N.; Hoefen, T. M.
2006-09-01
In order to properly interpret reflectance spectra of Titan's surface, laboratory spectra of candidate materials for comparative analysis is needed. Although the common cosmochemical species (H2O, CO2, CO, NH3, and CH4) are well represented in the spectroscopic literature, comparatively little reflectance work has been done on organics at cryotemperatures at visible to near infrared wavelengths. Measurement of reflectance is required for characterizing weak features not seen in transmittance. Such features may be important in remote sensing of planetary surfaces. The USGS Spectroscopy Laboratory uses Nicolet FT-IR and ASD field spectrometers in combination with cryogenic chambers to acquire reflectance spectra of organic ices at approximately 80-90 ºK in a wavelength range of 0.35 to 15.5 microns. This region encompasses the fundamental absorptions and many overtones and combinations of major organic molecules including those with hydrogen-carbon, carbon-carbon (single, double and triple bonds), carbon-oxygen, oxygen-hydrogen, carbon-nitrogen, and nitrogen-hydrogen bonds. Because most organic compounds belong to families with similar structure and composition, individual species identification within a narrow wavelength range may be ambiguous. Only by measuring spectral reflectance of the pure laboratory ices from the visible through the near and mid-infrared can absorption bands unique to each be observed, cataloged and compared to planetary reflectance data. We present here spectra of organic ices belonging to eight families, the alkanes, cycloalkanes, alkenes, alkynes, aromatics, nitriles, amines, and cyanides. Many of these compounds are predicted to coat the surface of Titan and indeed, a number of atmospheric windows, particularly at 5 microns, have allowed their identification with VIMS (Clark et al., DPS 2006, this volume). The spectral properties of these materials have applications to other solar system surfaces and remote sensing of terrestrial environments, including hazardous waste and disaster site characterization.
Significant achievements in the planetary geology program, 1981
NASA Technical Reports Server (NTRS)
Holt, H. E. (Editor)
1981-01-01
Recent developments in planetology research as reported at the 1981 NASA Planetary Geology Principal Investigators meeting are summarized. The evolution of the solar system, comparative planetology, and geologic processes active on other planets are considered. Galilean satellites and small bodies, Venus, geochemistry and regoliths, volcanic and aeolian processes and landforms, fluvial and periglacial processes, and planetary impact cratering, remote sensing, and cartography are discussed.
NASA Technical Reports Server (NTRS)
Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.
2017-01-01
Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.; Weaver, Susanna Widicus
2012-01-01
Over 150 molecular species have been confirmed in space, primarily by their rotational spectra at millimeter/submillimeter wavelengths, which yield an unambiguous identification. Many of the known interstellar organic molecules cannot be explained by gas-phase chemistry. It is now presumed that they are produced by surface reactions of the simple ices and/or grains observed and released into the gas phase by sublimation, sputtering, etc. Additionally, the chemical complexity found in meteorites and samples returned from comets far surpasses that of the remote detections for the interstellar medium (ISM), comets, and planetary atmospheres. Laboratory simulations of interstellar/cometary ices have found, from the analysis of the remnant residue of the warmed laboratory sample, that such molecules are readily formed; however, it has yet to be determined if they are formed during the warm phase or within the ice during processing. Most analysis of the ice during processing reveals molecular changes, though the exact quantities and species formed are highly uncertain with current techniques due to overwhelming features of simple ices. Remote sensing with high resolution spectroscopy is currently the only method to detect trace species in the ISM and the primary method for comets and icy bodies in the Solar System due to limitations of sample return. We have recently designed an experiment to simulate interstellar/cometary/planetary ices and detect trace species employing the same techniques used for remote observations. Preliminary results will be presented.
NASA Technical Reports Server (NTRS)
Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean
2014-01-01
Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.
NASA Astrophysics Data System (ADS)
Zavodsky, B.; Santanello, J. A.; Friedl, M. A.; Susskind, J.; Palm, S. P.
2010-12-01
The planetary boundary layer (PBL) serves as a short-term memory of land-atmosphere (L-A) interactions through the diurnal integration of surface fluxes and subsequent evolution of PBL fluxes and states. Recent advances in satellite remote sensing offer the ability to monitor PBL and land surface properties at increasingly high spatial and temporal resolutions and, consequently, have the potential to provide valuable information on the terrestrial energy and water cycle across a range of scales. In this study, we evaluate the retrieval of PBL structure and temperature and moisture properties from measurements made by NASA's Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Moderate Resolution Imaging Spectroradiometer (MODIS) , and Atmospheric Infrared Sounder (AIRS) instruments aboard the 'A-Train' constellation. The global coverage of these sensors greatly improves upon the coarse network of synoptic radiosonde and intermittent satellite and ground remote sensing currently available, and combining the high vertical and spectral resolution of these sensors allows for PBL retrievals to be evaluated in the context of their relationship with the land surface. Results include an evaluation of CALIPSO, MODIS, and AIRS temperature and humidity retrievals using radiosonde data, focusing on how well PBL properties (e.g. PBL height, temperature, humidity, and stability) can be discerned from each sensor under a range of conditions. Overall, this research is timely in assessing the potential for merging complimentary information from independent sensors, and provides a unique opportunity to evaluate and apply NASA data to answer fundamental questions regarding observation, understanding, and prediction of L-A interactions and coupling.
Wan, Xiong; Wang, Peng
2014-01-01
Laser-induced breakdown spectroscopy (LIBS) is a feasible remote sensing technique used for mineral analysis in some unapproachable places where in situ probing is needed, such as analysis of radioactive elements in a nuclear leak or the detection of elemental compositions and contents of minerals on planetary and lunar surfaces. Here a compact custom 15 m focus optical component, combining a six times beam expander with a telescope, has been built, with which the laser beam of a 1064 nm Nd ; YAG laser is focused on remote minerals. The excited LIBS signals that reveal the elemental compositions of minerals are collected by another compact single lens-based signal acquisition system. In our remote LIBS investigations, the LIBS spectra of an unknown ore have been detected, from which the metal compositions are obtained. In addition, a multi-spectral line calibration (MSLC) method is proposed for the quantitative analysis of elements. The feasibility of the MSLC and its superiority over a single-wavelength determination have been confirmed by comparison with traditional chemical analysis of the copper content in the ore.
Space Weathering Impact on Solar System Surfaces and Planetary Mission Science
NASA Technical Reports Server (NTRS)
Cooper, John F.
2011-01-01
We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer term (e.g., solar cycle) evolution of space climate. Capable instrumentation on planetary missions can and should be planned to contribute to knowledge of interplanetary space environments. Evolving data system technologies such as virtual observatories should be explored for more interdisciplinary application to the science of planetary surface, atmospheric, magnetospheric, and interplanetary interactions.
High-autonomy control of space resource processing plants
NASA Technical Reports Server (NTRS)
Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue
1993-01-01
A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.
Method for remotely powering a device such as a lunar rover
NASA Technical Reports Server (NTRS)
Deyoung, Russell J. (Inventor); Williams, Michael D. (Inventor); Walker, Gilbert H. (Inventor); Schuster, Gregory L. (Inventor); Lee, Ja H. (Inventor)
1993-01-01
A method of supplying power to a device such as a lunar rover located on a planetary surface is provided. At least one, and preferably three, laser satellites are set in orbit around the planet. Each satellite contains a nuclear reactor for generating electrical power. This electrical power is converted into a laser beam which is passed through an amplifying array and directed toward the device such as a lunar rover. The received laser beam is then converted into electrical power for use by the device.
Terrestrial applications of NASA space telerobotics technologies
NASA Technical Reports Server (NTRS)
Lavery, Dave
1994-01-01
In 1985 the National Aeronautics and Space Administration (NASA) instituted a research program in telerobotics to develop and provide the technology for applications of telerobotics to the United States space program. The activities of the program are intended to most effectively utilize limited astronaut time by facilitating tasks such as inspection, assembly, repair, and servicing, as well as providing extended capability for remotely conducting planetary surface operations. As the program matured, it also developed a strong heritage of working with government and industry to directly transfer the developed technology into industrial applications.
The imaging node for the Planetary Data System
Eliason, E.M.; LaVoie, S.K.; Soderblom, L.A.
1996-01-01
The Planetary Data System Imaging Node maintains and distributes the archives of planetary image data acquired from NASA's flight projects with the primary goal of enabling the science community to perform image processing and analysis on the data. The Node provides direct and easy access to the digital image archives through wide distribution of the data on CD-ROM media and on-line remote-access tools by way of Internet services. The Node provides digital image processing tools and the expertise and guidance necessary to understand the image collections. The data collections, now approaching one terabyte in volume, provide a foundation for remote sensing studies for virtually all the planetary systems in our solar system (except for Pluto). The Node is responsible for restoring data sets from past missions in danger of being lost. The Node works with active flight projects to assist in the creation of their archive products and to ensure that their products and data catalogs become an integral part of the Node's data collections.
Proceedings of the 8th Annual Summer Conference: NASA/USRA Advanced Design Program
NASA Technical Reports Server (NTRS)
1992-01-01
Papers presented at the 8th Annual Summer Conference are categorized as Space Projects and Aeronautics projects. Topics covered include: Systematic Propulsion Optimization Tools (SPOT), Assured Crew Return Vehicle Post Landing Configuration Design and Test, Autonomous Support for Microorganism Research in Space, Bioregenerative System Components for Microgravity, The Extended Mission Rover (EMR), Planetary Surface Exploration MESUR/Autonomous Lunar Rover, Automation of Closed Environments in Space for Human Comfort and Safety, Walking Robot Design, Extraterrestrial Surface Propulsion Systems, The Design of Four Hypersonic Reconnaissance Aircraft, Design of a Refueling Tanker Delivering Liquid Hydrogen, The Design of a Long-Range Megatransport Aircraft, and Solar Powered Multipurpose Remotely Powered Aircraft.
Planetary Geologic Mapping Handbook - 2010. Appendix
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.
2010-01-01
Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of projectspecific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well. Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically. As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program's Planetary Cartography and Geologic Mapping Working Group's (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.
Science Drivers for Polarimetric Exploration of the Solar System and Beyond
NASA Astrophysics Data System (ADS)
Yanamandra-Fisher, P. A.
2012-12-01
Remote sensing and robotic exploration of our solar system and exoplanetary systems can be enhanced with the inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy. Since all objects have unique polarimetric signatures, like fingerprints, much can be learned about the scattering object. I highlight some of the science drivers that will benefit from polarimteric exploration. In our own dynamic solar system, the study of linear polarization of reflected light by solar system objects (planetary atmospheres, satellites, rings systems, comets, asteroids, dust, etc.) provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects. Well-known examples are the identification of spherical droplets of sulphuric acid in the atmosphere of Venus, and dust storms and ice clouds on Mars. In the case of outer planets, although the phase angles available from earth to observe are limited to a very narrow range, measurements of linear limb polarization characterizes the variation of aerosol properties across the planetary disk. Since methane is present in all giant planets' atmospheres, limb measurements of linear polarization in various methane bands allow a direct measurement of the vertical distribution of aerosol and haze particles, complementary to direct imaging and spectroscopy. Linear polarization of atmosphereless objects (the Moon, planetary satellites and asteroids) are diagnostic of surface texture, and demonstrate that most of them have their surfaces covered with a regolith of fine material, function of particle size and packing density. The recent discovery of multi-planetary systems (or multis) by Kepler mission, illustrate that a variety of planetary systems exist beyond our solar system. Current indirect techniques such as radial velocity, pulsar timing, and transits identify exoplanetary candidates and identification of atmospheric species. Direct detection and characterization of exoplanets can be achieved by measurement of linear polarization of reflected starlight by exoplanets. Our solar system, therefore, provides a dynamic laboratory and template to detect and characterize exoplanetary systems. Search for habitability elsewhere in the solar and exoplanetary systems is another important science driver. Chirality or handedness is a property of molecules that exhibit mirror-image symmetry (similar to right and left hands). Right- or left-chirality is characterized by circularly polarized light. All known biological activity and all life forms on earth are chiral and pre-dominantly left-handed. This property can be investigated by measuring the circular polarization of various species on planetary bodies. The search for the emergence of habitability in the solar system and exoplanetary systems can be aided by the measurement of circular polarization of comets; planetary and satellites' atmospheres and asteroids. Therefore, inclusion of polarimetric remote sensing and development of spectropolarimeters for ground-based facilities and instruments on space missions is needed, with similar maturation of vector radiative transfer models and related laboratory measurements.
Spacecraft Radio Scintillation and Solar System Exploration
NASA Technical Reports Server (NTRS)
Woo, Richard
1993-01-01
When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of the scintillation measurements, and to highlight some of the scientific results obtained to date. Special emphasis is placed on comparing the remote sensing features of planetary and terrestrial scintillation measurements, and on contrasting spacecraft and natural radio source scintillation measurements. I will first discuss planetary atmospheres and ionospheres, and then the solar wind.
Updated symbol catalogue for geologic and geomorphologic mapping in Planetary Scinces
NASA Astrophysics Data System (ADS)
Nass, Andrea; Fortezzo, Corey; Skinner, James, Jr.; Hunter, Marc; Hare, Trent
2017-04-01
Maps are one of the most powerful communication tools for spatial data. This is true for terrestrial data, as well as the many types of planetary data. Geologic and/or geomorphologic maps of planetary surfaces, in particular those of the Moon, Mars, and Venus, are standardized products and often prepared as a part of hypothesis-driven science investigations. The NASA-funded Planetary Geologic Mapping program, coordinated by the USGS Astrogeology Science Center (ASC), produces high-quality, standardized, and refereed geologic maps and digital databases of planetary bodies. In this context, 242 geologic, geomorphologic, and thematic map sheets and map series have been published since the 1962. However, outside of this program, numerous non-USGS published maps are created as result of scientific investigations and published, e.g. as figures or supplemental materials within a peer-reviewed journal article. Due to the complexity of planetary surfaces, diversity between different planet surfaces, and the varied resolution of the data, geomorphologic and geologic mapping is a challenging task. Because of these limiting conditions, the mapping process is a highly interpretative work and is mostly limited to remotely sensed satellite data - with a few expetions from rover data. Uniform and an unambiguous data are fundamental to make quality observations that lead to unbiased and supported interpretations, especially when there is no current groundtruthing. To allow for correlation between different map products (digital or analog), the most commonly used spatial objects are predefined cartographic symbols. The Federal Geographic Data Committee (FGDC) Digital Cartographic Standard for Geologic Map Symbolization (DCSGMS) defines the most commonly used symbols, colors, and hatch patterns in one comprehensive document. Chapter 25 of the DCSGMS defines the Planetary Geology Features based on the symbols defined in the Venus Mapper's Handbook. After reviewing the 242 planetary geological maps, we propose to 1) review standardized symbols for planetary maps, and 2) recommend an updated symbol collection for adoption by the planetary mapping community. Within these points, the focus is on the changing of symbology with respect to time and how it effects communication within and between the maps. Two key questions to address are 1) does chapter 25 provides enough variability within the subcategories (e.g., faults) to represent the data within the maps? 2) How recommendations to the mapping community and their steering committees could be delivered to enhance a map's communicability, and convey information succinctly but thoroughly. For determining the most representative symbol collection of existing maps to support future map results (within or outside of USGS mapping program) we defined a stepwise task list: 1) Statistical review of existing symbol sets and collections, 2) Establish a representative symbol set for planetary mapping, 3) Update cartographic symbols, 4) Implementation into GIS-based mapping software (this implementation will mimic the 2010 application of the planetary symbol set into ArcGIS (more information https://planetarymapping.wr.usgs.gov/Project). 6) Platform to provide the symbol set to the mapping community. This project was initiated within an ongoing cooperation work between the USGS ASC and the German Aerospace Center (DLR), Dept. of Planetary Geology.
NASA Astrophysics Data System (ADS)
Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos
2016-04-01
Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been neglected or were left to software systems to decide by some arbitrary default values. The diversity of cartography as a research discipline and its different contributions in geospatial sciences and communication of information and knowledge will be highlighted in this contribution. We invite colleagues from this and other discipline to discuss concepts and topics for joint future collaboration and research.
NASA Technical Reports Server (NTRS)
Cintala, M. J.; Durda, D. D.; Housen, K. R.
2005-01-01
Other than remote-sensing and spacecraft-derived data, the only information that exists regarding the physical and chemical properties of asteroids is that inferred through calculations, numerical simulations, extrapolation of experiments, and meteorite studies. Our understanding of the dynamics of accretion of planetesimals, collisional disruption of asteroids, and the macroscopic, shock-induced modification of the surfaces of such small objects is also, for the most part, founded on similar inferences. While considerable strides have been made in improving the state of asteroid science, too many unknowns remain to assert that we understand the parameters necessary for the more practical problem of deflecting an asteroid or asteroid pair on an Earth-intersecting trajectory. Many of these deficiencies could be reduced or eliminated by intentionally deorbiting an asteroidal satellite and monitoring the resulting collision between it and the primary asteroid, a capability that is well within the limitations of current technology.
Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.
Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray
2002-04-01
Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE.
Ultraviolet spectral reflectance of carbonaceous materials
NASA Astrophysics Data System (ADS)
Applin, Daniel M.; Izawa, Matthew R. M.; Cloutis, Edward A.; Gillis-Davis, Jeffrey J.; Pitman, Karly M.; Roush, Ted L.; Hendrix, Amanda R.; Lucey, Paul G.
2018-06-01
A number of planetary spacecraft missions have carried instruments with sensors covering the ultraviolet (UV) wavelength range. However, there exists a general lack of relevant UV reflectance laboratory data to compare against these planetary surface remote sensing observations in order to make confident material identifications. To address this need, we have systematically analyzed reflectance spectra of carbonaceous materials in the 200-500 nm spectral range, and found spectral-compositional-structural relationships that suggest this wavelength region could distinguish between otherwise difficult-to-identify carbon phases. In particular (and by analogy with the infrared spectral region), large changes over short wavelength intervals in the refractive indices associated with the trigonal sp2π-π* transition of carbon can lead to Fresnel peaks and Christiansen-like features in reflectance. Previous studies extending to shorter wavelengths also show that anomalous dispersion caused by the σ-σ* transition associated with both the trigonal sp2 and tetrahedral sp3 sites causes these features below λ = 200 nm. The peak wavelength positions and shapes of π-π* and σ-σ* features contain information on sp3/sp2, structure, crystallinity, and powder grain size. A brief comparison with existing observational data indicates that the carbon fraction of the surface of Mercury is likely amorphous and submicroscopic, as is that on the surface of the martian satellites Phobos and Deimos, and possibly comet 67P/Churyumov-Gerasimenko, while further coordinated observations and laboratory experiments should refine these feature assignments and compositional hypotheses. The new laboratory diffuse reflectance data reported here provide an important new resource for interpreting UV reflectance measurements from planetary surfaces throughout the solar system, and confirm that the UV can be rich in important spectral information.
Seasat--A 25-Year Legacy of Success
NASA Technical Reports Server (NTRS)
Evans, Diane L.; Alpers, Werner; Cazenave, Anny; Elachi, Charles; Farr, Tom; Glackin, David; Holt, Benjamin; Jones, Linwood; Liu, W. Timothy; McCandless, Walt;
2005-01-01
Thousands of scientific publications and dozens of textbooks include data from instruments derived from NASA's Seasat. The Seasat mission was launched on June 26, 1978, on an Atlas-Agena rocket from Vandenberg Air Force Base. It was the first Earth-orbiting satellite to carry four complementary microwave experiments--the Radar Altimeter (ALT) to measure ocean surface topography by measuring spacecraft altitude above the ocean surface; the Seasat-A Satellite Scatterometer (SASS), to measure wind speed and direction over the ocean; the Scanning Multichannel Microwave Radiometer (SMMR) to measure surface wind speed, ocean surface temperature, atmospheric water vapor content, rain rate, and ice coverage; and the Synthetic Aperture Radar (SAR), to image the ocean surface, polar ice caps, and coastal regions. While originally designed for remote sensing of the Earth's oceans, the legacy of Seasat has had a profound impact in many other areas including solid earth science, hydrology, ecology and planetary science.
Reflectance Experiment Laboratory (RELAB) Description and User's Manual
NASA Technical Reports Server (NTRS)
Pieters, Carle M.; Hiroi, Takahiro; Pratt, Steve F.; Patterson, Bill
2004-01-01
Spectroscopic data acquired in the laboratory provide the interpretive foundation upon which compositional information about unexplored or unsampled planetary surfaces is derived from remotely obtained reflectance spectra. The RELAB is supported by NASA as a multi-user spectroscopy facility, and laboratory time can be made available at no charge to investigators who are in funded NASA programs. RELAB has two operational spectrometers available to NASA scientists: 1) a near- ultraviolet, visible, and near-infrared bidirectional spectrometer and 2) a near- and mid- infrared FT-IR spectrometer. The overall purpose of the design and operation of the RELAB bidirectional spectrometer is to obtain high precision, high spectral resolution, bidirectional reflectance spectra of earth and planetary materials. One of the key elements of its design is the ability to measure samples using viewing geometries specified by the user. This allows investigators to simulate, under laboratory conditions, reflectance spectra obtained remotely (i.e., with spaceborne, telescopic, and airborne systems) as well as to investigate geometry dependent reflectance properties of geologic materials. The Nicolet 740 FT-IR spectrometer currently operates in reflectance mode from 0.9 to 25 Fm. Use and scheduling of the RELAB is monitored by a 4-member advisory committee. NASA investigators should direct inquiries to the Science Manager or RELAB Operator.
The Solar Connections Observatory for Planetary Environments
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)
2002-01-01
The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.
Lunar and Planetary Science XXXV: Mars: Remote Sensing and Terrestrial Analogs
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars: Remote Sensing and Terrestrial Analogs" included the following:Physical Meaning of the Hapke Parameter for Macroscopic Roughness: Experimental Determination for Planetary Regolith Surface Analogs and Numerical Approach; Near-Infrared Spectra of Martian Pyroxene Separates: First Results from Mars Spectroscopy Consortium; Anomalous Spectra of High-Ca Pyroxenes: Correlation Between Ir and M ssbauer Patterns; THEMIS-IR Emissivity Spectrum of a Large Dark Streak near Olympus Mons; Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging; Mars Thermal Inertia from THEMIS Data; Multispectral Analysis Methods for Mapping Aqueous Mineral Depostis in Proposed Paleolake Basins on Mars Using THEMIS Data; Joint Analysis of Mars Odyssey THEMIS Visible and Infrared Images: A Magic Airbrush for Qualitative and Quantitative Morphology; Analysis of Mars Thermal Emission Spectrometer Data Using Large Mineral Reference Libraries ; Negative Abundance : A Problem in Compositional Modeling of Hyperspectral Images; Mars-LAB: First Remote Sensing Data of Mineralogy Exposed at Small Mars-Analog Craters, Nevada Test Site; A Tool for the 2003 Rover Mini-TES: Downwelling Radiance Compensation Using Integrated Line-Sight Sky Measurements; Learning About Mars Geology Using Thermal Infrared Spectral Imaging: Orbiter and Rover Perspectives; Classifying Terrestrial Volcanic Alteration Processes and Defining Alteration Processes they Represent on Mars; Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate; Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration; Combining a Non Linear Unmixing Model and the Tetracorder Algorithm: Application to the ISM Dataset; Spectral Reflectance Properties of Some Basaltic Weathering Products; Morphometric LIDAR Analysis of Amboy Crater, California: Application to MOLA Analysis of Analog Features on Mars; Airborne Radar Study of Soil Moisture at a Mars Analog Site: Tohachi Wash/Little Colorado River; and Antarctic Dry Valleys: Modification of Rocks and Soils and Implications for Mars The Arkaroola Mars Analogue Region, South Australia.
Polarimetry of Solar System Objects: Observations vs. Models
NASA Astrophysics Data System (ADS)
Yanamandra-Fisher, P. A.
2014-04-01
The overarching goals for the remote sensing and robotic exploration of planetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Since all objects have unique polarimetric signatures inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy, provides insight into the scattering properties of the planetary media. Specifically, linear and circular polarimetric signatures of the object arise from different physical processes and their study proves essential to the characterization of the object. Linear polarization of reflected light by various solar system objects provides insight into the scattering characteristics of atmospheric aerosols and hazes? and surficial properties of atmosphereless bodies. Many optically active materials are anisotropic and so their scattering properties differ with the object's principal axes (such as dichroic or birefringent materials) and are crystalline in structure instead of amorphous, (eg., the presence of olivines and silicates in cometary dust and circumstellar disks? Titan, etc.). Ices (water and other species) are abundant in the system indicated in their near - infrared spectra. Gas giants form outside the frost line (where ices condense), and their satellites and ring systems exhibit signature of water ice? clathrates, nonices (Si, C, Fe) in their NIR spectra and spectral dependence of linear polarization. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Circular polarization, on the other hand, is indicative of magnetic fields and biologically active molecules, necessary for habitability. These applications suffer from lack of detailed observations, instrumentation, dedicated missions and numericalretrieval methods. With recent discoveries and results of main belt comets, asteroids with ring system, lunar studies, planned exploration of planetary satellites that may harbour sub-surface oceans, there is increasing need to include polarimetric (linear, circular and differential) as an integral observing mode of instruments and facilities. For laboratory measurements, there is a need to identify simulants that mimic the polarimetric behaviour of solar system small bodies and measure their polarimetric behavior as function of various physical process they are subject to and have undergone radiation changes of their surfaces. Therefore, inclusion of polarimetric remote sensing and development of spectropolarimeters for groundbased facilities and instruments on space missions is needed, with similar maturation of vector radiative transfer models and related laboratory measurements.
Mars, the Moon, and the Ends of the Earth: Autonomy for Small Reactor Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Richard Thomas
2008-01-01
In recent years, the National Aeronautics and Space Administration (NASA) has been considering deep space missions that utilize a small-reactor power system (SRPS) to provide energy for propulsion and spacecraft power. Additionally, application of SRPS modules as a planetary power source is being investigated to enable a continuous human presence for nonpolar lunar sites and on Mars. A SRPS can supply high-sustained power for space and surface applications that is both reliable and mass efficient. The use of small nuclear reactors for deep space or planetary missions presents some unique challenges regarding the operations and control of the power system.more » Current-generation terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a SRPS employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. While surface power systems for planetary outposts face less extreme delays and periods of isolation and may benefit from limited maintenance capabilities, considerations such as human safety, resource limitations and usage priorities, and economics favor minimizing direct, continuous human interaction with the SRPS for online, dedicated power system management. Thus, a SRPS control system for space or planetary missions must provide capabilities for operational autonomy. For terrestrial reactors, large-scale power plants remain the preferred near-term option for nuclear power generation. However, the desire to reduce reliance on carbon-emitting power sources in developing countries may lead to increased consideration of SRPS modules for local power generation in remote regions that are characterized by emerging, less established infrastructures. Additionally, many Generation IV (Gen IV) reactor concepts have goals for optimizing investment recovery and economic efficiency that promote significant reductions in plant operations and maintenance staff over current-generation nuclear power plants. To accomplish these Gen IV goals and also address the SRPS remote-siting challenges, higher levels of automation, fault tolerance, and advanced diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. Essentially, the SRPS control system for several anticipated terrestrial applications can benefit from the kind of operational autonomy that is necessary for deep space and planetary SRPS-enabled missions. Investigation of the state of the technology for autonomous control confirmed that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. As an example, NASA has pursued autonomy for spacecraft and surface exploration vehicles (e.g., rovers) to reduce mission costs, increase efficiency for communications between ground control and the vehicle, and enable independent operation of the vehicle during times of communications blackout. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and fully automated control of normal SRPS operations is clearly feasible. However, the space-based and remote terrestrial applications of SRPS modules require autonomous capabilities that can accommodate nonoptimum operations when degradation, failure, and other off-normal events challenge the performance of the reactor while immediate human intervention is not possible. The independent action provided by autonomous control, which is distinct from the more limited self action of automated control, can satisfy these conditions. Key characteristics that distinguish autonomous control include: (1) intelligence to confirm system performance and detect degraded or failed conditions, (2) optimization to minimize stress on SRPS components and efficiently react to operational events without compromising system integrity, (3) robustness to accommodate uncertainties and changing conditions, and (4) flexibility and adaptability to accommodate failures through reconfiguration among available control system elements or adjustment of control system strategies, algorithms, or parameters.« less
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.
2007-01-01
The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.
A bibliography of planetary geology principal investigators and their associates, 1982 - 1983
NASA Technical Reports Server (NTRS)
Plescia, J. B.
1984-01-01
This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.
Planetary Surface Instruments Workshop
NASA Technical Reports Server (NTRS)
Meyer, Charles (Editor); Treiman, Allan H. (Editor); Kostiuk, Theodor (Editor)
1996-01-01
This report on planetary surface investigations and planetary landers covers: (1) the precise chemical analysis of solids; (2) isotopes and evolved gas analyses; (3) planetary interiors; planetary atmospheres from within as measured by landers; (4) mineralogical examination of extraterrestrial bodies; (5) regoliths; and (6) field geology/processes.
Reports of Planetary Geology and Geophysics Program, 1984
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler); Watters, T. R. (Compiler)
1985-01-01
Topics include outer planets and satellites; asteroids and comets; Venus; lunar origin and solar dynamics; cratering process; planetary interiors, petrology, and geochemistry; volcanic processes; aeolian processes and landforms; fluvial processes; geomorphology; periglacial and permafrost processes; remote sensing and regolith studies; structure, tectonics, and stratigraphy; geological mapping, cartography, and geodesy; and radar applications.
Planetary Geologic Mapping Handbook - 2009
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Skinner, J. A.; Hare, T. M.
2009-01-01
Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of project-specific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well (e.g., Hare and others, 2009). Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically (e.g., Wilhelms, 1972, 1990; Tanaka and others, 1994). As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program s Planetary Cartography and Geologic Mapping Working Group s (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.
Scattering Properties of Needle-Like and plate-like Ice Spheroids with Moderate Size Parameters
NASA Technical Reports Server (NTRS)
Zakharova, Nadia T.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)
2000-01-01
We use the current advanced version of the T-matrix method to compute the optical cross sections, the asymmetry parameter of the phase function, and the scattering matrix elements of ice spheroids with aspect ratios up to 20 and surface-equivalent-sphere size parameters up to 12. We demonstrate that plate-like and needle-like particles with moderate size parameters possess unique scattering properties: their asymmetry parameters and phase functions are similar to those of surface-equivalent spheres, whereas all other elements of the scattering matrix are typical of particles much smaller than the wavelength (Rayleigh scatterers). This result may have important implications for optical particle sizing and remote sensing of the terrestrial and planetary atmospheres.
Galileo Avionica's technologies and instruments for planetary exploration.
Battistelli, E; Falciani, P; Magnani, P; Midollini, B; Preti, G; Re, E
2006-12-01
Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies: Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples. The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities devoted to investigate the body (planet, asteroid or comet) both remotely and by in situ measurements. The paper is an overview of some instruments for remote sensing and in situ planetary exploration already developed or under study by Galileo Avionica Space & Electro-Optics B.U. (in the following shortened as Galileo Avionica) for both the Italian Space Agency (ASI) and for the European Space Agency (ESA). Main technologies and specifications are outlined; for more detailed information please refer to Galileo Avionica's web-site at: http://www.galileoavionica.com .
NASA Technical Reports Server (NTRS)
Baker, V. R.
1985-01-01
Geomorphology is entering a new era of discovery and scientific excitement centered on expanding scales of concern in both time and space. The catalysts for this development include technological advances in global remote sensing systems, mathematical modeling, and the dating of geomorphic surfaces and processes. Even more important are new scientific questions centered on comparative planetary geomorphology, the interaction of tectonism with landscapes, the dynamics of late Cenozoic climatic changes, the influence of cataclysmic processes, the recognition of extremely ancient landforms, and the history of the world's hydrologic systems. These questions all involve feedback relationships with allied sciences that have recently yielded profound developments.
Exploration of Mars with the ChemCam LIBS Instrument and the Curiosity Rover
NASA Technical Reports Server (NTRS)
Newsom, Horton E.
2016-01-01
The Mars Science Laboratory (MSL) Curiosity rover landed on Mars in August 2012, and has been exploring the planet ever since. Dr. Horton E. Newsom will discuss the MSL's design and main goal, which is to characterize past environments that may have been conducive to the evolution and sustainability of life. He will also discuss Curiosity's science payload, and remote sensing, analytical capabilities, and direct discoveries of the Chemistry & Camera (ChemCam) instrument, which is the first Laser Induced Breakdown Spectrometer (LIBS) to operate on another planetary surface and determine the chemistry of the rocks and soils.
Motion Trajectories for Wide-area Surveying with a Rover-based Distributed Spectrometer
NASA Technical Reports Server (NTRS)
Tunstel, Edward; Anderson, Gary; Wilson, Edmond
2006-01-01
A mobile ground survey application that employs remote sensing as a primary means of area coverage is highlighted. It is distinguished from mobile robotic area coverage problems that employ contact or proximity-based sensing. The focus is on a specific concept for performing mobile surveys in search of biogenic gases on planetary surfaces using a distributed spectrometer -- a rover-based instrument designed for wide measurement coverage of promising search areas. Navigation algorithms for executing circular and spiral survey trajectories are presented for widearea distributed spectroscopy and evaluated based on area covered and distance traveled.
Far-infrared spectra of CO2 clathrate hydrate frosts
NASA Technical Reports Server (NTRS)
Landry, J. C.; England, A. W.
1993-01-01
As a product of our interest in remote sensing of planetary ices, frost samples of CO2 clathrate hydrate were grown by depositing water vapor on a cooled surface and pressurizing the resulting water frost with CO2 gas. At pressures above the dissociation pressure of the clathrate, the samples exhibit an absorption peak at 75 cm (sup -1). At pressures below the dissociation pressure, the peak disappears. Since the free CO2 molecule does not have rotational or vibrational absorption in this region, the absorption is attributed to a CO2 rattling mode within a clathrate cage.
A Wide-Angle Camera for the Mobile Asteroid Surface Scout (MASCOT) on Hayabusa-2
NASA Astrophysics Data System (ADS)
Schmitz, N.; Koncz, A.; Jaumann, R.; Hoffmann, H.; Jobs, D.; Kachlicki, J.; Michaelis, H.; Mottola, S.; Pforte, B.; Schroeder, S.; Terzer, R.; Trauthan, F.; Tschentscher, M.; Weisse, S.; Ho, T.-M.; Biele, J.; Ulamec, S.; Broll, B.; Kruselburger, A.; Perez-Prieto, L.
2014-04-01
JAXA's Hayabusa-2 mission, an asteroid sample return mission, is scheduled for launch in December 2014, for a rendezvous with the C-type asteroid 1999 JU3 in 2018. MASCOT, the Mobile Asteroid Surface Scout [1], is a small lander, designed to deliver ground truth for the orbiter remote measurements, support the selection of sampling sites, and provide context for the returned samples.MASCOT's main objective is to investigate the landing site's geomorphology, the internal structure, texture and composition of the regolith (dust, soil and rocks), and the thermal, mechanical, and magnetic properties of the surface. MASCOT comprises a payload of four scientific instruments: camera, radiometer, magnetometer and hyper-spectral microscope. The camera (MASCOT CAM) was designed and built by DLR's Institute of Planetary Research, together with Airbus DS Germany.
Virtual reality and planetary exploration
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael W.
1992-01-01
NASA-Ames is intensively developing virtual-reality (VR) capabilities that can extend and augment computer-generated and remote spatial environments. VR is envisioned not only as a basis for improving human/machine interactions involved in planetary exploration, but also as a medium for the more widespread sharing of the experience of exploration, thereby broadening the support-base for the lunar and planetary-exploration endeavors. Imagery representative of Mars are being gathered for VR presentation at such terrestrial sites as Antarctica and Death Valley.
Analogs from LEO: Mapping Earth Observations to Planetary Science & Astrobiology. (Invited)
NASA Astrophysics Data System (ADS)
Hand, K. P.; Painter, T. H.
2010-12-01
If, as Charles Lyell articulated ‘the present is the key to the past’ for terrestrial geology, then perhaps by extension the Earth, our planet, is the key to understanding other planets. This is the basic premise behind planetary analogs. Many planetary science missions, however, utilize orbiters and are therefore constrained to remote sensing. This is the reverse of how we developed our understanding of Earth’s environments; remote sensing is a relatively new tool for understanding environments and processes on Earth. Here we present several cases and comparisons between Earth’s cryosphere and icy worlds of the outer Solar System (e.g. Europa, Titan, and Enceladus), where much of our knowledge is limited to remote observations (the sole exception being the Huygens probe to Titan). Three regions are considered: glaciers in the Sierra Nevada, the permafrost lakes of Alaska’s North Slope, and spreading centers of the ocean floor. Two key issues are examined: 1) successes and limitations for understanding processes that shape icy worlds, and 2) successes and limitations for assessing the habitability of icy worlds from orbit. Finally, technological considerations for future orbiting mission to icy worlds are presented.
NASA Technical Reports Server (NTRS)
Hapke, Bruce
1996-01-01
Several problems of interest in planetary infrared remote sensing are investigated using a new radiative-conductive model of energy transfer in regoliths: the solid-state greenhouse effect, thermal beaming, and reststrahlen spectra. The results of the analysis are as follows: (1) The solid-state greenhouse effect is self-limiting to a rise of a few tens of degrees in bodies of the outer solar system. (2) Non-Lambertian directional emissivity can account for only about 20% of the observed thermal beaming factor. The remainder must have another cause, presumably surface roughness effects. (3) The maximum in a reststrahlen emissivity spectrum does not occur exactly at the Christiansen wavelength where, by definition, the real part of the refractive index equals one, but rather at the first transition minimum in reflectance associated with the transition from particle scattering being dominated by volume scattering to that dominated by strong surface scattering. The transparency feature is at the second transition minimum and does not require the presence of a second band at longer wavelength for its occurance. Subsurface temperature gradients have only a small effect on emissivity bands.
Laboratory Reference Spectroscopy of Icy Satellite Candidate Surface Materials (Invited)
NASA Astrophysics Data System (ADS)
Dalton, J. B.; Jamieson, C. S.; Shirley, J. H.; Pitman, K. M.; Kariya, M.; Crandall, P.
2013-12-01
The bulk of our knowledge of icy satellite composition continues to be derived from ultraviolet, visible and infrared remote sensing observations. Interpretation of remote sensing observations relies on availability of laboratory reference spectra of candidate surface materials. These are compared directly to observations, or incorporated into models to generate synthetic spectra representing mixtures of the candidate materials. Spectral measurements for the study of icy satellites must be taken under appropriate conditions (cf. Dalton, 2010; also http://mos.seti.org/icyworldspectra.html for a database of compounds) of temperature (typically 50 to 150 K), pressure (from 10-9 to 10-3 Torr), viewing geometry, (i.e., reflectance), and optical depth (must manifest near infrared bands but avoid saturation in the mid-infrared fundamentals). The Planetary Ice Characterization Laboratory (PICL) is being developed at JPL to provide robust reference spectra for icy satellite surface materials. These include sulfate hydrates, hydrated and hydroxylated minerals, and both organic and inorganic volatile ices. Spectral measurements are performed using an Analytical Spectral Devices FR3 portable grating spectrometer from .35 to 2.5 microns, and a Thermo-Nicolet 6500 Fourier-Transform InfraRed (FTIR) spectrometer from 1.25 to 20 microns. These are interfaced with the Basic Extraterrestrial Environment Simulation Testbed (BEEST), a vacuum chamber capable of pressures below 10-9 Torr with a closed loop liquid helium cryostat with custom heating element capable of temperatures from 30-800 Kelvins. To generate optical constants (real and imaginary index of refraction) for use in nonlinear mixing models (i.e., Hapke, 1981 and Shkuratov, 1999), samples are ground and sieved to six different size fractions or deposited at varying rates to provide a range of grain sizes for optical constants calculations based on subtractive Kramers-Kronig combined with Hapke forward modeling (Dalton and Pitman, 2012). We will report on recent results, including spectra of sulfate hydrates, simple organic molecules, and volatile ices measured at PICL in support of past, present and planned missions. We gratefully acknowledge the support of JPL's Research and Technology Development and Strategic Hire Programs, and of the NASA Outer Planets Research and Planetary Geology and Geophysics programs. Dalton, III, J.B., Spectroscopy of icy moon surface materials, Space Sci. Rev. 153:219-247, 2010. Dalton, III, J.B., and Pitman, K.M., Low temperature optical constants of some hydrated sulfates relevant to planetary surfaces, J. Geophys. Res. 117:E09001, doi:10.1029/2011JE004036, 2012. Hapke, B.W., Bidirectional reflectance spectroscopy I. Theory, J. Geophys. Res. 86, 3039-3054, 1981. Shkuratov, Y., L. Starukhina, H. Hoffmann, and G. Arnold, A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon, Icarus 137, 235-246, 1999.
NASA Technical Reports Server (NTRS)
2002-01-01
This volume contains abstracts that have been accepted for presentation at the symposium on Solar System Remote Sensing, September 20-21, 2002, in Pittsburgh, Pennsylvania. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.
Expanding the Planetary Analog Test Sites in Hawaii - Planetary Basalt Manipulation
NASA Astrophysics Data System (ADS)
Kelso, R.
2013-12-01
The Pacific International Space Center for Exploration Systems (PISCES) is one of the very few planetary surface research test sites in the country that is totally funded by the state legislature. In recent expansions, PISCES is broadening its work in planetary test sites to include much more R&D work in the planetary surface systems, and the manipulation of basalt materials. This is to include laser 3D printing of basalt, 'lunar-concrete' construction in state projects for Hawaii, renewable energy, and adding lava tubes/skylights to their mix of high-quality planetary analog test sites. PISCES Executive Director, Rob Kelso, will be providing program updates on the interest of the Hawaii State Legislature in planetary surface systems, new applied research initiatives in planetary basalts and interests in planetary construction.
Reports of Planetary Geology Program, 1982
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler)
1982-01-01
Work conducted in the Planetary Geology program is summarized. The following categories are presented: outer solar system satellites; asteroids and comets; Venus; cratering processes and landform development; volcanic processes and landforms; aolian processes and landforms; fluvial processes and landform development; periglacial and permafrost processes; structure, tectonics and stratigraphy; remote sensing and regolith studies; geologic mapping, cartography and geodesy.
NASA Astrophysics Data System (ADS)
Kaplan, M.; Tadros, A.
2017-02-01
Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.
NASA Astrophysics Data System (ADS)
McFadden, D.; Tavakkoli, A.; Regenbrecht, J.; Wilson, B.
2017-12-01
Virtual Reality (VR) and Augmented Reality (AR) applications have recently seen an impressive growth, thanks to the advent of commercial Head Mounted Displays (HMDs). This new visualization era has opened the possibility of presenting researchers from multiple disciplines with data visualization techniques not possible via traditional 2D screens. In a purely VR environment researchers are presented with the visual data in a virtual environment, whereas in a purely AR application, a piece of virtual object is projected into the real world with which researchers could interact. There are several limitations to the purely VR or AR application when taken within the context of remote planetary exploration. For example, in a purely VR environment, contents of the planet surface (e.g. rocks, terrain, or other features) should be created off-line from a multitude of images using image processing techniques to generate 3D mesh data that will populate the virtual surface of the planet. This process usually takes a tremendous amount of computational resources and cannot be delivered in real-time. As an alternative, video frames may be superimposed on the virtual environment to save processing time. However, such rendered video frames will lack 3D visual information -i.e. depth information. In this paper, we present a technique to utilize a remotely situated robot's stereoscopic cameras to provide a live visual feed from the real world into the virtual environment in which planetary scientists are immersed. Moreover, the proposed technique will blend the virtual environment with the real world in such a way as to preserve both the depth and visual information from the real world while allowing for the sensation of immersion when the entire sequence is viewed via an HMD such as Oculus Rift. The figure shows the virtual environment with an overlay of the real-world stereoscopic video being presented in real-time into the virtual environment. Notice the preservation of the object's shape, shadows, and depth information. The distortions shown in the image are due to the rendering of the stereoscopic data into a 2D image for the purposes of taking screenshots.
Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.
2003-01-01
Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving millions of dollars and years in cleanup time. Imaging spectroscopy data and Tetracorder analysis can be used to study both terrestrial and planetary science problems. Imaging spectroscopy can be used to probe planetary systems, including their atmospheres, oceans, and land surfaces.
Remote Sensing of Martian Terrain Hazards via Visually Salient Feature Detection
NASA Astrophysics Data System (ADS)
Al-Milli, S.; Shaukat, A.; Spiteri, C.; Gao, Y.
2014-04-01
The main objective of the FASTER remote sensing system is the detection of rocks on planetary surfaces by employing models that can efficiently characterise rocks in terms of semantic descriptions. The proposed technique abates some of the algorithmic limitations of existing methods with no training requirements, lower computational complexity and greater robustness towards visual tracking applications over long-distance planetary terrains. Visual saliency models inspired from biological systems help to identify important regions (such as rocks) in the visual scene. Surface rocks are therefore completely described in terms of their local or global conspicuity pop-out characteristics. These local and global pop-out cues are (but not limited to); colour, depth, orientation, curvature, size, luminance intensity, shape, topology etc. The currently applied methods follow a purely bottom-up strategy of visual attention for selection of conspicuous regions in the visual scene without any topdown control. Furthermore the choice of models used (tested and evaluated) are relatively fast among the state-of-the-art and have very low computational load. Quantitative evaluation of these state-ofthe- art models was carried out using benchmark datasets including the Surrey Space Centre Lab Testbed, Pangu generated images, RAL Space SEEKER and CNES Mars Yard datasets. The analysis indicates that models based on visually salient information in the frequency domain (SRA, SDSR, PQFT) are the best performing ones for detecting rocks in an extra-terrestrial setting. In particular the SRA model seems to be the most optimum of the lot especially that it requires the least computational time while keeping errors competitively low. The salient objects extracted using these models can then be merged with the Digital Elevation Models (DEMs) generated from the same navigation cameras in order to be fused to the navigation map thus giving a clear indication of the rock locations.
NASA Astrophysics Data System (ADS)
Howell, Robert R.; Radebaugh, Jani; M. C Lopes, Rosaly; Kerber, Laura; Solomonidou, Anezina; Watkins, Bryn
2017-10-01
Using remote sensing of planetary volcanism on objects such as Io to determine eruption conditions is challenging because the emitting region is typically not resolved and because exposed lava cools so quickly. A model of the cooling rate and eruption mechanism is typically used to predict the amount of surface area at different temperatures, then that areal distribution is convolved with a Planck blackbody emission curve, and the predicted spectra is compared with observation. Often the broad nature of the Planck curve makes interpretation non-unique. However different eruption mechanisms (for example cooling fire fountain droplets vs. cooling flows) have very different area vs. temperature distributions which can often be characterized by simple power laws. Furthermore different composition magmas have significantly different upper limit cutoff temperatures. In order to test these models in August 2016 and May 2017 we obtained spatially resolved observations of spreading Kilauea pahoehoe flows and fire fountains using a three-wavelength near-infrared prototype camera system. We have measured the area vs. temperature distribution for the flows and find that over a relatively broad temperature range the distribution does follow a power law matching the theoretical predictions. As one approaches the solidus temperature the observed area drops below the simple model predictions by an amount that seems to vary inversely with the vigor of the spreading rate. At these highest temperatures the simple models are probably inadequate. It appears necessary to model the visco-elastic stretching of the very thin crust which covers even the most recently formed surfaces. That deviation between observations and the simple models may be particularly important when using such remote sensing observations to determine magma eruption temperatures.
NASA Astrophysics Data System (ADS)
Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek
2018-02-01
Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.
NASA Astrophysics Data System (ADS)
Zubarev, A. E.; Nadezhdina, I. E.; Brusnikin, E. S.; Karachevtseva, I. P.; Oberst, J.
2016-09-01
The new technique for generation of coordinate control point networks based on photogrammetric processing of heterogeneous planetary images (obtained at different time, scale, with different illumination or oblique view) is developed. The technique is verified with the example for processing the heterogeneous information obtained by remote sensing of Ganymede by the spacecraft Voyager-1, -2 and Galileo. Using this technique the first 3D control point network for Ganymede is formed: the error of the altitude coordinates obtained as a result of adjustment is less than 5 km. The new control point network makes it possible to obtain basic geodesic parameters of the body (axes size) and to estimate forced librations. On the basis of the control point network, digital terrain models (DTMs) with different resolutions are generated and used for mapping the surface of Ganymede with different levels of detail (Zubarev et al., 2015b).
NASA Technical Reports Server (NTRS)
Wells, W. C.
1978-01-01
Various science disciplines were examined to determine where and when it is appropriate to include their objectives in the planning of planetary missions. The disciplines considered are solar astronomy, stellar and galactic astronomy, solar physics, cosmology and gravitational physics, the geosciences and the applied sciences. For each discipline, science objectives are identified which could provide a multiple discipline opportunity utilizing either a single spacecraft or two spacecraft delivered by a single launch vehicle. Opportunities using a common engineering system are also considered. The most promising opportunities identified include observations of solar images and relativistic effects using the Mercury orbiter; collection of samples exposed to solar radiation using the Mars surface sample return; studies of interstellar neutral H and He, magnetic fields, cosmic rays, and solar physics during Pluto or Neptune flybys; using the Mars orbiter to obtain solar images from 0.2 AU synchronous or from 90 deg orbit; and the study of the structure and composition of the atmosphere using atmospheric probes and remotely piloted vehicles.
Progress of Interoperability in Planetary Research for Geospatial Data Analysis
NASA Astrophysics Data System (ADS)
Hare, T. M.; Gaddis, L. R.
2015-12-01
For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an overview of the interoperability initiatives that are currently ongoing in the planetary research community, examples of their successful application, and challenges that remain.
SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool
NASA Technical Reports Server (NTRS)
Boyer, Jeffrey S.
1994-01-01
Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.
SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool
NASA Astrophysics Data System (ADS)
Boyer, Jeffrey S.
1994-11-01
Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.
The future of VIS-IR hyperspectral remote sensing for the exploration of the solar system
NASA Astrophysics Data System (ADS)
Filacchione, Gianrico
2017-06-01
In the last 30 years our understanding of the Solar System has greatly advanced thanks to the introduction of VIS-IR imaging spectrometers which have provided hyperspectral views of planets, satellites, asteroids, comets and rings. By providing moderate resolution images and reflectance spectra for each pixel at the same time, these instruments allow to elaborate spectral-spatial models for very different targets: when used to observe surfaces, hyperspectral methods permit to retrieve endmembers composition (minerals, ices, organics, liquids), mixing state among endmembers (areal, intimate, intraparticle), physical properties (particle size, roughness, temperature) and to correlate these quantities with geological and morphological units. Similarly, morphological, dynamical and compositional studies of gaseous and aerosol species can be retrieved for planetary atmospheres, exospheres and auroras. To achieve these results, very different optical layouts, detectors technologies and observing techniques have been adopted in the last decades, going from very large and complex payloads, like ISM (IR Spectral Mapper) on russian mission Phobos to Mars and NIMS (Near IR Mapping Spectrometer) on US Galileo mission to Jupiter, which were the first hyperspectral imagers to flow aboard planetary missions, to more recent compact and performing experiments. The future of VIS-IR hyperspectral remote sensing is challenging because the complexity of modern planetary missions drives towards the realization of increasingly smaller, lighter and more performing payloads able to survive in harsh radiation and planetary protected environments or to operate from demanding platforms like landers, rovers and cubesats. As a development for future missions, one can foresee that apart instruments designed around well-consolidated optical solutions relying on prisms or gratings as dispersive elements, a new class of innovative hyperspectral imagers will rise: recent developments in Optomechatronics (the fusion of Optical and Mechatronic technologies) including the realization of linear variable filters, acusto-optic and liquid crystals tunable filters, micro-opto-mechanical systems (MOEMS) open the possibility to realize completely new imaging spectrometers designs for planetary exploration. The resulting miniaturization of optical and dispers! ive elements with VIS-IR detectors open pathways towards more integrated and compact instruments. Parallel to those developments it will be necessary to develop also new test and calibration setups to be used to characterize this new instrumentation during AIV-AIT phases.
Detecting Methane From Leaking Pipelines and as Greenhouse Gas in the Atmosphere
NASA Technical Reports Server (NTRS)
Riris, Haris; Numata, Kenji; Li, Steven; Wu, Stewart; Ramanathan, Anand; Dawsey, Martha
2012-01-01
Laser remote sensing measurements of trace gases from orbit can provide unprecedented information about important planetary science and answer critical questions about planetary atmospheres. Methane (CH4) is the second most important anthropogenically produced greenhouse gas. Though its atmospheric abundance is much less than that of CO2 (1.78 ppm vs. 380 ppm), it has much larger greenhouse heating potential. CH4 also contributes to pollution in the lower atmosphere through chemical reactions, leading to ozone production. Atmospheric CH4 concentrations have been increasing as a result of increased fossil fuel production, rice farming, livestock, and landfills. Natural sources of CH4 include wetlands, wild fires, and termites, and perhaps other unknown sources. Important sinks for CH4 include non-saturated soils and oxidation by hydroxyl radicals in the atmosphere. Remotely measuring CH4 and other biogenic molecules (such as ethane and formaldehyde) on Mars also has important implications on the existence of life on Mars. Measuring CH4 at very low (ppb) concentrations from orbit will dramatically improve the sensitivity and spatial resolution in the search for CH4 vents and sub-surface life on other planets. A capability has been developed using lasers and spectroscopic detection techniques for the remote measurements of trace gases in open paths. Detection of CH4, CO2, H2O, and CO in absorption cells and in open paths, both in the mid- IR and near-IR region, has been demonstrated using an Optical Parametric Amplifier laser transmitter developed at GSFC. With this transmitter, it would be possible to develop a remote sensing methane instrument. CH4 detection also has very important commercial applications. Pipeline leak detection from an aircraft or a helicopter can significantly reduce cost, response time, and pinpoint the location. The main advantage is the ability to rapidly detect CH4 leaks remotely. This is extremely important for the petrochemical industry. This capability can be used in manned or unmanned airborne platforms for the detection of leaks in pipelines and other areas of interest where a CH4 leak is suspected.
NASA Astrophysics Data System (ADS)
Martynov, M. B.; Merkulov, P. V.; Lomakin, I. V.; Vyatlev, P. A.; Simonov, A. V.; Leun, E. V.; Barabanov, A. A.; Nasyrov, A. F.
2017-12-01
The advanced Russian project Laplace-P is aimed at developing and launching two scientific spacecraft (SC)— Laplace-P1 ( LP1 SC) and Laplace-P2 ( LP2 SC)—designed for remote and in-situ studies of the system of Jupiter and its moon Ganymede. The LP1 and LP2 spacecraft carry an orbiter and a lander onboard, respectively. One of the orbiter's objectives is to map the surface of Ganymede from the artificial satellite's orbit and to acquire the data for the landing site selection. The main objective of the lander is to carry out in-situ investigations of Ganymede's surface. The paper describes the scientific goals and objectives of the mission, its special features, and the LP1 and LP2 mission profiles during all of the phases—from the launch to the landing on the surface of Ganymede.
Planetary Surface Instruments Workshop
NASA Astrophysics Data System (ADS)
Meyer, Charles; Treiman, Allanh; Kostiuk, Theodor,
1996-01-01
This report on planetary surface investigations an d planetary landers covers: (1) the precise chemic al analysis of solids; (2) isotopes and evolved ga s analyses; (3) planetary interiors; planetary atm ospheres from within as measured by landers; (4) m ineralogical examination of extraterrestrial bodie s; (5) regoliths; and (6) field geology/processes . For individual titles, see N96-34812 through N96-34819. (Derived from text.)
Interaction between aerosol and the planetary boundary layer depth at sites in the US and China
NASA Astrophysics Data System (ADS)
Sawyer, V. R.
2015-12-01
The depth of the planetary boundary layer (PBL) defines a changing volume into which pollutants from the surface can disperse, which affects weather, surface air quality and radiative forcing in the lower troposphere. Model simulations have also shown that aerosol within the PBL heats the layer at the expense of the surface, changing the stability profile and therefore also the development of the PBL itself: aerosol radiative forcing within the PBL suppresses surface convection and causes shallower PBLs. However, the effect has been difficult to detect in observations. The most intensive radiosonde measurements have a temporal resolution too coarse to detect the full diurnal variability of the PBL, but remote sensing such as lidar can fill in the gaps. Using a method that combines two common PBL detection algorithms (wavelet covariance and iterative curve-fitting) PBL depth retrievals from micropulse lidar (MPL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared to MPL-derived PBL depths from a multiyear lidar deployment at the Hefei Radiation Observatory (HeRO). With aerosol optical depth (AOD) measurements from both sites, it can be shown that a weak inverse relationship exists between AOD and daytime PBL depth. This relationship is stronger at the more polluted HeRO site than at SGP. Figure: Mean daily AOD vs. mean daily PBL depth, with the Nadaraya-Watson estimator overlaid on the kernel density estimate. Left, SGP; right, HeRO.
NASA Astrophysics Data System (ADS)
Nelson, Robert M.; Boryta, Mark; Hapke, Bruce W.; Manatt, Kenneth S.; Shkuratov, Yuriy; Psarev, Vladimir; Vandervoort, Kurt; Kroner, Desire; Nebedum, Adaze; Vides, Christina; Quinones, John
2017-10-01
We present reflectance and polarization phase curve measurements for a suite of highly reflective planetary regolith analogues with physical characteristics that might be expected on the surface of an atmosphereless solar system body (ASSB). We studied thirteen well-sorted particle size fractions of aluminum oxide (Al2O3) in the laboratory with a goniometric photopolarimeter (GPP) of novel design.These results are highly relevant to understanding the unusual negative polarization behavior observed near small phase angles that has been reported over several decades on highly reflective ASSBs such as the asteroids 44 Nysa, 64 Angelina (Harris et al., 1989) and the Galilean satellites Io, Europa and Ganymede (Rosenbush et al., 1997; Mishchenko et al., 2006). Our measurements are consistent with the hypothesis that the surfaces of these ASSBs effectively scatter electromagnetic radiation as if they were extremely fine grained with void space >~95%, and grain sizes of the order <= λ. This portends consequences for efforts to deploy surface landers on high ASSB’s such as Europa. These results also have relevance to the field of terrestrial geo-engineering particularly to proposals for modifying Earth’s radiation balance by injecting Al2O3 particulates into the stratosphere for the purpose of offsetting the effect of anthropogenic greenhouse gas emissions (Teller et al., 1997).Harris et al., 1989 . Icarus 81, 365-374.Mishchenko et al., 2006 Applied Optics, 45, 4459-4463.Rosenbush et al, 1997, Astrophys. J. 487, 402-414.Teller et al., 1997. UCRL-JC-128715.
Proceedings of the 40th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2009-01-01
The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology; Seek Out and Explore: Upcoming and Future Missions; Mars: Early History and Impact Processes; Mars Analogs II: Chemical and Spectral; Achondrites and their Parent Bodies; and Planning for Future Exploration of the Moon The poster sessions were: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1; LRO and LCROSS; Geophysical Analysis of the Lunar Surface and Interior; Remote Observation and Geologic Mapping of the Lunar Surface; Lunar Spectroscopy; Venus Geology, Geophysics, Mapping, and Sampling; Planetary Differentiation; Bunburra and Buzzard Coulee: Recent Meteorite Falls; Meteorites: Terrestrial History; CAIs and Chondrules: Records of Early Solar System Processes; Volatile and Organic Compounds in Chondrites; Crashing Chondrites: Impact, Shock, and Melting; Ureilite Studies; Petrology and Mineralogy of the SNC Meteorites; Martian Meteorites; Phoenix Landing Site: Perchlorate and Other Tasty Treats; Mars Polar Atmospheres and Climate Modeling; Mars Polar Investigations; Mars Near-Surface Ice; Mars: A Volatile-Rich Planet; Mars: Geochemistry and Alteration Processes; Martian Phyllosilicates: Identification, Formation, and Alteration; Astrobiology; Instrument Concepts, Systems, and Probes for Investigating Rocks and Regolith; Seeing is Believing: UV, VIS, IR, X- and Gamma-Ray Camera and Spectrometer Instruments; Up Close and Personal: In Situ Analysis with Laser-Induced Breakdown Spectroscopy and Mass Spectrometry; Jupiter and Inscrutable Io; Tantalizing Titan; Enigmatic Enceladus and Intriguing Iapetus; Icy Satellites: Cryptic Craters; Icy Satellites: Gelid Geology/Geophysics; Icy Satellites: Cool Chemistry and Spectacular Spectroscopy; Asteroids and Comets; Comet Wild 2: Mineralogy and More; Hypervelocity Impacts: Stardust Models, LDEF, and ISPE; Presolar Grains; Early Nebular Processes: Models and Isotopes; Solar Wind and Genesis: Measurements and Interpretation; Education and Public Outreach; Mercury; Pursuing Lunar Exploration; Sources and Eruptionf Lunar Basalts; Chemical and Physical Properties of the Lunar Regolith; Lunar Dust and Transient Surface Phenomena; Lunar Databases and Data Restoration; Meteoritic Samples of the Moon; Chondrites, Their Clasts, and Alteration; Achondrites: Primitive and Not So Primitive; Iron Meteorites; Meteorite Methodology; Antarctic Micrometeorites; HEDs and Vesta; Dust Formation and Transformation; Interstellar Organic Matter; Early Solar System Chronology; Comparative Planetology; Impacts I: Models and Experiments; Impacts II: Craters and Ejecta; Mars: Volcanism; Mars: Tectonics and Dynamics; Martian Stratigraphy: Understanding the Geologic History of Mars Through the Sedimentary Rock Record; Mars: Valleys and Valley Networks; Mars: Aqueous Processes in Valles Marineris and the Southern Highlands; Mars: Aqueous Geomorphology; Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Remote Sensing; Mars: Geologic Mapping, Photogrammetry, and Cratering; Martian Mineralogy: Constraints from Missions and Laboratory Investigations; Mars Analogs: Chemical and Physical; Mars Analogs: Sulfates and Sulfides; Missions: Approaches, Architectures, Analogs, and Actualities; Not Just Skin Deep: Electron Microscopy, Heat Flow, Radar, and Seismology Instruments and Planetary Data Systems, Techniques, and Interpretation.
Low-Latency Teleoperations for Human Exploration and Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Lupisella, Mark; Wright, Michael; Arney, Dale; Gershman, Bob; Stillwagen, Fred; Bobskill, Marianne; Johnson, James; Shyface, Hilary; Larman, Kevin; Lewis, Ruthan;
2015-01-01
NASA has been analyzing a number of mission concepts and activities that involve low-latency telerobotic (LLT) operations. One mission concept that will be covered in this presentation is Crew-Assisted Sample Return which involves the crew acquiring samples (1) that have already been delivered to space, and or acquiring samples via LLT from orbit to a planetary surface and then launching the samples to space to be captured in space and then returned to the earth with the crew. Both versions of have key roles for low-latency teleoperations. More broadly, the NASA Evolvable Mars Campaign is exploring a number of other activities that involve LLT, such as: (a) human asteroid missions, (b) PhobosDeimos missions, (c) Mars human landing site reconnaissance and site preparation, and (d) Mars sample handling and analysis. Many of these activities could be conducted from Mars orbit and also with the crew on the Mars surface remotely operating assets elsewhere on the surface, e.g. for exploring Mars special regions and or teleoperating a sample analysis laboratory both of which may help address planetary protection concerns. The operational and technology implications of low-latency teleoperations will be explored, including discussion of relevant items in the NASA Technology Roadmap and also how previously deployed robotic assets from any source could subsequently be used by astronauts via LLT.
Proceedings of the 39th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2008-01-01
Sessions with oral presentations include: A SPECIAL SESSION: MESSENGER at Mercury, Mars: Pingos, Polygons, and Other Puzzles, Solar Wind and Genesis: Measurements and Interpretation, Asteroids, Comets, and Small Bodies, Mars: Ice On the Ground and In the Ground, SPECIAL SESSION: Results from Kaguya (SELENE) Mission to the Moon, Outer Planet Satellites: Not Titan, Not Enceladus, SPECIAL SESSION: Lunar Science: Past, Present, and Future, Mars: North Pole, South Pole - Structure and Evolution, Refractory Inclusions, Impact Events: Modeling, Experiments, and Observations, Mars Sedimentary Processes from Victoria Crater to the Columbia Hills, Formation and Alteration of Carbonaceous Chondrites, New Achondrite GRA 06128/GRA 06129 - Origins Unknown, The Science Behind Lunar Missions, Mars Volcanics and Tectonics, From Dust to Planets (Planetary Formation and Planetesimals):When, Where, and Kaboom! Astrobiology: Biosignatures, Impacts, Habitability, Excavating a Comet, Mars Interior Dynamics to Exterior Impacts, Achondrites, Lunar Remote Sensing, Mars Aeolian Processes and Gully Formation Mechanisms, Solar Nebula Shake and Bake: Mixing and Isotopes, Lunar Geophysics, Meteorites from Mars: Shergottite and Nakhlite Invasion, Mars Fluvial Geomorphology, Chondrules and Chondrule Formation, Lunar Samples: Chronology, Geochemistry, and Petrology, Enceladus, Venus: Resurfacing and Topography (with Pancakes!), Overview of the Lunar Reconnaissance Orbiter Mission, Mars Sulfates, Phyllosilicates, and Their Aqueous Sources, Ordinary and Enstatite Chondrites, Impact Calibration and Effects, Comparative Planetology, Analogs: Environments and Materials, Mars: The Orbital View of Sediments and Aqueous Mineralogy, Planetary Differentiation, Titan, Presolar Grains: Still More Isotopes Out of This World, Poster sessions include: Education and Public Outreach Programs, Early Solar System and Planet Formation, Solar Wind and Genesis, Asteroids, Comets, and Small Bodies, Carbonaceous Chondrites, Chondrules and Chondrule Formation, Chondrites, Refractory Inclusions, Organics in Chondrites, Meteorites: Techniques, Experiments, and Physical Properties, MESSENGER and Mercury, Lunar Science Present: Kaguya (SELENE) Results, Lunar Remote Sensing: Basins and Mapping of Geology and Geochemistry, Lunar Science: Dust and Ice, Lunar Science: Missions and Planning, Mars: Layered, Icy, and Polygonal, Mars Stratigraphy and Sedimentology, Mars (Peri)Glacial, Mars Polar (and Vast), Mars, You are Here: Landing Sites and Imagery, Mars Volcanics and Magmas, Mars Atmosphere, Impact Events: Modeling, Experiments, and Observation, Ice is Nice: Mostly Outer Planet Satellites, Galilean Satellites, The Big Giant Planets, Astrobiology, In Situ Instrumentation, Rocket Scientist's Toolbox: Mission Science and Operations, Spacecraft Missions, Presolar Grains, Micrometeorites, Condensation-Evaporation: Stardust Ties, Comet Dust, Comparative Planetology, Planetary Differentiation, Lunar Meteorites, Nonchondritic Meteorites, Martian Meteorites, Apollo Samples and Lunar Interior, Lunar Geophysics, Lunar Science: Geophysics, Surface Science, and Extralunar Components, Mars, Remotely, Mars Orbital Data - Methods and Interpretation, Mars Tectonics and Dynamics, Mars Craters: Tiny to Humongous, Mars Sedimentary Mineralogy, Martian Gullies and Slope Streaks, Mars Fluvial Geomorphology, Mars Aeolian Processes, Mars Data and Mission,s Venus Mapping, Modeling, and Data Analysis, Titan, Icy Dwarf Satellites, Rocket Scientist's Toolbox: In Situ Analysis, Remote Sensing Approaches, Advances, and Applications, Analogs: Sulfates - Earth and Lab to Mars, Analogs: Remote Sensing and Spectroscopy, Analogs: Methods and Instruments, Analogs: Weird Places!. Print Only Early Solar System, Solar Wind, IDPs, Presolar/Solar Grains, Stardust, Comets, Asteroids, and Phobos, Venus, Mercury, Moon, Meteorites, Mars, Astrobiology, Impacts, Outer Planets, Satellites, and Rings, Support for Mission Operations, Analog Education and Public Outreach.
Do tidal or swing waves roughen planetary surfaces?
NASA Astrophysics Data System (ADS)
Kochemasov, Gennady G.
2010-05-01
Surfaces of the terrestrial planets and their moons are far from being smooth. They are warped by several wavelengths and show a remarkable regularity: their roughness increases with the solar distance. Thus, if for Mercury the surface relief range does not exceed several km, for Mars it is already about 30 km. Earth's range is 20 km, Venus' one 14 km. Recently it was shown that this row of ranges reflects ratios of the tectonic granules radii of terrestrial planets [1, 2]. These radii related to unity of reduced planetary globes (in a geometrical model all planets are represented by even circles [2]) are as follows: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2. It means that in the great planetary circles (equators) there are 32, 12, 8, and 4 tectonic granules (now they all are mapped by remote methods) and their numbers are inversely proportional to the orbital frequencies of the planets: higher frequency - smaller granule, and, vice versa, lower frequency - larger granule. In this planetary law is a firm confirmation of the main conceptual point of the wave planetology: "Orbits make structures" [3]. But how this happens? A basic reason lies in the keplerian elliptical orbits implying periodical changes of planetary bodies accelerations. Periodical slowing down and speeding up produce inertia-gravity waves warping any celestial body. In rotating bodies this wave warping is divided in four directions: two orthogonal and two diagonal. An interference of these directions produces tectonic blocks of three kinds: uplifting, subsiding, and neutral. Sizes and amplitudes of the blocks (granules) depend on the warping wavelengths and increase with the solar distance. Thus, a relief-forming potential and the actual relief range observed on the planets increase in this direction [1, 2, 4]. But the tidal forces diminish in this direction. That is why they cannot be a reason for the relief-forming potential. Having in mind a swinging action of planetary orbits on heavenly bodies one might think of swing forces and swing waves (contrary to the tidal waves) producing the wave warping surfaces and the deeper planetary spheres [1]. Three observations in relation with this revelation might be mentioned. 1. An increasing surface roughness of the icy satellites of Saturn with increasing distances from the planet [5]. 2. Atmospheric masses of terrestrial planets increase with the diminishing solar distance as a sequence of more frequent wave oscillations - a sweeping out making atmospheres volatiles from planetary depths is facilitated by more frequent oscillations. 3. The inner rapidly orbiting satellites of Jupiter (Io), Saturn (Enceladus), and Neptun (Triton) are still emitting volatiles as a result of more thorough sweeping out their volatile stock. Mercury also has traces of some metals in its exosphere (MESSENGER data). References: [1] Kochemasov G.G. (2009) A regular row of planetary relief ranges connected with tectonic granulations of celestial bodies // New Concepts in Global Tectonics Newsletter, # 51, 58-61. [2] Kochemasov G.G. (2009) A quantitative geometric model of relief-forming potential in terrestrial planets // EPSC Abstracts, Vol. 4, EPSC2009-16-1. [3] Kochemasov G.G. (1998) Tectonic dichotomy, sectoring and granulation of Earth and other celestial bodies // Proceedings of the International Symposium on New Concepts in Global Tectonics, "NCGT-98 TSUKUBA", Geological Survey of Japan, Tsukuba, Nov 20-23, 1998, 144-147. [4] Kochemasov G.G. (1993) Relief-forming potential of planets // 18th Russian-American microsymposium on planetology, Abstracts, Oct. 9-10, 1993, Moscow, Vernadsky Inst. (GEOKHI), 27-28. [5] Thomas, P.C., Veverka, J., Helfenstein, P., Porco, C. et al. (2006) Shapes of the saturnian icy satellites // Lunar and Planetary Science Conference XXXVII, Houston, USA, Abstract 1639 pdf. CD-ROM.
Planetary exploration - Earth's new horizon /Twelfth von Karman Lecture/
NASA Technical Reports Server (NTRS)
Schurmeier, H. M.
1975-01-01
Planetary exploration is examined in terms of the interaction of technological growth with scientific progress and the intangibles associated with exploring the unknown. The field is limited to unmanned exploration of the planets and their satellites. A descriptive model of the endeavor, its activities and achievements in the past decade, a characterization of the current state of the art, and a look at some of the planetary mission opportunities for the next decade are presented. A case is made for the value to civilization of ongoing planetary exploration. The pioneering U.S. planetary explorers, Mars, Venus, and Jupiter, are discussed in the second part of the work. Launch velocity, navigation, the remote system, the earth base, and management technology are considered in the third part. Authorized near-term U.S. planetary projects and opportunities of the next decade are described in the last section.
Observing Planets and Small Bodies in Sputtered High Energy Atom (SHEA) Fluxes
NASA Technical Reports Server (NTRS)
Milillo, A.; Orsini, S.; Hsieh, K. C.; Baragiola, R.; Fama, M.; Johnson, R.; Mura, A.; Plainaki, Ch.; Sarantos, M.; Cassidy, T. A.;
2012-01-01
The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA and suggests the need for quantitative results from laboratory simulations and molecular physic modeling in order to understand SHEA data from planetary missions. In the Appendix, referenced computer simulations using existing sputtering data are reviewed.
Experiments with an EVA Assistant Robot
NASA Technical Reports Server (NTRS)
Burridge, Robert R.; Graham, Jeffrey; Shillcutt, Kim; Hirsh, Robert; Kortenkamp, David
2003-01-01
Human missions to the Moon or Mars will likely be accompanied by many useful robots that will assist in all aspects of the mission, from construction to maintenance to surface exploration. Such robots might scout terrain, carry tools, take pictures, curate samples, or provide status information during a traverse. At NASA/JSC, the EVA Robotic Assistant (ERA) project has developed a robot testbed for exploring the issues of astronaut-robot interaction. Together with JSC's Advanced Spacesuit Lab, the ERA team has been developing robot capabilities and testing them with space-suited test subjects at planetary surface analog sites. In this paper, we describe the current state of the ERA testbed and two weeks of remote field tests in Arizona in September 2002. A number of teams with a broad range of interests participated in these experiments to explore different aspects of what must be done to develop a program for robotic assistance to surface EVA. Technologies explored in the field experiments included a fuel cell, new mobility platform and manipulator, novel software and communications infrastructure for multi-agent modeling and planning, a mobile science lab, an "InfoPak" for monitoring the spacesuit, and delayed satellite communication to a remote operations team. In this paper, we will describe this latest round of field tests in detail.
Fenton, L.K.; Bishop, M.A.; Bourke, M.C.; Bristow, C.S.; Hayward, R.K.; Horgan, B.H.; Lancaster, N.; Michaels, T.I.; Tirsch, D.; Titus, T.N.; Valdez, A.
2010-01-01
The Second International Planetary Dunes Workshop took place in Alamosa, Colorado, USA from May 18-21, 2010. The workshop brought together researchers from diverse backgrounds to foster discussion and collaboration regarding terrestrial and extra-terrestrial dunes and dune systems. Two and a half days were spent on five oral sessions and one poster session, a full-day field trip to Great Sand Dunes National Park, with a great deal of time purposefully left open for discussion. On the last day of the workshop, participants assembled a list of thirteen priorities for future research on planetary dune systems. ?? 2010.
Interviews with the Apollo lunar surface astronauts in support of planning for EVA systems design
NASA Technical Reports Server (NTRS)
Connors, Mary M.; Eppler, Dean B.; Morrow, Daniel G.
1994-01-01
Focused interviews were conducted with the Apollo astronauts who landed on the moon. The purpose of these interviews was to help define extravehicular activity (EVA) system requirements for future lunar and planetary missions. Information from the interviews was examined with particular attention to identifying areas of consensus, since some commonality of experience is necessary to aid in the design of advanced systems. Results are presented under the following categories: mission approach; mission structure; suits; portable life support systems; dust control; gloves; automation; information, displays, and controls; rovers and remotes; tools; operations; training; and general comments. Research recommendations are offered, along with supporting information.
Remote-Raman and Micro-Raman Studies of Solid CO2, CH4, Gas Hydrates and Ice
NASA Technical Reports Server (NTRS)
Sharma, S. K.; Misra, A. K.; Lucey, P. G.; Exarhos, G. J.; Windisch, C. F., Jr.
2004-01-01
It is well known that on Mars CO2 is the principal constituent of the thin atmosphere and on a seasonal basis CO2 snow and frost coats the polar caps. Also over 25% of the Martian atmosphere freezes out and sublimes again each year. The Mars Odyssey Emission Imaging system (THEMIS) has discovered water ice exposed near the edge of Mars southern perennials cap. In recent years, it has been suggested that in Martian subsurface CO2 may exist as gas hydrate (8CO2 + 44 H2O) with melting temperature of 10C. Since the crust of Mars has been stable for enough time there is also a possibility that methane formed by magmatic processes and/or as a byproduct of anaerobic deep biosphere activity to have raised toward the planet s surface. This methane would have been captured and stored as methane hydrate, which concentrates methane and water. Determination of abundance and distribution of these ices on the surface and in the near surface are of fundamental importance for understanding Martian atmosphere, and for future exploration of Mars. In this work, we have evaluated feasibility of using remote Raman and micro-Raman spectroscopy as potential nondestructive and non-contact techniques for detecting solid CO2, CH4 gas, and gas hydrates as well as water-ice on planetary surfaces.
CIRS-lite, a Fourier Transform Spectrometer for Low-Cost Planetary Missions
NASA Technical Reports Server (NTRS)
Brasunas, J.; Bly, V.; Edgerton, M.; Gong, Q.; Hagopian, J.; Mamakos, W.; Morelli, A.; Pasquale, B.; Strojny, C.
2011-01-01
Passive spectroscopic remote sensing of planetary atmospheres and surfaces in the thermal infrared is a powerful tool for obtaining information about surface and atmospheric temperatures, composition, and dynamics (via the thermal wind equation). Due to its broad spectral coverage, the Fourier transform spectrometer (FTS) is particularly suited to the exploration and discovery of molecular species. NASA's Goddard Space Flight Center (GSFC) developed the CIRS (Composite Infrared Spectrometer) FTS for the NASA/ESA Cassini mission to the Saturnian system. CIRS observes Saturn, Titan, icy moons such as Enceladus, and the rings in thermal self-emission over the spectral range of 7 to 1000 ell11. CIRS has given us important new insights into stratospheric composition and jets on Jupiter and Saturn, the cryo-geyser and thermal stripes on Enceladus, and the winter polar vortex on Titan. CIRS has a mass of 43 kg, contrasted with the earlier GSFC FTS, pre-Voyager IRIS (14 kg). Future low-cost planetary missions will have very tight constraints on science payload mass, thus we must endeavor to return to IRIS-level mass while maintaining CIRS-level science capabilities ("do more with less"). CIRS-lite achieves this by pursuing: a) more sensitive infrared detectors (high Tc superconductor) to enable smaller optics. b) changed long wavelength limit from 1000 to 300 microns to reduce diffraction by smaller optics. c) CVD (chemical vapor deposition) diamond beam-splitter for broad spectral coverage. d) single FTS architecture instead of a dual FTS architecture. e) novel materials, such as single crystal silicon for the input telescope primary.
A Subject Matter Expert View of Curriculum Development.
NASA Astrophysics Data System (ADS)
Milazzo, M. P.; Anderson, R. B.; Edgar, L. A.; Gaither, T. A.; Vaughan, R. G.
2017-12-01
In 2015, NASA selected for funding the PLANETS project: Planetary Learning that Advances the Nexus of Engineering, Technology, and Science. The PLANETS partnership develops planetary science and engineering curricula for out of classroom time (OST) education settings. This partnership is between planetary science Subject Matter Experts (SMEs) at the US Geological Survey (USGS), curriculum developers at the Boston Museum of Science (MOS) Engineering is Everywhere (EiE), science and engineering teacher professional development experts at Northern Arizona University (NAU) Center for Science Teaching and Learning (CSTL), and OST teacher networks across the world. For the 2016 and 2017 Fiscal Years, our focus was on creating science material for two OST modules designed for middle school students. We have begun development of a third module for elementary school students. The first model teaches about the science and engineering of the availability of water in the Solar System, finding accessible water, evaluating it for quality, treating it for impurities, initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. This module is described in more detail in the abstract by L. Edgar et al., Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration (233008) The second module involves the science and engineering of remote sensing in planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions, we include observation and measurement techniques and tools as well as collection and use of specific data of interest to scientists. This module is described in more detail in the abstract by R. Anderson et al., Remote Sensing Mars Landing Sites: An Out-of-School Time Planetary Science Education Activity for Middle School Students (232683) The third module, described by R.G. Vaughan, Hazards in the Solar System: Out-of-School Time Student Activities Focused on Engineering Protective Space Gloves (262143), focuses on hazards in the Solar System and the engineering approach to designing space gloves to protect against those hazards.
The SCITEAS experiment: Optical characterizations of sublimating icy planetary analogues
NASA Astrophysics Data System (ADS)
Pommerol, A.; Jost, B.; Poch, O.; El-Maarry, M. R.; Vuitel, B.; Thomas, N.
2015-05-01
We have designed and built a laboratory facility to investigate the spectro-photometric and morphologic properties of different types of ice-bearing planetary surface analogs and follow their evolution upon exposure to a low pressure and low temperature environment. The results obtained with this experiment are used to verify and improve our interpretations of current optical remote-sensing datasets. They also provide valuable information for the development and operation of future optical instruments. The Simulation Chamber for Imaging the Temporal Evolution of Analogue Samples (SCITEAS) is a small thermal vacuum chamber equipped with a variety of ports and feedthroughs that permit both in-situ and remote characterizations as well as interacting with the sample. A large quartz window located directly above the sample is used to observe its surface from outside with a set of visible and near-infrared cameras. The sample holder can be easily and quickly inserted and removed from the chamber and is compatible with the other measurement facilities of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern. We report here on the results of two of the first experiments performed in the SCITEAS chamber. In the first experiment, fine-grained water ice mixed with dark organic and mineral matter was left to sublime in vacuum and at low temperature, simulating the evolution of the surface of a comet nucleus approaching the Sun. We observed and characterized the formation and evolution of a crust of refractory organic and mineral matter at the surface of the sample and linked the evolution of its structure and texture to its spectro-photometric properties. In the second experiment, a frozen soil was prepared by freezing a mixture of smectite mineral and water. The sample was then left to sublime for 6 h to simulate the loss of volatiles from icy soil at high latitudes on Mars. Colour images were produced using the definitions of the filters foreseen for the CaSSIS imager of the Exomars/TGO mission in order to prepare future science operations.
The ESA Planetary Science Archive User Group (PSA-UG)
NASA Astrophysics Data System (ADS)
Rossi, A. P.; Cecconi, B.; Fraenz, M.; Hagermann, A.; Heather, D.; Rosenblatt, P.; Svedhem, H.; Widemann, T.
2014-04-01
ESA has established a Planetary Science Archive User Group (PSA-UG), with the task of offering independent advice to ESA's Planetary Science Archive (e.g. Heather et al., 2013). The PSA-UG is an official and independent body that continuously evaluates services and tools provided by the PSA to the community of planetary data scientific users. The group has been tasked with the following top level objectives: a) Advise ESA on future development of the PSA. b) Act as a focus for the interests of the scientific community. c) Act as an advocate for the PSA. d) Monitor the PSA activities. Based on this, the PSA-UG will report through the official ESA channels. Disciplines and subjects represented by PSA-UG members include: Remote Sensing of both Atmosphere and Solid Surfaces, Magnetospheres, Plasmas, Radio Science and Auxilliary data. The composition of the group covers ESA missions populating the PSA both now and in the near future. The first members of the PSA-UG were selected in 2013 and will serve for 3 years, until 2016. The PSA-UG will address the community through workshops, conferences and the internet. Written recommendations will be made to the PSA coordinator, and an annual report on PSA and the PSA-UG activities will be sent to the Solar System Exploration Working Group (SSEWG). Any member of the community and planetary data user can get in touch with individual members of the PSA-UG or with the group as a whole via the contacts provided on the official PSA-UG web-page: http://archives.esac.esa.int/psa/psa-ug The PSA is accessible via: http://archives.esac.esa.int/psa
NASA Astrophysics Data System (ADS)
Muller, Jan-Peter
2015-04-01
Understanding the role of scaling in different planetary surface processes within our Solar System is one of the fundamental goals of planetary and solid earth scientific research. There has been a revolution in planetary surface observations over the past decade for the Earth, Mars and the Moon, especially in 3D imaging of surface shape (from the planetary scale down to resolutions of 75cm). I will examine three areas that I have been active in over the last 25 years giving examples of newly processed global datasets ripe for scaling analysis: topography, BRDF/albedo and imaging. For understanding scaling in terrestrial land surface topography we now have global 30m digital elevation models (DEMs) from different types of sensors (InSAR and stereo-optical) along with laser altimeter data to provide global reference models (to better than 1m in cross-over areas) and airborne laser altimeter data over small areas at resolutions better than 1m and height accuracies better than 10-15cm. We also have an increasing number of sub-surface observations from long wavelength SAR in arid regions, which will allow us to look at the true surface rather than the one buried by sand. We also still have a major limitation of these DEMs in that they represent an unknown observable surface with C-band InSAR DEMs representing being somewhere near the top of the canopy and X-band InSAR and stereo near the top of the canopy but only P-band representing the true understorey surface. I will present some of the recent highlights of topography on Mars including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m digital terrain models (as there is no land cover on Mars) DTMs from MRO stereo-HiRISE [3]. Comparable DTMs now exist for the Moon from 100m up to 1m. I will show examples of these DEM/DTM datasets along with some simple analyses of their scaling properties. Global 1km, 8-daily terrestrial land surface BRDF/albedo maps exist for US sensors from MODIS and by orbit from MISR. More recently, the ESA GlobAlbedo project [4] has produced land surface datasets on the same spatio-temporal sampling using optimal estimation with full uncertainty matrices associated with each and every 1km pixel. By exploiting these uncertainty estimates I show how upscaling can be performed as well as analysing their scaling properties. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [5]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ≈400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n˚312377 and the ESA GlobAlbedo project. Partial support is also provided from the STFC "MSSL Consolidated Grant" ST/K000977/1. References: [1] Gwinner, K., F. et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007, 2010; [2] Gwinner, K., Muller, J-P., et al. (2015) MarsExpress High Resolution Stereo Camera (HRSC) Multi-orbit Data Products: Methodology, Mapping Concepts and Performance for the first Quadrangle (MC-11E). Geophysical Research Abstracts, Vol. 17, EGU2015-13832; [3] Kim, J., & Muller, J. (2009). Multi-resolution topographic data extraction from Martian stereo imagery. Planetary and Space Science, 57, 2095-2112. doi:10.1016/j.pss.2009.09.024; [4] Muller, J.-P., et al. (2011), The ESA GlobAlbedo Project for mapping the Earth's land surface albedo for 15 Years from European Sensors., Geophysical Research Abstracts, Vol. 13, EGU2011-10969; [5] Tao, Y., Muller, J.-P. (2015) Supporting lander and rover operation: a novel super-resolution restoration technique. Geophysical Research Abstracts, Vol. 17, EGU2015-6925
NASA Astrophysics Data System (ADS)
Nittler, L. R.; Hong, J.; Kenter, A.; Romaine, S.; Allen, B.; Kraft, R.; Masterson, R.; Elvis, M.; Gendreau, K.; Crawford, I.; Binzel, R.; Boynton, W. V.; Grindlay, J.; Ramsey, B.
2017-12-01
The surface elemental composition of a planetary body provides crucial information about its origin, geological evolution, and surface processing, all of which can in turn provide information about solar system evolution as a whole. Remote sensing X-ray fluorescence (XRF) spectroscopy has been used successfully to probe the major-element compositions of airless bodies in the inner solar system, including the Moon, near-Earth asteroids, and Mercury. The CubeSAT X-ray Telescope (CubeX) is a concept for a 6U planetary X-ray telescope (36U with S/C), which utilizes Miniature Wolter-I X-ray optics (MiXO), monolithic CMOS and SDD X-ray sensors for the focal plane, and a Solar X-ray Monitor (heritage from the REXIS XRF instrument on NASA's OSIRIS-REx mission). CubeX will map the surface elemental composition of diverse airless bodies by spectral measurement of XRF excited by solar X-rays. The lightweight ( 1 kg) MiXO optics provide sub-arcminute resolution with low background, while the inherently rad-hard CMOS detectors provide improved spectral resolution ( 150 eV) at 0 °C. CubeX will also demonstrate X-ray pulsar timing based deep space navigation (XNAV). Successful XNAV will enable autonomous deep navigation with little to no support from the Deep Space Network, hence lowering the operation cost for many more planetary missions. Recently selected by NASA Planetary Science Deep Space SmallSat Studies, the first CubeX concept, designed to rideshare to the Moon as a secondary spacecraft on a primary mission, is under study in collaboration with the Mission Design Center at NASA Ames Research Center. From high altitude ( 6,000 km) frozen polar circular orbits, CubeX will study > 8 regions ( 110 km) of geological interest on the Moon over one year to produce a high resolution ( 2-3 km) elemental abundance map of each region. The novel focal plane design of CubeX also allows us to evaluate the performance of absolute navigation by sequential observations of several millisecond pulsars without moving parts.
NASA Astrophysics Data System (ADS)
Dreißigacker, Anne; Köhler, Eberhard; Fabel, Oliver; van Gasselt, Stephan
2014-05-01
At the Planetary Sciences and Remote Sensing research group at Freie Universität Berlin an SCD-based X-Ray Fluorescence Spectrometer is being developed to be employed on planetary orbiters to conduct direct, passive energy-dispersive x-ray fluorescence measurements of planetary surfaces through measuring the emitted X-Ray fluorescence induced by solar x-rays and high energy particles. Because the Sun is a highly variable radiation source, the intensity of solar X-Ray radiation has to be monitored constantly to allow for comparison and signal calibration of X-Ray radiation from lunar surface materials. Measurements are obtained by indirectly monitoring incident solar x-rays emitted from a calibration sample. This has the additional advantage of minimizing the risk of detector overload and damage during extreme solar events such as high-energy solar flares and particle storms as only the sample targets receive the higher radiation load directly (while the monitor is never directly pointing towards the Sun). Quantitative data are being obtained and can be subsequently analysed through synchronous measurement of fluorescence of the Moon's surface by the XRF-S main instrument and the emitted x-ray fluorescence of calibration samples by the XRF-S-ISM (Indirect Solar Monitor). We are currently developing requirements for 3 sample tiles for onboard correction and calibration of XRF-S, each with an area of 3-9 cm2 and a maximum weight of 45 g. This includes development of design concepts, determination of techniques for sample manufacturing, manufacturing and testing of prototypes and statistical analysis of measurement characteristics and quantification of error sources for the advanced prototypes and final samples. Apart from using natural rock samples as calibration sample, we are currently investigating techniques for sample manufacturing including laser sintering of rock-glass on metals, SiO2-stabilized mineral-powders, or artificial volcanic glass. High precision measurements of the chemical composition of the final samples (EPMA, various energy-dispersive XRF) will serve as calibration standard for XRF-S. Development is funded by the German Aerospace Agency under grant 50 JR 1303.
NASA Technical Reports Server (NTRS)
Rosen, Paul A.
2012-01-01
This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.
Advances in Autonomous Systems for Missions of Space Exploration
NASA Astrophysics Data System (ADS)
Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.
New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other astronauts. This technology will be described and discussed in the context of future exploration missions and the major new capabilities enabled by such systems. Finally, plans and directions for the future of autonomous systems will be presented.
Igneous rocks formed by hypervelocity impact
NASA Astrophysics Data System (ADS)
Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.
2018-03-01
Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not be possible and all that may be available is remote sensing data. While the interpretation of some impact melt rocks may be relatively straightforward (e.g., for clast-rich varieties and those with clear projectile contamination) we conclude that distinguishing between impact and endogenic igneous rocks is a non-trivial task that ultimately may require sample investigation and analysis to be conducted. Caution is, therefore, urged in the interpretation of igneous rocks on planetary surfaces.
HERRO: A Science-Oriented Strategy for Crewed Missions Beyond LEO
NASA Technical Reports Server (NTRS)
Schmidt, George R.
2011-01-01
This paper presents an exploration strategy for human missions beyond Low Earth Orbit (LEO) and the Moon that combines the best features of human and robotic spaceflight. This "Human Exploration using Real-time Robotic Operations" (HERRO) strategy refrains from placing humans on the surfaces of the Moon and Mars in the near-term. Rather, it focuses on sending piloted spacecraft and crews into orbit around exploration targets of interest, such as Mars, and conducting astronaut exploration of the surfaces using telerobots and remotely controlled systems. By eliminating the significant communications delay with Earth due to the speed of light limit, teleoperation provides scientists real-time control of rovers and other sophisticated instruments, in effect giving them a "virtual presence" on planetary surfaces, and thus expanding the scientific return at these destinations. It also eliminates development of the numerous man-rated landers, ascent vehicles and surface systems that are required to land humans on planetary surfaces. The propulsive requirements to travel from LEO to many destinations with shallow gravity-wells in the inner solar system are quite similar. Thus, a single spacecraft design could perform a variety of missions, including orbit-based surface exploration of the Moon, Mars and Venus, and rendezvous with Near Earth Asteroids (NEAs), as well as Phobos and Deimos. Although HERRO bypasses many of the initial steps that have been historically associated with human space exploration, it opens the door to many new destinations that are candidates for future resource utilization and settlement. HERRO is a first step that takes humans to exciting destinations beyond LEO, while expanding the ability to conduct science within the inner solar system.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange. This full resolution image shows a marked difference in the 'blueness' of the ice surfaces. The lower (presumably older) surface is oranger and the top (presumably younger) surface is blue. This may represent the fresher ice of the upper surface which has not yet covered with as much dust as the lower surface. Image information: VIS instrument. Latitude 80.8, Longitude 302.1 East (57.9 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.The NASA planetary biology internship experience
NASA Technical Reports Server (NTRS)
Hinkle, G.; Margulis, L.
1991-01-01
By providing students from around the world with the opportunity to work with established scientists in the fields of biogeochemistry, remote sensing, and origins of life, among others, the NASA Planetary Biology Internship (PBI) Program has successfully launched many scientific careers. Each year approximately ten interns participate in research related to planetary biology at NASA Centers, NASA-sponsored research in university laboratories, and private institutions. The PBI program also sponsors three students every year in both the Microbiology and Marine Ecology summer courses at the Marine Biological Laboratory. Other information about the PBI Program is presented including application procedure.
Mapping the Upper Subsurface of MARS Using Radar Polarimetry
NASA Technical Reports Server (NTRS)
Carter, L. M.; Rincon, R.; Berkoski, L.
2012-01-01
Future human exploration of Mars will require detailed knowledge of the surface and upper several meters of the subsurface in potential landing sites. Likewise, many of the Planetary Science Decadal Survey science goals, such as understanding the history of Mars climate change, determining how the surface was altered through processes like volcanism and fluvial activity, and locating regions that may have been hospitable to life in the past, would be significantly advanced through mapping of the upper meters of the surface. Synthetic aperture radar (SAR) is the only remote sensing technique capable of penetrating through meters of material and imaging buried surfaces at high (meters to tens-of-meters) spatial resolution. SAR is capable of mapping the boundaries of buried units and radar polarimetry can provide quantitative information about the roughness of surface and subsurface units, depth of burial of stratigraphic units, and density of materials. Orbital SAR systems can obtain broad coverage at a spatial scale relevant to human and robotic surface operations. A polarimetric SAR system would greatly increase the safety and utility of future landed systems including sample caching.
Workshop on Spectroscopy of the Martian Surface: What Next?
NASA Technical Reports Server (NTRS)
Kirkland, L. (Editor); Salisbury, J. (Editor); Mustard, J. (Editor); Clark, R. (Editor); Lucey, P. (Editor); Murchie, S. (Editor)
2002-01-01
Members of the Mars infrared spectral community desired to assess what spectral instrument will best serve the Mars program and spectral community after the successful flight of currently planned instruments. It was felt this issue needed to be addressed, given the shift of the NASA Mars program toward a search for regions conductive to the preservation of biomarkers, and the desire for sample return. To this end, leaders of the planetary community with expertise in spectroscopy and remote mineral identification met to discuss the state of understanding of Mars surface composition, and to assess what critical gaps may exist: 1) after the successful completion of planned measurements of Mars; and 2) in research programs to support investigations of the current and planned data sets. Participants also discussed the proposed Mars airplane. This report summarizes our consensus.
Convex set and linear mixing model
NASA Technical Reports Server (NTRS)
Xu, P.; Greeley, R.
1993-01-01
A major goal of optical remote sensing is to determine surface compositions of the earth and other planetary objects. For assessment of composition, single pixels in multi-spectral images usually record a mixture of the signals from various materials within the corresponding surface area. In this report, we introduce a closed and bounded convex set as a mathematical model for linear mixing. This model has a clear geometric implication because the closed and bounded convex set is a natural generalization of a triangle in n-space. The endmembers are extreme points of the convex set. Every point in the convex closure of the endmembers is a linear mixture of those endmembers, which is exactly how linear mixing is defined. With this model, some general criteria for selecting endmembers could be described. This model can lead to a better understanding of linear mixing models.
NASA Technical Reports Server (NTRS)
Mahdavi, M.; Giboni, K. L.; Vajda, S.; Schweitzer, J.
1994-01-01
Detectors that will be used for planetary missions must have their responses calibrated in a reproducible manner. A calibration facility is being constructed at Schlumberger-Doll Research for gamma and x ray detectors. With this facility the detector response can be determined in an invariant and reproducible fashion. Initial use of the facility is expected for the MARS94 detectors. Work is continuing to better understand the rare earth oxyorthosilicates and to define their characteristics. This will allow a better use of these scintillators for planetary missions. In a survey of scintillating materials two scintillators were identified as promising candidates besides GSO, LSO, and YSO. These are CdWO4 and CsI(Tl). It will be investigated if a detector with a better overall performance can be assembled with various photon converters. Considerable progress was achieved in photomultiplier design. The length of an 1 inch diameter PMT could be reduced from 4.2 to 2.5 inches without performance degradation. This technology is being employed in the gamma ray detector for the NEAR project. A further weight and size reduction of the detector package can be achieved with miniaturized integrated power supplies.
General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum
NASA Astrophysics Data System (ADS)
Chan, M. A.; Kahmann-Robinson, J. A.
2012-12-01
The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.
The ESA Planetary Science Archive User Group (PSA-UG)
NASA Astrophysics Data System (ADS)
Pio Rossi, Angelo; Cecconi, Baptiste; Fraenz, Markus; Hagermann, Axel; Heather, David; Rosenblatt, Pascal; Svedhem, Hakan; Widemann, Thomas
2014-05-01
ESA has established a Planetary Science Archive User Group (PSA-UG), with the task of offering independent advice to ESA's Planetary Science Archive (e.g. Heather et al., 2013). The PSA-UG is an official and independent body that continuously evaluates services and tools provided by the PSA to the community of planetary data scientific users. The group has been tasked with the following top level objectives: a) Advise ESA on future development of the PSA. b) Act as a focus for the interests of the scientific community. c) Act as an advocate for the PSA. d) Monitor the PSA activities. Based on this, the PSA-UG will report through the official ESA channels. Disciplines and subjects represented by PSA-UG members include: Remote Sensing of both Atmosphere and Solid Surfaces, Magnetospheres, Plasmas, Radio Science and Auxilliary data. The composition of the group covers ESA missions populating the PSA both now and in the near future. The first members of the PSA-UG were selected in 2013 and will serve for 3 years, until 2016. The PSA-UG will address the community through workshops, conferences and the internet. Written recommendations will be made to the PSA coordinator, and an annual report on PSA and the PSA-UG activities will be sent to the Solar System Exploration Working Group (SSEWG). Any member of the community and planetary data user can get in touch with individual members of the PSA-UG or with the group as a whole via the contacts provided on the official PSA-UG web-page: http://archives.esac.esa.int/psa/psa-ug. The PSA is accessible via: http://archives.esac.esa.int/psa References: Heather, D., Barthelemy, M., Manaud, N., Martinez, S., Szumlas, M., Vazquez, J. L., Osuna, P. and the PSA Development Team (2013) ESA's Planetary Science Archive: Status, Activities and Plans. EuroPlanet Sci. Congr. #EPSC2013-626
Lunar and Planetary Science XXXV: Missions and Instruments: Hopes and Hope Fulfilled
NASA Technical Reports Server (NTRS)
2004-01-01
The titles in this section include: 1) Mars Global Surveyor Mars Orbiter Camera in the Extended Mission: The MOC Toolkit; 2) Mars Odyssey THEMIS-VIS Calibration; 3) Early Science Operations and Results from the ESA Mars Express Mission: Focus on Imaging and Spectral Mapping; 4) The Mars Express/NASA Project at JPL; 5) Beagle 2: Mission to Mars - Current Status; 6) The Beagle 2 Microscope; 7) Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis; 8) Locating Targets for CRISM Based on Surface Morphology and Interpretation of THEMIS Data; 9) The Phoenix Mission to Mars; 10) First Studies of Possible Landing Sites for the Phoenix Mars Scout Mission Using the BMST; 11) The 2009 Mars Telecommunications Orbiter; 12) The Aurora Exploration Program - The ExoMars Mission; 13) Electron-induced Luminescence and X-Ray Spectrometer (ELXS) System Development; 14) Remote-Raman and Micro-Raman Studies of Solid CO2, CH4, Gas Hydrates and Ice; 15) The Compact Microimaging Spectrometer (CMIS): A New Tool for In-Situ Planetary Science; 16) Preliminary Results of a New Type of Surface Property Measurement Ideal for a Future Mars Rover Mission; 17) Electrodynamic Dust Shield for Solar Panels on Mars; 18) Sensor Web for Spatio-Temporal Monitoring of a Hydrological Environment; 19) Field Testing of an In-Situ Neutron Spectrometer for Planetary Exploration: First Results; 20) A Miniature Solid-State Spectrometer for Space Applications - Field Tests; 21) Application of Laser Induced Breakdown Spectroscopy (LIBS) to Mars Polar Exploration: LIBS Analysis of Water Ice and Water Ice/Soil Mixtures; 22) LIBS Analysis of Geological Samples at Low Pressures: Application to Mars, the Moon, and Asteroids; 23) In-Situ 1-D and 2-D Mapping of Soil Core and Rock Samples Using the LIBS Long Spark; 24) Rocks Analysis at Stand Off Distance by LIBS in Martian Conditions; 25) Evaluation of a Compact Spectrograph/Detection System for a LIBS Instrument for In-Situ and Stand-Off Detection; 26) Analysis of Organic Compounds in Mars Analog Samples; 27) Report of the Organic Contamination Science Steering Group; 28) The Water-Wheel IR (WIR) - A Contact Survey Experiment for Water and Carbonates on Mars; 29) Mid-IR Fiber Optic Probe for In Situ Water Detection and Characterization; 30) Effects of Subsurface Sampling & Processing on Martian Simulant Containing Varying Quantities of Water; 31) The Subsurface Ice Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits; 32) Deploying Ground Penetrating Radar in Planetary Analog Sites to Evaluate Potential Instrument Capabilities on Future Mars Missions; 33) Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument; 34) Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation; 35) A New Celestial Navigation Method for Mars Landers; 36) Mars Mineral Spectroscopy Web Site: A Resource for Remote Planetary Spectroscopy.
Some design considerations for planetary relay communications satellites.
NASA Technical Reports Server (NTRS)
Barber, T. A.; Bourke, R. D.
1966-01-01
Items affecting information transmitted from payload landed on remote planet to earth via communications satellite including orbit, transmission policy and orbit injection error effect on communication capability
Some design considerations for planetary relay communications satellites.
NASA Technical Reports Server (NTRS)
Barber, T. A.; Bourke, R. D.
1966-01-01
Items affecting information transmitted from payload landed on remote planet to Earth via communications satellite including orbit, transmission policy and orbit injection error effect on communication capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu
2014-12-01
As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets atmore » least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.« less
Robotics technology developments in the United States space telerobotics program
NASA Technical Reports Server (NTRS)
Lavery, David
1994-01-01
In the same way that the launch of Yuri Gagarin in April 1961 announced the beginning of human space flight, last year's flight of the German ROTEX robot flight experiment is heralding the start of a new era of space robotics. After a gap of twelve years since the introduction of a new capability in space remote manipulation, ROTEX is the first of at least ten new robotic systems and experiments which will fly before the year 2000. As a result of redefining the development approach for space robotic systems, and capitalizing on opportunities associated with the assembly and maintenance of the space station, the space robotics community is preparing a whole new generation of operational robotic capabilities. Expanding on the capabilities of earlier manipulation systems such as the Viking and Surveyor soil scoops, the Russian Lunakhods, and the Shuttle Remote Manipulator System (RMS), these new space robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] Released 19 August 2003The knobby terrain and eroded impact crater observed in this THEMIS image of the Eumenides Dorsum region are evidence to a surface that has been heavily modified and stripped over time. Variable layering of material within the impact crater suggest a succession of events which eroded the surface and exposed possibly different units. Slope streaks and dust avalanches are also observed within the impact crater and point to recent and continued modification of the surface.Image information: VIS instrument. Latitude 4.9, Longitude 203.6 East (156.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Developing Science Operations Concepts for the Future of Planetary Surface Exploration
NASA Astrophysics Data System (ADS)
Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley, P. L.; Scheidt, S.; Carter, L.; Coan, D.; Reagan, M.; Glotch, T.; Lewis, R.
2017-02-01
Human exploration of other planetary bodies is crucial in answering critical science questions about our solar system. As we seek to put humans on other surfaces by 2050, we must understand the science operations concepts needed for planetary EVA.
NASA Astrophysics Data System (ADS)
Fassett, Caleb I.
2016-10-01
Analyzing the density of impact craters on planetary surfaces is the only known technique for learning their ages remotely. As a result, crater statistics have been widely analyzed on the terrestrial planets, since the timing and rates of activity are critical to understanding geologic process and history. On the Moon, the samples obtained by the Apollo and Luna missions provide critical calibration points for cratering chronology. On Mercury, Venus, and Mars, there are no similarly firm anchors for cratering rates, but chronology models have been established by extrapolating from the lunar record or by estimating their impactor fluxes in other ways. This review provides a current perspective on crater population measurements and their chronological interpretation. Emphasis is placed on how ages derived from crater statistics may be contingent on assumptions that need to be considered critically. In addition, ages estimated from crater populations are somewhat different than ages from more familiar geochronology tools (e.g., radiometric dating). Resurfacing processes that remove craters from the observed population are particularly challenging to account for, since they can introduce geologic uncertainty into results or destroy information about the formation age of a surface. Regardless of these challenges, crater statistics measurements have resulted in successful predictions later verified by other techniques, including the age of the lunar maria, the existence of a period of heavy bombardment in the Moon's first billion years, and young volcanism on Mars.
Remote analysis of planetary soils: X-ray diffractometer development
NASA Technical Reports Server (NTRS)
Gregory, J. C.
1973-01-01
A system is described suitable for remote low power mineralogical analysis of lunar, planetary, or asteroid soils. It includes an X-ray diffractometer, fluorescence spectrometer, and sample preparation system. A one Curie Fe-55 source provides a monochromatic X-ray beam of 5.9 keV. Seeman-Bohlin or focusing geometry is employed in the camera, allowing peak detection to proceed simultaneously at all angles and obviating the need for moving parts. The detector system is an array of 500-600 proportional counters with a wire-spacing of 1 mm. An electronics unit comprising preamplifier, postamplifier, window discriminators, and storage flipflops requiring only 3.5 milliwatts was designed and tested. Total instrument power is less than 5 watts. Powder diffraction patterns using a flat breadboard multiwire counter were recorded.
Probe Science: When It Has to Be In-situ
NASA Technical Reports Server (NTRS)
Colaprete, Anthony
2013-01-01
Sometimes remote sensing just isn't enough. Some critical science questions can only (or at least best) be answered with in-situ observations. Also, in-situ measurements are often necessary to calibrate or verify remote observations. It is in these instances that planetary probes are necessary. There is little doubt that the measurements these probes provide are critical. However, in an age when the duration of most planetary missions is measured in years and the number of terabytes of data returned is seen as a measure of value and success, the relatively short life and low data volumes of a probe missions is sometimes seen as a discriminating disadvantage. This talk will review the scientific value of probe missions and how future probe missions are critical to addressing fundamental questions about our solar system.
Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.;
2007-01-01
Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.
Planetary Boundary Layer from AERI and MPL
Sawyer, Virginia
2014-02-13
The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.
Sample Handling and Instruments for the In-Situ Exploration of Ice-Rich Planets. Chapter 9
NASA Technical Reports Server (NTRS)
Castillo, Julie C.; Bar-Cohen, Yoseph; Vance, Steve; Choukroun, Mathieu; Lee, Hyeong Jae; Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Trainer, Melissa G.; Getty, Stephanie A.
2016-01-01
NASA's key science goals for the exploration of the solar system seek a better understanding of the formation and evolutionary processes that have shaped planetary bodies and emphasize the search for habitable environments. Efforts are also made to detect and quantify resources that could be used for the support of human exploration. These themes call for chemistry and physical property observations that may be best approached by in situ measurements. NASA's planetary missions have progressively evolved from remote reconnaissance to in situ exploration with the ultimate goal to return samples. This chapter focuses on the techniques, available or in development, for advanced geophysical and chemical characterization of icy bodies, especially Mars polar areas, Enceladus, Titan, Europa, and Ceres. These astrobiological targets are the objects of recent or ongoing exploration whose findings are driving the formulation of new missions that involve in situ exploration. After reviewing the overall objectives of icy body exploration (Section 9.1) we describe key techniques used for addressing these objectives from surface platforms via geophysical observations (Section 9.2) and chemical measurements (Section 9.3).
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Gaither, T. A.; Edgar, L. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.
2017-12-01
As part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project, we have developed an out-of-school time unit for middle school students focused on planetary remote sensing. The activity is divided into two exercises, with the goal of choosing a scientifically interesting and safe landing site for a future Mars mission. Students are introduced to NASA data from several actual and proposed landing sites and must use what they learn about remote sensing to choose a site that satisfies scientific and engineering criteria. The activity also includes background information for educators, including a summary of how landing on Mars helps answer major scientific questions, brief overviews of the data sets that the students will use, summaries of the site geology, and a list of relevant vocabulary. The first exercise introduces students to the concept of reflectance spectroscopy and how it can be used to identify the "fingerprints" of different minerals on the surface of Mars. Students are provided with simplified maps of mineral spectra at the four sites, based on Compact Reconnaissance Imaging Spectrometer (CRISM) observations, as well as a reference sheet with the spectra of common minerals on Mars. They can use this information to determine which sites have hydrated minerals, mafic minerals, or both. The second exercise adds data from the Mars Orbital Laser Altimeter (MOLA), and high resolution visible data from the Context Camera (CTX) on the Mars Reconnaissance Orbiter. Students learn about laser altimetry and how to interpret topographic contours to assess whether a landing site is too rough. The CTX data allow students to study the sites at higher resolution, with annotations that indicate key landforms of interest. These data, along with the spectroscopy data, allow students to rank the sites based on science and engineering criteria. This activity was developed as a collaboration between subject matter experts at the USGS Astrogeology Science Center and education experts from the Northern Arizona University Center for Science Teaching and Learning. It works as either a stand-alone activity or as an extension of the "Worlds Apart" Engineering is Everywhere unit, also developed as part of the PLANETS project in collaboration with the Boston Museum of Science.
The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O
NASA Technical Reports Server (NTRS)
1994-01-01
Various papers on lunar and planetary science are presented, covering such topics as: planetary geology, lunar geology, meteorites, shock loads, cometary collisions, planetary mapping, planetary atmospheres, chondrites, chondrules, planetary surfaces, impact craters, lava flow, achondrites, geochemistry, stratigraphy, micrometeorites, tectonics, mineralogy, petrology, geomorphology, and volcanology.
Twenty-Second Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
1991-01-01
The papers in this collection were written for general presentation, avoiding jargon and unnecessarily complex terms. Some of the topics covered include: planetary evolution, planetary satellites, planetary composition, planetary surfaces, planetary geology, volcanology, meteorite impacts and composition, and cosmic dust. Particular emphasis is placed on Mars and the Moon.
Desert Research and Technology Studies (RATS) Local and Remote Test Sites
NASA Technical Reports Server (NTRS)
Janoiko, Barbara; Kosmo, Joseph; Eppler, Dean
2007-01-01
Desert RATS (Research and Technology Studies) is a combined group of inter-NASA center scientists and engineers, collaborating with representatives of industry and academia, for the purpose of conducting remote field exercises. These exercises provide the capability to validate experimental hardware and software, to evaluate and develop mission operational techniques, and to identify and establish technical requirements applicable for future planetary exploration. D-RATS completed its ninth year of field testing in September 2006. Dry run test activities prior to testing at designated remote field site locations are initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. The majority of the remote field tests have been subsequently conducted in various high desert areas adjacent to Flagstaff, Arizona. Both the local JSC and remote field test sites have terrain conditions that are representative of both the Moon and Mars, such as strewn rock and volcanic ash fields, meteorite crater ejecta blankets, rolling plains, hills, gullies, slopes, and outcrops. Flagstaff is the preferred remote test site location for many reasons. First, there are nine potential test sites with representative terrain features within a 75-mile radius. Second, Flagstaff is the location of the United States Geologic Survey (USGS)/Astrogeology Branch, which historically supported Apollo astronaut geologic training and currently supports and provides host accommodations to the D-RATS team. Finally, in considering the importance of logistics in regard to providing the necessary level of support capabilities, the Flagstaff area provides substantial logistics support and lodging accommodations to take care of team members during long hours of field operations.
In Situ Mineralogical Analysis of Planetary Materials Using X-Ray Diffraction and X-Ray Fluorescence
NASA Technical Reports Server (NTRS)
Sarrazin, P.; Blake, D.; Vaniman, D.; Chang, Sherwood (Technical Monitor)
1996-01-01
Remote observations of Mars have led scientists to believe that its early climate was similar to that of the early Earth, having had abundant liquid water and a dense atmosphere. One of the most fascinating questions of recent times is whether simple bacterial life developed on Mars (as it did on the Earth) during this early element period. Analyses of SNC meteorites have broadened considerably our knowledge of the chemistry of certain types of Martian rocks, underscoring the tantalizing possibility of early hydrothermal systems and even of ancient bacterial life. Detailed analyses of SNC meteorites in Terrestrial laboratories utilize the most sophisticated organic, isotopic and microscopic techniques in existence. Indeed; it is unlikely that the key biogenic indicators used in McKay et al (ibid) could be identified by a remote instrument on the surface of Mars. As a result, it is probable that any robotic search for evidence of an ancient Martian biosphere will have as its focus the identification of key minerals in likely host rocks rather than the direct detection of organic or isotopic biomarkers. Even on a sample return mission, mineralogical screening will be utilized to choose the most likely candidate rocks. X-ray diffraction (XRD) is the only technique that can provide a direct determination of the crystal structures of the phases present within a sample. When many different crystalline phases are present, quantitative analysis is better constrained if used in conjunction with a determination of elemental composition, obtainable by X-ray fluorescence (XRF) using the same X-ray source as for XRD. For planetary surface analysis, a remote instrument combining XRD and XRF could be used for mineralogical characterization of both soils and rocks. We are designing a remote XRD/XRF instrument with this objective in mind. The instrument concept pays specific attention to constraints in sample preparation, weight, volume, power, etc. Based on the geometry of a pinhole camera (transmission geometry, flat two-dimensional detector perpendicular to the direct beam), the instrument (which we call CHEMIN, for Chemistry and Mineralogy) uses an X-ray sensitive CCD detector which will allow concurrent positional and energy-dispersive analysis of collected photons. Thus XRF (energy) and XRD (geometry) analysis of transmitted X-rays will be performed at the same time. Tests performed with single minerals and simple mixtures give promising results. Refinements of the prototype promise interpretable results on complex samples.
2008-11-05
K-10 'Red' planetary rover in the Nasa Ames Marscape: operations tests at Marscape (Ames Mars Yard) with remote operations from Ames Future Flight Centeral (FFC) Simulator with Susan Y. Lee observing.
Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H
2016-01-01
Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Cuzzi, Jeffrey N.; Chambers, Lindsey B.; Hendrix, Amanda R.
2017-06-01
Remote observations of the surfaces of airless planetary objects are fundamental to inferring the physical structure and compositional makeup of the surface material. A number of forward models have been developed to reproduce the photometric behavior of these surfaces, based on specific, assumed structural properties such as macroscopic roughness and associated shadowing. Most work of this type is applied to geometric albedos, which are affected by complicated effects near zero phase angle that represent only a tiny fraction of the net energy reflected by the object. Other applications include parameter fits to resolved portions of some planetary surface as viewed over a range of geometries. The spherical albedo of the entire object (when it can be determined) captures the net energy balance of the particle more robustly than the geometric albedo. In most treatments involving spherical albedos, spherical albedos and particle phase functions are often treated as if they are independent, neglecting the effects of roughness. In this paper we take a different approach. We note that whatever function captures the phase angle dependence of the brightness of a realistic rough, shadowed, flat surface element relative to that of a smooth granular surface of the same material, it is manifested directly in both the integral phase function and the spherical albedo of the object. We suggest that, where broad phase angle coverage is possible, spherical albedos may be easily corrected for the effects of shadowing using observed (or assumed) phase functions, and then modeled more robustly using smooth-surface regolith radiative transfer models without further imposed (forward-modeled) shadowing corrections. Our approach attributes observed "powerlaw" phase functions of various slope (and "linear" ranges of magnitude-vs.-phase angle) to shadowing, as have others, and goes in to suggest that regolith-model-based inferences of composition based on shadow-uncorrected spherical albedos overestimate the amount of absorbing material contained in the regolith.
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.; Chambers, Lindsey B.; Hendrix, Amanda R.
2016-01-01
Remote observations of the surfaces of airless planetary objects are fundamental to inferring the physical structure and compositional makeup of the surface material. A number of forward models have been developed to reproduce the photometric behavior of these surfaces, based on specific, assumed structural properties such as macroscopic roughness and associated shadowing. Most work of this type is applied to geometric albedos, which are affected by complicated effects near zero phase angle that represent only a tiny fraction of the net energy reflected by the object. Other applications include parameter fits to resolved portions of some planetary surface as viewed over a range of geometries. The spherical albedo of the entire object (when it can be determined) captures the net energy balance of the particle more robustly than the geometric albedo. In most treatments involving spherical albedos, spherical albedos and particle phase functions are often treated as if they are independent, neglecting the effects of roughness. In this paper we take a different approach. We note that whatever function captures the phase angle dependence of the brightness of a realistic rough, shadowed, flat surface element relative to that of a smooth granular surface of the same material, it is manifested directly in both the integral phase function and the spherical albedo of the object. We suggest that, where broad phase angle coverage is possible, spherical albedos may be easily corrected for the effects of shadowing using observed (or assumed) phase functions, and then modeled more robustly using smooth-surface regolith radiative transfer models without further imposed (forward-modeled) shadowing corrections. Our approach attributes observed "power law" phase functions of various slope (and "linear" ranges of magnitude-vs.-phase angle) to shadowing, as have others, and goes on to suggest that regolith-model-based inferences of composition based on shadow-uncorrected spherical albedos overestimate the amount of absorbing material contained in the regolith.
NASA Astrophysics Data System (ADS)
Lang, Á.; Bérczi, Sz.; Szalay, K.; Prajczer, P.; Kocsis, Á.
2014-11-01
We report about the work of the HUSAR-5 groups from the Széchenyi István Gimnázium High School Sopron, Hungary. We build and program robot-rovers, that can autonomous move and measure on a planetary surface.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Moyer, W. R.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.
1973-01-01
The following tasks related to the design, construction, and evaluation of a mobile planetary vehicle for unmanned exploration of Mars are discussed: (1) design and construction of a 0.5 scale dynamic vehicle; (2) mathematical modeling of vehicle dynamics; (3) experimental 0.4 scale vehicle dynamics measurements and interpretation; (4) vehicle electro-mechanical control systems; (5) remote control systems; (6) collapsibility and deployment concepts and hardware; (7) design, construction and evaluation of a wheel with increased lateral stiffness, (8) system design optimization; (9) design of an on-board computer; (10) design and construction of a laser range finder; (11) measurement of reflectivity of terrain surfaces; (12) obstacle perception by edge detection; (13) terrain modeling based on gradients; (14) laser scan systems; (15) path selection system simulation and evaluation; (16) gas chromatograph system concepts; (17) experimental chromatograph separation measurements and chromatograph model improvement and evaluation.
Neutral Mass Spectrometry for Venus Atmosphere and Surface
NASA Technical Reports Server (NTRS)
Mahaffy, Paul
2004-01-01
The nature of the divergent evolution of the terrestrial planets Venus, Earth, and Mars is a fundamental problem in planetary science that is most relevant to understanding the characteristics of small planets we are likely to discover in extrasolar systems and the number of such systems that may support habitable environments. For this reason, the National Research Council's Decadal Survey gives Venus exploration high priority. That report was the basis of the NASA selection of Venus as one of four prime mission targets for the recently initiated New Frontiers Program. If the Decadal Survey priorities are to be realized, in situ Venus exploration must remain a high priority. Remote sensing orbital and in situ atmospheric measurements from entry probe or balloon platforms might be realized under the low cost Discovery missions while both atmospheric and landed surface measurements are envisioned with the intermediate class missions of the New Frontiers Program.
Information architecture for a planetary 'exploration web'
NASA Technical Reports Server (NTRS)
Lamarra, N.; McVittie, T.
2002-01-01
'Web services' is a common way of deploying distributed applications whose software components and data sources may be in different locations, formats, languages, etc. Although such collaboration is not utilized significantly in planetary exploration, we believe there is significant benefit in developing an architecture in which missions could leverage each others capabilities. We believe that an incremental deployment of such an architecture could significantly contribute to the evolution of increasingly capable, efficient, and even autonomous remote exploration.
NASA Technical Reports Server (NTRS)
Chin, Gordon
2011-01-01
Submillimeter remote sensing of planetary and cometary atmospheres have been proposed for Venus and Mars while MIRO on Rosetta will observe the coma of Comet 67P/Churyumov - Cierasimenko in December 2015, UARS and AURA MLS have observed millimeter and submillimeter molecule emissions in the Earth's stratosphere for many decades, Observations of submillimeter wave molecular emissions provide a wealth of information not obtainable by alternative techniques. Submillimeter line emissions exhibit linear temperature dependence, insensitivity to aerosol scattering, extinction, and have separated transitions with well determined line-shapes. These observations have high sensitivities to trace chemical species and can; 1) Fully resolve the line profiles of molecules with high resolution, 2) Provide deterministic retrievals of species abundance, temperature, and pressure, and 3) Measure Doppler shifts of detected molecules for wind velocities.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] The landslide in the VIS image occurs in the Tharsis region of Mars, just north of Hebes Chasma. The volcanic flows forming the lower surface in the image have a platy texture. The landslide is younger than the volcanic flow, as the landslide sits on top of the flow surface. Image information: VIS instrument. Latitude 5, Longitude 282.4 East (77.6 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Astrophysics Data System (ADS)
Sibille, L.; Mantovani, J. G.; Townsend, I. I.; Mueller, R. P.
2018-02-01
The concepts describe hardware and instrumentation for the study of planetary surface materials at the Deep Space Gateway as a progressive evolution of capabilities for eliminating the need for special handling and Planetary Protection (PP) protocols inside the habitats.
Visualization of Kepler's Laws of Planetary Motion
ERIC Educational Resources Information Center
Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong
2017-01-01
For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…
1998-09-30
KENNEDY SPACE CENTER, FLA. -- Inside the Payload Changeout Room (PCR) in the Rotating Service Structure (RSS) at Launch Pad 39-B, technicians in clean suits move the payloads for mission STS-95 to the payload bay of Space Shuttle Discovery. At the top of the RSS is the Spacehab module; below it are the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and the International Extreme Ultraviolet Hitchhiker (IEH-3). The PCR is an environmentally controlled facility with seals around the mating surface that fit against the orbiter or payload canister and permit the payload bay or canister doors to be opened and cargo removed without exposing it to outside air and contaminants. Payloads are installed vertically in the orbiter using the extendable payload ground handling mechanism. Fixed and extendable work platforms provide work access in the PCR. The SPACEHAB single module involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Mission STS-95 is scheduled to launch Oct. 29, 1998
Additive Construction with Mobile Emplacement (ACME)
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The Additive Construction with Mobile Emplacement (ACME) project is developing technology to build structures on planetary surfaces using in-situ resources. The project focuses on the construction of both 2D (landing pads, roads, and structure foundations) and 3D (habitats, garages, radiation shelters, and other structures) infrastructure needs for planetary surface missions. The ACME project seeks to raise the Technology Readiness Level (TRL) of two components needed for planetary surface habitation and exploration: 3D additive construction (e.g., contour crafting), and excavation and handling technologies (to effectively and continuously produce in-situ feedstock). Additionally, the ACME project supports the research and development of new materials for planetary surface construction, with the goal of reducing the amount of material to be launched from Earth.
Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.
2017-01-01
Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.
Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes
NASA Astrophysics Data System (ADS)
Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.
2010-08-01
Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.
Impact structures in Africa: A review
Reimold, Wolf Uwe; Koeberl, Christian
2014-01-01
More than 50 years of space and planetary exploration and concomitant studies of terrestrial impact structures have demonstrated that impact cratering has been a fundamental process – an essential part of planetary evolution – ever since the beginning of accretion and has played a major role in planetary evolution throughout the solar system and beyond. This not only pertains to the development of the planets but to evolution of life as well. The terrestrial impact record represents only a small fraction of the bombardment history that Earth experienced throughout its evolution. While remote sensing investigations of planetary surfaces provide essential information about surface evolution and surface processes, they do not provide the information required for understanding the ultra-high strain rate, high-pressure, and high-temperature impact process. Thus, hands-on investigations of rocks from terrestrial impact craters, shock experimentation for pressure and temperature calibration of impact-related deformation of rocks and minerals, as well as parameter studies pertaining to the physics and chemistry of cratering and ejecta formation and emplacement, and laboratory studies of impact-generated lithologies are mandatory tools. These, together with numerical modeling analysis of impact physics, form the backbone of impact cratering studies. Here, we review the current status of knowledge about impact cratering – and provide a detailed account of the African impact record, which has been expanded vastly since a first overview was published in 1994. No less than 19 confirmed impact structures, and one shatter cone occurrence without related impact crater are now known from Africa. In addition, a number of impact glass, tektite and spherule layer occurrences are known. The 49 sites with proposed, but not yet confirmed, possible impact structures contain at least a considerable number of structures that, from available information, hold the promise to be able to expand the African impact record drastically – provided the political conditions for safe ground-truthing will become available. The fact that 28 structures have also been shown to date NOT to be of impact origin further underpins the strong interest in impact in Africa. We hope that this review stimulates the education of students about impact cratering and the fundamental importance of this process for Earth – both for its biological and geological evolution. This work may provide a reference volume for those workers who would like to search for impact craters and their ejecta in Africa. PMID:27065753
SPICE: A Geometry Information System Supporting Planetary Mapping, Remote Sensing and Data Mining
NASA Technical Reports Server (NTRS)
Acton, C.; Bachman, N.; Semenov, B.; Wright, E.
2013-01-01
SPICE is an information system providing space scientists ready access to a wide assortment of space geometry useful in planning science observations and analyzing the instrument data returned therefrom. The system includes software used to compute many derived parameters such as altitude, LAT/LON and lighting angles, and software able to find when user-specified geometric conditions are obtained. While not a formal standard, it has achieved widespread use in the worldwide planetary science community
Toward remotely controlled planetary rovers.
NASA Technical Reports Server (NTRS)
Moore, J. W.
1972-01-01
Studies of unmanned planetary rovers have emphasized a Mars mission. Relatively simple rovers, weighing about 50 kg and tethered to the lander, may precede semiautonomous roving vehicles. It is conceivable that the USSR will deploy a rover on Mars before Viking lands. The feasibility of the roving vehicle as an explorational tool hinges on its ability to operate for extended periods of time relatively independent of earth, to withstand the harshness of the Martian environment, and to travel hundreds of kilometers independent of the spacecraft that delivers it.
Planetary exploration with nanosatellites: a space campus for future technology development
NASA Astrophysics Data System (ADS)
Drossart, P.; Mosser, B.; Segret, B.
2017-09-01
Planetary exploration is at the eve of a revolution through nanosatellites accompanying larger missions, or freely cruising in the solar system, providing a man-made cosmic web for in situ or remote sensing exploration of the Solar System. A first step is to build a specific place dedicated to nanosatellite development. The context of the CCERES PSL space campus presents an environment for nanosatellite testing and integration, a concurrent engineering facility room for project analysis and science environment dedicated to this task.
Lidar Past, Present, and Future in NASA's Earth and Space Science Programs
NASA Technical Reports Server (NTRS)
Einaudi, Franco; Schwemmer, Geary K.; Gentry, Bruce M.; Abshire, James B.
2004-01-01
Lidar is firmly entrenched in the family of remote sensing technologies that NASA is developing and using. Still a relatively new technology, lidar should continue to experience significant advances and progress. Lidar is used in each one of the major research themes, including planetary exploration, in the Earth Sciences Directorate at Goddard Space Flight Center. NASA has and will continue to generate new lidar applications from ground, air and space for both Earth science and planetary exploration.
Natural fracture systems on planetary surfaces: Genetic classification and pattern randomness
NASA Technical Reports Server (NTRS)
Rossbacher, Lisa A.
1987-01-01
One method for classifying natural fracture systems is by fracture genesis. This approach involves the physics of the formation process, and it has been used most frequently in attempts to predict subsurface fractures and petroleum reservoir productivity. This classification system can also be applied to larger fracture systems on any planetary surface. One problem in applying this classification system to planetary surfaces is that it was developed for ralatively small-scale fractures that would influence porosity, particularly as observed in a core sample. Planetary studies also require consideration of large-scale fractures. Nevertheless, this system offers some valuable perspectives on fracture systems of any size.
NASA Astrophysics Data System (ADS)
Parmentier, E. M.; Mustard, J. F.; Ehlmann, B. L.; Roach, L. H.
2007-12-01
Both orbital remote sensing and geophysical observations indicate an important role for hydrothermal crustal cooling during the Noachian epoch. Orbital remote sensing shows that phyllosilicate minerals are common in Noachian-aged terrains but have not been observed in younger terrains (<3.8 Ga). Throughout the Noachian highlands, phyllosilicates are observed in deeply eroded terrains as well as in association with impact craters, in their walls, rims, ejecta, and in central peaks of craters as large as 45 km, corresponding to excavation depths of 4-5 km. CRISM and OMEGA mapping typically show phyllosilicate-bearing rocks occupy the lowest observable stratigraphic unit, and the most common alteration minerals are iron magnesium smectites which typically form at low pressures and temperatures <200°C. Widespread occurrences of phyllosilicates to depths of at least 4-5 km may provide evidence for deep crustal hydrothermal circulation during the Noachian. Geophysical evidence from surface deformation associated with faulting and from the analysis of the relationship of gravity and topography suggest elastic lithosphere thicknesses a large as ~30 km near the end of the Noachian, corresponding to surface heatflux of 20-40 mW/m2. Relaxation of elastic stresses due to thermally activated creep results in elastic lithosphere thicknesses sensitive to crustal temperatures. Plausible planetary thermal evolution models with chondritic abundances of heat producing elements predict a surface heat flux of 50-60 mW/m2 near the end of the Noachian. The difference in the heat flux required for planetary cooling and that inferred from elastic lithospheric thickness, suggests that a significant fraction of heatflow reaching the surface may be transported by hydrothermal convection rather than by conduction alone. Relaxation of crustal thickness variations due to lower crustal flow is sensitive to both the temperature and geothermal gradient at the crust-mantle boundary. In the presence of a low thermal conductivity regolith, thermal evolution models also indicate that crustal thickness variations created during the Noachian would not be preserved, even with a creep-resistant dry diabase rheology. Thus, a mechanism enhancing heat flux in the Noachian Martian crust is indicated. The studies to be reported will summarize these individual constraints on thermal structure and explore their combined implications for the depth and vigor of hydrothermal circulation during the early crustal evolution of Mars.
Teaching Planetary Science as Part of the Search for Extraterrestrial Intelligence (SETI)
NASA Astrophysics Data System (ADS)
Margot, Jean-Luc; Greenberg, Adam H.
2017-10-01
In Spring 2016 and 2017, UCLA offered a course titled "EPSS C179/279 - Search for Extraterrestrial Intelligence: Theory and Applications". The course is designed for advanced undergraduate students and graduate students in the science, technical, engineering, and mathematical fields. Each year, students designed an observing sequence for the Green Bank telescope, observed known planetary systems remotely, wrote a sophisticated and modular data processing pipeline, analyzed the data, and presented their results. In 2016, 15 students participated in the course (9U, 5G; 11M, 3F) and observed 14 planetary systems in the Kepler field. In 2017, 17 students participated (15U, 2G; 10M, 7F) and observed 10 planetary systems in the Kepler field, TRAPPIST-1, and LHS 1140. In order to select suitable targets, students learned about planetary systems, planetary habitability, and planetary dynamics. In addition to planetary science fundamentals, students learned radio astronomy fundamentals, collaborative software development, signal processing techniques, and statistics. Evaluations indicate that the course is challenging but that students are eager to learn because of the engrossing nature of SETI. Students particularly value the teamwork approach, the observing experience, and working with their own data. The next offering of the course will be in Spring 2018. Additional information about our SETI work is available at seti.ucla.edu.
The Planned Europa Clipper Mission: Exploring Europa to Investigate its Habitability
NASA Astrophysics Data System (ADS)
Pappalardo, Robert T.; Senske, David A.; Korth, Haje; Blaney, Diana L.; Blankenship, Donald D.; Christensen, Philip R.; Kempf, Sascha; Raymond, Carol Anne; Retherford, Kurt D.; Turtle, Elizabeth P.; Waite, J. Hunter; Westlake, Joseph H.; Collins, Geoffrey; Gudipati, Murthy; Lunine, Jonathan I.; Paty, Carol; Rathbun, Julie A.; Roberts, James; E Schmidt, Britney; Soderblom, Jason M.; Europa Clipper Science Team
2017-10-01
A key driver of planetary exploration is to understand the processes that lead to habitability across the solar system. In this context, the science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three Mission Objectives: 1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; 2) Understand the habitability of Europa's ocean through composition and chemistry; and 3) Understand the formation of surface features, including sites of recent or current activity, and characterize localities of high science interest. Folded into these three objectives is the desire to search for and characterize any current activity.To address the Europa science objectives, a highly capable and synergistic suite of nine instruments comprise the mission's scientific payload. This payload includes five remote-sensing instruments that observe the wavelength range from ultraviolet through radar, specifically: Europa UltraViolet Spectrograph (Europa-UVS), Europa Imaging System (EIS), Mapping Imaging Spectrometer for Europa (MISE), Europa THErMal Imaging System (E-THEMIS), and Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). In addition, four in-situ instruments measure fields and particles: Interior Characterization of Europa using MAGnetometry (ICEMAG), Plasma Instrument for Magnetic Sounding (PIMS), MAss Spectrometer for Planetary EXploration (MASPEX), and SUrface Dust Analyzer (SUDA). Moreover, gravity science can be addressed via the spacecraft's telecommunication system, and scientifically valuable engineering data from the radiation monitoring system would augment the plasma dataset. Working together, the planned Europa mission’s science payload would allow testing of hypotheses relevant to the composition, interior, and geology of Europa, to address the potential habitability of this intriguing moon.
Concept for a research project in early crustal genesis
NASA Technical Reports Server (NTRS)
Phillips, R. J. (Compiler); Ashwal, L. (Compiler)
1983-01-01
Planetary volatiles, physical and chemical planetary evolution, surface processes, planetary formation, metallogenesis, crustal features and their development, tectonics, and paleobiology are discussed.
NASA Technical Reports Server (NTRS)
Sharp, William E.; Knoll, Glenn
1989-01-01
A feasibility study of conducting a joint NASA/GSFC and Soviet Space Agency long duration balloon flight at the Antarctic in Jan. 1993 is reported. The objective of the mission is the verification and calibration of gamma ray and neutron remote sensing instruments which can be used to obtain geochemical maps of the surface of planetary bodies. The gamma ray instruments in question are the GRAD and the Soviet Phobos prototype. The neutron detectors are supplied by Los Alamos National Laboratory and the Soviet Phobos prototype. These are to be carried aboard a gondola that supplies the data and supplies the power for the period of up to two weeks.
NASA Technical Reports Server (NTRS)
Chin, G.; Mitrofanov, I. G.; Boynton, W. V.; Golovin, D. V.; Evans, L. G.; Harshman, K.; Kozyrev, A. S.; Litvak, M. L.; McClanahan, T.; Milikh, G. M.;
2011-01-01
Orbital detection of neutrons has become the dominant remote sensing technique for detecting and inferring H concentrations and its spatial distribution beneath planetary surfaces [Lawrence et al, (2010) Icarus, 205, pp. 195-209, Mitrofanov et al (2007) Science 297(5578), 78-81]. Indications for the presence of localized and relatively high water content was provided by LRO and LCROSS. LEND identified Cabeus, as the most promising LCROSS impact site [Mitrofanov I. et al. (2010) Science, 330, 483], and instruments onboard LRO and LCROSS have measured signatures of water, H2 and other volatiles in the impact plume [Colaprete A. et al. (2010) Science, 339,463, Gladstone R. et al. (2010) Science, 330, 472].
First Prototype of a Web Map Interface for ESA's Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Manaud, N.; Gonzalez, J.
2014-04-01
We present a first prototype of a Web Map Interface that will serve as a proof of concept and design for ESA's future fully web-based Planetary Science Archive (PSA) User Interface. The PSA is ESA's planetary science archiving authority and central repository for all scientific and engineering data returned by ESA's Solar System missions [1]. All data are compliant with NASA's Planetary Data System (PDS) Standards and are accessible through several interfaces [2]: in addition to serving all public data via FTP and the Planetary Data Access Protocol (PDAP), a Java-based User Interface provides advanced search, preview, download, notification and delivery-basket functionality. It allows the user to query and visualise instrument observations footprints using a map-based interface (currently only available for Mars Express HRSC and OMEGA instruments). During the last decade, the planetary mapping science community has increasingly been adopting Geographic Information System (GIS) tools and standards, originally developed for and used in Earth science. There is an ongoing effort to produce and share cartographic products through Open Geospatial Consortium (OGC) Web Services, or as standalone data sets, so that they can be readily used in existing GIS applications [3,4,5]. Previous studies conducted at ESAC [6,7] have helped identify the needs of Planetary GIS users, and define key areas of improvement for the future Web PSA User Interface. Its web map interface shall will provide access to the full geospatial content of the PSA, including (1) observation geometry footprints of all remote sensing instruments, and (2) all georeferenced cartographic products, such as HRSC map-projected data or OMEGA global maps from Mars Express. It shall aim to provide a rich user experience for search and visualisation of this content using modern and interactive web mapping technology. A comprehensive set of built-in context maps from external sources, such as MOLA topography, TES infrared maps or planetary surface nomenclature, provided in both simple cylindrical and polar stereographic projections, shall enhance this user experience. In addition, users should be able to import and export data in commonly used open- GIS formats. It is also intended to serve all PSA geospatial data through OGC-compliant Web Services so that they can be captured, visualised and analysed directly from GIS software, along with data from other sources. The following figure illustrates how the PSA web map interface and services shall fit in a typical Planetary GIS user working environment.
Mars environment and magnetic orbiter scientific and measurement objectives.
Leblanc, F; Langlais, B; Fouchet, T; Barabash, S; Breuer, D; Chassefière, E; Coates, A; Dehant, V; Forget, F; Lammer, H; Lewis, S; Lopez-Valverde, M; Mandea, M; Menvielle, M; Pais, A; Paetzold, M; Read, P; Sotin, C; Tarits, P; Vennerstrom, S
2009-01-01
In this paper, we summarize our present understanding of Mars' atmosphere, magnetic field, and surface and address past evolution of these features. Key scientific questions concerning Mars' surface, atmosphere, and magnetic field, along with the planet's interaction with solar wind, are discussed. We also define what key parameters and measurements should be performed and the main characteristics of a martian mission that would help to provide answers to these questions. Such a mission--Mars Environment and Magnetic Orbiter (MEMO)--was proposed as an answer to the Cosmic Vision Call of Opportunity as an M-class mission (corresponding to a total European Space Agency cost of less than 300 Meuro). MEMO was designed to study the strong interconnection between the planetary interior, atmosphere, and solar conditions, which is essential to our understanding of planetary evolution, the appearance of life, and its sustainability. The MEMO main platform combined remote sensing and in situ measurements of the atmosphere and the magnetic field during regular incursions into the martian upper atmosphere. The micro-satellite was designed to perform simultaneous in situ solar wind measurements. MEMO was defined to conduct: * Four-dimensional mapping of the martian atmosphere from the surface up to 120 km by measuring wind, temperature, water, and composition, all of which would provide a complete view of the martian climate and photochemical system; Mapping of the low-altitude magnetic field with unprecedented geographical, altitude, local time, and seasonal resolutions; A characterization of the simultaneous responses of the atmosphere, magnetic field, and near-Mars space to solar variability by means of in situ atmospheric and solar wind measurements.
Medicine on Mars: Remote medical care and the space exploration initiative
NASA Technical Reports Server (NTRS)
Simmons, S. C.; Billica, R. D.
1992-01-01
Mars exploration missions as described in the Synthesis Group report will involve extended exposures of crew members to remote, hazardous environments for up to 100 days. Maintenance of crew health and performance will be critical to ensure mission success. Because of the great distances between the Earth and Mars, round trip telecommunication will take from seven to forty minutes and immediate return to Earth will not be feasible: an autonomous medical care system that integrates preventive, occupational, and environmental aspects of health care and provides diagnostic and treatment capabilities will be necessary. Providing medical care for Mars explorers will pose some unique technical and engineering challenges. Medical care equipment will need to be designed to be modular and portable to ensure that it is interchangeable between vehicle and planetary surface elements. Miniaturization will be necessary to reduce mass and volume. Computerized systems that automatically acquire and manage medical information and provide medical references (literature), decision support, and automated medical record keeping will be a crucial part of a Martian medical care system. Medical care will also rely on remote consultation with Earth-based specialists. This presentation will provide an overview of the health and medical concerns associated with Mars exploration missions and will describe some specific concepts for Mars medical care systems.
The Solar Connections Observatory for Planetary Environments
NASA Astrophysics Data System (ADS)
Oliversen, R. J.; Harris, W. M.
2002-05-01
The NASA Sun-Earth Connection theme roadmap calls for comparative studies of planetary, cometary, and local interstellar medium (LISM) interaction with the Sun and solar variability. Through such studies, we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the STP, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap, we propose a mission to study the solar interaction with bodies throughout our solar system and the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/UV telescope operating from a heliocentric, Earth-trailing orbit that provides high observing efficiency, sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high resolution (R>105) H Ly-α emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. The other planets and comets will be monitored in long duration campaigns centered, when possible, on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using the combination of SCOPE observations and models including MHD, general circulation, and radiative transfer, we will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.
Interpretation of surface and planetary directional albedos for vegetated regions
NASA Technical Reports Server (NTRS)
Cess, Robert D.; Vulis, Inna L.
1989-01-01
An atmospheric solar radiation model has been coupled with surface reflectance measurements for two vegetation types, pasture land and savannah, in order to address several issues associated with understanding the directional planetary albedo; i.e., the dependence of planetary albedo upon solar zenith angle. These include an elucidation of processes that influence the variation of planetary albedo with solar zenith angle, as well as emphasizing potential problems associated with converting narrowband planetary albedo measurements to broadband quantities. It is suggested that, for vegetated surfaces, this latter task could be somewhat formidable, since the model simulations indicate that narrowband to broadband conversions strongly depend upon vegetation type. A further aspect of this paper is to illustrate a procedure by which reciprocity inconsistencies within a bidirectional reflectance dataset, if they are not too severe, can be circumvented.
NASA Astrophysics Data System (ADS)
Howard, C. M.; Wood, I. G.; Fortes, A. D.; Vocadlo, L.
2016-12-01
BackgroundInteractions between simple molecules are of fundamental interest across diverse areas of the physical sciences, and the ternary system NH3 + CO2 ± H2O is no exception. In the outer solar system, interaction of CO2 with aqueous ammonia is likely to occur, synthesizing `rock-forming' minerals [1], with CO2 perhaps playing a role in ammonia-water oceans and cryomagmas inside icy planetary bodies - the discovery of ammonium carbonates in a crater of Pluto's moon Charon [2] adds weight to CO2 occuring in these planetary environments. In the same context, ammonium carbonates may have some astrobiological relevance, since removal of water leads to the formation of urea. On Earth, combination of CO2 with aqueous ammonia has relevance to carbon capture schemes [3], and there is interest in using such materials for hydrogen storage in fuel cells [4]. Consequently, from earthly matters of climate change to the study of extraterrestrial ices, understanding the structures and properties of ammonium carbonates are important. Despite this, our knowledge of ammonium carbonates is limited under ambient conditions of pressure and temperature and is entirely absent at the higher pressures, severely limiting our ability to model the behaviour of NH3 + CO2 ± H2O solids and fluids in planetary environments. ResultsWe report the results of several experiments using variable pressure and temperature neutron diffraction work on ammonium carbonate monohydrate, ammonium bicarbonate and ammonium carbamate, with complementary Density Functional Theory (DFT) calculations. The excellent agreement between experiments and DFT calculations obtained so far adds weight to the accuracy of calculated material properties of ammonium sesquicarbonate monohydrate and several polymorphs of urea where little empirical data exists. These experimental and computational studies provide the structural, thermoelastic and vibrational information required for accurate planetary modelling and remote identification of these material on planetary surfaces. [1] Kargel (1991) Icarus 94 , 368-390. [2] De Sanctis et al. (2016) Nature Letters, 1-4. [3] Han et al. (2013) Int. J. Greenhouse Gas Control 14 , 270-281. [4] Lan et al. (2012) Int. J. Hydrogen Energy 37 (2), 1482-1494.
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2009-01-01
The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are the 1) surface habitat concept definition, 2) inflatable surface habitat development, and 3) autonomous habitat operations, and 4) cross-cutting / systems engineering. In subsequent years, the SHS-FIG will solicit a call for innovations and technologies that will support the development of these four development areas. The other development areas will be assessed yearly and identified on the SHS-FIG s Strategic Development Roadmap. Initial investment projects that are funded by the Constellation Program Office (CxPO), LSSPO, or the Exploration Technology Development Projects (ETDP) will also be included on the Roadmap. For example, in one or two years from now, the autonomous habitat operations and testbed would collaborations with the Integrated Systems Health Management (ISHM) and Automation for Operations ETDP projects, which will give the surface habitat projects an integrated habitat autonomy testbed to test software and systems. The SHS-FIG scope is to provide focused direction for multiple innovations, technologies and subsystems that are needed to support humans at a remote planetary surface habitat during the concept development, design definition, and integration phases of that project. Subsystems include: habitability, lightweight structures, power management, communications, autonomy, deployment, outfitting, life support, wireless connectivity, lighting, thermal and more.
Lunar soil and surface processes studies
NASA Technical Reports Server (NTRS)
Glass, B. P.
1975-01-01
Glass particles in lunar soil were characterized and compared to terrestrial analogues. In addition, useful information was obtained concerning the nature of lunar surface processes (e.g. volcanism and impact), maturity of soils and chemistry and heterogeneity of lunar surface material. It is felt, however, that the most important result of the study was that it demonstrated that the investigation of glass particles from the regolith of planetary bodies with little or no atmospheres can be a powerful method for learning about the surface processes and chemistry of planetary surfaces. Thus, the return of samples from other planetary bodies (especially the terrestrial planets and asteroids) using unmanned spacecraft is urged.
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; Harrington, Gary; Frisbie, Troy
2006-01-01
A simple and cost-effective, hyperspectral sun photometer for radiometric vicarious remote sensing system calibration, air quality monitoring, and potentially in-situ planetary climatological studies, was developed. The device was constructed solely from off the shelf components and was designed to be easily deployable for support of short-term verification and validation data collects. This sun photometer not only provides the same data products as existing multi-band sun photometers, this device requires a simpler setup, less data acquisition time and allows for a more direct calibration approach. Fielding this instrument has also enabled Stennis Space Center (SSC) Applied Sciences Directorate personnel to cross calibrate existing sun photometers. This innovative research will position SSC personnel to perform air quality assessments in support of the NASA Applied Sciences Program's National Applications program element as well as to develop techniques to evaluate aerosols in a Martian or other planetary atmosphere.
NASA Technical Reports Server (NTRS)
Ustinov, Eugene A.
2006-01-01
In a recent publication (Ustinov, 2002), we proposed an analytic approach to evaluation of radiative and geophysical weighting functions for remote sensing of a blackbody planetary atmosphere, based on general linearization approach applied to the case of nadir viewing geometry. In this presentation, the general linearization approach is applied to the limb viewing geometry. The expressions, similar to those obtained in (Ustinov, 2002), are obtained for weighting functions with respect to the distance along the line of sight. Further on, these expressions are converted to the expressions for weighting functions with respect to the vertical coordinate in the atmosphere. Finally, the numerical representation of weighting functions in the form of matrices of partial derivatives of grid limb radiances with respect to the grid values of atmospheric parameters is used for a convolution with the finite field of view of the instrument.
Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned
NASA Technical Reports Server (NTRS)
Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich
2013-01-01
This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.
Study of the Effects of Photometric Geometry on Spectral Reflectance Measurements
NASA Technical Reports Server (NTRS)
Helfenstein, Paul
1998-01-01
The objective of this research is to investigate how the spectrophotometric properties of planetary surface materials depend on photometric geometry by refining and applying radiative transfer theory to data obtained from spacecraft and telescope observations of planetary surfaces, studies of laboratory analogs, and computer simulations. The goal is to perfect the physical interpretation of photometric parameters in the context of planetary surface geological properties and processes. The purpose of this report is to document the research achievements associated with this study.
NASA Astrophysics Data System (ADS)
Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.
2017-09-01
In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.
Observations and Laboratory Data of Planetary Organics
NASA Technical Reports Server (NTRS)
Roush, Ted L.
2002-01-01
Many efforts are underway to search for evidence of prebiotic materials in the outer solar system. Current and planned Mars missions obtain remote sensing observations that can be used to address the potential presence of prebiotic materials. Additional missions to, and continuing earth-based observations of, more distant solar system objects will also provide remote sensing observations that can be used to address the potential presence of prebiotic materials. I will present an overview of on-going observations, associated laboratory investigations of candidate materials, and theoretical modeling of observational data. In the past the room temperature reflectance spectra of many residues created from HC-bearing gases and solids have been reported. The results of an investigation of what effect temperatures more representative of outer solar system surfaces (50-140K) have on the reflectance spectra of these residues, and the associated interpretations, will be presented. The relatively organic-rich Tagish Lake Meteorite has been suggested as a spectral analog for Dtype asteroids. Using a new approach that relies upon iterative use of Hapke theory and Kraniers-Kronig analysis the optical constants of TLM were estimated. The approach and results of the analysis will be presented. Use of optical constants in scattering theories, such as the Hapke theory, provide the ability to determine quantitative estimates of the relative abundances and grain sizes of candidate surface components. This approach has been applied to interpret the reflectance spectra of several outer solar system surfaces. A summary will be provided describing the results of such modeling efforts.
Habitable worlds with no signs of life
Cockell, Charles S.
2014-01-01
‘Most habitable worlds in the cosmos will have no remotely detectable signs of life’ is proposed as a biological hypothesis to be tested in the study of exoplanets. Habitable planets could be discovered elsewhere in the Universe, yet there are many hypothetical scenarios whereby the search for life on them could yield negative results. Scenarios for habitable worlds with no remotely detectable signatures of life include: planets that are habitable, but have no biosphere (Uninhabited Habitable Worlds); planets with life, but lacking any detectable surface signatures of that life (laboratory examples are provided); and planets with life, where the concentrations of atmospheric gases produced or removed by biota are impossible to disentangle from abiotic processes because of the lack of detailed knowledge of planetary conditions (the ‘problem of exoplanet thermodynamic uncertainty’). A rejection of the hypothesis would require that the origin of life usually occurs on habitable planets, that spectrally detectable pigments and/or metabolisms that produce unequivocal biosignature gases (e.g. oxygenic photosynthesis) usually evolve and that the organisms that harbour them usually achieve a sufficient biomass to produce biosignatures detectable to alien astronomers. PMID:24664917
Habitable worlds with no signs of life.
Cockell, Charles S
2014-04-28
'Most habitable worlds in the cosmos will have no remotely detectable signs of life' is proposed as a biological hypothesis to be tested in the study of exoplanets. Habitable planets could be discovered elsewhere in the Universe, yet there are many hypothetical scenarios whereby the search for life on them could yield negative results. Scenarios for habitable worlds with no remotely detectable signatures of life include: planets that are habitable, but have no biosphere (Uninhabited Habitable Worlds); planets with life, but lacking any detectable surface signatures of that life (laboratory examples are provided); and planets with life, where the concentrations of atmospheric gases produced or removed by biota are impossible to disentangle from abiotic processes because of the lack of detailed knowledge of planetary conditions (the 'problem of exoplanet thermodynamic uncertainty'). A rejection of the hypothesis would require that the origin of life usually occurs on habitable planets, that spectrally detectable pigments and/or metabolisms that produce unequivocal biosignature gases (e.g. oxygenic photosynthesis) usually evolve and that the organisms that harbour them usually achieve a sufficient biomass to produce biosignatures detectable to alien astronomers.
Development of a luminescence planetary surface dating instrument
NASA Astrophysics Data System (ADS)
Jain, M.; Lapp, T.; Andersen, M. T.; Hannemann, S.; Murray, A. S.; Duller, G. A. T.; Merrrisen, J.
2012-04-01
Luminescence dating (LD) is uniquely positioned for absolute, in-situ, dating of recent (< 1Ma) events on Mars such as the formation of sedimentary landforms, volcanic rocks and salt precipitates. These data can in turn help understand and predict the impact of climate-driven changes on Mars, for example, atmosphere-land interactions, global sand and dust movements and redistribution of volatiles (H2O and CO2). This understanding is critical for any manned mission to Mars and for our understanding of the planetary surface evolution. Despite this potential, the technology transfer from terrestrial to in-situ Martian dating is not trivial. Here we first provide a brief overview of the scientific issues involved in luminescence dating on Mars (e.g. dosimetric characteristics of Martian materials and modelling of cosmic-ray dose rate) and then the technical constraints on an instrument design appropriate for remotely-programmable mobile use on the Martian surface. The challenge is to develop a miniaturised portable luminescence reader that is as sensitive as a laboratory-based instrument and at the same time has sufficient flexibility for fully automated performance. Such an instrument could provide stratigraphic ages if deployed on a rover with a sub-surface drilling capability, or provide a survey of surface chronologies over extensive areas. To this end we have designed and manufactured an 'elegant breadboard' Planetary Surface Dating Instrument (PSDI) in a project supported by ESA. The PSDI is light weight and compact (~1 kg, ~1.4 litres) and has 3 different reloadable sample positions which can be rotated to sit under 3 different optical subunits or an x-ray irradiator. The optical subunits consists of three different detection channels (one red and two UV/blue) each based on a miniature photomultiplier tube, and three types of laser light stimulation sources (two 915 nm, one 530 nm and one 405 nm) that can be operated in continuous-wave or pulsed mode. The samples can be heated using an innovative heating concept where the sample disc (aluminium) absorbs energy from an IR laser below and a thermopile detector ensures the temperature control. The samples can thus be heated in a controlled manner to ~300°C for thermoluminescence (TL) or to ~250°C for elevated temperature optically stimulated luminescence (OSL) measurements. Calibration doses are given by a miniature X-ray tube, although to reduce power consumption the irradiator may be replaced by an unshielded beta source in a flight model. There is an artificial phosphor chip fixed to the rotating plate for checks on 'in situ' performance, calibration or surface dose-rate measurements. The rotation of the samples is automatically controlled to ensure correct positioning for dose measurements, and for sample loading or unloading. The luminescence signals can be measured in 3D time-resolved mode; these signals give information on mineralogy as well as age. The PSDI has been tested thoroughly and the results show a standard deviation of 1-2% for repeated measurements using different optical schemes. In terms of measurements of Martian analogue basalt samples, the sensitivity of the PSDI is better than the standard laboratory reader that weighs ~80 kg. Moreover, the PSDI has a greater number of measurement schemes which can all be programmed and run remotely. This combination offers the flexibility required to date deposits of previously unknown luminescence/dosimetric characteristics. We conclude that this instrument is a very promising candidate for a future Mars mission.
NASA Astrophysics Data System (ADS)
McCraig, Michael A.; Osinski, Gordon R.; Cloutis, Edward A.; Flemming, Roberta L.; Izawa, Matthew R. M.; Reddy, Vishnu; Fieber-Beyer, Sherry K.; Pompilio, Loredana; van der Meer, Freek; Berger, Jeffrey A.; Bramble, Michael S.; Applin, Daniel M.
2017-03-01
Spectroscopy in planetary science often provides the only information regarding the compositional and mineralogical make up of planetary surfaces. The methods employed when curve fitting and modelling spectra can be confusing and difficult to visualize and comprehend. Researchers who are new to working with spectra may find inadequate help or documentation in the scientific literature or in the software packages available for curve fitting. This problem also extends to the parameterization of spectra and the dissemination of derived metrics. Often, when derived metrics are reported, such as band centres, the discussion of exactly how the metrics were derived, or if there was any systematic curve fitting performed, is not included. Herein we provide both recommendations and methods for curve fitting and explanations of the terms and methods used. Techniques to curve fit spectral data of various types are demonstrated using simple-to-understand mathematics and equations written to be used in Microsoft Excel® software, free of macros, in a cut-and-paste fashion that allows one to curve fit spectra in a reasonably user-friendly manner. The procedures use empirical curve fitting, include visualizations, and ameliorates many of the unknowns one may encounter when using black-box commercial software. The provided framework is a comprehensive record of the curve fitting parameters used, the derived metrics, and is intended to be an example of a format for dissemination when curve fitting data.
NASA Technical Reports Server (NTRS)
Carsey, Frank; Behar, Alberto
2004-01-01
We have continued to develop a concept for use of autonomous rovers, originally developed for use in planetary exploration, in polar science on Earth; the concept was the subject of a workshop, and this report summarizes and extends that workshop. The workshop on Antarctic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society on February 14 and 15, 2001 to discuss scientific objectives and benefits of the use of autonomous rovers. The participants enthusiastically viewed rovers as being uniquely valuable for such tasks as data taking on tedious or repetitive routes, traverses in polar night, difficult or hazardous routes, extremely remote regions, routes requiring only simple instrumentation, traverses that must be conducted at low speed, augments of manned traverses, and scientific procedures not compatible with human presence or combustion engines. The workshop has concluded that instrumented autonomous vehicles, of the type being developed for planetary exploration, have the potential to contribute significantly to the way science in conducted in Antarctica while also aiding planetary technology development, and engaging the public's interest. Specific objectives can be supported in understanding ice sheet mass balance, sea ice heat and momentum exchange, and surface air chemistry processes. In the interval since the workshop, we have concluded that organized program to employ such rovers to perform scientific tasks in the Fourth International Polar Year would serve the objectives of that program well.
Interactive intelligent remote operations: application to space robotics
NASA Astrophysics Data System (ADS)
Dupuis, Erick; Gillett, G. R.; Boulanger, Pierre; Edwards, Eric; Lipsett, Michael G.
1999-11-01
A set of tolls addressing the problems specific to the control and monitoring of remote robotic systems from extreme distances has been developed. The tools include the capability to model and visualize the remote environment, to generate and edit complex task scripts, to execute the scripts to supervisory control mode and to monitor and diagnostic equipment from multiple remote locations. Two prototype systems are implemented for demonstration. The first demonstration, using a prototype joint design called Dexter, shows the applicability of the approach to space robotic operation in low Earth orbit. The second demonstration uses a remotely controlled excavator in an operational open-pit tar sand mine. This demonstrates that the tools developed can also be used for planetary exploration operations as well as for terrestrial mining applications.
NASA Astrophysics Data System (ADS)
Wadhwa, M.
2016-12-01
The last few decades have seen revolutionary advances in the planetary sciences through remote observations (by spacecraft and Earth-based observatories) of many Solar System destinations and, in more recent years, even exoplanets around other stars. In parallel with this, ground-breaking developments in analytical capabilities and access to a greater variety of Solar System materials (through systematic and sustained meteorite collection programs as well as sample return missions) have led to significant insights that are complementary to those from remote observations and measurements. I will discuss two examples where the combination of remote observations and sample analyses has the potential to provide a more holistic picture of Solar System formation and evolution: 1) High-precision analyses of radiogenic isotopes in primitive and differentiated meteoritic materials, which are yielding a detailed high-resolution chronology of the first 10 million years of Solar System history. Such investigations are providing the chronological framework for the formation and evolution of small bodies (including comets, asteroids and Kuiper Belt Objects) in our Solar System that are the targets of recent spacecraft missions such as NASA's Dawn and New Horizons missions and ESA's Rosetta mission. 2) In-situ analyses of hydrogen isotope compositions and H2O abundances in meteorites from Mars and Vesta, which are giving constraints on the inventory and source of water and other volatiles in these planetary bodies. These studies are providing insights complementary to those about Mars from NASA's Mars Science Laboratory and Mars Atmosphere and Volatile Evolution (MAVEN) missions, and about Vesta from NASA's Dawn mission.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] Heavy water ice clouds almost completely obscure the surface in Vastitas Borealis.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Image information: VIS instrument. Latitude 69.5, Longitude 283.6 East (76.4 West). 19 meter/pixel resolution.Spatial and Seasonal Variability of Temperature in CO2 Emission from Mars' Mesosphere
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Kostiuk, Theodor; Hewagama, Tilak; Kolasinski, John R.; Henning, Wade; Fast, Kelly Elizabeth; Sonnabend, Guido; Sornig, Manuela
2017-10-01
We have observed non-local thermodynamic equilibrium (non-LTE) emission of carbon dioxide that probes Mars’ mesosphere in 2001, 2003, 2007, 2012, 2014, and 2016. These measurements were conducted at 10.6 μm wavelength using the Goddard Space Flight Center Heterodyne Instrument for Planetary Winds and Composition (HIPWAC) from the NASA Infrared Telescope Facility (IRTF) at resolving power (1-33)×106. The Maxwellian broadening of the emission line can be measured at this resolution, providing a direct determination of temperature in the mesosphere. The nonLTE line appears as a narrow emission core within a broad absorption formed by tropospheric CO2, which provides temperature information reaching down to the martian surface, while the mesospheric line probes temperature at about 60-80 km altitude. We will report on the spatial distribution of temperature and emission line strength with local solar time on Mars, with latitude, as well as long-term variability including seasonal effects that modify the overall thermal structure of the atmosphere. These remote measurements complement results from orbital spacecraft through access to a broad range of local solar time on each occasion.This work has been supported by the NASA Planetary Astronomy and Solar Systems Observations Programs
Measuring and interpreting X-ray fluorescence from planetary surfaces.
Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard
2008-11-15
As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.
Precise Chemical Analyses of Planetary Surfaces
NASA Technical Reports Server (NTRS)
Kring, David; Schweitzer, Jeffrey; Meyer, Charles; Trombka, Jacob; Freund, Friedemann; Economou, Thanasis; Yen, Albert; Kim, Soon Sam; Treiman, Allan H.; Blake, David;
1996-01-01
We identify the chemical elements and element ratios that should be analyzed to address many of the issues identified by the Committee on Planetary and Lunar Exploration (COMPLEX). We determined that most of these issues require two sensitive instruments to analyze the necessary complement of elements. In addition, it is useful in many cases to use one instrument to analyze the outermost planetary surface (e.g. to determine weathering effects), while a second is used to analyze a subsurface volume of material (e.g., to determine the composition of unaltered planetary surface material). This dual approach to chemical analyses will also facilitate the calibration of orbital and/or Earth-based spectral observations of the planetary body. We determined that in many cases the scientific issues defined by COMPLEX can only be fully addressed with combined packages of instruments that would supplement the chemical data with mineralogic or visual information.
FITS and PDS4: Planetary Surface Data Interoperability Made Easier
NASA Astrophysics Data System (ADS)
Marmo, C.; Hare, T. M.; Erard, S.; Cecconi, B.; Minin, M.; Rossi, A. P.; Costard, F.; Schmidt, F.
2018-04-01
This abstract describes how Flexible Image Transport System (FITS) can be used in planetary surface investigations, and how its metadata can easily be inserted in the PDS4 metadata distribution model.
Challenges of Communications and Tracking for Solar System Small Body Exploration
NASA Technical Reports Server (NTRS)
Rush, John J.; Lichten, Stephen M.; Srinivasan, Jeffrey M.
2011-01-01
This presentation will address: (1) Communications capabilities that will be needed for space missions for Small Planetary Body exploration (2) Utilization of large ground-based radar capabilities for Small Body remote sensing and mission planning
Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph
2018-06-01
Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
A Synergistic Approach to Interpreting Planetary Atmospheres
NASA Astrophysics Data System (ADS)
Batalha, Natasha E.
We will soon have the technological capability to measure the atmospheric composition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet's atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets. In order to demonstrate the intricacies in modeling terrestrial planets, I use early Mars as a case study. I leverage a combination of one-dimensional climate, photochemical and energy balance models in order to create one self-consistent model that closely matches currently available climate data. One-dimensional models can address several processes: the influence of greenhouse gases on heating, the effect of the planet's geological processes (i.e. volcanoes and the carbonatesilicate cycle) on the atmosphere, the effect of rainfall on atmospheric composition and the stellar irradiance. After demonstrating the number of assumptions required to build a model, I look towards what exactly we can learn from remote observations of temperate Earths and Super Earths. However, unlike in-situ observations from our own solar system, remote sensing techniques need to be developed and understood in order to accurately characterize exo-atmospheres. I describe the models used to create synthetic transit transmission observations, which includes models of transit spectroscopy and instrumental noise. Using these, I lay the framework for an information content-based approach to optimize our observations and maximize the retrievable information from exoatmospheres. First I test the method on observing strategies of the well-studied, low-mean-molecular weight atmospheres of warm-Neptunes and hot Jupiters. Upon verifying the methodology, I finally address optimal observing strategies for temperate, high-mean-molecular weight atmospheres (Earths/super-Earths). iv.
Exploring Planetary Analogs With an Ultracompact Near-Infrared Reflectance Instrument
NASA Astrophysics Data System (ADS)
Sobron, P.; Wang, A.
2017-12-01
Orbital reflectance spectrometers provide unique measurements of mineralogical features globally and repeatedly on planets and moons of our solar system. Mounted on landed spacecraft, reflectance sensors enable fine-scale investigations and can provide ground truth analyses to assess the validity of spectral remote sensing. We have developed a miniaturized, field-ready, active source NIR (1.14-4.76 μm) reflectance spectrometer (WIR) WIR enables in-situ, near real-time identification of water (structural or adsorbed), carbonates, sulfates, hydrated silicates, as well as C-H & N-H bonds in organic species. WIR is suited for lander/rover deployment in two modes: 1) In Traverse Survey Mode WIR is integrated into a rover wheel and performs nonstop synchronized data collection with every revolution of the wheel; large amounts of data points can be collected during a rover traverse that inform the spatial distribution of mineral phases; 2) In Point-Check Mode WIR is mounted on a robotic arm of a rover/lander and deployed on selected targets at planetary surfaces, or installed inside an analytical lab where samples from a drill/scoop are delivered for detailed analysis. Over the past 10 years we have deployed WIR in planetary analog settings, including hydrothermal springs in Svalbard (Norway) and High Andes (Chile); Arctic volcanoes in Svalbard; Arctic springs and permafrost in Axel Heiberg (Canada); Antarctic ice-covered lakes; saline playas in hyperarid deserts in the Tibetan Plateau (China) and the Atacama; high elevation ore deposits in the Andes and the Abitibi gold belt region (Canada); lava tubes in California; and acidic waters in Rio Tinto (Spain). We have recorded in-situ NIR reflectance spectra from these analogues and used improved spectral unmixing algorithms to determine the mineralogical composition at these sites. We have observed minerals consistent with sedimentary, mineralogical, morphological, and geochemical processes, some of which have been observed/predicted on other planets. In select cases, WIR data has provided critical ground truthing for remote sensing mineralogical investigations. At the Meeting, we will discuss our in-situ WIR analyses and path forward towards developing a flight version of WIR.
Electrostatic Phenomena on Planetary Surfaces
NASA Astrophysics Data System (ADS)
Calle, Carlos I.
2017-02-01
The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.
NASA Technical Reports Server (NTRS)
Glass, Brian J.; Thompson, S.; Paulsen, G.
2010-01-01
Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.
AutoCNet: A Python library for sparse multi-image correspondence identification for planetary data
NASA Astrophysics Data System (ADS)
Laura, Jason; Rodriguez, Kelvin; Paquette, Adam C.; Dunn, Evin
2018-01-01
In this work we describe the AutoCNet library, written in Python, to support the application of computer vision techniques for n-image correspondence identification in remotely sensed planetary images and subsequent bundle adjustment. The library is designed to support exploratory data analysis, algorithm and processing pipeline development, and application at scale in High Performance Computing (HPC) environments for processing large data sets and generating foundational data products. We also present a brief case study illustrating high level usage for the Apollo 15 Metric camera.
Reports of Planetary Geology Program, 1981
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler)
1981-01-01
Abstracts of 205 reports from Principal investigators of NASA's Planetary Geology Program succinctly summarize work conducted and reflect the significant accomplishments. The entries are arranged under the following topics: (1) Saturnian satellites; (2) asteroids, comets and Galilean satellites; (3) cratering processes and landform development; (4) volcanic processes and landforms; (5) Aerolian processes and landforms; (6) fluvial, preglacial, and other processes of landform development; (7) Mars polar deposits, volatiles, and climate; (8) structure, tectonics, and stratigraphy; (9) remote sensing and regolith chemistry; (10) cartography and geologic mapping; and (11) special programs.
Planetary Geology: A Teacher's Guide with Activities in Physical and Earth Sciences.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
This educator's guide discusses planetary geology. Exercises are grouped into five units: (1) introduction to geologic processes; (2) impact cratering activities; (3) planetary atmospheres; (4) planetary surfaces; and (5) geologic mapping. Suggested introductory exercises are noted at the beginning of each exercise. Each activity includes an…
The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z
NASA Technical Reports Server (NTRS)
1994-01-01
Various papers on lunar and planetary science are presented, covering such topics as: impact craters, tektites, lunar geology, lava flow, geodynamics, chondrites, planetary geology, planetary surfaces, volcanology, tectonics, topography, regolith, metamorphic rock, geomorphology, lunar soil, geochemistry, petrology, cometary collisions, geochronology, weathering, and meteoritic composition.
Remote Sensing of Potential Biosignatures from Rocky, Liquid, or Icy (Exo)Planetary Surfaces.
Poch, Olivier; Frey, Joachim; Roditi, Isabel; Pommerol, Antoine; Jost, Bernhard; Thomas, Nicolas
2017-03-01
To detect signs of life by remote sensing on objects of our Solar System and on exoplanets, the characterization of light scattered by surface life material could complement possible clues given by the atmospheric composition. We reviewed the reflectance spectra of a broad selection of major biomolecules that constitute terrestrial carbon-based life from 0.4 to 2.4 μm, and we discuss their detectability through atmospheric spectral windows. Biomolecule features in the near-infrared (0.8-2.4 μm) will likely be obscured by water spectral features and some atmospheric gases. The visible range (0.4-0.8 μm), including the strong spectral features of pigments, is the most favorable. We investigated the detectability of a pigmented microorganism (Deinococcus radiodurans) when mixed with silica sand, liquid water, and water-ice particles representative of diverse surfaces of potentially habitable worlds. We measured the visible to near-infrared reflectance spectra (0.4-2.4 μm) and the visible phase curves (at 0.45 and 0.75 μm) of the mixtures to assess how the surface medium and the viewing geometry affect the detectability of the microorganisms. The results show that ice appears to be the most favorable medium for the detection of pigments. Water ice is bright and featureless from 0.4 to 0.8 μm, allowing the absorption of any pigment present in the ice to be well noticeable. We found that the visible phase curve of water ice is the most strongly affected by the presence of pigments, with variations of the spectral slope by more than a factor of 3 with phase angles. Finally, we show that the sublimation of the ice results in the concentration of the biological material onto the surface and the consequent increase of its signal. These results have applications to the search for life on icy worlds, such as Europa or Enceladus. Key Words: Remote sensing-Biosignatures-Reflectance spectroscopy-Exoplanets-Spectroscopic biosignatures-Pigments. Astrobiology 17, 231-252.
NASA Astrophysics Data System (ADS)
Ivanova, T. N.; Lyupa, D. C.; Revenko, N. F.; Berkutova, T. A.; Silivanova, O. A.
2018-03-01
A lot of factors varied in time lead to instability of the grinding process. Besides, the method of grinding influences significantly the productivity and quality of processing. In this regard a creation of processes of intensive defect-free grinding on the basis of new constructive and technology solutions represents the scientific problem which is of great importance. One of such solutions is application of planetary face grinding which allows simultaneously changing the kinematics of movement, implementing discontinuous grinding. The distinctive features of such grinding are decreasing the heat release rate in a contact zone; ensuring intermittence of the process with a solid grinding wheel; reverse grinding; cutting by different edges of an abrasive grain; stabilization of working parameters of a grinding wheel; ensuring work of a grinding wheel in a self-sharpening mode. The design of the planetary grinding tool was developed for plane surface processing for implementation of the specified distinctive features of planetary grinding. The kinematics of shaping a surface by flat face diamond grinding has been investigated; manufacturing capabilities of planetary face grinding have been revealed, and ways of improvement of quality and productivity have been offered. The algorithm and the program to define the motion path of a grain depending on the given set of grinding factors were received. Optimization of the process of face diamond grinding using the planetary grinding device has been confirmed with the developed program and techniques to choose cutting conditions of planetary grinding and characteristics of grinding wheels for processing different materials. While studying the process of planetary grinding, special attention was paid to the research how processing conditions influence microgeometry of the processed surface made of steel 4X5M (Russian State Standard (GOST)). As a result of the executed research, it was established that surface roughness parameter Ra during the processing using the planetary grinding device is 35 - 40% less than when using the tool with the solid cutting surface. This phenomenon can be accounted for more uniform work of the cutting grains of the planetary grinding tool as the number of meetings of diamond grains with the surface being processed increases. At the same time, it should be noted that during the planetary grinding more intensive smoothing of tops of microroughnesses is observed that provides the creation of steadier cutting shape. The given method of calculation of cost value of grinding operation allows solving various manufacturing problems: to compare cost value of grinding different materials, grinding wheels of different parameters; to define the optimum grinding conditions.
HSI-Find: A Visualization and Search Service for Terascale Spectral Image Catalogs
NASA Astrophysics Data System (ADS)
Thompson, D. R.; Smith, A. T.; Castano, R.; Palmer, E. E.; Xing, Z.
2013-12-01
Imaging spectrometers are remote sensing instruments commonly deployed on aircraft and spacecraft. They provide surface reflectance in hundreds of wavelength channels, creating data cubes known as hyperspecrtral images. They provide rich compositional information making them powerful tools for planetary and terrestrial science. These data products can be challenging to interpret because they contain datapoints numbering in the thousands (Dawn VIR) or millions (AVIRIS-C). Cross-image studies or exploratory searches involving more than one scene are rare; data volumes are often tens of GB per image and typical consumer-grade computers cannot store more than a handful of images in RAM. Visualizing the information in a single scene is challenging since the human eye can only distinguish three color channels out of the hundreds available. To date, analysis has been performed mostly on single images using purpose-built software tools that require extensive training and commercial licenses. The HSIFind software suite provides a scalable distributed solution to the problem of visualizing and searching large catalogs of spectral image data. It consists of a RESTful web service that communicates to a javascript-based browser client. The software provides basic visualization through an intuitive visual interface, allowing users with minimal training to explore the images or view selected spectra. Users can accumulate a library of spectra from one or more images and use these to search for similar materials. The result appears as an intensity map showing the extent of a spectral feature in a scene. Continuum removal can isolate diagnostic absorption features. The server-side mapping algorithm uses an efficient matched filter algorithm that can process a megapixel image cube in just a few seconds. This enables real-time interaction, leading to a new way of interacting with the data: the user can launch a search with a single mouse click and see the resulting map in seconds. This allows the user to quickly explore each image, ascertain the main units of surface material, localize outliers, and develop an understanding of the various materials' spectral characteristics. The HSIFind software suite is currently in beta testing at the Planetary Science Institute and a process is underway to release it under an open source license to the broader community. We believe it will benefit instrument operations during remote planetary exploration, where tactical mission decisions demand rapid analysis of each new dataset. The approach also holds potential for public spectral catalogs where its shallow learning curve and portability can make these datasets accessible to a much wider range of researchers. Acknowledgements: The HSIFind project acknowledges the NASA Advanced MultiMission Operating System (AMMOS) and the Multimission Ground Support Services (MGSS). E. Palmer is with the Planetary Science Institute, Tucson, AZ. Other authors are with the Jet Propulsion Laboratory, Pasadena, CA. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. Copyright 2013, California Institute of Technology.
1998-09-30
KENNEDY SPACE CENTER, FLA. -- Inside the Payload Changeout Room (PCR) in the Rotating Service Structure (RSS) at Launch Pad 39-B, technicians in clean suits and tethers prepare to move the payloads for mission STS-95 through the open doors of the payload bay (right) of Space Shuttle Discovery. At the top of the RSS is the Spacehab module; below it are the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and International Extreme Ultraviolet Hitchhiker (IEH-3). The PCR is an environmentally controlled facility with seals around the mating surface that fit against the orbiter or payload canister and permit the payload bay or canister doors to be opened and cargo removed without exposing it to outside air and contaminants. Payloads are installed vertically in the orbiter using the extendable payload ground handling mechanism. Fixed and extendable work platforms provide work access in the PCR. The SPACEHAB single module involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Mission STS-95 is scheduled to launch Oct. 29, 1998
1998-09-30
KENNEDY SPACE CENTER,FLA. -- Inside the Payload Changeout Room (PCR) in the Rotating Service Structure (RSS) at Launch Pad 39-B, technicians in clean suits and tethers prepare to move the payloads for mission STS-95 through the open doors of the payload bay (left) of Space Shuttle Discovery. At the top of the RSS is the Spacehab module; below it are the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and the International Extreme Ultraviolet Hitchhiker (IEH-3). The PCR is an environmentally controlled facility with seals around the mating surface that fit against the orbiter or payload canister and permit the payload bay or canister doors to be opened and cargo removed without exposing it to outside air and contaminants. Payloads are installed vertically in the orbiter using the extendable payload ground handling mechanism. Fixed and extendable work platforms provide work access in the PCR. The SPACEHAB single module involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Mission STS-95 is scheduled to launch Oct. 29, 1998
PROGRA2 experiment: new results for dust clouds and regoliths
NASA Astrophysics Data System (ADS)
Renard, J.-B.; Hadamcik, E.; Worms, J.-C.; Levasseur-Regourd, A.-C.; Daugeron, D.
With the CNES-sponsored PROGRA2 facility, linear polarization of scattered light is performed on various types of dust clouds in microgravity during parabolic flights onboard the CNES- and ESA-sponsored A300 Zéro-G aircraft. Clouds of fluffy aggregates are also studied on the ground when lifted by an air-draught. The effect of the physical properties of the particles, such as the grains size and size distribution, the real part of the refractive index, and the structure is currently being studied. The size distribution of the agglomerates is measured in the field of view from the polarized component images. The large number of phase curves already obtained in the various conditions of measurements, in order to build a database (about 160 curves) allows us to better connect the physical properties with the observed polarization of the dust in the clouds. The aim is to compare these curves with those obtained in the solar system by remote-sensing and in-situ techniques for interplanetary dust, cometary coma, and solid particles in planetary atmospheres (Renard et al., 2003). Measurements on layers of particles (i.e. on the ground) are then compared with remote measurements on asteroidal regoliths and planetary surfaces. New phase curves will be presented and discussed i.e. for quartz samples, crystals, fluffy mixtures of alumina and silica, and a high porosity ``regolith'' analogue made of micron-sized silica spheres. This work will contribute to the choice of the samples to be studied with the IMPACT/ICAPS instrument onboard the ISS. J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms and A.-C. Levasseur-Regourd (2003). Polarization imaging of dust cloud particles: improvement and applications of the PROGRA2 instrument, ASR 31, 12, 2511-2518.
Los Alamos on Radio Café: Nina Lanza
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanza, Nina; Domandi, Mary-Charlotte
2017-04-11
First up in the new series is Los Alamos National Laboratory’s Nina Lanza from the Space and Remote Sensing group. Lanza is a planetary geologist who has been part of the Mars Curiosity Rover “ChemCam” team since 2012.
Visualization of Kepler’s laws of planetary motion
NASA Astrophysics Data System (ADS)
Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong
2017-03-01
For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler’s laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler’s laws of planetary motion to be visualized and will contribute to improving the manipulative ability of middle school students and the accessibility of classroom education.
An abstract model for radiative transfer in an atmosphere with reflection by the planetary surface
NASA Astrophysics Data System (ADS)
Greenberg, W.; van der Mee, C. V. M.
1985-07-01
A Hilbert-space model is developed that applies to radiative transfer in a homogeneous, plane-parallel planetary atmosphere. Reflection and absorption by the planetary surface are taken into account by imposing a reflective boundary condition. The existence and uniqueness of the solution of this boundary value problem are established by proving the invertibility of a scattering operator using the Fredholm alternative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio
The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (i.e., by defining a “surface water zone (SWZ)”)more » in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.« less
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] Released 8 September 2003The degraded remains of this crater central peak have a surface cover that is characteristic of high latitudes. This type of surface material is thought to be a mixture of dust and ice. The nameless crater that this central peak is found in is approximately 150 km in diameter and is located in the southern highlands.Image information: VIS instrument. Latitude -51.6, Longitude 231.4 East (128.6 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Mars Sample Return without Landing on the Surface
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Jones, Steven M.; Yen, A. S.
2000-01-01
Many in the science community want a Mars sample return in the near future, with the expectation that it will provide in-depth information, significantly beyond what we know from remote sensing, limited in-situ measurements, and work with Martian meteorites. Certainly, return of samples from the Moon resulted in major advances in our understanding of both the geologic history of our planetary satellite, and its relationship to Earth. Similar scientific insights would be expected from analyses of samples returned from Mars. Unfortunately, Mars-lander sample-return missions have been delayed, for the reason that NASA needs more time to review the complexities and risks associated with that type of mission. A traditional sample return entails a complex transfer-chain, including landing, collection, launch, rendezvous, and the return to Earth, as well as an evaluation of potential biological hazards involved with bringing pristine Martian organics to Earth. There are, however, means of returning scientifically-rich samples from Mars without landing on the surface. This paper discusses an approach for returning intact samples of surface dust, based on known instrument technology, without using an actual Martian lander.
The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
2005-01-01
The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.
Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: petrology, petrography, meteoritic composition, planetary geology, atmospheric composition, astronomical spectroscopy, lunar geology, Mars (planet), Mars composition, Mars surface, volcanology, Mars volcanoes, Mars craters, lunar craters, mineralogy, mineral deposits, lithology, asteroids, impact melts, planetary composition, planetary atmospheres, planetary mapping, cosmic dust, photogeology, stratigraphy, lunar craters, lunar exploration, space exploration, geochronology, tectonics, atmospheric chemistry, astronomical models, and geochemistry.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. V.; Yerazunis, S. W.
1973-01-01
Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement.
Jorge-Villar, Susana E; Edwards, Howell G M; Benning, Liane G
2011-11-01
The discovery of small, spherical nodules termed 'blueberries' in Gusev Crater on Mars, by the NASA rover Opportunity has given rise to much debate on account of their interesting and novel morphology. A terrestrial analogue in the form of spherical nodules of similar size and morphology has been analysed using Raman spectroscopy; the mineralogical composition has been determined and evidence found for the biological colonisation of these nodules from the spectral signatures of cyanobacterial protective biochemical residues such as scytonemin, carotenoids, phycocyanins and xanthophylls. This is an important result for the recognition of future sites for the planned astrobiological exploration of planetary surfaces using remote robotic instrumentation in the search for extinct and extant life biosignatures and for the expansion of putative terrestrial Mars analogue geological niches and morphologies.
NASA Astrophysics Data System (ADS)
Spence, H. E.
2017-12-01
We examine and compare the energetic particle ionizing radiation environments at airless planetary surfaces throughout the solar system. Energetic charged particles fill interplanetary space and bathe the environments of planetary objects with a ceaseless source of sometimes powerful yet ever-present ionizing radiation. In turn, these charged particles interact with planetary bodies in various ways, depending upon the properties of the body as well as upon the nature of the charged particles themselves. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaisance Orbiter (LRO), launched in 2009, continues to provide new insights into the ways by which the lunar surface is influenced by these energetic particles. In this presentation, we briefly review some of these mechanisms and how they operate at the Moon, and then compare and contrast the radiation environments at other atmospherereless planetary objects within our solar system that are potential future human exploration targets. In particular, we explore two primary sources of ionizing radiation, galactic cosmic rays (GCR) and solar energetic particles (SEP), in the environments of planetary objects that have weak or absent atmospheres and intrinsic magnetic fields. We motivate the use of simplified scaling relationships with heliocentric distance to estimate their intensity, which then serves as a basis for estimating the relative importance of various energetic particle and planetary surface physical interactions, in the context of humankind's expanding explorations beyond low-Earth orbit.
Ultra Low Temperature Ultra Low Power Instrument Packages for Planetary Surfaces
NASA Technical Reports Server (NTRS)
Clark, P. E.; Millar, P. S.; Beaman, B.; Yeh, P. S.; Cooper, L.; Feng, S.; Young, E.
2010-01-01
Achievement of solar system exploration roadmap goals will involve robotic or human deployment and longterm operation of surface science packages remote from human presence, thus requiring autonomous, self-powered operation. The major challenge such packages face will be operating during long periods of darkness in extreme cold potentially without the Pu238 based power and thermal systems available to Apollo era packages (ALSEP). Development of such science payloads will thus require considerable optimization of instrument and subsystem design, packaging and integration for a variety of planetary surface environments in order to support solar system exploration fully. Our work supports this process through the incorporation of low temperature operational components and design strategies which radically minimize power, mass, and cost while maximizing the performance under extreme surface conditions that are in many cases more demanding than those routinely experienced by spacecraft in deep space. Chief instruments/instrument package candidates include those which could provide long-term monitoring of the surface and subsurface environments for fundamental science and human crew safety. The initial attempt to design a 10 instrument environmental monitoring package with a solar/battery based power system led to a package with a unacceptably large mass (500 kg) of which over half was battery mass. In phase 1, a factor of 5 reduction in mass was achieved, first through the introduction of high performance electronics capable of operating at far lower temperature and then through the use of innovative thermal balance strategies involving the use of multi-layer thin materials and gravity-assisted heat pipes. In phase 2, reported here, involves strategies such as universal incorporation of ULT/ULP digital and analog electronics, and distributed or non-conventionally packaged power systems. These strategies will be required to meet the far more challenging thermal requirements of operating through a normal 28 day diurnal cycle. The limited temperature range of efficient battery operation remains the largest obstacle.
The Variation of Planetary Surfaces' Structure and Size Distribution with Depth
NASA Astrophysics Data System (ADS)
Charalambous, C. A.; Pike, W. T.
2014-12-01
The particle, rock and boulder size distribution of a planetary surface bring important implications not only to crucial aspects of future missions but also to the better understanding of planetary and earth sciences. By exploiting a novel statistical model, the evolution of particle fragmentation phenomena can be understood in terms of a descriptive maturity index, a measure of the number of fragmentation events that have produced the soil. This statistical model, which is mathematically constructed via fundamental physical principles, has been validated by terrestrial mineral grinding data and impact experiments. Applying the model to planetary surfaces, the number of fragmentation events is determined by production function curves that quantify the degree of impact cratering. The model quantifies the variation of the maturity index of the regolith with depth, with a high maturity index at the surface decreasing to a low index corresponding to the megaregolith of a blocky population and fractured bedrock. The measured lunar and martian particle size distributions at the surface is well matched by the model over several orders of magnitude. The continuous transition invoked by the model can be furthermore synthesised to provide temporal and spatial visualisations of the internal architecture of the Martian and Lunar regolith. Finally, the model is applied to the risk assessment and success criteria of future mission landings as well as drilling on planetary surfaces. The solutions to a variety of planetary fragmentation related problems can be found via exact mathematical foundations or through simulations using the particle population provided by the model's maturation.
Remote Raman Sensor System for Testing of Rocks and Minerals
NASA Technical Reports Server (NTRS)
Garcia, Christopher S.; Abedin, M. Nurul; Sharma, Shiv K.; Misra, Anupam K.; Ismail, Syed; Sanford, Stephen P.; Elsayed-Ali, Hani
2007-01-01
Recent and future explorations of Mars and lunar surfaces through rovers and landers have spawned great interest in developing an instrument that can perform in-situ analysis of minerals on planetary surfaces. Several research groups have anticipated that for such analysis, Raman spectroscopy is the best suited technique because it can unambiguously provide the composition and structure of a material. A remote pulsed Raman spectroscopy system for analyzing minerals was demonstrated at NASA Langley Research Center in collaboration with the University of Hawaii. This system utilizes a 532 nm pulsed laser as an excitation wavelength, and a telescope with a 4-inch aperture for collecting backscattered radiation. A spectrograph equipped with a super notch filter for attenuating Rayleigh scattering is used to analyze the scattered signal. To form the Raman spectrum, the spectrograph utilizes a holographic transmission grating that simultaneously disperses two spectral tracks on the detector for increased spectral range. The spectrum is recorded on an intensified charge-coupled device (ICCD) camera system, which provides high gain to allow detection of inherently weak Stokes lines. To evaluate the performance of the system, Raman standards such as calcite and naphthalene are analyzed. Several sets of rock and gemstone samples obtained from Ward s Natural Science are tested using the Raman spectroscopy system. In addition, Raman spectra of combustible substances such acetone and isopropanol are also obtained. Results obtained from those samples and combustible substances are presented.
NASA Technical Reports Server (NTRS)
Grant, J. A.; Schultz, P. H.
1993-01-01
In spite of the highly successful nature of recent planetary missions to the terrestrial planets and outer satellites a number of questions concerning the evolution of their surfaces remain unresolved. For example, knowledge of many characteristics of the stratigraphy and soils comprising the near-surface on Mars remains largely unknown, but is crucial in order to accurately define the history of surface processes and near-surface sedimentary record. Similar statements can be made regarding our understanding of near-surface stratigraphy and processes on other extraterrestrial planetary bodies. Ground penetrating radar (GPR) is a proven and standard instrument capable of imaging the subsurface at high resolution to 10's of meters depth in a variety of terrestrial environments. Moreover, GPR is portable and easily modified for rover deployment. Data collected with a rover mounted GPR could resolve a number of issues related to planetary surface evolution by defining shallow stratigraphic records and would provide context for interpreting results of other surface analyses (e.g. elemental or mineralogical). A discussion of existing GPR capabilities is followed first by examples of how GPR might be used to better define surface evolution on Mars and then by a brief description of possible GPR applications to the Moon and other planetary surfaces.
Studying turbulence by remote sensing systems during slope-2016 campaign
NASA Astrophysics Data System (ADS)
Moreira, Gregori de A.; Guerrero-Rascado, Juan L.; Benavent-Oltra, Jose A.; Ortiz-Amezcua, Pablo; Róman, Roberto; Landulfo, Eduardo; Alados-Arboledas, Lucas
2018-04-01
The Planetary Boundary Layer (PBL) is the lowermost part of the troposphere. In this work, we analysed some high order moments and PBL height detected continuously by three remote sensing systems: an elastic lidar, a Doppler lidar and a passive Microwave Radiometer, during the SLOPE-2016 campaign, which was held in Granada from May to August 2016. This study confirms the feasibility of these systems for the characterization of the PBL, helping us to justify and understand its behaviour along the day.
A Blind Test of Hapke's Photometric Model
NASA Technical Reports Server (NTRS)
Helfenstein, P.; Shepard, M. K.
2003-01-01
Hapke's bidirectional reflectance equation is a versatile analytical tool for predicting (i.e. forward modeling) the photometric behavior of a particulate surface from the observed optical and structural properties of its constituents. Remote sensing applications of Hapke s model, however, generally seek to predict the optical and structural properties of particulate soil constituents from the observed photometric behavior of a planetary surface (i.e. inverse-modeling). Our confidence in the latter approach can be established only if we ruthlessly test and optimize it. Here, we summarize preliminary results from a blind-test of the Hapke model using laboratory measurements obtained with the Bloomsburg University Goniometer (B.U.G.). The first author selected eleven well-characterized powder samples and measured the spectrophotometric behavior of each. A subset of twenty undisclosed examples of the photometric measurement sets were sent to the second author who fit the data using the Hapke model and attempted to interpret their optical and mechanical properties from photometry alone.
CIRS and CIRS-Lite as Designed for the Outer Planets: TSSM, EJSM, JUICE
NASA Technical Reports Server (NTRS)
Brasunas, J.; Abbas, M.; Bly, V.; Edgerton, M.; Hagopian, J.; Mamakos, W.; Morell, A.; Pasquale, B.; Smith, W.
2012-01-01
Passive spectroscopic remote sensing of planetary atmospheres and surfaces in the thermal infrared is a powerful tool for obtaining information about surface and atmospheric temperatures, composition, and dynamics (via the thermal wind equation). Due to its broad spectral coverage, the Fourier transform spectrometer (FTS) is particularly suited to the exploration and discovery of molecular species. NASA Goddard's Cassini CIRS FTS has given us important new insights into stratospheric composition and jets on Jupiter and Saturn, the cryo-vo1cano and thermal stripes on Enceladus, and the polar vortex on Titan. We have designed a lightweight successor to CIRS - called CIRS-lite - with improved spectral resolution to separate blended spectral lines (such as occur with isotopes). CIRS-lite includes four key components: (1) high Tc superconductor bolometer/carbon nano-tube (CNT) absorber (approx 87K, YBCO) (2) synthetic diamond beam splitter (approx 140K) (3) moving mirror mechanism with crossed-roller bearings ( approx 110 K) (4) single crystal silicon for the input telescope primary
NASA Technical Reports Server (NTRS)
Marshall, J.; Farrell, W.; Houser, G.; Bratton, C.
1999-01-01
In recent laboratory experiments, measurements were made of microsecond radio-wave (RF) bursts emitted by grains of sand as they energetically circulated in a closed, electrically ungrounded chamber. The bursts appeared to result from nanoscale electrical discharging from grain surfaces. Both the magnitude and wave form of the RF pulses varied with the type of material undergoing motion. The release of RF from electrical discharging is a well-known phenomenon, but it is generally measured on much larger energy scales (e.g., in association with lightning or electrical motors). This phenomenon might be used to detect, on planetary surfaces, the motion and composition of sand moving over dunes, the turbulent motion of fine particles in dust storms, highly-energetic grain and rock collisions in volcanic eruptions, and frictional grinding of granular materials in dry debris flows, landslides, and avalanches. The occurrence of these discharges has been predicted from theoretical considerations Additional information is contained in the original.
Neutron die-away experiment for remote analysis of the surface of the moon and the planets, phase 3
NASA Technical Reports Server (NTRS)
Mills, W. R.; Allen, L. S.
1972-01-01
Continuing work on the two die-away measurements proposed to be made in the combined pulsed neutron experiment (CPNE) for analysis of lunar and planetary surfaces is described. This report documents research done during Phase 3. A general exposition of data analysis by the least-squares method and the related problem of the prediction of variance is given. A data analysis procedure for epithermal die-away data has been formulated. In order to facilitate the analysis, the number of independent material variables has been reduced to two: the hydrogen density and an effective oxygen density, the latter being determined uniquely from the nonhydrogeneous elemental composition. Justification for this reduction in the number of variables is based on a set of 27 new theoretical calculations. Work is described related to experimental calibration of the epithermal die-away measurement. An interim data analysis technique based solely on theoretical calculations seems to be adequate and will be used for future CPNE field tests.
A mineralogical instrument for planetary applications
NASA Technical Reports Server (NTRS)
Blake, David F.; Vaniman, David T.; Bish, David L.
1994-01-01
The mineralogy of a planetary surface can be used to identify the provenance of soil or sediment and reveal the volcanic, metamorphic and/or sedimentological history of a particular region. We have discussed elsewhere the applications and the instrument design of possible X-ray diffraction and X-ray fluorescence (XRD/XRF) devices for the mineralogical characterization of planetary surfaces. In this abstract we evaluate some aspects of sample-detector geometry and sample collection strategies.
Algorithm of regional surface evaporation using remote sensing: A case study of Haihe basin, China
NASA Astrophysics Data System (ADS)
Xiong, Jun; Wu, Bingfang; Yan, Nana; Hu, Minggang
2007-11-01
Evapotranspiration (ET, or latent heat flux) is the most essential and uncertain factor in water resource management. Remote sensing is a promising tool for estimation of spatial distribution of ET at regional scale with limited ground observations. We developed an algorithm for estimating regional evapotranspiration from MODIS 1b data and ancillary meteorological data. The algorithm is an integration of Penman-Monteith equation and SEBS (Surface Energy Balance System) model. The former is a combination of the energy balance theory and the mass transfer method to compute the evaporation from cropped surfaces from standard climatological records of sunshine, temperature, humidity and wind speed by introducing resistance factors, and the latter determines the spatio-temporal variability of regional evaporative condition. First, we characterized key land surface parameters on satellite over passing days, including fractional vegetation cover (fc), roughness height for momentum (z0m), net radiation (Rn) and soil heat flux (G0); Second, SEBS was applied to partition the sensible heat (H) from latent heat (LE) in combination with Planetary Boundary Layer (PBL) information from seven meteorological stations. A parameterization of surface roughness was applied at mountainous area considering topographic influence; third, we chose available surface resistance (RS) as the temporal-scaling factor. With bulk surface resistance is properly defined, P-M methods is valid for both soil and vegetation canopy. We validated ET from this algorithm with limited actual observations of ET including 2 eddy covariance system dataset and 1 lysimeter sites. Water balance equation is used as a trend-analysis tool to show the consistency between rainfall and ET on four drainage area. As a result, the prototype products showed different accuracy and applicability on different underlying and time scale, which demonstrates the potential of this approach for estimating ET from 1-km to regional spatial scale in North China Plain.
NASA Astrophysics Data System (ADS)
Mateo-Marti, Eva
2014-08-01
The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the stability and presence of certain minerals on planetary surfaces and the potential habitability of microorganisms under various planetary environmental conditions can be studied using our apparatus. Therefore, these simulation chambers can address multiple different challenging and multidisciplinary astrobiological studies.
Activities at the Lunar and Planetary Institute
NASA Technical Reports Server (NTRS)
Burke, K.
1984-01-01
The scientific and administrative activities of the Lunar and Planetary Institute are summarized. Recent research relating to geophysics, planetary geology, the origin of the Earth and Moon, the lunar surface, Mars, meteorites, and image processing techniques is discussed.
Lunar and Planetary Science XXXVI, Part 18
NASA Technical Reports Server (NTRS)
2005-01-01
Topics discussed include: PoDS: A Powder Delivery System for Mars In-Situ Organic, Mineralogic and Isotopic Analysis Instruments Planetary Differentiation of Accreting Planetesimals with 26Al and 60Fe as the Heat Sources Ground-based Observation of Lunar Surface by Lunar VIS/NIR Spectral Imager Mt. Oikeyama Structure: First Impact Structure in Japan? Central Mounds in Martian Impact Craters: Assessment as Possible Perennial Permafrost Mounds (Pingos) A Further Analysis of Potential Photosynthetic Life on Mars New Insight into Valleys-Ocean Boundary on Mars Using 128 Pixels per Degree MOLA Data: Implication for Martian Ocean and Global Climate Change; Recursive Topography Based Surface Age Computations for Mars: New Insight into Surficial Processes That Influenced Craters Distribution as a Step Toward the Formal Proof of Martian Ocean Recession, Timing and Probability; Laser-induced Breakdown Spectroscopy: A New Method for Stand-Off Quantitative Analysis of Samples on Mars; Milk Spring Channels Provide Further Evidence of Oceanic, >1.7-km-Deep Late Devonian Alamo Crater, Southern Nevada; Exploration of Martian Polar Residual Caps from HEND/ODYSSEY Data; Outflow Channels Influencing Martian Climate: Global Circulation Model Simulations with Emplaced Water; Presence of Nonmethane Hydrocarbons on Pluto; Difference in Degree of Space Weathering on the Newborn Asteroid Karin; Circular Collapsed Features Related to the Chaotic Terrain Formation on Mars; A Search for Live (sup 244)Pu in Deep-Sea Sediments: Preliminary Results of Method Development; Some Peculiarities of Quartz, Biotite and Garnet Transformation in Conditions of Step-like Shock Compression of Crystal Slate; Error Analysis of Remotely-Acquired Mossbauer Spectra; Cloud Activity on Titan During the Cassini Mission; Solar Radiation Pressure and Transient Flows on Asteroid Surfaces; Landing Site Characteristics for Europa 1: Topography; and The Crop Circles of Europa.
Mars Infrared Spectroscopy: From Theory and the Laboratory To Field Observations
NASA Technical Reports Server (NTRS)
Kirkland, Laurel (Editor); Mustard, John (Editor); McAfee, John (Editor); Hapke, Bruce (Editor); Ramsey, Michael (Editor)
2002-01-01
The continuity and timely implementation of the Mars exploration strategy relies heavily on the ability of the planetary community to interpret infrared spectral data. However, the increasing mission rate, data volume, and data variety, combined with the small number of spectroscopists within the planetary community, will require a coordinated community effort for effective and timely interpretation of the newly acquired and planned data sets. Relevant spectroscopic instruments include the 1996 TES, 2001 THEMIS, 2003 Pancam, 2003 Mini-TES, 2003 Mars Express OMEGA, 2003 Mars Express PFS, and 2005 CFUSM. In light of that, leaders of the Mars spectral community met June 4-6 to address the question: What terrestrial theoretical, laboratory, and field studies are most needed to best support timely interpretations of current and planned visible infrared spectrometer data sets, in light of the Mars Program goals? A primary goal of the spectral community is to provide a reservoir of information to enhance and expand the exploration of Mars. Spectroscopy has a long history of providing the fundamental compositional discoveries in the solar system, from atmospheric constituents to surface mineralogy, from earth-based to spacecraft-based observations. However, such spectroscopic compositional discoveries, especially surface mineralogies, have usually come after long periods of detailed integration of remote observations, laboratory analyses, and field measurements. Spectroscopic information of surfaces is particularly complex and often is confounded by interference of broad, overlapping absorption features as well as confusing issues of mixtures, coatings, and grain size effects. Thus some spectroscopic compositional discoveries have come only after many years of research. However, we are entering an era of Mars exploration with missions carrying sophisticated spectrometers launching about every 2 years. It is critical that each mission provide answers to relevant questions to optimize the success of the next mission. That will not occur effectively unless the spectroscopic remote sensing data can be processed and understood on an approximate 2-year rate. Our current knowledge of spectral properties of materials and confounding effects of the natural environment are note well enough understood for the accurate interpretations needed for such ambitious and time critical exploration objectives. This workshop focused on identify ing critical gaps in moving the field towards the goal of rapid and accurate analysis and interpretation.
Ultra-Compact Raman Spectrometer for Planetary Explorations
NASA Technical Reports Server (NTRS)
Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul
2016-01-01
To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.
NASA Technical Reports Server (NTRS)
Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.
2014-01-01
The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.
False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth.
Reinhard, Christopher T; Olson, Stephanie L; Schwieterman, Edward W; Lyons, Timothy W
2017-04-01
Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth-oxygen (O 2 ), ozone (O 3 ), and methane (CH 4 ). We suggest that the canonical O 2 -CH 4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ∼4.5-billion-year history and that in general atmospheric O 2 /O 3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ∼500 million years. We further suggest that detecting atmospheric CH 4 would have been problematic for most of the last ∼2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures. Key Words: Biosignatures-Oxygen-Methane-Ozone-Exoplanets-Planetary habitability. Astrobiology 17, 287-297.
False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth
Olson, Stephanie L.; Schwieterman, Edward W.; Lyons, Timothy W.
2017-01-01
Abstract Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth—oxygen (O2), ozone (O3), and methane (CH4). We suggest that the canonical O2-CH4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ∼4.5-billion-year history and that in general atmospheric O2/O3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ∼500 million years. We further suggest that detecting atmospheric CH4 would have been problematic for most of the last ∼2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures. Key Words: Biosignatures—Oxygen—Methane—Ozone—Exoplanets—Planetary habitability. Astrobiology 17, 287–297. PMID:28418704
Lessons Learned in Science Operations for Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Young, K. E.; Graff, T. G.; Reagan, M.; Coan, D.; Evans, C. A.; Bleacher, J. E.; Glotch, T. D.
2017-01-01
The six Apollo lunar surface missions represent the only occasions where we have conducted scientific operations on another planetary surface. While these six missions were successful in bringing back valuable geologic samples, technology advances in the subsequent forty years have enabled much higher resolution scientific activity in situ. Regardless of where astronauts next visit (whether it be back to the Moon or to Mars or a Near Earth Object), the science operations procedures completed during this mission will need to be refined and updated to reflect these advances. We have undertaken a series of operational tests in relevant field environments to understand how best to develop the new generation of science operations procedures for planetary surface exploration.
Understanding Europa's Surface Texture from Remote Sensing Photopolarimetry
NASA Astrophysics Data System (ADS)
Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Shkuratov, Y.; Vandervoort, K.; Vides, C. L.
2016-12-01
We use a Goniometric Photopolarimeter (GPP) to make angular scattering reflectance and polarization measurements of the light reflected from particulate materials that simulate a planetary regolith. We compare these laboratory results to astronomical remote sensing observations in an effort to understand the chemical and textural state of object's surface. The GPP employs the Helmholtz Reciprocity Principle (1,2) -the incident light is linearly polarized - the intensity of the reflected component is measured. The light encounters fewer optical surfaces, improving signal to noise. These lab data are physically equivalent to the astronomical data. Our reflectance and polarization phase curves of highly reflective, fine grained, media simulate the regolith of Jupiter's satellite Europa. Our laboratory data exhibit polarization phase curves that are remarkably similar to reports by experienced astronomers (4). Our previous reflectance phase curve data of the same materials also agree with the reflectance phase curves reported by same astronomical observers (5). We find these materials exhibit an increase in circular polarization ratio with decreasing phase angle (3). This suggests coherent backscattering (CB) of photons in the regolith (3). Shkuratov et al. report that the polarization properties of these particulate media are also consistent with the CB enhancement process (5). Our results replicate the astronomical data and indicate that Europa's regolith is fine-grained, highly porous with void space exceeding 90%. Future spacecraft missions to the Jovian system will enhance science return by incorporating angular scattering measurements of the reflectance and polarizatin of the surface. Minnaert, M. (1941).Asrophys. J., 93, 403-410. Hapke, B. W. (2012). ISBN 978-0-521-88349-8 Nelson, R. M. et al. (1998). Icarus, 131, 223-230. Rosenbush, V. et al. (2015). ISBN 978-1-107-04390-9, pp 340-359. Shkuratov, Yu. et al. (2002) Icarus 159, 396-416.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leifer, Ira; Melton, Christopher; Frash, Jason
Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and space-based remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response. Understanding urban atmospheric transport in the Los Angeles Basin, where topographic influences on transport patterns are significant, was improved by leveraging the Aliso Canyon leak as an atmospheric tracer. Plume characterization data was collected by the AutoMObile trace Gas (AMOG) Surveyor, a commuter carmore » modified for science. Mobile surface in situ CH 4 and winds were measured by AMOG Surveyor under Santa Ana conditions to estimate an emission rate of 365±30% Gg yr -1. Vertical profiles were collected by AMOG Surveyor by leveraging local topography for vertical profiling to identify the planetary boundary layer at ~700 m. Topography significantly constrained plume dispersion by up to a factor of two. The observed plume trajectory was used to validate satellite aerosol optical depth-inferred atmospheric transport, which suggested the plume first was driven offshore, but then veered back towards land. Numerical long-range transport model predictions confirm this interpretation. Lastly, this study demonstrated a novel application of satellite aerosol remote sensing for disaster response.« less
Leifer, Ira; Melton, Christopher; Frash, Jason; ...
2016-09-22
Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and space-based remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response. Understanding urban atmospheric transport in the Los Angeles Basin, where topographic influences on transport patterns are significant, was improved by leveraging the Aliso Canyon leak as an atmospheric tracer. Plume characterization data was collected by the AutoMObile trace Gas (AMOG) Surveyor, a commuter carmore » modified for science. Mobile surface in situ CH 4 and winds were measured by AMOG Surveyor under Santa Ana conditions to estimate an emission rate of 365±30% Gg yr -1. Vertical profiles were collected by AMOG Surveyor by leveraging local topography for vertical profiling to identify the planetary boundary layer at ~700 m. Topography significantly constrained plume dispersion by up to a factor of two. The observed plume trajectory was used to validate satellite aerosol optical depth-inferred atmospheric transport, which suggested the plume first was driven offshore, but then veered back towards land. Numerical long-range transport model predictions confirm this interpretation. Lastly, this study demonstrated a novel application of satellite aerosol remote sensing for disaster response.« less
Multi-Beam Surface Lidar for Lunar and Planetary Mapping
NASA Technical Reports Server (NTRS)
Bufton, Jack L.; Garvin, James B.
1998-01-01
Surface lidar techniques are now being demonstrated in low Earth orbit with a single beam of pulsed laser radiation at 1064 nm that profiles the vertical structure of Earth surface landforms along the nadir track of a spacecraft. In addition, a profiling laser altimeter, called MOLA, is operating in elliptical Martian orbit and returning surface topography data. These instruments form the basis for suggesting an improved lidar instrument that employs multiple beams for extension of sensor capabilities toward the goal of true, 3-dimensional mapping of the Moon or other similar planetary surfaces. In general the lidar waveform acquired with digitization of a laser echo can be used for laser distance measurement (i.e. range-to-the-surface) by time-of-flight measurement and for surface slope and shape measurements by examining the detailed lidar waveform. This is particularly effective when the intended target is the lunar surface or another planetary body free of any atmosphere. The width of the distorted return pulse is a first order measure of the surface incidence angle, a combination of surface slope and laser beam pointing. Assuming an independent and absolute (with respect to inertial space) measurement of laser beam pointing on the spacecraft, it is possible to derive a surface slope with-respect-to the mean planetary surface or its equipotential gravity surface. Higher-order laser pulse distortions can be interpreted in terms of the vertical relief of the surface or reflectivity variations within the area of the laser beam footprint on the surface.
NASA Astrophysics Data System (ADS)
Hetz, G.; Mushkin, A.; Blumberg, D. G.; Baer, G.; Trabelsky, E.
2012-12-01
Alluvial fan surfaces respond to geologic and climate changes as they record the deposition and erosion processes that govern their evolution, which amongst others is manifested in the micro and meso scale topography of the surface. Remote sensing provides a regional view that is very useful for mapping. Some previous publications have demonstrated that relative dating can also be achieved by remote sensing using techniques common in planetary geology such as overlap relationships. This work focuses on the use of radar backscatter as suggested originally by Evans et al., (1992) to map ages but here we will try to provide an absolute geologic age. The objective of this paper is to demonstrate the use of radar backscatter to constrain surface roughness as a calibrated proxy for estimating age of alluvial surfaces. With the unique regional spatial perspective provided by spaceborne imaging, we aim at providing a new and complementary regional perspective for studying neotectonic and recent landscape evolution processes as well as paleoclimate. Moreover, the method (by radar backscattering measure) can be applied to the geomorphology of other planets. The current study is located in the southeastern part of the Negev desert, Israel on the late Pleistocene - Holocene Shehoret alluvial fan sequence. High resolution (0.5 cm) 3D roughness measurements were collected using a ground-based LIDAR (Leica HDS 3000) and these show a robust relationship between independently obtained OSL surface age and surface roughness; the fan surfaces become smoother with time over 103-105 yr timescales. Spaceborne backscatter radar data respond primarily to surface slope, roughness at a scale comparable to the radar wavelength, and other parameters such as dielectric properties of the surface. Therefore, radar can provide a good quantitative indication of surface roughness in arid zones, where vegetation cover is low. Preliminary results show a relationship between surface age and roughness and the radar cross section extracted from polarimetric spaceborne data. The best result is found in cross polarization (HV), L-band measured at an incidence angle of 38°.
NASA Astrophysics Data System (ADS)
Berczi, Sz.; Hargitai, H.; Horvath, A.; Illes, E.; Kereszturi, A.; Mortl, M.; Sik, A.; Weidinger, T.; Hegyi, S.; Hudoba, Gy.
Planetary science education needs new forms of teaching. Our group have various initiatives of which a new atlas series about the studies of the Solar System materials, planetary surfaces and atmospheres, instrumental field works with robots (landers, rovers) and other beautiful field work analog studies. Such analog studies are both used in comparative planetology as scientific method and it also plays a key role in planetary science education. With such initiatives the whole system of the knowledge of terrestrial geology can be transformed to the conditions of other planetary worlds. We prepared both courses and their textbooks in Eötvös University in space science education and edited the following educational materials worked out by the members of our space science education and research group: (1): Planetary and Material Maps on: Lunar Rocks, Meteorites (2000); (2): Investigating Planetary Surfaces with the Experimental Space Probe Hunveyor Constructed on the Basis of Surveyor (2001); (3): Atlas of Planetary Bodies (2001); (4): Atlas of Planetary Atmospheres (2002); (5): Space Research and Geometry (2002); (6): Atlas of Micro Environments of Planetary Surfaces (2003); (7): Atlas of Rovers and Activities on Planetary Surfaces (2004); (8): Space Research and Chemistry (2005); (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (2005); References: [1] Bérczi Sz., Hegyi S., Kovács Zs., Fabriczy A., Földi T., Keresztesi M., Cech V., Drommer B., Gránicz K., Hevesi L., Borbola T., Tóth Sz., Németh I., Horváth Cs., Diósy T., Kovács B., Bordás F., Köll˝ Z., Roskó F., Balogh Zs., Koris A., o 1 Imrek Gy. (Bérczi Sz., Kabai S. Eds.) (2002): Concise Atlas of the Solar System (2): From Surveyor to Hunveyor. How we constructed an experimental educational planetary lander model. UNICONSTANT. Budapest-Pécs-Szombathely-Püspökladány. [2] Bérczi Sz., Hargitai H., Illés E., Kereszturi Á., Sik A., Földi T., Hegyi S., Kovács Zs., Mörtl M., Weidinger T. (2004): Concise Atlas of the Solar System (6): Atlas of Microenvironments of Planetary surfaces. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány; [3] Szaniszló Bérczi, Henrik Hargitai, Ákos Kereszturi, András Sik (2005): Concise Atlas on the Solar System (3): Atlas of Planetary Bodies. ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport. Budapest, [4] Szaniszló Bérczi, Tivadar Földi, Péter Gadányi, Arnold Gucsik, Henrik Hargitai, Sándor Hegyi, György Hudoba, Sándor Józsa, Ákos Kereszturi, János Rakonczai, András Sik, György Szakmány, Kálmán Török (2005): Concise Atlas on the Solar System (9): Planetary Analog Studies and Simulations: Materials, Terrains, Morphologies, Processes. (Szaniszló Bérczi, editor) ELTE TTK Kozmikus Anyagokat Vizsgáló Ûrkutató Csoport, UNICONSTANT, Budapest-Püspökladány. 2
Small reactor power systems for manned planetary surface bases
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1987-01-01
A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.
Derivation of planetary topography using multi-image shape-from-shading
Lohse, V.; Heipke, C.; Kirk, R.L.
2006-01-01
In many cases, the derivation of high-resolution digital terrain models (DTMs) from planetary surfaces using conventional digital image matching is a problem. The matching methods need at least one stereo pair of images with sufficient texture. However, many space missions provide only a few stereo images and planetary surfaces often possess insufficient texture. This paper describes a method for the generation of high-resolution DTMs from planetary surfaces, which has the potential to overcome the described problem. The suggested method, developed by our group, is based on shape-from-shading using an arbitrary number of digital optical images, and is termed "multi-image shape-from-shading" (MI-SFS). The paper contains an explanation of the theory of MI-SFS, followed by a presentation of current results, which were obtained using images from NASA's lunar mission Clementine, and constitute the first practical application with our method using extraterrestrial imagery. The lunar surface is reconstructed under the assumption of different kinds of reflectance models (e.g. Lommel-Seeliger and Lambert). The represented results show that the derivation of a high-resolution DTM of real digital planetary images by means of MI-SFS is feasible. ?? 2006 Elsevier Ltd. All rights reserved.
Vassili Ivanovich Moroz: An Appreciation
NASA Technical Reports Server (NTRS)
Cruikshank, D. P.
2005-01-01
The 2005 LPSC special session, OMEGA At Mars, is dedicated to the work and memory of V. I. Moroz, in recognition of his pioneering studies in the characterization of planetary bodies with remotely sensed data, and his special interest in, and contributions to, the study of Mars.
Unified Planetary Coordinates System: A Searchable Database of Geodetic Information
NASA Technical Reports Server (NTRS)
Becker, K. J.a; Gaddis, L. R.; Soderblom, L. A.; Kirk, R. L.; Archinal, B. A.; Johnson, J. R.; Anderson, J. A.; Bowman-Cisneros, E.; LaVoie, S.; McAuley, M.
2005-01-01
Over the past 40 years, an enormous quantity of orbital remote sensing data has been collected for Mars from many missions and instruments. Unfortunately these datasets currently exist in a wide range of disparate coordinate systems, making it extremely difficult for the scientific community to easily correlate, combine, and compare data from different Mars missions and instruments. As part of our work for the PDS Imaging Node and on behalf of the USGS Astrogeology Team, we are working to solve this problem and to provide the NASA scientific research community with easy access to Mars orbital data in a unified, consistent coordinate system along with a wide variety of other key geometric variables. The Unified Planetary Coordinates (UPC) system is comprised of two main elements: (1) a database containing Mars orbital remote sensing data computed using a uniform coordinate system, and (2) a process by which continual maintainance and updates to the contents of the database are performed.
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; Harrington, Gary; Frisbie, Troy
2006-01-01
A simple and cost-effective, hyperspectral sun photometer for radiometric vicarious remote sensing system calibration, air quality monitoring, and potentially in-situ planetary climatological studies, was developed. The device was constructed solely from off the shelf components and was designed to be easily deployable for support of short-term verification and validation data collects. This sun photometer not only provides the same data products as existing multi-band sun photometers but also the potential of hyperspectral optical depth and diffuse-to-global products. As compared to traditional sun photometers, this device requires a simpler setup, less data acquisition time and allows for a more direct calibration approach. Fielding this instrument has also enabled Stennis Space Center (SSC) Applied Sciences Directorate personnel to cross-calibrate existing sun photometers. This innovative research will position SSC personnel to perform air quality assessments in support of the NASA Applied Sciences Program's National Applications program element as well as to develop techniques to evaluate aerosols in a Martian or other planetary atmosphere.
Laser-based mass spectrometry for in situ chemical composition analysis of planetary surfaces
NASA Astrophysics Data System (ADS)
Frey, Samira; Neuland, Maike B.; Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Broekmann, Peter; Wurz, Peter
2016-04-01
Mass spectrometry is an important analytical technique in space research. The chemical composition of planetary surface material is a key scientific question on every space mission to a planet, moon or asteroid. Chemical composition measurements of rocky material on the surface are of great importance to understand the origin and evolution of the planetary body.[1] A miniature laser ablation/ionisation reflectron- type time-of-flight mass spectrometer (instrument name LMS) was designed and built at the University of Bern for planetary research.[2] Despite its small size and light weight, the LMS instrument still maintains the same capabilities as large laboratory systems, which makes it suitable for its application on planetary space missions.[3-5] The high dynamic range of about eight orders of magnitude, high lateral (μm-level) and vertical (sub-nm level) resolution and high detection sensitivity for almost all elements (10 ppb, atomic fraction) make LMS a versatile instrument for various applications. LMS is a suitable instrument for in situ measurements of elemental and isotope composition with high precision and accuracy. Measurements of Pb- isotope abundances can be used for dating of planetary material. Measurements of bio-relevant elements allow searching for past or present life on a planetary surface. The high spatial resolution, both in lateral and vertical direction, is of considerable interest, e.g. for analysis of inhomogeneous, extraterrestrial samples as well as weathering processes of planetary material. References [1] P. Wurz, D. Abplanalp, M. Tulej, M. Iakovleva, V.A. Fernandes, A. Chumikov, and G. Managadze, "Mass Spectrometric Analysis in Planetary Science: Investigation of the Surface and the Atmosphere", Sol. Sys. Res., 2012, 46, 408. [2] U. Rohner, J.A. Whitby, P. Wurz, "A miniature laser ablation time of flight mass spectrometer for in situ planetary exploration" Meas. Sci. Tch., 2003, 14, 2159. [3] M. Tulej, A. Riedo, M.B. Neuland, S. Meyer, P. Wurz, N. Thomas, V. Grimaudo, P. Moreno-García, P. Broekmann, A. Neubeck and M. Ivarsson, "CAMAM: A miniature laser ablation ionisation mass spectrometer and microscope-camera system for in situ investigation of the composition and morphology of extraterrestrial materials", Geostand. Geoanal. Res., 2014, 38, 441. [4] A. Riedo, M. Neuland, S. Meyer, M. Tulej and P. Wurz, "Coupling of LMS with a fs-laser ablation ion source: elemental and isotope composition measurements", J. Anal. At. Spectrom., 2013, 28, 1256. [5] A. Riedo, S. Meyer, B. Heredia, M. Neuland, A. Bieler, M. Tulej, I. Leya, M. Iakovleva, K. Mezger and P. Wurz, "Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces", Planet. Space Sci., 2013, 87, 1.
Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life.
Schwieterman, Edward W; Kiang, Nancy Y; Parenteau, Mary N; Harman, Chester E; DasSarma, Shiladitya; Fisher, Theresa M; Arney, Giada N; Hartnett, Hilairy E; Reinhard, Christopher T; Olson, Stephanie L; Meadows, Victoria S; Cockell, Charles S; Walker, Sara I; Grenfell, John Lee; Hegde, Siddharth; Rugheimer, Sarah; Hu, Renyu; Lyons, Timothy W
2018-05-04
In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth's biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required to maintain short-lived biogenic gases as atmospheric signatures. We focus particularly on advances made since the seminal review by Des Marais et al. The purpose of this work is not to propose new biosignature strategies, a goal left to companion articles in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward. Key Words: Exoplanets-Biosignatures-Habitability markers-Photosynthesis-Planetary surfaces-Atmospheres-Spectroscopy-Cryptic biospheres-False positives. Astrobiology 18, xxx-xxx.
Sensor requirements for Earth and planetary observations
NASA Technical Reports Server (NTRS)
Chahine, Moustafa T.
1990-01-01
Future generations of Earth and planetary remote sensing instruments will require extensive developments of new long-wave and very long-wave infrared detectors. The upcoming NASA Earth Observing System (EOS) will carry a suite of instruments to monitor a wide range of atmospheric and surface parameters with an unprecedented degree of accuracy for a period of 10 to 15 years. These instruments will observe Earth over a wide spectral range extending from the visible to nearly 17 micrometers with a moderate to high spectral and spacial resolution. In addition to expected improvements in communication bandwidth and both ground and on-board computing power, these new sensor systems will need large two-dimensional detector arrays. Such arrays exist for visible wavelengths and, to a lesser extent, for short wavelength infrared systems. The most dramatic need is for new Long Wavelength Infrared (LWIR) and Very Long Wavelength Infrared (VLWIR) detector technologies that are compatible with area array readout devices and can operate in the temperature range supported by long life, low power refrigerators. A scientific need for radiometric and calibration accuracies approaching 1 percent translates into a requirement for detectors with excellent linearity, stability and insensitivity to operating conditions and space radiation. Current examples of the kind of scientific missions these new thermal IR detectors would enhance in the future include instruments for Earth science such as Orbital Volcanological Observations (OVO), Atmospheric Infrared Sounder (AIRS), Moderate Resolution Imaging Spectrometer (MODIS), and Spectroscopy in the Atmosphere using Far Infrared Emission (SAFIRE). Planetary exploration missions such as Cassini also provide examples of instrument concepts that could be enhanced by new IR detector technologies.
Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets
NASA Technical Reports Server (NTRS)
Des Marais, David J.; Harwit, Martin O.; Jucks, Kenneth W.; Kasting, James F.; Lin, Douglas N C.; Lunine, Jonathan I.; Schneider, Jean; Seager, Sara; Traub, Wesley A.; Woolf, Neville J.
2002-01-01
The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.
Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets.
Des Marais, David J; Harwit, Martin O; Jucks, Kenneth W; Kasting, James F; Lin, Douglas N C; Lunine, Jonathan I; Schneider, Jean; Seager, Sara; Traub, Wesley A; Woolf, Neville J
2002-01-01
The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.
Plasma motions in planetary magnetospheres
NASA Technical Reports Server (NTRS)
Hill, T. W.; Dessler, A. J.
1991-01-01
Interplanetary space is pervaded by a supersonic 'solar wind' plasma; five planets, in addition to the earth, have magnetic fields of sufficient strength to form the cometlike cavities called 'magnetospheres'. Comparative studies of these structures have indicated the specific environmental factor that can result in dramatic differences in the behavior of any pair of magnetospheres. Although planetary magnetospheres are large enough to serve as laboratories for in situ study of cosmic plasma and magnetic field behavior effects on particle acceleration and EM emission, much work remains to be done toward relating magnetospheric physics results to the study of remote astrophysical plasmas.
A bibliography of planetary geology principal investigators and their associates, 1981 - 1982
NASA Technical Reports Server (NTRS)
Plescia, J. B. (Compiler)
1982-01-01
Over 800 publications submitted by researchers supported through NASA's Planetary Geology Program are cited and an author/editor index is provided. Entries are listed under the following subjects: (1) general interest topics; (2) solar system, comets, asteroids, and small bodies; (3) geologic mapping, geomorphology, and stratigraphy; (4) structure, tectonics, geologic and geophysical evolution; (5) impact craters: morphology, density, and geologic studies; (6) volcanism; (7) fluvial, mass wasting, and periglacial processes; (8) Eolian studies; (9) regolith, volatile, atmosphere, and climate; (10) remote sensing, radar, and photometry; and (11) cartography, photogrammetry, geodesy, and altimetry.
Planetary Surface-Atmosphere Interactions
NASA Astrophysics Data System (ADS)
Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.
2013-09-01
Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.
Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.
2009-01-01
We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to understand that surficial materials (such as alluvium and volcanic ash deposits) are likely to be under-mapped yet are important because they obscure underlying units and contacts; (4) where possible, mapping multiple contact and structure types based on their varying certainty and exposure that reflect the perceived accuracy of the linework; (5) reviewing the regional context and searching for evidence of geologic activity that may have affected the map area yet for which evidence within the map area may be absent; and (6) for multi-authored maps, collectively analyzing the mapping relations, approaches, and methods throughout the duration of the mapping project with the objective of achieving a solid, harmonious product.
Planetary Science Educational Materials for Out-of-School Time Educators
NASA Astrophysics Data System (ADS)
Barlow, Nadine G.; Clark, Joelle G.
2017-10-01
Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings.
Planetary science: A lunar perspective
NASA Technical Reports Server (NTRS)
Taylor, S. R.
1982-01-01
An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.
ERIC Educational Resources Information Center
Urban, Michael J.
2013-01-01
Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…
The BepiColombo Serena/ELENA instrument: performances and testing
NASA Astrophysics Data System (ADS)
Orsini, Stefano; De Angelis, Elisabetta; Selci, Stefano; Di Lellis, Andrea; Leoni, Roberto; Rispoli, Rosanna; Colasanti, Luca; Vertolli, Nello; Mura, Alessandro; Milillo, Anna; D'Alessandro, Marco; Mattioli, Francesco; Maschietti, Daniele; Brienza, Daniele; Scheer, Juergen; Wurz, Peter
2013-04-01
The neutral sensor ELENA (Emitted Low-Energy Neutral Atoms) for the ESA cornerstone BepiColombo mission to Mercury (in the SERENA instrument package) is a new kind of low energetic neutral atoms instrument, mostly devoted to sputtering emission from planetary surfaces, from E ~20 eV up to E~5 keV, within 1-D (4.5°x76°). ELENA is a Time of Flight instrument, based on the novel concept of ultra-sonic oscillating shutter as Start section and MCP detector with 32 discrete anodes as a direct Stop section. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury allowing to investigate the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface via solar wind-induced ion sputtering (<1eV - >100 eV) as well as Hydrogen back-scattered at hundreds eV. The results of ELENA performance test, will be presented: the innovative Shutter system (Start section) operating at requested frequencies (around 43kHz), the ion rejection capability of double deflection system, the Stop detector, the electronic boards, the validation test.
Thermal Infrared Spectral Band Detection Limits for Unidentified Surface Materials
NASA Technical Reports Server (NTRS)
Kirkland, Laurel E.; Herr, Kenneth C.; Salisbury, John W.
2001-01-01
Infrared emission spectra recorded by airborne or satellite spectrometers can be searched for spectral features to determine the composition of rocks on planetary surfaces. Surface materials are identified by detections of characteristic spectral bands. We show how to define whether to accept an observed spectral feature as a detection when the target material is unknown. We also use remotely sensed spectra measured by the Thermal Emission Spectrometer (TES) and the Spatially Enhanced Broadband Array Spectrograph System to illustrate the importance of instrument parameters and surface properties on band detection limits and how the variation in signal-to-noise ratio with wavelength affects the bands that are most detectable for a given instrument. The spectrometer's sampling interval, spectral resolution, signal-to-noise ratio as a function of wavelength, and the sample's surface properties influence whether the instrument can detect a spectral feature exhibited by a material. As an example, in the 6-13 micrometer wavelength region, massive carbonates exhibit two bands: a very strong, broad feature at approximately 6.5 micrometers and a less intense, sharper band at approximately 11.25 micrometers. Although the 6.5-micrometer band is stronger and broader in laboratory-measured spectra, the 11.25-micrometer band will cause a more detectable feature in TES spectra.
The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2
NASA Astrophysics Data System (ADS)
Jaumann, R.; Schmitz, N.; Koncz, A.; Michaelis, H.; Schroeder, S. E.; Mottola, S.; Trauthan, F.; Hoffmann, H.; Roatsch, T.; Jobs, D.; Kachlicki, J.; Pforte, B.; Terzer, R.; Tschentscher, M.; Weisse, S.; Mueller, U.; Perez-Prieto, L.; Broll, B.; Kruselburger, A.; Ho, T.-M.; Biele, J.; Ulamec, S.; Krause, C.; Grott, M.; Bibring, J.-P.; Watanabe, S.; Sugita, S.; Okada, T.; Yoshikawa, M.; Yabuta, H.
2017-07-01
The MASCOT Camera (MasCam) is part of the Mobile Asteroid Surface Scout (MASCOT) lander's science payload. MASCOT has been launched to asteroid (162173) Ryugu onboard JAXA's Hayabusa 2 asteroid sample return mission on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth by 2020. MasCam was designed and built by DLR's Institute of Planetary Research, together with Airbus-DS Germany. The scientific goals of the MasCam investigation are to provide ground truth for the orbiter's remote sensing observations, provide context for measurements by the other lander instruments (radiometer, spectrometer and magnetometer), the orbiter sampling experiment, and characterize the geological context, compositional variations and physical properties of the surface (e.g. rock and regolith particle size distributions). During daytime, clear filter images will be acquired. During night, illumination of the dark surface is performed by an LED array, equipped with 4×36 monochromatic light-emitting diodes (LEDs) working in four spectral bands. Color imaging will allow the identification of spectrally distinct surface units. Continued imaging during the surface mission phase and the acquisition of image series at different sun angles over the course of an asteroid day will contribute to the physical characterization of the surface and also allow the investigation of time-dependent processes and to determine the photometric properties of the regolith. The MasCam observations, combined with the MASCOT hyperspectral microscope (MMEGA) and radiometer (MARA) thermal observations, will cover a wide range of observational scales and serve as a strong tie point between Hayabusa 2's remote-sensing scales (103-10^{-3} m) and sample scales (10^{-3}-10^{-6} m). The descent sequence and the close-up images will reveal the surface features over a broad range of scales, allowing an assessment of the surface's diversity and close the gap between the orbital observations and those made by the in-situ measurements. The MasCam is mounted inside the lander slightly tilted, such that the center of its 54.8° square field-of-view is directed towards the surface at an angle of 22° with respect to the surface plane. This is to ensure that both the surface close to the lander and the horizon are observable. The camera optics is designed according to the Scheimpflug principle, thus that the entire scene along the camera's depth of field (150 mm to infinity) is in focus. The camera utilizes a 1024×1024 pixel CMOS sensor sensitive in the 400-1000 nm wavelength range, peaking at 600-700 nm. Together with the f-16 optics, this yields a nominal ground resolution of 150 micron/px at 150 mm distance (diffraction limited). The camera flight model has undergone standard radiometric and geometric calibration both at the component and system (lander) level. MasCam relies on the use of wavelet compression to maximize data return within stringent mission downlink limits. All calibration and flight data products will be generated and archived in the Planetary Data System in PDS image format.
Rare Earth or Cosmic Zoo: Testing the Frequency of Complex Life in the Universe
NASA Astrophysics Data System (ADS)
Bains, W.; Schulze-Makuch, D.
2017-02-01
We propose how to test between two major hypotheses about the frequency of life in the universe (Rare Earth and Cosmic Zoo) using future remote sensing capabilities targeted at exoplanets and site visits of planetary bodies in our solar system.
Planetary benchmarks. [structural design criteria for radar reference devices on planetary surfaces
NASA Technical Reports Server (NTRS)
Uphoff, C.; Staehle, R.; Kobrick, M.; Jurgens, R.; Price, H.; Slade, M.; Sonnabend, D.
1978-01-01
Design criteria and technology requirements for a system of radar reference devices to be fixed to the surfaces of the inner planets are discussed. Offshoot applications include the use of radar corner reflectors as landing beacons on the planetary surfaces and some deep space applications that may yield a greatly enhanced knowledge of the gravitational and electromagnetic structure of the solar system. Passive retroreflectors with dimensions of about 4 meters and weighing about 10 kg are feasible for use with orbiting radar at Venus and Mars. Earth-based observation of passive reflectors, however, would require very large and complex structures to be delivered to the surfaces. For Earth-based measurements, surface transponders offer a distinct advantage in accuracy over passive reflectors. A conceptual design for a high temperature transponder is presented. The design appears feasible for the Venus surface using existing electronics and power components.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] The slumping of materials in the walls of this impact crater illustrate the continued erosion of the martian surface. Small fans of debris as well as larger landslides are observed throughout the THEMIS image.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Image information: VIS instrument. Latitude 40.9, Longitude 120.5 East (239.5 West). 19 meter/pixel resolution.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site]
This VIS image is on the southern flank of Alba Patera -- a large, old volcano. These graben likely formed as the volcano collaped into the empty magma chamber beneath the surface. Image information: VIS instrument. Latitude 31.9, Longitude 251.4 East (108.6 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Curiosity Overview of a Two-Year Odyssey
NASA Astrophysics Data System (ADS)
Meyer, Michael A.; Vasavada, Ashwin R.
2014-11-01
The Mars Science Laboratory rover, Curiosity, has been exploring the floor of Gale Crater for well over a Mars year and has now entered its extended mission. Major milestones have been met and exceeded, especially having addressed its prime scientific objective through exploring Yellowknife Bay, an ancient fluvial environment in Gale Crater, and determining that it could have supported microbial life. The mission has accomplished many first-time planetary activities, such as measurements new to planetary science (Laser Induced Breakdown Spectroscopy, X-ray Diffraction), measurements of the high-energy radiation flux at the surface, radiogenic and cosmogenic isotope age dating of rocks, and detection of martian organic carbon. In addition, many measurements have provided a significant refinement to those of previous missions such as atmospheric isotopic measurements relevant to atmospheric loss, methane content of the atmosphere, and the daily and seasonal change in atmospheric temperature and pressure. Curiosity has left its landing ellipse and is progressing toward the base of Mt. Sharp. The rover has had the opportunity to make additional measurements of fluvial sediments, including extensive remote and contact measurements, and analysis of a drilled samples. A summary of two Earth years of major findings of Curiosity, their implications, and more recent results (potentially including comet Siding Spring) will be presented at the meeting.
Mass Wasting In Planetary Environments: Implications For Seismicity
NASA Technical Reports Server (NTRS)
Weber, R. C.; Nahm, A. L.; Schmerr, N.
2015-01-01
On Earth, mass wasting events such as rock falls and landslides are well known conse-quences of seismic activity. Through a variety of re-mote sensing techniques, tectonic faults have been pos-itively identified on all four of the inner planets, Earth's Moon, several outer planet satellites, and aster-oids. High-resolution imaging has furthermore ena-bled positive identification of mass wasting events on many of these bodies. On Mars, it has been suggested that fallen boulders may be indicative of pale-omarsquakes. On the Moon, meteor impacts and moonquakes have likewise been suggested as potential triggering mechanisms for mass wasting. Indeed, we know from the Apollo era that the Moon experienc-es a wide variety of seismicity. Seismicity estimates play an important role in creat-ing regional geological characterizations, which are useful not only for understanding a planet's formation and evolution, but also of key importance to site selec-tion for landed missions. Here we investigate the re-gional effects of seismicity in planetary environments with the goal of determining whether surface features such as landslides and boulder trails on the Moon, Mars, and Mercury could be triggered by fault motion. We attempt to quantify the amount of near-source ground shaking necessary to mobilize the mate-rial observed in various instances of mass wasting.
Interactive Exploration Robots: Human-Robotic Collaboration and Interactions
NASA Technical Reports Server (NTRS)
Fong, Terry
2017-01-01
For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.
NASA Astrophysics Data System (ADS)
Hobson, V. R.; Shervais, J. W.
2004-12-01
Developing a method to characterize the physical, chemical and temporal aspects of terrestrial volcanics is a necessary step toward studying volcanics on other planetary bodies. Volcanoes and flows close to populated centers have been studied to varying degree, but remote volcanics remain largely unstudied. Remotely sensed data and derived information can be used to select field sites on Earth and on other planets. Scientists studying volcanics in dangerous areas would benefit from as much advance knowledge of the area as possible before beginning fieldwork. By using satellites and other remote sensing methods, information about the eruptive history can be derived and potentially, the hazard these remote volcanic areas may pose to current and future generations can be estimated. Using Landsat TM, ASTER and other remotely sensed data, the extent and characteristics of lava flows can be examined, but verification and refinement of these methods requires collection of data on the ground. Young lava flows at Craters of the Moon National Park were selected to test methods for remote mapping of recent volcanics. These late Pleistocene to Holocene basalt flows have been mapped to 1:100,000 scale (Kuntz et al, 1988) and have only minor vegetative cover. A range of remotely sensed spectral images were combined to optimize recovery of the mapped flows. Major flow units can be distinguished from each other using unsupervised classification of Landsat TM Bands 1-7, but differentiation of flows within these units presents greater difficulty. Principal component analyses revealed that during the daytime, thermal infrared variations outweigh variations in all other bands. Larger-scale features were observed like edge effects attributable to changes in surface roughness or texture that might occur at flow fronts or at boundaries between flows. Using a digitized version of the geologic map, TM and ASTER data for individual flows were isolated and examined for changes with distance from the source vent or fissure. Several flows were selected for further examination in the field, based on accessibility and scientific interest.
NASA Technical Reports Server (NTRS)
Cameron, W. S. (Editor); Vostreys, R. W. (Editor)
1982-01-01
Planetary and heliocentric spacecraft, including planetary flybys and probes, are described. Imaging, particles and fields, ultraviolet, infrared, radio science and celestial mechanics, atmospheres, surface chemistry, biology, and polarization are discussed.
Integrated optimization of planetary rover layout and exploration routes
NASA Astrophysics Data System (ADS)
Lee, Dongoo; Ahn, Jaemyung
2018-01-01
This article introduces an optimization framework for the integrated design of a planetary surface rover and its exploration route that is applicable to the initial phase of a planetary exploration campaign composed of multiple surface missions. The scientific capability and the mobility of a rover are modelled as functions of the science weight fraction, a key parameter characterizing the rover. The proposed problem is formulated as a mixed-integer nonlinear program that maximizes the sum of profits obtained through a planetary surface exploration mission by simultaneously determining the science weight fraction of the rover, the sites to visit and their visiting sequences under resource consumption constraints imposed on each route and collectively on a mission. A solution procedure for the proposed problem composed of two loops (the outer loop and the inner loop) is developed. The results of test cases demonstrating the effectiveness of the proposed framework are presented.
NASA Technical Reports Server (NTRS)
Mahdavi, M.; Giboni, K. L.; Vajda, S.; Schweitzer, J. S.; Truax, J. A.
1994-01-01
Detectors that will be used for planetary missions must have their responses calibrated in a reproducible manner. In addition, it is important to characterize a detector system at uneven portions of its life cycle, for example after exposure to different amounts of radiation. A calibration and response characterization facility has been constructed at Schlumberger-Doll Research for all types of gamma- and x-ray detectors that may be used for planetary measurement. This facility is currently being tested. Initial use is expected for the MARS 94 detectors. The facility will then also be available for calibrating other detectors as well as arrays of detectors such as the NEAR detector with its central Nal(TI) crystal surrounded with a large BGO crystal. Cadmium telluride detectors are investigated for applications in space explorations. These detectors show an energy resolution of 5 keV for the 122 keV 57Co line. Earlier reported polarization effects are not observed. The detectors can be used at temperatures up to 100 C, although with reduced energy resolution. The thickness of standard detectors is limited to 2 mm. These detectors become fully efficient at bias voltages above 200 V. Initial results for a 1 cm thick detector show that the quality of the material is inferior to the thinner standard detectors and hole trapping affects the pulse height. A detailed characterization of the detector is in progress. Prototypes of photomultipliers based on a Channel Electron Multiplier (CEM) are being built to study their performance. Such photomultipliers promise better timing characteristics and a higher dynamic range while being more compact and of lower in weight.
Getting Under Mars' Skin: The InSight Mission to the Deep Interior of Mars
NASA Astrophysics Data System (ADS)
Banerdt, W. B.; Asmar, S.; Banfield, D. J.; Christensen, U. R.; Clinton, J. F.; Dehant, V. M. A.; Folkner, W. M.; Garcia, R.; Giardini, D.; Golombek, M. P.; Grott, M.; Hudson, T.; Johnson, C. L.; Kargl, G.; Knapmeyer-Endrun, B.; Kobayashi, N.; Lognonne, P. H.; Maki, J.; Mimoun, D.; Mocquet, A.; Morgan, P.; Panning, M. P.; Pike, W. T.; Spohn, T.; Tromp, J.; Weber, R. C.; Wieczorek, M. A.; Russell, C. T.
2015-12-01
The InSight mission to Mars will launch in March of 2016, landing six months later in Elysium Planitia. In contrast to the 43 previous missions to Mars, which have thoroughly explored its surface features and chemistry, atmosphere, and searched for past or present life, InSight will focus on the deep interior of the planet. InSight will investigate the fundamental processes of terrestrial planet formation and evolution by performing the first comprehensive surface-based geophysical measurements on Mars. It will provide key information on the composition and structure of an Earth-like planet that has gone through most of the evolutionary stages of the Earth up to plate tectonics. The planet Mars can play a key role in understanding early terrestrial planet formation and evolution. Unlike the Earth, its overall structure appears to be relatively unchanged since the first few hundred million years after formation; unlike the Moon, it is large enough that the P-T conditions within the planet span an appreciable fraction of the terrestrial planet range. Thus the large-scale chemical and structural evidence preserved in Mars' interior should tell us a great deal about the processes of planetary differentiation and heat transport. InSight will undertake this investigation using the "traditional" geophysical techniques of seismology, precision tracking (for rotational dynamics), and heat flow measurement. The predominant challenge, in addition to the technical problems of the remote installation and operation of instruments on a distant and harsh planetary surface, comes from the practical limitation of working with data acquired from a single station. We will discuss how we overcome these limitations through the application of single-station seismic analysis techniques, which take advantage of some of the specific attributes of Mars, and global heat flow modeling, which allows the interpretation of a single measurement of a spatially inhomogeneous surface distribution.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 29 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. Like yesterday's image, the linear 'ripples' are water-ice clouds. As spring is deepening at the North Pole these clouds are becoming more prevalent. Image information: VIS instrument. Latitude 68.9, Longitude 135.5 East (224.5 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Machine Learning Applied to Dawn/VIR data of Vesta in view of MERTIS/BepiColombo.
NASA Astrophysics Data System (ADS)
Helbert, J.; D'Amore, M.; Le Scaon, R.; Maturilli, A.; Palomba, E.; Longobardo, A.; Hiesinger, H.
2016-12-01
Remote sensing spectroscopy is one of the most commonly used technique in planetary science and for recent instruments producing huge amount of data, classic methods could fails to unlock the full scientific potential buried in the measurements. We explored several Machine Learning techniques: multi-step clustering method is developed, using an image segmentation method, a stream algorithm, and hierarchical clustering. The MErcury Radiometer and Thermal infrared Imaging Spectrometer (MERTIS) is part of the payload of the Mercury Planetary Orbiter spacecraft of the ESA-JAXA BepiColombo mission. MERTIS's scientific goals are to infer rock-forming minerals, to map surface composition, and to study surface temperature variations on Mercury. The NASA mission DAWN carry a suites of instruments aimed at understanding the two most massive objects in the main asteroid belt: Vesta and Ceres. DAWN has already successfully completed the exploration of Vesta in September 2012 and it is now in the last phase of the mission around Ceres. To cope with the stream of data that will be delivered by MERTIS, we developed an algorithm that could aggregate new data as they come in during the mission giving the scientist a guide for the most interesting and new discovery on Mercury. The DAWN/VESTA VIR data is a testbed for the algorithm. The algorithm identified the Olivine outcrops around two craters on Vesta's surface described in Ammannito et al., 2013. We furthermore mimic the data acquisition process as if the mission were dumping the data live. The algorithm provides insightful information on the novelty and classes int he data as they are collected. This will enhance MERTIS targeting and maximize its scientific return during BepiColombo mission at Mercury. E Ammannito et al. "Olivine in an unexpected location on Vesta/'s surface". In: Nature 504.7478 (2013), pp. 122-125.
Remote radio observations of solar wind parameters upstream of planetary bow shocks
NASA Technical Reports Server (NTRS)
Macdowall, R. J.; Stone, R. G.; Gaffey, J. D., Jr.
1992-01-01
Radio emission is frequently produced at twice the electron plasma frequency 2fp in the foreshock region upstream of the terrestrial bow shock. Observations of this emission provide a remote diagnostic of solar wind parameters in the foreshock. Using ISEE-3 radio data, we present the first evidence that the radio intensity is proportional to the kinetic energy flux and to other parameters correlated with solar wind density. We provide a qualitative explanation of this intensity behavior and predict the detection of similar emission at Jupiter by the Ulysses spacecraft.
Fluvial geomorphology on Earth-like planetary surfaces: A review.
Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P
2015-09-15
Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.
This study considers the performance of 7 of the Weather Research and Forecast model boundary-layer (BL) parameterization schemes in a complex...schemes performed best. The surface parameters, planetary BL structure, and vertical profiles are important for US Army Research Laboratory
New Design and Improvement of Planetary Gear Trains
NASA Technical Reports Server (NTRS)
Handschuh, Robert (Technical Monitor); Litvin, Faydor L.; Fuentes, Alfonso; Vecchiato, Daniele; Gonzalez-Perez, Ignacio
2004-01-01
The development of new types of planetary and planetary face-gear drives is proposed. The new designs are based on regulating backlash between the gears and modifying the tooth surfaces to improve the design. The goal of this work is to obtain a nearly uniform distribution of load between the planet gears. In addition, a new type of planetary face-gear drive was developed in this project.
Thermal Modeling on Planetary Regoliths
NASA Technical Reports Server (NTRS)
Hale, A. S.; Hapke, B.W.
2002-01-01
The thermal region of the spectrum is one of special interest in planetary science as it is the only region where planetary emission is significant. Studying how planetary surfaces emit in the thermal infrared can tell us about their physical makeup and chemical composition, as well as their temperature profile with depth. This abstract will discuss a model of thermal energy transfer in planetary regoliths on airless bodies which includes both conductive and radiative processes while including the time dependence of the solar input function.
Approaches for Promoting Lunar and Planetary Science in Higher Education Curricula
NASA Astrophysics Data System (ADS)
Hurtado, J. M.; CenterLunar Science Education; Higher Education Consortium
2011-12-01
The Center for Lunar Science and Exploration (CLSE) at the Lunar and Planetary Institute has formed a higher-education consortium comprising a group of educators throughout the states of Texas and Oklahoma, all of who are committed to furthering the inclusion of lunar and planetary science in university-level curricula. Members of the Consortium represent the spectrum of higher-educational venues, from research universities to small colleges. They also teach planetary science in a range of settings, from specialized graduate/undergraduate courses to introductory undergraduate courses in general science that incorporate a wide range of other topics. One of the top-level goals of the Consortium is to provide an online forum and a network of educators that can share teaching materials, including: illustrations and animations of scientific concepts; syllabi and lesson plans; and laboratory and other exercises. These materials are being shared with the entire community through the CLSE website (http://www.lpi.usra.edu/nlsi/), and a series of workshops has been held with participating members of the Consortium to continue to develop and solicit content. A specific avenue of bringing lunar and planetary content into the classroom that has been discussed and experimented with over the past two years involves planetary analogs. Participatory exercises developed around the author's work with NASA analog field tests has been used in several classroom lab exercises in a planetary science course, a remote sensing course, and a introductory geologic mapping course. These efforts have proven fruitful in engaging the students in lunar and planetary exploration science.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] Released 20 August 2003The steep canyon walls and ridge forming layers of Valles Marineris are on display in this THEMIS picture. Landslides and gullies observed throughout the image are evidence to the continued mass wasting of the martian surface. Upon close examination of the canyon floor, small ripples that are likely migrating sand dunes are seen on the surface. Some slopes also display an interesting raked-like appearance that may be due to a combination of aeolian and gully forming processes.Image information: VIS instrument. Latitude -7.4, Longitude 274.2 East (85.8 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
Kindle, E. C.; Condon, E.; Casas, J.
1976-01-01
The research to develop the capabilities for sensing air pollution constituencies using satellite or airborne remote sensors is reported. Sensor evaluation and calibration are analyzed including data reduction. The proposed follow-on research is presented.
Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue
NASA Technical Reports Server (NTRS)
Zornetzer, Steve; Gage, Douglas
2005-01-01
Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion.
Search for and investigation of extraterrestrial forms of life
NASA Technical Reports Server (NTRS)
Rubin, A. B.
1975-01-01
Correct combinations of remote, analytic, and functional methods and measuring devices for detecting extraterrestrial life are elaborated. Considered are techniques and instruments available both on earth and aboard spacecraft and artificial planetary satellites. Emphasis is placed on the abiogenetic synthesis of organic compounds formed in photosynthesis on Mars.
Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.
2013-01-01
The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12–15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.
NASA Astrophysics Data System (ADS)
Neuland, M. B.; Grimaudo, V.; Mezger, K.; Moreno-García, P.; Riedo, A.; Tulej, M.; Wurz, P.
2016-03-01
A key interest of planetary space missions is the quantitative determination of the chemical composition of the planetary surface material. The chemical composition of surface material (minerals, rocks, soils) yields fundamental information that can be used to answer key scientific questions about the formation and evolution of the planetary body in particular and the Solar System in general. We present a miniature time-of-flight type laser ablation/ionization mass spectrometer (LMS) and demonstrate its capability in measuring the elemental and mineralogical composition of planetary surface samples quantitatively by using a femtosecond laser for ablation/ionization. The small size and weight of the LMS make it a remarkable tool for in situ chemical composition measurements in space research, convenient for operation on a lander or rover exploring a planetary surface. In the laboratory, we measured the chemical composition of four geological standard reference samples USGS AGV-2 Andesite, USGS SCo-l Cody Shale, NIST 97b Flint Clay and USGS QLO-1 Quartz Latite with LMS. These standard samples are used to determine the sensitivity factors of the instrument. One important result is that all sensitivity factors are close to 1. Additionally, it is observed that the sensitivity factor of an element depends on its electron configuration, hence on the electron work function and the elemental group in agreement with existing theory. Furthermore, the conformity of the sensitivity factors is supported by mineralogical analyses of the USGS SCo-l and the NIST 97b samples. With the four different reference samples, the consistency of the calibration factors can be demonstrated, which constitutes the fundamental basis for a standard-less measurement-technique for in situ quantitative chemical composition measurements on planetary surface.
NASA Technical Reports Server (NTRS)
Gruener, J. E.; Lofgren, G. E.; Bluethmann, W. J.; Bell, E. R.
2011-01-01
The National Aeronautics and Space Administration (NASA) is working with international partners to develop the space architectures and mission plans necessary for human spaceflight beyond earth orbit. These mission plans include the exploration of planetary surfaces with significant gravity fields. The Apollo missions to the Moon demonstrated conclusively that surface mobility is a key asset that improves the efficiency of human explorers on a planetary surface. NASA's Desert Research and Technology Studies (Desert RATS) is a multi-year series tests of hardware and operations carried out annually in the high desert of Arizona. Conducted since 1998, these activities are designed to exercise planetary surface hardware and operations in relatively harsh climatic conditions where long-distance, multi-day roving is achievable
Lightweight Modular Instrumentation for Planetary Applications
NASA Technical Reports Server (NTRS)
Joshi, P. B.
1993-01-01
An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.
Planetary Regolith Delivery Systems for ISRU
NASA Technical Reports Server (NTRS)
Mantovani, James G.; Townsend, Ivan I., III
2012-01-01
The challenges associated with collecting regolith on a planetary surface and delivering it to an in-situ resource utilization system differ significantly from similar activities conducted on Earth. Since system maintenance on a planetary body can be difficult or impossible to do, high reliability and service life are expected of a regolith delivery system. Mission costs impose upper limits on power and mass. The regolith delivery system must provide a leak-tight interface between the near-vacuum planetary surface and the pressurized ISRU system. Regolith delivery in amounts ranging from a few grams to tens of kilograms may be required. Finally, the spent regolith must be removed from the ISRU chamber and returned to the planetary environment via dust tolerant valves capable of operating and sealing over a large temperature range. This paper will describe pneumatic and auger regolith transfer systems that have already been field tested for ISRU, and discuss other systems that await future field testing.
Radiative transfer in spherical shell atmospheres. II - Asymmetric phase functions
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Adams, C. N.
1978-01-01
This paper investigates the effects of sphericity on the radiation reflected from a planet with a homogeneous conservative-scattering atmosphere of optical thicknesses of 0.25 and 1.0. A Henyey-Greenstein phase function with asymmetry factors of 0.5 and 0.7 was considered. Significant differences were found when these results were compared with the plane-parallel calculations. Also, large violations of the reciprocity theorem, which is only true for plane-parallel calculations, were noted. Results are presented for the radiance versus height distributions as a function of planetary phase angle. These results will be useful to researchers in the field of remote sensing and planetary spectroscopy.
NASA Technical Reports Server (NTRS)
Martin, J. P.; Kok, B.; Radmer, R.
1976-01-01
A system has been under development which is designed to seek remotely for clues to life in planetary soil samples. The basic approach is a set of experiments, all having a common sensor, a gas analysis mass spectrometer which monitors gas composition in the head spaces above sealed, temperature controlled soil samples. Versatility is obtained with up to three preloaded, sealed fluid injector capsules for each of eleven soil test cells. Tests results with an engineering model has demonstrated performance capability of subsystem components such as soil distribution, gas sampling valves, injector mechanisms, temperature control, and test cell seal.
Radiative transfer in spherical shell atmospheres. I - Rayleigh scattering
NASA Technical Reports Server (NTRS)
Adams, C. N.; Kattawar, G. W.
1978-01-01
The plane-parallel approximation and the more realistic spherical shell approximation for the radiance reflected from a planetary atmosphere are compared and are applied to the study of a planet the size of the earth with a homogeneous conservative Rayleigh scattering atmosphere extending to a height of 100 km. Inadequacies of the approximations are considered. Radiance versus height distributions for both single and multiple scattering are presented, as are results for the fractional radiance from altitudes in the atmosphere which contribute to the total unidirectional reflected radiance at the top of the atmosphere. The data can be used for remote sensing applications and planetary spectroscopy.
Heterodyne Spectroscopy in the Thermal Infrared Region: A Window on Physics and Chemistry
NASA Technical Reports Server (NTRS)
Kostiuk, Theodor
2004-01-01
The thermal infrared region contains molecular bands of many of the most important species in gaseous astronomical sources. True shapes and frequencies of emission and absorption spectral lines from these constituents of planetary and stellar atmospheres contain unique information on local temperature and abundance distribution, non-thermal effects, composition, local dynamics and winds. Heterodyne spectroscopy in the thermal infrared can remotely measure true line shapes in relatively cool and thin regions and enable the retrieval of detailed information about local physics and chemistry. The concept and techniques for heterodyne detection will be discussed including examples of thermal infrared photomixers and instrumentation used in studies of several astronomical sources. Use of heterodyne detection to study non-LTE phenomena, planetary aurora, minor planetary species and gas velocities (winds) will be discussed. A discussion of future technological developments and relation to space flight missions will be addressed.
Cryogenic Liquid Sample Acquisition System for Remote Space Applications
NASA Technical Reports Server (NTRS)
Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John
2013-01-01
There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.
Probing clouds in planets with a simple radiative transfer model: the Jupiter case
NASA Astrophysics Data System (ADS)
Mendikoa, Iñigo; Pérez-Hoyos, Santiago; Sánchez-Lavega, Agustín
2012-11-01
Remote sensing of planets evokes using expensive on-orbit satellites and gathering complex data from space. However, the basic properties of clouds in planetary atmospheres can be successfully estimated with small telescopes even from an urban environment using currently available and affordable technology. This makes the process accessible for undergraduate students while preserving most of the physics and mathematics involved. This paper presents the methodology for carrying out a photometric study of planetary atmospheres, focused on the planet Jupiter. The method introduces the basics of radiative transfer in planetary atmospheres, some notions on inverse problem theory and the fundamentals of planetary photometry. As will be shown, the procedure allows the student to derive the spectral reflectivity and top altitude of clouds from observations at different wavelengths by applying a simple but enlightening ‘reflective layer model’. In this way, the planet's atmospheric structure is estimated by students as an inverse problem from the observed photometry. Web resources are also provided to help those unable to obtain telescopic observations of the planets.
Definition and Development of Habitation Readiness Levels (HRLs) for Planetary Surface Habitats
NASA Technical Reports Server (NTRS)
Connolly, Janis H.; Toups, Larry
2007-01-01
One could argue that NASA has never developed a true habitat for a planetary surface, with only the Lunar Module from the 1960's-era Apollo Program providing for a sparse 2 person, 3 day capability. An integral part of NASA's current National Vision for Space Exploration is missions back to the moon and eventually to Mars. One of the largest leaps i11 lunar surface exploration beyond the Apollo lunar missions will be the conduct of these extended duration human missions. These missions could range from 30 to 90 days in length initially and may eventually range up to 500 days in length. To enable these extended duration human missions, probably the single-most important lunar surface element is the Surface Habitat. The requirements that must be met by the Surface Habitat will go far beyond the safety, performance and operational requirements of the Lunar Module, and NASA needs to develop a basis for making intelligent, technically correct habitat design decisions. This paper will discuss the possibilities of the definition and development of a Habitation Readiness Level (HRL) scale that might be mapped to current Technology Readiness Levels (TRLs) for technology development. HRLs could help measure how well a particular technology thrust is advanced by a proposed planetary habitat concept. The readiness level would have to be measured differently than TRLs, and may include such milestones as habitat design performance under simulated mission operations and constraints (including relevant field testing), functional allocation demonstrations, crew interface evaluation and post-occupancy evaluation. With many concepts for planetary habitats proposed over the past 20 years, there are many strategic technical challenges facing designers of planetary habitats that will support NASA's exploration of the moon and Mars. The systematic assessment of a variety of planetary habitat options will be an important approach and will influence the associated requirements for human design, volumetrics, functionality, systems hardware and operations.
Sensing our Environment: Remote sensing in a physics classroom
NASA Astrophysics Data System (ADS)
Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit
2017-04-01
Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora. The teams then processed their data and presented it to their foreign partners for evaluation in a video conference call. Alongside exciting insights about their respective environments and living conditions, the young scientists had daily access to live satellite sensors and remote sensing through the DLR_School_Lab in Germany and the Earth and Planetary Image Facility in Israel. This paper provides an overview regarding the project, the techniques used and the evaluation results following a pre-past-questionnaire design, and above all demonstrates the use of remote sensing as an application for physics teaching in a significant learning environment.
NASA Technical Reports Server (NTRS)
Neish, Catherine D.; Carter, Lynn M.
2015-01-01
This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.
Fluvial geomorphology on Earth-like planetary surfaces: A review
Baker, Victor R.; Hamilton, Christopher W.; Burr, Devon M.; Gulick, Virginia C.; Komatsu, Goro; Luo, Wei; Rice, James W.; Rodriguez, J.A.P.
2017-01-01
Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn’s moon Titan). In other cases, as on Mercury, Venus, Earth’s moon, and Jupiter’s moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn’s moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry. PMID:29176917
NASA Technical Reports Server (NTRS)
Head, J. W. (Editor)
1978-01-01
Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.
NASA Astrophysics Data System (ADS)
Poch, O.; Schmid, H. M.; Pommerol, A.; Jost, B.; Brouet, Y.; Thomas, N.
2015-12-01
Polarimetric observations of atmosphere-less Solar System bodies can give clues on the texture and on the physico-chemical composition of their surfaces, as reviewed by Mishchenko et al. (2010) and Bagnulo et al. (2011). Measurements performed in the laboratory on carefully characterized samples can provide reference data that can be used for direct comparison with remote-sensing polarimetric observations. In particular, we want to study the spectral dependence of the polarization and the way it is correlated or not with the surface albedo. In the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern, we have developed the capability to prepare and analyze optically thick analogues of planetary or cometary surfaces composed of water ice, minerals and carbonaceous compounds. Water-free dust of high porosity can also be produced by sublimation of ice under space-simulated conditions (Pommerol et al., 2015). Here, we present the first results of polarization measurements performed in the LOSSy. A Stokes polarimeter is used to measure the Stokes parameters describing the polarization of the visible light scattered by icy samples illuminated with a randomly polarized light simulating the star light. Additionally, a radio-goniometer, equipped with polarizers, can also measure the phase angle dependence of the linearly polarized scattered light. These measurements could provide interesting inputs to complement the theoretical models and predict or interpret spectro-polarimetric properties of Solar System objects and circumstellar disks. Mishchenko, M., et al., 2010, Polarimetric Remote Sensing of Solar System Objects. Bagnulo, S., et al., 2011, J. Quant. Spectrosc. Ra. 112, 2059. Pommerol, A., et al., 2015, Planet. Space Sci. 109-110, 106-122.
Thermal Infrared Spectroscopy from Mars Landers and Rovers: A New Angle on Remote Sensing
NASA Technical Reports Server (NTRS)
Moersch, J.; Horton, K.; Lucey, P.; Roush, T.; Ruff, S.; Smith, M.
1999-01-01
The MINUTES instrument of the Athena Precursor Experiment (APEX) on the Mars Surveyor 2001 lander mission will perform the first thermal infrared remote sensing observations from the surface of another planet. Experience gained from this experiment will be used to guide observations from identical instruments mounted on the Athena rovers, to be launched in 2003 and 2005. The utility of infrared spectrometers in determining the mineralogic composition of geologic surfaces from airborne and spaceborne platforms has been amply demonstrated. However, relatively little experience exists in using functionally similar instruments on the ground in the context of planetary science. What work has been done on this problem has mostly utilized field spectrometers that are designed to look down on nearby target rocks. While many Mini-TES observations will be made with this type of geometry, it is likely that other observations will be made looking horizontally at the more vertically-oriented facets of rock targets, to avoid spectral contamination from dust mantles. On rover missions, the Mini-TES may also be pointed horizontally at rocks several meters away, to determine if they are worthy of approaching for in situ observations and possible sample cacheing. While these observations will undoubtedly prove useful, there are important, and perhaps unappreciated, differences between horizontal-viewing, surface-based spectroscopy and the more traditional nadir-viewing, orbit or aircraft-based observations. Plans also exist to step the Mini-TES in a rastering motion to build hyperspectral scenes. Horizontal viewing hyperspectral cubes also possess unique qualities that call for innovative analysis techniques. The effect of viewing geometry: In thermal emission spectroscopy, regardless of whether an instrument is looking down on or horizontally at a target, the same basic equation governs the radiance reaching the sensor .
Time-dependent simulations of disk-embedded planetary atmospheres
NASA Astrophysics Data System (ADS)
Stökl, A.; Dorfi, E. A.
2014-03-01
At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.
Merged data models for multi-parameterized querying: Spectral data base meets GIS-based map archive
NASA Astrophysics Data System (ADS)
Naß, A.; D'Amore, M.; Helbert, J.
2017-09-01
Current and upcoming planetary missions deliver a huge amount of different data (remote sensing data, in-situ data, and derived products). Within this contribution present how different data (bases) can be managed and merged, to enable multi-parameterized querying based on the constant spatial context.
Probing Clouds in Planets with a Simple Radiative Transfer Model: The Jupiter Case
ERIC Educational Resources Information Center
Mendikoa, Inigo; Perez-Hoyos, Santiago; Sanchez-Lavega, Agustin
2012-01-01
Remote sensing of planets evokes using expensive on-orbit satellites and gathering complex data from space. However, the basic properties of clouds in planetary atmospheres can be successfully estimated with small telescopes even from an urban environment using currently available and affordable technology. This makes the process accessible for…
NASA Technical Reports Server (NTRS)
Merrill, R. B.
1978-01-01
Consideration is given to optical, X-ray, and gamma ray remote sensing of the moon. Papers are also presented on such aspects of lunar science as magnetic and electrical properties, morphology, volcanoes, structure and tectonics, seismology, and craters.
Xue, Dan; Yin, Jingyuan
2014-05-01
In this study, we explored the potential applications of the Ozone Monitoring Instrument (OMI) satellite sensor in air pollution research. The OMI planetary boundary layer sulfur dioxide (SO2_PBL) column density and daily average surface SO2 concentration of Shanghai from 2004 to 2012 were analyzed. After several consecutive years of increase, the surface SO2 concentration finally declined in 2007. It was higher in winter than in other seasons. The coefficient between daily average surface SO2 concentration and SO2_PBL was only 0.316. But SO2_PBL was found to be a highly significant predictor of the surface SO2 concentration using the simple regression model. Five meteorological factors were considered in this study, among them, temperature, dew point, relative humidity, and wind speed were negatively correlated with surface SO2 concentration, while pressure was positively correlated. Furthermore, it was found that dew point was a more effective predictor than temperature. When these meteorological factors were used in multiple regression, the determination coefficient reached 0.379. The relationship of the surface SO2 concentration and meteorological factors was seasonally dependent. In summer and autumn, the regression model performed better than in spring and winter. The surface SO2 concentration predicting method proposed in this study can be easily adapted for other regions, especially most useful for those having no operational air pollution forecasting services or having sparse ground monitoring networks.
NASA Astrophysics Data System (ADS)
Mayorov, Andrey; Karachevtseva, Irina; Oberst, Jürgen
2015-04-01
The University was established in 1779 and for all these years it has been the centre of higher geodetic education in Russia, the largest specialized educational institution of this profile in Europe. The great historical past, long pedagogical and scientific traditions developed throughout almost the two and a half centuries' history of the University, importance of geodetic sciences and land survey branch for many fields of knowledge and national economy, a wide range of specialties in which MIIGAiK trains specialists have given the University the leading position as a specialized higher educational institution [1]. Now, the University is a large educational-and-scientific and production complex including six faculties of full-time training, a faculty of distance learning, a Training Centre for teachers of high schools and retraining of experts, postgraduate and doctoral courses, educational specialized laboratories in various directions of geodesy, cartography and remote sensing. In the University structure, there are also research-and-production centers Geodynamics, Geomonitoring, a Center for satellite technologies in geodesy, a Cartographic centre, Geodesy and Air Photography Journal Publishing House, two educational test fields, computing centers, an educational-and-geodetic museum and a library. New MIIGAiK Extraterrestrial Laboratory (MExLab) [2], which was established in 2010 under the leadership of invited scientist Prof. Dr. Jürgen Oberst (DLR, TUB, Germany), studies of characteristics of Solar System bodies with geodetic and cartographic methods. The several celestial bodies are chosen as subjects for new planetary project: Europa, Ganymede, Callisto (Galilean satellites of Jupiter), and Enceladus (a satellite of Saturn), as well as the Moon, Mars, its satellite Phobos, and Mercury. The significance of the project objectives is defined both by necessity of gaining fundamental knowledge about properties of the Solar System bodies, and practical needs of exploration in preparation to prospective new Russian and international space missions in cooperation with European Space Agency (ESA): to the Moon (Luna-Glob and Luna-Resurs), Mars (Exo-Mars), Mercury (Bepi-Colombo), the Jupiter system (JUICE), and a possible future mission to Phobos. MExLab has new modern infrastructure, including facilities and software, and it help us to develop innovative techniques for planetary studies. We use ArcGIS (ESRI ™), and special developed modules based on PHOTOMOD software (Racurs ™), created for Earth image processing and extended for studies of celestial bodies. Main directions of MIIGAiK research of Earth and planetary bodies: 1) Innovative technologies for digital surveying and laser scanning; 2) Unmanned aerial vehicles (UAV) and special software developing; 3) Photogrammetric stereo image processing; 4) 3D-modeling of Earth and planetary surface; 5) Geo-portal and database developing [3]; 6) GIS-analyses and mapping, icnluding comparative planetology study of terrestrial planets. A great volume of scientific investigations and industrial work is carried out in MIIGAiK using modern geoscience technologies, ensure a wide use of GIS in cartography, cadaster and while studying the Earth and other terrestrial planets of Solar system by remote sensing methods. Acknowledgements. The MIIGAiK Extraterrestrial Laboratory (MExLab) provides fundamental and applied planetary research under the grant of Russian Science Foundation, project #14-22-00197. References: [1] http://www.miigaik.ru/eng/; [2] http://mexlab.miigaik.ru/eng/ [3] http://cartsrv.mexlab.ru/geoportal/#body/
Characterizing the Physical and Thermal Properties of Planetary Regolith at Low Temperatures
NASA Technical Reports Server (NTRS)
Mantovani, James G.; Swanger, Adam; Townsend, Ivan I., III; Sibille, Laurent; Galloway, Gregory
2014-01-01
The success or failure of in-situ resource utilization for planetary surface exploration-whether for science, colonization, or commercialization-relies heavily on the design and implementation of systems that can effectively process planetary regolith and exploit its potential benefits. In most cases, this challenge necessarily includes the characterization of regolith properties at low temperatures (cryogenic). None of the nearby solar system destinations of interest, such as the moon, Mars and asteroids, possess a sufficient atmosphere to sustain the consistently "high" surface temperatures found on Earth. Therefore, they can experience permanent cryogenic temperatures or dramatic cyclical changes in surface temperature. Characterization of physical properties (e.g., specific heat, thermal and electrical conductivity) over the entire temperature profile is important when planning a mission to a planetary surface; however, the impact on mechanical properties due to the introduction of icy deposits must also be explored in order to devise effective and robust excavation technologies. The Granular Mechanics and Regolith Operations Laboratory and the Cryogenics Test Laboratory at NASA Kennedy Space Center are developing technologies and experimental methods to address these challenges and to aid in the characterization of the physical and mechanical properties of regolith at cryogenic temperatures. This paper will review the current state of knowledge concerning planetary regolith at low temperature, including that of icy regolith, and describe efforts to manipulate icy regolith through novel penetration and excavation techniques.
NASA Technical Reports Server (NTRS)
Chambers, J. E.; Cassen, P.
2002-01-01
We present 32 N-body simulations of planetary accretion in the inner Solar System, examining the effect of nebula surface density profile and initial eccentricities of Jupiter and Saturn on the compositions and orbits of the inner planets. Additional information is contained in the original extended abstract.
Gravitational spreading of Danu, Freyja and Maxwell Montes, Venus
NASA Astrophysics Data System (ADS)
Smrekar, Suzanne E.; Solomon, Sean C.
1991-06-01
The potential energy of elevated terrain tends to drive the collapse of the topography. This process of gravitational spreading is likely to be more important on Venus than on Earth because the higher surface temperature weakens the crust. The highest topography on Venus is Ishtar Terra. The high plateau of Lakshmi Planum has an average elevation of 3 km above mean planetary radius, and is surrounded by mountain belts. Freyja, Danu, and Maxwell Montes rise, on average, an additional 3, 0.5, and 5 km above the plateau, respectively. Recent high resolution Magellan radar images of this area, east of approx. 330 deg E, reveal widespread evidence for gravity spreading. Some observational evidence is described for gravity spreading and the implications are discussed in terms of simple mechanical models. Several simple models predict that gravity spreading should be an important process on Venus. One difficulty in using remote observations to infer interior properties is that the observed features may not have formed in response to stresses which are still active. Several causes of surface topography are briefly examined.
NASA Astrophysics Data System (ADS)
Suarez, J.; Ochoa, L.; Saavedra, F.
2017-07-01
Remote sensing has always been the best investigation tool for planetary sciences. In this research have been used data of Surface albedo, electromagnetic spectra and satelital imagery in search of understanding glacier dynamics in some bodies of the solar system, and how it's related to their compositions and associated geological processes, this methodology is very common in icy moons studies. Through analytic software's some albedos map's and geomorphological analysis were made that allow interpretation of different types of ice in the glacier's and it's interaction with other materials, almost all the images were worked in the visible and infrared ranges of the spectrum; spectral data were later used to connect the reflectance whit chemical and reologic properties of the compounds studied. It have been concluded that the albedo analysis is an effective tool to differentiate materials in the bodies surfaces, but the application of spectral data is necessary to know the exact compounds of the glaciers and to have a better understanding of the icy bodies.
NASA Technical Reports Server (NTRS)
Sung, C.-M.; Singer, R. B.; Parkin, K. M.; Burns, R. G.; Osborne, M.
1977-01-01
Results are reported of Fe(++) crystal field spectral measurements for olivines and pyroxenes up to 400 C. The results are correlated with crystal structure data at elevated temperatures, and the validity of remote-sensed identifications of minerals on hot surfaces of the moon and Mercury is assessed. Two techniques were used to obtain spectra of minerals at elevated temperatures using a spectrophotometer. One employed a diamond cell assembly or a specially designed sample holder to measure polarized absorption spectra of heated single crystals. For the other technique, a sample holder was designed to attach to a diffuse reflectance accessory to produce reflectance spectra of heated powdered samples. Polarized absorption spectra of forsterite at 20-400 C are shown in a graph. Other graphs show the temperature dependence of Fe(++) crystal field bands in olivines, the diffuse reflectance spectra of olivine at 40-400 C, the polarization absorption spectra of orthopyroxene at 30-400 C, the diffuse reflectance spectra of pigeonite at 40-400 C, and unpolarized absorption spectra of lunar pyroxene from Apollo 15 rock 15058.
An Ion-Propelled Cubesat for Planetary Defense and Planetary Science
NASA Astrophysics Data System (ADS)
Russell, Christopher T.; Wirz, Richard; Lai, Hairong; Li, Jian-Yang; Connors, Martin
2017-04-01
Small satellites can reduce the cost of launch by riding along with other payloads on a large rocket or being launched on a small rocket, but are perceived as having limited capabilities. This perception can be at least partially overcome by innovative design, including ample in-flight propulsion. This allows achieving multiple targets and adaptive exploration. Ion propulsion has been pioneered on Deep Space 1 and honed on the long-duration, multiple-planetary body mission Dawn. Most importantly, the operation of such a mission is now well- understood, including navigation, communication, and science operations for remote sensing. We examined different mission concepts that can be used for both planetary defense and planetary science near 1 AU. Such a spacecraft would travel in the region between Venus and Mars, allowing a complete inventory of material above, including objects down to about 10m diameter to be inventoried. The ion engines could be used to approach these bodies slowly and carefully and allow the spacecraft to map debris and follow its collisional evolution throughout its orbit around the Sun, if so desired. The heritage of Dawn operations experience enables the mission to be operated inexpensively, and the engineering heritage will allow it to be operated for many trips around the Sun.
Reconfigurable Autonomy for Future Planetary Rovers
NASA Astrophysics Data System (ADS)
Burroughes, Guy
Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.
Factors Affecting the Habitability of Earth-like Planets
NASA Astrophysics Data System (ADS)
Meadows, Victoria; NAI-Virtual Planetary Laboratory Team
2014-03-01
Habitability is a measure of an environment's potential to support life. For exoplanets, the concept of habitability can be used broadly - to inform our calculations of the possibility and distribution of life elsewhere - or as a practical tool to inform mission designs and to prioritize specific targets in the search for extrasolar life. Although a planet's habitability does depend critically on the effect of stellar type and planetary semi-major axis on climate balance, work in the interdisciplinary field of astrobiology has identified many additional factors that can affect a planet's environment and its potential ability to support life. Life requires material for metabolism and structures, a liquid medium for chemical transport, and an energy source to drive metabolism and other life processes. Whether a planet's surface or sub-surface can provide these requirements is the result of numerous planetary and astrophysical processes that affect the planet's formation and evolution. Many of these factors are interdependent, and fall into three main categories: stellar effects, planetary effects and planetary system effects. Key abiotic processes affecting the resultant planetary environment include photochemistry (e.g. Segura et al., 2003; 2005), stellar effects on climate balance (e.g. Joshii et al., 2012; Shields et al., 2013), atmospheric loss (e.g. Lopez and Fortney, 2013), and gravitational interactions with the star (e.g. Barnes et al., 2013). In many cases, the effect of these processes is strongly dependent on a specific planet's existing environmental properties. Examples include the resultant UV flux at a planetary surface as a product of stellar activity and the strength of a planet's atmospheric UV shield (Segura et al., 2010); and the amount of tidal energy available to a planet to drive plate tectonics and heat the surface (Barnes et al., 2009), which is in turn due to a combination of stellar mass, planetary mass and composition, planetary orbital parameters and the gravitational influence of other planets in the system. A thorough assessment of a planet's environment and its potential habitability is a necessary first step in the search for biosignatures. Targeted environmental characteristics include surface temperature and pressure (e.g. Misra et al., 2013), a census of bulk and trace atmospheric gases, and whether there are signs of liquid water on the planetary surface (e.g. Robinson et al., 2010). The robustness of a planetary biosignature is dependent on being able to characterize the environment sufficiently well, and to understand likely star-planet interactions, to preclude formation of a biosignature gas via abiotic processes such as photochemistry (e.g. Segura et al., 2007; Domagal-Goldman et al., 2011; Grenfell et al., 2012). Here we also discuss potential false positives for O2 and O3, which, in large quantities, are often considered robust biosignatures for oxygenic photosynthesis. There is clearly significant future work required to better identify and understand the key environmental processes and interactions that allow a planet to support life, and to distinguish life's global impact on an environment from the environment itself.
Effects of Planetary Thermal Structure on the Ascent and Cooling of Magma on Venus
NASA Technical Reports Server (NTRS)
Sakimoto, Susan E. H.; Zuber, Maria T.
1995-01-01
Magellan radar images of the surface of Venus show a spatially broad distribution of volcanic features. Models of magmatic ascent processes to planetary surfaces indicate that the thermal structure of the interior significantly influences the rate of magmatic cooling and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of planetary thermal structure have the greatest influence on the cooling of buoyantly ascending magma, we have constructed magma cooling profiles for a plutonic ascent mechanism, and evaluated the profiles for variations in the surface and mantle temperature, surface temperature gradient, and thermal gradient curvature. Results show that, for a wide variety of thermal conditions, smaller and slower magma bodies are capable of reaching the surface on Venus compared to Earth, primarily due to the higher surface temperature of Venus. Little to no effect on the cooling and transport of magma are found to result from elevated mantle temperatures, elevation-dependent surface temperature variations, or details of the thermal gradient curvature. The enhanced tendency of magma to reach the surface on Venus may provide at least a partial explanation for the extensive spatial distribution of observed volcanism on the surface.
NASA Astrophysics Data System (ADS)
Herique, A.; Ciarletti, V.
2015-10-01
Our knowledge of the internal structure of asteroids is, so far, indirect - relying entirely on inferences from remote sensing observations of the surface, and theoretical modeling. What are the bulk properties of the regolith and deep interior? And what are the physical processes that shape their internal structures? Direct measurements are needed to provide answers that will directly improve our ability to understand and model the mechanisms driving Near Earth Asteroids (NEA) for the benefit of science as well as for planetary defense or exploration. Radar tomography is the only technique to characterize internal structure from decimetric scale to global scale. This paper reviews the benefits of direct measurement of the asteroid interior. Then the radar concepts for both deep interior and shallow subsurface are presented and the radar payload proposed for the AIDA/AIM mission is outlined.
Morphometric convergence between Proterozoic and post-vegetation rivers
Ielpi, Alessandro; Rainbird, Robert H.; Ventra, Dario; Ghinassi, Massimiliano
2017-01-01
Proterozoic rivers flowed through barren landscapes, and lacked interactions with macroscopic organisms. It is widely held that, in the absence of vegetation, fluvial systems featured barely entrenched channels that promptly widened over floodplains during floods. This hypothesis has never been tested because of an enduring lack of Precambrian fluvial-channel morphometric data. Here we show, through remote sensing and outcrop sedimentology, that deep rivers were developed in the Proterozoic, and that morphometric parameters for large fluvial channels might have remained within a narrow range over almost 2 billion years. Our data set comprises fluvial-channel forms deposited a few tens to thousands of kilometres from their headwaters, likely the record of basin- to craton-scale systems. Large Proterozoic channel forms present width:thickness ranges matching those of Phanerozoic counterparts, suggesting closer parallels between their fluvial dynamics. This outcome may better inform analyses of extraterrestrial planetary surfaces and related comparisons with pre-vegetation Earth landscapes. PMID:28548109
Morphometric convergence between Proterozoic and post-vegetation rivers.
Ielpi, Alessandro; Rainbird, Robert H; Ventra, Dario; Ghinassi, Massimiliano
2017-05-26
Proterozoic rivers flowed through barren landscapes, and lacked interactions with macroscopic organisms. It is widely held that, in the absence of vegetation, fluvial systems featured barely entrenched channels that promptly widened over floodplains during floods. This hypothesis has never been tested because of an enduring lack of Precambrian fluvial-channel morphometric data. Here we show, through remote sensing and outcrop sedimentology, that deep rivers were developed in the Proterozoic, and that morphometric parameters for large fluvial channels might have remained within a narrow range over almost 2 billion years. Our data set comprises fluvial-channel forms deposited a few tens to thousands of kilometres from their headwaters, likely the record of basin- to craton-scale systems. Large Proterozoic channel forms present width:thickness ranges matching those of Phanerozoic counterparts, suggesting closer parallels between their fluvial dynamics. This outcome may better inform analyses of extraterrestrial planetary surfaces and related comparisons with pre-vegetation Earth landscapes.
Lightweight telescopes for lunar observatories
NASA Astrophysics Data System (ADS)
Rozelot, J. P.; Bingham, R.; Walker, D.
1994-06-01
Future optical observatories in space will require telescopes of very high resolution. To satisfy this demand, technology must be developed for large mirrors capable of diffraction-limited imaging. Conventional monolithic glass substrates (light-weight or not) have serious limitations for future development. In particular, glass is susceptible to fracture during ground-handling, transport and launch. An alternative solution is aluminium. It has lower cost, increased strength, easier and safer methods of fixing, amongst other advantages. It is readily lightweighted and can be produced with good polishing quality with nickel coating. We foresee applications for satellite telescope for astronomy, remote sensing, surveys of asteroids and debris in space. Furthermore, this technology is ideally suitable for lunar mounted interferometric experiments - as mirrors can be easily replicate, saving cost - and for telescopes deployed on planetary surfaces. Some results from the European Eureka Large Active Mirrors in Aluminium (LAMA) are here presented, which show the feasibility of such systems.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 30 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image of the North Polar water-ice clouds shows how surface topography can affect the linear form. Notice that the crater at the bottom of the image is causing a deflection in the linear form. Image information: VIS instrument. Latitude 68.4, Longitude 100.7 East (259.3 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Data mining and visualization from planetary missions: the VESPA-Europlanet2020 activity
NASA Astrophysics Data System (ADS)
Longobardo, Andrea; Capria, Maria Teresa; Zinzi, Angelo; Ivanovski, Stavro; Giardino, Marco; di Persio, Giuseppe; Fonte, Sergio; Palomba, Ernesto; Antonelli, Lucio Angelo; Fonte, Sergio; Giommi, Paolo; Europlanet VESPA 2020 Team
2017-06-01
This paper presents the VESPA (Virtual European Solar and Planetary Access) activity, developed in the context of the Europlanet 2020 Horizon project, aimed at providing tools for analysis and visualization of planetary data provided by space missions. In particular, the activity is focused on minor bodies of the Solar System.The structure of the computation node, the algorithms developed for analysis of planetary surfaces and cometary comae and the tools for data visualization are presented.
NASA Astrophysics Data System (ADS)
Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H. N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Le Gall, Alice; Michaels, Timothy I.; Neakrase, Lynn D. V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.
2013-03-01
The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12-15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.
Arecibo Radar Investigations of Planetary and Small-Body Surfaces
NASA Astrophysics Data System (ADS)
Taylor, P. A.
2016-12-01
The 305-m William E. Gordon telescope at Arecibo Observatory in Puerto Rico is the most sensitive, most powerful, and most active planetary radar facility in the world. Over the last 50-plus years, the S-band (12.6 cm, 2380 MHz) and P-band (70 cm, 430 MHz) radars at Arecibo have studied solid bodies in the solar system from Mercury to Saturn's rings. Radar provides fine spatial resolution of these bodies surpassed only by dedicated spacecraft while adding the extra dimensions of near-surface, wavelength-scale roughness and penetration to several wavelengths below the surface. For asteroids and comets, this spatial resolution is akin to a spacecraft flyby revealing spin, size, and shape information and geologic features such as ridges, crater-like depressions, and boulders. For planetary bodies, radar can reveal geologic features on the surface such as ancient lava flows or features buried beneath the regolith including lava tubes and water-ice deposits. We will present an overview of how the Arecibo radar systems are utilized in the study of planetary and small-body surfaces and what can be learned without ever leaving the comfort of Earth's surface. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968) and in alliance with Ana G. Mendez-Universidad Metropolitana (UMET) and the Universities Space Research Association (USRA). The Arecibo Planetary Radar Program is supported by the National Aeronautics and Space Administration under Grant Nos. NNX12AF24G and NNX13AQ46G issued through the Near-Earth Object Observations program and operated by USRA in alliance with SRI International and UMET.
Post Viking planetary protection requirements study
NASA Technical Reports Server (NTRS)
Wolfson, R. P.
1977-01-01
Past planetary quarantine requirements were reviewed in the light of present Viking data to determine the steps necessary to prevent contamination of the Martian surface on future missions. The currently used term planetary protection reflects a broader scope of understanding of the problems involved. Various methods of preventing contamination are discussed in relation to proposed projects, specifically the 1984 Rover Mission.
Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts
NASA Astrophysics Data System (ADS)
Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.
2016-12-01
Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions we include observation and measurement techniques and tools, as well as collection and use of specific data of interest to scientists. These two modules will be tested and refined based on educator and student feedback, with expected final release in late summer of 2017.
On the State of Stress and Failure Prediction Near Planetary Surface Loads
NASA Astrophysics Data System (ADS)
Schultz, R. A.
1996-03-01
The state of stress surrounding planetary surface loads has been used extensively to predict failure of surface rocks and to invert this information for effective elastic thickness. As demonstrated previously, however, several factors can be important including an explicit comparison between model stresses and rock strength as well as the magnitude of calculated stress. As re-emphasized below, failure to take stress magnitudes into account can lead to erroneous predictions of near-surface faulting. This abstract results from discussions on graben formation at Fall 1995 AGU.
NASA Astrophysics Data System (ADS)
Safonova, M.; Murthy, J.; Shchekinov, Yu. A.
2016-04-01
A `habitable zone' of a star is defined as a range of orbits within which a rocky planet can support liquid water on its surface. The most intriguing question driving the search for habitable planets is whether they host life. But is the age of the planet important for its habitability? If we define habitability as the ability of a planet to beget life, then probably it is not. After all, life on Earth has developed within only ~800 Myr after its formation - the carbon isotope change detected in the oldest rocks indicates the existence of already active life at least 3.8 Gyr ago. If, however, we define habitability as our ability to detect life on the surface of exoplanets, then age becomes a crucial parameter. Only after life had evolved sufficiently complex to change its environment on a planetary scale, can we detect it remotely through its imprint on the atmosphere - the so-called biosignatures, out of which the photosynthetic oxygen is the most prominent indicator of developed (complex) life as we know it. Thus, photosynthesis is a powerful biogenic engine that is known to have changed our planet's global atmospheric properties. The importance of planetary age for the detectability of life as we know it follows from the fact that this primary process, photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones, and is sensitive to the particular thermal conditions of the planet. Therefore, the onset of photosynthesis on planets in habitable zones may take much longer time than the planetary age. The knowledge of the age of a planet is necessary for developing a strategy to search for exoplanets carrying complex (developed) life - many confirmed potentially habitable planets are too young (orbiting Population I stars) and may not have had enough time to develop and/or sustain detectable life. In the last decade, many planets orbiting old (9-13 Gyr) metal-poor Population II stars have been discovered. Such planets had had enough time to develop necessary chains of chemical reactions and may carry detectable life if located in a habitable zone. These old planets should be primary targets in search for the extraterrestrial life.
NASA Astrophysics Data System (ADS)
Horanyi, M.; Munsat, T.
2017-12-01
The experimental and theoretical programs at the SSERVI Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) address the effects of hypervelocity dust impacts and the nature of the space environment of granular surfaces interacting with solar wind plasma and ultraviolet radiation. These are recognized as fundamental planetary processes due their role in shaping the surfaces of airless planetary objects, their plasma environments, maintaining dust haloes, and sustaining surface bound exospheres. Dust impacts are critically important for all airless bodies considered for possible human missions in the next decade: the Moon, Near Earth Asteroids (NEAs), Phobos, and Deimos, with direct relevance to crew and mission safety and our ability to explore these objects. This talk will describe our newly developed laboratory capabilities to assess the effects of hypervelocity dust impacts on: 1) the gardening and redistribution of dust particles; and 2) the generation of ionized and neutral gasses on the surfaces of airless planetary bodies.
Space environment and lunar surface processes
NASA Technical Reports Server (NTRS)
Comstock, G. M.
1979-01-01
The development of a general rock/soil model capable of simulating in a self consistent manner the mechanical and exposure history of an assemblage of solid and loose material from submicron to planetary size scales, applicable to lunar and other space exposed planetary surfaces is discussed. The model was incorporated into a computer code called MESS.2 (model for the evolution of space exposed surfaces). MESS.2, which represents a considerable increase in sophistication and scope over previous soil and rock surface models, is described. The capabilities of previous models for near surface soil and rock surfaces are compared with the rock/soil model, MESS.2.
Applying Multiagent Simulation to Planetary Surface Operations
NASA Technical Reports Server (NTRS)
Sierhuis, Maarten; Sims, Michael H.; Clancey, William J.; Lee, Pascal; Swanson, Keith (Technical Monitor)
2000-01-01
This paper describes a multiagent modeling and simulation approach for designing cooperative systems. Issues addressed include the use of multiagent modeling and simulation for the design of human and robotic operations, as a theory for human/robot cooperation on planetary surface missions. We describe a design process for cooperative systems centered around the Brahms modeling and simulation environment being developed at NASA Ames.
Robotic astrobiology - prospects for enhancing scientific productivity of mars rover missions
NASA Astrophysics Data System (ADS)
Ellery, A. A.
2018-07-01
Robotic astrobiology involves the remote projection of intelligent capabilities to planetary missions in the search for life, preferably with human-level intelligence. Planetary rovers would be true human surrogates capable of sophisticated decision-making to enhance their scientific productivity. We explore several key aspects of this capability: (i) visual texture analysis of rocks to enable their geological classification and so, astrobiological potential; (ii) serendipitous target acquisition whilst on the move; (iii) continuous extraction of regolith properties, including water ice whilst on the move; and (iv) deep learning-capable Bayesian net expert systems. Individually, these capabilities will provide enhanced scientific return for astrobiology missions, but together, they will provide full autonomous science capability.
Automatic Extraction of Planetary Image Features
NASA Technical Reports Server (NTRS)
Troglio, G.; LeMoigne, J.; Moser, G.; Serpico, S. B.; Benediktsson, J. A.
2009-01-01
With the launch of several Lunar missions such as the Lunar Reconnaissance Orbiter (LRO) and Chandrayaan-1, a large amount of Lunar images will be acquired and will need to be analyzed. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to Lunar data that often present low contrast and uneven illumination characteristics. In this paper, we propose a new method for the extraction of Lunar features (that can be generalized to other planetary images), based on the combination of several image processing techniques, a watershed segmentation and the generalized Hough Transform. This feature extraction has many applications, among which image registration.
Characteristics of Eurasian snowmelt and its impacts on the land surface and surface climate
NASA Astrophysics Data System (ADS)
Ye, Kunhui; Lau, Ngar-Cheung
2018-03-01
The local hydrological and climatic impacts of Eurasian snowmelt are studied using advanced land surface and atmospheric data. It is found that intense melting of snow is located at mid-high latitudes in April and May. Snowmelt plays an important role in determining the seasonal cycles of surface runoff and soil moisture (SM). Specifically, melting is accompanied by sharp responses in surface runoff and surface SM while the impacts are delayed for deeper-layer of soil. This is particularly significant in the western sector of Eurasia. On interannual timescales, the responses of various surface parameters to snowmelt in the same month are rather significant. However, the persistence of surface SM anomalies is weak due to the strong soil evaporation anomalies and surplus of surface energy for evaporation. Strong impacts on the sensible heat flux, planetary boundary layer height and precipitation in the next month following the melting of snow are identified in west Russia and Siberia. Downward propagation of surface SM anomalies is observed and a positive evaporation-convection feedback is identified in west Russia. However, the subsequent impacts on the local convective precipitation in late spring-summer and its contribution to the total precipitation are seemingly weak. The atmospheric water vapor convergence has strong control over the total precipitation anomalies. Overall, snowmelt-produced SM anomalies are not found to significantly impact the late spring-summer local climate anomalies in Northern Eurasia. Therefore, the delayed remote-responses of atmospheric circulation and climate to the melting of Eurasian snow may be only possible near the melting period.
Asteroid, Lunar and Planetary Regolith Management A Layered Engineering Defense
NASA Technical Reports Server (NTRS)
Wagner, Sandra
2014-01-01
During missions on asteroid and lunar and planetary surfaces, space systems and crew health may be degraded by exposure to dust and dirt. Furthermore, for missions outside the Earth-Moon system, planetary protection must be considered in efforts to minimize forward and backward contamination. This paper presents an end-to-end approach to ensure system reliability, crew health, and planetary protection in regolith environments. It also recommends technology investments that would be required to implement this layered engineering defense.
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Context image for PIA03681 Ganges Landslide Two large landslides dominate this image of part of Ganges Chasma. The eroded surface of an old landslide covers the north half of the image, while a more recent landslide occurs to the south. Image information: VIS instrument. Latitude -6.7N, Longitude 310.4E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] The multiple landslides in this VIS image occur along a steep channel wall. Note the large impact crater in the context image. The formation of the crater may have initially weakened that area of the surface prior to channel formation. Image information: VIS instrument. Latitude -2.7, Longitude 324.8 East (35.2 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Cycloidal meandering of a mesoscale anticyclonic eddy
NASA Astrophysics Data System (ADS)
Kizner, Ziv; Shteinbuch-Fridman, Biana; Makarov, Viacheslav; Rabinovich, Michael
2017-08-01
By applying a theoretical approach, we propose a hypothetical scenario that might explain some features of the movement of a long-lived mesoscale anticyclone observed during 1990 in the Bay of Biscay [R. D. Pingree and B. Le Cann, "Three anticyclonic slope water oceanic eddies (SWODDIES) in the southern Bay of Biscay in 1990," Deep-Sea Res., Part A 39, 1147 (1992)]. In the remote-sensing infrared images, at the initial stage of observations, the anticyclone was accompanied by two cyclonic eddies, so the entire structure appeared as a tripole. However, at later stages, only the anticyclone was seen in the images, traveling generally west. Unusual for an individual eddy were the high speed of its motion (relative to the expected planetary beta-drift) and the presence of almost cycloidal meanders in its trajectory. Although surface satellites seem to have quickly disappeared, we hypothesize that subsurface satellites continued to exist, and the coherence of the three vortices persisted for a long time. A significant perturbation of the central symmetry in the mutual arrangement of three eddies constituting a tripole can make reasonably fast cycloidal drift possible. This hypothesis is tested with two-layer contour-dynamics f-plane simulations and with finite-difference beta-plane simulations. In the latter case, the interplay of the planetary beta-effect and that due to the sloping bottom is considered.
The radiometric performances of the Planetary Fourier Spectrometer for Mars exploration
NASA Astrophysics Data System (ADS)
Palomba, E.; Colangeli, L.; Formisano, V.; Piccioni, G.; Cafaro, N.; Moroz, V.
1999-04-01
The Planetary Fourier Spectrometer (PFS) is a Fourier transform interferometer, operating in the range 1.2-45 μm. The instrument, previously included in the payload of the failed mission Mars ‧96, is proposed for the future space mission Mars Express, under study by ESA. The present paper is aimed at presenting the radiometric performances of PFS. The two channels (LW and SW) forming PFS were analysed and characterised in terms of sensitivity and noise equivalent brightness. To cover the wide spectral range of PFS, different blackbodies were used for calibration. The built-in blackbodies, needed for the in-flight calibrations, were also characterised. The results show that the LW channel is comparable with IRIS Mariner 9 in terms of noise equivalent brightness. The SW channel performances, while satisfactorily, could be improved by lowering the sensor operative temperature. A simple model of the Mars radiance is used in order to calculate the signal-to-noise ratio on the spectra in typical observation conditions. The computed signal-to-noise ratio for the LW channel varies between 430 and 40, while for the SW channel it ranges from 150 to 30. The radiometric analyses confirm that PFS performances are compliant with the design requirements of the instrument. PFS is fully validated for future remote exploration of the atmosphere and the surface of Mars.
Meteodrones - Meteorological Planetary Boundary Layer Measurements by Vertical Drone Soundings
NASA Astrophysics Data System (ADS)
Lauer, Jonas; Fengler, Martin
2017-04-01
As of today, there is a gap in the operational data collection of meteorological observations in the Planetary Boundary Layer (PBL). This lack of spatially and temporally reliable knowledge of PBL conditions and energy fluxes with the surface causes shortcomings in the prediction of micro- and mesoscale phenomena such as convection, temperature inversions, local wind systems or fog. The currently used remote sensing instruments share the drawback of only partially covering necessary variables. To fill this data gap, since 2012, Meteomatics has been developing a drone measurement system, the Meteodrone, to measure the parameters wind speed, wind direction, dewpoint, temperature and air pressure of the PBL up to 1.5 km above ground. Both the data quality and the assimilation into a regional numerical weather model could be determined in several pilot studies. Besides, a project in cooperation with the NSSL (National Severe Storms Laboratory) was launched in October 2016 with the goal of capturing pre-convective conditions for improved severe storm forecasts in Oklahoma. Also, related measurements, such as air pollution measurements in the Misox valley to determine LDSP values, were successfully conducted. The main goal of the project is the operational data collection of PBL measurements and the assimilation of this data into regional numerical weather forecast models. Considering the high data quality indicated in all conducted studies as well as the trouble-free execution, this goal is both worthwhile and realistic.
Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability
NASA Astrophysics Data System (ADS)
Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan
2015-01-01
Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen (Schwieterman et al., 2014) may provide an alternative means to determine terrestrial atmospheric pressure for both transit transmission and direct imaging observations.
NASA Technical Reports Server (NTRS)
2004-01-01
Released 2 March 2004
Humanity is a very visual species. We rely on our eyes to tell us what is going on in the world around us. Put any image in front of a person and that person will examine the picture looking for anything familiar. Even if the examiner has no idea what he/she is looking at in a picture, he/she will still be able to make a statement about the picture, usually preceded by the words 'it looks like...' The image above is part of the surface of Mars, but is presented for its artistic value rather than its scientific value. When first viewed, this image solicited a statement that 'it looks like...' something seen in everyday life. Perhaps a witch's hat, or maybe a shark fin cresting the surface... Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Planetary Regolith Microstructure: An Unexpected Opposition Effect Result
NASA Technical Reports Server (NTRS)
Nelson, R. M.; Hapke, B. W.; Smythe, W. D.; Hale, A. S.; Piatek, J. L.
2004-01-01
The Opposition Effect (OE) is the non-linear increase in the intensity of light scattered from a surface as phase angle approaches 0 deg. It is seen in laboratory experiments and in remote sensing observations of planetary surfaces. Understanding the OE is a requirement to fitting photometric models which will produce meaningful results about regolith texture. Our previous laboratory studies are consistent with the hypothesis that the OE in particulate materials is due to two processes, Shadow Hiding (SHOE) and Coherent Backscattering (CBOE). SHOE arises because, as phase angle approaches zero, shadows cast by regolith grains on other grains become invisible to the observer. CBOE results from constructive interference between rays traveling the same path but in opposite directions. In this study we measured the angular scattering properties of 9 mixtures of Aluminum Oxide and Boron Carbide powders of the same particle diameter (25 microns). The reflectance of the materials ranged from 7% (pure B4C) to 91% (pure Al2O3). Along with the reflectance phase curve we measured the circular polarization ratio (CPR) - the ratio of the intensity of the light returned with the same helicity as the incident light to that with the opposite helicity. An increase in CPR with decreasing phase angle indicates increased multiple scattering and is consistent with CBOE (Hapke, 1993). Popular conceptions of CBOE (Belskaya et al, 2003) hold that materials of higher albedo would exhibit increased multiple scattering and that the contribution of CBOE to the OE would increase as albedo increases. Remarkably, we find the highest albedo samples did not have the strongest CBOE opposition peaks. Instead, the maximum CBOE contribution is observed in samples with reflectance between 15 and 40%.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] Released 9 June 2003The large, tilted blocks in this THEMIS visible image are chaotic terrain in Masursky Crater. Chaotic terrain is thought to occur when subsurface water is suddenly released to the surface, and the resulting loss of ground support causes the surface material to slump and break into blocks. Most of the chaotic terrain on Mars is seen in the vicinity of the large catastrophic outflow channels. Many of the outflow channels actually have chaotic terrain as their source. This chaotic terrain is the source of a small channel that connects to the much larger Tiu Valles.Image information: VIS instrument. Latitude 12, Longitude 327.6 East (32.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening?
Yulong Zhang; Conghe Song; Lawrence E. Band; Ge Sun; Junxiang Li
2017-01-01
Accurately monitoring global vegetation dynamics with modern remote sensing is critical for understanding the functions and processes of the biosphere and its interactions with the planetary climate. The MODerate resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) product has been a primary data source for this purpose. To date, theMODIS teamhad released...
Parachute Dynamics Investigations Using a Sensor Package Airdropped from a Small-Scale Airplane
NASA Technical Reports Server (NTRS)
Dooley, Jessica; Lorenz, Ralph D.
2005-01-01
We explore the utility of various sensors by recovering parachute-probe dynamics information from a package released from a small-scale, remote-controlled airplane. The airdrops aid in the development of datasets for the exploration of planetary probe trajectory recovery algorithms, supplementing data collected from instrumented, full-scale tests and computer models.
Planetary Surface Visualization and Analytics
NASA Astrophysics Data System (ADS)
Law, E. S.; Solar System Treks Team
2018-04-01
An introduction and update of the Solar System Treks Project which provides a suite of interactive visualization and analysis tools to enable users (engineers, scientists, public) to access large amounts of mapped planetary data products.
NASA Technical Reports Server (NTRS)
2002-01-01
[figure removed for brevity, see original site] This THEMIS image captures a portion of several lava flows in Daedalia Planum southwest of the Arsia Mons shield volcano. Textures characteristic of the variable surface roughness associated with different lava flows in this region are easily seen. The lobate edges of the flows are distinctive, and permit the discrimination of many overlapping individual flows. The surfaces of some flows look wrinkly and ropy, probably indicating a relatively fluid type of lava flow referred to as pahoehoe. The surface textures of lava flows can thus sometimes be used for comparative purposes to infer lava viscosity and effusion rates. Numerous parallel curved ridges are visible on the upper surfaces of some of the lava flows. These ridges make the flow surface look somewhat ropy, and at smaller scales this flow might be referred to as pahoehoe, however, these features are probably better referred to as pressure ridges. Pressure ridges form on the surface of a lava flow when the upper part of the flow is exposed to air, cooling it, but the insulated much warmer interior of the flow continues to move down slope (and more material is pushed forward from behind), causing the surface to compress and pile up like a rug.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Robinson, Nathaniel; Allred, Brady; Jones, Matthew; ...
2017-08-21
Satellite derived vegetation indices (VIs) are broadly used in ecological research, ecosystem modeling, and land surface monitoring. The Normalized Difference Vegetation Index (NDVI), perhaps the most utilized VI, has countless applications across ecology, forestry, agriculture, wildlife, biodiversity, and other disciplines. Calculating satellite derived NDVI is not always straight-forward, however, as satellite remote sensing datasets are inherently noisy due to cloud and atmospheric contamination, data processing failures, and instrument malfunction. Readily available NDVI products that account for these complexities are generally at coarse resolution; high resolution NDVI datasets are not conveniently accessible and developing them often presents numerous technical and methodologicalmore » challenges. Here, we address this deficiency by producing a Landsat derived, high resolution (30 m), long-term (30+ years) NDVI dataset for the conterminous United States. We use Google Earth Engine, a planetary-scale cloud-based geospatial analysis platform, for processing the Landsat data and distributing the final dataset. We use a climatology driven approach to fill missing data and validate the dataset with established remote sensing products at multiple scales. We provide access to the composites through a simple web application, allowing users to customize key parameters appropriate for their application, question, and region of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Nathaniel; Allred, Brady; Jones, Matthew
Satellite derived vegetation indices (VIs) are broadly used in ecological research, ecosystem modeling, and land surface monitoring. The Normalized Difference Vegetation Index (NDVI), perhaps the most utilized VI, has countless applications across ecology, forestry, agriculture, wildlife, biodiversity, and other disciplines. Calculating satellite derived NDVI is not always straight-forward, however, as satellite remote sensing datasets are inherently noisy due to cloud and atmospheric contamination, data processing failures, and instrument malfunction. Readily available NDVI products that account for these complexities are generally at coarse resolution; high resolution NDVI datasets are not conveniently accessible and developing them often presents numerous technical and methodologicalmore » challenges. Here, we address this deficiency by producing a Landsat derived, high resolution (30 m), long-term (30+ years) NDVI dataset for the conterminous United States. We use Google Earth Engine, a planetary-scale cloud-based geospatial analysis platform, for processing the Landsat data and distributing the final dataset. We use a climatology driven approach to fill missing data and validate the dataset with established remote sensing products at multiple scales. We provide access to the composites through a simple web application, allowing users to customize key parameters appropriate for their application, question, and region of interest.« less
Zhang, Jingyi; Li, Bin; Chen, Yumin; Chen, Meijie; Fang, Tao; Liu, Yongfeng
2018-06-11
This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF) method to estimate ground PM 2.5 concentrations. Covariates are derived from remotely sensed data including aerosol optical depth, normal differential vegetation index, surface temperature, air pressure, relative humidity, height of planetary boundary layer and digital elevation model. In addition, cultural variables such as factory densities and road densities are also used in the model. With the Yangtze River Delta region as the study area, we constructed ESF-based Regression (ESFR) models at different time scales, using data for the period between December 2015 and November 2016. We found that the ESFR models effectively filtered spatial autocorrelation in the OLS residuals and resulted in increases in the goodness-of-fit metrics as well as reductions in residual standard errors and cross-validation errors, compared to the classic OLS models. The annual ESFR model explained 70% of the variability in PM 2.5 concentrations, 16.7% more than the non-spatial OLS model. With the ESFR models, we performed detail analyses on the spatial and temporal distributions of PM 2.5 concentrations in the study area. The model predictions are lower than ground observations but match the general trend. The experiment shows that ESFR provides a promising approach to PM 2.5 analysis and prediction.
Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets
NASA Technical Reports Server (NTRS)
Felder, Michael; Nesnas, Issa A.; Pivtoraiko, Mihail; Kelly, Alonzo; Volpe, Richard
2011-01-01
Exploring planetary surfaces typically involves traversing challenging and unknown terrain and acquiring in-situ measurements at designated locations using arm-mounted instruments. We present field results for a new implementation of an autonomous capability that enables a rover to traverse and precisely place an arm-mounted instrument on remote targets. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover's mast cameras. The rover then autonomously traverse the rocky terrain for a distance of 10 - 15 m, tracks the target(s) of interest during the traverse, positions itself for approaching the target, and then precisely places an arm-mounted instrument within 2-3 cm from the originally designated target. The rover proceeds to acquire science measurements with the instrument. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight thread-the-needle maneuvers. We integrated these algorithms on the newly refurbished Athena Mars research rover and fielded them in the JPL Mars Yard. We conducted 43 runs with targets at distances ranging from 5 m to 15 m and achieved a success rate of 93% for placement of the instrument within 2-3 cm.
Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis
Shaukat, Affan; Blacker, Peter C.; Spiteri, Conrad; Gao, Yang
2016-01-01
In recent decades, terrain modelling and reconstruction techniques have increased research interest in precise short and long distance autonomous navigation, localisation and mapping within field robotics. One of the most challenging applications is in relation to autonomous planetary exploration using mobile robots. Rovers deployed to explore extraterrestrial surfaces are required to perceive and model the environment with little or no intervention from the ground station. Up to date, stereopsis represents the state-of-the art method and can achieve short-distance planetary surface modelling. However, future space missions will require scene reconstruction at greater distance, fidelity and feature complexity, potentially using other sensors like Light Detection And Ranging (LIDAR). LIDAR has been extensively exploited for target detection, identification, and depth estimation in terrestrial robotics, but is still under development to become a viable technology for space robotics. This paper will first review current methods for scene reconstruction and terrain modelling using cameras in planetary robotics and LIDARs in terrestrial robotics; then we will propose camera-LIDAR fusion as a feasible technique to overcome the limitations of either of these individual sensors for planetary exploration. A comprehensive analysis will be presented to demonstrate the advantages of camera-LIDAR fusion in terms of range, fidelity, accuracy and computation. PMID:27879625
Planetary surface reactor shielding using indigenous materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houts, Michael G.; Poston, David I.; Trellue, Holly R.
The exploration and development of Mars will require abundant surface power. Nuclear reactors are a low-cost, low-mass means of providing that power. A significant fraction of the nuclear power system mass is radiation shielding necessary for protecting humans and/or equipment from radiation emitted by the reactor. For planetary surface missions, it may be desirable to provide some or all of the required shielding from indigenous materials. This paper examines shielding options that utilize either purely indigenous materials or a combination of indigenous and nonindigenous materials.
International Search for Life in Ocean Worlds
NASA Astrophysics Data System (ADS)
Sherwood, B.
2015-12-01
We now know that our solar system contains diverse "ocean worlds." One has abundant surface water and life; another had significant surface water in the distant past and has drawn significant exploration attention; several contain large amounts of water beneath ice shells; and several others evince unexpected, diverse transient or dynamic water-related processes. In this century, humanity will explore these worlds, searching for life beyond Earth and seeking thereby to understand the limits of habitability. Of our ocean worlds, Enceladus presents a unique combination of attributes: large reservoir of subsurface water already known to contain salts, organics, and silica nanoparticles originating from hydrothermal activity; and able to be sampled via a plume predictably expressed into space. These special circumstances immediately tag Enceladus as a key destination for potential missions to search for evidence of non-Earth life, and lead to a range of potential mission concepts: for orbital reconnaissance; in situ and returned-sample analysis of plume and surface-fallback material; and direct sulcus, vent, cavern, and ocean exploration. Each mission type can address a unique set of science questions, and would require a unique set of capabilities, most of which are not yet developed. Both the questions and the capability developments can be sequenced into a programmatic precedence network, the realization of which requires international cooperation. Three factors make this true: exploring remote oceans autonomously will cost a lot; the Outer Space Treaty governs planetary protection; and discovery of non-Earth life is an epochal human imperative. Results of current planning will be presented in AGU session 8599: how ocean-world science questions and capability requirements can be parsed into programmatically acceptable mission increments; how one mission proposed into the Discovery program in 2015 would take the next step on this path; the Decadal calendar of decision points and program options that will constrain ocean-world exploration through mid-century; and findings of the COSPAR Planetary Protection Panel colloquium for ocean-world exploration held in September 2015.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released July 28, 2004 This image shows two representations of the same infra-red image covering an area near Mare Cimmerium. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations. This area contains a mixture of basaltic materials (magenta/purple) and dust (green/blue). Faint blue areas may be due to some thin water ice clouds. The different compositional units are sometimes correlated with crater floors and other surface features, but they are often not tied to valleys, lava flows, etc... indicating that the surface materials could be mobile (dust and sand). Image information: IR instrument. Latitude -23.7, Longitude 139.3 East (220.7 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.A working environment for digital planetary data processing and mapping using ISIS and GRASS GIS
Frigeri, A.; Hare, T.; Neteler, M.; Coradini, A.; Federico, C.; Orosei, R.
2011-01-01
Since the beginning of planetary exploration, mapping has been fundamental to summarize observations returned by scientific missions. Sensor-based mapping has been used to highlight specific features from the planetary surfaces by means of processing. Interpretative mapping makes use of instrumental observations to produce thematic maps that summarize observations of actual data into a specific theme. Geologic maps, for example, are thematic interpretative maps that focus on the representation of materials and processes and their relative timing. The advancements in technology of the last 30 years have allowed us to develop specialized systems where the mapping process can be made entirely in the digital domain. The spread of networked computers on a global scale allowed the rapid propagation of software and digital data such that every researcher can now access digital mapping facilities on his desktop. The efforts to maintain planetary missions data accessible to the scientific community have led to the creation of standardized digital archives that facilitate the access to different datasets by software capable of processing these data from the raw level to the map projected one. Geographic Information Systems (GIS) have been developed to optimize the storage, the analysis, and the retrieval of spatially referenced Earth based environmental geodata; since the last decade these computer programs have become popular among the planetary science community, and recent mission data start to be distributed in formats compatible with these systems. Among all the systems developed for the analysis of planetary and spatially referenced data, we have created a working environment combining two software suites that have similar characteristics in their modular design, their development history, their policy of distribution and their support system. The first, the Integrated Software for Imagers and Spectrometers (ISIS) developed by the United States Geological Survey, represents the state of the art for processing planetary remote sensing data, from the raw unprocessed state to the map projected product. The second, the Geographic Resources Analysis Support System (GRASS) is a Geographic Information System developed by an international team of developers, and one of the core projects promoted by the Open Source Geospatial Foundation (OSGeo). We have worked on enabling the combined use of these software systems throughout the set-up of a common user interface, the unification of the cartographic reference system nomenclature and the minimization of data conversion. Both software packages are distributed with free open source licenses, as well as the source code, scripts and configuration files hereafter presented. In this paper we describe our work done to merge these working environments into a common one, where the user benefits from functionalities of both systems without the need to switch or transfer data from one software suite to the other one. Thereafter we provide an example of its usage in the handling of planetary data and the crafting of a digital geologic map. ?? 2010 Elsevier Ltd. All rights reserved.
Mars ecopoiesis test bed: on earth and on the red planet
NASA Astrophysics Data System (ADS)
Todd, Paul; Kurk, Michael Andy; Boland, Eugene; Thomas, David; Scherzer, Christopher
2016-07-01
The concept of autotrophic organisms serving as planetary pioneers as a precursor to terraforming has been under consideration for several decades, and the term Ecopoiesis was introduced by the ecopoiets C. Sagan, M. Avener, R. Haynes and C. McKay to call attention to this possibility. There is a continuing need for experimental evidence to support this concept, one of them being the need to evaluate the survivability of terrestrial autotrophic microbes in a planetary environment. For this and other purposes a planetary simulation facility was constructed and operated at Techshot, Inc. in Indiana, USA. This facility has an accumulated record of more than one year's worth of experimentation under simulated Mars conditions. In a recent study this facility was operated for five weeks in a mode that simulated 35 sols on and just below the surface of Mars at low latitude. The diurnal lighting period was 12 hours:12 hours using xenon arc light filtered to simulate the solar intensity and spectrum on the Martian surface. A daily temperature profile followed that recorded at low latitudes with night-time minima at -80 C and noontime maxima at +26 C. Atmosphere was CO _{2} at <11 mbar. Moisture was monitored to confirm that no water could exist in the liquid phase. Test organisms included the cyanobacteria Anabena, sp., Chroococcidiopsis CCMEE171 and Plectonema boryanum and Eukaryota: Chlorella ellipsoidia maintained in the simulator under the above-described conditions. The exposed specimens were tested for intracellular esterase activity, chlorophyll content and reproductive survival. All tests yielded low-level positive survival results for these organisms. No definitive data relating to function and/or growth during exposure were sought. In parallel to these terrestrial studies a planned design study was undertaken for a proposed test bed to be operated on the surface of Mars. Design requirements include compact assembly for transport and installation on the planetary surface (multiple units per mission would be expected), protective internal package for the release of organisms, a means of atmosphere exchange, access to sunlight, a means of penetrating the planetary surface, and most importantly a means of acquiring regolith while meeting requirements of planetary protection. An enlarged-scale mock-up of this design was fabricated by additive manufacturing with moving parts that simulate the components of the design. This mock-up assembly marks a starting point for a planetary surface probe for safe implantation on the surface of the Red Planet some decades in the future. This research was supported by NASA NIAC Phase I Grant "Mars Ecopoiesis Testbed" NNX14AM97G.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.
2004-01-01
Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.
Robotic Access to Planetary Surfaces Capability Roadmap
NASA Technical Reports Server (NTRS)
2005-01-01
A set of robotic access to planetary surfaces capability developments and supporting infrastructure have been identified. Reference mission pulls derived from ongoing strategic planning. Capability pushes to enable broader mission considerations. Facility and flight test capability needs. Those developments have been described to the level of detail needed for high-level planning. Content and approach. Readiness and metrics. Rough schedule and cost. Connectivity to mission concepts.
Planetary Research Center. [astronomical photography of planetary surfaces and atmospheres
NASA Technical Reports Server (NTRS)
Baum, W. A.; Millis, R. L.; Bowell, E. L. G.
1974-01-01
Extensive Earth-based photography of Mars, Jupiter, and Venus is presented which monitors the atmospheric and/or surface changes that take place day to day. Color pictures are included of the 1973 dust storm on Mars, showing the daily cycle of the storm's regeneration. Martian topography, and the progress of the storm is examined. Areas most affected by the storm are summarized.
Science goals and concepts of a Saturn probe for the future L2/L3 ESA call
NASA Astrophysics Data System (ADS)
Schmider, F.-X.; Mousis, O.; Fletcher, L. N.; Altwegg, K.; André, N.; Blanc, M.; Coustenis, A.; Gautier, D.; Geppert, W. D.; Guillot, T.; Irwin, P.; Lebreton, J.-P.; Marty, B.; Sánchez-Lavega, A.; Waite, J. H.; Wurz, P.
2013-11-01
Comparative studies of the elemental enrichments and isotopic abundances measured on Saturn can provide unique insights into the processes at work within our planetary system and are related to the time and location of giant planet formation. In situ measurements via entry probes remain the only reliable, unambiguous method for determining the atmospheric composition from the thermosphere to the deep cloud-forming regions of their complex weather layers. Furthermore, in situ experiments can reveal the meteorological properties of planetary atmospheres to provide ``ground truth'' for orbital remote sensing. Following the orbital reconnaissance of the Galileo and Cassini spacecraft, and the single-point in situ measurement of the Galileo probe to Jupiter, we believe that an in situ measurement of Saturn's atmospheric composition should be an essential element of ESA's future cornerstone missions, providing the much-needed comparative planetology to reveal the origins of our outer planets. This quest for understanding the origins of our solar system and the nature of planetary atmospheres is in the heart of ESA's Cosmic Vision, and has vast implications for the origins of planetary systems around other stars.
Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.
Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias
2013-10-01
This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.
The Stellar Activity of TRAPPIST-1 and Consequences for the Planetary Atmospheres
NASA Astrophysics Data System (ADS)
Roettenbacher, Rachael M.; Kane, Stephen R.
2017-12-01
The signatures of planets hosted by M dwarfs are more readily detected with transit photometry and radial velocity methods than those of planets around larger stars. Recently, transit photometry was used to discover seven planets orbiting the late-M dwarf TRAPPIST-1. Three of TRAPPIST-1's planets fall in the Habitable Zone, a region where liquid water could exist on the planetary surface given appropriate planetary conditions. We aim to investigate the habitability of the TRAPPIST-1 planets by studying the star’s activity and its effect on the planets. We analyze previously published space- and ground-based light curves and show the photometrically determined rotation period of TRAPPIST-1 appears to vary over time due to complicated, evolving surface activity. The dramatic changes of the surface of TRAPPIST-1 suggest that rotation periods determined photometrically may not be reliable for this and similarly active stars. While the activity of the star is low, we use the premise of the “cosmic shoreline” to provide evidence that the TRAPPIST-1 environment has potentially led to the erosion of possible planetary atmospheres by extreme ultraviolet stellar emission.
Planetary Geology: Goals, Future Directions, and Recommendations
NASA Technical Reports Server (NTRS)
1988-01-01
Planetary exploration has provided a torrent of discoveries and a recognition that planets are not inert objects. This expanded view has led to the notion of comparative planetology, in which the differences and similarities among planetary objects are assessed. Solar system exploration is undergoing a change from an era of reconnaissance to one of intensive exploration and focused study. Analyses of planetary surfaces are playing a key role in this transition, especially as attention is focused on such exploration goals as returned samples from Mars. To assess how the science of planetary geology can best contribute to the goals of solar system exploration, a workshop was held at Arizona State University in January 1987. The participants discussed previous accomplishments of the planetary geology program, assessed the current studies in planetary geology, and considered the requirements to meet near-term and long-term exploration goals.
Initial development of an NIR strain measurement technique in brittle geo-materials
NASA Astrophysics Data System (ADS)
Butcher, Emily; Gibson, Andrew; Benson, Philip
2016-04-01
Visible-Near Infrared Spectroscopy (VIS-NIR) is a technique developed for the non-contact measurement of compositional characteristics of surfaces. The technique is rapid, sensitive to change in surface topology and has found applications ranging from planetary geology, soil science, pharmacy to materials testing. The technique has also been used in a limited fashion to measure strain changes in rocks and minerals (Ord and Hobbs 1986). However, there have been few quantitative studies linking such changes in material strains (and other rock physics parameters) to the resulting VIS-NIT signature. This research seeks to determine whether improvements in VIS-NIR equipment means that such a technique is a viable method to measure strains in rock via this remote (non-contact) method. We report new experiments carried out using 40 mm Brazilian Tensile discs of Carrera Marble and Darley Dale Sandstone using an Instron 600LX in the University of Portsmouth Rock Mechanics Laboratory. The tensile test was selected for this experiment as the sample shape and sensor arrangements allow access to a 'flat' surface area throughout the test, allowing surface measurements to be continuously taken whilst the discs are strained to failure. An ASD Labspec 5000 with 25 mm foreoptic was used to collect reflectance spectra in the range 350-2500 nm during each tensile test. Results from Carrera Marble experiments show that reflectance at 2050 nm negatively correlates (by polynomial regression) with axial strain between 0.05-0.5%, with r2 of 0.99. Results from Darley Dale Sandstone data show that reflectance at 1970 nm positively correlates with axial deformation between 0.05-0.5%, with r2 of 0.98. Initial analyses suggests that the VIS-NIR possesses an output that scales in a quantifiable manner with rock strain, and shows promise as a technique for strain measurement. The method has particular application for allowing our laboratory measurements to "ground truth" data taken from drone and other remote sensing techniques that could employ this method. However, further work is underway to understand the exact nature of the correlations - for instance, whether reflectance is related to deformation to the mineral lattice, macro-surface or micro-surface.
NASA Astrophysics Data System (ADS)
Loría-Salazar, S. Marcela; Panorska, Anna; Arnott, W. Patrick; Barnard, James C.; Boehmler, Jayne M.; Holmes, Heather A.
2017-12-01
Determining the relationship between columnar aerosol optical depth (τext) and surface particulate matter concentrations (PM2.5) is desired to estimate surface aerosol concentrations over broad spatial and temporal scales using satellite remote sensing. However, remote sensing studies incur challenges when surface aerosol pollution (i.e. PM2.5) is not correlated with columnar conditions (i.e., τext). PM2.5 data fusion models that rely on satellite data and statistical relationships of τext and PM2.5 may not be able to capture the physical conditions impacting the relationships that cause columnar and surface aerosols to not be correlated in the western U.S. Therefore, an extensive examination of the atmospheric conditions is required to improve surface estimates of PM2.5 that rely on columnar aerosol measurements. This investigation uses datasets from both routine monitoring networks and models of meteorological variables and aerosol physical parameters to understand the atmospheric conditions under which surface aerosol pollution can be explained by column measurements in California and Nevada during 2013. A novel quadrant method, that utilizes statistical analysis, was developed to investigate the relationship between τext and PM2.5. The results from this investigation show that τext and PM2.5 had a positive association (τext and PM2.5 increase together) when local sources of pollution or wildfires dominated aerosol pollution in the presence of a deep and well-mixed planetary boundary layer (PBL). Moreover, τext and PM2.5 had no association (where the variables are not related) when stable conditions, long-range transport, or entrainment of air from above the PBL were observed. It was found that seasonal categorization of the relationship between τext and PM2.5, an approach commonly used in statistical models to estimate surface concentrations with satellite remote sensing, may not be enough to account for the atmospheric conditions that drive the relationships between τext and PM2.5. For all stations, winter showed the maximum average PM2.5 concentrations (14.1 μg m-3, σ = 11.6 μg m-3) meanwhile, τext reached minimum values (0.06 μg m-3, σ = 0.04) during the same season. Conversely, spring presented the minimum average PM2.5 concentrations (9.4 μg m-3, σ = 6.9 μg m-3) and the average values of τext during spring had the second highest values (0.11, σ = 0.06) averaged for all stations.
Compositional mapping of planetary moons by mass spectrometry of dust ejecta
NASA Astrophysics Data System (ADS)
Postberg, Frank; Grün, Eberhard; Horanyi, Mihaly; Kempf, Sascha; Krüger, Harald; Schmidt, Jürgen; Spahn, Frank; Srama, Ralf; Sternovsky, Zoltan; Trieloff, Mario
2011-11-01
Classical methods to analyze the surface composition of atmosphereless planetary objects from an orbiter are IR and gamma ray spectroscopy and neutron backscatter measurements. The idea to analyze surface properties with an in-situ instrument has been proposed by Johnson et al. (1998). There, it was suggested to analyze Europa's thin atmosphere with an ion and neutral gas spectrometer. Since the atmospheric components are released by sputtering of the moon's surface, they provide a link to surface composition. Here we present an improved, complementary method to analyze rocky or icy dust particles as samples of planetary objects from which they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets. The planetary bodies are enshrouded in clouds of ballistic dust particles, which are characteristic samples of their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Recent instrumental developments and tests allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since the detection rates are of the order of thousand per orbit, a spatially resolved mapping of the surface composition can be achieved. Certain bodies (e.g., Europa) with particularly dense dust clouds, could provide impact statistics that allow for compositional mapping even on single flybys. Dust impact velocities are in general sufficiently high at orbiters about planetary objects with a radius >1000 km and with only a thin or no atmosphere. In this work we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth's Moon as well as Jupiter's Galilean satellites. This 'dust spectrometer' approach provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution.
Considerations in the Design of Future Planetary Laser Altimeters
NASA Astrophysics Data System (ADS)
Smith, D. E.; Neumann, G. A.; Mazarico, E.; Zuber, M. T.; Sun, X.
2017-12-01
Planetary laser altimeters have generally been designed to provide high accuracy measurements of the nadir range to an uncooperative surface for deriving the shape of the target body, and sometimes specifically for identifying and characterizing potential landing sites. However, experience has shown that in addition to the range measurement, other valuable observations can be acquired, including surface reflectance and surface roughness, despite not being given high priority in the original altimeter design or even anticipated. After nearly 2 decades of planetary laser altimeter design, the requirements are evolving and additional capabilities are becoming equally important. The target bodies, once the terrestrial planets, are now equally asteroids and moons that in many cases do not permit simple orbital operations due to their small mass, radiation issues, or spacecraft fuel limitations. In addition, for a number of reasons, it has become necessary to perform shape determination from a much greater range, even thousands of kilometers, and thus ranging is becoming as important as nadir altimetry. Reflectance measurements have also proved important for assessing the presence of ice, water or CO2, and laser pulse spreading informed knowledge of surface roughness; all indicating a need for improved instrument capability. Recently, the need to obtain accurate range measurement to laser reflectors on landers or on a planetary surface is presenting new science opportunities but for which current designs are far from optimal. These changes to classic laser altimetry have consequences for many instrument functions and capabilities, including beam divergence, laser power, number of beams and detectors, pixelation, energy measurements, pointing stability, polarization, laser wavelengths, and laser pulse rate dependent range. We will discuss how a new consideration of these trades will help make lidars key instruments to execute innovative science in future planetary missions.
The planetary spatial data infrastructure for the OSIRIS-REx mission
NASA Astrophysics Data System (ADS)
DellaGiustina, D. N.; Selznick, S.; Nolan, M. C.; Enos, H. L.; Lauretta, D. S.
2017-12-01
The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission is to return a pristine sample of carbonaceous material from primitive asteroid (101955) Bennu. Understanding the geospatial context of Bennu is critical to choosing a sample-site and also linking the nature of the sample to the global properties of Bennu and the broader asteroid population. We established a planetary spatial data infrastructure (PSDI) support the primary objective of OSIRIS-REx. OSIRIS-REx is unique among planetary missions in that all remote sensing is performed to support the sample return objective. Prior to sampling, OSIRIS-REx will survey Bennu for nearly two years to select and document the most valuable primary and backup sample sites. During this period, the mission will combine coordinated observations from five science instruments into four thematic maps: deliverability, safety, sampleability, and scientific value. The deliverability map assesses the probability that the flight dynamics team can deliver the spacecraft to the desired location. The safety map indicates the probability that physical hazards are present at the sample-site. The sampleability map quantifies the probability that a sample can be successfully collected from the surface. Finally, the scientific value map shows the probability that the collected sample contains organics and volatiles and also places the sample site in a definitive geological context relative to Bennu's history. The OSIRIS-REx Science Processing and Operations Center (SPOC) serves as the operational PSDI for the mission. The SPOC is tasked with intake of all data from the spacecraft and other ground sources and assimilating these data into a single comprehensive system for processing and presentation. The SPOC centralizes all geographic data of Bennu in a relational database and ensures that standardization and provenance are maintained throughout proximity operations.The SPOC is a live system that handles inputs from spacecraft and science instrument telemetry, and science data producers. It includes multiple levels of validation, both automated and manual to process all data in a robust and reliable manner and eventually deliver it to the NASA Planetary Data System for archive.
The Geology of the Terrestrial Planets
NASA Technical Reports Server (NTRS)
Carr, M. H. (Editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.
1984-01-01
The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.
Rovers for intelligent, agile traverse of challenging terrain
NASA Technical Reports Server (NTRS)
Schenker, P.; Huntsberger, T.; Pirjanian, P.; Dubowsky, S.; Iagnemma, K.; Sujan, V.
2003-01-01
Planetary surface mobility has to date been limited to benign locations. If rover systems could be developed for more challenging terrain, e.g., sloped and irregularly feathered areas, then planetary science opportunities would be greatly expanded.
Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar.
Rothermel, J; Olivier, L; Banta, R; Hardesty, R M; Howell, J; Cutten, D; Johnson, S; Menzies, R; Tratt, D M
1998-01-19
The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the planetary boundary layer, free troposphere, and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.
Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.;
2011-01-01
The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.
Spatial Query for Planetary Data
NASA Technical Reports Server (NTRS)
Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.
2011-01-01
Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.
Workshop on Early Crustal Genesis: Implications from Earth
NASA Technical Reports Server (NTRS)
Phinney, W. C. (Compiler)
1981-01-01
Ways to foster increased study of the early evolution of the Earth, considering the planet as a whole, were explored and recommendations were made to NASA with the intent of exploring optimal ways for integrating Archean studies with problems of planetary evolution. Major themes addressed include: (1) Archean contribution to constraints for modeling planetary evolution; (2) Archean surface conditions and processes as clues to early planetary history; and (3) Archean evidence for physical, chemical and isotopic transfer processes in early planetary crusts. Ten early crustal evolution problems are outlined.
Isaacson, P.J.; Pieters, C.M.; Besse, S.; Clark, R.N.; Head, J.W.; Klima, R.L.; Mustard, J.F.; Petro, N.E.; Staid, M.I.; Sunshine, J.M.; Taylor, L.A.; Thaisen, K.G.; Tompkins, S.
2011-01-01
A systematic approach for deconvolving remotely sensed lunar olivine-rich visible to near-infrared (VNIR) reflectance spectra with the Modified Gaussian Model (MGM) is evaluated with Chandrayaan-1 Moon Mineralogy Mapper (M 3) spectra. Whereas earlier studies of laboratory reflectance spectra focused only on complications due to chromite inclusions in lunar olivines, we develop a systematic approach for addressing (through continuum removal) the prominent continuum slopes common to remotely sensed reflectance spectra of planetary surfaces. We have validated our continuum removal on a suite of laboratory reflectance spectra. Suites of olivine-dominated reflectance spectra from a small crater near Mare Moscoviense, the Copernicus central peak, Aristarchus, and the crater Marius in the Marius Hills were analyzed. Spectral diversity was detected in visual evaluation of the spectra and was quantified using the MGM. The MGM-derived band positions are used to estimate the olivine's composition in a relative sense. Spectra of olivines from Moscoviense exhibit diversity in their absorption features, and this diversity suggests some variation in olivine Fe/Mg content. Olivines from Copernicus are observed to be spectrally homogeneous and thus are predicted to be more compositionally homogeneous than those at Moscoviense but are of broadly similar composition to the Moscoviense olivines. Olivines from Aristarchus and Marius exhibit clear spectral differences from those at Moscoviense and Copernicus but also exhibit features that suggest contributions from other phases. If the various precautions discussed here are weighed carefully, the methods presented here can be used to make general predictions of absolute olivine composition (Fe/Mg content). Copyright ?? 2011 by the American Geophysical Union.
Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life
Krissansen-Totton, Joshua; Olson, Stephanie; Catling, David C.
2018-01-01
Chemical disequilibrium in planetary atmospheres has been proposed as a generalized method for detecting life on exoplanets through remote spectroscopy. Among solar system planets with substantial atmospheres, the modern Earth has the largest thermodynamic chemical disequilibrium due to the presence of life. However, how this disequilibrium changed over time and, in particular, the biogenic disequilibria maintained in the anoxic Archean or less oxic Proterozoic eons are unknown. We calculate the atmosphere-ocean disequilibrium in the Precambrian using conservative proxy- and model-based estimates of early atmospheric and oceanic compositions. We omit crustal solids because subsurface composition is not detectable on exoplanets, unlike above-surface volatiles. We find that (i) disequilibrium increased through time in step with the rise of oxygen; (ii) both the Proterozoic and Phanerozoic may have had remotely detectable biogenic disequilibria due to the coexistence of O2, N2, and liquid water; and (iii) the Archean had a biogenic disequilibrium caused by the coexistence of N2, CH4, CO2, and liquid water, which, for an exoplanet twin, may be remotely detectable. On the basis of this disequilibrium, we argue that the simultaneous detection of abundant CH4 and CO2 in a habitable exoplanet’s atmosphere is a potential biosignature. Specifically, we show that methane mixing ratios greater than 10−3 are potentially biogenic, whereas those exceeding 10−2 are likely biogenic due to the difficulty in maintaining large abiotic methane fluxes to support high methane levels in anoxic atmospheres. Biogenicity would be strengthened by the absence of abundant CO, which should not coexist in a biological scenario. PMID:29387792
Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life.
Krissansen-Totton, Joshua; Olson, Stephanie; Catling, David C
2018-01-01
Chemical disequilibrium in planetary atmospheres has been proposed as a generalized method for detecting life on exoplanets through remote spectroscopy. Among solar system planets with substantial atmospheres, the modern Earth has the largest thermodynamic chemical disequilibrium due to the presence of life. However, how this disequilibrium changed over time and, in particular, the biogenic disequilibria maintained in the anoxic Archean or less oxic Proterozoic eons are unknown. We calculate the atmosphere-ocean disequilibrium in the Precambrian using conservative proxy- and model-based estimates of early atmospheric and oceanic compositions. We omit crustal solids because subsurface composition is not detectable on exoplanets, unlike above-surface volatiles. We find that (i) disequilibrium increased through time in step with the rise of oxygen; (ii) both the Proterozoic and Phanerozoic may have had remotely detectable biogenic disequilibria due to the coexistence of O 2 , N 2 , and liquid water; and (iii) the Archean had a biogenic disequilibrium caused by the coexistence of N 2 , CH 4 , CO 2 , and liquid water, which, for an exoplanet twin, may be remotely detectable. On the basis of this disequilibrium, we argue that the simultaneous detection of abundant CH 4 and CO 2 in a habitable exoplanet's atmosphere is a potential biosignature. Specifically, we show that methane mixing ratios greater than 10 -3 are potentially biogenic, whereas those exceeding 10 -2 are likely biogenic due to the difficulty in maintaining large abiotic methane fluxes to support high methane levels in anoxic atmospheres. Biogenicity would be strengthened by the absence of abundant CO, which should not coexist in a biological scenario.
Robots Explore the Farthest Reaches of Earth and Space
NASA Technical Reports Server (NTRS)
2008-01-01
"We were the first that ever burst/Into that silent sea," the title character recounts in Samuel Taylor Coleridge s opus Rime of the Ancient Mariner. This famous couplet is equally applicable to undersea exploration today as surface voyages then, and has recently been applied to space travel in the title of a chronicle of the early years of human space flight ("Into That Silent Sea: Trailblazers of the Space Era, 1961-1965"), companion to the +n the Shadow of the Moon book and movie. The parallel is certainly fitting, considering both fields explore unknown, harsh, and tantalizingly inhospitable environments. For starters, exploring the Briny Deep and the Final Frontier requires special vehicles, and the most economical and safest means for each employ remotely operated vehicles (ROVs). ROVs have proven the tool of choice for exploring remote locations, allowing scientists to explore the deepest part of the sea and the furthest reaches of the solar system with the least weight penalty, the most flexibility and specialization of design, and without the need to provide for sustaining human life, or the risk of jeopardizing that life. Most NASA probes, including the historic Voyager I and II spacecraft and especially the Mars rovers, Spirit and Opportunity, feature remote operation, but new missions and new planetary environments will demand new capabilities from the robotic explorers of the future. NASA has an acute interest in the development of specialized ROVs, as new lessons learned on Earth can be applied to new environments and increasingly complex missions in the future of space exploration.