Science.gov

Sample records for remote seasonally inaccessible

  1. Remotely Measuring Snow Depth in Inaccessible Terrain

    NASA Astrophysics Data System (ADS)

    Dixon, D.; Boon, S.

    2010-12-01

    In watershed-scale studies of snow accumulation, high alpine areas are typically important accumulation areas. While snow depth measurements may not be collected in these regions due to avalanche danger, failing to include them in basin-wide estimates of snow accumulation may lead to large underestimates of basin-scale water yield. We present a new method to measure spatially distributed point snow depths remotely. Previously described methods using terrestrial laser scanning (TLS) systems, airborne light detection and ranging (LiDAR) systems, and hand-held laser distance meters have several limitations related to cost, data processing, and accuracy, thus reducing their applicability. The use of a modern robotic total station attempts to resolve these limitations. Total stations have much greater measurement accuracy than laser distance meters, and are significantly less expensive then TLS and LiDAR systems. Data can be output in common data formats, simplifying data processing and management. Measurement points can also be resampled repeatedly throughout the season with high accuracy and precision. Simple trigonometry is used to convert total station measurements into estimates of snow depth perpendicular to the slope. We present results of remote snow depth measurements using a Leica Geosystems TCRP 1201+ robotic total station. Snow depth estimates from the station are validated against measured depths in a field trial. The method is then applied in a basin-scale study to collect and calculate high elevation snow depth, in combination with traditional snow surveys at lower elevations.

  2. Laser Remote Optical Granulometry (LROG), a tool for the textural study of inaccessible outcrops: could this method help to study Martian sedimentary successions?

    NASA Astrophysics Data System (ADS)

    Sarocchi, Damiano; Bartali, Roberto; Norini, Gianluca; Nahmad-Molinari, Yuri

    2010-05-01

    We present a new tool for the textural study of inaccessible outcrops of pyroclastic and epiclastic deposits. The new method, called Laser Remote Optical Granulometry (LROG), is based on high resolution tele-photography and stereologic techniques. LROG consists on taking several pictures of the outcrop with a high resolution CCD camera coupled to a small aperture telescope that can be placed several tenths of meters away. The scale of the image is obtained projecting an equilateral triangle with known size on the outcrop by means of three laser beams. The LROG allows the measurement of clasts less than 1 mm in size from a distance of 80 to 100 meters, and can reach much better resolution when operated closer to the outcrop. Perspective distortion can be corrected with the equilateral triangle projected by the lasers. To get high resolution images and remove the effects of air turbulence, hundreds of frames of the same field are captured in rapid sequence and then stacked and averaged with image processing algorithms developed for astronomical imaging. The LROG was validated on the pyroclastic deposits of the Joya Honda maar (San Luis Potosi, Mexico). The LROG provided precise granulometric analysis and vertical granulometric profiles of this pyroclastic sequence, useful to recognize the eruptive history of the volcano. This method can be used for the analysis of any kind of sedimentary deposits in the granulometric range of clasts greater than fine sand. We are improving the LROG to obtain other useful textural information like clast shape and apparent fabric. This method, implemented on a robotic probe could be a promising tool to carry out detailed stratigraphic and sedimentological study of Martian sedimentary successions.

  3. Seasonal variation in American black bear Ursus americanus activity patterns: Quantification via remote photography

    USGS Publications Warehouse

    Bridges, A.S.; Vaughan, M.R.; Klenzendorf, S.

    2004-01-01

    Activity pattern plasticity may serve as an evolutionary adaptation to optimize fitness in an inconstant environment, however, quantifying patterns and demonstrating variation can be problematic. For American black bears Ursus americanus, wariness and habitat inaccessibility further complicate quantification. Radio telemetry has been the primary technique used to examine activity, however, interpretation error and limitation on numbers of animals available to monitor prevent extrapolation to unmarked or untransmittered members of the population. We used remote cameras to quantify black bear activity patterns and examined differences by season, sex and reproductive class in the Alleghany Mountains of western Virginia, USA. We used 1,533 pictures of black bears taken during 1998-2002 for our analyses. Black bears generally were diurnal in summer and nocturnal in autumn with a vespertine activity peak during both seasons. Bear-hound training seasons occurred during September and may offer explanation for the observed shift towards nocturnal behaviour. We found no substantial differences in activity patterns between sex and reproductive classes. Use of remote cameras allowed us to efficiently sample larger numbers of individual animals and likely offered a better approximation of population-level activity patterns than individual-level, telemetry-based methodologies.

  4. Daily and seasonal dynamics of remotely sensed photosynthetic efficiency in tree canopies.

    PubMed

    Pieruschka, Roland; Albrecht, Hendrik; Muller, Onno; Berry, Joseph A; Klimov, Denis; Kolber, Zbigniew S; Malenovský, Zbyněk; Rascher, Uwe

    2014-07-01

    The photosynthesis of various species or even a single plant varies dramatically in time and space, creating great spatial heterogeneity within a plant canopy. Continuous and spatially explicit monitoring is, therefore, required to assess the dynamic response of plant photosynthesis to the changing environment. This is a very challenging task when using the existing portable field instrumentation. This paper reports on the application of a technique, laser-induced fluorescence transient (LIFT), developed for ground remote measurement of photosynthetic efficiency at a distance of up to 50 m. The LIFT technique was used to monitor the seasonal dynamics of selected leaf groups within inaccessible canopies of deciduous and evergreen tree species. Electron transport rates computed from LIFT measurements varied over the growth period between the different species studied. The LIFT canopy data and light-use efficiency measured under field conditions correlated reasonably well with the single-leaf pulse amplitude-modulated measurements of broadleaf species, but differed significantly in the case of conifer tree species. The LIFT method has proven to be applicable for a remote sensing assessment of photosynthetic parameters on a diurnal and seasonal scale; further investigation is, however, needed to evaluate the influence of complex heterogeneous canopy structures on LIFT-measured chlorophyll fluorescence parameters. PMID:24924438

  5. Daily and seasonal dynamics of remotely sensed photosynthetic efficiency in tree canopies.

    PubMed

    Pieruschka, Roland; Albrecht, Hendrik; Muller, Onno; Berry, Joseph A; Klimov, Denis; Kolber, Zbigniew S; Malenovský, Zbyněk; Rascher, Uwe

    2014-07-01

    The photosynthesis of various species or even a single plant varies dramatically in time and space, creating great spatial heterogeneity within a plant canopy. Continuous and spatially explicit monitoring is, therefore, required to assess the dynamic response of plant photosynthesis to the changing environment. This is a very challenging task when using the existing portable field instrumentation. This paper reports on the application of a technique, laser-induced fluorescence transient (LIFT), developed for ground remote measurement of photosynthetic efficiency at a distance of up to 50 m. The LIFT technique was used to monitor the seasonal dynamics of selected leaf groups within inaccessible canopies of deciduous and evergreen tree species. Electron transport rates computed from LIFT measurements varied over the growth period between the different species studied. The LIFT canopy data and light-use efficiency measured under field conditions correlated reasonably well with the single-leaf pulse amplitude-modulated measurements of broadleaf species, but differed significantly in the case of conifer tree species. The LIFT method has proven to be applicable for a remote sensing assessment of photosynthetic parameters on a diurnal and seasonal scale; further investigation is, however, needed to evaluate the influence of complex heterogeneous canopy structures on LIFT-measured chlorophyll fluorescence parameters.

  6. Quality Engineering Tools Focused on Designing Remote Temperature Measurements for Inaccessible Locations by Using Light Components Parameterization of the Heated Materials

    NASA Astrophysics Data System (ADS)

    Rîşteiu, M.; Dobra, R.; Pasculescu, D.; Mohammad, A. Ahmad

    2016-06-01

    This paper is focused on research dedicated to measure the bucket wheel bearing temperature of the bucket wheel excavator (BWE). It proposes a measurement method for heating friction materials because is difficult to detect the temperature variation in the bearing. The major issue is to detect the generated infrared light according to the material detection. The temperature is considered the major signal of the wheel reliability and a remotely temperature detection method is proposed and because the sleeve bearing is a crucial part of the excavator a predictive measurements system for buckled wheel axis system was designed.

  7. Remote Sensing the Phytoplankton Seasonal Succession of the Red Sea

    PubMed Central

    Brewin, Robert J. W.; Stenchikov, Georgiy; Hoteit, Ibrahim

    2013-01-01

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone

  8. A data fusion approach for monitoring remotely sensed seasonal evapotranspiration

    NASA Astrophysics Data System (ADS)

    Bhattarai, N.; Quackenbush, L. J.

    2013-12-01

    Landsat is widely applied for monitoring remotely sensed evapotranspiration (ET) because of the four-decade archive of satellite images that records visible, near-, mid- and thermal-infrared information of the Earth surface at moderate spatial resolution (30 to 100 m). However, the 16-day gap between subsequent Landsat images limits its ability to quantify seasonal ET-particularly in cloud-prone areas. Hence, we developed an ET fusion model that integrates the coarser, more frequently available moderate resolution imaging spectroradiometer (MODIS) images with Landsat images using simple linear regression models. Inputs for the Landsat-MODIS fusion model include MODIS land surface temperature and normalized difference vegetation index (NDVI) data, Landsat-based evaporative fraction maps generated using the mapping evapotranspiration at high resolution with internalized calibration (METRIC) model, and land cover information. The Landsat-MODIS ET fusion model generates ET maps with MODIS temporal and Landsat spatial resolution. Eight Landsat and 31 MODIS images from 2008 were utilized to derive watershed-scale annual ET for the Fish River Watershed in AL using the Landsat-MODIS ET fusion model. Mean annual ET for the watershed was estimated within 4% of annual ET estimates from a water balance method. Results showed that the mean annual ET estimates were improved by 25% and 11%, when compared to those from a non-fusion Landsat-only approach and MOD 16 ET products, respectively, with annual ET reference data coming from a water balance method. In addition, pixel level evaluation using measured ET data from a United States Geological Survey (USGS) station in FL showed significant improvement in daily and seasonal ET estimates, when results were compared to those from the non-fusion Landsat-only approach. Mean absolute error for seasonal ET was improved by 7% (11% to 4%), while daily ET estimates were improved by 38% (0.77 to 0.48 mm/day) 124% (0.33 to 0.74) and 32% (0

  9. Assessing seasonal features of tropical forests using remote sensing

    NASA Astrophysics Data System (ADS)

    Bonifaz-Alfonzo, Roberto

    2011-12-01

    seasonal and vegetation response. In terms of mapping the WDRVI was the index with better performance. Fourier parameters mapping, particularly the first harmonic phase, was sensitive to annual variation of environmental conditions (precipitation). The use of multitemporal observations through remote sensing observations, provide a continuous and dynamic view of tropical regions to support monitoring and sustainable development and management of environmental policies.

  10. Emperor penguins nesting on Inaccessible Island

    USGS Publications Warehouse

    Jonkel, G.M.; Llano, G.A.

    1975-01-01

    Emperor penguins were observed nesting on Inaccessible I. during the 1973 winter. This is the southernmost nesting of emperor penguins thus far recorded; it also could be the first record of emperors attempting to start a new rookery. This site, however, may have been used by emperors in the past. The closest reported nesting of these penguins to Inaccessible I. is on the Ross Ice Shelf east of Cape Crozier. With the exception of the Inaccessible I. record, there is little evidence that emperor penguins breed in McMurdo Sound proper.

  11. Mississippi Sound remote sensing study. [NASA Earth Resources Laboratory seasonal experiments

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.; Thomann, G. C.

    1973-01-01

    A study of the Mississippi Sound was initiated in early 1971 by personnel of NASA Earth Resources Laboratory. Four separate seasonal experiments consisting of quasi-synoptic remote and surface measurements over the entire area were planned. Approximately 80 stations distributed throughout Mississippi Sound were occupied. Surface water temperature and secchi extinction depth were measured at each station and water samples were collected for water quality analyses. The surface distribution of three water parameters of interest from a remote sensing standpoint - temperature, salinity and chlorophyll content - are displayed in map form. Areal variations in these parameters are related to tides and winds. A brief discussion of the general problem of radiative measurements of water temperature is followed by a comparison of remotely measured temperatures (PRT-5) to surface vessel measurements.

  12. Asian elephants acquire inaccessible food by blowing.

    PubMed

    Mizuno, Kaori; Irie, Naoko; Hiraiwa-Hasegawa, Mariko; Kutsukake, Nobuyuki

    2016-01-01

    Many animals acquire otherwise inaccessible food with the aid of sticks and occasionally water. As an exception, some reports suggest that elephants manipulate breathing through their trunks to acquire inaccessible food. Here, we report on two female Asian elephants (Elephas maximus) in Kamine Zoo, Japan, who regularly blew to drive food within their reach. We experimentally investigated this behaviour by placing foods in inaccessible places. The elephants blew the food until it came within accessible range. Once the food was within range, the elephants were increasingly less likely to blow as the distance to the food became shorter. One subject manipulated her blowing duration based on food distance: longer when the food was distant. These results suggest that the elephants used their breath to achieve goals: that is, they used it not only to retrieve the food but also to fine-tune the food position for easy grasping. We also observed individual differences in the elephants' aptitude for this technique, which altered the efficiency of food acquisition. Thus, we added a new example of spontaneous behaviour for achieving a goal in animals. The use of breath to drive food is probably unique to elephants, with their dexterous trunks and familiarity with manipulating the act of blowing, which is commonly employed for self-comfort and acoustic communication.

  13. Asian elephants acquire inaccessible food by blowing.

    PubMed

    Mizuno, Kaori; Irie, Naoko; Hiraiwa-Hasegawa, Mariko; Kutsukake, Nobuyuki

    2016-01-01

    Many animals acquire otherwise inaccessible food with the aid of sticks and occasionally water. As an exception, some reports suggest that elephants manipulate breathing through their trunks to acquire inaccessible food. Here, we report on two female Asian elephants (Elephas maximus) in Kamine Zoo, Japan, who regularly blew to drive food within their reach. We experimentally investigated this behaviour by placing foods in inaccessible places. The elephants blew the food until it came within accessible range. Once the food was within range, the elephants were increasingly less likely to blow as the distance to the food became shorter. One subject manipulated her blowing duration based on food distance: longer when the food was distant. These results suggest that the elephants used their breath to achieve goals: that is, they used it not only to retrieve the food but also to fine-tune the food position for easy grasping. We also observed individual differences in the elephants' aptitude for this technique, which altered the efficiency of food acquisition. Thus, we added a new example of spontaneous behaviour for achieving a goal in animals. The use of breath to drive food is probably unique to elephants, with their dexterous trunks and familiarity with manipulating the act of blowing, which is commonly employed for self-comfort and acoustic communication. PMID:26541597

  14. Methods and tools to enjoy and to study inaccessible Heritage

    NASA Astrophysics Data System (ADS)

    Capone, M.; Campi, M.

    2014-06-01

    Our research on a multi-purpose survey of cultural Heritage located in UNESCO Historical Centre of Naples has the following goals: to test some innovative strategies to improve public enjoyment for inaccessible sites; to explore the use of some interactive systems to study heritage in remote; to explore how to access the information system through AR applications. In this paper we are going to focus on comparison between interactive system to access 3D data and photogrammetric processing of panoramic images. We investigated on: a. the use of 360° panorama for 3D restitutions; b. the use of 360° panorama as an interface to 3D data to extract real 3D coordinates and accurately measure distances; c. the use of 3D PDF to access a 3D database.

  15. Acoustic and satellite remote sensing of blue whale seasonality and habitat in the Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Burtenshaw, Jessica C.; Oleson, Erin M.; Hildebrand, John A.; McDonald, Mark A.; Andrew, Rex K.; Howe, Bruce M.; Mercer, James A.

    2004-05-01

    Northeast Pacific blue whales seasonally migrate, ranging from the waters off Central America to the Gulf of Alaska. Using acoustic and satellite remote sensing, we have continuously monitored the acoustic activity and habitat of blue whales during 1994-2000. Calling blue whales primarily aggregate off the coast of southern and central California in the late summer, coinciding with the timing of the peak euphausiid biomass, their preferred prey. The northward bloom of primary production along the coast and subsequent northbound movements of the blue whales are apparent in the satellite and acoustic records, respectively, with the calling blue whales moving north along the Oregon and Washington coasts to a secondary foraging area with high primary productivity off Vancouver Island in the late fall. El Ni n˜o conditions, indicated by elevated sea-surface temperature and depressed regional chlorophyll- a concentrations, are apparent in the satellite records, particularly in the Southern California Bight during 1997/1998. These conditions disrupt biological production and alter the presence of calling blue whales in primary feeding locations. Remote sensing using acoustics is well suited to characterizing the seasonal movements and relative abundance of the northeast Pacific blue whales, and remote sensing using satellites allows for monitoring their habitat. These technologies are invaluable because of their ability to provide continuous large-scale spatial and temporal coverage of the blue whale migration.

  16. Remote Sensing of Seasonal Leaf Area Index Across the Oregon Transect

    NASA Technical Reports Server (NTRS)

    Spanner, Michael; Johnson, Lee; Miller, John; McCreight, Richard; Freemantle, Jim; Runyon, John; Gong, Peng

    1994-01-01

    Remotely sensed data acquired from four remote-sensing instruments on three different aircraft platforms over a transect of coniferous forest stands in Oregon were analyzed with respect to seasonal leaf area index (LAI). Data from the four instruments were corrected for the varying seasonal and geographic atmospheric conditions present along the transect. Strong logarithmic relationships were observed between seasonal maximum and minimum LAI and the simple ratio (SR) (near infrared/red reflectance) calculated from the broad-spectral-band Thematic Mapper Simulator (TMS), as well as from the narrow-spectral-band Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the Compact Airborne Spectrographic Imager (CASI), and a Spectron SE590 spectro-radiometer (R(exp 2) = 0.82-0.97). The TMS SR reached an asymptote at an LAI of approx. 7-8. However, the SE590 and the CASI SR continued to increase up to the maximum LAI of 10.6. The variability of the relationship between the AVIRIS SR and LAI increased at stands with LAIs greater than 7, making a trend in the AVIRIS SR-LAI relationship at LAIs greater than 7 difficult to discern. The SRs of the coniferous forest stands measured by the narrow-spectral-band instruments were higher than they were from the broad-spectral-band TMS. This is attributed partially to the integration of the TMS over a broad wavelength region in the red and more strongly to calibration differences between the sensors. Seasonal TMS SR trends for four time periods for some of the stands deviated from the expected seasonal LAI trends, possibly because of smoke and very low sun angles during some of the acquisition periods. However, the expected SR differences for the seasonal minimum and maximum LAI were observed for all of the sensors for nearly all of the forest stands. This study, demonstrates that remotely, sensed data from both broad- and narrow spectral band instruments can provide estimates of LAI for use in forest ecosystems simulation models

  17. Seasonal Patterns and Remote Spectral Estimation of Canopy Chemistry Across the Oregon Transect

    NASA Technical Reports Server (NTRS)

    Matson, Pamela; Johnson, Lee; Billow, Christine; Miller, John; Pu, Ruiliang

    1994-01-01

    We examined seasonal changes in canopy chemical concentrations and content in conifer forests growing along a climate gradient in western Oregon, as part of the Oregon Transect Ecosystem Research (OTTER) study. The chemical variables were related to seasonal patterns of growth and production. Statistical comparisons of chemical variables with data collected from two different airborne remote-sensing platforms were also carried out. Total nitrogen (N) concentrations in foliage varied significantly both seasonally and among sites; when expressed as content in the forest canopy, nitrogen varied to a much greater extent and was significantly related to aboveground net primary production (r = 0.99). Chlorophyll and free amino acid concentrations varied more strongly than did total N and may have reflected changes in physiological demands for N. Large variations in starch concentrations were measured from pre- to post-budbreak in all conifer sites. Examination of remote-sensing data from two different airborne instruments suggests the potential for remote measurement of some canopy chemicals. Multivariate analysis of high-resolution spectral data in the near infrared region indicated significant correlations between spectral signals and N concentration and canopy N content; the correlation with canopy N content was stronger and was probably associated in part with water absorption features of the forest canopy. The spectral bands that were significantly correlated with lignin concentration and content were similar to bands selected in the other laboratory and airborne studies; starch concentrations were not significantly related to spectral reflectance data. Strong relationships between the spectral position of specific reflectance features in the visible region and chlorophyll were also found.

  18. Remotely sensed vegetation indices for seasonal crop yields predictions in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Hlavinka, Petr; Semerádová, Daniela; Balek, Jan; Bohovic, Roman; Žalud, Zdeněk; Trnka, Miroslav

    2015-04-01

    Remotely sensed vegetation indices by satellites are valuable tool for vegetation conditions assessment also in the case of field crops. This study is based on the use of NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard Terra satellite. Data available from the year 2000 were analyzed and tested for seasonal yields predictions within selected districts of the Czech Republic (Central Europe). Namely the yields of spring barley, winter wheat and oilseed winter rape during the period from 2000 to 2014 were assessed. Observed yields from 14 districts (NUTS 4) were collected and thus 210 seasons were included. Selected districts differ considerably in their soil fertility and terrain configuration and represent transect across various agroclimatic conditions (from warm and dry to relative cool and wet regions). Two approaches were tested: 1) using of composite remotely sensed data (available in 16 day time step) provided by the USGS (https://lpdaac.usgs.gov/); 2) using daily remotely sensed data in combination with originally developed smoothing method. The yields were successfully predicted based on established regression models (remotely sensed data used as independent parameter). Besides others the impact of severe drought episodes within vegetation were identified and yield reductions at district level predicted (even before harvest). As a result the periods with the best relationship between remotely sensed data and yields were identified. The impact of drought conditions as well as normal or above normal yields of field crops could be predicted by proposed method within study region up to 30 days prior to the harvest. It could be concluded that remotely sensed vegetation conditions assessment should be important part of early warning systems focused on drought. Such information should be widely available for various users (decision makers, farmers, etc.) in

  19. Exploring the mid-infrared region for urban remote sensing: seasonal and view angle effects

    NASA Astrophysics Data System (ADS)

    Krehbiel, C. P.; Kovalskyy, V.; Henebry, G. M.

    2013-12-01

    Spanning 3-5 microns, the mid-infrared (MIR) region is the mixing zone between reflected sunlight and emitted earthlight in roughly equal proportions. While the MIR has been utilized in atmospheric remote sensing, its potential in terrestrial remote sensing--particularly urban remote sensing, has yet to be realized. One major advantage of the MIR is the ability to penetrate most anthropogenic haze and smog. Green vegetation appears MIR-dark, urban building materials appear MIR-grey, and bare soil and dried vegetation appear MIR-bright. Thus, there is an intrinsic seasonality in MIR radiance dynamics due both to surface type differences and to seasonal change in insolation. These factors merit exploration into the potential applications of the MIR for monitoring urban change. We investigated MIR radiance dynamics in relation to (1) the spectral properties of land cover types, (2) time of year and (3) sensor view zenith angle (VZA). We used Aqua MODIS daily swaths for band 23 (~ 4.05 μm) at 1 km spatial resolution from 2009-2010 and the NLCD Percent Impervious Surface Area (%ISA) 30 m product from 2001 and 2006. We found the effects of time of year, sensor VZA, and %ISA to be three principal factors influencing MIR radiance dynamics. We focused on analyzing the relationship between MIR radiance and %ISA over eight major cities in the Great Plains of the USA. This region is characterized by four distinct seasons, relatively flat terrain, and isolated urban centers situated within a vegetated landscape. We used west-east transects beginning in the agricultural areas outside of each city, passing through the urban core and extending back out into the agricultural periphery to observe the spatial pattern of MIR radiance and how it changes seasonally. Sensor VZA influences radiance dynamics by affecting the proportion of surface elements detected--especially pertinent at the coarse spatial resolution (~1 km) of MODIS. For example, smaller VZAs (<30°) capture more

  20. Do BRDF effects dominate seasonal changes in tower-based remote sensing imagery?

    NASA Astrophysics Data System (ADS)

    Nagol, J. R.; Morton, D. C.; Rubio, J.; Cook, B. D.; Rishmawi, K.

    2014-12-01

    In situ remote sensing complements data from airborne and space-based sensors, in particular for intensive study sites where optical imagery can be paired with detailed ground and tower measurements. The characteristics of tower-mounted imaging systems are quite different from the nadir viewing geometry of other remote sensing platforms. In particular, tower-mounted systems are quite sensitive to artifacts of seasonal and diurnal sun angle variations. Most systems are oriented in a fixed north or south direction (depending on latitude), placing them in the principal plane at solar noon. The strength of the BRDF (Bidirectional Reflectance Distribution Function) effect is strongest for images acquired at that time. Phenological metrics derived from tower based oblique angle imaging systems are particularly prone to BRDF effects, as shadowing within and between tree crowns varies seasonally. For sites in the northern hemisphere, the fraction of sunlit and shaded vegetation declines following the June solstice to leaf senescence in September. Correcting tower-based remote sensing imagery for artifacts of BRDF is critical to isolate real changes in canopy phenology and reflectance. Here, we used airborne lidar data from NASA Goddard's Lidar, Hyperspectral, and Thermal Airborne Imager (G-LiHT) to develop a 3D forest scene for Harvard Forest in the Discrete Anisotrophic Radiative Transfer (DART) model. Our objective was to model the contribution of changes in shadowing and illumination to observations of changes in greenness from the Phenocam image time series at the Harvard Forest site. Diurnal variability in canopy greenness from the Phenocam time series provides an independent evaluation of BRDF effects from changes in illumination and sun-sensor geometries. The overall goal of this work is to develop a look-up table solution to correct major components of BRDF for tower-mounted imaging systems such as Phenocam, based on characteristics of the forest structure (forest

  1. Seasonal streamflow forecasts in a semi-arid Andean watershed using remotely sensed snow cover data

    NASA Astrophysics Data System (ADS)

    Cartes, M.; McPhee, J.; Vargas, X.

    2009-04-01

    Forecasts of monthly streamflow during the snowmelt season are highly relevant for real-time decision making such as hydropower production scheduling, irrigation planning, and water transfers in market-driven water resource systems. The Chilean water bureau issues such forecasts, for a number of snowmelt-driven watersheds in northern and central Chile, based on measurements from a sparse network of snow course stations. This research aims at improving the accuracy of the government-issued seasonal forecasts by combining streamflow data and remotely sensed snow cover information through a recurrent neural network (RNN). The snow cover area (SCA) obtained from MODIS-Surface Reflectance product (MOD09) and the Normalized Differentiation Snow Index (NDSI), from 2000-2008 period, allow us to understand the variation of the snowmelt and accumulation processes in six different basins located in central Chile (32,5° - 34,5° south latitude; 69,5° -70,5° west longitude). For the three basins located at higher altitudes (> 1800 m.s.l.), after applying a cross-correlation procedure we determined a strong relation (r > 0.7) between SCA and the seasonal hydrograph, lagged around 4 months. The basin SCA, the NDSI at specific points inside the basin and past basin streamflow data are input to the RNN for recognizing the pattern variation of seasonal hydrograph through supervised learning. The determination coefficients for the validation period (r2 > 0.6) indicate a good support for the application of this methodology in normal-humid hydrological years. Particularly for the dryer years we obtain a considerable overestimation (around 30%) of the monthly snowmelt runoff. These results are limited by the availability of data for different types (dry, normal or humid) of hydrological years.

  2. Seasonal Changes in Remote Vegetation Indices and Net Photosynthesis of Japanese Larch Needles

    NASA Astrophysics Data System (ADS)

    Nishida, K.; Nakaji, T.; Oguma, H.; Fujinuma, Y.

    2004-12-01

    We investigated the seasonal pattern of four kinds of remote vegetation indices (NDVI, PRI, [(1/rRedEdge)-(1/rNIR)] and [(1/rGreen)-(1/rNIR)]) and their correlation to photosynthetic activity in the needle leaves of Japanese larch. In the 42-year-old larch forest (Tomakomai, Japan), the diurnal courses of spectral reflectance and gas exchange rates of larch needles were periodically investigated during early June to late October in 2003. In the Tomakomai larch forest, expansion of short-shoot needles was started from mid-May, and yellow color change of the needle leaves was observed in late October. The seasonal pattern of index value differed among the vegetation indices. For example, daytime mean NDVI showed constant value from late June to early October. The [(1/rRedEdge)-(1/rNIR)] and PRI were increased during summer, and their peak were observed in July and August, respectively. Although the values of NDVI, PRI and [(1/rRedEdge)-(1/rNIR)] were depressed in late October with autumn senescence of the needles, the [(1/rGreen)-(1/rNIR)] in larch needles was not changed even in yellow colored needles. Consequently, correlation of these vegetation indices and seasonal changed photosynthetic parameters such as net photosynthetic rate (Pn) and photosynthetic light use efficiency (LUE) also differed among the indices. Although the PRI, NDVI and [(1/rRedEdge)-(1/rNIR)] positively correlated with daily maximum Pn and daily means of Pn and LUE, no correlation was found between [(1/rGreen)-(1/rNIR)] and the measured photosynthetic parameters. Based on the results of Pearson_fs correlation test, PRI and [(1/rRedEdge)-(1/rNIR)] were considered to be most useful index for the estimations of seasonal changes in Pn and LUE, respectively.

  3. Seasonal estimates of riparian evapotranspiration using remote and in situ measurements

    USGS Publications Warehouse

    Goodrich, D.C.; Scott, R.; Qi, J.; Goff, B.; Unkrich, C.L.; Moran, M.S.; Williams, D.; Schaeffer, S.; Snyder, K.; MacNish, R.; Maddock, T.; Pool, D.; Chehbouni, A.; Cooper, D.I.; Eichinger, W.E.; Shuttleworth, W.J.; Kerr, Y.; Marsett, R.; Ni, W.

    2000-01-01

    In many semi-arid basins during extended periods when surface snowmelt or storm runoff is absent, groundwater constitutes the primary water source for human habitation, agriculture and riparian ecosystems. Utilizing regional groundwater models in the management of these water resources requires accurate estimates of basin boundary conditions. A critical groundwater boundary condition that is closely coupled to atmospheric processes and is typically known with little certainty is seasonal riparian evapotranspiration ET). This quantity can often be a significant factor in the basin water balance in semi-arid regions yet is very difficult to estimate over a large area. Better understanding and quantification of seasonal, large-area riparian ET is a primary objective of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program. To address this objective, a series of interdisciplinary experimental Campaigns were conducted in 1997 in the San Pedro Basin in southeastern Arizona. The riparian system in this basin is primarily made up of three vegetation communities: mesquite (Prosopis velutina), sacaton grasses (Sporobolus wrightii), and a cottonwood (Populus fremontii)/willow (Salix goodingii) forest gallery. Micrometeorological measurement techniques were used to estimate ET from the mesquite and grasses. These techniques could not be utilized to estimate fluxes from the cottonwood/willow (C/W) forest gallery due to the height (20-30 m) and non-uniform linear nature of the forest gallery. Short-term (2-4 days) sap flux measurements were made to estimate canopy transpiration over several periods of the riparian growing season. Simultaneous remote sensing measurements were used to spatially extrapolate tree and stand measurements. Scaled C/W stand level sap flux estimates were utilized to calibrate a Penman-Monteith model to enable temporal extrapolation between Synoptic measurement periods. With this model and set of measurements, seasonal riparian vegetation water use

  4. Seasonal Trends of Nonmethane Hydrocarbons at Remote Boreal and High Arctic Sites in Canada

    NASA Astrophysics Data System (ADS)

    Jobson, Bertram Thomas

    Atmospheric concentrations of C_2 -C_6 hydrocarbons were measured at two remote sites in Canada: Fraserdale, ON (50 ^circN) and Alert, NWT (82 ^circN). Air samples were collected in stainless steel canisters and hydrocarbon concentrations determined using gas chromatography and flame ionization detection. Separation was performed on a 50-m Al _2O_3/KCl PLOT column using above ambient temperature programming. Air samples were collected at Fraserdale at least once weekly from April, 1990 to January, 1993 under the auspices of the Northern Wetlands Study. At Alert, air samples were collected once a day from January 22, to April 19, 1992 during the 1992 Polar Sunrise Experiment. Alkane, acetylene, and benzene concentrations at Fraserdale displayed a distinct seasonal cycle, with a winter maximum and a summer minimum. Individual hydrocarbon profiles differed with respect to phase and amplitude. The acetylene concentration profile was negatively correlated with ambient temperature. Seasonal changes in concentration were consistent with seasonal changes in atmospheric lifetime against HO initiated oxidation. However, deviation of the seasonal trends from pseudo first order kinetic behaviour were apparent. The deviations were qualitatively accounted for by mixing effects based on a Gaussian distribution of air mass ages. A seasonal cycle in the biogenic hydrocarbon isoprene was also observed. Analysis of the hydrocarbon trends at Alert provided evidence of HO, Cl- and possibly Br-atom oxidation of hydrocarbons. The marked decreases in background concentration of C _2-C_6 hydrocarbons, from late March to mid-April, were well correlated with HO rate constants, yielding an average HO concentration of 1.1 times 10^5 molecules cm^{-3}. Dramatic depletions of C_2-C_5 alkane and acetylene concentrations in ozone depleted air at Alert, and on an ice floe 150 km north of Alert were observed. The concentration changes of C _2-C_5 alkanes and benzene in ozone depleted air were well

  5. Do physiological changes at leaf level explain seasonal changes in remotely sensed canopy greenness?

    NASA Astrophysics Data System (ADS)

    Darby, B.; Keenan, T. F.; Felts, E. S.; Hufkens, K.; Friedl, M. A.; Moore, D. J.; Sonnentag, O.; Richardson, A. D.

    2011-12-01

    The PhenoCam (http://phenocam.sr.unh.edu) network uses digital cameras to observe phenological events and track seasonal changes in forest canopy greenness. As a near surface remote sensing platform it acts as an intermediary between leaf level measurements, typically made by a human observer, and satellite based remote sensing products. The cameras typically document a rapid increase in canopy greenness after leaf out, which peaks in early summer and then gradually declines before a rapid decline corresponding to autumn senescence and abscission. Open questions remain, however, as to whether the observed changes in canopy greenness are directly related to changes in leaf physiology and pigmentation, changes in canopy structure (leaf size, shape, and orientation), or some combination thereof. The goal of this study was to investigate how leaf-level structure and function relate to canopy greenness as measured by the cameras in an oak-dominated temperate forest. Sampling was conducted at the Harvard Forest, in central Massachusetts USA. We sampled upper-canopy leaves of three dominant deciduous tree species red oak (Quercus rubra), red maple (Acer rubrum) and yellow birch (Betula alleghaniensis) on a weekly basis for a full growing season, from leaf out to leaf drop. Leaf mass per area, nitrogen content, and chlorophyll fluorescence were measured for each leaf, along with spectral reflectance and transmission at wavelengths from 350 to 2500 nm. Leaf gas exchange measurements were also made weekly and used to derive leaf photosynthetic parameters. Results show that changes in leaf mass per area and photosynthetic capability at leaf-level lag initial increases in greenness measured by the cameras. Spectral indices related to chlorophyll content such as the photochemical reflectance index (PRI) and chlorophyll normalized difference index (Chl NDI), along with chlorophyll fluorescence indicate that chlorophyll content continues to increase after greenness measured by

  6. 30 CFR 75.389 - Mining into inaccessible areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mining into inaccessible areas. 75.389 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.389 Mining into inaccessible areas. (a) (1) The operator shall develop and follow a plan for mining into areas penetrated...

  7. 30 CFR 75.389 - Mining into inaccessible areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mining into inaccessible areas. 75.389 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.389 Mining into inaccessible areas. (a) (1) The operator shall develop and follow a plan for mining into areas penetrated...

  8. 30 CFR 75.389 - Mining into inaccessible areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mining into inaccessible areas. 75.389 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.389 Mining into inaccessible areas. (a) (1) The operator shall develop and follow a plan for mining into areas penetrated...

  9. 30 CFR 75.389 - Mining into inaccessible areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mining into inaccessible areas. 75.389 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.389 Mining into inaccessible areas. (a) (1) The operator shall develop and follow a plan for mining into areas penetrated...

  10. 30 CFR 75.389 - Mining into inaccessible areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mining into inaccessible areas. 75.389 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.389 Mining into inaccessible areas. (a) (1) The operator shall develop and follow a plan for mining into areas penetrated...

  11. Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation

    PubMed Central

    Sun, Cheng; Li, Jianping; Zhao, Sen

    2015-01-01

    The time series of 20th century Siberian warm season (May to October) precipitation (SWP) shows variations over decadal timescales, including a wetting trend since the 1970s. Here, it is shown that the Atlantic multidecadal variability (AMV) can be implicated as a remote driver of the decadal-scale variations in SWP. Observational analysis identifies a significant in-phase relationship between the AMV and SWP, and the SWP decadal variability can be largely explained by the AMV. The physical mechanism for this relationship is investigated using both observations and numerical simulations. The results suggest that North Atlantic sea surface temperature (SST) warming associated with the positive AMV phase can excite an eastward propagating wave train response across the entire Eurasian continent, which includes an east–west dipole structure over Siberia. The dipole then leads to anomalous southerly winds bringing moisture northward to Siberia; the precipitation increases correspondingly. The mechanism is further supported by linear barotropic modeling and Rossby wave ray tracing analysis. PMID:26593402

  12. Seasonal sea ice predictions for the Arctic based on assimilation of remotely sensed observations

    NASA Astrophysics Data System (ADS)

    Kauker, F.; Kaminski, T.; Ricker, R.; Toudal-Pedersen, L.; Dybkjaer, G.; Melsheimer, C.; Eastwood, S.; Sumata, H.; Karcher, M.; Gerdes, R.

    2015-10-01

    The recent thinning and shrinking of the Arctic sea ice cover has increased the interest in seasonal sea ice forecasts. Typical tools for such forecasts are numerical models of the coupled ocean sea ice system such as the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM). The model uses as input the initial state of the system and the atmospheric boundary condition over the forecasting period. This study investigates the potential of remotely sensed ice thickness observations in constraining the initial model state. For this purpose it employs a variational assimilation system around NAOSIM and the Alfred Wegener Institute's CryoSat-2 ice thickness product in conjunction with the University of Bremen's snow depth product and the OSI SAF ice concentration and sea surface temperature products. We investigate the skill of predictions of the summer ice conditions starting in March for three different years. Straightforward assimilation of the above combination of data streams results in slight improvements over some regions (especially in the Beaufort Sea) but degrades the over-all fit to independent observations. A considerable enhancement of forecast skill is demonstrated for a bias correction scheme for the CryoSat-2 ice thickness product that uses a spatially varying scaling factor.

  13. Simulations of Seasonal and Latitudinal Variations in Leaf Inclination Angle Distribution: Implications for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.

    2013-01-01

    The leaf inclination angle distribution (LAD) is an important characteristic of vegetation canopy structure affecting light interception within the canopy. However, LADs are difficult and time consuming to measure. To examine possible global patterns of LAD and their implications in remote sensing, a model was developed to predict leaf angles within canopies. Canopies were simulated using the SAIL radiative transfer model combined with a simple photosynthesis model. This model calculated leaf inclination angles for horizontal layers of leaves within the canopy by choosing the leaf inclination angle that maximized production over a day in each layer. LADs were calculated for five latitude bands for spring and summer solar declinations. Three distinct LAD types emerged: tropical, boreal, and an intermediate temperate distribution. In tropical LAD, the upper layers have a leaf angle around 35 with the lower layers having horizontal inclination angles. While the boreal LAD has vertical leaf inclination angles throughout the canopy. The latitude bands where each LAD type occurred changed with the seasons. The different LADs affected the fraction of absorbed photosynthetically active radiation (fAPAR) and Normalized Difference Vegetation Index (NDVI) with similar relationships between fAPAR and leaf area index (LAI), but different relationships between NDVI and LAI for the different LAD types. These differences resulted in significantly different relationships between NDVI and fAPAR for each LAD type. Since leaf inclination angles affect light interception, variations in LAD also affect the estimation of leaf area based on transmittance of light or lidar returns.

  14. Towards Optimization of Reservoir Operations for Hydropower Production in East Africa: Application of Seasonal Climate Forecasts and Remote Sensing Products

    NASA Astrophysics Data System (ADS)

    Demissie, S. S.; Gebremichael, M.; Hopson, T. M.; Riddle, E. E.; Yeh, W. W. G.

    2015-12-01

    Hydroelectric generation and interconnections are the major priority areas of infrastructure development in Africa. A number of hydropower projects are currently being developed in East Africa in order to meet the energy demands of the fast growing economy in sustainable and climate-resilient manner. However, the performance efficiency of existing hydropower systems in Africa is much lower (about 30% in some cases) than their design capacity. This study proposes a decision support system (DSS) that integrates climate forecasts and remote sensing products into modeling and optimization of the hydropower systems in order to achieve reliable reservoir operations and enhance hydropower production efficiency. The DSS has three main components; climate system, hydrologic and water resources system, and optimization system. The climate system comprises of tools and interfaces for accessing, customizing and integrating climate forecasts and remote sensing data. The North America Multi-Model Ensemble (NMME) seasonal retrospective forecasts for the East Africa Power Pool (EAPP) region are compared with the TRMM rainfall estimates and the CPC unified gauged rainfall data. The errors of the NMME seasonal forecasts have portrayed significant spatial and temporal variability in the EAPP region. The root mean square errors of the seasonal forecasts are relatively higher for wetter locations and months. However, the skills of the NMME seasonal forecasts are not significantly depreciating with lead time for the study region. The seasonal forecast errors vary from one model to another. Here, we present the skills of NMME seasonal forecasts, the physical factors and mechanisms that affect the skills. In addition, we discuss our methodology that derives the best seasonal forecasts for the study region from the NMME seasonal forecasts, and show how the climate forecast errors propagate through hydrologic models into hydrological forecasting.

  15. [Monitoring of soil salinization in Northern Tarim Basin, Xinjiang of China in dry and wet seasons based on remote sensing].

    PubMed

    Yao, Yuan; Ding, Jian-Li; Zhang, Fang; Wang, Gang; Jiang, Hong-Nan

    2013-11-01

    Soil salinization is one of the most important eco-environment problems in arid area, which can not only induce land degradation, inhibit vegetation growth, but also impede regional agricultural production. To accurately and quickly obtain the information of regional saline soils by using remote sensing data is critical to monitor soil salinization and prevent its further development. Taking the Weigan-Kuqa River Delta Oasis in the northern Tarim River Basin of Xinjiang as test object, and based on the remote sensing data from Landsat-TM images of April 15, 2011 and September 22, 2011, in combining with the measured data from field survey, this paper extracted the characteristic variables modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), and the third principal component from K-L transformation (K-L-3). The decision tree method was adopted to establish the extraction models of soil salinization in the two key seasons (dry and wet seasons) of the study area, and the classification maps of soil salinization in the two seasons were drawn. The results showed that the decision tree method had a higher discrimination precision, being 87.2% in dry season and 85.3% in wet season, which was able to be used for effectively monitoring the dynamics of soil salinization and its spatial distribution, and to provide scientific basis for the comprehensive management of saline soils in arid area and the rational utilization of oasis land resources. PMID:24564152

  16. [Monitoring of soil salinization in Northern Tarim Basin, Xinjiang of China in dry and wet seasons based on remote sensing].

    PubMed

    Yao, Yuan; Ding, Jian-Li; Zhang, Fang; Wang, Gang; Jiang, Hong-Nan

    2013-11-01

    Soil salinization is one of the most important eco-environment problems in arid area, which can not only induce land degradation, inhibit vegetation growth, but also impede regional agricultural production. To accurately and quickly obtain the information of regional saline soils by using remote sensing data is critical to monitor soil salinization and prevent its further development. Taking the Weigan-Kuqa River Delta Oasis in the northern Tarim River Basin of Xinjiang as test object, and based on the remote sensing data from Landsat-TM images of April 15, 2011 and September 22, 2011, in combining with the measured data from field survey, this paper extracted the characteristic variables modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), and the third principal component from K-L transformation (K-L-3). The decision tree method was adopted to establish the extraction models of soil salinization in the two key seasons (dry and wet seasons) of the study area, and the classification maps of soil salinization in the two seasons were drawn. The results showed that the decision tree method had a higher discrimination precision, being 87.2% in dry season and 85.3% in wet season, which was able to be used for effectively monitoring the dynamics of soil salinization and its spatial distribution, and to provide scientific basis for the comprehensive management of saline soils in arid area and the rational utilization of oasis land resources.

  17. Comparison of the remotely sensed start of the season and ground phenology observations of the cereal crops

    NASA Astrophysics Data System (ADS)

    Bohovic, Roman; Hlavinka, Petr; Semerádová, Daniela; Bálek, Jan; Trnka, Mirek

    2015-04-01

    Phenology monitoring such as start of the season of agricultural crops are important characteristics observed on the ground basis by the farmers and authorities already for the long time. Due to costs, coverage, site disparities and time demands of ground observations is remote sensing phenology an interesting option. Satellite observations enable monitoring of the ground vegetation already at sufficient resolution and in country and regional scale at the same time. However, ground and remote sensing phenology differ in nature of its object. First is focused on single species and limited individuals at the observation spot. Remote sensing is from its construction definition able to monitor area-wide vegetation communities. To understand these differences and to set the procedures to overcome it is the aim of this study. Case study area covers Czech Republic in Central Europe with typical four season temperate climate that strongly influence the vegetation. Daily MODIS (Moderate Resolution Imaging Spectroradiometer) remote sensing data in 250 by 250 meters resolution were used to compute NDVI (normalized difference vegetation index). Iterative developed method for the filtering of NDVI time series since 2000 up till now is crucial for overcoming missing periods mainly due to atmospheric conditions. From improved curve of NDVI start of the season is derived as absolute threshold value of 50% NDVI. Comparison of remotely sensed start of the season with observations of emergence of spring barley and beginning of leaf sheath elongation for winter wheat was done. Data were correlated at 90 ground stations across Czech Republic between the years 2000 and 2012. Correlations at original 250x250 meters resolution and aggregations of 5x5 km were investigated. Different land cover classes were considered for aggregated areas. Correlation of start of the season shows lower results for spring barley caused by strong influence of winter signal and crop sowing date by farmers

  18. Remote acoustic monitoring of North Atlantic right whales (Eubalaena glacialis) reveals seasonal and diel variations in acoustic behavior.

    PubMed

    Matthews, Leanna P; McCordic, Jessica A; Parks, Susan E

    2014-01-01

    Remote acoustic monitoring is a non-invasive tool that can be used to study the distribution, behavior, and habitat use of sound-producing species. The North Atlantic right whale (Eubalaena glacialis) is an endangered baleen whale species that produces a variety of stereotyped acoustic signals. One of these signals, the "gunshot" sound, has only been recorded from adult male North Atlantic right whales and is thought to function for reproduction, either as reproductive advertisement for females or as an agonistic signal toward other males. This study uses remote acoustic monitoring to analyze the presence of gunshots over a two-year period at two sites on the Scotian Shelf to determine if there is evidence that North Atlantic right whales may use these locations for breeding activities. Seasonal analyses at both locations indicate that gunshot sound production is highly seasonal, with an increase in the autumn. One site, Roseway West, had significantly more gunshot sounds overall and exhibited a clear diel trend in production of these signals at night. The other site, Emerald South, also showed a seasonal increase in gunshot production during the autumn, but did not show any significant diel trend. This difference in gunshot signal production at the two sites indicates variation either in the number or the behavior of whales at each location. The timing of the observed seasonal increase in gunshot sound production is consistent with the current understanding of the right whale breeding season, and our results demonstrate that detection of gunshots with remote acoustic monitoring can be a reliable way to track shifts in distribution and changes in acoustic behavior including possible mating activities. PMID:24646524

  19. Remote acoustic monitoring of North Atlantic right whales (Eubalaena glacialis) reveals seasonal and diel variations in acoustic behavior.

    PubMed

    Matthews, Leanna P; McCordic, Jessica A; Parks, Susan E

    2014-01-01

    Remote acoustic monitoring is a non-invasive tool that can be used to study the distribution, behavior, and habitat use of sound-producing species. The North Atlantic right whale (Eubalaena glacialis) is an endangered baleen whale species that produces a variety of stereotyped acoustic signals. One of these signals, the "gunshot" sound, has only been recorded from adult male North Atlantic right whales and is thought to function for reproduction, either as reproductive advertisement for females or as an agonistic signal toward other males. This study uses remote acoustic monitoring to analyze the presence of gunshots over a two-year period at two sites on the Scotian Shelf to determine if there is evidence that North Atlantic right whales may use these locations for breeding activities. Seasonal analyses at both locations indicate that gunshot sound production is highly seasonal, with an increase in the autumn. One site, Roseway West, had significantly more gunshot sounds overall and exhibited a clear diel trend in production of these signals at night. The other site, Emerald South, also showed a seasonal increase in gunshot production during the autumn, but did not show any significant diel trend. This difference in gunshot signal production at the two sites indicates variation either in the number or the behavior of whales at each location. The timing of the observed seasonal increase in gunshot sound production is consistent with the current understanding of the right whale breeding season, and our results demonstrate that detection of gunshots with remote acoustic monitoring can be a reliable way to track shifts in distribution and changes in acoustic behavior including possible mating activities.

  20. Studies of seasonal variations of aerosol optical properties with use of remote techniques

    NASA Astrophysics Data System (ADS)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Pakszys, Paulina; Markuszewski, Piotr; Makuch, Przemyslaw

    2014-05-01

    According to the IPCC report, atmospheric aerosols due to their properties -extinction of Sun and Earth radiation and participation in processes of creation of clouds, are among basic "unknowns" in climate studies. Aerosols have large effect on the radiation balance of the Earth which has a significant impact on climate changes. They are also a key issue in the case of remote sensing measurements. The optical properties of atmospheric aerosols depend not only on their type but also on physical parameters such as pressure, humidity, wind speed and direction. The wide range of properties in which atmospheric aerosols affect Earth's climate is the reason of high unrelenting interest of scientists from different disciplines such as physics, chemistry and biology. Numerous studies have dealt with aerosol optical properties, e.g. Dubovik et al. (2002), but only in a few have regarded the influence of meteorological parameters on the optical properties of aerosols in the Baltic Sea area. Studies of aerosol properties over the Baltic were conducted already in the last forty years, e.g. Zielinski T. et. al. (1999) or Zielinski T. & A. Zielinski (2002). The experiments carried out at that time involved only one measuring instrument -e.g. LIDAR (range of 1 km) measurements and they were conducted only in selected areas of the Polish coastal zone. Moreover in those publications authors did not use measurements performed on board of research vessel (R/V Oceania), which belongs to Institute of Oceanology Polish Academy of Science (IO PAN) or data received from satellite measurements. In 2011 Zdun and Rozwadowska performed an analysis of all data derived from the AERONET station on the Gotland Island. The data were divided into seasons and supplemented by meteorological factors. However, so far no comprehensive study has been carried out for the entire Baltic Sea area. This was the reason to conduct further research of SEasonal Variations of Aerosol optical depth over the Baltic

  1. Remote Sensing Applications to Improve Seasonal Forecasting of Streamflow and Reservoir Storage in the Upper Snake River Basin

    NASA Astrophysics Data System (ADS)

    McGuire, M.; Wood, A. W.; Andreadis, K.; van Rheenen, N.; Lettenmaier, D. P.

    2003-12-01

    Mountain snowmelt contributes over eighty percent of the water supply in the Western U.S. Accurate estimates and forecasts of snow cover and snowmelt are important to many local, state, and Federal agencies that have interests in agriculture, hydropower, and recreation. Water resource managers depend on accurate water supply predictions to allocate a finite supply of water to often competing demands. Although quantitative forecasts of seasonal snowmelt runoff have been made at many locations in the West for over 50 years, these forecasts are limited by accurate knowledge of winter season precipitation and snow accumulation in remote areas, which presently are estimated via in situ networks like the NRCS' SNOTEL. We evaluate the potential to improve on methods based solely on in situ observations through a strategy that combines nowcasts of soil moisture, snow water content, and other hydrologic variables using the Variable Infiltration Capacity (VIC) macroscale hydrologic model, updated with a combination of SNOTEL-based estimates of snow water equivalent and remote sensing (MODIS) estimates of snow areal extent. The method is evaluated for the Upper Snake River basin, for which a long-term retrospective VIC run for the period 1950-2002 provides a model climatology, and the basis for a retrospective evaluation of seasonal streamflow forecast skill absent updating. For winters 2001-2 and 2002-3, we evaluate the impact of both replacing and augmenting our updating scheme based on SNOTEL data with corrections from two remote sensing products: course spatial resolution MODIS snow-cover data and, on a more experimental basis, an AMSR snow water equivalent product. In addition to seasonal streamflow forecasts based on an adaptation of the Extended Streamflow Prediction (ESP) method, we implement and evaluate experimental reservoir forecasts produced with the SNAKESIM Snake River reservoir management model for forecasts made in the winters of 2001-2 and 2003-4 for the

  2. Satellite Remote Sensing of the Dependence of Homogeneous Ice Nucleation on Latitude and Season

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Garnier, A.; Avery, M. A.; Erfani, E.

    2015-12-01

    Cirrus clouds can be thought of as belonging to one of two categories: those formed through (1) homo- and (2) heterogeneous ice nucleation (henceforth hom and het) due to the very different microphysical and radiative properties associated with these two mechanisms. Hom cirrus will form only when atmospheric ice nuclei (IN) are sufficiently low in concentration, and studies suggest that mineral dust may account for most IN globally. Hence the occurrence of hom and het cirrus is likely to depend on latitude and season as mineral dust does, making satellite remote sensing the preferred method for characterizing this occurrence. A new understanding of thermal absorption in two split-window channels renders a reinterpretation of a standard CALIPSO satellite retrieval; the effective absorption optical depth ratio or βeff. Using earlier studies and aircraft measurements in cirrus clouds, βeff is found to be tightly related to the ice particle number concentration/ice water content ratio, or N/IWC, and thresholds for hom cirrus are estimated in terms of N/IWC and βeff. When applied to cold semi-transparent cirrus clouds, we find that (1) polar cirrus (T < -38 C) occur much more often during winter than summer and (2) hom cirrus prevail at high latitudes during winter, and during spring and fall over Antarctica. The figure shows estimates of the fraction of cirrus produced by hom (where βeff > 1.15) during January and August, where green is ~ 50% and red ~ 90-100%. These high N/IWC values associated with hom cirrus occur in regions where mineral dust concentrations are predicted to be minimal. This high N/IWC condition during winter is likely to have a strong greenhouse effect that may increase high latitude temperatures by 2-5°K relative to conditions where het cirrus dominates (Storelvmo et al. 2014, Philos. Trans. A, Royal Soc.). Thus, the lack of mineral dust in the high latitudes during winter may result in a strong warming influence over these regions. Moreover

  3. Seasonal variation, source, and regional representativeness of the background aerosol from two remote sites in western China.

    PubMed

    Qu, Wenjun; Wang, Dan; Wang, Yaqiang; Sheng, Lifang; Fu, Gang

    2010-08-01

    Using observations from two remote sites during July 2004 to March 2005, we show that at Akdala (AKD, 47 degrees 06' N, 87 degrees 58' E, 562 m asl) in northern Xinjiang Province, there were high wintertime loadings of organic carbon (OC), elemental carbon (EC), and water-soluble (WS) SO4(2-), NO3(2-), and NH4+, which is similar to the general pattern in most areas of China and East Asia. However, at Zhuzhang (ZUZ, 28 degrees 00' N, 99 degrees 43' E, 3,583 m asl) in northwestern Yunnan Province, the aerosol concentrations and compositions showed little seasonal variation except for a decreasing trend of OC from August to autumn-winter. Additionally, the OC variations dominated the seasonal variation of PM10 (particlesseasonally as the regional atmospheric transport patterns change. Seasonal variations in the background aerosol levels from these two areas need to be considered when evaluating the regional climate effects of the aerosols.

  4. Seasonal composition of remote and urban fine particulate matter in the United States

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Schichtel, B. A.; Pitchford, M.; Malm, W. C.; Frank, N. H.

    2012-03-01

    Speciated aerosol composition data from the rural Interagency Monitoring for Protected Visual Environments (IMPROVE) network and the Environmental Protection Agency's urban/suburban Chemical Speciation Network (CSN) were combined to evaluate and contrast the PM2.5 composition and its seasonal patterns at urban and rural locations throughout the United States. We examined the 2005-2008 monthly and annual mean mass concentrations of PM2.5 ammonium sulfate (AS), ammonium nitrate (AN), particulate organic matter (POM), light-absorbing carbon (LAC), mineral soil, and sea salt from 168 rural and 176 urban sites. Urban and rural AS concentrations and seasonality were similar, and both were substantially higher in the eastern United States. Urban POM and LAC concentrations were higher than rural concentrations and were associated with very different seasonality depending on location. The highest urban and rural POM and LAC concentrations occurred in the southeastern and northwestern United States. Wintertime peaks in AN were common for both urban and rural sites, but urban concentrations were several times higher, and both were highest in California and the Midwest. Fine soil concentrations were highest in the Southwest, and similar regional patterns and seasonality in urban and rural concentrations suggested impacts from long-range transport. Contributions from sea salt to the PM2.5 budget were non-negligible only at coastal sites. This analysis revealed spatial and seasonal variability in urban and rural aerosol concentrations on a continental scale and provided insights into their sources, processes, and lifetimes.

  5. Scale interaction between typhoons and the North Pacific subtropical high and associated remote effects during the Baiu/Meiyu season

    NASA Astrophysics Data System (ADS)

    Hirata, Hidetaka; Kawamura, Ryuichi

    2014-05-01

    The interaction between typhoons and the North Pacific subtropical high and the associated remote impact on East Asian and North Pacific anomalous weather during the Baiu/Meiyu season have been investigated using the Japanese long-term Reanalysis project data aided by the Japan Meteorological Agency Climate Data Assimilation System. The typhoons that appeared in July have been categorized into two primary tracks, the Hainan Island course (HC) and the Okinawa Island course (OC). A typhoon gives rise to negative absolute vorticity advection along its eastern periphery, which locally reinforces the western ridge of the North Pacific subtropical high, whereas the resultant anomalous high stimulates the westward (northward) migration of the HC (OC) typhoon through its combination with the background flow. A combined effect of the typhoon and its induced anomalous anticyclonic circulation increases the transportation of moisture into the Baiu/Meiyu frontal zone in the vicinity of Japan. Over the East China Sea and the Sea of Japan, northward or northeastward moisture flux is pronounced along the western periphery of the typhoon-induced anticyclonic circulation anomaly in the HC category, triggering heavy rainfall on central Japan's Sea of Japan coast. Similar remote effects also operate in the OC category, which is responsible for the occurrence of extremely heavy rainfall along the Pacific coast of western Japan. When an OC typhoon approaches the Asian jet, it is capable of giving rise to anticyclonic vorticity within the jet, leading to the downstream development of stationary Rossby wave packets via the North Pacific waveguide.

  6. Seasonal observations of OH and HO2 in the remote tropical marine boundary layer

    NASA Astrophysics Data System (ADS)

    Vaughan, S.; Ingham, T.; Whalley, L. K.; Stone, D.; Evans, M. J.; Read, K. A.; Lee, J. D.; Moller, S. J.; Carpenter, L. J.; Lewis, A. C.; Fleming, Z. L.; Heard, D. E.

    2012-02-01

    Field measurements of the hydroxyl radical, OH, are crucial for our understanding of tropospheric chemistry. However, observations of this key atmospheric species in the tropical marine boundary layer, where the warm, humid conditions and high solar irradiance lend themselves favourably to production, are sparse. The Seasonal Oxidant Study at the Cape Verde Atmospheric Observatory in 2009 allowed, for the first time, seasonal measurements of both OH and HO2 in a clean (i.e. low NOx), tropical marine environment. It was found that concentrations of OH and HO2 were typically higher in the summer months (June, September), with maximum daytime concentrations of ~9 × 106 and 4 × 108 molecule cm-3, respectively - almost double the values in winter (late February, early March). HO2 was observed to persist at ~107 molecule cm-3 through the night, but there was no strong evidence of nighttime OH, consistent with previous measurements at the site in 2007. HO2 was shown to have excellent correlations (R2 ~ 0.90) with both the photolysis rate of ozone, J(O1D), and the primary production rate of OH, P(OH), from the reaction of O(1D) with water vapour. The analogous relations of OH were not so strong (R2 ~ 0.6), but the coefficients of the linear correlation with J(O1D) in this study were close to those yielded from previous works in this region, suggesting that the chemical regimes have similar impacts on the concentration of OH. Analysis of the variance of OH and HO2 across the Seasonal Oxidant Study suggested that ~70% of the total variance could be explained by diurnal behaviour, with ~30% of the total variance being due to changes in air mass.

  7. Seasonal observations of OH and HO2 in the remote tropical marine boundary layer

    NASA Astrophysics Data System (ADS)

    Vaughan, S.; Ingham, T.; Whalley, L. K.; Stone, D.; Evans, M. J.; Read, K. A.; Lee, J. D.; Moller, S. J.; Carpenter, L. J.; Lewis, A. C.; Fleming, Z. L.; Heard, D. E.

    2011-07-01

    Field measurements of the hydroxyl radical, OH, are crucial for our understanding of tropospheric chemistry. However, observations of this key atmospheric species in the tropical marine boundary layer, where the warm, humid conditions and high solar irradiance lend themselves favourably to production, are sparse. The Seasonal Oxidant Study at the Cape Verde Atmospheric Observatory in 2009 allowed, for the first time, seasonal measurements of both OH and HO2 in a clean (i.e. low NOx), tropical marine environment. It was found that concentrations of OH and HO2 were typically higher in the summer months (June, September), with maximum daytime concentrations of ~9 × 106 and 4 × 108 molecule cm-3, respectively - almost double the values in winter (February, early March). HO2 was observed to persist at ~107 molecule cm-3 through the night, but there was no strong evidence of nighttime OH, consistent with previous measurements at the site in 2007. HO2 was shown to have excellent correlations (R2 ~ 0.90) with both the photolysis rate of ozone, J(O1D), and the primary production rate of OH, P(OH), from the reaction of O1D) with water vapour. The analogous relations of OH were not so strong (R2 ~ 0.6), but the coefficients of the linear correlation with J(O1D) in this study were close to those yielded from previous works in this region, suggesting that the chemical regimes have similar impacts on the concentration of OH. Analysis of the variance of OH and HO2 across the Seasonal Oxidant Study suggested that ~70 % of the total variance could be explained by diurnal behaviour, with ~30 % of the total variance being due to changes in air mass.

  8. Seasonal Synechococcus and Thaumarchaeal population dynamics examined with high resolution with remote in situ instrumentation.

    PubMed

    Robidart, Julie C; Preston, Christina M; Paerl, Ryan W; Turk, Kendra A; Mosier, Annika C; Francis, Christopher A; Scholin, Christopher A; Zehr, Jonathan P

    2012-03-01

    Monterey Bay, CA is an Eastern boundary upwelling system that is nitrogen limited much of the year. In order to resolve population dynamics of microorganisms important for nutrient cycling in this region, we deployed the Environmental Sample Processor with quantitative PCR assays targeting both ribosomal RNA genes and functional genes for subclades of cyanobacteria (Synechococcus) and ammonia-oxidizing Archaea (Thaumarchaeota) populations. Results showed a strong correlation between Thaumarchaea abundances and nitrate during the spring upwelling but not the fall sampling period. In relatively stratified fall waters, the Thaumarchaeota community reached higher numbers than in the spring, and an unexpected positive correlation with chlorophyll concentration was observed. Further, we detected drops in Synechococcus abundance that occurred on short (that is, daily) time scales. Upwelling intensity and blooms of eukaryotic phytoplankton strongly influenced Synechococcus distributions in the spring and fall, revealing what appear to be the environmental limitations of Synechococcus populations in this region. Each of these findings has implications for Monterey Bay biogeochemistry. High-resolution sampling provides a better-resolved framework within which to observe changes in the plankton community. We conclude that controls on these ecosystems change on smaller scales than are routinely assessed, and that more predictable trends will be uncovered if they are evaluated within seasonal (monthly), rather than on annual or interannual scales.

  9. Integrating ground observations of phenology with remotely sensed measurements: A 2007 growing season experiment at Sevilleta LTER

    NASA Astrophysics Data System (ADS)

    Bradley, B.; Wetherill, K.; Vanderbilt, K.; Nickeson, J.

    2007-12-01

    The use of satellites to monitor land surface phenology is important for understanding local and regional ecosystem variability, identifying change over time, and potentially predicting ecosystem response to short and long-term changes in climate. However, the relationship between how phenology is expressed on the ground and how it is interpreted from satellites is poorly understood because phenological stages do not always correspond well to changes in spectral reflectance. Rather than focusing on phenological stages (e.g., first leaf, first flower), the ground measurements in this study focus on changes in ecosystem greenness during the 2007 growing season. We collected bi-monthly measurements of community greenness in two perennial grasslands at the Sevilleta National Wildlife Refuge in central New Mexico, a Long Term Ecological Research (LTER) site. One site is dominated by blue grama grass (Bouteloua gracilis); the other is dominated by black grama grass (Bouteloua eriopoda). Grama grasses grow during the summer/fall time period, with onset of greenness typically occurring mid-July and peak greenness occurring in September. Bi-monthly ground measurements were collected from July 2, 2007 - October 4, 2007 within systematically arrayed 30x30 cm quadrats. Within each quadrat, we recorded percent green cover (grass or forb), percent non- photosynthetic cover, and percent soil. A nadir oriented digital photograph was also taken of each quadrat, from which a greenness index was calculated. Field sampling was timed within two days of an ASTER satellite image acquisition. Here, we compare three greenness measurements from ground sampling, digital photography, and ASTER satellite imagery for the 2007 growing season. We show the degree of correlation between the three measurements through time and draw inferences about how satellite imagery can be used to assess ecosystem phenology. This study is an important first step in furthering the linkage between remotely sensed

  10. Assessment of chlorophyll-a variations in high- and low-flow seasons in Apalachicola Bay by MODIS 250-m remote sensing.

    PubMed

    Huang, Wenrui; Chen, Shuisen; Yang, Xiaojun; Johnson, Elijah

    2014-12-01

    Chlorophyll-a (chl-a) is considered as a primary indicator for water quality and foods for oyster growth in Apalachicola estuarine ecosystem. Assessment of chl-a concentration variation in response to river inflow is important for estuarine environmental research and management. In this study, remote sensing analysis has been conducted to evaluate the effects of river inflow on chlorophyll concentrations in Apalachicola Bay of Florida in the northeast Gulf of Mexico. A remote sensing model for chl-a was improved and applied to map spatial distributions of chl-a by using Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m resolution imageries in high-flow and low-flow seasons in 2001 and 2008. Chl-a values approximately ranged from the minimum 6 μg/l to the maximum 29 μg/l in the study period. Maximum chl-a concentration in high-flow season was almost twice above that in low-flow season. The averaged mean and minimum chl-a level in the high-flow season were approximately 42 and 28 % higher than those in low-flow season, respectively. The remote sensing mapping of chl-a was able to show spatial variations of chl-a in the entire bay under different flow conditions, which indicated its advantage over the traditional field data sampling for monitoring water quality over a large area of estuary. The MODIS 250-m remote sensing regression model presented from this study can be used to support monitoring and assessment of the spatial chl-a distribution in the bay for environmental research and management in Apalachicola Bay.

  11. Seasonal Variation in Sea Surface Chlorophll Patterns of the Northern Gulf of Mexico as Determined by Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Yuan, J.; Powell, R. T.; Dagg, M. J.

    2002-12-01

    The sea surface concentration of chlorophyll in the northern Gulf of Mexico was derived from satellite remote sensing for the period of July 2001 to June of 2002. High resolution (L1A data, with 1 km spatial resolution) Sea-viewing Wide Field of view Sensors (SeaWiFS) data were used to calculate chlorophyll with the OC4 algorithm for all the clear and partly cloudy days. The chlorophyll pattern shows strong seasonal variation. In offshore areas, a single annual phytoplankton bloom was observed with chlorophyll concentration increasing in fall and winter to reach a maximum of 0.35 mg m-3 in February, and decreasing in spring and summer to a minimum of 0.1 mg m-3 in July. In coastal regions from the Texas shelf through Mississippi Sound, phytoplankton blooms were observed in February and July. During the bloom in summer, patches of high chlorophyll surface waters were injected into offshore waters. The chlorophyll concentration decreased from ~10 mg m-3 near the mouth of the Mississippi River and on the Louisiana shelf to ~5 mg m-3 on the Texas shelf and the Mississippi Sound. The temporal and spatial distribution of the phytoplankton bloom in summer coincides with reported annual hypoxia events.

  12. [Remote sensing of seasonal variation in column concentration of atmospheric CO2 and CH4 in Hefei].

    PubMed

    Cheng, Si-Yang; Gao, Min-Guang; Xu, Liang; Jin, Ling; Li, Sheng; Tong, Jing-Jing; Wei, Xiu-Li; Liu, Jian-Guo; Liu, Wen-Qing

    2014-03-01

    In order to observe two kinds of greenhouse gases, CO2 and CH4, making the biggest contribution to global warming, a ground-based Fourier transform near-infrared spectral remote sensing system was developed to record the perpendicular incidence sun spectra from February 2012 to April 2013 in Hefei continuously. The measured total transmittances in the atmosphere were obtained from perpendicular incidence sun spectra. Methods of line-by-line and low-order polynomial approximation were used to model the total atmospheric transmittances in forward model. The measured transmittance spectra were fitted iteratively using the modeled transmittance spectra in the regions of CO2 6,150-6,270 and CH4 5,970-6,170 cm(-1) in order to obtain their column concentrations. The column-average dry-air mole fractions of CO2 and CH4 were obtained with the internal standard function of O2 column concentrations. CO2 and CH4 daily average values of column-average dry-air mole fractions changed with a larger fluctuation and obvious seasonal periodicity. Their monthly average values were consistent as a whole, although there were different characteristics. Compared with the results reported by Japanese greenhouse-gas satellite in the area of Waliguan, there was a time lag corresponding to peak and trough of CO2 content and the change from peak to trough costed a longtime. CHR content showed variation tendency of unique peak and trough, higher in summer and lower in winter, compared with average values of nationwide CH4 column concentrations based on SCIAMACHY data. The variation characteristics were related to complex factors such as the balance of source and sink, meteorological and climate conditions, and required long-term observation and further study.

  13. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol A.

    2012-01-01

    The Eastern tropical ocean basins are regions of significant atmosphere-ocean interaction and are important to variability across subseasonal to decadal time scales. The numerous physical processes at play in these areas strain the abilities of coupled general circulation models to accurately reproduce observed upper ocean variability. Furthermore, limitations in the observing system of important terms in the surface temperature balance (e.g., turbulent and radiative heat fluxes, advection) introduce uncertainty into the analyses of processes controlling sea surface temperature variability. This study presents recent efforts to close the surface temperature balance through estimation of the terms in the mixed layer temperature budget using state-of-the-art remotely sensed and model-reanalysis derived products. A set of twelve net heat flux estimates constructed using combinations of radiative and turbulent heat flux products - including GEWEX-SRB, ISCCP-SRF, OAFlux, SeaFlux, among several others - are used with estimates of oceanic advection, entrainment, and mixed layer depth variability to investigate the seasonal variability of ocean surface temperatures. Particular emphasis is placed on how well the upper ocean temperature balance is, or is not, closed on these scales using the current generation of observational and model reanalysis products. That is, the magnitudes and spatial variability of residual imbalances are addressed. These residuals are placed into context within the current uncertainties of the surface net heat fluxes and the role of the mixed layer depth variability in scaling the impact of those uncertainties, particularly in the shallow mixed layers of the Eastern tropical ocean basins.

  14. Time series decomposition of remotely sensed land surface temperature and investigation of trends and seasonal variations in surface urban heat islands

    NASA Astrophysics Data System (ADS)

    Quan, Jinling; Zhan, Wenfeng; Chen, Yunhao; Wang, Mengjie; Wang, Jinfei

    2016-03-01

    Previous time series methods have difficulties in simultaneous characterization of seasonal, gradual, and abrupt changes of remotely sensed land surface temperature (LST). This study proposed a model to decompose LST time series into trend, seasonal, and noise components. The trend component indicates long-term climate change and land development and is described as a piecewise linear function with iterative breakpoint detection. The seasonal component illustrates annual insolation variations and is modeled as a sinusoidal function on the detrended data. This model is able to separate the seasonal variation in LST from the long-term (including gradual and abrupt) change. Model application to nighttime Moderate Resolution Imaging Spectroradiometer (MODIS)/LST time series during 2000-2012 over Beijing yielded an overall root-mean-square error of 1.62 K between the combination of the decomposed trend and seasonal components and the actual MODIS/LSTs. LST decreased (~ -0.086 K/yr, p < 0.1) in 53% of the study area, whereas it increased with breakpoints in 2009 (~0.084 K/yr before and ~0.245 K/yr after 2009) between the fifth and sixth ring roads. The decreasing trend was stronger over croplands than over urban lands (p < 0.05), resulting in an increasing trend in surface urban heat island intensity (SUHII, 0.022 ± 0.006 K/yr). This was mainly attributed to the trends in urban-rural differences in rainfall and albedo. The SUHII demonstrated a concave seasonal variation primarily due to the seasonal variations of urban-rural differences in temperature cooling rate (related to canyon structure, vegetation, and soil moisture) and surface heat dissipation (affected by humidity and wind).

  15. Spaceborne Microwave Remote Sensing of Seasonal Freeze-Thaw Processes in the Terrestrial High Latitudes: Relationships with Land-Atmosphere CO2 exchange

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.

    2004-01-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These relatively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, separately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North America and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, though both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.

  16. Spaceborne microwave remote sensing of seasonal freeze-thaw processes in theterrestrial high l atitudes : relationships with land-atmosphere CO2 exchange

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.

    2004-01-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These relatively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, separately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North America and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, though both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.

  17. Applications of multi-season hyperspectral remote sensing for acid mine water characterization and mapping of secondary iron minerals associated with acid mine drainage

    NASA Astrophysics Data System (ADS)

    Davies, Gwendolyn E.

    Acid mine drainage (AMD) resulting from the oxidation of sulfides in mine waste is a major environmental issue facing the mining industry today. Open pit mines, tailings ponds, ore stockpiles, and waste rock dumps can all be significant sources of pollution, primarily heavy metals. These large mining-induced footprints are often located across vast geographic expanses and are difficult to access. With the continuing advancement of imaging satellites, remote sensing may provide a useful monitoring tool for pit lake water quality and the rapid assessment of abandoned mine sites. This study explored the applications of laboratory spectroscopy and multi-season hyperspectral remote sensing for environmental monitoring of mine waste environments. Laboratory spectral experiments were first performed on acid mine waters and synthetic ferric iron solutions to identify and isolate the unique spectral properties of mine waters. These spectral characterizations were then applied to airborne hyperspectral imagery for identification of poor water quality in AMD ponds at the Leviathan Mine Superfund site, CA. Finally, imagery varying in temporal and spatial resolutions were used to identify changes in mineralogy over weathering overburden piles and on dry AMD pond liner surfaces at the Leviathan Mine. Results show the utility of hyperspectral remote sensing for monitoring a diverse range of surfaces associated with AMD.

  18. Revolution in Field Science: Apollo Approach to Inaccessible Surface Exploration

    NASA Astrophysics Data System (ADS)

    Clark, P. E.

    2010-07-01

    The extraordinary challenge mission designers, scientists, and engineers, faced in planning the first human expeditions to the surface of another solar system body led to the development of a distinctive and even revolutionary approach to field work. Not only were those involved required to deal effectively with the extreme limitation in resources available for and access to a target as remote as the lunar surface; they were required to developed a rigorous approach to science activities ranging from geological field work to deploying field instruments. Principal aspects and keys to the success of the field work are discussed here, including the highly integrated, intensive, and lengthy science planning, simulation, and astronaut training; the development of a systematic scheme for description and documentation of geological sites and samples; and a flexible yet disciplined methodology for site documentation and sample collection. The capability for constant communication with a ‘backroom’ of geological experts who make requests and weigh in on surface operations was innovative and very useful in encouraging rapid dissemination of information to the greater community in general. An extensive archive of the Apollo era science activity related documents provides evidence of the principal aspects and keys to the success of the field work. The Apollo Surface Journal allows analysis of the astronaut’s performance in terms of capability for traveling on foot, documentation and sampling of field stations, and manual operation of tools and instruments, all as a function of time. The application of these analysis as ‘lessons learned’ for planning the next generation of human or robotic field science activities on the Moon and elsewhere are considered here as well.

  19. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, C. A.

    2012-01-01

    Residual forcing necessary to close the MLTB on seasonal time scales are largest in regions of strongest surface heat flux forcing. Identifying the dominant source of error - surface heat flux error, mixed layer depth estimation, ocean dynamical forcing - remains a challenge in the eastern tropical oceans where ocean processes are very active. Improved sub-surface observations are necessary to better constrain errors. 1. Mixed layer depth evolution is critical to the seasonal evolution of mixed layer temperatures. It determines the inertia of the mixed layer, and scales the sensitivity of the MLTB to errors in surface heat flux and ocean dynamical forcing. This role produces timing impacts for errors in SST prediction. 2. Errors in the MLTB are larger than the historical 10Wm-2 target accuracy. In some regions, a larger accuracy can be tolerated if the goal is to resolve the seasonal SST cycle.

  20. Key pecking in pigeons produced by pairing keylight with inaccessible grain1

    PubMed Central

    Zentall, Thomas R.; Hogan, David E.

    1975-01-01

    In Experiment I, keylight was paired with inaccessible grain delivery (under two conditions of keylight intensity) to determine if autoshaping would occur in the absence of primary reinforcement. In Experiment II, the procedure was repeated with accessible grain, for comparison. In Experiment III, the procedures were repeated with explicitly unpaired presentations of keylight and either inaccessible or accessible grain. The results indicated that key pecking occurred as quickly in the presence of keylight pairings with inaccessible grain as with accessible grain, though (except for one bird) key pecking was not maintained with inaccessible grain. Furthermore, compared to the dim keylight, the bright keylight greatly suppressed key pecking when paired with inaccessible grain, and reduced the rate of key pecking when paired with accessible grain. Little key pecking occurred in groups exposed to explicitly unpaired presentations of keylight (whether bright or dim) and grain (whether accessible or inaccessible). When the birds in Experiment III were retested with explicitly paired presentations of keylight and grain, little key pecking was observed, suggesting suppressive effects of prior explicitly unpaired presentations. It is suggested that the effects of key-brightness manipulation were produced by the association of grain with cues other than the response key, or by distraction produced by partial illumination of the grain hopper. PMID:16811840

  1. Characteristics of annual, seasonal, and diurnal precipitation in the Southeastern United States derived from long-term remotely sensed data

    NASA Astrophysics Data System (ADS)

    Prat, Olivier P.; Nelson, Brian R.

    2014-07-01

    The objective of this paper is to investigate long-term inter-annual, seasonal, and diurnal rainfall characteristics in the Southeastern United States. In order to capture precipitation features at high resolution, we use precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM); the TRMM Precipitation Radar (TPR 2A25: 0.05° × 0.05°/daily) and the TRMM Multi-satellite Precipitation Analysis (TMPA 3B42: 0.25° × 0.25°/3-h) datasets to create a 13-year rainfall climatology. The higher resolution climatology (2A25) displays a greater ability to capture more localized landform precipitation features when compared with 3B42. On an annual basis, the Southeastern US is characterized by a succession of cold and warm precipitation regimes. The cold season is characterized by higher rain intensity West of 82°W (roughly Atlanta, GA) and the warm season is characterized by higher rain intensity over the coastal areas. The cold/warm rainfall regime duality is modulated by local topographic characteristics that prevail along a W-E direction. During the cold season, the diurnal cycle of precipitation is characterized by a quasi-constant repartition of rain events throughout the day and an absence of land/ocean contrast. On the contrary for summertime there is a strong land/ocean signature with a predominance of late morning/early afternoon (12:00-15:00LST) rainfall over ocean and afternoon/early evening (15:00-18:00LST) precipitation events over land that account for more than 25% of the daily events along the coasts. Differences are observed for the Florida peninsula, where the diurnal cycle displays an afternoon maximum of variable intensity due to sea breeze effects regardless of the season.

  2. Monitoring and evaluation of seasonal snow cover in Kashmir valley using remote sensing, GIS and ancillary data

    NASA Astrophysics Data System (ADS)

    Negi, H. S.; Thakur, N. K.; Kumar, Rajeev; Kumar, Manoj

    2009-12-01

    Seasonal snow cover is a vital natural resource in the Himalaya. Monitoring of the areal extent of seasonal snow cover is important for both climatological studies as well as hydrological applications. In the present paper, snow cover monitoring was carried out to evaluate the region-wise accumulation and ablation pattern of snow cover in Pir Panjal and Shamshawari ranges of Kashmir valley. The study was carried out for the winter period between November and April of 2004-05, 2005-06 and 2006-07, using multi-temporal WiFS sensor data of IRS-1C/1D satellites. The study shows reduction in the areal extent of seasonal snow cover and rising trend of maximum temperature in three winters for the entire Kashmir valley. This has been validated with 20 years (1988-89 to 2007-08) climatic conditions prevailed in both ranges of Kashmir valley. Region-wise study shows the spatial and temporal variability in seasonal snow cover within Kashmir valley. Advance melting was observed in Banihal and Naugam/Tangdhar regions than Gurez and Machhal regions. Different geographical parameters of these regions were studied to evaluate the influence on snow cover and it was observed that altitude and position of region with respect to mountain range are the deciding factors for retaining the seasonal snow cover for longer duration. Such region-wise study of snow cover monitoring, can provide vital inputs for planning the hydropower projects, development in habitat areas, recreational and strategic planning in the region.

  3. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data

    NASA Astrophysics Data System (ADS)

    Park, Taejin; Ganguly, Sangram; Tømmervik, Hans; Euskirchen, Eugénie S.; Høgda, Kjell-Arild; Rune Karlsen, Stein; Brovkin, Victor; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2016-08-01

    Monitoring and understanding climate-induced changes in the boreal and arctic vegetation is critical to aid in prognosticating their future. We used a 33 year (1982-2014) long record of satellite observations to robustly assess changes in metrics of growing season (onset: SOS, end: EOS and length: LOS) and seasonal total gross primary productivity. Particular attention was paid to evaluating the accuracy of these metrics by comparing them to multiple independent direct and indirect growing season and productivity measures. These comparisons reveal that the derived metrics capture the spatio-temporal variations and trends with acceptable significance level (generally p < 0.05). We find that LOS has lengthened by 2.60 d dec-1 (p < 0.05) due to an earlier onset of SOS (-1.61 d dec-1, p < 0.05) and a delayed EOS (0.67 d dec-1, p < 0.1) at the circumpolar scale over the past three decades. Relatively greater rates of changes in growing season were observed in Eurasia (EA) and in boreal regions than in North America (NA) and the arctic regions. However, this tendency of earlier SOS and delayed EOS was prominent only during the earlier part of the data record (1982-1999). During the later part (2000-2014), this tendency was reversed, i.e. delayed SOS and earlier EOS. As for seasonal total productivity, we find that 42.0% of northern vegetation shows a statistically significant (p < 0.1) greening trend over the last three decades. This greening translates to a 20.9% gain in productivity since 1982. In contrast, only 2.5% of northern vegetation shows browning, or a 1.2% loss of productivity. These trends in productivity were continuous through the period of record, unlike changes in growing season metrics. Similarly, we find relatively greater increasing rates of productivity in EA and in arctic regions than in NA and the boreal regions. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern

  4. Quantifying and Modelling the Seasonality of Pantropical Forest Net Primary Production Using Field Observations and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Wagner, F. H.; Hérault, B.; Anderson, L. O.; Rossi, V.; Aragão, L. E.

    2014-12-01

    Climate models predict a range of changes in the Amazonian region, including increased frequency of extreme climatic events, increased average temperatures, increased atmospheric CO2 and reduced rainfall intensity. Understanding tree growth response to climate is important because wood production is the main way carbon enters the forest ecosystem. The response of tropical tree growth to changing climate could drive a change in the direction of the flux from terrestrial ecosystems to the atmosphere. Recently, in French Guiana, we have observed that the peak increase in biomass (early wet season), estimated by diameter growth, was not correlated with the peak in chlorophyll activity (early dry season) in French Guiana. This could reflect different timing in the use of photosynthesis products by the plant for primary growth, i.e. shoot growth and leaves production, and secondary growth, i.e. wood production. To go further, we conducted an analysis combining information on monthly tree growth measurements from 13694 trees (73 pan-tropical forest sites) and monthly litterfall measurements (81 South American sites), with their correspondent monthly climate data and satellite derived vegetation indices (MODIS EVI and NDVI), to calibrate, parameterize and validate a pan-tropical model of biomass production. Specifically, we aim to (i) analyze if there is a coherence between the biological mechanisms observed from field and from satellite measurements and (ii) determine the relative contribution of climate and environmental site characteristics on the seasonal biomass production. The results of this work will provide a novel pantropical description of the carbon cycle in tropical forest ecosystems at a seasonal time scale as a function of site and climate characteristics and will be used to quantify changes in tropical forest functioning, in terms of the responses of carbon fluxes to climate change using the CMIP5 climate scenarios.

  5. Remote Sensing of Water Pollution

    NASA Technical Reports Server (NTRS)

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  6. The 1985 Biomass Burning Season in South America: Satellite Remote Sensing of Fires, Smoke, and Regional Radiative Energy Budgets

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Berendes, Todd A.; Welch, Ronald M.; Yang, Shi-Keng

    1998-01-01

    Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 biomass burning season. The results are characterized for four major ecosystems, namely: (1) tropical rain forest, (2) tropical broadleaf seasonal, (3) savannah/grass and seasonal woods (SGW), and (4) mild/warm/hot grass/shrub (MGS). The spatial and temporal distribution of fires are examined from two different methods using the multispectral Advanced Very High Resolution Radiometer Local Area Coverage data. Using collocated measurements from the instantaneous scanner Earth Radiation Budget Experiment data, the direct regional radiative forcing of biomass burning aerosols is computed. The results show that more than 70% of the fires occur in the MGS and SGW ecosystems due to agricultural practices. The smoke generated from biomass burning has negative instantaneous net radiative forcing values for all four major ecosystems within South America. The smoke found directly over the fires has mean net radiative forcing values ranging from -25.6 to -33.9 W m(exp -2). These results confirm that the regional net radiative impact of biomass burning is one of cooling. The spectral and broadband properties for clear-sky and smoke regions are also presented that could be used as input and/or validation for other studies attempting to model the impact of aerosols on the earth-atmosphere system. These results have important applications for future instruments from the Earth Observing System (EOS) program. Specifically, the combination of the Visible Infrared Scanner and Clouds and the Earth's Radiant Energy System (CERES) instruments from the Tropical Rainfall Measuring Mission and the combination of Moderate Resolution Imaging Spectrometer and CERES instruments from the EOS morning crossing mission could provide reliable estimates of the direct radiative forcing of aerosols on a global scale

  7. Seasonal and long-term rainfall and cloud dynamics in the Mt. Kilimanjaro region as observed from local and remote sensing time series

    NASA Astrophysics Data System (ADS)

    Otte, Insa; Detsch, Florian; Mwangomo, Ephraim; Nauss, Thomas; Appelhans, Tim

    2015-04-01

    The melting glaciers of Mt. Kilimanjaro have become a synonym for global change. In contrast, the non-glaciated areas receive much less public attention. Aside from a brief examination of air-temperature, in-situ rainfall and remotely sensed cloud dynamics are analyzed to determine seasonal and long-term climate trends in the Mt. Kilimanjaro region in this study. The in-situ air-temperature is based on NOAA'S GSOD datasets, the in-situ rainfall data is obtained from the Tanzania Meteorological Agency. Both datasets span from 1973 to 2013. Rainfall data was obtained from two in-situ stations at Moshi and Kilimanjaro Airport, both situated in the Kilimanjaro area, which were considered to be representative at least for the greater region after correlation analysis with in-situ station data from the southern slopes of Mt. Kilimanjaro. While a temperature increase of about 0.29 K per decade can be identified, no long-term rainfall trends are observable. However, humid and dry decades are evident with so called "short" (with a peak around December) and "long" (March to May) rains. Seasonality has changed especially during the long rains between March and May. As rainfall and cloud cover were analyzed with respect of the status of El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) some seasonal dynamics could be linked to these large-scale drivers. Characteristic seasonal patterns related to ENSO and IOD teleconnections show enhanced rainfall in the onset year and in the post-ENSO year for most El Niño events. During La Niña years, rainfall increases in the following year, while for the onset year scenarios must be regarded differentiated. Positive IOD events lead to enhanced rainfall amounts, highlighting the importance of IOD events in modifying ENSO related rainfall dynamics in the Kilimanjaro area Additionally, cloud dynamics have been analyzed using daily Aqua-MODIS cloud products between 2002 and 2013. In contrast to the rainfall dynamics, cloud

  8. Water area variations in seasonal lagoons from the Biosphere Reserve of "La Mancha Húmeda" (Spain) determined by remote sensing classification methods and data mining techniques

    NASA Astrophysics Data System (ADS)

    Dona, Carolina; Niclòs, Raquel; Chang, Ni-Bin; Caselles, Vicente; Sánchez, Juan Manuel; Camacho, Antonio

    2015-04-01

    La Mancha Húmeda is a wetland-rich area located in central Spain that was designated as a Biosphere reserve in 1980. This area includes several dozens of temporal lagoons, mostly saline, whose water level fluctuates and usually become dry during the warmest season. Water inflows into these lagoons come from both runoff of very small catchment and, in some cases, from groundwater although some of them also receive wastewater from nearby towns. Most lack surface outlets and they behave as endorheic systems, with the main water withdrawal due to evaporation causing salt accumulation in the lake beds. Under several law protection coverage additional to that of Biosphere Reserve, including Ramsar and Natura 2000 sites, management plans are being developed in order to accomplish the goals enforced by the European Water Framework Directive and the Habitats Directive, which establish that all EU countries have to achieve a good ecological status and a favorable conservation status of these sites, and especially of their water bodies. A core task to carry out the management plans is the understanding of the hydrological trend of these lagoons with a sound monitoring scheme. To do so, an estimation of the temporal evolution of the flooded area for each lagoon, and its relationship with meteorological patterns, which can be achieved using remote sensing technologies, is a key procedure. The current study aims to develop a remote sensing methodology capable of estimating the changing water coverage areas in each lagoon with satellite remote sensing images and ground truth data sets. ETM+ images onboard Landsat-7 were used to fulfill this goal. These images are useful to monitor small-to-medium size water bodies due to its 30-m spatial resolution. In this work several methods were applied to estimate the wet and dry pixels, such as water and vegetation indexes, single bands, supervised classification methods and genetic programming. All of the results were compared with ground

  9. Rock slide deformation measurements with Terrestrial Laser Scanning in inaccessible high mountain areas

    NASA Astrophysics Data System (ADS)

    Fey, C.; Zangerl, C.; Haas, F.; Rutzinger, M.; Sailer, R.; Bremer, M.

    2012-04-01

    In summer 2007 at the "Bliggspitze" (Eastern Alps, 3453 m.a.s.l.), rock and ice fall events testify to increasing slope activities. At the northern slope of the summit a 400 m by 200 m glacier-covered rock mass slab initiated to move downward. The movement causes strong fragmentation of the glacier and the paragneisic rock mass. This process is documented by multi-temporal Airborne Laser Scanning (ALS) digital elevation models (DEMs) (2006/ 2007/ 2008/ 2009/ 2010) and orthophotos (2003/ 2007/ 2009). Between 2006 and 2007 shear displacement of up to 45 m was measured at the main scarp by ALS DEMs. In the following year (2007/2008) the movement rate at the main scarp reduces to 5 m per year. By means of field observations the deformation at the main scarp can be described as a sliding mechanism. In order to understand the landslide kinematics at the lower part of the slope deformation measurements are required. Ongoing rock fall activities at these slope regions preclude field measurements. Furthermore ALS deformation data at the steeply inclined lower part of the slope involve methodically-related uncertainties. In order to get more detailed information about the geometry and the temporal deformation behaviour a Terrestrial Laser Scanner (TLS) is used to scan the lower parts including the toe of the slope. Due to the remoteness, inaccessibly and the large extend of the area of interest the measurement by the TLS is challenging. The test side extends over 500 m width and rises from 2600 to 3200 m.a.s.l.. Long range measurement cause large footprint sizes which lead to lower accuracy in the measured coordinates of the TLS scan. Even in summer single snow patches disturb the reflection of laser beams. Furthermore high rockfall activity precludes the installation of reflective targets in the test side. To minimize shadowing effects, the area was scanned from three scan positions. To register the three scan positions without targets the ICP algorithm of the software Ri

  10. The relationship between canopy structure, light dynamics and deciduousness in a seasonal tropical forest in Panama: A multiple scale study using remote sensing and allometry

    NASA Astrophysics Data System (ADS)

    Bohlman, Stephanie Ann

    This dissertation uses two tools, remote sensing and allometry, to quantify canopy structure, phenology and light interception on stand to landscape levels in a semi-deciduous tropical forest in Panama. The remote sensing studies used a multiple scale approach. First relationships between spectral and physiological data were developed on a fine spatial scale. Then the interpretations were verified at a series of plots across the landscape. Finally, interpretation was applied to satellite images of the whole Panama Canal Zone. Using this approach, the applicability of the relationship between the Normalized Difference Vegetation Index (NDVI) and fraction of intercepted photosynthetically active radiation (FPAR) was tested for the first time in a tropical forest. NDVI was more strongly related to changes in the FPAR of the upper canopy than FPAR of the whole canopy profile. Both NDVI and FPAR were driven by the contrast of deciduous and non-deciduous tree crowns in the dry season. On a landscape scale, spectral mixture analysis (SMA) of remotely-sensed images quantified the percent of deciduous tree crowns in the overstory very accurately. Using the map of deciduousness developed from a Landsat image, I found high fine scale variability in deciduousness, highly deciduous patches throughout the canal zone of 4--250 ha in size, and landscape trends related to rainfall and geologic formation. Allometric relationships between stem diameter, tree height and crown size were developed for 65 species on Barro Colorado Island. Tree height was asymptotic with stem diameter, but crown radius was not, continuing to grow at large diameters. Allometric relationships through ontongeny varied among different functional groups. Gap species are taller than shade species when both functional groups were below 10 cm dbh, but have smaller crowns than shade species above 10 cm dbh. Subcanopy species are shorter with larger canopies than tall species. A simple canopy model based on these

  11. ECOMS-UDG. A User-friendly Data access Gateway to seasonal forecast datasets allowing R-based remote data access, visualization-validation, bias correction and downscaling

    NASA Astrophysics Data System (ADS)

    Santiago Cofiño, Antonio; Gutiérrez, José Manuel; Fernández, Jesús; Bedia, Joaquín; Vega, Manuel; Herrera, Sixto; Frías, María Dolores; Iturbide, Maialen; Magariño, Maria Eugenia; Manzanas, Rodrigo

    2016-04-01

    Seasonal forecasting data from state-or-the-art forecasting systems (e.g. NCEP/CFSv2 or ECMWF/System4) can be obtained directly from the data providers, but the resulting formats, aggregations and vocabularies may not be homogeneous across datasets, requiring some post processing. Moreover, different data policies hold for the various datasets - which are freely available only in some cases - and therefore data access may not be straightforward. Thus, obtaining seasonal climate forecast data is typically a time consuming task. The ECOMS-UDG (User Data Gateway for the ECOMS initiative) has been developed building in the ​User Data Gateway (UDG, http://meteo.unican.es/udg-wiki) in order to facilitate seasonal (re)forecast data access to end users. The required variables have been downloaded from data providers and stored locally in a THREDDS data server implementing fine-grained user authorization. Thus, users can efficiently retrieve the subsets that best suits their particular research aims (typically surface variables for certain regions, periods and/or ensemble members) from a large volume of information. Moreover, an interface layer developed in R allows remote data exploration, access (including homogenization, collocation and sub-setting) and the integration of ECOMS-UDG with a number of R packages developed in the framework of ECOMS for forecast visualization, validation, bias correction and downscaling. This unique framework oriented to climate services allows users from different sectors to easily access seasonal forecasting data (typically surface variables), calibrating and/or downscaling (using upper air information from large scale predictors) this data at local level and validating the different results (using observations). The documentation delivered with the packages includes worked examples showing that the whole visualization, bias correction and/or downscaling tasks requires only a few lines of code and are fully reproducible and adaptable to

  12. 14 CFR 382.57 - What services must carriers provide if their automated kiosks are inaccessible?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false What services must carriers provide if their automated kiosks are inaccessible? 382.57 Section 382.57 Aeronautics and Space OFFICE OF THE... BASIS OF DISABILITY IN AIR TRAVEL Accessibility of Airport Facilities § 382.57 What services...

  13. 14 CFR 382.57 - What services must carriers provide if their automated kiosks are inaccessible?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false What services must carriers provide if their automated kiosks are inaccessible? 382.57 Section 382.57 Aeronautics and Space OFFICE OF THE... BASIS OF DISABILITY IN AIR TRAVEL Accessibility of Airport Facilities § 382.57 What services...

  14. 14 CFR 382.57 - What services must carriers provide if their automated kiosks are inaccessible?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false What services must carriers provide if their automated kiosks are inaccessible? 382.57 Section 382.57 Aeronautics and Space OFFICE OF THE... BASIS OF DISABILITY IN AIR TRAVEL Accessibility of Airport Facilities § 382.57 What services...

  15. 14 CFR 382.57 - What services must carriers provide if their automated kiosks are inaccessible?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false What services must carriers provide if their automated kiosks are inaccessible? 382.57 Section 382.57 Aeronautics and Space OFFICE OF THE... BASIS OF DISABILITY IN AIR TRAVEL Accessibility of Airport Facilities § 382.57 What services...

  16. Angular and Seasonal Variation of Spectral Surface Reflectance Ratios: Implications for the Remote Sensing of Aerosol over Land

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Wald, A. E.; Kaufman, Y. J.

    1999-01-01

    We obtain valuable information on the angular and seasonal variability of surface reflectance using a hand-held spectrometer from a light aircraft. The data is used to test a procedure that allows us to estimate visible surface reflectance from the longer wavelength 2.1 micrometer channel (mid-IR). Estimating or avoiding surface reflectance in the visible is a vital first step in most algorithms that retrieve aerosol optical thickness over land targets. The data indicate that specular reflection found when viewing targets from the forward direction can severely corrupt the relationships between the visible and 2.1 micrometer reflectance that were derived from nadir data. There is a month by month variation in the ratios between the visible and the mid-IR, weakly correlated to the Normalized Difference Vegetation Index (NDVI). If specular reflection is not avoided, the errors resulting from estimating surface reflectance from the mid-IR exceed the acceptable limit of DELTA-rho approximately 0.01 in roughly 40% of the cases, using the current algorithm. This is reduced to 25% of the cases if specular reflection is avoided. An alternative method that uses path radiance rather than explicitly estimating visible surface reflectance results in similar errors. The two methods have different strengths and weaknesses that require further study.

  17. Presence and seasonal variation of deep diving foraging odontocetes around Kauai, Hawaii using remote autonomous acoustic recorders.

    PubMed

    Au, Whitlow W L; Giorli, Giacomo; Chen, Jessica; Copeland, Adrienne; Lammers, Marc O; Richlen, Michael; Jarvis, Susan; Morrissey, Ronald; Moretti, David

    2014-01-01

    Ecological acoustic recorders (EARs) were moored off the bottom in relatively deep depths (609-710 m) at five locations around the island of Kauai. Initially, the EARs had an analog-to-digital sample rate of 64 kHz with 30-s recordings every 5 min. After the second deployment the sampling rate was increased to 80 kHz in order to better record beaked whale biosonar signals. The results of the 80 kHz recording are discussed in this manuscript and are the results of three deployments over a year's period (January 2010 to January 2011). Five categories of the biosonar signal detection of deep diving odontocetes were created, short-finned pilot whales, sperm whales, beaked whales, Risso's dolphins, and unknown dolphins. During any given day, at least one species of these deep diving odontocetes were detected. On many days, several species were detected. The biosonar signals of short-finned pilot whales were detected the most often with approximately 30% of all the signals, followed by beaked and sperm whales approximately 22% and 21% of all clicks, respectively. The seasonal patterns were not very strong except in the SW location with distinct peak in detection during the months of April-June 2010 period.

  18. Presence and seasonal variation of deep diving foraging odontocetes around Kauai, Hawaii using remote autonomous acoustic recorders.

    PubMed

    Au, Whitlow W L; Giorli, Giacomo; Chen, Jessica; Copeland, Adrienne; Lammers, Marc O; Richlen, Michael; Jarvis, Susan; Morrissey, Ronald; Moretti, David

    2014-01-01

    Ecological acoustic recorders (EARs) were moored off the bottom in relatively deep depths (609-710 m) at five locations around the island of Kauai. Initially, the EARs had an analog-to-digital sample rate of 64 kHz with 30-s recordings every 5 min. After the second deployment the sampling rate was increased to 80 kHz in order to better record beaked whale biosonar signals. The results of the 80 kHz recording are discussed in this manuscript and are the results of three deployments over a year's period (January 2010 to January 2011). Five categories of the biosonar signal detection of deep diving odontocetes were created, short-finned pilot whales, sperm whales, beaked whales, Risso's dolphins, and unknown dolphins. During any given day, at least one species of these deep diving odontocetes were detected. On many days, several species were detected. The biosonar signals of short-finned pilot whales were detected the most often with approximately 30% of all the signals, followed by beaked and sperm whales approximately 22% and 21% of all clicks, respectively. The seasonal patterns were not very strong except in the SW location with distinct peak in detection during the months of April-June 2010 period. PMID:24437792

  19. Seasonal variability of chlorophyll-a and oceanographic conditions in Sabah waters in relation to Asian monsoon--a remote sensing study.

    PubMed

    Abdul-Hadi, Alaa; Mansor, Shattri; Pradhan, Biswajeet; Tan, C K

    2013-05-01

    A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements. PMID:22930185

  20. Seasonal variability of chlorophyll-a and oceanographic conditions in Sabah waters in relation to Asian monsoon--a remote sensing study.

    PubMed

    Abdul-Hadi, Alaa; Mansor, Shattri; Pradhan, Biswajeet; Tan, C K

    2013-05-01

    A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.

  1. Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed.

    PubMed

    Makkeasorn, Ammarin; Chang, Ni-Bin; Li, Jiahong

    2009-02-01

    Riparian zones are deemed significant due to their interception capability of non-point source impacts and the maintenance of ecosystem integrity region wide. To improve classification and change detection of riparian buffers, this paper developed an evolutionary computational, supervised classification method--the RIparian Classification Algorithm (RICAL)--to conduct the seasonal change detection of riparian zones in a vast semi-arid watershed, South Texas. RICAL uniquely demonstrates an integrative effort to incorporate both vegetation indices and soil moisture images derived from LANDSAT 5 TM and RADARSAT-1 satellite images, respectively. First, an estimation of soil moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR) images was conducted via the first-stage genetic programming (GP) practice. Second, for the statistical analyses and image classification, eight vegetation indices were prepared based on reflectance factors that were calculated as the response of the instrument on LANDSAT. These spectral vegetation indices were then independently used for discriminate analysis along with soil moisture images to classify the riparian zones via the second-stage GP practice. The practical implementation was assessed by a case study in the Choke Canyon Reservoir Watershed (CCRW), South Texas, which is mostly agricultural and range land in a semi-arid coastal environment. To enhance the application potential, a combination of Iterative Self-Organizing Data Analysis Techniques (ISODATA) and maximum likelihood supervised classification was also performed for spectral discrimination and classification of riparian varieties comparatively. Research findings show that the RICAL algorithm may yield around 90% accuracy based on the unseen ground data. But using different vegetation indices would not significantly improve the final quality of the spectral discrimination and classification. Such practices may lead to the formulation of more effective management strategies

  2. Remote sensing-based estimates of annual and seasonal emissions from crop residue burning in the contiguous United States.

    PubMed

    McCarty, Jessica L

    2011-01-01

    Crop residue burning is an extensive agricultural practice in the contiguous United States (CONUS). This analysis presents the results of a remote sensing-based study of crop residue burning emissions in the CONUS for the time period 2003-2007 for the atmospheric species of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen dioxide (NO2, sulfur dioxide (SO2), PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter), and PM10 (PM < or = 10 microm in aerodynamic diameter). Cropland burned area and associated crop types were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Emission factors, fuel load, and combustion completeness estimates were derived from the scientific literature, governmental reports, and expert knowledge. Emissions were calculated using the bottom-up approach in which emissions are the product of burned area, fuel load, and combustion completeness for each specific crop type. On average, annual crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 10.6 Gg of NO2, 4.4 Gg of SO2, 20.9 Gg of PM2.5, and 28.5 Gg of PM10. These emissions remained fairly consistent, with an average interannual variability of crop residue burning emissions of +/- 10%. The states with the highest emissions were Arkansas, California, Florida, Idaho, Texas, and Washington. Most emissions were clustered in the southeastern United States, the Great Plains, and the Pacific Northwest. Air quality and carbon emissions were concentrated in the spring, summer, and fall, with an exception because of winter harvesting of sugarcane in Florida, Louisiana, and Texas. Sugarcane, wheat, and rice residues accounted for approximately 70% of all crop residue burning and associated emissions. Estimates of CO and CH4 from agricultural waste burning by the U.S. Environmental Protection Agency were 73 and 78% higher than the CO and CH4 emission estimates from this analysis, respectively. This analysis

  3. Posterior tibial artery access using transradial techniques: retrograde approach to inaccessible lower extremity lesions.

    PubMed

    Londoño, Juan Carlos; Singh, Vikas; Martinez, Claudia A

    2012-06-01

    Percutaneous intervention of chronic limb ischemia is often limited by vascular access especially in patients with previous surgical interventions. This warrants development of alternative endovascular techniques, particularly for patients in whom traditional ipsilateral antegrade or contralateral retrograde access has failed or is not possible. We describe a novel approach to the posterior tibial artery using retrograde access with transradial techniques including closure devices in two patients with inaccessible antegrade access. PMID:21432983

  4. Buccal swab as a reliable predictor for X inactivation ratio in inaccessible tissues

    PubMed Central

    de Hoon, Bas; Monkhorst, Kim; Riegman, Peter; Laven, Joop S E; Gribnau, Joost

    2015-01-01

    Background As a result of the epigenetic phenomenon of X chromosome inactivation (XCI) every woman is a mosaic of cells with either an inactive paternal X chromosome or an inactive maternal X chromosome. The ratio between inactive paternal and maternal X chromosomes is different for every female individual, and can influence an X-encoded trait or disease. A multitude of X linked conditions is known, and for many of them it is recognised that the phenotype in affected female carriers of the causative mutation is modulated by the XCI ratio. To predict disease severity an XCI ratio is usually determined in peripheral blood samples. However, the correlation between XCI ratios in peripheral blood and disease affected tissues, that are often inaccessible, is poorly understood. Here, we tested several tissues obtained from autopsies of 12 female individuals for patch size and XCI ratio. Methods XCI ratios were analysed using methyl-sensitive PCR-based assays for the AR, PCSK1N and SLITRK4 loci. XCI patch size was analysed by testing the XCI ratio of tissue samples with decreasing size. Results XCI patch size was analysed for liver, muscle, ovary and brain samples and was found too small to confound testing for XCI ratio in these tissues. XCI ratios were determined in the easily accessible tissues, blood, buccal epithelium and hair follicle, and compared with ratios in several inaccessible tissues. Conclusions Buccal epithelium is preferable over peripheral blood for predicting XCI ratios of inaccessible tissues. Ovary is the only inaccessible tissue showing a poor correlation to blood and buccal epithelium, but has a good correlation to hair follicle instead. PMID:26220467

  5. Daily and seasonal dynamics of suspended particles in the Rhône River plume based on remote sensing and field optical measurements

    NASA Astrophysics Data System (ADS)

    Lorthiois, Thomas; Doxaran, David; Chami, Malik

    2012-04-01

    Satellite ocean colour remote sensing can serve as a powerful tool to assess river plume characteristics because it provides daily mapping of surface suspended particulate matter (SPM) concentration at high spatial resolution. This study's ultimate objective was to better understand daily and seasonal particle dynamics in a coastal area strongly influenced by freshwater discharge and wind—the Rhône River (France), this being the major source of terrestrial input to the Mediterranean Sea. SPM concentrations and biogenic composition (chlorophyll a, organic carbon) were investigated during several bio-optical field campaigns conducted in spring-autumn of 2010 both from aboard a research vessel and by means of an autonomous profiling float. Freshwater discharge and wind velocities varied significantly during the year, associated with marked fluctuations in surface SPM (upper 1 m), even within hours and not restricted to any specific season. Thus, the range was ca. 12-25 g m-3 (dry mass basis) on 9 April (spring), and ca. 3-39 g m-3 on 4-5 November (late autumn). Short-term variations were observed also in SPM composition in terms of POC (albeit not chl a), with POC/SPM ratios ranging between ca. 3 and 11% over ca. 3 weeks in spring. Nevertheless, the particulate backscattering coefficient ( b bp) proved to be a robust proxy of SPM concentration in the river plume ( b bp(770) = 0.0076 × SPM, R2 = 0.80, N = 56). It has recently been demonstrated that 80% of the Rhône's terrestrial discharge occurs during flood events. The results of the present study revealed that, under these conditions, SPM is constrained largely within surface waters (i.e. at depths <5 m), with only weak daily vertical variability. By implication, ocean colour satellite data are highly suitable in meaningfully estimating the overall SPM load exported by the Rhône River to the Mediterranean. These findings make a solid contribution to future improvements of three-dimensional sediment transport

  6. Seasonal behavior of PM2.5 deliquescence, crystallization, and hygroscopic growth in the Po Valley (Milan): Implications for remote sensing applications

    NASA Astrophysics Data System (ADS)

    D'Angelo, Luca; Rovelli, Grazia; Casati, Marco; Sangiorgi, Giorgia; Perrone, Maria Grazia; Bolzacchini, Ezio; Ferrero, Luca

    2016-07-01

    Atmospheric aerosols deliquescence and crystallization relative humidity (DRH and CRH) are rarely measured compared to the worldwide number of hygroscopicity measurements; this feature comes from the lack of an efficient method able to capture the whole complexity of chemical composition of aerosols. Despite this, the knowledge of both DRH and CRH are crucial for a correct parameterization of the aerosol hygroscopic growth used in different applications, among which the remote sensing is very important. In this paper, a newly developed technique (direct current conductance method) was applied in an aerosol chamber to Milan PM2.5 samples, to identify aerosol DRH and CRH both during winter and summer. These results were compared with those independently obtained by gravimetric measurements conducted in the chamber using a microbalance. Microbalance data allowed also the determination of the mass hygroscopic growth factor on the collected PM2.5 samples. Results evidenced first a good agreement between the two methods (RMSE = 2.7% and 2.3% for DRH and CRH, respectively). Collected data evidenced the hysteresis behavior of ambient particles and variability in both DRH and CRH between the two seasons. Summer samples showed higher DRH and CRH (on average 71.4 ± 1.0% RH and 62.6 ± 1.2% RH, respectively) than the winter ones (on average 55.2 ± 0.7% RH and 46.9 ± 0.6% RH). This behavior was related to the higher content of sulfates during the summer season. Conversely, the mass hygroscopic growth factor at 90% RH was higher for winter samples (2.76 ± 0.06) with respect to the summer ones (1.91 ± 0.11). Since hysteresis behavior affects optical properties of aerosols, when RH conditions are within the loop, the hygroscopic growth factor could be assigned in a wrong way. Thus, the growth factor was calculated within the hysteresis loop for both upper and lower branches: results showed that difference in hygroscopic growth factor could reach up the 24%.

  7. Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study

    NASA Astrophysics Data System (ADS)

    Korhonen, Hannele; Carslaw, Kenneth S.; Spracklen, Dominick V.; Mann, Graham W.; Woodhouse, Matthew T.

    2008-08-01

    We use a global chemical transport model with size-resolved aerosol microphysics to investigate the sources of cloud condensation nuclei (CCN) in the Southern Hemisphere remote marine boundary layer (MBL). Long-term observations of CCN number at Cape Grim (40°41'S, 144°41'E) show a clear seasonal cycle with a 2-3 times higher concentration in summer than in winter, which has been attributed to seasonal changes in the dimethyl sulfide (DMS) ocean-to-atmosphere flux. We find that this cycle at Cape Grim and also throughout the 30°-45°S latitude band is caused mostly by changes in the regional-scale DMS ocean water concentration. In this latitude band, DMS emissions increase the simulated CCN concentrations from November to April, with a maximum effect of 46% in January (calculated at 0.23% supersaturation). Farther south, the impact of DMS on CCN is apparent only from December to February and increases the CCN concentration at most by 18% at 45°-60°S and by 40% at 60°-75°S. These model-derived contributions of DMS to Southern Ocean summertime CCN are smaller than the 80% derived from correlations between satellite-observed chlorophyll and column CCN, which we explain in terms of nonlinear behavior of CCN from the free troposphere (FT). We show that the main microphysical pathway of DMS influence on CCN number is nucleation of DMS-derived H2SO4 in the FT and subsequent growth of formed particles by condensation and coagulation during entrainment into the MBL. Our simulations suggest that >90% of the increase in MBL CCN when DMS is added to the model is formed in this way. The growth of ultrafine sea spray particles to CCN sizes due to condensation of DMS-derived H2SO4 in the MBL affects the simulated CCN concentrations by less than 6%. Overall, entrainment of nucleated sulfate aerosol into the MBL from the FT accounts for 43-65% of the summer zonal mean CCN concentrations but only 7-20% of the winter CCN over the Southern Hemisphere oceans.

  8. Verification of satellite radar remote sensing based estimates of boreal and subalpine growing seasons using an ecosystem process model and surface biophysical measurement network information

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Kimball, J. S.; Zimmerman, R.

    2002-01-01

    We employ daily surface Radar backscatter data from the SeaWinds Ku-band Scatterometer onboard Quikscat to estimate landscape freeze-thaw state and associated length of the seasonal non-frozen period as a surrogate for determining the annual growing season across boreal and subalpine regions of North America for 2000 and 2001.

  9. Towards a Remote Sensing Based Assessment of Land Susceptibility to Degradation: Examining Seasonal Variation in Land Use-Land Cover for Modelling Land Degradation in a Semi-Arid Context

    NASA Astrophysics Data System (ADS)

    Mashame, Gofamodimo; Akinyemi, Felicia

    2016-06-01

    Land degradation (LD) is among the major environmental and anthropogenic problems driven by land use-land cover (LULC) and climate change worldwide. For example, poor LULC practises such as deforestation, livestock overstocking, overgrazing and arable land use intensification on steep slopes disturbs the soil structure leaving the land susceptible to water erosion, a type of physical land degradation. Land degradation related problems exist in Sub-Saharan African countries such as Botswana which is semi-arid in nature. LULC and LD linkage information is still missing in many semi-arid regions worldwide.Mapping seasonal LULC is therefore very important in understanding LULC and LD linkages. This study assesses the impact of seasonal LULC variation on LD utilizing Remote Sensing (RS) techniques for Palapye region in Central District, Botswana. LULC classes for the dry and rainy seasons were classified using LANDSAT 8 images at Level I according to the Food and Agriculture Organization (FAO) International Organization of Standardization (ISO) code 19144. Level I consists of 10 LULC classes. The seasonal variations in LULC are further related to LD susceptibility in the semi-arid context. The results suggest that about 985 km² (22%) of the study area is susceptible to LD by water, major LULC types affected include: cropland, paved/rocky material, bare land, built-up area, mining area, and water body. Land degradation by water susceptibility due to seasonal land use-land cover variations is highest in the east of the study area where there is high cropland to bare land conversion.

  10. Repair of Inaccessible Ventral Dural Defect in Thoracic Spine: Double Layered Duraplasty

    PubMed Central

    Lee, Dong-Hyun; Park, Jeong-Ill; Park, Ki-Su; Cho, Dae-Chul; Sung, Joo-Kyung

    2016-01-01

    We propose a double layered (intradural and epidural patch) duraplasty that utilizes Lyoplant and Duraseal. We examined a 47-year-old woman after decompression for thoracic ossification of posterior longitudinal ligament was performed in another hospital. On postoperative day 7, she complained of weakness in both legs. Postoperative magnetic resonance imaging (MRI) showed cerebrospinal fluid (CSF) collection with cord compression. In the operative field, we found 2 large dural defects on the ventral dura mater. We performed a conventional fat graft with fibrin glue. However, the patient exhibited neurologic deterioration, and a postoperative MRI again showed CSF collection. We performed dorsal midline durotomy and inserted a intradural and epidural Lyoplant patch. She immediately experienced diminishing back pain postoperatively. Her visual analog scale and motor power improved markedly. Postoperative MRIs performed at 2 and 16 months showed no spinal cord compression or CSF leakage to the epidural space. We describe a new technique for double layered duraplasty. Although we do not recommend this technique for all dural repairs, double-layered duraplasty may be useful for repairing large inaccessible dural tears in cases of persistent CSF leakage refractory to conventional management. PMID:27437022

  11. Repair of Inaccessible Ventral Dural Defect in Thoracic Spine: Double Layered Duraplasty.

    PubMed

    Lee, Dong-Hyun; Kim, Kyoung-Tae; Park, Jeong-Ill; Park, Ki-Su; Cho, Dae-Chul; Sung, Joo-Kyung

    2016-06-01

    We propose a double layered (intradural and epidural patch) duraplasty that utilizes Lyoplant and Duraseal. We examined a 47-year-old woman after decompression for thoracic ossification of posterior longitudinal ligament was performed in another hospital. On postoperative day 7, she complained of weakness in both legs. Postoperative magnetic resonance imaging (MRI) showed cerebrospinal fluid (CSF) collection with cord compression. In the operative field, we found 2 large dural defects on the ventral dura mater. We performed a conventional fat graft with fibrin glue. However, the patient exhibited neurologic deterioration, and a postoperative MRI again showed CSF collection. We performed dorsal midline durotomy and inserted a intradural and epidural Lyoplant patch. She immediately experienced diminishing back pain postoperatively. Her visual analog scale and motor power improved markedly. Postoperative MRIs performed at 2 and 16 months showed no spinal cord compression or CSF leakage to the epidural space. We describe a new technique for double layered duraplasty. Although we do not recommend this technique for all dural repairs, double-layered duraplasty may be useful for repairing large inaccessible dural tears in cases of persistent CSF leakage refractory to conventional management. PMID:27437022

  12. GENE EXPRESSION PROFILING OF ACCESSIBLE SURROGATE TISSUES TO MONITOR MOLECULAR CHANGES IN INACCESSIBLE TARGET TISSUES FOLLOWING TOXICANT EXPOSURE

    EPA Science Inventory

    Gene Expression Profiling Of Accessible Surrogate Tissues To Monitor Molecular Changes In Inaccessible Target Tissues Following Toxicant Exposure
    John C. Rockett, Chad R. Blystone, Amber K. Goetz, Rachel N. Murrell, Judith E. Schmid and David J. Dix
    Reproductive Toxicology ...

  13. The Tip-of-the-Tongue Heuristic: How Tip-of-the-Tongue States Confer Perceptibility on Inaccessible Words

    ERIC Educational Resources Information Center

    Cleary, Anne M.; Claxton, Alexander B.

    2015-01-01

    This study shows that the presence of a tip-of-the-tongue (TOT) state--the sense that a word is in memory when its retrieval fails--is used as a heuristic for inferring that an inaccessible word has characteristics that are consistent with greater word perceptibility. When reporting a TOT state, people judged an unretrieved word as more likely to…

  14. SURROGATE TISSUE ANALYSIS: MONITORING TOXICANT EXPOSURE AND HEALTH STATUS OF INACCESSIBLE TISSUES THROUGH THE ANALYSIS OF ACCESSIBLE TISSUES AND CELLS

    EPA Science Inventory

    Surrogate Tissue Analysis: Monitoring Toxicant Exposure And Health Status Of Inaccessible Tissues Through The Analysis Of Accessible Tissues And Cells*
    John C. Rockett1, Michael E. Burczynski 2, Albert J. Fornace, Jr.3, Paul.C. Herrmann4, Stephen A. Krawetz5, and David J. Dix1...

  15. Solute inaccessible aqueous volume changes during opening of the potassium channel of the squid giant axon.

    PubMed Central

    Zimmerberg, J; Bezanilla, F; Parsegian, V A

    1990-01-01

    We have applied solutions with varying osmotic pressures symmetrically to the inside and outside of perfused, TTX-treated, giant axons. The potassium conductance G decreased with increasing osmotic stress, but there was no effect on either the shape or the position of the voltage-current curve. One must distinguish three possible actions of the osmotic agent: osmotic stress, channel blocking, and lowered solution conductivity. To do so, we compared results obtained working with pairs of internal and external solutions of either (a) equal osmotic stress, (b) equal conductivity, or (c) the same blocking agent. There was the same change in G irrespective of the type of stressing species (sorbitol or sucrose); this provides some evidence against a blocking mechanism. The conductivity of the external solution had a small effect on K currents; internal solution conductivity had none. A change in series resistance of the Schwann cell layer could account for the small effect of external solution conductivity. The primary cause of G depression appears, then, to be the applied osmotic stress. Using this result, we have developed models in which the channel has a transition between closed states under voltage control but osmotically insensitive and a closed/open step that is voltage-independent but osmotically sensitive. We have assumed that the conductance of this open state does not change with osmotic stress. In this way, we estimate that an additional 1,350 +/- 200 A3 or 40-50 molecules of solute-inaccessible water appear to associate with the average delayed rectifier potassium channel of the squid axon when it opens. PMID:2340341

  16. High-frequency remote monitoring of large lakes with MODIS 500 m imagery

    USGS Publications Warehouse

    McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.

    2012-01-01

    Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.

  17. Spatial and temporal variation in Snow cover in Himalayas with Remotely sensed data

    NASA Astrophysics Data System (ADS)

    Ojha, S.

    2013-05-01

    Satellite remote sensing is an effective tool for monitoring snow covered area. However, complex terrain and heterogeneous land cover and the presence of clouds, impose challenges to snow cover mapping. This research analyzes snow cover and glaciers with a perspective of climate change in Himalayan Regions using remote sensing techniques. The remote sensing snow cover data from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite from 2000 to 2010 have been used to analyze some climate change indicators. In particular, the variability in the maximum snow extent with elevations, its temporal variability (8-day, monthly, seasonal and annual), its variation trend and its relation with temperature have been analyzed. The snow products used in this study are the maximum snow extent and fractional snow covers, which come in 8-day temporal and 500m and 0.05 degree spatial resolutions respectively. The results showed a tremendous potential of the MODIS snow product for studying the spatial and temporal variability of snow as well as the study of climate change impact in large and inaccessible regions like the Himalayas. The snow area extent (SAE) (%) time series exhibits similar patterns during seven hydrological years, even though there are some deviations in the accumulation and melt periods. The analysis showed relatively well inverse relation between the daily mean temperature and SAE during the melting period. Some important trends of snow fall are also observed. In particular, the decreasing trend in January and increasing trend in late winter and early spring may be interpreted as a signal of a possible seasonal shift. However, it requires more years of data to verify this conclusion. Significant coverage of lake ice was found in lower elevation zone which is due to flat terrain in this zone. Key Words: Climate change, Himalayas, MODIS, remote sensing, snow, lake ice.

  18. Assessing the response of seasonal variation of net primary productivity to climate using remote sensing data and geographic information system techniques in Xinjiang.

    PubMed

    Peng, Dai-Liang; Huang, Jing-Feng; Cai, Cheng-Xia; Deng, Rui; Xu, Jun-Feng

    2008-12-01

    Net primary productivity (NPP) is a key component of energy and matter transformation in the terrestrial ecosystem, and the responses of NPP to global change locally and regionally have been one of the most important aspects in climate-vegetation relationship studies. In order to isolate causal climatic factors, it is very important to assess the response of seasonal variation of NPP to climate. In this paper, NPP in Xinjiang was estimated by NOAA/AVHRR Normalized Difference Vegetation Index (NDVI) data and geographic information system (GIS) techniques. The impact of climatic factors (air temperature, precipitation and sunshine percentage) on seasonal variations of NPP was studied by time lag and serial correlation ageing analysis. The results showed that the NPP for different land cover types have a similar correlation with any one of the three climatic factors, and precipitation is the major climatic factor influencing the seasonal variation of NPP in Xinjiang. It was found that the positive correlation at 0 lag appeared between NPP and precipitation and the serial correlation ageing was 0 d in most areas of Xinjiang, which indicated that the response of NPP to precipitation was immediate. However, NPP of different land cover types showed significant positive correlation at 2 month lag with air temperature, and the impact of which could persist 1 month as a whole. No correlation was found between NPP and sunshine percentage.

  19. Comparison of Irrigation Water Use Estimates Calculated from Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

    USGS Publications Warehouse

    Masoner, J.R.; Mladinich, C.S.; Konduris, A.M.; Smith, S. Jerrod

    2003-01-01

    Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, is investigating new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin. Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for nine major crops were calculated from September 1999 to October 2000 using a solar radiation-based evapotranspiration model. Estimates of irrigation water use were calculated using remotely sensed irrigated crop acres derived from Landsat 7 Enhanced Thematic Mapper Plus imagery and were compared with irrigation water-use estimates calculated from irrigated crop acres reported by the Oklahoma Water Resources Board and the Texas Water Development Board for the 2000 growing season. The techniques presented will help manage water resources in the Lake Altus drainage basin and may be transferable to other areas with similar water management needs. Irrigation water use calculated from the remotely sensed irrigated acres was estimated at 154,920 acre-feet; whereas, irrigation water use calculated from state reported irrigated crop acres was 196,026 acre-feet, a 23 percent difference. The greatest difference in irrigation water use was in Carson County, Texas. Irrigation water use for Carson County, Texas, calculated from the remotely sensed irrigated acres was 58,555 acrefeet; whereas, irrigation water use calculated from state reported irrigated acres was 138,180 acre-feet, an 81 percent difference. The second greatest difference in irrigation water use occurred in Beckham County, Oklahoma. Differences between the two irrigation water use estimates are due to the differences of irrigated crop acres derived from the mapping process and those reported by the Oklahoma Water Resources Board and Texas Water Development Board.

  20. Linking the Seasonal Variation of Vegetation Indices to Tower Flux Measurements in an Oak-Savanna Ecosystem in California: Comparing the Performance of Ground Based Sensors to Remotely Sensed Products from MODIS, AVIRIS and IKONOS.

    NASA Astrophysics Data System (ADS)

    Falk, M.; Baldocchi, D. D.; Mercado, I. R.; Ma, S.; Hehn, T.

    2005-12-01

    Across the globe, there are now over 200 FLUXNET sites sampling tower fluxes over many vegetation types. However the spatial resolution of the tower sites is limited and additional information is needed to provide the Global Change Research community with an accurate way to identify and quantify carbon sources and sinks on regional, continental and global scales. Remote sensing is a major tool capable of providing information about the dynamics of the terrestrial biosphere with continuous spatial and temporal coverage on a global scale. For this purpose vegetation indices are chosen specifically to enhance the contribution of vegetation properties to surface reflectances. Remote sensing products generally produce information on GPP (or net primary productivity, NPP), in terms of a light use efficiency (ɛ) and the amount of absorbed visible sunlight (fPAR). Linking remote sensing with FLUXNET sites is crucial in providing reliable estimates of the magnitude and dynamics of the terrestrial carbon budget. An important issue is the spatial mismatch between the NASA Moderate Resolution Imaging Spectrometer (MODIS) and the footprint of tower observations. In this study we have conducted seasonal observations of VI's using three different ground based sensors: a high resolution spectrometer on a weekly basis, and a spectrally-selective light emitting diode spectrometer and a broadband radiometer providing continuous measurements for a highly dynamic oak-savanna ecosystem. We investigate seasonal changes in ɛ, drought induced changes in carbon uptake (NEE) and their link to different VI's like the Normalized Differential Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and the Photochemical Reaction Index (PRI). Using a combination of spatially coarse MODIS data with high resolution snapshots from IKONOS and AVIRIS platforms together with the ground based spectral observations, we expand the tower site results to regional scale. We find that NDVI is an overall

  1. Seasonal field experiments in support of the Cold Regions Hydrology High-resolution Observatory (CoReH2O) remote sensing mission: state of the art field measurements, what we have learned and what next

    NASA Astrophysics Data System (ADS)

    Kelly, R. E.; Derksen, C.; Duguay, C. R.; Essery, R.; King, J. M.; Lemmetyinen, J.; Macelloni, G.; Nagler, T.; Pulliainen, J. T.; Rott, H.; Shi, J.; Wiesmann, A.

    2011-12-01

    Intensive season-long field campaigns to characterize snowpack evolution have been conducted in Finland and Canada throughout the winter seasons of 2009-2010 and 2010-2011. The field experiments were designed to support ground based remote sensing observations from Ku and X band radar systems and to test snow water equivalent retrieval schemes for the CoReH2O mission which is presently under feasibility studies at ESA. The approach was to execute the campaigns throughout the winter, rather than performing short-lived one to two week field campaigns that sample only a portion of the seasonal snowpack evolution. In Churchill, Manitoba, experiments focused on tundra, fen and lake ice snow measurements and observations. It was found that characterization of bulk snowpack properties (e.g. snow depth, density, wetness) were easily measurable with high accuracy and a strong representativeness of local variability. Detailed variations of stratigraphic variables (e.g. grain size) that exert a high sensitivity to model retrieval estimates were more difficult to adequately characterize. In Finland, measurements focused on snow accumulation in a forest clearing and similar challenges were found with the characterization of microphysical properties in a consistent manner very difficult to achieve. Previous studies in the Alps, where snow accumulations are greater, also demonstrate that an effective method to quantify snow structure in an objective way is not easy to perform. Robust technologies are needed, therefore, that can be easily deployed to effectively characterize the microphysical properties of snow in a consistent manner for advancing radar retrieval techniques of SWE. The large experiments conducted in Europe and Canada, have highlighted these issues and have provided test-bed environments for several emerging technologies that will enable the retrieval science to develop in a robust manner.

  2. Percutaneous Transhepatic Drainage of Inaccessible Abdominal Abscesses Following Abdominal Surgery Under Real-Time CT-Fluoroscopic Guidance

    SciTech Connect

    Yamakado, Koichiro Takaki, Haruyuki; Nakatsuka, Atsuhiro; Kashima, Masataka; Uraki, Junji; Yamanaka, Takashi; Takeda, Kan

    2010-02-15

    This study evaluated the safety, feasibility, and clinical utility of transhepatic drainage of inaccessible abdominal abscesses retrospectively under real-time computed tomographic (CT) guidance. For abdominal abscesses, 12 consecutive patients received percutaneous transhepatic drainage. Abscesses were considered inaccessible using the usual access route because they were surrounded by the liver and other organs. The maximum diameters of abscesses were 4.6-9.5 cm (mean, 6.7 {+-} 1.4 cm). An 8-Fr catheter was advanced into the abscess cavity through the liver parenchyma using real-time CT fluoroscopic guidance. Safety, feasibility, procedure time, and clinical utility were evaluated. Drainage catheters were placed with no complications in abscess cavities through the liver parenchyma in all patients. The mean procedure time was 18.8 {+-} 9.2 min (range, 12-41 min). All abscesses were drained. They shrank immediately after catheter placement. In conclusions, this transhepatic approach under real-time CT fluoroscopic guidance is a safe, feasible, and useful technique for use of drainage of inaccessible abdominal abscesses.

  3. Is the Wilkins Ice Shelf a Firn Aquifer? Spaceborne Observation of Subsurface Winter Season Liquid Meltwater Storage on the Antarctic Peninsula using Multi-Frequency Active and Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Miller, J.; Scambos, T.; Forster, R. R.; Long, D. G.; Ligtenberg, S.; van den Broeke, M.; Vaughan, D. G.

    2015-12-01

    Near-surface liquid meltwater on ice shelves has been inferred to influence ice shelf stability if it induces hydrofracture and is linked to disintegration events on the Larsen B and the Wilkins ice shelves on the Antarctic Peninsula during the summer months. While the initial Wilkins disintegration event occurred in March of 2009, two smaller disintegration events followed in May and in July of that year. It has long been assumed meltwater refreezes soon after surface melt processes cease. Given this assumption, an earlier hypothesis for the two winter season disintegration events was hydrofracture via a brine infiltration layer. Two lines of evidence supported this hypothesis 1) early airborne radar surveys did not record a reflection from the bottom of the ice shelf, and 2) a shallow core drilled in 1972 on the Wilkins encountered liquid water at a depth of ~7 m. The salinity of the water and the temperature at the base of the core, however, were not described. The recent discovery of winter season liquid meltwater storage on the Greenland ice sheet has changed perceptions on meltwater longevity at depth in firn. Evidence of Greenland's firn aquifer includes liquid meltwater encountered in shallow firn cores at 5 m depth and a lack of reflections from the base of the ice sheet in airborne surveys. Thus, previous lines of evidence suggesting brine infiltration may alternatively suggest the presence of a perennial firn aquifer. We recently demonstrated the capability for observation of Greenland's firn aquifer from space using multi-frequency active and passive microwave remote sensing. This research exploits the retrieval technique developed for Greenland to provide the first spaceborne mappings of winter season liquid meltwater storage on the Wilkins. We combine L-band brightness temperature and backscatter data from the MIRAS instrument (1.4 GHz) aboard ESA's Soil Moisture and Ocean Salinity mission and the radar (1.3 GHZ) and radiometer(1.4 GHz) aboard NASA

  4. Monitoring the Snowpack in Remote, Ungauged Mountains

    NASA Astrophysics Data System (ADS)

    Dozier, J.; Davis, R. E.; Bair, N.; Rittger, K. E.

    2013-12-01

    Our objective is to estimate seasonal snow volumes, relative to historical trends and extremes, in snow-dominated mountains that have austere infrastructure, sparse gauging, challenges of accessibility, and emerging or enduring insecurity related to water resources. The world's mountains accumulate substantial snow and, in some areas, produce the bulk of the runoff. In ranges like Afghanistan's Hindu Kush, availability of water resources affects US policy, military and humanitarian operations, and national security. The rugged terrain makes surface measurements difficult and also affects the analysis of remotely sensed data. To judge feasibility, we consider two regions, a validation case and a case representing inaccessible mountains. For the validation case, we use the Sierra Nevada of California, a mountain range of extensive historical study, emerging scientific innovation, and conflicting priorities in managing water for agriculture, urban areas, hydropower, recreation, habitat, and flood control. For the austere regional focus, we use the Hindu Kush, where some of the most persistent drought in the world causes food insecurity and combines with political instability, and occasional flooding. Our approach uses a mix of satellite data and spare modeling to present information essential for planning and decision making, ranging from optimization of proposed infrastructure projects to assessment of water resources stored as snow for seasonal forecasts. We combine optical imagery (MODIS on Terra/Aqua), passive microwave data (SSM/I and AMSR-E), retrospective reconstruction with energy balance calculations, and a snowmelt model to establish the retrospective context. With the passive microwave data we bracket the historical range in snow cover volume. The rank orders of total retrieved volume correlates with reconstructions. From a library of historical reconstruction, we find similar cases that provide insights about snow cover distribution at a finer scale than

  5. Low power reactor for remote applications

    NASA Astrophysics Data System (ADS)

    Meier, K. L.; Palmer, R. G.; Kirchner, W. L.

    1985-05-01

    A compact, low power reactor is being designed to provide electric power for remote, unattended applications. Because of the high fuel and maintenance costs for conventional power sources such as diesel generators, a reactor power supply appears especially attractive for remote and inaccessible locations. Operating at a thermal power level of 135 kWt, the power supply achieves a gross electrical output of 25 kWe from an organic Rankine cycle (ORC) engine. By intentional selection of design features stressing inherent safety, operation in an unattended mode is possible with minimal risk to the environment. Reliability is achieved through the use of components representing existing, proven technology. Low enrichment uranium particle fuel, in graphite core blocks, cooled by heat pipes coupled to an ORC converter insures long term, virtually maintenance free, operation of this reactor for remote applications.

  6. Low power reactor for remote applications

    SciTech Connect

    Meier, K.L.; Palmer, R.G.; Kirchner, W.L.

    1985-01-01

    A compact, low power reactor is being designed to provide electric power for remote, unattended applications. Because of the high fuel and maintenance costs for conventional power sources such as diesel generators, a reactor power supply appears especially attractive for remote and inaccessible locations. Operating at a thermal power level of 135 kWt, the power supply achieves a gross electrical output of 25 kWe from an organic Rankine cycle (ORC) engine. By intentional selection of design features stressing inherent safety, operation in an unattended mode is possible with minimal risk to the environment. Reliability is achieved through the use of components representing existing, proven technology. Low enrichment uranium particle fuel, in graphite core blocks, cooled by heat pipes coupled to an ORC converter insures long-term, virtually maintenance free, operation of this reactor for remote applications. 10 refs., 7 figs., 3 tabs.

  7. Application of Spaceborne Remote Sensing to Archaeology

    NASA Technical Reports Server (NTRS)

    Crippen, Robert E.

    1997-01-01

    Spaceborne remote sensing data have been underutilized in archaeology for a variety of seasons that are slowly but surely being overcome. Difficulties have included cost/availability of data, inadequate resolution, and data processing issues.

  8. Changing Seasons

    ERIC Educational Resources Information Center

    Karolak, Eric

    2011-01-01

    In some ways, there is a season of change at the national level in early childhood. Some things are wrapping up while some developments aim to prepare the "field" for improvements in the next year and beyond, just as a garden plot is readied for the next planting season. Change is in the air, and there's hope of renewal, but what changes and how…

  9. Metal-Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations.

    PubMed

    Zhang, Teng; Manna, Kuntal; Lin, Wenbin

    2016-03-01

    New and active earth-abundant metal catalysts are critically needed to replace precious metal-based catalysts for sustainable production of commodity and fine chemicals. We report here the design of highly robust, active, and reusable cobalt-bipyridine- and cobalt-phenanthroline-based metal-organic framework (MOF) catalysts for alkene hydrogenation and hydroboration, aldehyde/ketone hydroboration, and arene C-H borylation. In alkene hydrogenation, the MOF catalysts tolerated a variety of functional groups and displayed unprecedentedly high turnover numbers of ∼2.5 × 10(6) and turnover frequencies of ∼1.1 × 10(5) h(-1). Structural, computational, and spectroscopic studies show that site isolation of the highly reactive (bpy)Co(THF)2 species in the MOFs prevents intermolecular deactivation and stabilizes solution-inaccessible catalysts for broad-scope organic transformations. Computational, spectroscopic, and kinetic evidence further support a hitherto unknown (bpy(•-))Co(I)(THF)2 ground state that coordinates to alkene and dihydrogen and then undergoing σ-complex-assisted metathesis to form (bpy)Co(alkyl)(H). Reductive elimination of alkane followed by alkene binding completes the catalytic cycle. MOFs thus provide a novel platform for discovering new base-metal molecular catalysts and exhibit enormous potential in sustainable chemical catalysis.

  10. The tip-of-the-tongue heuristic: How tip-of-the-tongue states confer perceptibility on inaccessible words.

    PubMed

    Cleary, Anne M; Claxton, Alexander B

    2015-09-01

    This study shows that the presence of a tip-of-the-tongue (TOT) state--the sense that a word is in memory when its retrieval fails--is used as a heuristic for inferring that an inaccessible word has characteristics that are consistent with greater word perceptibility. When reporting a TOT state, people judged an unretrieved word as more likely to have previously appeared darker and clearer (Experiment 1a), and larger (Experiment 1b). They also judged an unretrieved word as more likely to be a high frequency word (Experiment 2). This was not because greater fluency or word perceptibility at encoding led to later TOT states: Increased fluency or perceptibility of a word at encoding did not increase the likelihood of a TOT state for it when its retrieval later failed; moreover, the TOT state was not diagnostic of an unretrieved word's fluency or perceptibility when it was last seen. Results instead suggest that TOT states themselves are used as a heuristic for inferring the likely characteristics of unretrieved words. During the uncertainty of retrieval failure, TOT states are a source of information on which people rely in reasoning about the likely characteristics of the unretrieved information, choosing characteristics that are consistent with greater fluency of processing. PMID:25621870

  11. Remote Sensing.

    ERIC Educational Resources Information Center

    Williams, Richard S., Jr.; Southworth, C. Scott

    1983-01-01

    The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)

  12. Study of the Reed Dolomite Aided by Remotely Sensed Imagery, Central White-Inyo Range, Easternmost California

    NASA Technical Reports Server (NTRS)

    Ernst, W. G.; Paylor, Earnest D., II

    1996-01-01

    Remote-sensing methods are of great value in assessing the stratigraphy and geologic structure of inaccessible terrains, especially where lithologic contrasts are marked. In this report, we show that such techniques can be successfully applied to a massive carbonate unit, the Reed Dolomite, exposed in the Wacuoba Mountain, Blanco Mountain, and Mount Barcroft quadrangles of east-central California.

  13. Temporary duodenal stenting as a bridge to ERCP for inaccessible papilla due to duodenal obstruction: a retrospective study

    PubMed Central

    Donatelli, Gianfranco; Cereatti, Fabrizio; Dumont, Jean-Loup; Dhumane, Parag; Tuszynski, Thierry; Derhy, Serge; Meduri, Alexandre; Vergeau, Bertrand Marie; Meduri, Bruno

    2016-01-01

    Background and study aims: Duodenal obstruction may prevent performance of endoscopic retrograde cholangiopancreatography (ERCP). Percutaneous transhepatic biliary drainage (PTBD) or Endoscopic ultrasonograhy-guided biliary access (EUS-BD) are alternative treatments but are associated with a higher morbidity and mortality rate. The aim of the study is to report overall technical success rate and clinical outcome with deployment of temporary fully or partially covered self-expanding duodenal stent (pc/fcSEMS) as a bridge to ERCP in case of inaccessible papilla due to duodenal strictures. Patients and methods: This retrospective study included 66 consecutive patients presenting with a duodenal stricture impeding the ability to perform an ERCP. Provisional duodenal stenting was performed as a bridge to ERCP. A second endoscopic session was performed to remove the provisional stent and to perform an ERCP. Afterward, a permanent duodenal stent was delivered if necessary. Results: Sixty-six duodenal stents (17 pcSEMS and 49 fcSEMS) were delivered with a median indwelling time of 3.15 (1 – 7) days. Two migrations occurred in the pcSEMS group, 1 of which required lower endoscopy for retrieval. No other procedure-related complications were observed. At second endoscopy a successful ERCP was performed in 56 patients (85 %); 10 patients (15 %) with endoscopic failure underwent PTBD or EUS-BD. Forty patients needed permanent duodenal stenting. Conclusions: Provisional removable covered duodenal stenting as a bridge to ERCP for duodenal obstruction is safe procedure and in most cases allows successful performance of therapeutic ERCP. This technique could be a sound option as a step up approach before referring such cases for more complex techniques such as EUS-BD or PTBD. PMID:27652301

  14. Temporary duodenal stenting as a bridge to ERCP for inaccessible papilla due to duodenal obstruction: a retrospective study

    PubMed Central

    Donatelli, Gianfranco; Cereatti, Fabrizio; Dumont, Jean-Loup; Dhumane, Parag; Tuszynski, Thierry; Derhy, Serge; Meduri, Alexandre; Vergeau, Bertrand Marie; Meduri, Bruno

    2016-01-01

    Background and study aims: Duodenal obstruction may prevent performance of endoscopic retrograde cholangiopancreatography (ERCP). Percutaneous transhepatic biliary drainage (PTBD) or Endoscopic ultrasonograhy-guided biliary access (EUS-BD) are alternative treatments but are associated with a higher morbidity and mortality rate. The aim of the study is to report overall technical success rate and clinical outcome with deployment of temporary fully or partially covered self-expanding duodenal stent (pc/fcSEMS) as a bridge to ERCP in case of inaccessible papilla due to duodenal strictures. Patients and methods: This retrospective study included 66 consecutive patients presenting with a duodenal stricture impeding the ability to perform an ERCP. Provisional duodenal stenting was performed as a bridge to ERCP. A second endoscopic session was performed to remove the provisional stent and to perform an ERCP. Afterward, a permanent duodenal stent was delivered if necessary. Results: Sixty-six duodenal stents (17 pcSEMS and 49 fcSEMS) were delivered with a median indwelling time of 3.15 (1 – 7) days. Two migrations occurred in the pcSEMS group, 1 of which required lower endoscopy for retrieval. No other procedure-related complications were observed. At second endoscopy a successful ERCP was performed in 56 patients (85 %); 10 patients (15 %) with endoscopic failure underwent PTBD or EUS-BD. Forty patients needed permanent duodenal stenting. Conclusions: Provisional removable covered duodenal stenting as a bridge to ERCP for duodenal obstruction is safe procedure and in most cases allows successful performance of therapeutic ERCP. This technique could be a sound option as a step up approach before referring such cases for more complex techniques such as EUS-BD or PTBD.

  15. An Assessment of Remote Visual Testing System Capabilities for the Detection of Service Induced Cracking

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2005-09-01

    Remote visual testing is typically employed to ascertain the condition of materials in components that are inaccessible for direct examination. In the power and petrochemical industries, remote visual testing is used to assess whether service-related degradation is being manifested that, if left unchecked, may eventually impair the structural reliability of a component. Several codes and standards require that visual examinations be periodically conducted. Many of these inspections must be performed remotely due to harsh environments or design geometries of the subject components. This paper describes the attributes and limitations of remote visual testing, performance demonstration standards for camera systems, typical dimensions for service-induced cracking phenomena, and an assessment of the reliability of remote video camera systems at finding cracks. Because many forms of service-induced cracks have very small crack opening dimensions, the reliability of remote visual testing may not be adequate to ensure component integrity, given the capabilities of current camera systems and application practices.

  16. A hydrological model for the Sudd wetland using remotely sensed and ground data

    NASA Astrophysics Data System (ADS)

    Remondi, Federica; Georgakakos, Aris P.; Castelletti, Andrea

    2013-04-01

    Modeling of wetland hydrology and quantification of water inputs and outputs are requisites to understand flooding dynamics, to determine wetland vulnerability to change, and to better inform water-related decision-making. Located in the Upper Nile river basin in South Sudan, the Sudd wetland is one of the largest floodplain swamps in the world. Its complex system is characterized by a seasonal inundation that is essential to the hydroecological functioning of the Sudd but is also the main cause for intensive water losses (nearly half of the inflow) by evaporation in the Nile river basin. The hydrologically characterization of the area is therefore key to assess and predict the water balance in the region The main difficulties in modeling the system are due to the inaccessibility of the area, to the vast extension, to the complexity of the dynamic behavior throughout the year (permanent and seasonal flooded areas), and to the political and institutional setting. This study integrated hydrologic data and remote sensing techniques to analyze the dynamics and spatial response of the wetlands. A new methodology using MODIS data and MNDWI-Modified Normalized Difference Water Index was designed to profile the area of the wetland throughout the years. In particular, the threshold for the MNDWI values was obtained using average annual land cover data and their temporal trends were analyzed to classify the different types of wetland (permanent, seasonal and non-wetland). A characterization of wetland dynamics was then achieved over the 10-years period Jan 2000-Dec 2009. In the second step of the research, other driving forces of the system were studied: new hydrological models were created for the Torrents and Sobat basins, existing river routing models were computed for the reach of Mongalla and Malakal, and estimates on precipitation and evapotranspiration rates were acquired from different projects based on remotely sensed data. All these information were then used to

  17. Remote viewing.

    PubMed

    Scott, C

    1988-04-15

    Remote viewing is the supposed faculty which enables a percipient, sited in a closed room, to describe the perceptions of a remote agent visiting an unknown target site. To provide convincing demonstration of such a faculty poses a range of experimental and practical problems, especially if feedback to the percipient is allowed after each trial. The precautions needed are elaborate and troublesome; many potential loopholes have to be plugged and there will be strong temptations to relax standards, requiring exceptional discipline and dedication by the experimenters. Most reports of remote viewing experiments are rather superficial and do not permit assessment of the experimental procedures with confidence; in many cases there is clear evidence of particular loopholes left unclosed. Any serious appraisal of the evidence would have to go beyond the reports. Meanwhile the published evidence is far from compelling, and certainly insufficient to justify overthrow of well-established scientific principles.

  18. Towards Developing Systematics for Using Periodic Studies of the Hydrothermal Manifestations as Effective Tool for Monitoring Largely 'inaccessible' Volcanoes

    NASA Astrophysics Data System (ADS)

    Alam, M.

    2010-12-01

    solfataric activities, the geochemical signatures of the peripheral hydrothermal systems and nearby surface water bodies change significantly. These geochemical changes can be correlated and verified with the observed volcanic activities. Ground deformation of the volcanoes will be studied through Synthetic Aperture Radar (SAR) Interferometry (InSAR), while thermal infrared remote sensing will be used for monitoring thermal anomalies. The reason for choosing these remote methods over the conventional ground based on-site monitoring, is the difficulty in accessing the aforementioned volcanic centers and risk involved in carrying such instruments for frequent observations, as required for the proposed work. In fact, the idea of developing such a Systematics is because of the risk involved in ground based monitoring of these volcanoes. However, microgravity study, which is relatively easier and safer, will be done to validate the results of the remote sensing studies. The expected outcome of the proposed work will not only help in the mitigation of potential hazard of the aforementioned volcanoes, which are currently unmonitored for the reasons mentioned earlier; but will also serve as a model for monitoring remote and largely ‘inaccessible’ volcanoes elsewhere.

  19. Remote Sensing

    ERIC Educational Resources Information Center

    Williams, Richard S., Jr.; Kover, Allan W.

    1978-01-01

    The steady growth of the Landsat image data base continues to make this kind of remotely sensed data second only to aerial photographs in use by geoscientists who employ image data in their research. Article reviews data uses, meetings and symposia, publications, problems, and future trends. (Author/MA)

  20. Evaluation of the satellite derived snow cover area - Runoff forecasting models for the inaccessible basins of western Himalayas

    NASA Technical Reports Server (NTRS)

    Dey, B.

    1985-01-01

    In this study, the existing seasonal snow cover area runoff forecasting models of the Indus, Kabul, Sutlej and Chenab basins were evaluated with the concurrent flow correlation model for the period 1975-79. In all the basins under study, correlation of concurrent flow model explained the variability in flow better than by the snow cover area runoff models. Actually, the concurrent flow correlation model explained more than 90 percent of the variability in the flow of these rivers. Compared to this model, the snow cover area runoff models explained less of the variability in flow. In the Himalayan river basins under study and at least for the period under observation, the concurrent flow correlation model provided a set of results with which to compare the estimates from the snow cover area runoff models.

  1. Managing the Sneezing Season

    MedlinePlus

    ... Javascript on. Feature: Managing Allergies Managing the Sneezing Season Past Issues / Summer 2011 Table of Contents Seasonal ... Read More "Managing Allergies" Articles Managing the Sneezing Season / A Pollen Primer / Seasonal Allergies: Symptoms, Diagnosis, and ...

  2. Flood pulsing in the Sudd wetland: analysis of seasonal variations in 2 inundation and evapotranspiration in Southern Sudan

    USGS Publications Warehouse

    Senay, Gabriel B.; Rebelo, L-M.; McCartney, M.P.

    2012-01-01

    Located on the Bahr el Jebel in South Sudan, the Sudd is one of the largest floodplain wetlands in the world. Seasonal inundation drives the hydrologic, geomorphological, and ecological processes, and the annual flood pulse is essential to the functioning of the Sudd. Despite the importance of the flood pulse, various hydrological interventions are planned upstream of the Sudd to increase economic benefits and food security. These will not be without consequences, in particular for wetlands where the biological productivity, biodiversity, and human livelihoods are dependent on the flood pulse and both the costs and benefits need to be carefully evaluated. Many African countries still lack regional baseline information on the temporal extent, distribution, and characteristics of wetlands, making it hard to assess the consequences of development interventions. Because of political instability in Sudan and the inaccessible nature of the Sudd, recent measurements of flooding and seasonal dynamics are inadequate. Analyses of multitemporal and multisensor remote sensing datasets are presented in this paper, in order to investigate and characterize flood pulsing within the Sudd wetland over a 12-month period. Wetland area has been mapped along with dominant components of open water and flooded vegetation at five time periods over a single year. The total area of flooding (both rain and river fed) over the 12 months was 41 334 km2, with 9176 km2 of this constituting the permanent wetland. Mean annual total evaporation is shown to be higher and with narrower distribution of values from areas of open water (1718 mm) than from flooded vegetation (1641 mm). Although the exact figures require validation against ground-based measurements, the results highlight the relative differences in inundation patterns and evaporation across the Sudd.

  3. Remote Sensing Measurements of the Corona with the Solar Probe

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia Rifai; Woo, Richard

    1996-01-01

    Remote sensing measurements of the solar corona are indespensible for the exploration of the source and acceleration regions of the solar wind which are inaccessible to in situ plasma, paritcles and field experiments.Furthermore, imaging the solar disk and coronal from the unique vantage point of the trajectory and the proximity of the Solar Probe spacecraft, will provide the first ever opportunity to explore the small scale structures within coronal holes and streamers from viewing angles and with spatial resolutions never attained before.

  4. Summary: Remote sensing soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmer, F. A.; Werner, H. D.; Waltz, F. A.

    1970-01-01

    During the 1969 and 1970 growing seasons research was conducted to investigate the relationship between remote sensing imagery and soil moisture. The research was accomplished under two completely different conditions: (1) cultivated cropland in east central South Dakota, and (2) rangeland in western South Dakota. Aerial and ground truth data are being studied and correlated in order to evaluate the moisture supply and water use. Results show that remote sensing is a feasible method for monitoring soil moisture.

  5. Transjugular Balloon Pulmonary Valvuloplasty Through a Bidirectional Glenn Shunt for Dysplastic Pulmonary Valve Stenosis in an 8.7-Year-Old Boy with Inaccessible Femoral Veins.

    PubMed

    Lee, Meng-Luen

    2016-04-01

    An 8.7-year-old boy was affected by exertional dyspnea with cyanosis of the lip at 6 years old. Oxygen saturation (SpO2) was 66%. A bidirectional Glenn shunt (BGS) was constructed to successfully elevate SpO2 to 88%. Unfortunately, he again experienced exertional dyspnea with flagrant cyanosis of the lip at 8.5 years old. SpO2 decreased to 65%. Echocardiography revealed a dysplastic pulmonary valve with severe stenosis. Considering the potential growth of the right ventricle and the branch pulmonary arteries, transjugular balloon pulmonary valvuloplasty (BPV) through a BGS was performed as a palliative treatment for cyanosis in this boy because of inaccessible femoral veins. After gradational BPV, the opening of the pulmonary valve was dilated from 2.59 mm to 6.65 mm, the pressure gradient decreased from 60 mmHg to 25 mmHg, and the SpO2 increased to 85%. He became physically active and was free of exertional dyspnea at the 12-month follow-up. BGS is irrefutably an alternative vascular access through which transjugular BPV could be performed to ameliorate cyanosis due to dysplastic pulmonary valve stenosis in patients with inaccessible femoral vessels.

  6. Measuring dynamic and kinetic information in the previously inaccessible supra-τ(c) window of nanoseconds to microseconds by solution NMR spectroscopy.

    PubMed

    Ban, David; Sabo, T Michael; Griesinger, Christian; Lee, Donghan

    2013-09-26

    Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool that has enabled experimentalists to characterize molecular dynamics and kinetics spanning a wide range of time-scales from picoseconds to days. This review focuses on addressing the previously inaccessible supra-tc window (defined as τ(c) < supra-τ(c) < 40 μs; in which tc is the overall tumbling time of a molecule) from the perspective of local inter-nuclear vector dynamics extracted from residual dipolar couplings (RDCs) and from the perspective of conformational exchange captured by relaxation dispersion measurements (RD). The goal of the first section is to present a detailed analysis of how to extract protein dynamics encoded in RDCs and how to relate this information to protein functionality within the previously inaccessible supra-τ(c) window. In the second section, the current state of the art for RD is analyzed, as well as the considerable progress toward pushing the sensitivity of RD further into the supra-τ(c) scale by up to a factor of two (motion up to 25 μs). From the data obtained with these techniques and methodology, the importance of the supra-τ(c) scale for protein function and molecular recognition is becoming increasingly clearer as the connection between motion on the supra-τ(c) scale and protein functionality from the experimental side is further strengthened with results from molecular dynamics simulations.

  7. Vertical Profiles of Light Scattering, Light Absorption, and Single Scattering Albedo during the Dry, Biomass Burning Season in Southern Africa and Comparisons of In Situ and Remote Sensing Measurements of Aerosol Optical Depths

    NASA Technical Reports Server (NTRS)

    Magi, Brian I.; Hobbs, Peter V.; Schmid, Beat; Redermann, Jens

    2003-01-01

    Airborne in situ measurements of vertical profiles of aerosol light scattering, light absorption, and single scattering albedo (omega (sub 0)) are presented for a number of locations in southern Africa during the dry, biomass burning season. Features of the profiles include haze layers, clean air slots, and marked decreases in light scattering in passing from the boundary layer into the free troposphere. Frequency distributions of omega (sub 0) reflect the strong influence of smoke from biomass burning. For example, during a period when heavy smoke was advected into the region from the north, the mean value of omega (sub 0) in the boundary layer was 0.81 +/- 0.02 compared to 0.89 +/- 0.03 prior to this intrusion. Comparisons of layer aerosol optical depths derived from the in situ measurements with those measured by a Sun photometer aboard the aircraft show excellent agreement.

  8. Seasonal Drought Prediction in India

    NASA Astrophysics Data System (ADS)

    Shah, R.; Mishra, V.

    2015-12-01

    Drought is among the most costly natural disasters in India. Seasonal prediction of drought can assist planners to manage agriculture and water resources. Such information can be valuable for a country like India where 60% of agriculture is rain-fed. Here we evaluate precipitation and temperature forecast from the NCEP's CFSV2 for seasonal drought prediction in India. We demonstrate the utility of the seasonal prediction of precipitation and temperature for drought forecast at 1-2 months lead time at a high spatial resolution. Precipitation from CFSv2 showed moderate correlations with observed up to two months lead. For one month lead, we found a significant correlation between CFSv2 and observed precipitation during winter season. Air temperature from the CFSv2 showed a good correlation with observed temperature during the winter. We forced the Variable Infiltration Capacity (VIC) model with the CFSv2 forecast of precipitation and air temperature to generate forecast of hydrologic variables such as soil moisture and total runoff. We find that errors of the prediction reduce for the two month lead time in the majority of the study domain except the northern India. Skills of Initial Hydrologic Conditions combined with moderate skills of forcings based on the CFSv2 showed ability of drought prediction in India. The developed system was able to successfully predict observed top layer soil moisture and observed drought based on satellite remote sensing in India.

  9. Remote Sensing Via Satellite: The Canadian Experience

    ERIC Educational Resources Information Center

    Classen, Hans George

    1974-01-01

    Describes the joint effort of Canada and NASA in monitoring the Canadian environment using remote-sensing techniques. The project involves the Earth Resources Technology Satellite and has been used to observe seasonal changes, extent of snow cover, crop growth, sea ice, and land use patterns. (GS)

  10. Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas

    2008-01-01

    Remote sensing is measuring something without touching it. Most methods measure a portion of the electro-magnetic spectrum using energy reflected from or emitted by a material. Moving the instrument away makes it easier to see more at one time. Airplanes are good but satellites are much better. Many things can not be easily measured on the scale of an individual person. Example - measuring all the vegetation growing at one time in even the smallest country. A satellite can see things over large areas repeatedly and in a consistent way. Data from the detector is reported as digital values for a grid that covers some portion of the Earth. Because it is digital and consistent a computer can extract information or enhance the data for a specific purpose.

  11. Large-scale vapor transport of remotely evaporated seawater by a Rossby wave response to typhoon forcing during the Baiu/Meiyu season as revealed by the JRA-55 reanalysis

    NASA Astrophysics Data System (ADS)

    Kudo, Tadasuke; Kawamura, Ryuichi; Hirata, Hidetaka; Ichiyanagi, Kimpei; Tanoue, Masahiro; Yoshimura, Kei

    2014-07-01

    The modulation of large-scale moisture transport from the tropics into East Asia in response to typhoon-induced heating during the mature stage of the Baiu/Meiyu season is investigated using the Japanese 55-year reanalysis (JRA-55), aided by a Rayleigh-type global isotope circulation model (ICM). We highlighted the typhoons that migrate northward along the western periphery of the North Pacific subtropical high and approach the vicinity of Japan. Anomalous anticyclonic circulations to the northeast and southeast of typhoons and cyclonic circulation to their west become evident as they migrate toward Japan, which could be interpreted as a Rossby wave response to typhoon heating. These resultant anomalous circulation patterns form moisture conveyor belt (MCB) stretching from the South Asian monsoon region to East Asia via the confluence region between the monsoon westerlies and central Pacific easterlies. The ICM results confirm that the well-defined nature of the MCB leads to penetration of the Indian Ocean, South China Sea, Philippine Sea, and Pacific Ocean water vapors into western Japan. The typhoons have the potential to accumulate large amounts of moisture from distant tropical oceans through the interaction of their Rossby wave response with the background flow. In the case of a typical typhoon, the total precipitable water around the typhoon center as it approaches Japan is maintained by the moisture supply from distant oceans rather than from the underlying ocean, which indirectly leads to the occurrence of heavy rainfall over western Japan.

  12. Modeling snow season controls on northern net ecosystem exchange

    NASA Astrophysics Data System (ADS)

    Luus, K. A.; Lin, J. C.; Kelly, R. E.

    2011-12-01

    Recent field studies have indicated that the timing of snow melt and snow fall, the quantity of snow, and soil temperature are important controls on snow season net ecosystem exchange (NEE). The low thermal conductivity of snow reduces soil heat loss, thereby enabling a greater rate of subnivean respiration under deeper snowpacks, whereas snow melt and snow fall alter the seasonal timing of photosynthetic uptake. Although a substantial portion of annual NEE in northern regions occurs during the snow season, model estimates have not previously included representations of snow season controls on NEE. The objective of this study was therefore to 1) incorporate remotely sensed estimates of snow water equivalent, soil temperature, and the timing of initial snow fall and final snow melt into model estimates of northern NEE; and 2) examine whether incorporating representations of key snow season variables reduces model uncertainty. NEE was estimated using the Vegetation Photosynthesis Respiration Model (VPRM), a simple diagnostic biosphere model that relies on a remote sensing based approach. Findings indicate that a potential exists to improve northern estimates of NEE by incorporating information on snow season controls from remote sensing observations. Soil respiration can be better assessed using soil temperature rather than surface air temperature. The influence of changes in snow water equivalent on soil temperature dynamics can be assessed using remotely sensed estimates of snow water equivalent. Incorporating remotely sensed estimates of snow cover area can improve the timing of seasonal changes in photosynthetic uptake. Furthermore, including snow season controls on northern NEE can enable experiments to be run analyzing the influence of changes in snowpack dynamics, the frequency of extreme winter warming events, and the timing of the snow season on northern NEE.

  13. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  14. Geophysical aspects of remote sensing

    NASA Technical Reports Server (NTRS)

    Watson, K.

    1971-01-01

    Results obtained through the NASA Earth Resources Aircraft Program at Mill Creek, Oklahoma, provide a case history example of the application of remote sensing to the identification of geologic rock units. Thermal infrared images are interpreted by means of a sequence of models of increasing complexity. The roles of various parameters are examined: rock properties (thermal inertia, albedo, emissivity), site location (latitude), season (sun's declination), atmospheric effects (cloud cover, transmission, air temperature), and topographic orientation (slope, azimuth). The results obtained at this site also illustrate the development of an important application of remote sensing in geologic identification. Relatively pure limestones and dolomites of the Mill Creek test area can be differentiated in nighttime infrared images, and facies changes between them can be detected along and across strike. The predominance on the earth's surface of sedimentary rocks, of which limestone and dolomite are major members, indicates the importance of this discrimination.

  15. For everything there is a season, including Amazonian tropical forests

    NASA Astrophysics Data System (ADS)

    Saleska, S. R.; Wu, J.; Nelson, B. W.; Tavares, J. V.; Albert, L.; Prohaska, N.; Guan, K.; da Silva, R.; De Araujo, A. C.; Nobre, A. D.; Restrepo-Coupe, N.; Huete, A. R.

    2014-12-01

    Seasonality of productivity in tropical forests gives insight into the ecological question of resource limitation in these important high-biomass, climatically sensitive habitats. Diverse evidence from ecological studies, eddy-flux towers, and satellites had accumulated by the mid-2000s suggesting that many tropical forests are more light- than water-limited, and hence "green-up" during higher-sunlight annual dry seasons. Recent work, however, argues that the satellite-based evidence (from MODIS) of dry-season green-up in Amazon forests is an artifact of seasonal variations in sun-sensor geometry. Here we review three lines of evidence to address this new controversy about Amazon forest seasonality: first, we show that even after correcting for sun-sensor geometry artifacts, remotely sensed MODIS data significantly rejects the null hypothesis of no seasonal change in canopy greenness; second we use a re-analysis of eddy flux measurements at four towers across the equatorial Amazon to show that dry season increases in canopy-scale photosynthetic capacity are robust, independent of seasonal variations of climatic drivers. Finally, tower-mounted cameras at two of the eddy flux sites provide new independent evidence for "green-up" by showing that crown-scale leaf-flushing events are concentrated in dry seasons. This work shows that remote sensing observations remain consistent with those from ground-based towers in support of the conclusion that many Amazon forests green-up with sunlight in the dry season.

  16. Multiple node remote messaging

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Ohmacht, Martin; Salapura, Valentina; Steinmacher-Burow, Burkhard; Vranas, Pavlos

    2010-08-31

    A method for passing remote messages in a parallel computer system formed as a network of interconnected compute nodes includes that a first compute node (A) sends a single remote message to a remote second compute node (B) in order to control the remote second compute node (B) to send at least one remote message. The method includes various steps including controlling a DMA engine at first compute node (A) to prepare the single remote message to include a first message descriptor and at least one remote message descriptor for controlling the remote second compute node (B) to send at least one remote message, including putting the first message descriptor into an injection FIFO at the first compute node (A) and sending the single remote message and the at least one remote message descriptor to the second compute node (B).

  17. Utilizing the Cyberforest live sound system with social media to remotely conduct woodland bird censuses in Central Japan.

    PubMed

    Saito, Kaoru; Nakamura, Kazuhiko; Ueta, Mutsuyuki; Kurosawa, Reiko; Fujiwara, Akio; Kobayashi, Hill Hiroki; Nakayama, Masaya; Toko, Ayako; Nagahama, Kazuyo

    2015-11-01

    We have developed a system that streams and archives live sound from remote areas across Japan via an unmanned automatic camera. The system was used to carry out pilot bird censuses in woodland; this allowed us to examine the use of live sound transmission and the role of social media as a mediator in remote scientific monitoring. The system has been streaming sounds 8 h per day for more than five years. We demonstrated that: (1) the transmission of live sound from a remote woodland could be used effectively to monitor birds in a remote location; (2) the simultaneous involvement of several participants via Internet Relay Chat to listen to live sound transmissions could enhance the accuracy of census data collection; and (3) interactions through Twitter allowed members of the public to engage or help with the remote monitoring of birds and experience inaccessible nature through the use of novel technologies.

  18. Utilizing the Cyberforest live sound system with social media to remotely conduct woodland bird censuses in Central Japan.

    PubMed

    Saito, Kaoru; Nakamura, Kazuhiko; Ueta, Mutsuyuki; Kurosawa, Reiko; Fujiwara, Akio; Kobayashi, Hill Hiroki; Nakayama, Masaya; Toko, Ayako; Nagahama, Kazuyo

    2015-11-01

    We have developed a system that streams and archives live sound from remote areas across Japan via an unmanned automatic camera. The system was used to carry out pilot bird censuses in woodland; this allowed us to examine the use of live sound transmission and the role of social media as a mediator in remote scientific monitoring. The system has been streaming sounds 8 h per day for more than five years. We demonstrated that: (1) the transmission of live sound from a remote woodland could be used effectively to monitor birds in a remote location; (2) the simultaneous involvement of several participants via Internet Relay Chat to listen to live sound transmissions could enhance the accuracy of census data collection; and (3) interactions through Twitter allowed members of the public to engage or help with the remote monitoring of birds and experience inaccessible nature through the use of novel technologies. PMID:26508345

  19. Estimating seasonal evapotranspiration from temporal satellite images

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P > 0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline resulted in the lowest standard error of 6 mm (1.67%) for seasonal ET. However, further testing of this method for multiple years is necessary to determine its suitability.

  20. Revolutionizing Remote Exploration with ANTS

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M. L.; Curtis, S.; Truszkowski, W.

    2002-05-01

    We are developing the Autonomous Nano-Technology Swarm (ANTS) architecture based on an insect colony analogue for the cost-effective, efficient, systematic survey of remote or inaccessible areas with multiple object targets, including planetary surface, marine, airborne, and space environments. The mission context is the exploration in the 2020s of the most compelling remaining targets in the solar system: main belt asteroids. Main belt asteroids harbor important clues to Solar System origins and evolution which are central to NASA's goals in Space Science. Asteroids are smaller than planets, but their number is far greater, and their combined surface area likely dwarfs the Earth's. An asteroid survey will dramatically increase our understanding of the local resources available for the Human Exploration and Development of Space. During the mission composition, shape, gravity, and orbit parameters could be returned to Earth for perhaps several thousand asteroids. A survey of this area will rival the great explorations that encircled this globe, opened up the New World, and laid the groundwork for the progress and challenges of the last centuries. The ANTS architecture for a main belt survey consists of a swarm of as many as a thousand or more highly specialized pico-spacecraft that form teams to survey as many as one hundred asteroids a month. Multi-level autonomy is critical for ANTS and the objective of the proposed study is to work through the implications and constraints this entails. ANTS couples biologically inspired autonomic control for basic functions to higher level artificial intelligence that together enable individual spacecraft to operate as specialized, cooperative, social agents. This revolutionary approach postulates highly advanced, but familiar, components integrated and operated in a way that uniquely transcends any evolutionary extrapolation of existing trends and enables thousand-spacecraft missions.

  1. On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin scale and seasonal approach

    NASA Astrophysics Data System (ADS)

    Lavigne, H.; D'Ortenzio, F.; Ribera D'Alcalà, M.; Claustre, H.; Sauzède, R.; Gacic, M.

    2015-03-01

    The distribution of the chlorophyll a concentration ([Chl a]) in the Mediterranean Sea, which is mainly obtained from satellite surface observations or from scattered in situ experiments, is updated by analyzing a database of fluorescence profiles calibrated into [Chl a]. The database, which includes 6790 fluorescence profiles from various origins, was processed with a dedicated quality control procedure. To ensure homogeneity between the different data sources, 65% of fluorescence profiles have been inter-calibrated on the basis of their concomitant satellite [Chl a] estimation. The climatological pattern of [Chl a] vertical profile in four key sites of the Mediterranean Sea has been analyzed. Climatological results confirm previous findings on the range of [Chl a] values and on the main Mediterranean trophic regimes. It also provides new insights on the seasonal variability of the shape of the vertical [Chl a] profile, inaccessible from remote sensing observations. An analysis based on the recognition of the general shape of the fluorescence profile was also performed. Although the shape of [Chl a] vertical distribution characterized by a deep chlorophyll maximum (DCM) is ubiquitous during summer, different forms are observed during winter, suggesting thus that factors affecting the vertical distribution of the biomass are complex and highly variable. The [Chl a] distribution in the Mediterranean Sea mimics, at smaller scales, what is observed in the Global Ocean. As already evidenced by analyzing satellite surface observations, mid-latitude and subtropical like phytoplankton dynamics coexist in the Mediterranean Sea. Moreover, the Mediterranean DCM variability appears characterized by patterns already observed at global scale.

  2. On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin-scale and seasonal approach

    NASA Astrophysics Data System (ADS)

    Lavigne, H.; D'Ortenzio, F.; Ribera D'Alcalà, M.; Claustre, H.; Sauzède, R.; Gacic, M.

    2015-08-01

    The distribution of the chlorophyll a concentration ([Chl a]) in the Mediterranean Sea, mainly obtained from satellite surface observations or from scattered in situ experiments, is updated by analyzing a database of fluorescence profiles converted into [Chl a]. The database, which includes 6790 fluorescence profiles from various origins, was processed with a specific quality control procedure. To ensure homogeneity between the different data sources, 65 % of fluorescence profiles have been intercalibrated on the basis of their concomitant satellite [Chl a] estimation. The climatological pattern of [Chl a] vertical profiles in four key sites of the Mediterranean Sea has been analyzed. Climatological results confirm previous findings over the range of existing [Chl a] values and throughout the principal Mediterranean trophic regimes. They also provide new insights into the seasonal variability in the shape of the vertical [Chl a] profile, inaccessible through remote-sensing observations. An analysis based on the recognition of the general shape of the fluorescence profile was also performed. Although the shape of [Chl a] vertical distribution characterized by a deep chlorophyll maximum (DCM) is ubiquitous during summer, different forms are observed during winter, thus suggesting that factors affecting the vertical distribution of the biomass are complex and highly variable. The [Chl a] spatial distribution in the Mediterranean Sea mimics, on smaller scales, what is observed in the global ocean. As already evidenced by analyzing satellite surface observations, midlatitude- and subtropical-like phytoplankton dynamics coexist in the Mediterranean Sea. Moreover, the Mediterranean DCM variability appears to be characterized by patterns already observed on the global scale.

  3. [Thematic Issue: Remote Sensing.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1978-01-01

    Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…

  4. Remote sensing as a mineral prospecting technique

    NASA Technical Reports Server (NTRS)

    Meneses, P. R. (Principal Investigator)

    1984-01-01

    Remote sensing and its application as an alternative technique to mineral resource exploration are reviewed. Emphasis is given here to the analysis of the three basic attributes of remote sensing, i.e., spatial attributes related to regional structural mapping, spectral attributes related to rock discrimination and seasonal attributes related to geobotanic anomalies mapping, all of which are employed in mineral exploration. Special emphasis is given to new developments of the Thematic Mapper of the LANDSAT-5, principally with reference to the application of the bands 1.6 and 2.2 microns to map hydrothermally altered rocks and the band of red and blue shift to geobotanical anomalies mapping.

  5. Original memoirs: the control of bleeding in operations for brain tumors: with the description of silver "clips" for the occlusion of vessels inaccessible to the ligature. 1911.

    PubMed Central

    Cushing, H.

    2001-01-01

    One of the chief objects of concern in intracranial surgery should be the avoidance of any unnecessary loss of blood, for at best, in many cases of brain tumor associated with venous stasis, bleeding is likely to be so excessive as to necessitate postponement of the final steps of the procedure until a second or even a third session. The common methods of blood stilling by sponge, clamp, and ligature are largely inapplicable to intracranial surgery, particularly in the presence of bleeding from the nervous tissues themselves, and any device which serves as an aid to hemostasis in these difficult operations will bring a number of them to a safe termination at a single sitting, with less loss of blood and less damage to the brain itself. In addition to the more familiar tourniquet for the scalp, and wax for diploetic and emissary bleeding, suggestions are offered as to the use of gauze pledgets, dry sterile cotton, fragments of raw muscle and other tissues, as well as sections of organizing blood-clots for superficial meningeal bleeding, and silver "clips" for inaccessible individual points ether in dura or brain. The successful consummation of any critical operation often depends upon seeming trifles. It is, however, the scrupulous observance of surgical minutiae that makes possible the safe conduct of major intracranial performances--performances which a few years ago were attended in most cases by a veritable dance Macaber. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:11922187

  6. Does Unilateral Oocyte Retrieval due to Transvaginally Inaccessible Ovaries, Contrary to Common Beliefs, Affect IVF/ICSI Treatment Outcomes That Much?

    PubMed Central

    Olgan, Safak; Mumusoglu, Sezcan; Bozdag, Gurkan

    2016-01-01

    Objective. To investigate in vitro fertilization (IVF) treatment outcomes of unilateral oocyte retrieval in patients with transvaginally inaccessible ovaries. Study Design. Ninety-two women who underwent unilateral oocyte retrieval were retrospectively matched for age, antral follicle count, and body mass index with 184 women who underwent bilateral oocyte retrieval. Each patient in bilateral oocyte retrieval group had the same number of cumulus oophorus complexes (COCs) from single ovary and had comparable number of follicles (±2) on contralateral site where follicular aspiration was performed. Results. The number of COCs, metaphase-2 oocytes, 2-pronuclei, and top-quality embryos was significantly lower in unilateral oocyte retrieval group. However, proportion of patients with an embryo transfer of at least one top-quality embryo was found to be comparable between unilateral and bilateral oocyte retrieval. Subsequently, clinical pregnancy and live birth rates were found to be similar between the groups. The ROC curve analysis revealed (AUC = 0.74, 95% CI 0.63–0.86, p = 0.001) that retrieved COCs ≥ 5 from single ovary had sensitivity of 76.0% and specificity of 64.2% for occurrence of a clinical pregnancy. Conclusion. The patients with unilateral oocyte retrieval have reasonable chance of success with IVF. The retrieval of ≥5 COCs from accessible ovary might result in better treatment outcomes among these patients. PMID:27123444

  7. Formulation of multifunctional oil-in-water nanosized emulsions for active and passive targeting of drugs to otherwise inaccessible internal organs of the human body.

    PubMed

    Tamilvanan, Shunmugaperumal

    2009-10-20

    Oil-in-water (o/w) type nanosized emulsions (NE) have been widely investigated as vehicles/carrier for the formulation and delivery of drugs with a broad range of applications. A comprehensive summary is presented on how to formulate the multifunctional o/w NE for active and passive targeting of drugs to otherwise inaccessible internal organs of the human body. The NE is classified into three generations based on its development over the last couple of decades to make ultimately a better colloidal carrier for a target site within the internal and external organs/parts of the body, thus allowing site-specific drug delivery and/or enhanced drug absorption. The third generation NE has tremendous application for drug absorption enhancement and for 'ferrying' compounds across cell membranes in comparison to its first and second generation counterparts. Furthermore, the third generation NE provides an interesting opportunity for use as drug delivery vehicles for numerous therapeutics that can range in size from small molecules to macromolecules.

  8. Seasonal thermal energy storage

    SciTech Connect

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  9. Dry season streamflow persistence in seasonal climates

    NASA Astrophysics Data System (ADS)

    Dralle, David N.; Karst, Nathaniel J.; Thompson, Sally E.

    2016-01-01

    Seasonally dry ecosystems exhibit periods of high water availability followed by extended intervals during which rainfall is negligible and streamflows decline. Eventually, such declining flows will fall below the minimum values required to support ecosystem functions or services. The time at which dry season flows drop below these minimum values (Q*), relative to the start of the dry season, is termed the "persistence time" (). The persistence time determines how long seasonal streams can support various human or ecological functions during the dry season. In this study, we extended recent work in the stochastic hydrology of seasonally dry climates to develop an analytical model for the probability distribution function (PDF) of the persistence time. The proposed model accurately captures the mean of the persistence time distribution, but underestimates its variance. We demonstrate that this underestimation arises in part due to correlation between the parameters used to describe the dry season recession, but that this correlation can be removed by rescaling the flow variables. The mean persistence time predictions form one example of the broader class of streamflow statistics known as crossing properties, which could feasibly be combined with simple ecological models to form a basis for rapid risk assessment under different climate or management scenarios.

  10. Forecasting Seasonal Water Needs Under Current and Future Climate

    NASA Astrophysics Data System (ADS)

    Spisni, A.; Pratizzoli, W.; Tomei, F.; Mariani, M. C.; Villani, G.; Pavan, V.; Tomozeiu, R.; Marletto, V.

    2010-12-01

    This work outlines the complex strategy being developed at ARPA-SIMC for the integrated exploitation of remote sensing, soil water modelling, seasonal forecasting and climate projections, in view of better monitoring and management of water in agriculture at the scale of the Emilia-Romagna region, northern Italy. Remote sensing and field surveys are being used to map crops early in the season, a geographical soil water model uses the crop map together with a soil map and weather data to simulate soil water status up to the beginning of the irrigation season. Downscaled seasonal forecasts are then used to assess the summer irrigation needs. This operational framework is also used to evaluate the impacts of climate change for years 2021-2050 relative to current climate conditions. First tests on kiwifruit in the Romagna subregion show a modest increase in irrigation water demand.

  11. Personal, Seasonal Suns

    ERIC Educational Resources Information Center

    Sutley, Jane

    2010-01-01

    This article presents an art project designed for upper-elementary students to (1) imagine visual differences in the sun's appearance during the four seasons; (2) develop ideas for visually translating their personal experiences regarding the seasons to their sun drawings; (3) create four distinctive seasonal suns using colors and imagery to…

  12. Seasonal Variation in Epidemiology

    ERIC Educational Resources Information Center

    Marrero, Osvaldo

    2013-01-01

    Seasonality analyses are important in medical research. If the incidence of a disease shows a seasonal pattern, then an environmental factor must be considered in its etiology. We discuss a method for the simultaneous analysis of seasonal variation in multiple groups. The nuts and bolts are explained using simple trigonometry, an elementary…

  13. Potential Use of Remote Telesonography as a Transformational Technology in Underresourced and/or Remote Settings.

    PubMed

    Pian, Linping; Gillman, Lawrence M; McBeth, Paul B; Xiao, Zhengwen; Ball, Chad G; Blaivas, Michael; Hamilton, Douglas R; Kirkpatrick, Andrew W

    2013-01-01

    Mortality and morbidity from traumatic injury are twofold higher in rural compared to urban areas. Furthermore, the greater the distance a patient resides from an organized trauma system, the greater the likelihood of an adverse outcome. Delay in timely diagnosis and treatment contributes to this penalty, regardless of whether the inherent barriers are geographic, cultural, or socioeconomic. Since ultrasound is noninvasive, cost-effective, and portable, it is becoming increasingly useful for remote/underresourced (R/UR) settings to avoid lengthy patient travel to relatively inaccessible medical centers. Ultrasonography is a user-dependent, technical skill, and many, if not most, front-line care providers will not have this advanced training. This is particularly true if care is being provided by out-of-hospital, "nontraditional" providers. The human exploration of space has forced the utilization of information technology (IT) to allow remote experts to guide distant untrained care providers in point-of-care ultrasound to diagnose and manage both acute and chronic illness or injuries. This paradigm potentially brings advanced diagnostic imaging to any medical interaction in a setting with internet connectivity. This paper summarizes the current literature surrounding the development of teleultrasound as a transformational technology and its application to underresourced settings.

  14. Potential Use of Remote Telesonography as a Transformational Technology in Underresourced and/or Remote Settings

    PubMed Central

    Pian, Linping; Gillman, Lawrence M.; McBeth, Paul B.; Xiao, Zhengwen; Ball, Chad G.; Blaivas, Michael; Hamilton, Douglas R.; Kirkpatrick, Andrew W.

    2013-01-01

    Mortality and morbidity from traumatic injury are twofold higher in rural compared to urban areas. Furthermore, the greater the distance a patient resides from an organized trauma system, the greater the likelihood of an adverse outcome. Delay in timely diagnosis and treatment contributes to this penalty, regardless of whether the inherent barriers are geographic, cultural, or socioeconomic. Since ultrasound is noninvasive, cost-effective, and portable, it is becoming increasingly useful for remote/underresourced (R/UR) settings to avoid lengthy patient travel to relatively inaccessible medical centers. Ultrasonography is a user-dependent, technical skill, and many, if not most, front-line care providers will not have this advanced training. This is particularly true if care is being provided by out-of-hospital, “nontraditional” providers. The human exploration of space has forced the utilization of information technology (IT) to allow remote experts to guide distant untrained care providers in point-of-care ultrasound to diagnose and manage both acute and chronic illness or injuries. This paradigm potentially brings advanced diagnostic imaging to any medical interaction in a setting with internet connectivity. This paper summarizes the current literature surrounding the development of teleultrasound as a transformational technology and its application to underresourced settings. PMID:23431455

  15. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  16. Remote Agent Demonstration

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Kurien, James; Rajan, Kanna

    1999-01-01

    We describe the computer demonstration of the Remote Agent Experiment (RAX). The Remote Agent is a high-level, model-based, autonomous control agent being validated on the NASA Deep Space 1 spacecraft.

  17. Post senescent grass canopy remote sensing

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1978-01-01

    Analysis of in situ collected spectral reflectance data from a dormant or senescent grass canopy showed a direct relationship existed between spectral reflectance and biomass for the 0.50-0.80 micron spectral region. The data, collected four weeks after the end of the growing season, indicated that post senescent remote sensing of grass canopy biomass is possible and helps to elucidate the spectral contribution of recently dead vegetation in mixed live/dead canopy situations.

  18. The remote sensing needs of Arctic geophysics

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.

    1970-01-01

    The application of remote sensors for obtaining geophysical information of the Arctic regions is discussed. Two significant requirements are to acquire sequential, synoptic imagery of the Arctic Ocean during all weather and seasons and to measure the strains in the sea ice canopy and the heterogeneous character of the air and water stresses acting on the canopy. The acquisition of geophysical data by side looking radar and microwave sensors in military aircraft is described.

  19. [Use of Remote Sensing for Crop and Soil Analysis

    NASA Technical Reports Server (NTRS)

    Johannsen, Chris J.

    1997-01-01

    The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.

  20. Remote sensing of biomass of salt marsh vegetation in France

    NASA Technical Reports Server (NTRS)

    Gross, M. F.; Klemas, V.; Levasseur, J. E.

    1988-01-01

    Spectral data (gathered using a hand-held radiometer) and harvest data were collected from four salt marsh vegetation types in Brittany, France, to develop equations predicting live aerial biomass from spectral measurements. Remote sensing estimates of biomass of the general salt marsh community (GSM) and of Spartina alterniflora can be obtained throughout the growing season if separate biomass prediction equations are formulated for different species mixtures (for the GSM) and for different canopy types (for S. alterniflora). Results suggest that remote sensing will not be useful for predicting Halimione portulacoides biomass, but can be used to estimate Puccinellia maritima biomass early in the growing season.

  1. Seasonality of Tuberculosis

    PubMed Central

    Fares, Auda

    2011-01-01

    Objectives: This study was designed to review previous studies and analyse the current knowledge and controversies related to seasonal variability of tuberculosis (TB) to examine whether TB has an annual seasonal pattern. Study Design and Methods: Systematic review of peer reviewed studies identified through literature searches using online databases belonging to PubMed and the Cochrane library with key words “Tuberculosis, Seasonal influence” and “Tuberculosis, Seasonal variation”. The search was restricted to articles published in English. The references of the identified papers for further relevant publications were also reviewed. Results: Twelve studies conducted between the period 1971 and 2006 from 11 countries/regions around the world (South Western Cameroon, South Africa, India, Hong Kong, Japan, Kuwait, Spain, UK, Ireland, Russia, and Mongolia) were reviewed. A seasonal pattern of tuberculosis with a mostly predominant peak is seen during the spring and summer seasons in all of the countries (except South Western Cameroon and Russia). Conclusions: The observation of seasonality leads to assume that the risk of transmission of M. tuberculosis does appear to be the greatest during winter months. Vitamin D level variability, indoor activities, seasonal change in immune function, and delays in the diagnosis and treatment of tuberculosis are potential stimuli of seasonal tuberculosis disease. Additionally, seasonal variation in food availability and food intake, age, and sex are important factors which can play a role in the tuberculosis notification variability. Prospective studies regarding this topic and other related subjects are highly recommended. PMID:21572609

  2. Remote geologic structural analysis of Yucca Flat

    NASA Astrophysics Data System (ADS)

    Foley, M. G.; Heasler, P. G.; Hoover, K. A.; Rynes, N. J.; Thiessen, R. L.; Alfaro, J. L.

    1991-12-01

    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the U.S. Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures.

  3. Remote geologic structural analysis of Yucca Flat

    SciTech Connect

    Foley, M.G.; Heasler, P.G.; Hoover, K.A. ); Rynes, N.J. ); Thiessen, R.L.; Alfaro, J.L. )

    1991-12-01

    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

  4. Remote geologic structural analysis of Yucca Flat

    SciTech Connect

    Foley, M.G.; Heasler, P.G.; Hoover, K.A.; Rynes, N.J.; Thiessen, R.L.; Alfaro, J.L.

    1991-12-01

    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA`s characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL`s RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

  5. Applications of Terrestrial Remote Sensing to Volcanic Rock Masses

    NASA Astrophysics Data System (ADS)

    Dewit, M.; Williams-Jones, G.; Stead, D.; Kremsater, R.; So, M.; Francioni, M.

    2015-12-01

    Remote sensing methods are widely used in geological applications today. The physical properties of rock such as composition, texture and structure have previously been difficult to accurately quantify through remote sensing, however, new research in the fields of terrestrial LiDAR and infrared thermography has proven useful in the differentiation of lithology in sedimentary outcrops. This study focuses on the application of these methods, in conjunction with digital photogrammetry, to a number of volcanic rock masses in the Garibaldi Volcanic Belt (GVB) and Chilcotin Group (CG) of British Columbia. The GVB is a chain of volcanoes and related features extending through southwestern British Columbia and is the northern extension of the Cascade Volcanic Arc. The CG is an assemblage of Neogene-aged lavas covering nearly 36,500 km2 in central British Columbia. We integrate infrared chronothermography, which enables the characterization of temporal change in the thermal signature, laser waveform attributes such as amplitude and intensity, and digital photogrammetry, in order to distinguish between a range of rock types, lithologies and structures. This data is compared to laboratory experiments on field samples and ground-truth information collected by classical geological and geotechnical methods. Our research clearly shows that it is possible to remotely map, in 3D, otherwise inaccessible volcanic rock masses.

  6. The application of remote sensing techniques to the study of ophiolites

    NASA Astrophysics Data System (ADS)

    Khan, Shuhab D.; Mahmood, Khalid

    2008-08-01

    Satellite remote sensing methods are a powerful tool for detailed geologic analysis, especially in inaccessible regions of the earth's surface. Short-wave infrared (SWIR) bands are shown to provide spectral information bearing on the lithologic, structural, and geochemical character of rock bodies such as ophiolites, allowing for a more comprehensive assessment of the lithologies present, their stratigraphic relationships, and geochemical character. Most remote sensing data are widely available for little or no cost, along with user-friendly software for non-specialists. In this paper we review common remote sensing systems and methods that allow for the discrimination of solid rock (lithologic) components of ophiolite complexes and their structural relationships. Ophiolites are enigmatic rock bodies which associated with most, if not all, plate collision sutures. Ophiolites are ideal for remote sensing given their widely recognized diversity of lithologic types and structural relationships. Accordingly, as a basis for demonstrating the utility of remote sensing techniques, we briefly review typical ophiolites in the Tethyan tectonic belt. As a case study, we apply integrated remote sensing studies of a well-studied example, the Muslim Bagh ophiolite, located in Balochistan, western Pakistan. On this basis, we attempt to demonstrate how remote sensing data can validate and reconcile existing information obtained from field studies. The lithologic and geochemical diversity of Muslim Bagh are representative of Tethyan ophiolites. Despite it's remote location it has been extensively mapped and characterized by structural and geochemical studies, and is virtually free of vegetative cover. Moreover, integrating the remote sensing data with 'ground truth' information thus offers the potential of an improved template for interpreting remote sensing data sets of other ophiolites for which little or no field information is available.

  7. Remote Sensing of Global Wetland Dynamics

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine; Prigent, Catherine; Birkett, Charon; Coe, Mike; Hasen, James E. (Technical Monitor)

    2000-01-01

    Although natural wetlands only cover about 4% of the earth's ice-free land surface, they are the world's largest methane (CH4) source and the only one dominated by climate. In addition, wetlands affect climate by modulating temperatures and heat fluxes, storing water, increasing evaporation, and altering the seasonality of runoff and river discharge to the oceans. Current CH4 emissions from wetlands are relatively well understood but the sensitivity of wetlands and their emissions to climate variations remains the largest uncertainty in the global CH4 cycle and could strongly influence predictions of future climate. Therefore, characterizing climate-sensitive processes prevailing in the world's wetlands is crucial to understanding and predicting physical and biogeochemical responses of wetlands to interannual and longer-term climate variations. Recent research has resulted in the first generation of models to predict methane emissions from wetlands but the models must still be applied to static data on wetland distributions. Moreover, no models currently exist to realistically predict the distribution and dynamics of wetlands themselves for the current, or any other, climate. The dominant obstacle to modeling wetland dynamics has been lack of remote sensing techniques and data useful for characterizing quantitatively the seasonal and interannual variations of wetlands. We report on initial remote sensing studies undertaken to validate a global hydrological model linking rivers, takes and wetlands. Using a combination of SSM/I microwave and TOPEX Poseidon altimetry data sets, we developed and applied techniques to quantify inundation extent and duration for several large wetlands in tropical Africa and South America. Our initial results indicate that seasonally-inundated wetlands can be well characterized over large spatial scales and at monthly time scales using these remote sensing data. The results also confirm that currently available remote sensing products can

  8. Analysis of Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Guiness, E. A.; Sultan, M.; Arvidson, R. E.

    1985-01-01

    A brief assessment of remote sensing applied to geological studies is given. An analysis of thematic mapping data on oak-hickory forests in southern Missouri is discussed. It was found that there is a control on the infrared reflectance (bands 4, 5, and 7 of the Thematic Mapper (TM) of the forests that correlates with rock and soil types. During the growing season, soils with low water retention capacities correlate with high infrared (band 4, lesser with band 5 and 7) signatures. A metamorphic core complex called the Meatiq located in the Eastern Desert of Egypt was studied. The dome provides exposure of most of the rock units of the Arabian-Nubian Precambrian Shield. The dome bears many resemblances to Cordilleran metamorphic complexes. LANDSAT TM data was used to improve on reconnaissance maps of the dome. The remote sensing data was interpreted in the context of field observations, petrographic, and chemical analysis of rock units in the dome, in order to map similar domes in the Eastern Desert from TM data. Mapping projects such as the one just described will help constrain the geologic evolution of the Arabian-Nubian Shield. Two particular hypotheses that researchers hope to test for the development of the shield are: (1) closure of a proto-Red Sea; and (2) accretion of a primitive island arc system onto the shield.

  9. Teaching with the Seasons.

    ERIC Educational Resources Information Center

    Weber, Larry

    1998-01-01

    Describes a natural science course designed to teach students that nature is nearby rather than somewhere else. Students learn about local flora and fauna, track the weather, and closely monitor the progression of the seasons. The course uses no textbook, regularly uses the outdoors as a classroom, and follows the seasons' phenology as the…

  10. Remote reset circuit

    DOEpatents

    Gritzo, Russell E.

    1987-01-01

    A remote reset circuit acts as a stand-alone monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients.

  11. Remote reset circuit

    DOEpatents

    Gritzo, R.E.

    1985-09-12

    A remote reset circuit acts as a stand-along monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients. 4 figs.

  12. Laser remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1987-01-01

    The properties and advantages of remote sensing lasers are discussed. The theory of nonresonant techniques, which is based on the lidar equation and elastic backscatter, and their applications to aerosol and meteorological parameters are examined. The characteristics and applications of the differential absorption lidar technique, the fluorescence technique, and Raman scattering are described. The use of a laser heterodyne radiometer and fiber optics for remote sensing is studied. Future developments in the field of remote sensing, in particular the improvement of laser sources, the fabrication of compact remote sensing instruments, and space-borne applications for lidar, are considered.

  13. Remote measurement of pollution

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A summary of the major conclusions and recommendations developed by the panels on gaseous air pollution, water pollution, and particulate air pollution is presented. It becomes evident that many of the trace gases are amenable to remote sensing; that certain water pollutants can be measured by remote techniques, but their number is limited; and that a similar approach to the remote measurement of specific particulate pollutants will follow only after understanding of their physical, chemical, and radiative properties is improved. It is also clear that remote sensing can provide essential information in all three categories that can not be obtained by any other means.

  14. Advanced Remote Sensing Research

    USGS Publications Warehouse

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  15. Remote Systems Design & Deployment

    SciTech Connect

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  16. Aviation and the delivery of medical care in remote regions: the Lesotho HIV experience.

    PubMed

    Furin, Jennifer; Shutts, Mike; Keshavjee, Salmaan

    2008-02-01

    In many regions of the world plagued by high burdens of disease, there is difficulty in accessing basic medical care. This is often due to logistical constraints and a lack of infrastructure such as roads. Medical aviation can play a major role in addressing some of these crucial issues as it allows for the rapid transport of patients, personnel, and medications to remote-and sometimes otherwise inaccessible-areas. Lesotho is a mountainous nation of 2 million people that provides a good example of medical aviation as a cornerstone in the delivery of health care. The population has a reported HIV seroprevalence of 25%, and many patients live in rural areas that are inaccessible by road. Mission Aviation Fellowship has joined forces with a medical team from the nongovernmental organization Partners In Health in an effort to launch a comprehensive program to address HIV and related problems in rural Lesotho. This medical aviation partnership has allowed for the provision of HIV prevention and treatment services to thousands of people living in the mountains. This commentary describes how medical aviation has been crucial in developing models to address complex, serious health problems in remote settings.

  17. Application of remote sensing to land and water resource planning: The Pocomoke River Basin, Maryland

    NASA Technical Reports Server (NTRS)

    Wildesen, S. E.; Phillips, E. P.

    1981-01-01

    Because of the size of the Pocomoke River Basin, the inaccessibility of certain areas, and study time constraints, several remote sensing techniques were used to collect base information on the river corridor, (a 23.2 km channel) and on a 1.2 km wooded floodplain. This information provided an adequate understanding of the environment and its resources, thus enabling effective management options to be designed. The remote sensing techniques used for assessment included manual analysis of high altitude color-infrared photography, computer-assisted analysis of LANDSAT-2 imagery, and the application of airborne oceanographic Lidar for topographic mapping. Results show that each techniques was valuable in providing the needed base data necessary for resource planning.

  18. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.; Ericson, Milton Nance; Baba, Justin S.; Wilgen, John B.; Evans, Boyd Mccutchen

    2016-05-10

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  19. Land Remote Sensing Overview

    NASA Technical Reports Server (NTRS)

    Byrnes, Ray

    2007-01-01

    A general overview of the USGS land remote sensing program is presented. The contents include: 1) Brief overview of USGS land remote sensing program; 2) Highlights of JACIE work at USGS; 3) Update on NASA/USGS Landsat Data Continuity Mission; and 4) Notes on alternative data sources.

  20. Remote sensing applications program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The activities of the Mississippi Remote Sensing Center are described in addition to technology transfer and information dissemination, remote sensing topics such as timber identification, water quality, flood prevention, land use, erosion control, animal habitats, and environmental impact studies are also discussed.

  1. Demystifying Remote Access

    ERIC Educational Resources Information Center

    Howe, Grant

    2009-01-01

    With money tight, more and more districts are considering remote access as a way to reduce expenses and budget information technology costs more effectively. Remote access allows staff members to work with a hosted software application from any school campus without being tied to a specific physical location. Each school can access critical…

  2. Remote Learning: Technologies & Opportunities.

    ERIC Educational Resources Information Center

    Turoff, Murray; Hiltz, Starr, Roxanne

    This discussion of the potential for computerized conferencing as the first cost effective technology for the delivery of a classroom environment in a remote learning situation begins by comparing remote learning modes and reviewing various educational experiments that have used the Electronic Information Exchange System (EIES) during the…

  3. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  4. APPLIED REMOTE SENSING

    EPA Science Inventory

    Remote Sensing is a scientific discipline of non-contact monitoring. It includes a range of technologies that span from aerial photography to advanced spectral imaging and analytical methods. This Session is designed to demonstrate contemporary practical applications of remote se...

  5. Remote sensing of wetlands

    NASA Technical Reports Server (NTRS)

    Roller, N. E. G.

    1977-01-01

    The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.

  6. Remote vehicle survey tool

    SciTech Connect

    Armstrong, G.A.; Burks, B.L.; Kress, R.L.; Wagner, D.G.; Ward, C.R.

    1993-05-01

    The Remote Vehicle Survey Tool (RVS7) is a color graphical display tool for viewing remotely acquired scientific data. The RVST displays the data in the form of a color two-dimensional world model map. The world model map allows movement of the remote vehicle to be tracked by the operator and the data from sensors to be graphically depicted in the interface. Linear and logarithmic meters, dual channel oscilloscopes, and directional compasses are used to display sensor information. The RVST is user-configurable by the use of ASCII text files. The operator can configure the RVST to work with any remote data acquisition system and teleoperated or autonomous vehicle. The modular design of the RVST and its ability to be quickly configured for varying system requirements make the RVST ideal for remote scientific data display in all environmental restoration and waste management programs.

  7. Remote vehicle survey tool

    SciTech Connect

    Armstrong, G.A.; Burks, B.L.; Kress, R.L. ); Wagner, D.G.; Ward, C.R. )

    1993-01-01

    The Remote Vehicle Survey Tool (RVS7) is a color graphical display tool for viewing remotely acquired scientific data. The RVST displays the data in the form of a color two-dimensional world model map. The world model map allows movement of the remote vehicle to be tracked by the operator and the data from sensors to be graphically depicted in the interface. Linear and logarithmic meters, dual channel oscilloscopes, and directional compasses are used to display sensor information. The RVST is user-configurable by the use of ASCII text files. The operator can configure the RVST to work with any remote data acquisition system and teleoperated or autonomous vehicle. The modular design of the RVST and its ability to be quickly configured for varying system requirements make the RVST ideal for remote scientific data display in all environmental restoration and waste management programs.

  8. Remote Monitor Alarm System

    NASA Technical Reports Server (NTRS)

    Stute, Robert A. (Inventor); Galloway, F. Houston (Inventor); Medelius, Pedro J. (Inventor); Swindle, Robert W. (Inventor); Bierman, Tracy A. (Inventor)

    1996-01-01

    A remote monitor alarm system monitors discrete alarm and analog power supply voltage conditions at remotely located communications terminal equipment. A central monitoring unit (CMU) is connected via serial data links to each of a plurality of remote terminal units (RTUS) that monitor the alarm and power supply conditions of the remote terminal equipment. Each RTU can monitor and store condition information of both discrete alarm points and analog power supply voltage points in its associated communications terminal equipment. The stored alarm information is periodically transmitted to the CMU in response to sequential polling of the RTUS. The number of monitored alarm inputs and permissible voltage ranges for the analog inputs can be remotely configured at the CMU and downloaded into programmable memory at each RTU. The CMU includes a video display, a hard disk memory, a line printer and an audio alarm for communicating and storing the alarm information received from each RTU.

  9. PMC from 2009 Season

    NASA Video Gallery

    Polar Mesospheric Clouds (PMC) from the Aeronomy of Ice in the Mesosphere Cloud Imaging and Particle Size (AIM-CIPS) instrument for the 2009 season in the northern polar region. The North Pole (90N...

  10. Seasonality of Suicidal Behavior

    PubMed Central

    Woo, Jong-Min; Okusaga, Olaoluwa; Postolache, Teodor T.

    2012-01-01

    A seasonal suicide peak in spring is highly replicated, but its specific cause is unknown. We reviewed the literature on suicide risk factors which can be associated with seasonal variation of suicide rates, assessing published articles from 1979 to 2011. Such risk factors include environmental determinants, including physical, chemical, and biological factors. We also summarized the influence of potential demographic and clinical characteristics such as age, gender, month of birth, socioeconomic status, methods of prior suicide attempt, and comorbid psychiatric and medical diseases. Comprehensive evaluation of risk factors which could be linked to the seasonal variation in suicide is important, not only to identify the major driving force for the seasonality of suicide, but also could lead to better suicide prevention in general. PMID:22470308

  11. Sorting Out Seasonal Allergies

    MedlinePlus

    ... Back to Health Library Sorting Out Seasonal Allergies Sneezing, runny nose, nasal congestion. Symptoms of the common ... simple preventive measures, you can help reduce your sneezing, coughing and general stuffiness, according to Pamela A. ...

  12. Seasonal affective disorder.

    PubMed

    Kurlansik, Stuart L; Ibay, Annamarie D

    2012-12-01

    Seasonal affective disorder is a combination of biologic and mood disturbances with a seasonal pattern, typically occurring in the autumn and winter with remission in the spring or summer. In a given year, about 5 percent of the U.S. population experiences seasonal affective disorder, with symptoms present for about 40 percent of the year. Although the condition is seasonally limited, patients may have significant impairment from the associated depressive symptoms. Treatment can improve these symptoms and also may be used as prophylaxis before the subsequent autumn and winter seasons. Light therapy is generally well tolerated, with most patients experiencing clinical improvement within one to two weeks after the start of treatment. To avoid relapse, light therapy should continue through the end of the winter season until spontaneous remission of symptoms in the spring or summer. Pharmacotherapy with antidepressants and cognitive behavior therapy are also appropriate treatment options and have been shown to be as effective as light therapy. Because of the comparable effectiveness of treatment options, first-line management should be guided by patient preference.

  13. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Philipson, W. R. (Principal Investigator)

    1983-01-01

    Built on Cornell's thirty years of experience in aerial photographic studies, the NASA-sponsored remote sensing program strengthened instruction and research in remote sensing, established communication links within and beyond the university community, and conducted research projects for or with town, county, state, federal, and private organizations in New York State. The 43 completed applied research projects are listed as well as 13 spinoff grants/contracts. The curriculum offered, consultations provided, and data processing facilities available are described. Publications engendered are listed including the thesis of graduates in the remote sensing program.

  14. Remote Raman measurement techniques

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.

    1981-01-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  15. Remote hydrogen sensing techniques

    NASA Technical Reports Server (NTRS)

    Perry, Cortes L.

    1992-01-01

    The objective of this project is to evaluate remote hydrogen sensing methodologies utilizing metal oxide semi-conductor field effect transistors (MOS-FET) and mass spectrometric (MS) technologies and combinations thereof.

  16. Remote Sensing Methods

    NASA Technical Reports Server (NTRS)

    Sever, Thomas L.

    1998-01-01

    Remotely sensed data allows archeologists and historic preservationists the ability to non-destructively detect phenomena previously unobservable to them. Archeologists have successfully used aerial photography since the turn of the century and it continues to be an important research tool today. Multispectral scanners and computer-implemented analysis techniques extend the range of human vision and provides the investigator with innovative research designs at scales previously unimaginable. Pioneering efforts in the use of remote sensing technology have demonstrated its potential, but it is the recent technological developments in remote sensing instrumentation and computer capability that provide for unlimited, cost-effective applications in the future. The combination of remote sensing, Global Positioning System (GPS) technology, and Geographic Information Systems (GIS) are radically altering survey, inventory, and modelling approaches.

  17. Remote Sensing Center

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The applications are reported of new remote sensing techniques for earth resources surveys and environmental monitoring. Applications discussed include: vegetation systems, environmental monitoring, and plant protection. Data processing systems are described.

  18. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  19. Remote Sensing Information Classification

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.

    2008-01-01

    This viewgraph presentation reviews the classification of Remote Sensing data in relation to epidemiology. Classification is a way to reduce the dimensionality and precision to something a human can understand. Classification changes SCALAR data into NOMINAL data.

  20. Remote Access Astronomy.

    ERIC Educational Resources Information Center

    O'Connor, Erin

    1994-01-01

    Describes the Remote Access Astronomy Project, a computerized optical telescope and dial-in data distribution system that places high-quality images and image processing techniques into computer workstations in junior and high school classrooms. (PR)

  1. Energy and remote sensing

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1977-01-01

    Effective implementation of the President's National Energy Plan and the Nuclear Power Policy Statement require application of the best remote sensing tools available. The potential contributions of remote sensing, particularly LANDSAT data, have yet to be clearly identified and exploited. These contributions investigated fall into the following categories: (1) exploration; (2) exploitation; (3) power plant siting; (4) environmental assessment and monitoring; and (5) transportation infrastructure.

  2. Thermal Remote Anemometer Device

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Heath, D. Michele; Winfree, William P.; Miller, William E.; Welch, Christopher S.

    1988-01-01

    Thermal Remote Anemometer Device developed for remote, noncontacting, passive measurement of thermal properties of sample. Model heated locally by scanning laser beam and cooled by wind in tunnel. Thermal image of model analyzed to deduce pattern of airflow around model. For materials applications, system used for evaluation of thin films and determination of thermal diffusivity and adhesive-layer contact. For medical applications, measures perfusion through skin to characterize blood flow and used to determine viabilities of grafts and to characterize tissues.

  3. Remote electrochemical sensor

    DOEpatents

    Wang, Joseph; Olsen, Khris; Larson, David

    1997-01-01

    An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

  4. Online Remote Sensing Interface

    NASA Technical Reports Server (NTRS)

    Lawhead, Joel

    2007-01-01

    BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.

  5. Seasonality of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Mason, B. G.; Pyle, D. M.; Dade, W. B.; Jupp, T.

    2004-04-01

    An analysis of volcanic activity during the last three hundred years reveals that volcanic eruptions exhibit seasonality to a statistically significant degree. This remarkable pattern is observed primarily along the Pacific "Ring of Fire" and locally at some individual volcanoes. Globally, seasonal fluctuations amount to 18% of the historical average monthly eruption rate. In some regions, seasonal fluctuations amount to as much as 50% of the average eruption rate. Seasonality principally reflects the temporal distribution of the smaller, dated eruptions (volcanic explosivity index of 0-2) that dominate the eruption catalog. We suggest that the pattern of seasonality correlates with the annual Earth surface deformation that accompanies the movement of surface water mass during the annual hydrological cycle and illustrate this with respect to global models of surface deformation and regional measurements of annual sea level change. For example, seasonal peaks in the eruption rate of volcanoes in Central America, the Alaskan Peninsula, and Kamchatka coincide with periods of falling regional sea level. In Melanesia, in contrast, peak numbers of volcanic eruptions occur during months of maximal regional sea level and falling regional atmospheric pressure. We suggest that the well-documented slow deformation of Earth's surface that accompanies the annual movements of water mass from oceans to continents acts to impose a fluctuating boundary condition on volcanoes, such that volcanic eruptions tend to be concentrated during periods of local or regional surface change rather than simply being distributed randomly throughout the year. Our findings have important ramifications for volcanic risk assessment and volcanoclimate feedback mechanisms.

  6. Modeling seasonal canopy dynamics for tropical evergreen forests

    NASA Astrophysics Data System (ADS)

    De Weirdt, M.; Verbeeck, H.; Maignan, F.; Poulter, B.; Peylin, P.; Ciais, P.; Moreau, I.; Hanert, E.; Defourny, P.; Steppe, K.

    2011-12-01

    The role of seasonal phenology in tropical humid forests on canopy photosynthesis remains poorly understood and its representation in global vegetation models highly simplified, typically with no seasonal and interannual variability of canopy leaf area properties taken into account. However, recent flux tower and remote sensing studies suggest that seasonal phenology in tropical rainforests exerts a large influence over carbon and water fluxes, with feedbacks that can significantly influence climate dynamics. A more realistic description of the underlying mechanisms that drive seasonal tropical forest photosynthesis and phenology could possibly improve the correspondence of global vegetation model outputs with the wet-dry season biogeochemical patterns measured at flux tower sites. Here, we introduce a leaf phenology and radiation based canopy dynamics scheme for evergreen tropical forests in the global terrestrial ecosystem model ORCHIDEE and validated this new scheme against in-situ carbon flux measurements. Two different model formulations were introduced and tested separately: the first mechanism was a radiation based seasonal change in photosynthetic capacity of the canopy, and the second mechanism consisted of a seasonal leaf litterfall module, that induces a seasonal change in photosynthetic capacity via leaf age. Modeled gross primary productivity (GPP) patterns are analyzed in detail for a flux tower site in French Guiana, in a forest where the dry season is short and where the vegetation is considered to have developed adaptive mechanisms against drought stress. By including tropical forest leaf litterfall and a subsequent light-driven leaf flush in ORCHIDEE, modeled carbon and water fluxes more accurately represented observations. The fit to GPP flux data was substantially improved and the results confirm that by modifying canopy dynamics to benefit from increased light conditions, a better representation of the seasonal carbon flux patterns is made.

  7. Seasonal Change Investigations

    ERIC Educational Resources Information Center

    Smith, Wendy

    2009-01-01

    The author describes how the yearlong Investigating Seasonal Change at North Ponds project enabled third-grade students to take on the role of environmental scientists, recording and analyzing environmental data from ponds near their school. The students used an array of technological tools to explore and report on the causes and effects of…

  8. Weatherwords: The Hurricane Season.

    ERIC Educational Resources Information Center

    Buckley, Jim

    1991-01-01

    Information and anecdotes are provided for the following topics: the typical length of the hurricane season for the North Atlantic, Caribbean, and Gulf of Mexico; specifics related to the practice of naming hurricanes; and categorical details related to the Saffir/Simpson scale for rating hurricane magnitude. (JJK)

  9. Assessing hurricane season

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-12-01

    With the official conclusion of the Atlantic hurricane season on 29 November, Irene was the only hurricane to strike the United States this year and the first one since Hurricane Ike made landfall in Texas in 2008, according to the National Oceanic and Atmospheric Administration (NOAA). Irene “broke the ‘hurricane amnesia’ that can develop when so much time lapses between landfalling storms,” indicated Jack Hayes, director of NOAA's National Weather Service. “This season is a reminder that storms can hit any part of our coast and that all regions need to be prepared each and every season.” During the season, there were 19 tropical storms, including 7 that became hurricanes; 3 of those were major hurricanes, of category 3 or above. The activity level was in line with NOAA predictions. The agency stated that Hurricane Irene was an example of improved accuracy in forecasting storm tracks: NOAA National Hurricane Center had accurately predicted the hurricane's landfall in North Carolina and its path northward more than 4 days in advance.

  10. Seasonal Influenza: An Overview

    ERIC Educational Resources Information Center

    Li, Christina; Freedman, Marian

    2009-01-01

    Seasonal influenza is a major cause of morbidity and mortality in the United States. It also has major social and economic consequences in the form of high rates of absenteeism from school and work as well as significant treatment and hospitalization costs. In fact, annual influenza epidemics and the resulting deaths and lost days of productivity…

  11. Remote radiation dosimetry

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang; Hegland, Joel E.; Jones, Scott C.

    1991-01-01

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission.

  12. Remote radiation dosimetry

    DOEpatents

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  13. Remote water monitoring system

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Haynes, D. P. (Inventor)

    1978-01-01

    A remote water monitoring system is described that integrates the functions of sampling, sample preservation, sample analysis, data transmission and remote operation. The system employs a floating buoy carrying an antenna connected by lines to one or more sampling units containing several sample chambers. Receipt of a command signal actuates a solenoid to open an intake valve outward from the sampling unit and communicates the water sample to an identifiable sample chamber. Such response to each signal receipt is repeated until all sample chambers are filled in a sample unit. Each sample taken is analyzed by an electrochemical sensor for a specific property and the data obtained is transmitted to a remote sending and receiving station. Thereafter, the samples remain isolated in the sample chambers until the sampling unit is recovered and the samples removed for further laboratory analysis.

  14. Remote connector development study

    SciTech Connect

    Parazin, R.J.

    1995-05-01

    Plutonium-uranium extraction (PUREX) connectors, the most common connectors used at the Hanford site, offer a certain level of flexibility in pipe routing, process system configuration, and remote equipment/instrument replacement. However, these desirable features have inherent shortcomings like leakage, high pressure drop through the right angle bends, and a limited range of available pipe diameters that can be connect by them. Costs for construction, maintenance, and operation of PUREX connectors seem to be very high. The PUREX connector designs include a 90{degree} bend in each connector. This increases the pressure drop and erosion effects. Thus, each jumper requires at least two 90{degree} bends. PUREX connectors have not been practically used beyond 100 (4 in.) inner diameter. This study represents the results of a survey on the use of remote pipe-connection systems in US and foreign plants. This study also describes the interdependence between connectors, remote handling equipment, and the necessary skills of the operators.

  15. Seasonal aggression independent of seasonal testosterone in wood rats.

    PubMed Central

    Caldwell, G S; Glickman, S E; Smith, E R

    1984-01-01

    Levels of inter-male aggression, both in laboratory encounters and in the field, rise dramatically during the breeding season, closely paralleling the seasonal rise in testosterone. However, post-pubertally castrated males also show the dramatic seasonal rise in aggression in laboratory encounters with castrated opponents and show no decrement in fighting ability when paired with intact opponents, clearly demonstrating the independence of seasonal aggression from the proximate modulating effects of testosterone in wood rats. PMID:6591190

  16. Remote sensing of biomass burning in the tropics

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tucker, Compton J.; Fung, Inez Y.

    1989-01-01

    A technique for assessing the effects of biomass burning on the climate is described. This method is based on the analysis of remote sensing data for the emitted particulates. The relationship between particulates and trace gases is studied. The assessment technique is applied to the 1987 burning season in Brazil. It is noted that during the dry season there may be up to 5000 fires per day which emit 200 ton/hr CO2, 20 ton/hr CO, and 0.5 ton/hr of CH4 to the atmosphere.

  17. Remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1975-01-01

    This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.

  18. Aerosol Remote Sensing

    NASA Technical Reports Server (NTRS)

    Lenoble, Jacqueline (Editor); Remer, Lorraine (Editor); Tanre, Didier (Editor)

    2012-01-01

    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified.

  19. Remote electrochemical sensor

    DOEpatents

    Wang, J.; Olsen, K.; Larson, D.

    1997-10-14

    An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

  20. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  1. Seasonal influenza: an overview.

    PubMed

    Li, Christina; Freedman, Marian

    2009-02-01

    Seasonal influenza is a major cause of morbidity and mortality in the United States. It also has major social and economic consequences in the form of high rates of absenteeism from school and work as well as significant treatment and hospitalization costs. In fact, annual influenza epidemics and the resulting deaths and lost days of productivity are estimated to cost US$10.4 billion in direct medical expenses and US$16.4 billion in lost potential earnings. Given the enormous burden of seasonal influenza and the important role that school-age children play in the cycle of disease, school nurses need to be knowledgeable about all aspects of this condition, including its clinical course and how it is transmitted; the range of options for preventing and treating the disease; and steps that can be taken to improve the rates of immunization against influenza. School nurses also can help by making sure that they themselves are vaccinated in a timely manner.

  2. Gondwanaland's seasonal cycle

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.; Short, David A.; Mengel, John G.

    1987-01-01

    A two-dimensional energy balance climate model has been used to simulate the seasonal temperature cycle on a supercontinent-sized land mass. Experiments with idealized and realistic geography indicate that the land-sea configuration in high latitudes exerts a strong influence on the magnitude of summer warming. These simulations provide significant insight into the evolution of climate during the Palaeozoic, and raise questions about the presumed pre-eminent role of carbon dioxide in explaining long-term climate change.

  3. Remote sensing of soil radionuclide fluxes in a tropical ecosystem

    SciTech Connect

    Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.

    1980-11-06

    We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant /sup 137/Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose.

  4. EPA REMOTE SENSING RESEARCH

    EPA Science Inventory

    The 2006 transgenic corn imaging research campaign has been greatly assisted through a cooperative effort with several Illinois growers who provided planting area and crop composition. This research effort was designed to evaluate the effectiveness of remote sensed imagery of var...

  5. Remote Access Astronomy

    ERIC Educational Resources Information Center

    Beare, Richard; Bowdley, David; Newsam, Andrew; Roche, Paul

    2003-01-01

    There is still nothing to beat the excitement and fulfilment that you can get from observing celestial bodies on a clear dark night, in a remote location away from the seemingly ever increasing light pollution from cities. However, it is also the specific requirements for good observing that can sometimes prevent teachers from offering this…

  6. Remote systems development

    NASA Technical Reports Server (NTRS)

    Olsen, R.; Schaefer, O.; Hussey, J.

    1992-01-01

    Potential space missions of the nineties and the next century require that we look at the broad category of remote systems as an important means to achieve cost-effective operations, exploration and colonization objectives. This paper addresses such missions, which can use remote systems technology as the basis for identifying required capabilities which must be provided. The relationship of the space-based tasks to similar tasks required for terrestrial applications is discussed. The development status of the required technology is assessed and major issues which must be addressed to meet future requirements are identified. This includes the proper mix of humans and machines, from pure teleoperation to full autonomy; the degree of worksite compatibility for a robotic system; and the required design parameters, such as degrees-of-freedom. Methods for resolution are discussed including analysis, graphical simulation and the use of laboratory test beds. Grumman experience in the application of these techniques to a variety of design issues are presented utilizing the Telerobotics Development Laboratory which includes a 17-DOF robot system, a variety of sensing elements, Deneb/IRIS graphics workstations and control stations. The use of task/worksite mockups, remote system development test beds and graphical analysis are discussed with examples of typical results such as estimates of task times, task feasibility and resulting recommendations for design changes. The relationship of this experience and lessons-learned to future development of remote systems is also discussed.

  7. Remotely controlled spray gun

    NASA Technical Reports Server (NTRS)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  8. Solar System Remote Sensing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the symposium on Solar System Remote Sensing, September 20-21, 2002, in Pittsburgh, Pennsylvania. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.

  9. Remote Inspection Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2013-01-01

    The ability to remotely inspect equipment of an aging infrastructure is becoming of major interest to many industries. Often the ability to just get a look at a piece of critical equipment can yield very important information. With millions of miles of piping installed throughout the United States, this vast network is critical to oil, natural…

  10. Remote Agent Experiment

    NASA Technical Reports Server (NTRS)

    Benard, Doug; Dorais, Gregory A.; Gamble, Ed; Kanefsky, Bob; Kurien, James; Millar, William; Muscettola, Nicola; Nayak, Pandu; Rouquette, Nicolas; Rajan, Kanna; Norvig, Peter (Technical Monitor)

    2000-01-01

    Remote Agent (RA) is a model-based, reusable artificial intelligence (At) software system that enables goal-based spacecraft commanding and robust fault recovery. RA was flight validated during an experiment on board of DS1 between May 17th and May 21th, 1999.

  11. Application of remote sensing

    NASA Technical Reports Server (NTRS)

    Graff, W. J. (Compiler)

    1973-01-01

    Remote sensing and aerial photographic interpretation are discussed along with the specific imagery techniques used for this research. The method used to select sites, the results of data analyses for the Houston metropolitan area, and the location of dredging sites along the Houston Ship Channel are presented. The work proposed for the second year of the project is described.

  12. Remote Services, Inc.

    ERIC Educational Resources Information Center

    Morris, Steven A.

    2008-01-01

    The Remote Services, Inc. (RSI) case is designed as an extensible, database design and implementation project. The case is designed in two primary components: design and implementation. The design component of the case allows students to evaluate a scenario that is similar to a real-world business situation and create an appropriate design…

  13. A Modified Synthetic Pathway for the Synthesis of so far Inaccessible N1-Functionalized Tetrazole Ligands – Synthesis and Characterization of the 1D Chain-Type Spin Crossover Compound [Fe(3ditz)3](BF4)2

    PubMed Central

    Müller, Danny; Knoll, Christian; Stöger, Berthold; Artner, Werner; Reissner, Michael; Weinberger, Peter

    2013-01-01

    A modified phase-transfer-catalyst-assisted synthetic pathway was developed that widens the pool of accessible 1-substituted tetrazoles, which are possible ligands for iron(II) spin-crossover compounds. Within the family of α,ω-bis(tetrazol-1-yl)alkanes, a series of ligands and their respective iron(II) spin-crossover compounds were synthesized and structurally and spectroscopically characterized in the past. The classical route to prepare these ligands is based on the respective amino-precursors. Hence the pool of accessible compounds is limited by the commercial or synthetical availability of α,ω-diaminoalkanes. Furthermore, the concomitant transformation to the tetrazole moieties turns out to be easier for diamino-alkanes with an even number of carbon atoms than for those with an odd number. In line with this observation, the shortest odd-numbered homologues such as 1,1-bis(tetrazol-1-yl)methane (1ditz) and 1,3-bis(tetrazol-1-yl)propane (3ditz) were inaccessible so far. In this paper, we report the successful preparation and characterisation of the classically inaccessible 1,3-bis(tetrazol-1-yl)propane (3ditz) and of its spin-crossover complex [Fe(3ditz)3](BF4)2, which features an abrupt and almost complete spin transition at T = 159 K. The single-crystal X-ray structure of the low-spin and the high-spin species is presented. The magnetic data are supported by variable-temperature IR, UV/Vis/NIR, and 57Fe Mössbauer spectra. PMID:23487581

  14. Remote Sensing and the Earth

    NASA Technical Reports Server (NTRS)

    Brosius, C. A.; Gervin, J. C.; Ragusa, J. M.

    1977-01-01

    A text book on remote sensing, as part of the earth resources Skylab programs, is presented. The fundamentals of remote sensing and its application to agriculture, land use, geology, water and marine resources, and environmental monitoring are summarized.

  15. Consistency of vegetation index seasonality across the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Maeda, Eduardo Eiji; Moura, Yhasmin Mendes; Wagner, Fabien; Hilker, Thomas; Lyapustin, Alexei I.; Wang, Yujie; Chave, Jérôme; Mõttus, Matti; Aragão, Luiz E. O. C.; Shimabukuro, Yosio

    2016-10-01

    Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in VIs seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between VIs, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing.

  16. Evaluation of the Use of Remote Laboratories for Secondary School Science Education

    NASA Astrophysics Data System (ADS)

    Lowe, David; Newcombe, Peter; Stumpers, Ben

    2013-06-01

    Laboratory experimentation is generally considered central to science-based education. Allowing students to "experience" science through various forms of carefully designed practical work, including experimentation, is often claimed to support their learning and motivate their engagement while fulfilling specific curriculum requirements. However, logistical constraints (most especially related to funding) place significant limitations on the ability of schools to provide and maintain high-quality science laboratory experiences and equipment. One potential solution that has recently been the subject of growing interest is the use of remotely accessible laboratories to either supplant, or more commonly to supplement, conventional hands-on laboratories. Remote laboratories allow students and teachers to use high-speed networks, coupled with cameras, sensors, and controllers, to carry out experiments on real physical laboratory apparatus that is located remotely from the student. Research has shown that when used appropriately this can bring a range of potential benefits, including the ability to share resources across multiple institutions, support access to facilities that would otherwise be inaccessible for cost or technical reasons, and provide augmentation of the experimental experience. Whilst there has been considerable work on evaluating the use of remote laboratories within tertiary education, consideration of their role within secondary school science education is much more limited. This paper describes trials of the use of remote laboratories within secondary schools, reporting on the student and teacher reactions to their interactions with the laboratories. The paper concludes that remote laboratories can be highly beneficial, but considerable care must be taken to ensure that their design and delivery address a number of critical issues identified in this paper.

  17. Remote Sensing and the Earth.

    ERIC Educational Resources Information Center

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  18. Remote Sensing: A Film Review.

    ERIC Educational Resources Information Center

    Carter, David J.

    1986-01-01

    Reviews the content of 19 films on remote sensing published between 1973 and 1980. Concludes that they are overly simplistic, notably outdated, and generally too optimistic about the potential of remote sensing from space for resource exploration and environmental problem-solving. Provides names and addresses of more current remote sensing…

  19. Remote sensing and image interpretation

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)

    1979-01-01

    A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

  20. THE EPA REMOTE SENSING ARCHIVE

    EPA Science Inventory

    What would you do if you were faced with organizing 30 years of remote sensing projects that had been haphazardly stored at two separate locations for years then combined? The EPA Remote Sensing Archive, currently located in Las Vegas, Nevada. contains the remote sensing data and...

  1. Future of Land Remote Sensing: What is Needed

    NASA Technical Reports Server (NTRS)

    Goward, Samuel N.

    2007-01-01

    A viewgraph presentation describing the future of land remote sensing and the new technologies needed for clear views of the Earth is shown. The contents include: 1) Viewing the Earth; 2) Multi-Imagery; 3) May Missions and Sensors; 4) What is Needed; 5) Things to Think About; 6) Global Land Remote Sensing in Landsat 7 Era; 7) Seasonality; 8) Cloud Contamination; 9) NRC Decadal Study; 10) Atmospheric Attenuation; 11) Geo-Registration; 12) Orthorectification Required; 13) Band Registration with OLI; and 14) Things to Do. A viewgraph presentation describing the future of land remote sensing and the new technologies needed for clear views of the Earth is shown. The contents include: 1) Viewing the Earth; 2) Multi-Imagery; 3) May Missions and Sensors; 4) What is Needed; 5) Things to Think About; 6) Global Land Remote Sensing in Landsat 7 Era; 7) Seasonality; 8) Cloud Contamination; 9) NRC Decadal Study; 10) Atmospheric Attenuation; 11) Geo-Registration; 12) Orthorectification Required; 13) Band Registration with OLI; and 14) Things to Do.

  2. Accessing, Utilizing and Visualizing NASA Remote Sensing Data for Malaria Modeling and Surveillance

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Adimi, Farida; Kempler, Steven

    2007-01-01

    This poster presentation reviews the use of NASA remote sensing data that can be used to extract environmental information for modeling malaria transmission. The authors discuss the remote sensing data from Landsat, Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Tropical Rainfall Measuring Mission (TRMM), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Earth Observing One (EO-1), Advanced Land Imager (ALI) and Seasonal to Interannual Earth Science Information Partner (SIESIP) dataset.

  3. Applications of ecological concepts and remote sensing technologies in archaeological site reconnaissance

    NASA Technical Reports Server (NTRS)

    Miller, W. Frank; Sever, Thomas L.; Lee, C. Daniel

    1991-01-01

    The concept of integrating ecological perspectives on early man's settlement patterns with advanced remote sensing technologies shows promise for predictive site modeling. Early work with aerial imagery and ecosystem analysis is discussed with respect to the development of a major project in Maya archaeology supported by NASA and the National Geographic Society with technical support from the Mississippi State Remote Sensing Center. A preliminary site reconnaissance model will be developed for testing during the 1991 field season.

  4. Autonomous Unmanned Helicopter System for Remote Sensing Missions in Unknown Environments

    NASA Astrophysics Data System (ADS)

    Merz, T.; Chapman, S.

    2011-09-01

    This paper presents the design of an autonomous unmanned helicopter system for low-altitude remote sensing. The proposed concepts and methods are generic and not limited to a specific helicopter. The development was driven by the need for a dependable, modular, and affordable system with sufficient payload capacity suitable for both research and real-world deployment. The helicopter can be safely operated without a backup pilot in a contained area beyond visual range. This enables data collection in inaccessible or dangerous areas. Thanks to its terrain following and obstacle avoidance capability, the system does not require a priori information about terrain elevation and obstacles. Missions are specified in state diagrams and flight plans. We present performance characteristics of our system and show results of its deployment in real-world scenarios. We have successfully completed several dozen infrastructure inspection missions and crop monitoring missions facilitating plant phenomics studies.

  5. Simulation and Implementation of Ultrasonic Remote Sensing Agents for Reconfigurable Nde Scanning

    NASA Astrophysics Data System (ADS)

    Dobie, G.; Spencer, A.; Pierce, S. G.; Galbraith, W.; Worden, K.; Hayward, G.

    2009-03-01

    Remote Sensing Agents (RSAs), in the form of miniature robotic platforms, offer unique possibilities for structural inspection. Autonomous groups of RSAs can quickly cover large areas, access hazardous and inaccessible environments and work together intelligently to detect, localize and identify defects. This paper describes such a concept, using wireless RSAs that incorporate air-coupled Lamb wave ultrasonic sensors, combined with magnetic traction. The work focuses on reconfigurable array scanning in plates, where the ability to reconfigure the scanner intelligently requires an understanding of the ultrasonic wave generation, its propagation and the mechanics, positioning and control of the RSAs. To this end, a simulation of the complete system has been created. Ultrasonic generation has been modeled by the Linear Systems 1D Model; the resulting wave propagation is modeled in 3D using the Local Interaction Simulation Approach and a dynamic simulation of the RSA was used to model the transducer positions. The complete model is used to evaluate and optimize inspection strategies.

  6. Prototype Combined Heater/Thermoelectric Power Generator for Remote Applications

    NASA Astrophysics Data System (ADS)

    Champier, D.; Favarel, C.; Bédécarrats, J. P.; Kousksou, T.; Rozis, J. F.

    2013-07-01

    This study presents a prototype thermoelectric generator (TEG) developed for remote applications in villages that are not connected to the electrical power grid. For ecological and economic reasons, there is growing interest in harvesting waste heat from biomass stoves to produce some electricity. Because regular maintenance is not required, TEGs are an attractive choice for small-scale power generation in inaccessible areas. The prototype developed in our laboratory is especially designed to be implemented in stoves that are also used for domestic hot water heating. The aim of this system is to provide a few watts to householders, so they have the ability to charge cellular phones and radios, and to get some light at night. A complete prototype TEG using commercial (bismuth telluride) thermoelectric modules has been built, including system integration with an electric DC/DC converter. The DC/DC converter has a maximum power point tracker (MPPT) driven by an MC9SO8 microcontroller, which optimizes the electrical energy stored in a valve-regulated lead-acid battery. Physical models were used to study the behavior of the thermoelectric system and to optimize the performance of the MPPT. Experiments using a hot gas generator to simulate the exhaust of the combustion chamber of a stove are used to evaluate the system. Additionally, potential uses of such generators are presented.

  7. Remote Ischemic Conditioning

    PubMed Central

    Heusch, Gerd; Bøtker, Hans Erik; Przyklenk, Karin; Redington, Andrew; Yellon, Derek

    2014-01-01

    In remote ischemic conditioning (RIC) brief, reversible episodes of ischemia with reperfusion in one vascular bed, tissue or organ confer a global protective phenotype and render remote tissues and organs resistant to ischemia/reperfusion injury. The peripheral stimulus can be chemical, mechanical or electrical and involves activation of peripheral sensory nerves. The signal transfer to the heart or other organs is through neuronal and humoral communications. Protection can be transferred, even across species, with plasma-derived dialysate and involves nitric oxide, stromal derived factor-1α, microRNA-144, but also other, not yet identified factors. Intracardiac signal transduction involves: adenosine, bradykinin, cytokines, and chemokines, which activate specific receptors; intracellular kinases; and mitochondrial function. RIC by repeated brief inflation/deflation of a blood pressure cuff protects against endothelial dysfunction and myocardial injury in percutaneous coronary interventions, coronary artery bypass grafting and reperfused acute myocardial infarction. RIC is safe and effective, noninvasive, easily feasible and inexpensive. PMID:25593060

  8. Remote Sensing Laboratory - RSL

    SciTech Connect

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  9. Remote surface inspection system

    NASA Technical Reports Server (NTRS)

    Hayati, S.; Balaram, J.; Seraji, H.; Kim, W. S.; Tso, K.; Prasad, V.

    1993-01-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  10. Evapotranspiration and remote sensing

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Gurney, R.

    1982-01-01

    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.

  11. Remote Sensing Laboratory - RSL

    ScienceCinema

    None

    2016-07-12

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  12. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1993-01-01

    Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  13. REMOTELY RECHARGEABLE EPD

    SciTech Connect

    Vrettos, N; Athneal Marzolf, A; Scott Bowser, S

    2007-11-13

    Radiation measurements inside the Contact Decon Maintenance Cell (CDMC) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) are required to determine stay times for personnel. A system to remotely recharge the transmitter of an Electronic Personnel Dosimeter (EPD) and bail assembly to transport the EPD within the CDMC was developed by the Savannah River National Laboratory (SRNL) to address this need.

  14. Remote Maintenance Monitoring

    NASA Technical Reports Server (NTRS)

    Owens, Richard C.; Simkins, Lorenz; Rochette, Donn

    1990-01-01

    Automated system gives new life to aging network of computers. Remote maintenance monitoring system developed to diagnose problems in large distributed computer network. Consists of data links, displays, controls, software, and more than 200 computers. Uses sensors to collect data on failures and expert system to examine data, diagnose causes of failures, and recommend cures. Designed to be retrofitted into launch processing system at Kennedy Space Center. Reduces downtime, lowers workload and expense of maintenance, and makes network less dependent on human expertise.

  15. Remote terminal system evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, T. L.; Grams, H. L.; Lindenlaub, J. C.; Schwingendorf, S. K.; Swain, P. H.; Simmons, W. R.

    1975-01-01

    An Earth Resources Data Processing System was developed to evaluate the system for training, technology transfer, and data processing. In addition to the five sites included in this project two other sites were connected to the system under separate agreements. The experience of these two sites is discussed. The results of the remote terminal project are documented in seven reports: one from each of the five project sites, Purdue University, and an overview report summarizing the other six reports.

  16. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Liang, T.

    1973-01-01

    Research projects concerning the development and application of remote sensors are discussed. Some of the research projects conducted are as follows: (1) aerial photographic inventory of natural resources, (2) detection of buried river channels, (3) delineation of interconnected waterways, (4) plant indicators of atmospheric pollution, and (5) techniques for data transfer from photographs to base maps. On-going projects involving earth resources analyses are described.

  17. Internet Based Remote Operations

    NASA Technical Reports Server (NTRS)

    Chamberlain, James

    1999-01-01

    This is the Final Report for the Internet Based Remote Operations Contract, has performed payload operations research support tasks March 1999 through September 1999. These tasks support the GSD goal of developing a secure, inexpensive data, voice, and video mission communications capability between remote payload investigators and the NASA payload operations team in the International Space Station (ISS) era. AZTek has provided feedback from the NASA payload community by utilizing its extensive payload development and operations experience to test and evaluate remote payload operations systems. AZTek has focused on use of the "public Internet" and inexpensive, Commercial-off-the-shelf (COTS) Internet-based tools that would most benefit "small" (e.g., $2 Million or less) payloads and small developers without permanent remote operations facilities. Such projects have limited budgets to support installation and development of high-speed dedicated communications links and high-end, custom ground support equipment and software. The primary conclusions of the study are as follows: (1) The trend of using Internet technology for "live" collaborative applications such as telescience will continue. The GSD-developed data and voice capabilities continued to work well over the "public" Internet during this period. 2. Transmitting multiple voice streams from a voice-conferencing server to a client PC to be mixed and played on the PC is feasible. 3. There are two classes of voice vendors in the market: - Large traditional phone equipment vendors pursuing integration of PSTN with Internet, and Small Internet startups.The key to selecting a vendor will be to find a company sufficiently large and established to provide a base voice-conferencing software product line for the next several years.

  18. Monitoring Seasons Through Global Learning Communities

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Robin, J. H.; Jeffries, M. O.; Gordon, L. S.; Verbyla, D. L.; Levine, E. R.

    2006-12-01

    Monitoring Seasons through Global Learning Communities (MSTGLC) is an inquiry- and project-based project that monitors seasons, specifically their interannual variability, in order to increase K-12 students' understanding of the Earth system by providing teacher professional development in Earth system science and inquiry, and engaging K-12 students in Earth system science research relevant to their local communities that connect globally. MSTGLC connects GLOBE students, teachers, and communities, with educators and scientists from three integrated Earth systems science programs: the International Arctic Research Center, and NASA Landsat Data Continuity and Terra Satellite Missions. The project organizes GLOBE schools by biomes into eight Global Learning Communities (GLCs) and students monitor their seasons through regional based field campaigns. The project expands the current GLOBE phenology network by adapting current protocols and making them biome-specific. In addition, ice and mosquito phenology protocols will be developed for Arctic and Tropical regions, respectively. Initially the project will focus on Tundra and Taiga biomes as phenological changes are so pronounced in these regions. However, our long-term goal is to determine similar changes in other biomes (Deciduous Forest, Desert, Grasslands, Rain Forest, Savannah and Shrubland) based upon what we learn from these two biomes. This project will also contribute to critically needed Earth system science data such as in situ ice, mosquito, and vegetation phenology measurements for ground validations of remotely sensed data, which are essential for regional climate change impact assessments. Additionally it will contribute environmental data critical to prevention and management of diseases such as malaria in Asian, African, and other countries. Furthermore, this project will enable students to participate in the International Polar Year (IPY) (2007-2009) through field campaigns conducted by students in

  19. Advanced laser remote sensing

    SciTech Connect

    Schultz, J.; Czuchlewski, S.; Karl, R.

    1996-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Remote measurement of wind velocities is critical to a wide variety of applications such as environmental studies, weather prediction, aircraft safety, the accuracy of projectiles, bombs, parachute drops, prediction of the dispersal of chemical and biological warfare agents, and the debris from nuclear explosions. Major programs to develop remote sensors for these applications currently exist in the DoD and NASA. At present, however, there are no real-time, three-dimensional wind measurement techniques that are practical for many of these applications and we report on two new promising techniques. The first new technique uses an elastic backscatter lidar to track aerosol patterns in the atmosphere and to calculate three dimensional wind velocities from changes in the positions of the aerosol patterns. This was first done by Professor Ed Eloranta of the University of Wisconsin using post processing techniques and we are adapting Professor Eloranta`s algorithms to a real-time data processor and installing it in an existing elastic backscatter lidar system at Los Alamos (the XM94 helicopter lidar), which has a compatible data processing and control system. The second novel wind sensing technique is based on radio-frequency (RF) modulation and spatial filtering of elastic backscatter lidars. Because of their compactness and reliability, solid state lasers are the lasers of choice for many remote sensing applications, including wind sensing.

  20. Remote repair appliance

    DOEpatents

    Heumann, Frederick K.; Wilkinson, Jay C.; Wooding, David R.

    1997-01-01

    A remote appliance for supporting a tool for performing work at a worksite on a substantially circular bore of a workpiece and for providing video signals of the worksite to a remote monitor comprising: a baseplate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the baseplate and positioned to roll against the bore of the workpiece when the baseplate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the baseplate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the baseplate such that the working end of the tool is positioned on the inner face side of the baseplate; a camera for providing video signals of the worksite to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the baseplate, the camera holding means being adjustably attached to the outer face of the baseplate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris.

  1. Remote repair appliance

    DOEpatents

    Heumann, F.K.; Wilkinson, J.C.; Wooding, D.R.

    1997-12-16

    A remote appliance for supporting a tool for performing work at a work site on a substantially circular bore of a work piece and for providing video signals of the work site to a remote monitor comprises: a base plate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the base plate and positioned to roll against the bore of the work piece when the base plate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the base plate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the base plate such that the working end of the tool is positioned on the inner face side of the base plate; a camera for providing video signals of the work site to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the base plate, the camera holding means being adjustably attached to the outer face of the base plate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris. 5 figs.

  2. Remote access thyroid surgery

    PubMed Central

    Bhatia, Parisha; Mohamed, Hossam Eldin; Kadi, Abida; Walvekar, Rohan R.

    2015-01-01

    Robot assisted thyroid surgery has been the latest advance in the evolution of thyroid surgery after endoscopy assisted procedures. The advantage of a superior field vision and technical advancements of robotic technology have permitted novel remote access (trans-axillary and retro-auricular) surgical approaches. Interestingly, several remote access surgical ports using robot surgical system and endoscopic technique have been customized to avoid the social stigma of a visible scar. Current literature has displayed their various advantages in terms of post-operative outcomes; however, the associated financial burden and also additional training and expertise necessary hinder its widespread adoption into endocrine surgery practices. These approaches offer excellent cosmesis, with a shorter learning curve and reduce discomfort to surgeons operating ergonomically through a robotic console. This review aims to provide details of various remote access techniques that are being offered for thyroid resection. Though these have been reported to be safe and feasible approaches for thyroid surgery, further evaluation for their efficacy still remains. PMID:26425450

  3. The THOSE remote interface

    NASA Astrophysics Data System (ADS)

    Klawon, Kevin; Gold, Josh; Bachman, Kristen

    2013-05-01

    The DIA, in conjunction with the Army Research Lab (ARL), wants to create an Unmanned Ground Sensor (UGS) controller that is (a) interoperable across all controller platforms, (b) capable of easily adding new sensors, radios, and processes and (c) backward compatible with existing UGS systems. To achieve this, a Terra Harvest controller was created that used Java JRE 1.6 and an Open Services Gateway initiative (OSGi) platform, named Terra Harvest Open Software Environment (THOSE). OSGi is an extensible framework that provides a modularized environment for deploying functionality in "bundles". These bundles can publish, discover, and share services available from other external bundles or bundles provided by the controller core. With the addition of a web GUI used for interacting with THOSE, a natural step was then to create a common remote interface that allows 3rd party real-time interaction with the controller. This paper provides an overview of the THOSE system and its components as well as a description of the architectural structure of the remote interface, highlighting the interactions occurring between the controller and the remote interface and its role in providing a positive user experience for managing UGSS functions.

  4. Remote instrument telemaintenance.

    PubMed

    Laugier, A; Allahwerdi, N; Baudin, J; Gaffney, P; Grimson, W; Groth, T; Schilders, L

    1996-07-01

    In the past decade, great technological progress has been made in telemaintenance of mainframe and mini computers. As hardware technology is now available at an acceptable cost, computer aided trouble-shooting can be adapted to laboratory instrumentation in order to significantly improve repair time, avoid instrument downtime by taking advantage of predictive methods, and provide general diagnostic assistance. Depending on the size of the instrument, the telemaintenance facility can be dedicated to a single instrument or alternatively a telemaintenance server can manage multiple distributed small instruments through a Local Area Network. As complex failures can occur, the local diagnosis capabilities may be exceeded and automatic dialing for connection to computerized Remote Maintenance Centers is needed. The main advantages of such a centre, as compared to local diagnosis systems, are the increased access to more information and experience of failures from instrument installations, and consequently the provision of training data updates for Artificial Neural Networks and Knowledge Based Systems in general. When an abnormal situation is detected or anticipated by a diagnosis module, an automatic alert is given to the user, local diagnosis is activated, and for simple solutions, instructions are given to the operator. In the last resort, a human expert can be alerted who, with remote control tools, can attend to the failures. For both local and remote trouble-shooting, the data provided by the instrument and connected workstation is of paramount importance for the efficiency and accuracy of the diagnosis. Equally, the importance of standardization of telemaintenance communication protocols is addressed.

  5. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  6. Multidata remote sensing approach to regional geologic mapping in Venezuela

    SciTech Connect

    Baker, R.N.

    1996-08-01

    Remote Sensing played an important role in evaluating the exploration potential of selected lease blocks in Venezuela. Data sets used ranged from regional Landsat and airborne radar (SLAR) surveys to high-quality cloud-free air photos for local but largely inaccessible terrains. The resulting data base provided a framework for the conventional analyses of surface and subsurface information available to the project team. (1) Regional surface geology and major structural elements were interpreted from Landsat MSS imagery supplemented by TM and a regional 1:250,000 airborne radar (SLAR) survey. Evidence of dextral offset, en echelon folds and major thoroughgoing faults suggest a regional transpressional system modified by local extension and readjustment between small-scale crustal blocks. Surface expression of the major structural elements diminishes to the east, but can often be extended beneath the coastal plain by drainage anomalies and subtle geomorphic trends. (2) Environmental conditions were mapped using the high resolution airborne radar images which were used to relate vegetation types to surface texture and elevation; wetlands, outcrop and cultural features to image brightness. Additional work using multispectral TM or SPOT imagery is planned to more accurately define environmental conditions and provide a baseline for monitoring future trends. (3) Offshore oil seeps were detected using ERS-1 satellite radar (SAR) and known seeps in the Gulf of Paria as analogs. While partially successful, natural surfactants, wind shadow and a surprising variety of other phenomena created {open_quotes}false alarms{close_quotes} which required other supporting data and field sampling to verify the results. Key elements of the remote sensing analyses will be incorporated into a comprehensive geographic information (GIS) which will eventually include all of Venezuela.

  7. Multi-Sensor Remote Sensing of Forest Dynamics in Central Siberia

    NASA Technical Reports Server (NTRS)

    Ransom, K. J.; Sun, G.; Kharuk, V. I.; Howl, J.

    2011-01-01

    The forested regions of Siberia, Russia are vast and contain about a quarter of the world's forests that have not experienced harvesting. However, many Siberian forests are facing twin pressures of rapidly changing climate and increasing timber harvest activity. Monitoring the dynamics and mapping the structural parameters of the forest is important for understanding the causes and consequences of changes observed in these areas. Because of the inaccessibility and large extent of this forest, remote sensing data can play an important role for observing forest state and change. In Central Siberia, multi-sensor remote sensing data have been used to monitor forest disturbances and to map above-ground biomass from the Sayan Mountains in the south to the taiga-tundra boundaries in the north. Radar images from the Shuttle Imaging Radar-C (SIR-C)/XSAR mission were used for forest biomass estimation in the Sayan Mountains. Radar images from the Japanese Earth Resources Satellite-1 (JERS-1), European Remote Sensing Satellite-1 (ERS-1) and Canada's RADARSAT-1, and data from ETM+ on-board Landsat-7 were used to characterize forest disturbances from logging, fire, and insect damage in Boguchany and Priangare areas.

  8. Seasonality in submesoscale turbulence.

    PubMed

    Callies, Jörn; Ferrari, Raffaele; Klymak, Jody M; Gula, Jonathan

    2015-04-21

    Although the strongest ocean surface currents occur at horizontal scales of order 100 km, recent numerical simulations suggest that flows smaller than these mesoscale eddies can achieve important vertical transports in the upper ocean. These submesoscale flows, 1-100 km in horizontal extent, take heat and atmospheric gases down into the interior ocean, accelerating air-sea fluxes, and bring deep nutrients up into the sunlit surface layer, fueling primary production. Here we present observational evidence that submesoscale flows undergo a seasonal cycle in the surface mixed layer: they are much stronger in winter than in summer. Submesoscale flows are energized by baroclinic instabilities that develop around geostrophic eddies in the deep winter mixed layer at a horizontal scale of order 1-10 km. Flows larger than this instability scale are energized by turbulent scale interactions. Enhanced submesoscale activity in the winter mixed layer is expected to achieve efficient exchanges with the permanent thermocline below.

  9. Seasonal soybean crop reflectance

    NASA Technical Reports Server (NTRS)

    Lemaster, E. W. (Principal Investigator); Chance, J. E.

    1983-01-01

    Data are presented from field measurements of 1980 including 5 acquisitions of handheld radiometer reflectance measurements, 7 complete sets of parameters for implementing the Suits mode, and other biophysical parameters to characterize the soybean canopy. LANDSAT calculations on the simulated Brazilian soybean reflectance are included along with data collected during the summer and fall on 1981 on soybean single leaf optical parameters for three irrigation treatments. Tests of the Suits vegetative canopy reflectance model for the full hemisphere of observer directions as well as the nadir direction show moderate agreement for the visible channels of the MSS and poor agreement in the near infrared channel. Temporal changes in the spectral characteristics of the single leaves were seen to occur as a function of maturity which demonstrates that the absorptance of a soybean single leaf is more a function of thetransmittancee characteristics than the seasonally consistent single leaf reflectance.

  10. Seasonal greening in grasslands

    NASA Astrophysics Data System (ADS)

    Orescanin, Biljana

    Grasslands cover about one quarter of the Earth's land and are currently considered to act as carbon sinks, taking up an estimated 0.5 Gt C per year. Thus, robust understanding of the grassland biome (e.g. representation of seasonal cycle of plant growth and the amount of green mass, often referred to as phenology, in global carbon models) plays a key role in understanding and predicting the global carbon cycle. The focus of this research is on improvement of a grassland biome representation in a biosphere model, which sometimes fails to correctly represent the phenology of vegetation. For this purpose, as a part of Simple Biosphere model (SiB3), a phenology model is tested and improved to provide more realistic representation of plant growth dependence on available moisture, which along with temperature and light controls plant growth. The new methodology employs integrated soil moisture in plant growth simulation. This new representation addresses the nature of the plants to use their root system to access the water supply. At same time it represents the plant's moisture recourses more accurately than the currently used vapor pressure method, which in grasslands is often non-correlated with soil conditions. The new technique has been developed and tested on data from the Skukuza flux tower site in South Africa and evaluated at 6 different flux tower sites around the world covering a variety of climate conditions. The technique is relatively easy and inexpensive to implement into the existing model providing excellent results capturing both the onset of green season and greening cycle at all locations. Although the method is developed for grasslands biome its representation of natural plant processes provides a good potential for its global use.

  11. Remote sensing of balsam fir forest vigor

    NASA Astrophysics Data System (ADS)

    Luther, Joan E.; Carroll, Allen L.

    1997-12-01

    The potential of remote sensing to monitor indices of forest health was tested by examining the spectral separability of plots with different balsam fir, Abies balsamea (L.) Mill, vigor. Four levels of vigor were achieved with controlled experimental manipulations of forest stands. In order of increasing vigor, the treatments were root pruning, control, thinning and thinning in combination with fertilization. Spectral reflectance of branchlets from each plot were measured under laboratory conditions using a field portable spectroradiometer with a spectral range from 350 - 2500 nm. Branchlets were discriminated using combinations of factor and discriminant analyses techniques with classification accuracies of 91% and 83% for early and late season analyses, respectively. Relationships between spectral reflectance measurements at canopy levels, stand vigor, and foliage quality for an insect herbivore will be analyzed further in support of future large scale monitoring of balsam fir vulnerability to insect disturbance.

  12. Food and nutrition policy issues in remote aboriginal communities: lessons from Arnhem Land.

    PubMed

    McMillan, S J

    1991-12-01

    There is a high incidence of nutrition-related diseases amongst Aborigines living in remote areas. An outline of the corporate food and nutrition policy of the Arnhemland Progress Association is given to demonstrate the potential for positive strategies in remote area stores. The Association is a retailer owned by Aboriginal groups and operates 11 remote community stores. Factors such as price, Aboriginal buying habits, seasonality, consumer demand and most importantly remote area stock management affect the supply of and demand for food items. Further, government policy on sales tax and private sector capital city pricing policies influence retailing in remote areas. The experience of the Arnhemland Progress Association illustrates the extent to which factors affecting supply of and demand for food lie outside the health sector and points to the need for an intersectoral policy on food and nutrition. PMID:1818653

  13. Amazon forests maintain consistent canopy structure and greenness during the dry season.

    PubMed

    Morton, Douglas C; Nagol, Jyoteshwar; Carabajal, Claudia C; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D; Vermote, Eric F; Harding, David J; North, Peter R J

    2014-02-13

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data. We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability. PMID:24499816

  14. Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season

    NASA Technical Reports Server (NTRS)

    Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.

    2014-01-01

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  15. Amazon forests maintain consistent canopy structure and greenness during the dry season.

    PubMed

    Morton, Douglas C; Nagol, Jyoteshwar; Carabajal, Claudia C; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D; Vermote, Eric F; Harding, David J; North, Peter R J

    2014-02-13

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data. We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  16. Urban emission hot spots as sources for remote aerosol deposition

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Lawrence, M. G.; Tost, H.; Kerkweg, A.; Jöckel, P.; Borrmann, S.

    2012-01-01

    Large point sources such as major population centers (MPCs) emit pollutants which can be deposited nearby or transported over long distances before deposition. We have used tracer simulations of aerosols emitted from MPCs worldwide to assess the fractions which are deposited at various distances away from their source location. Considering only source location, prevailing meteorology, and the aerosol size and solubility, we show that fine aerosol particles have a high potential to pollute remote regions. About half of the emitted mass of aerosol tracers with an ambient diameter ≤1.0 μm is typically deposited in regions more than 1000 km away from the source. Furthermore, using the Köppen-Geiger climate classification to categorize the sources into various climate classes we find substantial differences in the deposition potential between these classes. Tracers originating in arid regions show the largest remote deposition potentials, with values more than doubled compared to the smallest potentials from tracers in tropical regions. Seasonal changes in atmospheric conditions lead to variations in the remote deposition potentials. On average the remote deposition potentials in summer correspond to about 70-80% of the values in winter, with a large spread among the climate classes. For tracers from tropical regions the summer remote deposition values are only about 31% of the winter values, while they are about 95% for tracers from arid regions.

  17. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K.; Gusmeroli, A.; Grosse, G.; Jones, B. M.; Zhang, T.; Parsekian, A. D.; Zebker, H. A.

    2013-12-01

    Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on arctic tundra lowlands, but their present-day dynamic states are seldom investigated. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located near Prudhoe Bay, Alaska where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area analyzed exhibited seasonal thaw settlement of 3-4 cm. However, four of the DTLBs analyzed exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10-35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on arctic coastal lowlands.

  18. Decomposing the seasonal fitness decline.

    PubMed

    Öberg, Meit; Pärt, Tomas; Arlt, Debora; Laugen, Ane T; Low, Matthew

    2014-01-01

    Seasonal fitness declines are common, but the relative contribution of different reproductive components to the seasonal change in the production of reproductive young, and the component-specific drivers of this change is generally poorly known. We used long-term data (17 years) on breeding time (i.e. date of first egg laid) in northern wheatears (Oenanthe oenanthe) to investigate seasonal reproductive patterns and estimate the relative contributions of reproductive components to the overall decline in reproduction, while accounting for factors potentially linked to seasonal declines, i.e. individual and habitat quality. All reproductive components-nest success (reflecting nest predation rate), clutch size, fledging success and recruitment success-showed a clear decline with breeding time whereas subsequent adult survival did not. A non-linear increase in nest predation rate caused nest success to decline rapidly early in the season and level off at ~80% success late in the breeding season. The combined seasonal decline in all reproductive components caused the mean production of recruits per nest to drop from around 0.7-0.2; with the relative contribution greatest for recruitment success which accounted for ~50% of the decline. Our data suggest that changing environmental conditions together with effects of nest predation have strong effects on the seasonal decline in fitness. Our demonstration of the combined effects of all reproductive components and their relative contribution shows that omitting data from later stages of breeding (recruitment) can greatly underestimate seasonal fitness declines. PMID:24013387

  19. Fluid-Injection Tool for Inaccessible Areas

    NASA Technical Reports Server (NTRS)

    Myers, J. E.

    1982-01-01

    New tool injects liquids or gases into narrow crevices. Can be used to apply caulking and waterproofing compounds, adhesives, detergent, undercoats and oil and to aerate hard-to-reach places. Nozzle can reach into opening 1/32 inch wide to depth of more than 4 inches. Although thin, device is rigid and strong.

  20. Torque wrench allows readings from inaccessible locations

    NASA Technical Reports Server (NTRS)

    De Barnardo, M.

    1966-01-01

    Torque wrench with an adjustable drive shaft permits indicator to remain in view when used on sections of equipment with limited access. The shaft is capable of protruding from either side of the wrench head by means of spring loaded balls.

  1. The inaccessibility of seat belts in taxicabs.

    PubMed Central

    Davis, R M

    1989-01-01

    The accessibility of seat belts was determined in a total sample of 200 taxicabs waiting to pick up passengers at eight city airports. A rear seat belt was "accessible" (able to be fastened within 10 seconds) in 111 (55.5 per cent) taxicabs. The proportion varied by city from 16.0 per cent (New York City) to 96.0 per cent (Minneapolis-St. Paul) and was higher for taxicabs in cities covered by mandatory state seat belt legislation. PMID:2916721

  2. The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient.

    PubMed

    Blume-Werry, Gesche; Wilson, Scott D; Kreyling, Juergen; Milbau, Ann

    2016-02-01

    There is compelling evidence from experiments and observations that climate warming prolongs the growing season in arctic regions. Until now, the start, peak, and end of the growing season, which are used to model influences of vegetation on biogeochemical cycles, were commonly quantified using above-ground phenological data. Yet, over 80% of the plant biomass in arctic regions can be below ground, and the timing of root growth affects biogeochemical processes by influencing plant water and nutrient uptake, soil carbon input and microbial activity. We measured timing of above- and below-ground production in three plant communities along an arctic elevation gradient over two growing seasons. Below-ground production peaked later in the season and was more temporally uniform than above-ground production. Most importantly, the growing season continued c. 50% longer below than above ground. Our results strongly suggest that traditional above-ground estimates of phenology in arctic regions, including remotely sensed information, are not as complete a representation of whole-plant production intensity or duration, as studies that include root phenology. We therefore argue for explicit consideration of root phenology in studies of carbon and nutrient cycling, in terrestrial biosphere models, and scenarios of how arctic ecosystems will respond to climate warming.

  3. Using Remote Sensing to Understand Climate Variability

    NASA Astrophysics Data System (ADS)

    Green, J.; Gentine, P.

    2014-12-01

    While a major source of uncertainty in global climate model predictions is due to the coarseness of their resolution, a significant amount of error is also generated due to the lack of information regarding the interactions between atmospheric and land parameters over time. When the behavior of a certain parameter is not clearly understood it is frequently estimated as one specific value while in reality it may vary with time and space. Remote sensing is allowing researchers to better estimate each of these parameters so one can see how they change with time. This study is an effort to improve our knowledge of the inter-annual and seasonal variability in radiation, water and the carbon cycle using remote sensing products on a global scale. By examining monthly data over a multi-year period (data parameter and source are listed in Table 1) for fluorescence, groundwater, net radiation, vegetation indices, precipitation, soil moisture and evapotranspiration, we should be able to determine the behavior and interactions between these parameters and better understand how they vary together seasonally, annually and year to year. With this information it is our hope that global climate models can be improved to better understand what is occurring climatologically in the present as well as more accurately make predictions about future conditions. Table 1. Parameters and Sources Parameter Source Fluorescence Greenhouse gases Observing SATellite (GOSAT)1 Groundwater Gravity Recovery and Climate Experiment (GRACE) Net Radiation Clouds and the Earth's Radiant Energy System (CERES) Vegetation Indices Moderate Resolution Imaging Spectroradiometer (MODIS)/ Multiangle Implementation of Atmospheric Correction (MAIAC) Precipitation Global Precipitation Climatology Project (GPCP) Soil Moisture Water Cycle Mutimission Observation Strategy (WACMOS) Evapotranspiration Global Land-surface Evaporation: the Amsterdam Methodology (GLEAM) 1In future work, we hope to use fluorescence data from

  4. Applications of Remote Sensing to Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Seielstad, G. A.; Laguette, S.; Seelan, S.; Lawrence, R.; Henry, M.; Maynard, C.; Dalsted, K.; Rattling Leaf, J.

    2001-05-01

    The Upper Midwest Aerospace Consortium (UMAC) has changed agricultural practices in the following ways: (1) farmers and ranchers have become partners with, not clients of, researchers; (2) experiments are carried out in the field rather than on small experimental plots; (3) the field is considered an agro-ecosystem, with all the complexities of multiple interactions, rather than attempting to isolate certain parameters and vary only a few; (4) both economic benefit to the producer and sound environmental stewardship for society are achievable. This approach has revealed that information is as significant an input to farm or ranch management as seeds, fertilizers, irrigation, and tillage. Accurate, timely information equips producers with the ability to make decisions during a growing season that optimize the yield at harvest time. An invaluable source of in-season information is imagery acquired from sensors on satellites or aircraft. In addition to sensing reflected sunlight in wavebands outside the visible, remote sensing's overview also reveals anomalous patterns in the vegetation cover that are difficult to spot on the ground. Anomalies can be caused by weeds, disease, water stress, inadequate nutrients, or other causes. Often, anomalies must be detected early or they spread too quickly to be addressed. The paper will demonstrate how remote sensing has been applied to (1) define management zones in farm fields, (2) prescribe variable rate applications of fertilizer, (3) detect pest infestations, and (4) manage cattle grazing according to forage available. The applications were possible because data were processed within 4-5 days of acquisition by the satellite, and then delivered by high-bandwidth satellite links to farmers, ranchers, and tribal government officials in minimal transit time. The applications research described was part of NASA's Synergy Program.

  5. Seasonal trends in summer diet of the lapland longspur near Barrow Alaska USA

    USGS Publications Warehouse

    Custer, T.W.; Pitelka, F.A.

    1978-01-01

    Contents of lapland longspur [Calcarius lapponicus] stomachs and esophagi were sampled near Barrow, Alaska [USA], from May-Aug. in 1969, 1971, 1972 and 1973. Data from stomach contents were corrected for differential digestion of prey items. Longspurs shifted seasonally from larval to adult arthropods and back to larvae, responding to changes in the abundance of these prey items. Seeds were a vital supplementary food in late May and Aug., when arthropods were scarce or inaccessible. One species of crane fly was the major dietary component for longspurs during June and July. Its high abundance and substantial dry weight per individual may contribute to the success of longspurs at Barrow. The diets of longspurs and 4 common shorebirds (Calidris spp.) at Barrow were similar in the range of prey items taken except for seeds and tenthredinid larvae. Their diets overlapped closely when feeding sites were restricted because of snow and surface water (chiefly at the beginning of the season) and when prey was abundant in early to mid-July. Competition is possible early in the season but unlikely in July when surface insects are very abundant. Habitat separation and the advantages of fringillid form apparently contribute to the success of longspors in a tundra community of insectivores dominated by shorebirds.

  6. Wetlands Evapotranspiration Using Remotely Sensed Solar Radiation

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Myers, D. A.; Anderson, M. C.

    2001-12-01

    The application of remote sensing methods to estimate evapotranspiration has the advantage of good spatial resolution and excellent spatial coverage, but may have the disadvantage of infrequent sampling and considerable expense. The GOES satellites provide enhanced temporal resolution with hourly estimates of solar radiation and have a spatial resolution that is significantly better than that available from most ground-based pyranometer networks. As solar radiation is the primary forcing variable in wetland evapotranspiration, the opportunity to apply GOES satellite data to wetland hydrologic analyses is great. An accuracy assessment of the remote sensing product is important and the subsequent validation of the evapotranspiration estimates are a critical step for the use of this product. A wetland field experiment was conducted in the Paynes Prairie Preserve, North Central Florida during a growing season characterized by significant convective activity. Evapotranspiration and other surface energy balance components of a wet prairie community dominated by Panicum hemitomon (maiden cane), Ptilimnium capillaceum (mock bishop's weed), and Eupatorium capillifolium (dog fennel) were investigated. Incoming solar radiation derived from GOES-8 satellite observations, in combination with local meteorological measurements, were used to model evapotranspiration from a wetland. The satellite solar radiation, derived net radiation and estimated evapotranspiration estimates were compared to measured data at 30-min intervals and daily times scales.

  7. Remote robotic countermine systems

    NASA Astrophysics Data System (ADS)

    Wells, Peter

    2010-04-01

    QinetiQ North America (QNA) has approximately 27 years experience in the mine/countermine mission area. Our expertise covers mine development, detection, and neutralization and has always been intertwined with deployment of remote robotic systems. Our countermine payload systems have been used to detect limpet mines on ship hulls, antiassault mines in shallow water and littoral zones and currently for clearance and render safe of land-based routes. In our talk, we will address the challenges encountered in addressing the ongoing countermine mission over a diverse range of operational scenarios, environmental conditions and strategic priorities.

  8. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Whitmore, R. A., Jr. (Principal Investigator)

    1980-01-01

    A syllabus and training materials prepared and used in a series of one-day workshops to introduce modern remote sensing technology to selected groups of professional personnel in Vermont are described. Success in using computer compatible tapes, LANDSAT imagery and aerial photographs is reported for the following applications: (1) mapping defoliation of hardwood forests by tent caterpillar and gypsy moth; (2) differentiating conifer species; (3) mapping ground cover of major lake and pond watersheds; (4) inventorying and locating artificially regenerated conifer forest stands; (5) mapping water quality; (6) ascertaining the boat population to quantify recreational activity on lakes and waterways; and (7) identifying potential aquaculture sites.

  9. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  10. Applications of Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jacha, Charlene

    2015-04-01

    Remote sensing is one of the best ways to be able to monitor and see changes in the Earth. The use of satellite images in the classroom can be a practical way to help students understand the importance and use of remote sensing and Geographic Information Systems (GIS). It is essential in helping students to understand that underlying individual data points are converted to a broad spatial form. The use of actual remote sensing data makes this more understandable to the students e.g. an online map of recent earthquake events, geologic maps, satellite imagery. For change detection, images of years ten or twenty years apart of the same area can be compared and observations recorded. Satellite images of different places can be available on the Internet or from the local space agency. In groups of mixed abilities, students can observe changes in land use over time and also give possible reasons and explanations to those changes. Students should answer essential questions like, how does satellite imagery offer valuable information to different faculties e.g. military, weather, environmental departments and others. Before and after images on disasters for example, volcanoes, floods and earthquakes should be obtained and observed. Key questions would be; how can scientists use these images to predict, or to change the future outcomes over time. How to manage disasters and how the archived images can assist developers in planning land use around that area in the future. Other material that would be useful includes maps and aerial photographs of the area. A flight should be organized over the area for students to acquire aerial photographs of their own; this further enhances their understanding of the concept "remote sensing". Environmental issues such as air, water and land pollution can also be identified on satellite images. Key questions for students would include causes, effects and possible solutions to the problem. Conducting a fieldwork exercise around the area would

  11. REMOTE CONTROLLED SWITCHING DEVICE

    DOEpatents

    Hobbs, J.C.

    1959-02-01

    An electrical switching device which can be remotely controlled and in which one or more switches may be accurately operated at predetermined times or with predetermined intervening time intervals is described. The switching device consists essentially of a deck, a post projecting from the deck at right angles thereto, cam means mounted for rotation around said posts and a switch connected to said deck and actuated by said cam means. Means is provided for rotating the cam means at a constant speed and the switching apparatus is enclosed in a sealed container with external adjusting means and electrical connection elements.

  12. Remote Data Access with IDL

    NASA Technical Reports Server (NTRS)

    Galloy, Michael

    2013-01-01

    A tool based on IDL (Interactive Data Language) and DAP (Data Access Protocol) has been developed for user-friendly remote data access. A difficulty for many NASA researchers using IDL is that often the data to analyze are located remotely and are too large to transfer for local analysis. Researchers have developed a protocol for accessing remote data, DAP, which is used for both SOHO and STEREO data sets. Server-side side analysis via IDL routine is available through DAP.

  13. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.

    1976-01-01

    The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.

  14. Regional-seasonal weather forecasting

    SciTech Connect

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  15. Seasonality in submesoscale turbulence

    PubMed Central

    Callies, Jörn; Ferrari, Raffaele; Klymak, Jody M.; Gula, Jonathan

    2015-01-01

    Although the strongest ocean surface currents occur at horizontal scales of order 100 km, recent numerical simulations suggest that flows smaller than these mesoscale eddies can achieve important vertical transports in the upper ocean. These submesoscale flows, 1–100 km in horizontal extent, take heat and atmospheric gases down into the interior ocean, accelerating air–sea fluxes, and bring deep nutrients up into the sunlit surface layer, fueling primary production. Here we present observational evidence that submesoscale flows undergo a seasonal cycle in the surface mixed layer: they are much stronger in winter than in summer. Submesoscale flows are energized by baroclinic instabilities that develop around geostrophic eddies in the deep winter mixed layer at a horizontal scale of order 1–10 km. Flows larger than this instability scale are energized by turbulent scale interactions. Enhanced submesoscale activity in the winter mixed layer is expected to achieve efficient exchanges with the permanent thermocline below. PMID:25897832

  16. Managing Meetings...Remotely

    NASA Technical Reports Server (NTRS)

    Woodward, Hugh

    2005-01-01

    Remote meetings are best for updates and information sharing, but it is possible to effectively facilitate decisions with a little planning. Generally, the meeting leader needs to clearly state the proposed decision and then separately poll each participant for concurrence. Normally, there will be a range of responses, requiring the facilitator to restate the proposal and repeat the process. Several iterations may be required before a consensus is achieved. I usually confirm decisions by restating the conclusion as it will appear in the meeting notes and asking the participants to express any objections. Gaining commitment to follow-up actions is never easy, of course, but tends to be particularly tricky in remote meetings. The ideal solution is to use collaboration software with a whiteboard as a means of recording the follow-up actions and responsibilities. (A Word or Excel document viewed through NetMeeting works equally well.) But if the meeting is being conducted without collaboration software, the leader must review each follow-up action explicitly, even painstakingly. I generally note follow-up actions throughout the meeting and use the last few minutes to confirm and finalize. I read each action and name the person I think owns the responsibility. When the person accepts, I validate by asking for a completion date. All the normal rules for assigning follow-up actions apply, of course. One, and only one, person must be responsible for each action, and assigning an action to somebody not present is akin to assigning it to nobody.

  17. Remotely operated pipe connector

    DOEpatents

    Josefiak, Leonard J.; Cramer, Charles E.

    1988-01-01

    An apparatus for remotely assembling and disassembling a Graylock type coctor between a pipe and a closure for the pipe includes a base and a receptacle on the base for the closure. The pipe is moved into position vertically above the closure by a suitable positioning device such that the flange on the pipe is immediately adjacent and concentric with the flange on the closure. A moving device then moves two semicircular collars from a position free of the closure to a position such that the interior cam groove of each collar contacts the two flanges. Finally, a tensioning device automatically allows remote tightening and loosening of a nut and bolt assembly on each side of the collar to cause a seal ring located between the flanges to be compressed and to seal the closure. Release of the pipe and the connector is accomplished in the reverse order. Preferably, the nut and bolt assembly includes an elongate shaft portion on which a removable sleeve is located.

  18. Leaf ontogeny and demography explain photosynthetic seasonality in Amazon evergreen forests

    NASA Astrophysics Data System (ADS)

    Wu, J.; Albert, L.; Lopes, A. P.; Restrepo-Coupe, N.; Hayek, M.; Wiedemann, K. T.; Guan, K.; Stark, S. C.; Prohaska, N.; Tavares, J. V.; Marostica, S. F.; Kobayashi, H.; Ferreira, M. L.; Campos, K.; Silva, R. D.; Brando, P. M.; Dye, D. G.; Huxman, T. E.; Huete, A. R.; Nelson, B. W.; Saleska, S. R.

    2015-12-01

    Photosynthetic seasonality couples the evolutionary ecology of plant leaves to large-scale rhythms of carbon and water exchanges that are important feedbacks to climate. However, the extent, magnitude, and controls on photosynthetic seasonality of carbon-rich tropical forests are poorly resolved, controversial in the remote sensing literature, and inadequately represented in most earth system models. Here we show that ecosystem-scale phenology (measured by photosynthetic capacity), rather than environmental seasonality, is the primary driver of photosynthetic seasonality at four Amazon evergreen forests spanning gradients in rainfall seasonality, forest composition, and flux seasonality. We further demonstrate that leaf ontogeny and demography explain most of this ecosystem phenology at two central Amazon evergreen forests, using a simple leaf-cohort canopy model that integrates eddy covariance-derived CO2 fluxes, novel near-surface camera-detected leaf phenology, and ground observations of litterfall and leaf physiology. The coordination of new leaf growth and old leaf divestment (litterfall) during the dry season shifts canopy composition towards younger leaves with higher photosynthetic efficiency, driving large seasonal increases (~27%) in ecosystem photosynthetic capacity. Leaf ontogeny and demography thus reconciles disparate observations of forest seasonality from leaves to eddy flux towers to satellites. Strategic incorporation of such whole-plant coordination processes as phenology and ontogeny will improve ecological, evolutionary and earth system theories describing tropical forests structure and function, allowing more accurate representation of forest dynamics and feedbacks to climate in earth system models.

  19. Spatial and seasonal variability of carbonaceous aerosol across Italy

    NASA Astrophysics Data System (ADS)

    Sandrini, Silvia; Fuzzi, Sandro; Piazzalunga, Andrea; Prati, Paolo; Bonasoni, Paolo; Cavalli, Fabrizia; Bove, Maria Chiara; Calvello, Mariarosaria; Cappelletti, David; Colombi, Cristina; Contini, Daniele; de Gennaro, Gianluigi; Di Gilio, Alessia; Fermo, Paola; Ferrero, Luca; Gianelle, Vorne; Giugliano, Michele; Ielpo, Pierina; Lonati, Giovanni; Marinoni, Angela; Massabò, Dario; Molteni, Ugo; Moroni, Beatrice; Pavese, Giulia; Perrino, Cinzia; Perrone, Maria Grazia; Perrone, Maria Rita; Putaud, Jean-Philippe; Sargolini, Tiziana; Vecchi, Roberta; Gilardoni, Stefania

    2014-12-01

    This paper analyses elemental (EC), organic (OC) and total carbon (TC) concentration in PM2.5 and PM10 samples collected over the last few years within several national and European projects at 37 remote, rural, urban, and traffic sites across the Italian peninsula. The purpose of the study is to obtain a picture of the spatial and seasonal variability of these aerosol species in Italy, and an insight into sources, processes and effects of meteorological conditions. OC and EC showed winter maxima and summer minima at urban and rural locations and an opposite behaviour at remote high altitude sites, where they increase during the warm period due to the rising of the Planetary Boundary Layer (PBL). The seasonal averages of OC are higher during winter compared to summer at the rural sites in the Po Valley (from 1.4 to 3.5 times), opposite to what usually occurs at rural locations, where OC increases during the warm period. This denotes the marked influence of urban areas on the surrounding rural environment in this densely populated region. The different types of sites exhibit marked differences in the average concentrations of carbonaceous aerosol and OC/EC ratio. This ratio is less sensitive to atmospheric processing than OC and EC concentrations, and hence more representative of different source types. Remote locations are characterised by the lowest levels of OC and especially EC, with OC/EC ratios ranging from 13 to 20, while the maximum OC and EC concentrations are observed at road-traffic influenced urban sites, where the OC/EC ratio ranges between 1 and 3. The highest urban impacts of OC and EC relative to remote and rural background sites occur in the Po Valley, especially in the city of Milan, which has the highest concentrations of PM and TC and low values of the OC/EC ratio.

  20. The application of remote sensing to the development and formulation of hydrologic planning models

    NASA Technical Reports Server (NTRS)

    Fowler, T. R.; Castruccio, P. A.; Loats, H. L., Jr.

    1977-01-01

    The development of a remote sensing model and its efficiency in determining parameters of hydrologic models are reviewed. Procedures for extracting hydrologic data from LANDSAT imagery, and the visual analysis of composite imagery are presented. A hydrologic planning model is developed and applied to determine seasonal variations in watershed conditions. The transfer of this technology to a user community and contract arrangements are discussed.

  1. Improving streamflow prediction using remotely-sensed soil moisture and snow depth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The monitoring of both cold and warm season hydrologic processes in headwater watersheds is critical for accurate water resource monitoring in many alpine regions. This work presents a new method that explores the simultaneous use of remotely sensed surface soil moisture (SM) and snow depth (SD) ret...

  2. Seasonal canopy reflectance patterns of wheat, sorghum and soybean. [Kansas

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.

    1974-01-01

    The author has identified the following significant results. Reflectance characteristics of agronomic crops are of major importance in the energy exchanges of a surface. In addition, unique reflectance patterns may be an aid in crop identification by means of remote sensing. This study suggests that the ratio of the reflectances of the 545-nm to to the 655-nm wavebands provides information about the viewed surface, regardless of the crop. The reflectance ratio is less than unity early and late in the growing season. For all crops studied, the ratio closely followed crop growth and development and appeared to be more desirable than the near-infrared reflectance as an index of growth.

  3. Remote Sensing and the Environment.

    ERIC Educational Resources Information Center

    Osmers, Karl

    1991-01-01

    Suggests using remote sensing technology to help students make sense of the natural world. Explains that satellite information allows observation of environmental changes over time. Identifies possible student projects based on remotely sensed data. Recommends obtaining the assistance of experts and seeking funding through effective project…

  4. Remote sensing for cotton farming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of remote sensing technologies in agriculture began with the use of aerial photography to identify cotton root rot in the late 1920s. From then on, agricultural remote sensing has developed gradually until the introduction of precision farming technologies in the late 1980s and biotechno...

  5. A Remote-Sensing Mission

    ERIC Educational Resources Information Center

    Hotchkiss, Rose; Dickerson, Daniel

    2008-01-01

    Sponsored by NASA and the JASON Education Foundation, the remote Sensing Earth Science Teacher Education Program (RSESTeP) trains teachers to use state-of-the art remote-sensing technology with the idea that participants bring back what they learn and incorporate it into Earth science lessons using technology. The author's participation in the…

  6. THE REMOTE SENSING DATA GATEWAY

    EPA Science Inventory

    The EPA Remote Sensing Data Gateway (RSDG) is a pilot project in the National Exposure Research Laboratory (NERL) to develop a comprehensive data search, acquisition, delivery and archive mechanism for internal, national and international sources of remote sensing data for the co...

  7. Remote sensing of earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU; Yueh, Herng-Aung; Shin, Robert T.

    1991-01-01

    Abstracts from 46 refereed journal and conference papers are presented for research on remote sensing of earth terrain. The topics covered related to remote sensing include the following: mathematical models, vegetation cover, sea ice, finite difference theory, electromagnetic waves, polarimetry, neural networks, random media, synthetic aperture radar, electromagnetic bias, and others.

  8. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Johnson, J. D.; Foster, K. E.

    1977-01-01

    Descriptions of projects engaged by the Applied Remote Sensors Program in the state of Arizona are contained in an annual report for the fiscal year 1976-1977. Remote sensing techniques included thermal infrared imagery in analog and digital form and conversion of data into thermograms. Delineation of geologic areas, surveys of vegetation and inventory of resources were also presented.

  9. Remote Authentication: The Obvia Solution.

    ERIC Educational Resources Information Center

    Eckley, Tami-Jo

    1999-01-01

    This article focuses on Obvia Corporation, a New York-based company that offers remote data access (RDA) through a server software system allowing for an easy, controllable, cost-effective management solution to the remote access problem. Using Obvia's RDA service, librarians can focus on administrative and professional decisions and spend more…

  10. Seasonality of births in Croatia.

    PubMed

    Polasek, Ozren; Kolcić, Ivana; Vorko-Jović, Ariana; Kern, Josipa; Rudan, Igor

    2005-06-01

    The aim of this paper was to investigate seasonal fluctuations of the number of births in Croatia. Vital registration data from the years 1970-2002 was used for analysis of the quarterly data (from the years 1970-1997), and monthly data (from the years 1998-2002). Both data sets were smoothed, using seasonal variation removal for quarterly data, and T4253H smoothing for monthly data. Edwards test and Ratchet circular scan tests were used in analysis. The results showed an increase in the summer birth proportion and decrease in the spring birth proportion, distorted during the wartime period (1991-1995). Monthly analysis reveals highest birth proportion in Croatia during July-September period, with peak date moving towards the end of summer, and reaching stability in the beginning of September during the years 2000-2002. This presumes highest conception rate during the beginning of the Christmas holiday season. Secondary peak in January was found in some years, which presumably sets second period of increased conception rate into the Easter holiday season, supporting the observation of the holiday-related birth peaks. Both quarterly and monthly data indicate a birth pattern that does not resemble either "European", or "American" seasonal pattern. Regional analysis showed lack of seasonality in the capital city of Zagreb and either intermittent or stable seasonality pattern in the rest of the country.

  11. Remote diagnosis server

    NASA Technical Reports Server (NTRS)

    Deb, Somnath (Inventor); Ghoshal, Sudipto (Inventor); Malepati, Venkata N. (Inventor); Kleinman, David L. (Inventor); Cavanaugh, Kevin F. (Inventor)

    2004-01-01

    A network-based diagnosis server for monitoring and diagnosing a system, the server being remote from the system it is observing, comprises a sensor for generating signals indicative of a characteristic of a component of the system, a network-interfaced sensor agent coupled to the sensor for receiving signals therefrom, a broker module coupled to the network for sending signals to and receiving signals from the sensor agent, a handler application connected to the broker module for transmitting signals to and receiving signals therefrom, a reasoner application in communication with the handler application for processing, and responding to signals received from the handler application, wherein the sensor agent, broker module, handler application, and reasoner applications operate simultaneously relative to each other, such that the present invention diagnosis server performs continuous monitoring and diagnosing of said components of the system in real time. The diagnosis server is readily adaptable to various different systems.

  12. Medical Images Remote Consultation

    NASA Astrophysics Data System (ADS)

    Ferraris, Maurizio; Frixione, Paolo; Squarcia, Sandro

    Teleconsultation of digital images among different medical centers is now a reality. The problem to be solved is how to interconnect all the clinical diagnostic devices in a hospital in order to allow physicians and health physicists, working in different places, to discuss on interesting clinical cases visualizing the same diagnostic images at the same time. Applying World Wide Web technologies, the proposed system can be easily used by people with no specific computer knowledge providing a verbose help to guide the user through the right steps of execution. Diagnostic images are retrieved from a relational database or from a standard DICOM-PACS through the DICOM-WWW gateway allowing connection of the usual Web browsers to DICOM applications via the HTTP protocol. The system, which is proposed for radiotherapy implementation, where radiographies play a fundamental role, can be easily converted to different field of medical applications where a remote access to secure data are compulsory.

  13. REMOTE CONTROL MANIPULATOR

    DOEpatents

    Coffman, R.T.

    1962-11-27

    The patent covers a remote-control manipulator in which a tool is carried on a tube at an end thereof angularly related to the main portion of the tube and joined thereto by a curved section. The main portion of the tube is mounted for rotation and axial shifting in a wall separating safe and dangerous areas. The tool is actuated to grasp and release an object in the dangerous area by means of a compound shaft extending through the tube, the shaft having a flexible section extending through the curved section of the tube. The tool is moved about in the dangerous area by rotation and axial movement of the main portion of the tube. Additional movement of the tool is obtained through axial shifting of the shaft with respect to the tube through which it extends. (AEC)

  14. Remote sensing data handbook

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A digest of information on remote sensor data systems is given. It includes characteristics of spaceborne sensors and the supportive systems immediately associated therewith. It also includes end-to-end systems information that will assist the user in appraising total data system impact produced by a sensor. The objective is to provide a tool for anticipating the complexity of systems and potential data system problems as new user needs are generated. Materials in this handbook span sensor systems from the present to those planned for use in the 1990's. Sensor systems on all planned missions are presented in digest form, condensed from data as available at the time of compilation. Projections are made of anticipated systems.

  15. Polarization in remote sensing

    NASA Astrophysics Data System (ADS)

    Egan, Walter G.

    1992-12-01

    A review of the experimental and theoretical aspects of optical polarization is presented with definitions of the observed polarization characteristics and relationship to the Stokes parameters. A typical terrestrial soil polarization curve is characterized and related to the current theoretical knowledge. This polarization relationship is extended to cover planetary surfaces, such as the Moon, and Mars and terrestrial surfaces composed of farm areas and water surfaces. Instrumentation for imaging and non-imaging polarimetry are described including the use of focal plane arrays. Recent Space Shuttle polarimetric observations of the region around the Island of Hawaii and New Madrid, Missouri are described, as well as concurrent cloud and haze observations. Polarization is a sensitive indicator of cloud particle size distributions, soil texture, farm crops, sea state and atmospheric aerosols and haze. Cloud particle size distributions are uniquely characterized by polarization, and this cannot be achieved with photometry. An extensive bibliography of polarization in remote sensing is appended.

  16. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  17. Commerical Remote Sensing Data Contract

    USGS Publications Warehouse

    ,

    2005-01-01

    The U. S. Geological Survey's (USGS) Commercial Remote Sensing Data Contracts (CRSDCs) provide government agencies with access to a broad range of commercially available remotely sensed airborne and satellite data. These contracts were established to support The National Map partners, other Federal Civilian agency programs, and Department of Defense programs that require data for the United States and its territories. Experience shows that centralized procurement of remotely sensed data leads to considerable cost savings to the Federal government through volume discounts, reduction of redundant contract administrative costs, and avoidance of duplicate purchases. These contracts directly support the President's Commercial Remote Sensing Space Policy, signed in 2003, by providing a centralized mechanism for civil agencies to acquire commercial remote sensing products to support their mission needs in an efficient and coordinated way. CRSDC administration is provided by the USGS Mid-Continent Mapping Center in Rolla, Missouri.

  18. Mississippi Sound Remote Sensing Study

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  19. Remote welding equipment for TPX

    SciTech Connect

    Silke, G.W.; Junge, R.

    1995-12-31

    Remote welding equipment and techniques are necessary for maintenance of the Tokamak Physics Experiment (TPX) Plasma Facing Components (PFCs). The processes identified for this application includes inside diameter (i.d.) and outside diameter (o.d.) Gas Tungsten Arc (GTA) welding of titanium and stainless steel alloys. Welding equipment developed for this application includes some unique features due to the specialized environment of the TPX vessel. Remote features of this equipment must include the ability to acquire and align the parts being welded, perform all welding operations and visually inspect the weld area. Designs for weld heads require the integration of industry proven hardware with the special features include compact size, remote manipulation, remote clamping and alignment, remote vision, full inert gas coverage, arc voltage control, wire feed, programmable weld schedules and failure recovery.

  20. Remote control for motor vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)

    1984-01-01

    A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.

  1. Ozone measurements in Amazonia: Dry season versus wet season

    SciTech Connect

    Kirchhoff, V.W.J.H. ); Da Silva, I.M.O. ); Browell, E.V. )

    1990-09-20

    Observations were made almost continuously at the surface, and in addition, 20 ozone profiles were obtained in the troposphere and stratosphere. These ozone measurements were part of a field expedition to the Brazilian Amazon region, the ABLE 2B mission, a joint American-Brazilian effort to measure local concentrations of several species relevant to atmospheric chemistry. The time period of this expedition was April-May 1987, during the local wet season. For the surface ozone data the measurement technique sued was UV absorption. Ozone profiles were obtained with electrochemical concentration cell sondes, launched on balloons. The major site of operation was set up near Manaus (3{degree}S, 60{degree}W). The results are presented and compared with a previous dry season experiment. Surface ozone mixing ratios show diurnal variations that have maxima in the daytime and minima at night. The diurnal maximum at noontime, considered very low (12 ppbv) in the dry season was even lower in this wet season period (6 ppbv). A significant difference can be seen between clearing and forest data, and between different height levels above the surface, showing the existence of a large positive gradient of ozone with height. The ozone profiles in the troposphere show that there is less ozone not only at the surface but in the whole troposphere, with the wet season average showing between 6 and 12 ppbv less ozone. This difference is much smaller in the stratosphere, where there is slightly more ozone in the region of the peak, during the wet season. An isolated shower or thunderstorm in the dry season could produce transient ozone variations (mixing ratio increases or decreases) that were not observed in the wet season.

  2. Remote sensing of water and nitrogen stress in broccoli

    NASA Astrophysics Data System (ADS)

    Elsheikha, Diael-Deen Mohamed

    Remote sensing is being used in agriculture for crop management. Ground based remote sensing data acquisition system was used for collection of high spatial and temporal resolution data for irrigated broccoli crop. The system was composed of a small cart that ran back and forth on a rail system that was mounted on a linear move irrigation system. The cart was equipped with a sensor that had 4 discrete wavelengths; 550 nm, 660 nm, 720 nm, and 810 nm, and an infrared thermometer, all had 10 nm bandwidth. A global positioning system was used to indicate the cart position. The study consisted of two parts; the first was to evaluate remotely sensed reflectance and indices in broccoli during the growing season, and determine whether remotely sensed indices or standard deviation of indices can distinguish between nitrogen and water stress in broccoli, and the second part of the study was to evaluate remotely sensed indices and standard deviation of remotely sensed indices in broccoli during daily changes in solar zenith angle. Results indicated that nitrogen was detected using Ratio Vegetation index, RVI, Normalized Difference Vegetation Index, NDVI, Canopy Chlorophyll Concentration Index, CCCI, and also using the reflectance in the Near-Infrared, NIR, bands. The Red reflectance band capability of showing stress was not as clear as the previous indices and bands reflectance. The Canopy Chlorophyll Concentration Index, CCCI, was the most successful index. The Crop Water Stress Index was able to detect water stress but it was highly affected by the solar zenith angle change along the day.

  3. Hydrological niche separation explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests

    NASA Astrophysics Data System (ADS)

    Xu, X.; Medvigy, D.; Powers, J. S.; Becknell, J. M.; Guan, K.

    2015-12-01

    Despite ample water supply, vegetation dynamics are subject to seasonal water stress in large fraction of tropical forests. These seasonally dry tropical forests (SDTFs) account for over 40% of tropical forests, harbor high biodiversity, have large potential carbon sink due to forest recovery from human disturbance and also play a critical role in global carbon budget and inter-annual variations. Plants in this biome display notably diverse responses to seasonal and inter-annual variations of water availability, especially inter-specific variations in canopy seasonality and biomass growth. Current process-based dynamic vegetation models cannot represent these diversities and are shown to perform poorly on simulating drought responses of tropical forests, calling into question of their ability to accurately simulate future changes in SDTFs. Accumulated field observations, suggest that hydrological niche separation driven by coordinated plant functional traits is associated with plants' performance under drought. Yet, it remains not clear whether the physiology-level hydrological niche separation can explain the ecosystem-level diversity observed in SDTFs. Here, we test the theory with a model-data fusion approach. We implemented a new plant hydrodynamic module that is able to track leaf water potential at sub-daily scale in ED2 model. We further incorporated a hydrological niche separation scheme based on a meta-data analysis of key functional traits in SDTFs. Simulated ecological patterns with and without hydrological niche separation were then compared with remote-sensing and long-term field observations from an SDTF site in Palo Verde, Costa Rica. Using several numerical experiments, we specifically examine the following questions: (i) Whether hydrological niche separation can explain the diversity in canopy seasonality and biomass growth? (ii) How important are the yet uncertain belowground functional traits, especially root profile in determining canopy

  4. DESI-Detection of early-season invasives (software-installation manual and user's guide version 1.0)

    USGS Publications Warehouse

    Kokaly, Raymond F.

    2011-01-01

    This report describes a software system for detecting early-season invasive plant species, such as cheatgrass. The report includes instructions for installing the software and serves as a user's guide in processing Landsat satellite remote sensing data to map the distributions of cheatgrass and other early-season invasive plants. The software was developed for application to the semi-arid regions of southern Utah; however, the detection parameters can be altered by the user for application to other areas.

  5. Characterizing the first historic eruption of Nabro, Eritrea: Insights from thermal and UV remote sensing

    NASA Astrophysics Data System (ADS)

    Sealing, Christine R.

    June 2011 saw the first historic eruption of Nabro volcano, one of an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Due to its remote location, little was known about this event in terms of the quantity of erupted products and the timing and mechanisms of their emplacement. Geographic isolation, previous quiescence and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study are limited. Using free, publicly available satellite data, I examined rates of lava effusion and SO2 emission in order to quantify the amount of erupted products and understand the temporal evolution of the eruption, as well as explore what information can be gleaned about eruption mechanisms using remote sensing data. These data revealed a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This gave way to a period of rapid effusion, producing a ˜17 km long lava flow, and a volume of ˜22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. The 2011 eruption of Nabro lasted nearly 6 weeks, and may be considered the second largest historic eruption in Africa. Work such as this highlights the importance of satellite remote sensing for studying and monitoring volcanoes, particularly those in remote regions that may be otherwise inaccessible.

  6. Remote Visualization and Remote Collaboration On Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).

  7. Computer-Aided Remote Driving

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    1994-01-01

    System for remote control of robotic land vehicle requires only small radio-communication bandwidth. Twin video cameras on vehicle create stereoscopic images. Operator views cross-polarized images on two cathode-ray tubes through correspondingly polarized spectacles. By use of cursor on frozen image, remote operator designates path. Vehicle proceeds to follow path, by use of limited degree of autonomous control to cope with unexpected conditions. System concept, called "computer-aided remote driving" (CARD), potentially useful in exploration of other planets, military surveillance, firefighting, and clean-up of hazardous materials.

  8. Delineating Floodplain in North Korea using Remote Sensing and Geographic Information System

    NASA Astrophysics Data System (ADS)

    Lim, J.; Lee, K. S.

    2015-12-01

    Korea has been divided into two countries after World War II. So environmental studies about North Korean are not easy and very limited. There were several flood damages every summer in North Korea since 1995, which induces lots of economic loss and agricultural production decrease. Delineating floodplain is indispensable to estimate the magnitude of flood damage and restore the flooded paddy field after unification. Remote Sensing (RS) can provide opportunity to study inaccessible area. In addition, flooding detection is possible. Several research groups study about flooding disaster using RS. Optical images and microwave images have been used in that field. Also, Digital topographic data have been used for flooding detection. Therefore, the purpose of this study is to investigate the land characteristics of floodplain by delineating floodplain in inaccessible North Korea using Landsat and digital topographic data. Landsat TM 5 images were used in this study. North Korea had severe flooding disaster since 1995. Among them 1995, 2007 and 2012 flooding are known for serious damages. Two Landsat images before and after flooding of each year were used to delineate floodplain. Study areas are Pyongyang City, Nampo City, North and South Hwanghae Province and South Pyongan Province. Floodplain are derived from overlaid classification image and flood-depth map. 1:25,000 scale digital topographic data were used to make flood-depth map. For land cover classification image enhancement and supervised classification with maximum likelihood classifier were used. Training areas were selected by visual interpretation using Daum-map which provides high resolution image of whole North Korea. The spatial characteristics of the floodplain were discussed based on floodplain map delineated in this study.

  9. Enabling Remote Activity: Using mobile technology for remote participation in geoscience fieldwork

    NASA Astrophysics Data System (ADS)

    Davies, Sarah; Collins, Trevor; Gaved, Mark; Bartlett, Jessica; Valentine, Chris; McCann, Lewis

    2010-05-01

    access was used to enable mobility-impaired students to take part in and complete a field course. This involved connecting the student in an accessible vehicle located close to the field site, via a wireless network, to a geologist in the field. The geologist worked alongside the general body of students and the field tutor as each geological site was investigated. Two-way communications allowed the student to guide the geologist to provide video panoramas of the area, to select areas of interest for further study and to obtain high resolution images of specific points. The students were able to work through the field activities alongside the rest of the student group. A collaborative groupwork trial (2007) was used to connect two groups of students; one in an accessible laboratory, the other at a field site. Traditionally, students collect data in the field and analyze it on return to the laboratory; this system proposes a more rapid collection and analysis procedure, with information being transmitted between sites with field and laboratory participants having their own distinct, significant roles within the learning activity. This project recently received an award at the 2008 Handheld Learning Conference and a HEFCE sponsored Open University Teaching Award. In contrast to the use of ‘virtual fieldwork' that aims to provide simulations or a resource for a student to use, the focus of this project is on how technology can be used to support actual fieldwork activities. This approach has been trialled now over three field seasons, with students using the system to remotely participate in fieldwork activities. Interviews with tutors and students have shown that this was perceived as valuable and allowed participants to achieve the learning objectives of the course alongside their peers. The challenges of remote fieldwork concern the co-ordination of students' activities, the integration of remote and field activities and practical issues of lightweight, easy

  10. A Remote Sensing-Based Land Surface Phenology Application for Cropland Monitoring in the Volta River Basin of West Africa

    NASA Astrophysics Data System (ADS)

    Abd Salam El Vilaly, Mohamed; El Vilaly, Audra; Badiane, Ousmane

    2015-04-01

    Understanding the complex feedbacks between climate, environmental change, and human activities is essential to the development of sustainable agricultural systems. A key aspect of crop production that shows immediate response to climate change is crop phenology, which defines the shape and progress of the growing season and is an integrator of all environmental factors controlling crop production. This research aims to characterize remote sensing-based land surface phenology of cropped areas and compare them to the actual crop growing seasons recorded by farmers: planting, emergences, flowering, fruiting, and harvest date. We use the 2000-2013 MODIS Terra 16-day record of vegetation index to extract 4 phenometrics (Start and Length of Growing Season, Date of Growing Season Peak, and the Growing Season Cumulative Signal). Most of these metrics are simple time-related phenometrics. A spatiotemporal phenological characterization of cropped/managed lands in the basin already shows distinct response patterns and trajectories along climate gradients. This permits us to monitor cropped lands and their responses to disturbances, such as drought, fire, flooding, and human activities. In turn, interviewing farmers in the basin and consulting their phenological records. This study will allow for robust validation of remote sensing LSP algorithms, and more crucially, will help characterize any remote sensing-based metrics that contrast with the actual biological phenophases of monitored crops. In terms of its larger significance, this study demonstrates the fundamental role that remote sensing plays in global agriculture in informing conservation and management practices.

  11. Remote direct memory access

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  12. Remote detection of OH

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. Stuart; Laudenslager, James B.

    1986-01-01

    This is a remote measurement technique utilizing a XeCl excimer laser tuned to the Q sub 21 1 rotational transition of the 0-0, A-X band at 307.847 nm. A wavemeter is under development to monitor, on a pulse-to-pulse basis, both the laser lineshape and absolute wavelength. Fluorescence is detected with a multiple Fabry-Perot type filter with a spectral resolution on the order of 0.001 nm. This is tuned to the overlapping Q sub 2 2, Q sub 12 2, Q sub 2 3, and Q sub 12 3 rotational transitions at 308.986 nm. The fringe pattern from this filter is imaged using a discrete, multi-anode detector which has a photon gain of 10 to the 8th power. This permits the simultaneous monitoring of OH fluorescence, N2 and/or O2 rotational Raman scattering and broadband background levels. The use of three etalons in series provides sufficient rejection, approx. greater than 10 to the 10th power, against the laser radiation only 1.2 nm away.

  13. remote sensor network

    NASA Astrophysics Data System (ADS)

    von Unold, Georg; Junker, Astrid; Altmann, Thomas

    2016-04-01

    High-throughput (HT) plant phenotyping systems enable the quantitative analysis of a variety of plant features in a fully automated fashion. The comprehensive phenomics infrastructure at IPK comprises three LemnaTec conveyor belt-based (plant-to-sensor) systems for the simultaneous analysis of large numbers of individual plants of different sizes. For monitoring of environmental conditions within the plant growth area and soil conditions in individual pots, highly modular and flexible remote sensing devices are required. We present the architecture of a wireless sensor network implemented in the HT plant phenotyping systems at IPK in the frame of the German Plant Phenotyping Network (DPPN). This system comprises 350 soil monitoring modules, each measuring water content, water matrix potential, temperature and electric conductivity. Furthermore small and large sensor platforms enable the continuous monitoring of environmental parameters such as incident photosynthetic active radiation, total radiation balance, relative humidity and CO2 concentration and more. Finally we present an introduction into data management and maintenance."

  14. REMOTE HANDLING ARRANGEMENTS

    DOEpatents

    Ginns, D.W.

    1958-04-01

    A means for handling remotely a sample pellet to be irradiated in a nuclear reactor is proposed. It is comprised essentially of an inlet tube extending through the outer shield of the reactor and being inclined so that its outer end is at a higher elevation than its inner end, an outlet tube extending through the outer shield being inclined so that its inner end is at a higher elevation than its outer end, the inner ends of these two tubes being interconnected, and a straight tube extending through the outer shield and into the reactor core between the inlet and outlet tubes and passing through the juncture of said inner ends. A rod-like member is rotatably and slidely operated within the central straight tube and has a receptacle on its inner end for receiving a sample pellet from the inlet tube. The rod member is operated to pick up a sample pellet from the inlet tube, carry the sample pellet into the irradiating position within the core, and return to the receiving position where it is rotated to dump the irradiated pellet into the outlet tube by which it is conveyed by gravity to the outside of the reactor. Stop members are provided in the inlet tube, and electrical operating devices are provided to control the sequence of the operation automatically.

  15. A Remote Radioactivity Experiment

    NASA Astrophysics Data System (ADS)

    Jona, Kemi; Vondracek, Mark

    2013-01-01

    Imagine a high school with very few experimental resources and limited budgets that prevent the purchase of even basic laboratory equipment. For example, many high schools do not have the means of experimentally studying radioactivity because they lack Geiger counters and/or good radioactive sources. This was the case at the first high school one of us (MV) worked at, and after talking with numerous colleagues we know this is still the case at many schools. What options are there then for physics teachers to allow their students to experimentally investigate certain characteristics of radioactivity, such as how distance affects the intensity of radiation coming from a radioactive source? There are computer simulations that can be run, or perhaps the teacher has a light sensor and tries to make an analogy between the intensity of light from a light bulb and the intensity of radiation from a radioactive source based on geometric arguments to get an inverse-square law. But for many there is no direct experimental option if one does not possess a Geiger counter and good radioactive sample. It is for that teacher and class of students that an online, remote radioactivity experiment was created.

  16. Remote maintenance monitoring system

    NASA Technical Reports Server (NTRS)

    Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)

    1992-01-01

    A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.

  17. Satellite observations of the role and impacts of dry season climate limitations on tropical forest fates

    NASA Astrophysics Data System (ADS)

    Huete, A. R.; Restrepo-Coupe, N.; Wu, J.; Devadas, R.; Guan, K.; Liu, Y.; Ratana, P.; Sun, Q.; Schaaf, C.; Saleska, S. R.

    2015-12-01

    Climate change scenarios projected for the 21st century predict drying of the Amazon, greening of monsoon tropical Asia and no change in the tropics of Australia. Dry season variability is increasing with complex associated forest responses and feedbacks as they become exposed to longer and/or more intense dry seasons. The functional response of tropical forests to dry seasonal periods is thus crucial to forest resilience, as forests may respond with either enhanced photosynthesis (due to more sunlight) or may dry down with greater susceptibility to fires and release of greenhouse gases and severe public health haze alerts. In this study, we use multiple satellite remote sensing datasets representing forest canopy states, environmental drivers (light and water status), and disturbance (fires), along with in situ flux tower measures of photosynthesis to assess whole ecosystem patterns and test mechanisms of forest- dry season climate interactions. We compare photosynthesis patterns and dry season responses of Asia-Oceania tropical forests with neotropical forests to better understand forest resilience to climate change and human impacts. In contrast to the neotropics, human activities in monsoon tropical Asia have resulted in intensive transformations of tropical forests. We find forest disturbance exerts a strong influence on tropical forest functioning and a partial loss or degradation of tropical forests can reverse dry seasonal responses with substantial impacts on carbon fluxes. Neotropical forests displayed large variations in dry season forest responses due to spatially variable dry season lengths and magnitude, whereas most of monsoon Asia tropical forests lacked well-defined dry seasons, yet were highly sensitive to shorter term, intense drought events that impacted severely upon the disturbed forests. Our results highlight the interactions among rainfall, radiation and forest health with the relative importance of each factor varying with the

  18. Extended season for northern butterflies.

    PubMed

    Karlsson, Bengt

    2014-07-01

    Butterflies are like all insects in that they are temperature sensitive and a changing climate with higher temperatures might effect their phenology. Several studies have found support for earlier flight dates among the investigated species. A comparative study with data from a citizen science project, including 66 species of butterflies in Sweden, was undertaken, and the result confirms that most butterfly species now fly earlier during the season. This is especially evident for butterflies overwintering as adults or as pupae. However, the advancement in phenology is correlated with flight date, and some late season species show no advancement or have even postponed their flight dates and are now flying later in the season. The results also showed that latitude had a strong effect on the adult flight date, and most of the investigated species showed significantly later flights towards the north. Only some late flying species showed an opposite trend, flying earlier in the north. A majority of the investigated species in this study showed a general response to temperature and advanced their flight dates with warmer temperatures (on average they advanced their flight dates by 3.8 days/°C), although not all species showed this response. In essence, a climate with earlier springs and longer growing seasons seems not to change the appearance patterns in a one-way direction. We now see butterflies on the wings both earlier and later in the season and some consequences of these patterns are discussed. So far, studies have concentrated mostly on early season butterfly-plant interactions but also late season studies are needed for a better understanding of long-term population consequences.

  19. Solar electric power for instruments at remote sites

    USGS Publications Warehouse

    McChesney, P.J.

    2000-01-01

    Small photovoltaic (PV) systems are the preferred method to power instruments operating at permanent locations away from the electric power grid. The low-power PV power system consists of a solar panel or small array of panels, lead-acid batteries, and a charge controller. Even though the small PV power system is simple, the job of supplying power at a remote site can be very demanding. The equipment is often exposed to harsh conditions. The site may be inaccessible part of the year or difficult and expensive to reach at any time. Yet the system must provide uninterrupted power with minimum maintenance at low cost. This requires good design. Successful small PV systems often require modifications by a knowledgeable fieldworker to adapt to conditions at the site. Much information is available in many places about solar panels, lead-acid batteries, and charging systems but very little of it applies directly to low power instrument sites. The discussion here aims to close some of the gap. Each of the major components is described in terms of this application with particular attention paid to batteries. Site problems are investigated. Finally, maintenance and test procedures are given. This document assumes that the reader is engaged in planning or maintaining low-power PV sites and has basic electrical and electronic knowledge. The area covered by the discussion is broad. To help the reader with the many terms and acronyms used, they are shown in bold when first used and a glossary is provided at the end of the paper.

  20. Remote measurement of water color

    NASA Technical Reports Server (NTRS)

    Mccluney, W. R.

    1976-01-01

    This paper contains a discussion of the requirements and approaches which can be taken in the development of techniques for the analysis of remote multispectral imagery of natural bodies of water. There are two general approaches which can be used in the analysis of multispectral water color data collected by aircraft or satellite remote sensors. With the theoretical modeling approach, optically important constituents of natural waters are mathematically related to the upwelling radiance spectrum received by the remote sensor. With the empirical approach, the relationships are determined empirically by comparing remote sensing data with surface truth data. There are several levels of mathematical sophistication which can be applied to both approaches. The two approaches are discussed in some detail and it is concluded that the two approaches are closely related and should be pursued simultaneously for maximum utilization of the laboratory and field measurement data which will be needed. A set of minimum surface truth measurement parameters and techniques is suggested.

  1. Theory of microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.; Shin, R. T.

    1985-01-01

    Active and passive microwave remote sensing of earth terrains is studied. Electromagnetic wave scattering and emission from stratified media and rough surfaces are considered with particular application to the remote sensing of soil moisture. Radiative transfer theory for both the random and discrete scatterer models is examined. Vector radiative transfer equations for nonspherical particles are developed for both active and passive remote sensing. Single and multiple scattering solutions are illustrated with applications to remote sensing problems. Analytical wave theory using the Dyson and Bethe-Salpeter equations is employed to treat scattering by random media. The backscattering enhancement effects, strong permittivity fluctuation theory, and modified radiative transfer equations are addressed. The electromagnetic wave scattering from a dense distribution of discrete scatterers is studied. The effective propagation constants and backscattering coefficients are calculated and illustrated for dense media.

  2. Remote Decommissioning Experiences at Sellafield

    SciTech Connect

    Brownridge, M.

    2006-07-01

    British Nuclear Group has demonstrated through delivery of significant decommissioning projects the ability to effectively deploy innovative remote decommissioning technologies and deliver cost effective solutions. This has been achieved through deployment and development of off-the-shelf technologies and design of bespoke equipment. For example, the worlds first fully remotely operated Brokk was successfully deployed to enable fully remote dismantling, packaging and export of waste during the decommissioning of a pilot reprocessing facility. British Nuclear Group has also successfully implemented remote decommissioning systems to enable the decommissioning of significant challenges, including dismantling of a Caesium Extraction Facility, Windscale Pile Chimney and retrieval of Plutonium Contaminated Material (PCM) from storage cells. The challenge for the future is to continue to innovate through utilization of the supply chain and deploy off-the-shelf technologies which have been demonstrated in other industry sectors, thus reducing implementation schedules, cost and maintenance. (authors)

  3. Robotics and remote systems applications

    SciTech Connect

    Rabold, D.E.

    1996-05-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling.

  4. Remote sensing aids geologic mapping.

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1973-01-01

    Remote sensing techniques have been applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is to be used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area. Regional and local geologic mapping can be aided by the proper application of remote sensing techniques. Conventional color and color infrared photos contain a large amount of easily-extractable general geologic information and are easily used by geologists untrained in the field of remote sensing. Other kinds of sensor data used in this study, with the exception of SLAR imagery, were generally found to be impractical or unappropriate for broad-scale general geologic mapping.

  5. Remote Sensing of Environmental Pollution

    NASA Technical Reports Server (NTRS)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  6. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1992-01-01

    Research findings are summarized for projects dealing with the following: application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; theoretical modeling for passive microwave remote sensing of earth terrain; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  7. Remote sensing at Savannah River

    SciTech Connect

    Corey, J.C.

    1986-01-01

    The paper discusses remote sensing systems used at the Savannah River Plant. They include three ground-based systems: ground penetrating radar, sniffers, and lasers; and four airborne systems: multispectral photography, lasers, thermal imaging, and radar systems. (ACR)

  8. Earth view: A business guide to orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1990-01-01

    The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.

  9. Ozone measurements in Amazonia - Dry season versus wet season

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.; Da Silva, I. M. O.; Browell, Edward V.

    1990-01-01

    Recent ozone measurements taken in the Amazonian rain forest environment during the wet season (April-May 1987) are described, revealling new aspects of the regional atmospheric chemistry. The measurements were part of the Amazon Boundary Layer Experiment (ABLE 2B) mission and utilized UV absorption as a measurement technique to obtain surface ozone data; 20 ozonesondes were launched in order to obtain vertical ozone profiles used to describe the upper troposphere and stratosphere. The major differences in comparison to a previous dry season experiment, which found ozone concentrations to be lower in the whole troposphere by nearly a factor of 2, are stressed.

  10. Estimating Active Layer Thickness from Remotely Sensed Surface Deformation

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K. M.; Zhang, T.; Wahr, J. M.

    2010-12-01

    We estimate active layer thickness (ALT) from remotely sensed surface subsidence during thawing seasons derived from interferometric synthetic aperture radar (InSAR) measurements. Ground ice takes up more volume than ground water, so as the soil thaws in summer and the active layer deepens, the ground subsides. The volume of melted ground water during the summer thaw determines seasonal subsidence. ALT is defined as the maximum thaw depth at the end of a thawing season. By using InSAR to measure surface subsidence between the start and end of summer season, one can estimate the depth of thaw over a large area (typically 100 km by 100 km). We developed an ALT retrieval algorithm integrating InSAR-derived surface subsidence, observed soil texture, organic matter content, and moisture content. We validated this algorithm in the continuous permafrost area on the North Slope of Alaska. Based on InSAR measurements using ERS-1/2 SAR data, our estimated values match in situ measurements of ALT within 1--10 cm at Circumpolar Active Layer Monitoring (CALM) sites within the study area. The active layer plays a key role in land surface processes in cold regions. Current measurements of ALT using mechanical probing, frost/thaw tubes, or inferred from temperature measurements are of high quality, but limited in spatial coverage. Using InSAR to estimate ALT greatly expands the spatial coverage of ALT observations.

  11. Forecasting seasonal outbreaks of influenza.

    PubMed

    Shaman, Jeffrey; Karspeck, Alicia

    2012-12-11

    Influenza recurs seasonally in temperate regions of the world; however, our ability to predict the timing, duration, and magnitude of local seasonal outbreaks of influenza remains limited. Here we develop a framework for initializing real-time forecasts of seasonal influenza outbreaks, using a data assimilation technique commonly applied in numerical weather prediction. The availability of real-time, web-based estimates of local influenza infection rates makes this type of quantitative forecasting possible. Retrospective ensemble forecasts are generated on a weekly basis following assimilation of these web-based estimates for the 2003-2008 influenza seasons in New York City. The findings indicate that real-time skillful predictions of peak timing can be made more than 7 wk in advance of the actual peak. In addition, confidence in those predictions can be inferred from the spread of the forecast ensemble. This work represents an initial step in the development of a statistically rigorous system for real-time forecast of seasonal influenza.

  12. Seasonality of Arctic Mediterranean Exchanges

    NASA Astrophysics Data System (ADS)

    Rieper, Christoph; Quadfasel, Detlef

    2015-04-01

    The Arctic Mediterranean communicates through a number of passages with the Atlantic and the Pacific Oceans. Most of the volume exchange happens at the Greenland-Scotland-Ridge: warm and saline Atlantic Water flows in at the surface, cold, dense Overflow Water flows back at the bottom and fresh and cold Polar Water flows out along the East Greenland coast. All surface inflows show a seasonal signal whereas only the outflow through the Faroe Bank Channel exhibits significant seasonality. Here we present a quantification of the seasonal cycle of the exchanges across the Greenland-Scotland ridge based on volume estimates of the in- and outflows within the last 20 years (ADCP and altimetry). Our approach is comparatistic: we compare different properties of the seasonal cycle like the strength or the phase between the different in- and outflows. On the seasonal time scale the in- and outflows across the Greenland-Scotland-Ridge are not balanced. The net flux thus has to be balanced by the other passages on the Canadian Archipelago, Bering Strait as well as runoff from land.

  13. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  14. Preparing for the New Remote Access.

    ERIC Educational Resources Information Center

    Taylor, William E.

    1997-01-01

    Integrated remote access servers support many different types of access. Remote access has been integrated as a strategic tool as application developers build remote access capabilities into their software. Discusses demands of using remote access as a strategic component and management matters. (AEF)

  15. A framework for developing an impact-oriented agricultural drought monitoring system from remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Jie

    2016-04-01

    With a changing climate, drought has become more intensified, of which agriculture is the major affected sector. Satellite observations have proven great utilities for real-time drought monitoring as well as crop yield estimation, and many remotely sensed indicators have been developed for drought monitoring based on vegetation growth conditions, surface temperature and evapotranspiration information. However, those current drought indicators typically don't take into account the different responses of various input information and the drought impacts during the growing season, revealing some limitations for effective agricultural drought monitoring and impact analysis. Therefore, the goal of this research is to build a framework for the development of an impact-oriented and remote sensing based agricultural drought indicator. Firstly, the global agricultural drought risk was characterized to provide an overview of the agricultural drought prone areas in the world. Then, the responses of different remotely sensed indicators to drought and the impacts of drought on crop yield from the remote sensing perspective during the growing season were explored. Based on previous works on drought risk, drought indicator response and drought impact analysis, an impact-oriented drought indicator will be prototyped from the integration of the drought responses of different indicators and the drought impacts during the growing season. This research can inform an impact-oriented agricultural drought indicator, help prototype an impact-oriented agricultural drought monitoring system, and thus provide valuable inputs for effective agricultural management.

  16. 50 CFR 660.510 - Fishing seasons.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Fishing seasons. 660.510 Section 660.510... Fishing seasons. All seasons will begin at 0001 hours and terminate at 2400 hours local time. Fishing seasons for the following CPS species are: (a) Pacific sardine. January 1 to December 31, or until...

  17. 50 CFR 660.510 - Fishing seasons.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Fishing seasons. 660.510 Section 660.510... Fishing seasons. All seasons will begin at 0001 hours and terminate at 2400 hours local time. Fishing seasons for the following CPS species are: (a) Pacific sardine. January 1 to December 31, or until...

  18. 50 CFR 660.510 - Fishing seasons.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Fishing seasons. 660.510 Section 660.510... Fishing seasons. All seasons will begin at 0001 hours and terminate at 2400 hours local time. Fishing seasons for the following CPS species are: (a) Pacific sardine. January 1 to December 31, or until...

  19. 50 CFR 660.510 - Fishing seasons.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Fishing seasons. 660.510 Section 660.510... Fishing seasons. All seasons will begin at 0001 hours and terminate at 2400 hours local time. Fishing seasons for the following CPS species are: (a) Pacific sardine. January 1 to December 31, or until...

  20. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska

    USGS Publications Warehouse

    Liu, Lin; Schaefer, Kevin; Gusmeroli, Alessio; Grosse, Guido; Jones, Benjamin M.; Zhang, Tinjun; Parsekian, Andrew; Zebker, Howard

    2014-01-01

    Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3–4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10–35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands.

  1. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K.; Gusmeroli, A.; Grosse, G.; Jones, B. M.; Zhang, T.; Parsekian, A. D.; Zebker, H. A.

    2014-05-01

    Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3-4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10-35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands.

  2. Seasonal variation of the South Indian tropical gyre

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.

    2016-04-01

    Based on satellite altimeter data and global atlases of temperature, salinity, wind stress and wind-driven circulation we investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR). Results show a year-round, altimeter-derived cyclonic gyre where the upwelling regime appears closely related to seasonality of the ocean gyre, a relationship that has not been previously explored in this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. At basin-scale, the most outstanding feature is the seasonal shrinkage of the ocean gyre and the SCTR. From late autumn to spring, the eastward South Equatorial Countercurrent (SECC) recirculates early in the east on feeding the westward South Equatorial Current, therefore closing the gyre before arrival to Sumatra. We find this recirculation longitude migrates over 20° and collocates with the westward advance of a zonal thermohaline front emerging from the encounter between (upwelled) Indian Equatorial Water and relatively warmer and fresher Indonesian Throughflow Water. We suggest this front, which we call the Indonesian Throughflow Front, plays an important role as remote forcing to the tropical gyre, generating southward geostrophic flows that contribute to the early recirculation of the SECC.

  3. Spectrally-Based Assessment of Crop Seasonal Performance and Yield

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Borisova, Denitsa; Georgiev, Georgy

    The rapid advances of space technologies concern almost all scientific areas from aeronautics to medicine, and a wide range of application fields from communications to crop yield predictions. Agricultural monitoring is among the priorities of remote sensing observations for getting timely information on crop development. Monitoring agricultural fields during the growing season plays an important role in crop health assessment and stress detection provided that reliable data is obtained. Successfully spreading is the implementation of hyperspectral data to precision farming associated with plant growth and phenology monitoring, physiological state assessment, and yield prediction. In this paper, we investigated various spectral-biophysical relationships derived from in-situ reflectance measurements. The performance of spectral data for the assessment of agricultural crops condition and yield prediction was examined. The approach comprisesd development of regression models between plant spectral and state-indicative variables such as biomass, vegetation cover fraction, leaf area index, etc., and development of yield forecasting models from single-date (growth stage) and multitemporal (seasonal) reflectance data. Verification of spectral predictions was performed through comparison with estimations from biophysical relationships between crop growth variables. The study was carried out for spring barley and winter wheat. Visible and near-infrared reflectance data was acquired through the whole growing season accompanied by detailed datasets on plant phenology and canopy structural and biochemical attributes. Empirical relationships were derived relating crop agronomic variables and yield to various spectral predictors. The study findings were tested using airborne remote sensing inputs. A good correspondence was found between predicted and actual (ground-truth) estimates

  4. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  5. Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations

    PubMed Central

    Glantz, Paul; Bourassa, Adam; Herber, Andreas; Iversen, Trond; Karlsson, Johannes; Kirkevåg, Alf; Maturilli, Marion; Seland, Øyvind; Stebel, Kerstin; Struthers, Hamish; Tesche, Matthias; Thomason, Larry

    2014-01-01

    In this study Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to Sun photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval over ocean (ΔAOT = ±0.03 ± 0.05 · AOT). The results from the remote sensing have been used to examine the accuracy in estimates of aerosol optical properties in the Arctic, generated by global climate models and from in situ measurements at the Zeppelin station, Svalbard. AOT simulated with the Norwegian Earth System Model/Community Atmosphere Model version 4 Oslo global climate model does not reproduce the observed seasonal variability of the Arctic aerosol. The model overestimates clear-sky AOT by nearly a factor of 2 for the background summer season, while tending to underestimate the values in the spring season. Furthermore, large differences in all-sky AOT of up to 1 order of magnitude are found for the Coupled Model Intercomparison Project phase 5 model ensemble for the spring and summer seasons. Large differences between satellite/ground-based remote sensing of AOT and AOT estimated from dry and humidified scattering coefficients are found for the subarctic marine boundary layer in summer. Key Points Remote sensing of AOT is very useful in validation of climate models PMID:25821664

  6. Annual Snow Assessments Using Multi-spectral and Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Daly, S. F.; Vuyovich, C. M.; Deeb, E. J.; Newman, S. D.; Baldwin, T. B.

    2010-12-01

    Since the winter season of 2004-2005, annual snow assessments have been conducted for regions across the Middle East (including Eastern Turkey, Afghanistan, and Pakistan) using multispectral (AVHRR and MODIS) and passive microwave (SSM/I and AMSR-E) remote sensing technologies. Due to limited ground-based observations of precipitation and snow pack conditions, remote sensing provides a unique opportunity to assess these conditions at different scales and offer an appraisal of the current conditions in an historical context. During each winter season, bi-weekly snow products and assessments are produced including: current Snow Covered Area (SCA) at regional and watershed scales; estimation of SCA by elevation band; current snowpack total Snow Water Equivalent (SWE) for each watershed with an historical perspective (1987-present); snow condition outlook by watershed; general summary of snow conditions based on remote sensing products and limited ground-based observations; and if warranted, a snow melt flooding advisory. Most recently, the winter 2009-2010 season provided interesting aspects that are further investigated: comparison of reported drought conditions, SCA extents, and passive microwave SWE estimates in Afghanistan; flooding event in Northeastern Afghanistan perhaps due to late season snow fall and subsequent snow melt; lower SCA in Eastern Turkey throughout winter despite heavy precipitation perhaps explained by warmer regional temperatures.

  7. Effect of spatial heterogeneity on remotely sensed GPP

    NASA Astrophysics Data System (ADS)

    Kljun, Natascha; Gelybó, Györgyi; Barcza, Zoltán; Kern, Anikó

    2013-04-01

    Satellite based remote sensing provides an efficient way to estimate carbon balance components over large spatial domains with acceptable temporal and spatial resolution. However, for heterogeneous landscapes these remotely sensed data may be biased towards one dominant land-cover type. In the present study, remote-sensing based gross primary production estimates (GPP MOD17, 1 km x 1 km spatial resolution) were evaluated using data from a tall eddy-covariance flux tower located over a heterogeneous agricultural landscape in Hungary. We present a novel approach for GPP model validation, exploiting the advantage of footprint-size similarity between remote sensing and the hourly eddy covariance signal measured at the tall tower. Further, we present a new methodology for improved remote-sensing based GPP estimates. This methodology addresses land-use heterogeneity by incorporating a footprint climatology and by downscaling MOD17 GPP using the 250-m resolution MODIS-NDVI (Normalized Difference Vegetation Index) dataset. The results show that GPP was underestimated by MOD17 especially in years with average precipitation during the growing season, while model performance was better during dry years. Our downscaling technique significantly improved agreement between the MOD17 model results and the eddy-covariance measurements (modelling efficiency (ME) increased from 0.783 to 0.884, root mean square error (RMSE) decreased from 1.095 g C m-2 day-1 to 0.815 g C m-2 day-1), although GPP remained underestimated (bias decreased from -0.680 g C m-2 day-1 to -0.426 g C m-2 day-1). The presented methods are applicable to any eddy-covariance tower with limitations depending on the complexity of landscape around the flux tower. As incorporation of footprint information clearly impacts validation results, future model validation and/or calibration should also involve source area estimation which can be easily implemented following the presented approach.

  8. Seasonal Thermal Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Minor, J. E.

    1980-01-01

    The Seasonal Thermal Energy Storage (STES) Program designed to demonstrate the storage and retrieval of energy on a seasonal basis using heat or cold available from waste or other sources during a surplus period is described. Factors considered include reduction of peak period demand and electric utility load problems and establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The initial thrust of the STES Program toward utilization of ground water systems (aquifers) for thermal energy storage is emphasized.

  9. Seasonal LAI in slash pine estimated with LANDSAT TM

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.; Gholz, Henry L.

    1990-01-01

    The leaf area index (LAI, total area of leaves per unit area of ground) of most forest canopies varies throughout the year, yet for logistical reasons it is difficult to estimate anything more detailed than a seasonal maximum LAI. To determine if remotely sensed data can be used to estimate LAI seasonally, field measurements of LAI were compared to normalized difference vegetation index (NDVI) values derived using LANDSAT Thematic Mapper (TM) data, for 16 fertilized and control slash pine plots on 3 dates. Linear relationships existed between NDVI and LAI with R(sup 2) values of 0.35, 0.75, and 0.86 for February 1988, September 1988, and March, 1989, respectively. This is the first reported study in which NDVI is related to forest LAI recorded during the month of sensor overpass. Predictive relationships based on data from eight of the plots were used to estimate the LAI of the other eight plots with a root-mean-square error of 0.74 LAI, which is 15.6 percent of the mean LAI. This demonstrates the potential use of LANDSAT TM data for studying seasonal dynamics in forest canopies.

  10. Remote monitoring for international safeguards

    SciTech Connect

    Dupree, S.A.; Sonnier, C.S.

    1997-09-01

    Remote monitoring is not a new technology, and its application to safeguards relevant activities has been examined for a number of years. On behalf of the US Department of Energy and international partners, remote monitoring systems have been emplaced in nuclear facilities and laboratories in various parts of the world. The experience gained from these field trials of remote monitoring systems has shown the viability of the concept of using integrated monitoring systems. Although a wide variety of sensors has been used in the remote monitoring field trials conducted to date, the possible range of instrumentation that might be used has scarcely been touched. As the technology becomes widespread, large amounts of data will become available to inspectors responsible for safeguards activities at the sites. Effective use of remote monitoring will require processing, archiving, presenting, and assessing of these data. To provide reasonable efficiency in the application of this technology, data processing should be done in a careful and organized manner. The problem will be not an issue of poring over scant records but of surviving under a deluge of information made possible by modern technology. Fortunately, modern technology, which created the problem of the data glut, is available to come to the assistance of those inundated by data. Apart from the technological problems, one of the most important aspects of remote monitoring is the potential constraint related to the transmission of data out of a facility or beyond national borders. Remote monitoring across national borders can be seriously considered only in the context of a comprehensive, transparent, and open implementation regime.

  11. Seasonal Time Measurement During Reproduction

    PubMed Central

    IKEGAMI, Keisuke; YOSHIMURA, Takashi

    2013-01-01

    Abstract Most species living outside the tropical zone undergo physiological adaptations to seasonal environmental changes and changing day length (photoperiod); this phenomenon is called photoperiodism. It is well known that the circadian clock is involved in the regulation of photoperiodism such as seasonal reproduction, but the mechanism underlying circadian clock regulation of photoperiodism remains unclear. Recent molecular analysis have revealed that, in mammals and birds, the pars tuberalis (PT) of the pituitary gland acts as the relay point from light receptors, which receive information about the photoperiod, to the endocrine responses. Long-day (LD)-induced thyroid-stimulating hormone (TSH) in the PT acts as a master regulator of seasonal reproduction in the ependymal cells (ECs) within the mediobasal hypothalamus (MBH) and activates thyroid hormone (TH) by inducing the expression of type 2 deiodinase in both LD and short-day (SD) breeding animals. Furthermore, the circadian clock has been found to be localized in the PT and ECs as well as in the circadian pacemaker(s). This review purposes to summarize the current knowledge concerning the involvement of the neuroendocrine system and circadian clock in seasonal reproduction. PMID:23965600

  12. MECHANIZATION AND THE SEASONAL FARMWORKER.

    ERIC Educational Resources Information Center

    HARPER, ROBERT G.

    MECHANIZATION DOES NOT NECESSARILY DECREASE THE NUMBER OF SEASONAL FARM WORKERS NEEDED. SOME INNOVATIONS MERELY CHANGE THE JOB TO ONE THAT IS LESS UNPLEASANT, AND WORKERS FORMERLY DISINCLINED TO DO THE JOB BECOME AVAILABLE. MECHANIZATION MAY MAKE AN OPERATION SO EFFICIENT THAT ACREAGE AND PRODUCTION ARE INCREASED, AND MORE WORKERS ARE NEEDED. MUCH…

  13. Seasonal Nitrogen Cycles on Pluto

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Paige, D. A.

    1994-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model is used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters.

  14. Seasonal evolution of Saturn's stratosphere

    NASA Astrophysics Data System (ADS)

    Sylvestre, Melody; Fouchet, Thierry; Spiga, Aymeric; Guerlet, Sandrine

    2015-11-01

    The exceptional duration of the Cassini-Huygens mission enables unprecedented study of Saturn's atmospheric dynamics and chemistry. In Saturn's stratosphere (from 20 hPa to 10-4 hPa), photochemical and radiative timescales are in the same order as Saturn's revolution period (29.5 years). Consequently, the large seasonal insolation variations experienced by this planet are expected to influence significantly temperatures and abundances of photochemical by-products in this region. We investigate the seasonal evolution of Saturn's stratosphere by measuring meridional and seasonal variations (from 2005 to 2012) of temperature and C2H6, C2H2, and C3H8 abundances using Cassini/CIRS limb observations. We complete this study with the development of a GCM (Global Climate Model), in order to understand the physical processes behind this seasonal evolution.The analysis of the CIRS limb observations show that the lower and upper stratospheres do not exhibit the same trends in their seasonal variations, especially for temperature. In the lower stratosphere, the seasonal temperature contrast is maximal (at 1 hPa) and can be explained by the radiative contributions included in our GCM. In contrast, upper stratospheric temperatures (at 0.01 hPa) are constant from northern winter to spring, at odds with our GCM predictions. This behavior indicates that other physical processes such as gravity waves breaking may be at play. At 1 hPa, C2H6, C2H2, and C3H8 abundances exhibit a striking seasonal stability, consistently with the predictions of the photochemical models of Moses and Greathouse, 2005 and Hue et al., 2015. However, the meridional distributions of these species do not follow the predicted trends, which gives insight on atmospheric dynamics. We perform numerical simulations with the GCM to better understand dynamical phenomena in Saturn's atmosphere. We investigate how the large insolation variations induced by the shadow of the rings influence temperatures and atmospheric

  15. Next Generation Remote Agent Planner

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari K.; Muscettola, Nicola; Morris, Paul H.; Rajan, Kanna

    1999-01-01

    In May 1999, as part of a unique technology validation experiment onboard the Deep Space One spacecraft, the Remote Agent became the first complete autonomous spacecraft control architecture to run as flight software onboard an active spacecraft. As one of the three components of the architecture, the Remote Agent Planner had the task of laying out the course of action to be taken, which included activities such as turning, thrusting, data gathering, and communicating. Building on the successful approach developed for the Remote Agent Planner, the Next Generation Remote Agent Planner is a completely redesigned and reimplemented version of the planner. The new system provides all the key capabilities of the original planner, while adding functionality, improving performance and providing a modular and extendible implementation. The goal of this ongoing project is to develop a system that provides both a basis for future applications and a framework for further research in the area of autonomous planning for spacecraft. In this article, we present an introductory overview of the Next Generation Remote Agent Planner. We present a new and simplified definition of the planning problem, describe the basics of the planning process, lay out the new system design and examine the functionality of the core reasoning module.

  16. Photogrammetry - Remote Sensing and Geoinformation

    NASA Astrophysics Data System (ADS)

    Lazaridou, M. A.; Patmio, E. N.

    2012-07-01

    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  17. Hyperspectral Imagery Data for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Garegnani, Jerry; Gualtney, Lawrence

    1999-01-01

    In order for remotely sensed data to be useful in a practical application for agriculture, an information product must be made available to the land management decision maker within 24 to 48 hours of data acquisition. Hyperspectral imagery data is proving useful in differentiation of plant species potentially allowing identification of non-healthy areas and pest infestations within crop fields that may require the farm managers attention. Currently however, extracting the needed site-specific feature information from the vast spectral content of large hyperspectral image files is a labor intensive and time consuming task prohibiting the necessary fast turnaround from raw data to final product. We illustrate the methods, techniques and technologies necessary to produce field-level information products from imagery and other related spatial data that are useful to the farm manager for specific decisions that must be made throughout the growing season. We also propose to demonstrate the cost effectiveness of an integrated system, from acquisition to final product distribution, to utilize imagery for decisions on a working farm in conjunction with a commercial agricultural services company and their crop scouts. The demonstration farm is Chesapeake Farms, a 3000 acre research farm in Chestertown, Maryland on the Eastern Shore and is owned by the DuPont Corporation.

  18. Optical remote sensing of atmospheric compounds

    NASA Astrophysics Data System (ADS)

    Vazquez, Gabriel J.

    1996-02-01

    Human activities are altering the earth system at the local, regional, and global scales. It is therefore of the utmost importance to track the workings of mother earth in order to detect any changes at their early stages so that appropriate actions are taken to understand, assess, control or prevent the adverse effects. A number of deleterious effects to the environment can, at least in part, be ascribed to air pollution, namely, the thinning of the ozone layer, the related increase in the occurrence of skin cancer, the warming of the earth system, photochemical smog, acid rain/fog, acidification of soils and waters, forest decline, etc. It is therefore necessary to monitor the most relevant processes of the earth's atmosphere, namely, the energy input, the dynamics and the chemistry. In this contribution I mainly focus on the latter, specifically, on the measurement/monitoring of atmospheric compounds. To understand atmospheric chemistry and air pollution it is necessary to have reliable and accurate values of the mixing ratios of the numerous atmospheric gases and of their diurnal/seasonal variations and long-term trends. In this contribution I present an overview of the most relevant optical remote sensing techniques that are rapidly becoming the methods of choice to probe the chemical composition and physical state of the atmosphere, especially when high selectivity, sensitivity and fast-time response are required.

  19. Simulation of Avifauna Distributions Using Remote Sensing

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2004-01-01

    Remote sensing has proved a fruitful tool for understanding the distribution and functioning of plant communities at multiple scales and to understand their coupling to bioclimatic and anthropogenic factors. But a similar approach to understanding the distribution and abundance of bird species as well as many other animal organisms is lacking. The increasing need for such understanding is evident with the recent examples of threats to human health via avian vector transmission and the increasing emphasis on global conservation biology. From experimental observations we know that species richness tends to track biological or environmental gradients. In this paper, we explore the fundamental idea that thermal and water-relation environments of birds, as estimated from satellite data and biophysical models, can define the constraints on their Occurrences and richness. We develop individual bird energy budget models and use these models to define the climate space niche of birds. Using satellite data assimilation products to drive our models, we disperse a distribution of virtual or actual bird species across the landscape in accordance to the limits expressed by their climate space niche. Here, we focus on the North American summer breeding season and give two examples to illustrate our approach. The first is a tundra loving bird, e.g. corresponding to the Culidris genus, and a second genus example, Myiurchus, that corresponds to arid or semi-arid regions. We define these birds in terms of their basic physiology and morphological characteristics, construct avian energetic simulations to predict their allowable metabolic ranges and climate space limits.

  20. Remote sensing of chlorophyll fluorescence with GOSAT

    NASA Astrophysics Data System (ADS)

    Somkuti, Peter; Boesch, Hartmut; Parker, Robert

    2015-04-01

    Sun-induced chlorophyll fluorescence (Fs) emitted by plants as a by-product during photosynthesis carries information about their photosynthetic activity. It is possible to exploit space-based remote sensing measurements to retrieve the fluorescence signal and thus indirectly study carbon fluxes on a global scale. We implement a fluorescence retrieval based on the method pioneered by Frankenberg et al. (2011) into the framework of the University of Leicester Full-Physics GOSAT CO2 retrieval (UoL-FP). This physically-based approach is applied to high-resolution spectra at the edges of the O2 A-Band in the red to NIR range, that feature strong solar as well as a few weak O2 absorption lines. The fluorescence signal, which acts as an additional source, results in an in-filling of the measured solar absorption lines that are used to distinguish Fs from reflectance effects. By analysing GOSAT soundings from 2009 onwards, we examine global and regional long-term trends of Fs and compare them with parameters related to plant physiology, such as spectral vegetation indices and MODIS-derived model GPP values. Following Guanter et al. (2012) and Frankenberg et al. (2011), different regions and biomes are considered and we find that seasonal trends of both model GPP data as well as greenness indicators are well reproduced by our GOSAT-retrieved Fs.

  1. The future of remote ECG monitoring systems.

    PubMed

    Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su

    2016-09-01

    Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring. PMID:27582770

  2. The future of remote ECG monitoring systems

    PubMed Central

    Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su

    2016-01-01

    Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring. PMID:27582770

  3. Remote Environmental Monitoring System CRADA

    SciTech Connect

    Hensley, R.D.

    2000-03-30

    The goal of the project was to develop a wireless communications system, including communications, command, and control software, to remotely monitor the environmental state of a process or facility. Proof of performance would be tested and evaluated with a prototype demonstration in a functioning facility. AR Designs' participation provided access to software resources and products that enable network communications for real-time embedded systems to access remote workstation services such as Graphical User Interface (GUI), file I/O, Events, Video, Audio, etc. in a standardized manner. This industrial partner further provided knowledge and links with applications and current industry practices. FM and T's responsibility was primarily in hardware development in areas such as advanced sensors, wireless radios, communication interfaces, and monitoring and analysis of sensor data. This role included a capability to design, fabricate, and test prototypes and to provide a demonstration environment to test a proposed remote sensing system. A summary of technical accomplishments is given.

  4. [Remote radiation planning support system].

    PubMed

    Atsumi, Kazushige; Nakamura, Katsumasa; Yoshidome, Satoshi; Shioyama, Yoshiyuki; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Shinoto, Makoto; Asai, Kaori; Sakamoto, Katsumi; Hirakawa, Masakazu; Honda, Hiroshi

    2012-08-01

    We constructed a remote radiation planning support system between Kyushu University Hospital (KUH) in Fukuoka and Kyushu University Beppu Hospital (KBH) in Oita. Between two institutions, radiology information system for radiotherapy division (RT-RIS) and radiation planning system (RTPS) were connected by virtual private network (VPN). This system enables the radiation oncologists at KUH to perform radiotherapy planning for the patients at KBH. The detail of the remote radiation planning support system in our institutions is as follows: The radiation oncologist at KBH performs radiotherapy planning and the data of the patients are sent anonymously to the radiation oncologists at KUH. The radiation oncologists at KUH receive the patient's data, access to RTPS at KBH, verify or change the radiation planning at KBH: Radiation therapy is performed at KBH according to the confirmed plan by the radiation oncologists at KUH. Our remote radiation planning system is useful for providing radiation therapy with safety and accuracy.

  5. Remote sensing for urban planning

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Schmidt, Nicholas; Jensen, John R.; Cowen, Dave J.; Halls, Joanne; Narumalani, Sunil; Burgess, Bryan

    1994-01-01

    Utility companies are challenged to provide services to a highly dynamic customer base. With factory closures and shifts in employment becoming a routine occurrence, the utility industry must develop new techniques to maintain records and plan for expected growth. BellSouth Telecommunications, the largest of the Bell telephone companies, currently serves over 13 million residences and 2 million commercial customers. Tracking the movement of customers and scheduling the delivery of service are major tasks for BellSouth that require intensive manpower and sophisticated information management techniques. Through NASA's Commercial Remote Sensing Program Office, BellSouth is investigating the utility of remote sensing and geographic information system techniques to forecast residential development. This paper highlights the initial results of this project, which indicate a high correlation between the U.S. Bureau of Census block group statistics and statistics derived from remote sensing data.

  6. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Papasin, Richard; Gawdiak, Yuri; Maluf, David A.; Leidich, Christopher; Tran, Peter B.

    2001-01-01

    Remote Tower Sensor Systems (RTSS) are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA (Federal Aviation Administration) and NOAA (National Oceanic Atmospheric Administration). RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to realtime airport conditions and aircraft status.

  7. Jellyfish monitoring on coastlines using remote piloted aircraft

    NASA Astrophysics Data System (ADS)

    Barrado, C.; Fuentes, J. A.; Salamí, E.; Royo, P.; Olariaga, A. D.; López, J.; Fuentes, V. L.; Gili, J. M.; Pastor, E.

    2014-03-01

    In the last 10 years the number of jellyfish shoals that reach the swimming area of the Mediterranean Sea are increasing constantly. The term "Jellyfish" refers to animals from different taxonomic groups but the Scyphomedusae are within the most significant one. Four species of Scyphomedusae are the most conspicuous ones inhabiting the studied area, the Barcelona metropolitan area. Jellyfish are usually found at the surface waters, forming big swarms. This feature makes possible to detect them remotely, using a visual camera and image processing algorithms. In this paper we present the characteristics of a remote piloted aircraft capable to perform monitoring flights during the whole summer season. The requirements of the aircraft are to be easy to operate, to be able to flight at low altitude (100 m) following the buoy line (200 m from the beach line) and to be save for other users of the seaside. The remote piloted aircraft will carry a vision system and a processing board able to obtain useful information on real-time.

  8. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin

    2006-01-01

    Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.

  9. Remote sensing of the asteroids

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.

    1981-01-01

    Knowledge of the compositions of the asteroids is obtained by the remote sensing of reflected and emitted radiation from what are essentially star-like points of light. Since asteroids are a remnant population of planetesimals that were never accreted into the larger planets, their compositions and properties can provide insight into the nature of planetary matter in early epochs, before most of it was physically and chemically modified by geological processes within the planets. The progress made during the past decade in learning about asteroids through remote sensing is reviewed.

  10. Emergency Medicine in Remote Regions

    PubMed Central

    Pollard, Megan

    2016-01-01

    Rural and remote places like Sable Island (Nova Scotia) or François (Newfoundland) pose a challenge in delivering both health care and appropriate education that today’s learners need to practice in a rural setting. This education can be difficult to deliver to students far from academic centers. This is especially true for learners and practitioners at offshore locations like ships, oil installations, or in the air when patients are transported via fixed wing aircraft or helicopter. The following editorial provides a snapshot of the setting and the challenges faced while working as a physician on a ship, in remote regions. PMID:27738573

  11. Lighting for remote viewing systems

    SciTech Connect

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages.

  12. Lighting for remote viewing systems

    SciTech Connect

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgement of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures.

  13. Lighting for remote viewing systems

    SciTech Connect

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures.

  14. Telerobotic ground-remote operations

    NASA Technical Reports Server (NTRS)

    Bon, Bruce; Zimmerman, Wayne

    1991-01-01

    The Telerobotic Ground-Remote Operations task consists of development of a demonstration local-site operator control station that includes a graphical user interface (GUI) for control of a remote robot, and development of operator-assisted perception algorithms and software that will provide flexible and accurate world modeling capabilities. The topics covered are presented in view graph form and include: (1) local site development configuration; (2) system design; (3) operator control station (local site) software block diagram; (4) operator-assisted perception; and (5) program status.

  15. Remote sensing and global competitiveness

    NASA Astrophysics Data System (ADS)

    Pace, Scott

    1994-03-01

    These remarks were given at the First Annual Symposium on Coupling Technology to National Needs as part of a panel on `Visualization and Communication: Overhead Imagery.' Based on the author's involvement with remote sensing policy while at the Department of Commerce from 1990 to 1993, the paper provides a brief overview of U.S. policy and legislation affecting remote sensing, discusses recent developments, and identifies continuing issues for commercial ventures. Example issues include operating licenses, export controls, government as a customer, and strategic partnerships.

  16. Remote sensing procurement package: Remote Sensing Industry Directory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A directory of over 140 firms and organizations which contains detailed information in the types of products, services and equipment which they offer is presented. Also included for each firm or organization are addresses, phone numbers, contact person(s), and experience in the remote sensing field.

  17. Seasonal and interannual temperature variations in the tropical stratosphere

    SciTech Connect

    Reid, G.C.

    1994-09-20

    Temperature variations in the tropical lower and middle stratosphere are influenced by at least five distinct driving forces. These are (1) the mechanism of the regular seasonal cycle, (2) the quasi-biennial oscillation (QBO) in zonal winds, (3) the semiannual zonal wind oscillation (SAO) at higher levels, (4) El Nino-Southern Oscillation (ENSO) effects driven by the underlying troposphere, and (5) radiative effects, including volcanic aerosol heating. Radiosonde measurements of temperatures from a number of tropical stations, mostly in the western Pacific region, are used in this paper to examine the characteristic annual and interannual temperature variability in the stratosphere below the 10-hPa pressure level ({approximately} 31 km) over a time period of 17 years, chosen to eliminate or at least minimize the effect of volcanic eruptions. Both annual and interannual variations are found to show a fairly distinct transition between the lower and the middle stratosphere at about the 35-hPa level ({approximately} 23 km). The lower stratosphere, below this transition level, is strongly influenced by the ENSO cycle as well as by the QBO. The overall result of the interaction is to modulate the amplitude of the normal stratospheric seasonal cycle and to impose a biennial component on it, so that alternate seasonal cycles are stronger or weaker than normal. Additional modulation by the ENSO cycle occurs at its quasi-period of 3-5 years, giving rise to a complex net behavior. In the middle stratosphere above the transition level, there is no discernible ENSO influence, and departures from the regular semiannual seasonal cycle are dominated by the QBO. Recent ideas on the underlying physical mechanisms governing these variations are discussed, as is the relationship of the radiosonde measurements to recent satellite remote-sensing observations. 37 refs., 8 figs., 1 tab.

  18. Seasonal Changes in Titan's Meteorology

    NASA Technical Reports Server (NTRS)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  19. Seasonal variation in human births.

    PubMed

    James, W H

    1990-01-01

    During the first half of this century, the seasonal pattern of births in European countries showed a major peak in the spring and a minor peak in the autumn. In contrast, the pattern in the US was of a minor peak in spring and a major peak in autumn. Over the last 20 years, the pattern in England and Wales has changed to resemble the US pattern, and the same seems to be true of several other European countries. A hypothesis is offered to account for the difference between the European and the US patterns and for the change from one to the other in some countries. The magnitude of seasonality correlates positively with latitude: it is suggested that this is partially consequent on variation in luminosity.

  20. Hurricane season could be active

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Storm activity during the 2003 Atlantic hurricane season likely will be above average, the U.S. National Oceanic and Atmospheric Administration noted on 19 May.The outlook could include 11 to 15 tropical storms, as well as 6 to 9 hurricanes, of which 2 to 4 could be classified as major hurricanes rated as category 3 or higher on the Saffir-Simpson Hurricane Scale.

  1. Seasonal Variability of Saturn's Atmosphere

    NASA Technical Reports Server (NTRS)

    Yanamandra-Fisher, Padma A.; Simon, Amy; Delcroix, Marc; Orton, Glenn S.; Trinh, Shirley

    2012-01-01

    The seasonal variability of Saturn's clouds and weather layer, currently displaying a variety of phenomena (convective storms, planetary waves, giant storms and lightning-induced events, etc.) is not yet fully understood. Variations of Saturn's radiance at 5.2 microns, a spectral region dominated by thermal emission in an atmospheric window containing weak gaseous absorption, contain a strong axisymmetric component as well as large discrete features at low and mid-latitudes that are several degrees colder than the planetary average and uncorrelated with features at shorter wavelengths that are dominated by reflected sunlight (Yanamandra-Fisher et al., 2001. Icarus, Vol. 150). The characterization of several fundamental atmospheric properties and processes, however, remains incomplete, namely: How do seasons affect (a) the global distribution of gaseous constituents and aerosols; and (b) temperatures and the stability against convection and large scale-atmospheric transport? Do 5-micron clouds have counterparts at other altitude levels? What changes occur during the emergence of Great White Storms? Data acquired at the NASA/IRTF and NAOJ/Subaru from 1995 - 2011; since 2004, high-resolution multi-spectral and high-spatial imaging data acquired by the NASA/ESA Cassini mission, represents half a Saturnian year or two seasons. With the addition of detailed multi-spectral data sets acquired by amateur observers, we study these dramatic phenomena to better understand the timeline of the evolution of these events. Seasonal (or temporal) trends in the observables such as albedo of the clouds, thermal fields of the atmosphere as function of altitude, development of clouds, hazes and global abundances of various hydrocarbons in the atmosphere can now be modeled. We will present results of our ongoing investigation for the search and characterization of periodicities over half a Saturnian year, based on a non-biased a priori approach and time series techniques (such as

  2. International developments in seasonal storage

    SciTech Connect

    Gyuk, I.; Shivers, R.

    1984-08-01

    With thermal energy sources such as cogeneration or waste incineration, there is considerable disparity between potential heat supply and possible application. A similar problem exists for the utilization of winter chill for summer air conditioning. Seasonal thermal energy storage would be an essential factor in enhancing the cost effectiveness of such schemes. We shall review characteristic experimental facilities for large scale thermal energy storage in Canada, Scandinavia and the rest of Europe.

  3. Seasonal Nitrogen Cycles on Pluto

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Paige, David A.

    1996-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model was used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters. Volatile transport was confirmed to have a significant effect on Pluto's climate as nitrogen moved around on a seasonal time scale between hemispheres, and sublimed into and condensed out of the atmosphere. Pluto's high obliquity was found to have a significant effect on the distribution of frost on its surface. Conditions that would lead to permanent polar caps on Triton were found to lead to permanent zonal frost bands on Pluto. In some instances, frost sublimed from the middle of a seasonal cap outward, resulting in a "polar bald spot". Frost which was darker than the substrate did not satisfy observables on Pluto, in contrast to our findings for Triton. Bright frost (brighter than the substrate) came closer to matching observables. Atmospheric pressure varied seasonally. The amplitudes, and to a lesser extent the phase, of the variation depended significantly on frost and substrate properties. Atmospheric pressure was found to be determined both by Pluto's distance from the sun and by the subsolar latitude. In most cases two peaks in atmospheric pressure were observed annually: a greater one associated with the sublimation of the north polar cap just as Pluto receded from perihelion, and a lesser one associated with the sublimation of the south polar cap as Pluto approached perihelion. Our model predicted frost-free dark substrate surface temperatures in the 50 to 60 K range, while frost temperatures typically ranged between 30 to 40 K. Temporal changes in frost coverage illustrated by our results, and changes in the viewing geometry of Pluto from the Earth, may be important for interpretation of ground-based measurements of Pluto's thermal emission.

  4. Thyroid Hormone and Seasonal Rhythmicity

    PubMed Central

    Dardente, Hugues; Hazlerigg, David G.; Ebling, Francis J. P.

    2014-01-01

    Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity. PMID:24616714

  5. Investigation of the Seasonal Freeze/Thaw Cycle of Soils in the GAPP Regions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The objective of this project is to understand the current and future impacts and feedbacks of seasonally frozen ground on the regional and global climate system and the ecosystem as a whole. More specifically, we proposed to: investigate the dynamics of the seasonally freezing and thawing processes and their relations to current climatic conditions through in situ data analysis and numerical modeling; develop a comprehensive algorithm to detect surface soil freeze/thaw status for snow-free land surface using passive microwave remote sensing data and for snow-covered land surface using numerical modeling, and validate the algorithm and numerical model using available ground-based measurements; investigate seasonal and inter-annual variations of frozen soils in the GAPP regions using data generated from the new validated algorithm and their relations to the environmental factors such as air temperature, snow cover, surface morphology, soil type and soil moisture; generate a frozen soil data set which describes the timing, duration, thickness, and area extent of seasonally frozen ground for the period from 1978 to present. The proposed research will be accomplished through data analysis, remote sensing, and numerical modeling.

  6. Remote sensing and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the increasing need for global food production in the presence of dwindling productive acres, the business of modern agriculture needs to use all possible information available to maximize production. One tool that is being used to obtain this information is remote sensing. Any crop disease o...

  7. Remote sensing of environmental disturbance

    NASA Technical Reports Server (NTRS)

    Latham, J. P.

    1972-01-01

    Color, color infrared, and minus-blue films obtained by RB-57 remote sensing aircraft at an altitude of 60,000 feet over Boca Raton and Southeast Florida Earth Resources Test Site were analyzed for nine different types of photographic images of the geographic patterns of the surface. Results of these analyses are briefly described.

  8. Decoding the TV Remote Control.

    ERIC Educational Resources Information Center

    O'Connell, James

    2000-01-01

    Describes how to observe the pulse structure of the infrared signals from the light-emitting diode in a TV remote control. This exercise in decoding infrared digital signals provides an opportunity to discuss semiconductors, photonics technology, cryptology, and the physics of how things work. (WRM)

  9. Remote Science Operation Center research

    NASA Technical Reports Server (NTRS)

    Banks, P. M.

    1986-01-01

    Progress in the following areas is discussed: the design, planning and operation of a remote science payload operations control center; design and planning of a data link via satellite; and the design and prototyping of an advanced workstation environment for multi-media (3-D computer aided design/computer aided engineering, voice, video, text) communications and operations.

  10. Remote sensing for site characterization

    USGS Publications Warehouse

    Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.; Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.

    2000-01-01

    This volume, Remote Sensing for Site Characterization, describes the feasibility of aircraft- and satellite-based methods of revealing environmental-geological problems. A balanced ratio between explanations of the methodological/technical side and presentations of case studies is maintained. The comparison of case studies from North America and Germany show how the respective territorial conditions lead to distinct methodological approaches.

  11. Remote units eliminate unproductive pumping

    SciTech Connect

    Swartzlander, H.R. )

    1990-09-03

    This paper reports sucker-rod pumpoff controllers (POCs) based on available off-the-shelf remote terminal unit (RTU) components developed and installed in a Midland, Tex., producing area. Market availability of off-the-shelf pumpoff controllers in the early 1980s was limited. However, the fundamental building blocks for a general RTU-based system were readily available.

  12. Remote Sensing in Environmental Education.

    ERIC Educational Resources Information Center

    Huber, Thomas P.

    1983-01-01

    Describes general concepts of remote sensing and provides three examples of how its techniques have been used in the context of environmental issues. Examples focus on the use of this data gathering technique in the visible (aerial photography), near infrared, and thermal infrared ranges. (JN)

  13. Remote sensing. [land use mapping

    NASA Technical Reports Server (NTRS)

    Jinich, A.

    1979-01-01

    Various imaging techniques are outlined for use in mapping, land use, and land management in Mexico. Among the techniques discussed are pattern recognition and photographic processing. The utilization of information from remote sensing devices on satellites are studied. Multispectral band scanners are examined and software, hardware, and other program requirements are surveyed.

  14. Electric Remotely Piloted Vehicle (ERPV)

    NASA Astrophysics Data System (ADS)

    Smith, J. O.; Sherman, M. L.

    1983-09-01

    Electric propulsion offers significant advantages over the present gasoline engine propulsion system on a Remotely Piloted Vehicle (RPV). The advantages are the result of technical advances in batteries, power transistors, permanent magnets and control methods. This report covers the ground and flight test of an RPV using a lithium thionyl chloride battery powering a samarium cobalt brushless dc motor.

  15. Remote Instrumentation for Teaching Laboratory

    ERIC Educational Resources Information Center

    Baran, Jit; Currie, Ron; Kennepohl, Dietmar

    2004-01-01

    The feasibility of using current software, such as PC-Duo, PCAnywhere or LabVIEW, in training students in instrumental analysis from a remote location is investigated. Findings show that creation of online features is crucial to the use and learning by students and the development of a suitable Web site, which provides an easy-to-use interface to…

  16. Microwave remote sensing from space

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Elachi, C.; Ulaby, F. T.

    1985-01-01

    Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms - soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries.

  17. Remote Symbolic Computation of Loci

    ERIC Educational Resources Information Center

    Abanades, Miguel A.; Escribano, Jesus; Botana, Francisco

    2010-01-01

    This article presents a web-based tool designed to compute certified equations and graphs of geometric loci specified using standard Dynamic Geometry Systems (DGS). Complementing the graphing abilities of the considered DGS, the equations of the loci produced by the application are remotely computed using symbolic algebraic techniques from the…

  18. Connecting Remote Clusters with ATM

    SciTech Connect

    Hu, T.C.; Wyckoff, P.S.

    1998-10-01

    Sandia's entry into utilizing clusters of networked workstations is called Computational Plant or CPlant for short. The design of CPlant uses Ethernet to boot the individual nodes, Myrinet to communicate within a node cluster, and ATM to connect between remote clusters. This SAND document covers the work done to enable the use of ATM on the CPlant nodes in the Fall of 1997.

  19. Remotely Accessible Management System (RAMS).

    ERIC Educational Resources Information Center

    Wood, Rex

    Oakland Schools, an Intermediate School District for Administration, operates a Remotely Accessible Management System (RAMS). RAMS is composed of over 100 computer programs, each of which performs procedures on the files of the 28 local school districts comprising the constituency of Oakland Schools. This regional service agency covers 900 square…

  20. Adaptive Control Of Remote Manipulator

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  1. Angkor site monitoring and evaluation by radar remote sensing

    NASA Astrophysics Data System (ADS)

    Chen, Fulong; Jiang, Aihui; Ishwaran, Natarajan

    2014-11-01

    Angkor, in the northern province of Siem Reap, Cambodia, is one of the most important world heritage sites of Southeast Asia. Seasonal flood and ground sinking are two representative hazards in Angkor site. Synthetic Aperture Radar (SAR) remote sensing has played an important role for the Angkor site monitoring and management. In this study, 46 scenes of TerraSAR data acquired in the span of February, 2011 to December, 2013 were used for the time series analysis and hazard evaluation; that is, two-fold classification for flood area extracting and Multi-Temporal SAR Interferometry (MT-InSAR) for ground subsidence monitoring. For the flood investigation, the original Single Look Complex (SLC) TerraSAR-X data were transferred into amplitude images. Water features in dry and flood seasons were firstly extracted using a proposed mixed-threshold approach based on the backscattering; and then for the correlation analysis between water features and the precipitation in seasonally and annually. Using the MT-InSAR method, the ground subsidence was derived with values ranging from -50 to +12 mm/yr in the observation period of February, 2011 to June, 2013. It is clear that the displacement on the Angkor site was evident, implying the necessity of continuous monitoring.

  2. REMOTE SENSING AND GIS FOR WETLANDS

    EPA Science Inventory

    In identifying and characterizing wetland and adjacent features, the use of remote sensor and Geographic Information Systems (GIS) technologies has been valuable. Remote sensors such as photographs and computer-sensor generated images can illustrate conditions of hydrology, exten...

  3. Operational Use of Remote Sensing within USDA

    NASA Technical Reports Server (NTRS)

    Bethel, Glenn R.

    2007-01-01

    A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.

  4. Microwave remote sensing of snowpack properties

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor)

    1980-01-01

    Topic concerning remote sensing capabilities for providing reliable snow cover data and measurement of snow water equivalents are discussed. Specific remote sensing technqiues discussed include those in the microwave region of the electromagnetic spectrum.

  5. Airborne Remote Sensing for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, Andrew

    2013-01-01

    Topics covered include: Passive Remote Sensing Methods, Imaging Spectroscopy Approach, Remote Measurement via Spectral Fitting, Imaging Spectroscopy Mapping Wetland Dominants 2010 LA (AVIRIS), Deepwater Horizon Response I, Deepwater Horizon Response II, AVIRIS Ocean Color Studies.

  6. [The changes of forest canopy spectral reflectance with seasons in Xiaoxing'anling].

    PubMed

    Xu, Guang-Cai; Pang, Yong; Li, Zeng-Yuan; Zhao, Kai-Rui; Liu, Lu-Xia

    2013-12-01

    The ASD FieldSpec portable spectrometer was adopted to collect canopy reflectance spectrum data of the 9 main tree species in study area by a long-term observation to get the data of the four seasons Then the smoothed reflectance curve and the first derivation curve from 350 to 1400 nm and several commonly used vegetation spectral characteristic parameters were generated to analyse seasonal change characteristics and variation of the 9 tree species in visible and near-infrared band and to explore the best band characteristics and period for species identification. The results showed that different trees had different and rather unique spectral features during the four seasons. The spectral characteristics of the deciduous trees have regular changes with the cycle of the seasons, whereas those of the evergreen tree species have no significant changes in one year. As well changes in the spectral characteristics could effectively reflect forest phenology changes, and it is proposed that the optimal strategy for tree species classification may be the integration and analysis of multi-seasonal spectral data. Evergreen trees and deciduous trees in the winter have obvious differences in the canopy spectral characteristics and the best single-season remote sensing data for tree species recognition is in summer.

  7. The atmospheric sulfur cycle over the Amazon Basin. II - Wet season

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Bingemer, H.; Berresheim, H.; Jacob, D. J.; Lewis, B. L.

    1990-01-01

    The fluxes and concentrations of atmospheric sulfur species were determined at ground level and from aircraft over the Amazon Basin during the 1987 wet season, providing a comprehensive description of the sulfur cycle over a remote tropical region. The vertical profile of dimethylsulfide (DMS) during the wet season was found to be very similar to that measured during the dry season, suggesting little seasonal variation in DMS fluxes. The concentrations of H2S were almost an order of magnitude higher than those of DMS, which makes H2S the most important biogenic source species in the atmosheric sulfur cycle over the Amazon Basin. Using the gradient-flux approach, the flux of DMS at the top of the tree canopy was estimated. The canopy was a source of DMS during the day, and a weak sink during the night. Measurements of sulfur gas emissions from soils, using the chamber method, showed very small fluxes, consistent with the hypothesis that the forest canopy is the major source of sulfur gases. The observed soil and canopy emission fluxes are similar to those measured in temperate regions. The concentrations of SO2 and sulfate aerosol in the wet season atmosphere were similar to dry season values.

  8. Determining the ice seasons severity during 1982-2015 using the ice extents sum as a new characteristic

    NASA Astrophysics Data System (ADS)

    Rjazin, Jevgeni; Pärn, Ove

    2016-04-01

    Sea ice is a key climate factor and it restricts considerably the winter navigation in sever seasons on the Baltic Sea. So determining ice conditions severity and describing ice cover behaviour at severe seasons interests scientists, engineers and navigation managers. The present study is carried out to determine the ice seasons severity degree basing on the ice seasons 1982 to 2015. A new integrative characteristic is introduced to describe the ice season severity. It is the sum of ice extents of the ice season id est the daily ice extents of the season are summed. The commonly used procedure to determine the ice season severity degree by the maximal ice extent is in this research compared to the new characteristic values. The remote sensing data on the ice concentrations on the Baltic Sea published in the European Copernicus Programme are used to obtain the severity characteristic values. The ice extents are calculated on these ice concentration data. Both the maximal ice extent of the season and a newly introduced characteristic - the ice extents sum are used to classify the winters with respect of severity. The most severe winter of the reviewed period is 1986/87. Also the ice seasons 1981/82, 1984/85, 1985/86, 1995/96 and 2002/03 are classified as severe. Only three seasons of this list are severe by both the criteria. They are 1984/85, 1985/86 and 1986/87. We interpret this coincidence as the evidence of enough-during extensive ice cover in these three seasons. In several winters, for example 2010/11 ice cover extended enough for some time, but did not endure. At few other ice seasons as 2002/03 the Baltic Sea was ice-covered in moderate extent, but the ice cover stayed long time. At 11 winters the ice extents sum differed considerably (> 10%) from the maximal ice extent. These winters yield one third of the studied ice seasons. The maximal ice extent of the season is simple to use and enables to reconstruct the ice cover history and to predict maximal ice

  9. Monitoring boreal ecosystem phenology with integrated active/passive microwave remote sensing

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Njoku, E.; Kimball, J.; Running, S.; Thompson, C.; Lee, J. K.

    2002-01-01

    The important role of the high latitudes in the functioning of global processes is becoming well established. The size and remoteness of arctic and boreal ecosystems, however, pose a challenge to quantification of both terrestrial ecosystem processes and their feedbacks to regional and global climate conditions. Boreal and arctic regions form a complex land cover mosaic where vegetation structure, condition and distribution are strongly regulated by environmental factors such as moisture availability, permafrost, growing season length, disturbance and soil nutrients.

  10. Application of remote sensing techniques for identification of irrigated crop lands in Arizona

    NASA Technical Reports Server (NTRS)

    Billings, H. A.

    1981-01-01

    Satellite imagery was used in a project developed to demonstrate remote sensing methods of determining irrigated acreage in Arizona. The Maricopa water district, west of Phoenix, was chosen as the test area. Band rationing and unsupervised categorization were used to perform the inventory. For both techniques the irrigation district boundaries and section lines were digitized and calculated and displayed by section. Both estimation techniques were quite accurate in estimating irrigated acreage in the 1979 growing season.

  11. Remote sensing applications to forest vegetation classification and conifer vigor loss due to dwarf mistletoe

    NASA Technical Reports Server (NTRS)

    Douglass, R. W.; Meyer, M. P.; French, D. W.

    1972-01-01

    Criteria was established for practical remote sensing of vegetation stress and mortality caused by dwarf mistletoe infections in black spruce subboreal forest stands. The project was accomplished in two stages: (1) A fixed tower-tramway site in an infected black spruce stand was used for periodic multispectral photo coverage to establish basic film/filter/scale/season/weather parameters; (2) The photographic combinations suggested by the tower-tramway tests were used in low, medium, and high altitude aerial photography.

  12. Crop stress detection and classification using hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Irby, Jon Trenton

    Agricultural production has observed many changes in technology over the last 20 years. Producers are able to utilize technologies such as site-specific applicators and remotely sensed data to assist with decision making for best management practices which can improve crop production and provide protection to the environment. It is known that plant stress can interfere with photosynthetic reactions within the plant and/or the physical structure of the plant. Common types of stress associated with agricultural crops include herbicide induced stress, nutrient stress, and drought stress from lack of water. Herbicide induced crop stress is not a new problem. However, with increased acreage being planting in varieties/hybrids that contain herbicide resistant traits, herbicide injury to non-target crops will continue to be problematic for producers. With rapid adoption of herbicide-tolerant cropping systems, it is likely that herbicide induced stress will continue to be a major concern. To date, commercially available herbicide-tolerant varieties/hybrids contain traits which allow herbicides like glyphosate and glufosinate-ammonium to be applied as a broadcast application during the growing season. Both glyphosate and glufosinate-ammonium are broad spectrum herbicides which have activity on a large number of plant species, including major crops like non-transgenic soybean, corn, and cotton. Therefore, it is possible for crop stress from herbicide applications to occur in neighboring fields that contain susceptible crop varieties/hybrids. Nutrient and moisture stress as well as stress caused by herbicide applications can interact to influence yields in agricultural fields. If remotely sensed data can be used to accurately identify specific levels of crop stress, it is possible that producers can use this information to better assist them in crop management to maximize yields and protect their investments. This research was conducted to evaluate classification of specific

  13. Remote sensing for studying atmospheric aerosols in Malaysia

    NASA Astrophysics Data System (ADS)

    Kanniah, Kasturi D.; Kamarul Zaman, Nurul A. F.

    2015-10-01

    The aerosol system is Southeast Asia is complex and the high concentrations are due to population growth, rapid urbanization and development of SEA countries. Nevertheless, only a few studies have been carried out especially at large spatial extent and on a continuous basis to study atmospheric aerosols in Malaysia. In this review paper we report the use of remote sensing data to study atmospheric aerosols in Malaysia and document gaps and recommend further studies to bridge the gaps. Satellite data have been used to study the spatial and seasonal patterns of aerosol optical depth (AOD) in Malaysia. Satellite data combined with AERONET data were used to delineate different types and sizes of aerosols and to identify the sources of aerosols in Malaysia. Most of the aerosol studies performed in Malaysia was based on station-based PM10 data that have limited spatial coverage. Thus, satellite data have been used to extrapolate and retrieve PM10 data over large areas by correlating remotely sensed AOD with ground-based PM10. Realising the critical role of aerosols on radiative forcing numerous studies have been conducted worldwide to assess the aerosol radiative forcing (ARF). Such studies are yet to be conducted in Malaysia. Although the only source of aerosol data covering large region in Malaysia is remote sensing, satellite observations are limited by cloud cover, orbital gaps of satellite track, etc. In addition, relatively less understanding is achieved on how the atmospheric aerosol interacts with the regional climate system. These gaps can be bridged by conducting more studies using integrated approach of remote sensing, AERONET and ground based measurements.

  14. Technical keynote address on remote sensing

    NASA Technical Reports Server (NTRS)

    Holter, M. R.; Park, A. B.

    1972-01-01

    A review of remote sensing techniques is presented. Various types of remote sensors are described and the platforms used to mount the sensors are examined. Examples of remote sensing by aerial photography in infrared, ultraviolet, and visual spectra are included. The types of equipment are designated and their specific areas of application are defined. It is concluded that the primary objective of remote sensing is to contribute to man's ability to manage and use the terrestrial environment.

  15. 50 CFR 20.22 - Closed seasons.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Closed seasons. 20.22 Section 20.22... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.22 Closed seasons. No person shall take migratory game birds during the closed season except as provided in part 21 of this chapter....

  16. 25 CFR 242.6 - Spawning season.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Spawning season. 242.6 Section 242.6 Indians BUREAU OF... RESERVATION § 242.6 Spawning season. Walleye and northern pike (or pickerel) shall not be taken during their spawning season except for propagation purposes....

  17. 50 CFR 20.22 - Closed seasons.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Closed seasons. 20.22 Section 20.22... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.22 Closed seasons. No person shall take migratory game birds during the closed season except as provided in part 21 of this chapter....

  18. 50 CFR 20.22 - Closed seasons.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Closed seasons. 20.22 Section 20.22... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.22 Closed seasons. No person shall take migratory game birds during the closed season except as provided in part 21 of this chapter....

  19. 50 CFR 20.22 - Closed seasons.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Closed seasons. 20.22 Section 20.22... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.22 Closed seasons. No person shall take migratory game birds during the closed season except as provided in part 21 of this chapter....

  20. 25 CFR 242.6 - Spawning season.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Spawning season. 242.6 Section 242.6 Indians BUREAU OF... RESERVATION § 242.6 Spawning season. Walleye and northern pike (or pickerel) shall not be taken during their spawning season except for propagation purposes....

  1. 25 CFR 242.6 - Spawning season.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Spawning season. 242.6 Section 242.6 Indians BUREAU OF... RESERVATION § 242.6 Spawning season. Walleye and northern pike (or pickerel) shall not be taken during their spawning season except for propagation purposes....

  2. 50 CFR 20.22 - Closed seasons.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Closed seasons. 20.22 Section 20.22... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.22 Closed seasons. No person shall take migratory game birds during the closed season except as provided in part 21 of this chapter....

  3. 25 CFR 242.6 - Spawning season.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Spawning season. 242.6 Section 242.6 Indians BUREAU OF... RESERVATION § 242.6 Spawning season. Walleye and northern pike (or pickerel) shall not be taken during their spawning season except for propagation purposes....

  4. 25 CFR 242.6 - Spawning season.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Spawning season. 242.6 Section 242.6 Indians BUREAU OF... RESERVATION § 242.6 Spawning season. Walleye and northern pike (or pickerel) shall not be taken during their spawning season except for propagation purposes....

  5. 5 CFR 340.402 - Seasonal employment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....402 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS OTHER THAN FULL-TIME CAREER EMPLOYMENT (PART-TIME, SEASONAL, ON-CALL, AND INTERMITTENT) Seasonal and intermittent.... Seasonal employment may not be used as a substitute for full-time employment or as a buffer for the...

  6. 5 CFR 340.402 - Seasonal employment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....402 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS OTHER THAN FULL-TIME CAREER EMPLOYMENT (PART-TIME, SEASONAL, ON-CALL, AND INTERMITTENT) Seasonal and intermittent.... Seasonal employment may not be used as a substitute for full-time employment or as a buffer for the...

  7. 5 CFR 340.402 - Seasonal employment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....402 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS OTHER THAN FULL-TIME CAREER EMPLOYMENT (PART-TIME, SEASONAL, ON-CALL, AND INTERMITTENT) Seasonal and intermittent.... Seasonal employment may not be used as a substitute for full-time employment or as a buffer for the...

  8. 5 CFR 340.402 - Seasonal employment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....402 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS OTHER THAN FULL-TIME CAREER EMPLOYMENT (PART-TIME, SEASONAL, ON-CALL, AND INTERMITTENT) Seasonal and intermittent.... Seasonal employment may not be used as a substitute for full-time employment or as a buffer for the...

  9. 5 CFR 340.402 - Seasonal employment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....402 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS OTHER THAN FULL-TIME CAREER EMPLOYMENT (PART-TIME, SEASONAL, ON-CALL, AND INTERMITTENT) Seasonal and intermittent.... Seasonal employment may not be used as a substitute for full-time employment or as a buffer for the...

  10. 1971 Post Season Rural Manpower Report.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Labor, Detroit. Michigan Employment Security Commission.

    The Rural Manpower Service reports on the migrant seasonal labor in Michigan during 1971. Seasonal labor has been declining since it reached its peak of 97,700 in 1962. This report discusses migrant seasonal labor with regard to (1) the wages and earnings of the workers, (2) the recruitment of workers, (3) the agricultural-labor housing, (4) the…

  11. Prediction of seasonal runoff in ungauged basins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many regions of the world experience strong seasonality in climate (i.e. precipitation and temperature), and strong seasonal runoff variability. Predictable patterns in seasonal water availability are of significant benefit to society because they allow reliable planning and infrastructure developme...

  12. 7 CFR 916.15 - Marketing season.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Marketing season. 916.15 Section 916.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 916.15 Marketing season. Marketing season means the period beginning...

  13. 7 CFR 916.15 - Marketing season.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Marketing season. 916.15 Section 916.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 916.15 Marketing season. Marketing season means the period beginning...

  14. 50 CFR 679.23 - Seasons.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Seasons. 679.23 Section 679.23 Wildlife... § 679.23 Seasons. (a) Groundfish, general. Fishing for groundfish in the GOA and BSAI is authorized from... and closures. The time of all openings and closures of fishing seasons, other than the beginning...

  15. 50 CFR 679.23 - Seasons.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Seasons. 679.23 Section 679.23 Wildlife... § 679.23 Seasons. (a) Groundfish, general. Fishing for groundfish in the GOA and BSAI is authorized from... and closures. The time of all openings and closures of fishing seasons, other than the beginning...

  16. Medical Applications of Remote Electronic Browsing.

    ERIC Educational Resources Information Center

    Chadwick, Joseph

    The purposes of this study are to identify and define viable remote browsing techniques and the requirements for an interactive medical information system that would permit the use of such techniques. The main emphasis is in the areas of: (1) remote viewing of page material; and (2) remote interrogation of fact banks with question-answering…

  17. Regional Drought Monitoring Based on Multi-Sensor Remote Sensing

    NASA Astrophysics Data System (ADS)

    Rhee, Jinyoung; Im, Jungho; Park, Seonyoung

    2014-05-01

    Drought originates from the deficit of precipitation and impacts environment including agriculture and hydrological resources as it persists. The assessment and monitoring of drought has traditionally been performed using a variety of drought indices based on meteorological data, and recently the use of remote sensing data is gaining much attention due to its vast spatial coverage and cost-effectiveness. Drought information has been successfully derived from remotely sensed data related to some biophysical and meteorological variables and drought monitoring is advancing with the development of remote sensing-based indices such as the Vegetation Condition Index (VCI), Vegetation Health Index (VHI), and Normalized Difference Water Index (NDWI) to name a few. The Scaled Drought Condition Index (SDCI) has also been proposed to be used for humid regions proving the performance of multi-sensor data for agricultural drought monitoring. In this study, remote sensing-based hydro-meteorological variables related to drought including precipitation, temperature, evapotranspiration, and soil moisture were examined and the SDCI was improved by providing multiple blends of the multi-sensor indices for different types of drought. Multiple indices were examined together since the coupling and feedback between variables are intertwined and it is not appropriate to investigate only limited variables to monitor each type of drought. The purpose of this study is to verify the significance of each variable to monitor each type of drought and to examine the combination of multi-sensor indices for more accurate and timely drought monitoring. The weights for the blends of multiple indicators were obtained from the importance of variables calculated by non-linear optimization using a Machine Learning technique called Random Forest. The case study was performed in the Republic of Korea, which has four distinct seasons over the course of the year and contains complex topography with a variety

  18. Satellite remote sensing of surface energy and mass balance - Results from FIFE

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Markham, B. J.; Wang, J. R.; Huemmrich, F.; Sellers, P. J.; Strebel, D. E.; Kanemasu, E. T.; Kelly, Robert D.; Blad, Blaine L.

    1991-01-01

    Results obtained from the FIFE experiments conducted in 1987 and 1989 are summarized. Data analyses indicate that the hypotheses linking energy balance components to surface biology and remote sensing are reasonable at a point level, and that satellite remote sensing can potentially provide useful estimates of the surface energy budget. An investigation of atmospheric scattering and absorption effects on satellite remote sensing of surface radiance shows that the magnitude of atmospheric opacity variations within the FIFE site and with season can have a large effect on satellite measured values of surface radiances. Comparisons of atmospherically corrected TM radiances with surface measured radiances agreed to within about two percent at the visible and near-infrared wavelengths and to 6 percent in the midinfrared.

  19. 1985 International Geoscience and Remote Sensing Symposium (IGARSS '85), University of Massachusetts, Amherst, October 7-9, 1985, Digest. Volumes 1 & 2

    NASA Technical Reports Server (NTRS)

    Carver, K. R. (Editor)

    1985-01-01

    The present conference on remote sensing instrumentation considers topics in water resources research, planetary remote sensing and mathematical geophysics, sea ice behavior in view of the Cold Regions Research and Engineering Laboratories pond measurements, Shuttle Imaging Radar-B (SIR-B) system performance and calibration results, geological applications of remote sensing, and microwave scattering from vegetation. Further attention is given to atmospheric probing with lasers, image processing for remote sensing, forest inventory and condition assessment, atmospheric remote sensing, SIR-B geological results, the reflectance, emission, and scattering characteristics of vegetation, sea ice sensing, multipolarization SAR results, the theoretical modeling of surfaces and volumes, crop condition assessment and productivity estimates, and SIR-B results for vegetation cover. Also considered are the microwave remote sensing of soil moisture, advanced sensors, advanced information extraction, wind and wave remote observations, results from the ESA Remote Sensing satellite, large area crop and land cover statistics, SIR-B results for directional ocean wave spectra, seasonal snow cover, ice sheets, and lake ice, fundamental research in terrain remote sensing, image classification methods, vegetation stress detection, remote sensing of coastal processes, SAR systems and calibration, electromagnetic geophysical methods and signal processing, image processing techniques, and SAR internal wave measurements.

  20. Get a fresh look with remote sensing - remote sensing

    SciTech Connect

    Koger, D.

    1997-04-01

    The ideal exploration approach finds structures and points out where hydrocarbons are buried. It operates to reduce risk, is cost-effective and feeds creativity. Exploration tools fall into two categories: (1) Those which detect structure (seismic, gravity, remote sensing). (2) Those that detect hydrocarbons (geochemistry, well logs, the drill bit, and remote sensing). All exploration takes place in this sometimes-forgotten context: The crust of Earth is not thick. In proportion, it is as thin as tomato skin. Unlike tomato skin, our crust floats on liquid and is unstable. We seek structure because that`s where hydrocarbons can become trapped. Satellite data-and before them airphotos-find structure efficiently. The methodology is well tested. Positive structures and lineaments find surface expression in many ways.

  1. The application of remote sensing in geobotanical exploration for metal sulfides

    NASA Technical Reports Server (NTRS)

    Masuoka, E. J.; Labovitz, M. L.; Bell, R.; Nelson, R. F.; Broderick, P. W.; Ludwig, R. W.

    1983-01-01

    A field study was conducted in Mineral, VA in 1980-82 to test the suitability of remote sensing techniques for geobotanical exploration. It was found that on trees growing over lead sulfide deposits, buds opened later and leaves were smaller than on trees growing on soils with background levels of lead and copper. This difference in leaf growth could be detected in remotely sensed data. In the spring, the smaller leaf size of metal-stressed trees resulted in a greater contribution from the soil and bark to the total reflectance imaged by the sensor. In the fall, the leaves of metal-stressed oaks sensed earlier than surrounding vegetation, which was also detected in remotely sensed data. It is concluded that vegetation growing on lead sulfide deposits has a shorter growing season than surrounding vegetation on unmineralized soil and that remotely sensed data collected at either end of the growing season can be used to locate geobotanical anomalies associated with these deposits.

  2. Remote sensing of spruce budworm defoliation using EO-1 Hyperion hyperspectral data: an example in Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Zhang, Y.

    2016-04-01

    Each year, the spruce budworm (SBW) causes severe, widespread damage to spruces and fir in east coast Canada. Early estimation of the defoliation can provide crucial support to mitigate the socio-economic impact on vulnerable forests. Remote sensing techniques are suitable to investigate the affected regions that usually consist of large and inaccessible forestry areas. Using satellite images, surface reflectance values at two or more wavelengths are combined to generate vegetation indices (VIs), revealing a relative abundance of features of interest. Forest health analysis based on VIs is considered as one of the primary information sources for monitoring vegetation conditions. Especially the spectral resolution of Hyperion hyperspectral satellite imagery used in this study allows for a detailed examination of the red to near-infrared portion of the spectrum to identify areas of stressed vegetation. Several narrow-band vegetation indices are used to indicate the overall amount and quality of photosynthetic material and moisture content in vegetation. By integrating the information from VIs that focus on different aspects of overall health and vigour in forested areas, the study aims at detecting defoliated condition in a forested region in the Province of Quebec, Canada. In June and August of 2014 two Hyperion images were acquired by NASA's EO-1 satellite for this study. Changes in vegetation health and vigour are observed and quantitatively compared using the multi-temporal remote sensing images. The experimental results suggest that the VI- based forest health analysis is effective in estimating SBW defoliation in the study area.

  3. Seasonal variation in vertical volatile compounds air concentrations within a remote hemiboreal mixed forest

    NASA Astrophysics Data System (ADS)

    Noe, S. M.; Hüve, K.; Niinemets, Ü.; Copolovici, L.

    2011-05-01

    The vertical distribution of ambient biogenic volatile organic compounds (BVOC) concentrations within a hemiboreal forest canopy was investigated over a period of one year. Variability in temporal and spatial isoprene concentrations can be mainly explained by biogenic emissions from deciduous trees, ranging from 0.1 to 7.5 μg m-3. Monoterpene concentrations exceeded isoprene largely and ranged from 0.01 to 140 μg m-3 and during winter time anthropogenic contributions are likely. Variation in monoterpene concentrations found to be largest right above the ground and the vertical profile suggest a weak mixing leading to terpene accumulation in the lower canopy. Exceptionally high values were recorded during a heat wave in July 2010 with very high midday temperatures above 30 °C for several weeks. During summer months, monoterpene exceeded isoprene concentrations 6-fold and during winter 12-fold. The relative contribution of diverse monoterpene species to the ambient concentrations revealed a dominance of α-pinene in the lower and of limonene in the upper part of the canopy, both accounting for up to 70 % of the total monoterpene concentration during summer months. The main contributing monoterpene during wintertime was Δ3-carene accounting for 60 % of total monoterpene concentration in January. Possible biogenic monoterpene sources beside the foliage are the leaf litter, the soil and also resins exuding from stems. In comparison, the hemiboreal mixed forest canopy showed similar isoprene but higher monoterpene concentrations than the boreal forest and lower isoprene but substantially higher monoterpene concentrations than the temperate mixed forest canopies. These results have major implications for simulating air chemistry and secondary organic aerosol formation within and above hemiboreal forest canopies.

  4. Seasonal variation in vertical volatile compounds air concentrations within a remote hemiboreal mixed forest

    NASA Astrophysics Data System (ADS)

    Noe, S. M.; Hüve, K.; Niinemets, Ü.; Copolovici, L.

    2012-05-01

    The vertical distribution of ambient biogenic volatile organic compounds (BVOC) concentrations within a hemiboreal forest canopy was investigated over a period of one year. Variability in temporal and spatial isoprene concentrations, ranging from 0.1 to 7.5 μg m-3, can be mainly explained by biogenic emissions from deciduous trees. Monoterpene concentrations exceeded isoprene largely and ranged from 0.01 to 140 μg m-3 and during winter time anthropogenic contributions are likely. Variation in monoterpene concentrations were found to be largest right above the ground and the vertical profiles suggest a weak mixing leading to terpene accumulation in the lower canopy. Exceptionally high values were recorded during a heat wave in July 2010 with very high midday temperatures above 30 °C for several weeks. During summer months, monoterpene exceeded isoprene concentrations 6-fold and during winter 12-fold. During summer months, dominance of α-pinene in the lower and of limonene in the upper part of the canopy was observed, both accounting for up to 70% of the total monoterpene concentration. During wintertime, Δ3-carene was the dominant species, accounting for 60% of total monoterpene concentration in January. Possible biogenic monoterpene sources beside the foliage are the leaf litter, the soil and also resins exuding from stems. In comparison, the hemiboreal mixed forest canopy showed similar isoprene but higher monoterpene concentrations than the boreal forest and lower isoprene but substantially higher monoterpene concentrations than the temperate mixed forest canopies. These results have major implications for simulating air chemistry and secondary organic aerosol formation within and above hemiboreal forest canopies. Possible effects of in-cartridge oxidation reactions are discussed as our measurement technique did not include oxidant scavenging. A comparison between measurements with and without scavenging oxidants is presented.

  5. Monitoring cotton root rot progression within and across growing seasons using remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore Shear (Duggar), is one of the most destructive plant diseases occurring throughout the southwestern U.S. More recently, a fungicide, flutriafol, has been evaluated in Texas and was found to have the potential for controlling ...

  6. [Palivizumab: four seasons in Russia].

    PubMed

    Baranov, A A; Ivanov, D O; Aliamovskaia, G A; Amirova, V R; Antoniuk, I V; Asmolova, G A; Beliaeva, I A; Bokeria, E L; Briukhanova, O A; Vinogradova, I V; Vlasova, E V; Galustian, A N; Gafarova, G V; Gorev, V V; Davydova, I V; Degtiarev, D N; Degtiareva, E A; Dolgikh, V V; Donits, I M; Zakharova, N I; Zernova, L Iu; Zimina, E P; Zuev, V V; Keshishian, E S; Kovalev, I A; Koltunov, I E; Korsunskiĭ, A A; Krivoshchekov, E V; Krsheminskaia, I V; Kuznetsova, S N; Liubimenko, V A; Namazova-Baranova, L S; Nesterenko, É V; Nikolaev, S V; Ovsiannikov, D Iu; Pavlova, T I; Potapova, M V; Rychkova, L V; Safarov, A A; Safina, A I; Skachkova, M A; Soldatova, I G; Turti, T V; Filatova, N A; Shakirova, R M; Ianulevich, O S

    2014-01-01

    In 2010, the Russian Federation (RF) registered palivizumab--innovative drug, based on monoclonal antibodies for passive immunization of seasonal respiratory syncytial virus (RSV) infection in children of disease severe progress risk group, which include primarily premature infants, children with bronchopulmonary dysplasia and hemodynamically significant congenital heart disease. Currently, palivizumab is included in the list of recommended medicines and medical care standards of different countries, including Russia. In the review the results of Russian research on the progress of RSV infection, its epidemiology and immunization experience gained over the 2010-2014 period are summarized in relation to the foreign data. During the four epidemic seasons palivizumab immunization covered more than 3,200 children of severe RSV infection risk group with a progressive annual increase in the number of patients who received the drug. Geography of palivizumab immunization is also greatly expanded in our country during this time. If during the first two seasons measures of immunization were taken mainly in Moscow and St. Petersburg, at the present time, thirty one territorial entities of the Russian Federation have the experience in the drug application. Analysis of the results of RSV infection immunization (made in several regions) confirms the high clinical efficacy and palivizumab safety already demonstrated in international studies. In addition, the analysis presents the potential to improve the efficiency of the integrated RSV infection immunization programs, realizing in the establishment of high-risk child group register, adequate counseling for parents, as well as the development of the routing of patients and coordination of interaction between different health institutions during the immunization. PMID:25563005

  7. SEASONALITY AND THE EFFECTIVENESS OF MASS VACCINATION

    PubMed Central

    Chao, Dennis L.; Dimitrov, Dobromir T.

    2016-01-01

    Many infectious diseases have seasonal outbreaks, which may be driven by cyclical environmental conditions (e.g., an annual rainy season) or human behavior (e.g., school calendars or seasonal migration). If a pathogen is only transmissible for a limited period of time each year, then seasonal outbreaks could infect fewer individuals than expected given the pathogen’s in-season transmissibility. Influenza, with its short serial interval and long season, probably spreads throughout a population until a substantial fraction of susceptible individuals are infected. Dengue, with a long serial interval and shorter season, may be constrained by its short transmission season rather than the depletion of susceptibles. Using mathematical modeling, we show that mass vaccination is most efficient, in terms of infections prevented per vaccine administered, at high levels of coverage for pathogens that have relatively long epidemic seasons, like influenza, and at low levels of coverage for pathogens with short epidemic seasons, like dengue. Therefore, the length of a pathogen’s epidemic season may need to be considered when evaluating the costs and benefits of vaccination programs. PMID:27105983

  8. Rainfall variability and seasonality in northern Bangladesh

    NASA Astrophysics Data System (ADS)

    Bari, Sheikh Hefzul; Hussain, Md. Manjurul; Husna, Noor-E.-Ashmaul

    2016-05-01

    This paper aimed at the analysis of rainfall seasonality and variability for the northern part of South-Asian country, Bangladesh. The coefficient of variability was used to determine the variability of rainfall. While rainfall seasonality index (SI ) and mean individual seasonality index ( overline{SI_i} ) were used to identify seasonal contrast. We also applied Mann-Kendall trend test and sequential Mann-Kendall test to determine the trend in seasonality. The lowest variability was found for monsoon among the four seasons whereas winter has the highest variability. Observed variability has a decreasing tendency from the northwest region towards the northeast region. The mean individual seasonality index (0.815378 to 0.977228) indicates that rainfall in Bangladesh is "markedly seasonal with a long dry season." It was found that the length of the dry period is lower at the northeastern part of northern Bangladesh. Trend analysis results show no significant change in the seasonality of rainfall in this region. Regression analysis of overline{SI_i} and SI, and longitude and mean individual seasonality index show a significant linear correlation for this area.

  9. Seasonality and the effectiveness of mass vaccination.

    PubMed

    Chao, Dennis L; Dimitrov, Dobromir T

    2016-04-01

    Many infectious diseases have seasonal outbreaks, which may be driven by cyclical environmental conditions (e.g., an annual rainy season) or human behavior (e.g., school calendars or seasonal migration). If a pathogen is only transmissible for a limited period of time each year, then seasonal outbreaks could infect fewer individuals than expected given the pathogen's in-season transmissibility. Influenza, with its short serial interval and long season, probably spreads throughout a population until a substantial fraction of susceptible individuals are infected. Dengue, with a long serial interval and shorter season, may be constrained by its short transmission season rather than the depletion of susceptibles. Using mathematical modeling, we show that mass vaccination is most efficient, in terms of infections prevented per vaccine administered, at high levels of coverage for pathogens that have relatively long epidemic seasons, like influenza, and at low levels of coverage for pathogens with short epidemic seasons, like dengue. Therefore, the length of a pathogen's epidemic season may need to be considered when evaluating the costs and benefits of vaccination programs. PMID:27105983

  10. Men's attraction to women's bodies changes seasonally.

    PubMed

    Pawlowski, Bogusław; Sorokowski, Piotr

    2008-01-01

    Humans exhibit seasonal variation in hormone levels, behaviour, and perception. Here we show that men's assessments of women's attractiveness change also seasonally. In five seasons (from winter 2004 to winter 2005) 114 heterosexual men were asked to assess the attractiveness of the same stimuli: photos of a female with three different waist-to-hip ratios; photos of female breasts, and photos of average-looking faces of young women. For each season, the scores given to the stimuli of the same category (body shape, breast, and face) were combined. Friedman's test revealed significant changes for body shape and breast attractiveness assessments across the seasons, but no changes for face ratings. The highest scores for attractiveness were given in winter and the lowest in summer. We suggest that the observed seasonality is related to the well-known 'contrast effect'. More frequent exposure to women's bodies in warmer seasons might increase men's attractiveness criteria for women's body shape and breasts. PMID:18773730

  11. Remote sensing sensitivity to fire severity and fire recovery

    USGS Publications Warehouse

    Key, C.H.

    2005-01-01

    The paper examines fundamental ways that geospatial data on fire severity and recovery are influenced by conditions of the remote sensing. Remote sensing sensitivities are spatial, temporal and radiometric in origin. Those discussed include spatial resolution, the sampling time of year, and time since fire. For standard reference, sensitivities are demonstrated with examples drawn from an archive of burn assessments based on one radiometric index, the differenced Normalized Burn Ratio. Resolution determines the aggregation of fire effects within a pixel (alpha variation), hence defining the detected ecological response, and controlling the ability to determine patchiness and spatial distribution of responses throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation from the complexity of the whole burn. Seasonal timing impacts the radiometric quality of data in terms of transmittance, sun angle, and potential for enhanced contrast between responses within burns. Remote sensing sensitivity can degrade during many fire seasons when snow, incomplete burning, hazy conditions, low sun angles, or extended drought are common. Time since fire (lag timing) most notably shapes severity detection through the first-order fire effects evident in survivorship and delayed mortality that emerge by the growth period after fire. The former effects appear overly severe at first, but diminish, as burned vegetation remains viable. Conversely, the latter signals vegetation that appears healthy at first, but is damaged by heat to the extent that it soon dies. Both responses can lead to either over- or under-estimating severity, respectively, depending on fire behavior and pre-fire composition unique to each burned area. Based on implications of such sensitivities, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within ca. two weeks, two months, and depending on

  12. Seasonal drought forecast system for food-insecure regions of East Africa

    NASA Astrophysics Data System (ADS)

    Shukla, Shraddhanand; McNally, Amy; Husak, Greg; Funk, Chris

    2014-05-01

    In East Africa, agriculture is mostly rainfed and hence sensitive to interannual rainfall variability, and the increasing food and water demands of a growing population place further stresses on the water resources of this region. Skillful seasonal agricultural drought forecasts for this region can inform timely water and agricultural management decisions, support the proper allocation of the region's water resources, and help mitigate socio-economic losses. Here we describe the development and implementation of a seasonal drought forecast system that is being used for providing seasonal outlooks of agricultural drought in East Africa. We present a test case of the evaluation and applicability of this system for March-April-May growing season over equatorial East Africa (latitude 20 south to 80 North and 360 E to 460E) that encompasses one of the most food insecure and climatically and socio-economically vulnerable regions in East Africa. This region experienced famine as recently as in 2011. The system described here combines advanced satellite and re-analysis as well as station-based long term and real-time observations (e.g. NASA's TRMM, Infra-red remote sensing, Climate Forecast System Reanalysis), state-of-the-art dynamical climate forecast system (NCEP's Climate Forecast System Verison-2) and large scale land surface models (e.g. Variable Infiltration Capacity, NASA's Land Information System) to provide forecasts of seasonal rainfall, soil moisture and Water Requirement Satisfaction Index (WRSI) throughout the season - with an emphasis on times when water is the most critical: start of season/planting and the mid-season/crop reproductive phase. Based on the hindcast assessment of this system, we demonstrate the value of this approach to the US Agency for International Development (USAID)'s efforts to mitigate future losses of lives and economic losses by allowing a proactive approach of drought management that includes early warning and timely action.

  13. Cost effective malaria risk control using remote sensing and environmental data

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Z.; Roytman, Leonid; Kadik, Abdel Hamid

    2012-06-01

    Malaria transmission in many part of the world specifically in Bangladesh and southern African countries is unstable and epidemic. An estimate of over a million cases is reported annually. Malaria is heterogeneous, potentially due to variations in ecological settings, socio-economic status, land cover, and agricultural practices. Malaria control only relies on treatment and supply of bed networks. Drug resistance to these diseases is widespread. Vector control is minimal. Malaria control in those countries faces many formidable challenges such as inadequate accessibility to effective treatment, lack of trained manpower, inaccessibility of endemic areas, poverty, lack of education, poor health infrastructure and low health budgets. Health facilities for malaria management are limited, surveillance is inadequate, and vector control is insufficient. Control can only be successful if the right methods are used at the right time in the right place. This paper aims to improve malaria control by developing malaria risk maps and risk models using satellite remote sensing data by identifying, assessing, and mapping determinants of malaria associated with environmental, socio-economic, malaria control, and agricultural factors.

  14. Aggregate Remote Memory Copy Interface

    2006-02-23

    The purpose of the Aggregate Remote Memory Copy (ARMCI) library is to provide a general- purpose, efficient, and Widely portable remote memory access (RMA) operations (one-sided communication) optimized for Contiguous and noncontiguous (strided, scatter/gather, I/O vector) data transfers. In addition, ARMCI includes a set of atomic and mutual exclusion operations. The development ARMCI is driven by the need to support the global-addres space communication model in context of distributed regular or irregular distributed data structures,more » communication libraries, and compilers. ARMCI is a standalone system that could be used to support user-level libraries and applications that use MPI or PVM.« less

  15. Remote inhibition of polymer degradation.

    SciTech Connect

    Clough, Roger Lee; Celina, Mathias Christopher

    2005-08-01

    Polymer degradation has been explored on the basis of synergistic infectious and inhibitive interaction between separate materials. A dual stage chemiluminescence detection system with individually controlled hot stages was applied to probe for interaction effects during polymer degradation in an oxidizing environment. Experimental confirmation was obtained that volatile antioxidants can be transferred over a relatively large distance. The thermal degradation of a polypropylene (PP) sample receiving traces of inhibitive antioxidants from a remote source is delayed. Similarly, volatiles from two stabilized elastomers were also capable of retarding a degradation process remotely. This observation demonstrates inhibitive cross-talk as a novel interactive phenomenon between different polymers and is consequential for understanding general polymer interactions, fundamental degradation processes and long-term aging effects of multiple materials in a single environment.

  16. Remote control apparatus for transmission

    SciTech Connect

    Ebina, A.

    1989-01-10

    A remote control apparatus for a transmission is described, comprising: means for sending a signal representing an operation state of a change lever; auxiliary power means, remote-controlled by the change lever, for changing a gear position of the transmission and sending a signal representing the gear position; and control means for controlling an operation of the auxiliary power means in accordance with the change lever operation state signal and gear position signal, the control means being provided with neutral position holding means comprises signal transmission delay means. This comprises means for detecting that the shift path on which the striker presently exists is different from the shift path instructed according to the change lever operating signal, then detecting that the striker has reached the first neutral position according to the neutral position signal and generating a neutral position detection signal.

  17. Remote functionalization through alkene isomerization.

    PubMed

    Vasseur, Alexandre; Bruffaerts, Jeffrey; Marek, Ilan

    2016-03-01

    Exploiting the reactivity of one functional group within a molecule to generate a reaction at a different position is an ongoing challenge in organic synthesis. Effective remote functionalization protocols have the potential to provide access to almost any derivatives but are difficult to achieve. The difficulty is more pronounced for acyclic systems where flexible alkyl chains are present between the initiating functional group and the desired reactive centres. In this Review, we discuss the concept of remote functionalization of alkenes using metal complexes, leading to a selective reaction at a position distal to the initial double bond. We aim to show the vast opportunity provided by this growing field through selected and representative examples. Our aim is to demonstrate that using a double bond as a chemical handle, metal-assisted long-distance activation could be used as a powerful synthetic strategy. PMID:26892551

  18. Remote sensing by plasmonic transport.

    PubMed

    Lee, Seung Joon; Moskovits, Martin

    2012-07-18

    Arrays of periodically disposed silver nanowires embedded in alumina were shown to be capable of conducting plasmons excited by laser illuminating one end of the array to its opposite end where surface-enhanced Raman of molecules resident among the tips of the nanowires was excited. The SERS signals, in turn, excited plasmons which propagated back to the originally illuminated ends of the nanowires where they emitted light signals that were collected and spectroscopically dispersed, in essence creating a sensor capable of exciting and collecting SERS remotely. For nanowire arrays with interwire gaps of ~11 nm and lengths of ~3.3 μm (i.e., after a ~6.6 μm round trip) the SERS signals obtained by remote sensing were rather strong, ~5% the intensity of those obtained by exciting the molecules resident among the nanowire tips directly. PMID:22747443

  19. Remote Sensing of Earth Terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A. (Principal Investigator)

    1985-01-01

    The objective of this research is to develop theoretical models that are useful and practical in the remote sensing of the Earth environment including the Earth terrain, the lower and the upper atmospheres. Various models applicable to the microwave remote sensing of vegetation, snow-ice, and atmospheric precipitation have been developed. Such studies shall be extended to the higher frequency range to unify the optical band and the microwave theoretical foundations. The study, which had an emphasis on vegetation canopy to include all terrain media, and the whole Earth environment will be extended. A data base will be developed to generate scene radiation characteristics which will benefit the studies of global inhabitability, meteorological applications, and crop yield.

  20. Remote functionalization through alkene isomerization

    NASA Astrophysics Data System (ADS)

    Vasseur, Alexandre; Bruffaerts, Jeffrey; Marek, Ilan

    2016-03-01

    Exploiting the reactivity of one functional group within a molecule to generate a reaction at a different position is an ongoing challenge in organic synthesis. Effective remote functionalization protocols have the potential to provide access to almost any derivatives but are difficult to achieve. The difficulty is more pronounced for acyclic systems where flexible alkyl chains are present between the initiating functional group and the desired reactive centres. In this Review, we discuss the concept of remote functionalization of alkenes using metal complexes, leading to a selective reaction at a position distal to the initial double bond. We aim to show the vast opportunity provided by this growing field through selected and representative examples. Our aim is to demonstrate that using a double bond as a chemical handle, metal-assisted long-distance activation could be used as a powerful synthetic strategy.

  1. Instrument Remote Control Application Framework

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Hostetter, Carl F.

    2006-01-01

    The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.

  2. Remote sensing of the nearshore.

    PubMed

    Holman, Rob; Haller, Merrick C

    2013-01-01

    The shallow waters of the nearshore ocean are popular, dynamic, and often hostile. Prediction in this domain is usually limited less by our understanding of the physics or by the power of our models than by the availability of input data, such as bathymetry and wave conditions. It is a challenge for traditional in situ instruments to provide these inputs with the appropriate temporal or spatial density or at reasonable logistical or financial costs. Remote sensing provides an attractive alternative. We discuss the range of different sensors that are available and the differing physical manifestations of their interactions with the ocean surface. We then present existing algorithms by which the most important geophysical variables can be estimated from remote sensing measurements. Future directions and opportunities will depend on expected developments in sensors and platforms and on improving processing algorithms, including data assimilation formalisms.

  3. Remote functionalization through alkene isomerization.

    PubMed

    Vasseur, Alexandre; Bruffaerts, Jeffrey; Marek, Ilan

    2016-03-01

    Exploiting the reactivity of one functional group within a molecule to generate a reaction at a different position is an ongoing challenge in organic synthesis. Effective remote functionalization protocols have the potential to provide access to almost any derivatives but are difficult to achieve. The difficulty is more pronounced for acyclic systems where flexible alkyl chains are present between the initiating functional group and the desired reactive centres. In this Review, we discuss the concept of remote functionalization of alkenes using metal complexes, leading to a selective reaction at a position distal to the initial double bond. We aim to show the vast opportunity provided by this growing field through selected and representative examples. Our aim is to demonstrate that using a double bond as a chemical handle, metal-assisted long-distance activation could be used as a powerful synthetic strategy.

  4. Remote creation of quantum coherence

    NASA Astrophysics Data System (ADS)

    Ma, Teng; Zhao, Ming-Jing; Fei, Shao-Ming; Long, Gui-Lu

    2016-10-01

    We study remote creation of coherence (RCC) for a quantum system, A, with the help of quantum operations on another system, B, and one-way classical communication. We show that all the nonincoherent quantum states are useful for RCC and all the incoherent-quantum states are not. The necessary and sufficient conditions of RCC for the quantum operations on system B are presented for pure states. The upper bound of average RCC is derived, giving a relation among the entanglement (concurrence), the RCC of the given quantum state, and the RCC of the corresponding maximally entangled state. Moreover, for two-qubit systems we find a simple factorization law for the average remote-created coherence.

  5. Biogeochemical cycling and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Mouat, D. A.

    1984-01-01

    The present investigation is concerned with the role of remote sensing in the analysis of biochemical cycling. A general review is provided of the interest of NASA in biochemical cycling, taking into account an assessment of the state and dynamics of the pools and fluxes of four major elements (carbon, nitrogen, phosphorus, sulfur), an understanding of the coupling and interaction of the biosphere and the atmosphere, and an understanding of the biosphere and the oceans. Attention is given to biogeochemical cycling science issues, the potential remote sensing role, the vegetation type, aspects of vegetation structure, the leaf area index, the canopy height, functional relationships, environmental and soil variables, questions of experimental design, sampling sites and ground data, and radiometric data and analysis.

  6. An overview of GNSS remote sensing

    NASA Astrophysics Data System (ADS)

    Yu, Kegen; Rizos, Chris; Burrage, Derek; Dempster, Andrew G.; Zhang, Kefei; Markgraf, Markus

    2014-12-01

    The Global Navigation Satellite System (GNSS) signals are always available, globally, and the signal structures are well known, except for those dedicated to military use. They also have some distinctive characteristics, including the use of L-band frequencies, which are particularly suited for remote sensing purposes. The idea of using GNSS signals for remote sensing - the atmosphere, oceans or Earth surface - was first proposed more than two decades ago. Since then, GNSS remote sensing has been intensively investigated in terms of proof of concept studies, signal processing methodologies, theory and algorithm development, and various satellite-borne, airborne and ground-based experiments. It has been demonstrated that GNSS remote sensing can be used as an alternative passive remote sensing technology. Space agencies such as NASA, NOAA, EUMETSAT and ESA have already funded, or will fund in the future, a number of projects/missions which focus on a variety of GNSS remote sensing applications. It is envisaged that GNSS remote sensing can be either exploited to perform remote sensing tasks on an independent basis or combined with other techniques to address more complex applications. This paper provides an overview of the state of the art of this relatively new and, in some respects, underutilised remote sensing technique. Also addressed are relevant challenging issues associated with GNSS remote sensing services and the performance enhancement of GNSS remote sensing to accurately and reliably retrieve a range of geophysical parameters.

  7. Characterizing seasonal markers using high-resolution water temperature data from small mountain ponds

    NASA Astrophysics Data System (ADS)

    Daly, J.; Engel, B.; Hansen, J.

    2010-12-01

    Small mountain ponds in western Maine are near local topographic highs and are typically associated with distinctive ecological zones because of their elevation. Long-term historic records of seasonal markers such as ice-out for large, low elevation lakes in the region indicate that climate warming is affecting these large water bodies, but little data exist for the smaller, remote, higher elevation ponds. These ponds are typically 700 m elevation, have a surface area of about 4 hectares, and a maximum depth of 10 m. Because these ponds are associated with habitats restricted from migrating in response to climate change, characterizing and documenting the timing of seasonal markers such as ice-out and other events is important to assess whether these smaller ponds are following similar trends to the larger lakes, or if they might be more sensitive to climate forcing. High-resolution water temperature and light data collected at several depths by data loggers at study sites across the region since 2007 have been analyzed to characterize major seasonal markers that cannot be otherwise determined because of the remote character of the ponds. Ice-in and ice-out dates can be identified by characteristic signatures in the surface and bottom water temperatures; differences in the timing of the events among sites may be explained by elevation or basin aspect. Summer temperatures records also revealed multiple turnover events during some summer seasons, indicating that these ponds should be classified as discontinuous cold polymictic water bodies . These turnover events were nearly simultaneous at multiple study sites fifty kilometers apart, suggesting forcing by regional weather events. These high-resolution records permit long-term monitoring of sensitive, remote sites that will contribute to understanding the magnitude of the response to climate change in these small subalpine watersheds, as well as the spatial and temporal complexity of climate change in the

  8. Disposable remote zero headspace extractor

    DOEpatents

    Hand, Julie J.; Roberts, Mark P.

    2006-03-21

    The remote zero headspace extractor uses a sampling container inside a stainless steel vessel to perform toxicity characteristics leaching procedure to analyze volatile organic compounds. The system uses an in line filter for ease of replacement. This eliminates cleaning and disassembly of the extractor. All connections are made with quick connect fittings which can be easily replaced. After use, the bag can be removed and disposed of, and a new sampling container is inserted for the next extraction.

  9. Technology Trends and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The science and application of remote sensing is flourishing in the digital age. Geographical information systems can provide a broad range of information tailored to the specific needs of disaster managers. Recent advances in airborne platforms, sensors and information technologies have come together provide the ability to put geo-registered, multispectral imagery on the web in near real-time. Highlights of a demonstration of NASA's First Response Experiment (FiRE) will be presented.

  10. Challenges in Infrared Remote Sensing

    SciTech Connect

    Strasburg, Jana D.; Harper, Warren W.

    2005-06-01

    During the last several years, Pacific Northwest National Lab has developed a remote sensing system designed to detect trace chemicals present in the atmosphere. Using Frequency Modulated Differential Absorption LIDAR (FM DIAL) techniques chemical signatures have been observed over pathlengths ranging from several hundred meters to several kilometers. Throughout the development process, we have encountered many challenges. Some of these have been overcome but others will require new laser technology.

  11. Remote Observational Techniques in Education

    NASA Astrophysics Data System (ADS)

    Thieman, J.; Mayo, L.

    2002-09-01

    The ability to observe celestial objects remotely is making a major impact into classroom access to astronomical instrumentation previously impossible to encorporate into curriculum. Two programs, Radio Jove and Telescopes In Education have made important contributions in this field. Radio JOVE is an interactive, hands-on, educational activity for learning the scientific method through the medium of radio observations of Jupiter, the Sun, and the galactic radio background. Students build radio receivers from relatively inexpensive non-profit kits (about \\$125 plus shipping) and use them to record data, analyze the data, and share the results with others. Alternatively, for no cost, the students can record and analyze data from remote radio receivers connected to the web. The projects are useful adjuncts to activities in optical observing since students should recognize that we learn about the universe through more than just the optical spectrum. The projects are mini-electronics courses and also teach about charged particles and magnetic fields. The Radio JOVE web site (http://radiojove.gsfc.nasa.gov) should be consulted for further information. The NASA-sponsored Telescopes In Education (TIE) network (http://tie.jpl.nasa.gov) has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. These telescopesare integrated seamlessly into one virtual observatory providing the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J

  12. Remote Sensing Information Science Research

    NASA Technical Reports Server (NTRS)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  13. Oceanic influence on seasonal malaria outbreaks over Senegal and Sahel

    NASA Astrophysics Data System (ADS)

    Diouf, Ibrahima; Rodríguez de Fonseca, Belen; Deme, Abdoulaye; Cisse Cisse, Moustapha; Ndione Ndione, Jaques-Andre; Gaye, Amadou T.; Suarez, Roberto

    2015-04-01

    Beyond assessment and analysis of observed and simulated malaria parameters, this study is furthermore undertaken in the framework of predictability of malaria outbreaks in Senegal and remote regions in Sahel, which are found to take place two months after the rainy season. The predictors are the sea surface temperature anomalous patterns at different ocean basins mainly over the Pacific and Atlantic as they are related to changes in air temperature, humidity, rainfall and wind. A relationship between El Niño and anomalous malaria parameters is found. The malaria parameters are calculated with the Liverpool Malaria Model (LMM) using meteorological datasets from different reanalysis products. A hindcast of these parameters is performed using the Sea Surface temperature based Statistical Seasonal ForeCAST (S4CAST) model developed at UCM in order to predict malaria parameters some months in advance. The results of this work will be useful for decision makers to better access to climate forecasts and application on malaria transmission risk.

  14. Modelling the Seasonal Overturning Circulation in the Red Sea

    NASA Astrophysics Data System (ADS)

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry; Bower, Amy; Koehl, Armin; Gopalakrishnan, Ganesh

    2015-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. For the winter overturning circulation, the climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation.

  15. Evapotranspiration estimates using remote sensing in a tropical forest in Brazil

    NASA Astrophysics Data System (ADS)

    Biudes, M. S.; Machado, N. G.; Vourlitis, G. L.; Geli, H. M. E.; Neale, C. M. U.; Nogueira, J. D. S.

    2014-12-01

    Tropical forests exchange large amounts of water with the atmosphere and play a key role in global hydrological cycles. The Amazon-Cerrado Transitional Forest exhibits little seasonal variation in evapotranspiration (ET) due to its ability to extract water from deep soil profiles and water tables. Seasonal variability of ET over the transitional forest was monitored using an eddy covariance (EC) tower that acquired energy balance flux measurements from about 45 m above the ground surface near Sinop, Mato Grosso, Brazil. The remote sensing based surface Energy Balance Algorithm for Land (SEBAL) model was applied to test its ability to provide estimates of ET that can be used to account for the spatial and temporal variability over such regions. SEBAL-based estimates of ET were compared with EC measurements during the 2006 season using multiple Landsat 5 TM images. Our results indicate that the SEBAL algorithm is capable to reproducing the seasonal variation in ET of the Amazon-Cerrado Transitional Forest and areas surrounding the EC tower. M.S.B. acknowledges a grant from CAPES (9750/13-4). N.G.M. acknowledges a grant from CAPES (9768/13-0). Partial support was provided by the Remote Sensing Services Laboratory, Department of Civil and Environmental Engineering at Utah State University.

  16. Experience with Remote Job Execution

    SciTech Connect

    Lynch, Vickie E; Cobb, John W; Green, Mark L; Kohl, James Arthur; Miller, Stephen D; Ren, Shelly; Smith, Bradford C; Vazhkudai, Sudharshan S

    2008-01-01

    The Neutron Science Portal at Oak Ridge National Laboratory submits jobs to the TeraGrid for remote job execution. The TeraGrid is a network of high performance computers supported by the US National Science Foundation. There are eleven partner facilities with over a petaflop of peak computing performance and sixty petabytes of long-term storage. Globus is installed on a local machine and used for job submission. The graphical user interface is produced by java coding that reads an XML file. After submission, the status of the job is displayed in a Job Information Service window which queries globus for the status. The output folder produced in the scratch directory of the TeraGrid machine is returned to the portal with globus-url-copy command that uses the gridftp servers on the TeraGrid machines. This folder is copied from the stage-in directory of the community account to the user's results directory where the output can be plotted using the portal's visualization services. The primary problem with remote job execution is diagnosing execution problems. We have daily tests of submitting multiple remote jobs from the portal. When these jobs fail on a computer, it is difficult to diagnose the problem from the globus output. Successes and problems will be presented.

  17. Smart Cards and remote entrusting

    NASA Astrophysics Data System (ADS)

    Aussel, Jean-Daniel; D'Annoville, Jerome; Castillo, Laurent; Durand, Stephane; Fabre, Thierry; Lu, Karen; Ali, Asad

    Smart cards are widely used to provide security in end-to-end communication involving servers and a variety of terminals, including mobile handsets or payment terminals. Sometime, end-to-end server to smart card security is not applicable, and smart cards must communicate directly with an application executing on a terminal, like a personal computer, without communicating with a server. In this case, the smart card must somehow trust the terminal application before performing some secure operation it was designed for. This paper presents a novel method to remotely trust a terminal application from the smart card. For terminals such as personal computers, this method is based on an advanced secure device connected through the USB and consisting of a smart card bundled with flash memory. This device, or USB dongle, can be used in the context of remote untrusting to secure portable applications conveyed in the dongle flash memory. White-box cryptography is used to set the secure channel and a mechanism based on thumbprint is described to provide external authentication when session keys need to be renewed. Although not as secure as end-to-end server to smart card security, remote entrusting with smart cards is easy to deploy for mass-market applications and can provide a reasonable level of security.

  18. Flucelvax (Optaflu) for seasonal influenza.

    PubMed

    Manini, Ilaria; Domnich, Alexander; Amicizia, Daniela; Rossi, Stefania; Pozzi, Teresa; Gasparini, Roberto; Panatto, Donatella; Montomoli, Emanuele

    2015-06-01

    Conventional egg-based manufacturing technology for seasonal influenza vaccines has several drawbacks, including its inflexibility, reliance on egg supplies, risk of contamination, absence of growth of some isolates and egg-adaptive viral mutations that threaten vaccine matching. To overcome these limitations, cell culture-derived vaccines have been designed, including the trivalent inactivated vaccine Flucelvax®/Optaflu® (brand names in the US/EU, respectively). Flucelvax®/Optaflu® has gained wide regulatory approval and is currently implemented in several countries. Non-clinical studies have assuaged hypothetical concerns regarding oncogenicity and use in persons allergic to dogs. Ample clinical data suggest the non-inferiority of Flucelvax®/Optaflu® to egg-based vaccines in terms of immunogenicity, safety and tolerability, and it has fulfilled American and European mandatory requirements. Although Flucelvax®/Optaflu® is currently indicated only for adults and the elderly, pediatric data indicate its good immunogenicity and safety. This paper provides an update on the clinical development of Flucelvax®/Optaflu®, its seasonal trials and available post-marketing surveillance data.

  19. Assimilation of Remotely Sensed Soil Moisture and Vegetation with a Crop Simulation Model

    NASA Astrophysics Data System (ADS)

    Ines, A. V. M.; Das, N. N.

    2015-12-01

    When a crop model is used to predict crop yields early in the growing season, two sources of uncertainties prevail those coming from climate and model uncertainties. Climate uncertainty is greatest early in the growing season and tends to decrease as weather data become available in the growing season. Model uncertainty due to errors in model structure, modeling assumptions and other ancillary data, generally remains constant through the growing season. Skillful climate forecasts can reduce climate uncertainty especially at the earlier stages of the growing season, while assimilating remote sensing (RS) data within the growing season can reduced model uncertainty. In this talk, we focus on the development, application and verification of a crop modeling-data assimilation framework capable of ingesting RS soil moisture and vegetation parameters, in this case, leaf area index for predicting aggregated crop yields. We discuss the lessons learned from our case studies in Iowa, with more homogenous rainfed agricultural system, and Georgia, more heterogeneous mixed rainfed/irrigated agricultural system. One of our goals is to show the utility of better soil moisture products, e.g. from SMAP, for improving the prediction of agricultural/hydrological variables with actionable lead-times.

  20. Remotely sensed forest phenology and its relation with Nephropathia

    NASA Astrophysics Data System (ADS)

    Barrios, J. M.

    2010-05-01

    results, it is concluded that one of the most remarkable phenomena taking place in BLF is the gradual increase in length of the growing season in the 2000-2007 period. This is supported by international literature. Increasing growing seasons might contribute to an increase in the availability of resources to sustain large rodent populations and in the prolongation of optimal conditions for breeding. For most of the sampled sites, the years preceding peaks in NE cases (2005, 2008) were characterised by a late end of the growing season which coincides with warmer fall seasons. This research is part of a larger effort that aims at the incorporation of remotely sensed data in the prediction and monitoring of epidemiologic diseases.