Sample records for remote sensing datasets

  1. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    PubMed Central

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-01-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment. PMID:27922592

  2. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    NASA Astrophysics Data System (ADS)

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-12-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  3. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification.

    PubMed

    Bradbury, Kyle; Saboo, Raghav; L Johnson, Timothy; Malof, Jordan M; Devarajan, Arjun; Zhang, Wuming; M Collins, Leslie; G Newell, Richard

    2016-12-06

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  4. Geospatial-temporal semantic graph representations of trajectories from remote sensing and geolocation data

    DOEpatents

    Perkins, David Nikolaus; Brost, Randolph; Ray, Lawrence P.

    2017-08-08

    Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.

  5. Searching data for supporting archaeo-landscapes in Cyprus: an overview of aerial, satellite, and cartographic datasets of the island

    NASA Astrophysics Data System (ADS)

    Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriakos; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter; Hadjimitsis, Diofantos

    2016-08-01

    The landscape of Cyprus is characterized by transformations that occurred during the 20th century, with many of such changes being still active today. Landscapes' changes are due to a variety of reasons including war conflicts, environmental conditions and modern development that have often caused the alteration or even the total loss of important information that could have assisted the archaeologists to comprehend the archaeo-landscape. The present work aims to provide detailed information regarding the different existing datasets that can be used to support archaeologists in understanding the transformations that the landscape in Cyprus undergone, from a remote sensing perspective. Such datasets may help archaeologists to visualize a lost landscape and try to retrieve valuable information, while they support researchers for future investigations. As such they can further highlight in a predictive manner and consequently assess the impacts of landscape transformation -being of natural or anthropogenic cause- to cultural heritage. Three main datasets are presented here: aerial images, satellite datasets including spy satellite datasets acquired during the Cold War, and cadastral maps. The variety of data is provided in a chronological order (e.g. year of acquisitions), while other important parameters such as the cost and the accuracy are also determined. Individual examples of archaeological sites in Cyprus are also provided for each dataset in order to underline both their importance and performance. Also some pre- and post-processing remote sensing methodologies are briefly described in order to enhance the final results. The paper within the framework of ATHENA project, dedicated to remote sensing archaeology/CH, aims to fill a significant gap in the recent literature of remote sensing archaeology of the island and to assist current and future archaeologists in their quest for remote sensing information to support their research.

  6. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    NASA Astrophysics Data System (ADS)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  7. Integrated remotely sensed datasets for disaster management

    NASA Astrophysics Data System (ADS)

    McCarthy, Timothy; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart

    2008-10-01

    Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North America's NTSC and European SECAM and PAL television systems that are then recorded using various video formats. This technology has recently being employed as a front-line, remote sensing technology for damage assessment post-disaster. This paper traces the development of spatial video as a remote sensing tool from the early 1980s to the present day. The background to a new spatial-video research initiative based at National University of Ireland, Maynooth, (NUIM) is described. New improvements are proposed and include; low-cost encoders, easy to use software decoders, timing issues and interoperability. These developments will enable specialists and non-specialists collect, process and integrate these datasets within minimal support. This integrated approach will enable decision makers to access relevant remotely sensed datasets quickly and so, carry out rapid damage assessment during and post-disaster.

  8. An Open Source Software and Web-GIS Based Platform for Airborne SAR Remote Sensing Data Management, Distribution and Sharing

    NASA Astrophysics Data System (ADS)

    Changyong, Dou; Huadong, Guo; Chunming, Han; Ming, Liu

    2014-03-01

    With more and more Earth observation data available to the community, how to manage and sharing these valuable remote sensing datasets is becoming an urgent issue to be solved. The web based Geographical Information Systems (GIS) technology provides a convenient way for the users in different locations to share and make use of the same dataset. In order to efficiently use the airborne Synthetic Aperture Radar (SAR) remote sensing data acquired in the Airborne Remote Sensing Center of the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), a Web-GIS based platform for airborne SAR data management, distribution and sharing was designed and developed. The major features of the system include map based navigation search interface, full resolution imagery shown overlaid the map, and all the software adopted in the platform are Open Source Software (OSS). The functions of the platform include browsing the imagery on the map navigation based interface, ordering and downloading data online, image dataset and user management, etc. At present, the system is under testing in RADI and will come to regular operation soon.

  9. Analysing and correcting the differences between multi-source and multi-scale spatial remote sensing observations.

    PubMed

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.

  10. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    PubMed Central

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760

  11. Modeling the Hydrological Regime of Turkana Lake (Kenya, Ethiopia) by Combining Spatially Distributed Hydrological Modeling and Remote Sensing Datasets

    NASA Astrophysics Data System (ADS)

    Anghileri, D.; Kaelin, A.; Peleg, N.; Fatichi, S.; Molnar, P.; Roques, C.; Longuevergne, L.; Burlando, P.

    2017-12-01

    Hydrological modeling in poorly gauged basins can benefit from the use of remote sensing datasets although there are challenges associated with the mismatch in spatial and temporal scales between catchment scale hydrological models and remote sensing products. We model the hydrological processes and long-term water budget of the Lake Turkana catchment, a transboundary basin between Kenya and Ethiopia, by integrating several remote sensing products into a spatially distributed and physically explicit model, Topkapi-ETH. Lake Turkana is the world largest desert lake draining a catchment of 145'500 km2. It has three main contributing rivers: the Omo river, which contributes most of the annual lake inflow, the Turkwel river, and the Kerio rivers, which contribute the remaining part. The lake levels have shown great variations in the last decades due to long-term climate fluctuations and the regulation of three reservoirs, Gibe I, II, and III, which significantly alter the hydrological seasonality. Another large reservoir is planned and may be built in the next decade, generating concerns about the fate of Lake Turkana in the long run because of this additional anthropogenic pressure and increasing evaporation driven by climate change. We consider different remote sensing datasets, i.e., TRMM-V7 for precipitation, MERRA-2 for temperature, as inputs to the spatially distributed hydrological model. We validate the simulation results with other remote sensing datasets, i.e., GRACE for total water storage anomalies, GLDAS-NOAH for soil moisture, ERA-Interim/Land for surface runoff, and TOPEX/Poseidon for satellite altimetry data. Results highlight how different remote sensing products can be integrated into a hydrological modeling framework accounting for their relative uncertainties. We also carried out simulations with the artificial reservoirs planned in the north part of the catchment and without any reservoirs, to assess their impacts on the catchment hydrological regime and the Lake Turkana level variability.

  12. Remote Sensing Information Gateway

    EPA Pesticide Factsheets

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  13. a Novel Framework for Remote Sensing Image Scene Classification

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Zhao, H.; Wu, W.; Tan, Q.

    2018-04-01

    High resolution remote sensing (HRRS) images scene classification aims to label an image with a specific semantic category. HRRS images contain more details of the ground objects and their spatial distribution patterns than low spatial resolution images. Scene classification can bridge the gap between low-level features and high-level semantics. It can be applied in urban planning, target detection and other fields. This paper proposes a novel framework for HRRS images scene classification. This framework combines the convolutional neural network (CNN) and XGBoost, which utilizes CNN as feature extractor and XGBoost as a classifier. Then, this framework is evaluated on two different HRRS images datasets: UC-Merced dataset and NWPU-RESISC45 dataset. Our framework achieved satisfying accuracies on two datasets, which is 95.57 % and 83.35 % respectively. From the experiments result, our framework has been proven to be effective for remote sensing images classification. Furthermore, we believe this framework will be more practical for further HRRS scene classification, since it costs less time on training stage.

  14. Remote Sensing Applications to Water Quality Management in Florida

    EPA Science Inventory

    Increasingly, optical datasets from estuarine and coastal systems are becoming available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data ...

  15. [An operational remote sensing algorithm of land surface evapotranspiration based on NOAA PAL dataset].

    PubMed

    Hou, Ying-Yu; He, Yan-Bo; Wang, Jian-Lin; Tian, Guo-Liang

    2009-10-01

    Based on the time series 10-day composite NOAA Pathfinder AVHRR Land (PAL) dataset (8 km x 8 km), and by using land surface energy balance equation and "VI-Ts" (vegetation index-land surface temperature) method, a new algorithm of land surface evapotranspiration (ET) was constructed. This new algorithm did not need the support from meteorological observation data, and all of its parameters and variables were directly inversed or derived from remote sensing data. A widely accepted ET model of remote sensing, i. e., SEBS model, was chosen to validate the new algorithm. The validation test showed that both the ET and its seasonal variation trend estimated by SEBS model and our new algorithm accorded well, suggesting that the ET estimated from the new algorithm was reliable, being able to reflect the actual land surface ET. The new ET algorithm of remote sensing was practical and operational, which offered a new approach to study the spatiotemporal variation of ET in continental scale and global scale based on the long-term time series satellite remote sensing images.

  16. Data Integration Framework Data Management Plan Remote Sensing Dataset

    DTIC Science & Technology

    2016-07-01

    performed by the Coastal Observations and Analysis Branch (CEERD-HFA) of the Flood and Storm Protection Division (CEERD-HF), U.S. Army Engineer Research... Protection Division, Coastal Observations and Analysis Branch CESAM U.S. Army Corps of Engineers, Mobile District CESAM-OP-J U.S. Army Corps of Engineers...ER D C/ CH L SR -1 6- 2 Coastal Ocean Data Systems Program Data Integration Framework Data Management Plan Remote Sensing Dataset Co

  17. Towards automatic lithological classification from remote sensing data using support vector machines

    NASA Astrophysics Data System (ADS)

    Yu, Le; Porwal, Alok; Holden, Eun-Jung; Dentith, Michael

    2010-05-01

    Remote sensing data can be effectively used as a mean to build geological knowledge for poorly mapped terrains. Spectral remote sensing data from space- and air-borne sensors have been widely used to geological mapping, especially in areas of high outcrop density in arid regions. However, spectral remote sensing information by itself cannot be efficiently used for a comprehensive lithological classification of an area due to (1) diagnostic spectral response of a rock within an image pixel is conditioned by several factors including the atmospheric effects, spectral and spatial resolution of the image, sub-pixel level heterogeneity in chemical and mineralogical composition of the rock, presence of soil and vegetation cover; (2) only surface information and is therefore highly sensitive to the noise due to weathering, soil cover, and vegetation. Consequently, for efficient lithological classification, spectral remote sensing data needs to be supplemented with other remote sensing datasets that provide geomorphological and subsurface geological information, such as digital topographic model (DEM) and aeromagnetic data. Each of the datasets contain significant information about geology that, in conjunction, can potentially be used for automated lithological classification using supervised machine learning algorithms. In this study, support vector machine (SVM), which is a kernel-based supervised learning method, was applied to automated lithological classification of a study area in northwestern India using remote sensing data, namely, ASTER, DEM and aeromagnetic data. Several digital image processing techniques were used to produce derivative datasets that contained enhanced information relevant to lithological discrimination. A series of SVMs (trained using k-folder cross-validation with grid search) were tested using various combinations of input datasets selected from among 50 datasets including the original 14 ASTER bands and 36 derivative datasets (including 14 principal component bands, 14 independent component bands, 3 band ratios, 3 DEM derivatives: slope/curvatureroughness and 2 aeromagnetic derivatives: mean and variance of susceptibility) extracted from the ASTER, DEM and aeromagnetic data, in order to determine the optimal inputs that provide the highest classification accuracy. It was found that a combination of ASTER-derived independent components, principal components and band ratios, DEM-derived slope, curvature and roughness, and aeromagnetic-derived mean and variance of magnetic susceptibility provide the highest classification accuracy of 93.4% on independent test samples. A comparison of the classification results of the SVM with those of maximum likelihood (84.9%) and minimum distance (38.4%) classifiers clearly show that the SVM algorithm returns much higher classification accuracy. Therefore, the SVM method can be used to produce quick and reliable geological maps from scarce geological information, which is still the case with many under-developed frontier regions of the world.

  18. Post-Disaster Damage Assessment using Remotely Sensed Data for Post Disaster Needs Assessments: Pakistan and Nigeria case studies

    NASA Astrophysics Data System (ADS)

    Saito, Keiko; Lemoine, Guido; Dell'Oro, Luca; Pedersen, Wendi; Nunez-Gomez, Ariel; Dalmasso, Simone; Balbo, Simone; Louvrier, Christophe; Caravaggi, Ivano; de Groeve, Tom; Slayback, Dan; Policelli, Frederick; Brakenridge, Bob; Rashid, Kashif; Gad, Sawsan; Arshad, Raja; Wielinga, Doekle; Parvez, Ayaz; Khan, Haris

    2013-04-01

    Since the launch of high-resolution optical satellites in 1999, remote sensing has increasingly been used in the context of post-disaster damage assessments worldwide. In the immediate aftermath of a natural disaster, particularly when extensive geographical areas are affected, it is often difficult to determine the extent and magnitude of disaster impacts. The Global Facility for Disaster Reduction and Recovery (GFDRR) has been leading efforts to utilise remote sensing techniques during disasters, starting with the 2010 Haiti earthquake. However, remote sensing has mostly been applied to extensive flood events in the context of developing Post-Disaster Needs Assessments (PDNAs). Given that worldwide, floods were the most frequent type of natural disasters between 2000 and 2011, affecting 106 million people in 2011 alone (EM-DAT) , there is clearly significant potential for on-going use of remote sensing techniques. Two case studies will be introduced here, the 2010 Pakistan flood and the 2012 Nigeria flood. The typical approach is to map the maximum cumulative inundation extent, then overlay this hazard information with available exposure datasets. The PDNA methodology itself is applied to a maximum of 15 sectors, of which remote sensing is most useful for housing, agriculture, transportation. Environment and irrigation could be included but these sectors were not covered in these events. The maximum cumulative flood extent is determined using remotely sensed data led by in-country agencies together with international organizations. To enhance this process, GFDRR hosted a SPRINT event in 2012 to tailor daily flood maps derived from MODIS imagery by NASA Goddard's Office of Applied Sciences to this purpose. To estimate the (direct) damage, exposure data for each sector is required. Initially global datasets are used, but these may be supplemented by national level datasets to revise damage estimates, depending on availability. Remote sensed estimates of direct damage are used to confirm field estimates of the magnitude of the damage; thus, the speed of assessment can be balanced not having to achieve high accuracy results. In the future, to increase the speed of remote sensed damage assessments, there is a need for existing exposure information - which can also be used for risk prediction as well as disaster response. However, advances in this area vary significantly by country and sector and therefore efforts to move this agenda forward will significantly improve disaster reduction and recovery.

  19. Ambiguity of Quality in Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Leptoukh, Greg

    2010-01-01

    This slide presentation reviews some of the issues in quality of remote sensing data. Data "quality" is used in several different contexts in remote sensing data, with quite different meanings. At the pixel level, quality typically refers to a quality control process exercised by the processing algorithm, not an explicit declaration of accuracy or precision. File level quality is usually a statistical summary of the pixel-level quality but is of doubtful use for scenes covering large areal extents. Quality at the dataset or product level, on the other hand, usually refers to how accurately the dataset is believed to represent the physical quantities it purports to measure. This assessment often bears but an indirect relationship at best to pixel level quality. In addition to ambiguity at different levels of granularity, ambiguity is endemic within levels. Pixel-level quality terms vary widely, as do recommendations for use of these flags. At the dataset/product level, quality for low-resolution gridded products is often extrapolated from validation campaigns using high spatial resolution swath data, a suspect practice at best. Making use of quality at all levels is complicated by the dependence on application needs. We will present examples of the various meanings of quality in remote sensing data and possible ways forward toward a more unified and usable quality framework.

  20. Validation for Vegetation Green-up Date Extracted from GIMMS NDVI and NDVI3g Using Variety of Methods

    NASA Astrophysics Data System (ADS)

    Chang, Q.; Jiao, W.

    2017-12-01

    Phenology is a sensitive and critical feature of vegetation change that has regarded as a good indicator in climate change studies. So far, variety of remote sensing data sources and phenology extraction methods from satellite datasets have been developed to study the spatial-temporal dynamics of vegetation phenology. However, the differences between vegetation phenology results caused by the varies satellite datasets and phenology extraction methods are not clear, and the reliability for different phenology results extracted from remote sensing datasets is not verified and compared using the ground observation data. Based on three most popular remote sensing phenology extraction methods, this research calculated the Start of the growing season (SOS) for each pixels in the Northern Hemisphere for two kinds of long time series satellite datasets: GIMMS NDVIg (SOSg) and GIMMS NDVI3g (SOS3g). The three methods used in this research are: maximum increase method, dynamic threshold method and midpoint method. Then, this study used SOS calculated from NEE datasets (SOS_NEE) monitored by 48 eddy flux tower sites in global flux website to validate the reliability of six phenology results calculated from remote sensing datasets. Results showed that both SOSg and SOS3g extracted by maximum increase method are not correlated with ground observed phenology metrics. SOSg and SOS3g extracted by the dynamic threshold method and midpoint method are both correlated with SOS_NEE significantly. Compared with SOSg extracted by the dynamic threshold method, SOSg extracted by the midpoint method have a stronger correlation with SOS_NEE. And, the same to SOS3g. Additionally, SOSg showed stronger correlation with SOS_NEE than SOS3g extracted by the same method. SOS extracted by the midpoint method from GIMMS NDVIg datasets seemed to be the most reliable results when validated with SOS_NEE. These results can be used as reference for data and method selection in future's phenology study.

  1. Accessing, Utilizing and Visualizing NASA Remote Sensing Data for Malaria Modeling and Surveillance

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Adimi, Farida; Kempler, Steven

    2007-01-01

    This poster presentation reviews the use of NASA remote sensing data that can be used to extract environmental information for modeling malaria transmission. The authors discuss the remote sensing data from Landsat, Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Tropical Rainfall Measuring Mission (TRMM), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Earth Observing One (EO-1), Advanced Land Imager (ALI) and Seasonal to Interannual Earth Science Information Partner (SIESIP) dataset.

  2. Hydrological research in Ethiopia

    NASA Astrophysics Data System (ADS)

    Gebremichael, M.

    2012-12-01

    Almost all major development problems in Ethiopia are water-related: food insecurity, low economic development, recurrent droughts, disastrous floods, poor health conditions, and low energy condition. In order to develop and manage existing water resources in a sustainable manner, knowledge is required about water availability, water quality, water demand in various sectors, and the impacts of water resource projects on health and the environment. The lack of ground-based data has been a major challenge for generating this knowledge. Current advances in remote sensing and computer simulation technology could provide alternative source of datasets. In this talk, I will present the challenges and opportunities in using remote sensing datasets and hydrological models in regions such as Africa where ground-based datasets are scarce.

  3. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    NASA Technical Reports Server (NTRS)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  4. Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems

    Treesearch

    Alistair M. S. Smith; Crystal A. Kolden; Wade T. Tinkham; Alan F. Talhelm; John D. Marshall; Andrew T. Hudak; Luigi Boschetti; Michael J. Falkowski; Jonathan A. Greenberg; John W. Anderson; Andrew Kliskey; Lilian Alessa; Robert F. Keefe; James R. Gosz

    2014-01-01

    Climate change is altering the species composition, structure, and function of vegetation in natural terrestrial ecosystems. These changes can also impact the essential ecosystem goods and services derived from these ecosystems. Following disturbances, remote-sensing datasets have been used to monitor the disturbance and describe antecedent conditions as a means of...

  5. Single-Image Super Resolution for Multispectral Remote Sensing Data Using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Liebel, L.; Körner, M.

    2016-06-01

    In optical remote sensing, spatial resolution of images is crucial for numerous applications. Space-borne systems are most likely to be affected by a lack of spatial resolution, due to their natural disadvantage of a large distance between the sensor and the sensed object. Thus, methods for single-image super resolution are desirable to exceed the limits of the sensor. Apart from assisting visual inspection of datasets, post-processing operations—e.g., segmentation or feature extraction—can benefit from detailed and distinguishable structures. In this paper, we show that recently introduced state-of-the-art approaches for single-image super resolution of conventional photographs, making use of deep learning techniques, such as convolutional neural networks (CNN), can successfully be applied to remote sensing data. With a huge amount of training data available, end-to-end learning is reasonably easy to apply and can achieve results unattainable using conventional handcrafted algorithms. We trained our CNN on a specifically designed, domain-specific dataset, in order to take into account the special characteristics of multispectral remote sensing data. This dataset consists of publicly available SENTINEL-2 images featuring 13 spectral bands, a ground resolution of up to 10m, and a high radiometric resolution and thus satisfying our requirements in terms of quality and quantity. In experiments, we obtained results superior compared to competing approaches trained on generic image sets, which failed to reasonably scale satellite images with a high radiometric resolution, as well as conventional interpolation methods.

  6. Intensity-Duration-Frequency curves from remote sensing datasets: direct comparison of weather radar and CMORPH over the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Morin, Efrat; Marra, Francesco; Peleg, Nadav; Mei, Yiwen; Anagnostou, Emmanouil N.

    2017-04-01

    Rainfall frequency analysis is used to quantify the probability of occurrence of extreme rainfall and is traditionally based on rain gauge records. The limited spatial coverage of rain gauges is insufficient to sample the spatiotemporal variability of extreme rainfall and to provide the areal information required by management and design applications. Conversely, remote sensing instruments, even if quantitative uncertain, offer coverage and spatiotemporal detail that allow overcoming these issues. In recent years, remote sensing datasets began to be used for frequency analyses, taking advantage of increased record lengths and quantitative adjustments of the data. However, the studies so far made use of concepts and techniques developed for rain gauge (i.e. point or multiple-point) data and have been validated by comparison with gauge-derived analyses. These procedures add further sources of uncertainty and prevent from isolating between data and methodological uncertainties and from fully exploiting the available information. In this study, we step out of the gauge-centered concept presenting a direct comparison between at-site Intensity-Duration-Frequency (IDF) curves derived from different remote sensing datasets on corresponding spatial scales, temporal resolutions and records. We analyzed 16 years of homogeneously corrected and gauge-adjusted C-Band weather radar estimates, high-resolution CMORPH and gauge-adjusted high-resolution CMORPH over the Eastern Mediterranean. Results of this study include: (a) good spatial correlation between radar and satellite IDFs ( 0.7 for 2-5 years return period); (b) consistent correlation and dispersion in the raw and gauge adjusted CMORPH; (c) bias is almost uniform with return period for 12-24 h durations; (d) radar identifies thicker tail distributions than CMORPH and the tail of the distributions depends on the spatial and temporal scales. These results demonstrate the potential of remote sensing datasets for rainfall frequency analysis for management (e.g. warning and early-warning systems) and design (e.g. sewer design, large scale drainage planning)

  7. Navigating the "Research-to-Operations" Bridge of Death: Collaborative Transition of Remotely-Sensed Snow Data from Research into Operational Water Resources Forecasting

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; Bender, S.; Painter, T. H.; Bernard, B.

    2016-12-01

    Water and resource management agencies can benefit from hydrologic forecasts during both flood and drought conditions. Improved predictions of seasonal snowmelt-driven runoff volume and timing can assist operational water managers with decision support and efficient resource management within the spring runoff season. Using operational models and forecasting systems, NOAA's Colorado Basin River Forecast Center (CBRFC) produces hydrologic forecasts for stakeholders and water management groups in the western United States. Collaborative incorporation of research-oriented remote sensing data into CBRFC operational models and systems is one route by which CBRFC forecasts can be improved, ultimately for the benefit of water managers. Successful navigation of research-oriented remote sensing products across the "research-to-operations"/R2O gap (also known as the "valley of death") to operational destinations requires dedicated personnel on both the research and operations sides, working in a highly collaborative environment. Since 2012, the operational CBRFC has collaborated with the research-oriented Jet Propulsion Laboratory (JPL) under funding from NASA to transition remotely-sensed snow data into CBRFC's operational models and forecasting systems. Two specific datasets from JPL, the MODIS Dust Radiative Forcing in Snow (MODDRFS) and the MODIS Snow Covered-Area and Grain size (MODSCAG) products, are used in CBRFC operations as of 2016. Over the past several years, JPL and CBRFC have worked together to analyze patterns in JPL's remote sensing snow datasets from the operational perspective of the CBRFC and to develop techniques to bridge the R2O gap. Retrospective and real-time analyses have yielded valuable insight into the remotely-sensed snow datasets themselves, CBRFC's operational systems, and the collaborative R2O process. Examples of research-oriented JPL snow data, as used in CBRFC operations, are described. A timeline of the collaboration, challenges encountered during the journey across the R2O gap, or "valley of death", and solutions to those challenges are also illustrated.

  8. A light and faster regional convolutional neural network for object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan

    2018-07-01

    Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.

  9. Generation of the 30 M-Mesh Global Digital Surface Model by Alos Prism

    NASA Astrophysics Data System (ADS)

    Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H.

    2016-06-01

    Topographical information is fundamental to many geo-spatial related information and applications on Earth. Remote sensing satellites have the advantage in such fields because they are capable of global observation and repeatedly. Several satellite-based digital elevation datasets were provided to examine global terrains with medium resolutions e.g. the Shuttle Radar Topography Mission (SRTM), the global digital elevation model by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM). A new global digital surface model (DSM) dataset using the archived data of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed "Daichi") has been completed on March 2016 by Japan Aerospace Exploration Agency (JAXA) collaborating with NTT DATA Corp. and Remote Sensing Technology Center, Japan. This project is called "ALOS World 3D" (AW3D), and its dataset consists of the global DSM dataset with 0.15 arcsec. pixel spacing (approx. 5 m mesh) and ortho-rectified PRISM image with 2.5 m resolution. JAXA is also processing the global DSM with 1 arcsec. spacing (approx. 30 m mesh) based on the AW3D DSM dataset, and partially releasing it free of charge, which calls "ALOS World 3D 30 m mesh" (AW3D30). The global AW3D30 dataset will be released on May 2016. This paper describes the processing status, a preliminary validation result of the AW3D30 DSM dataset, and its public release status. As a summary of the preliminary validation of AW3D30 DSM, 4.40 m (RMSE) of the height accuracy of the dataset was confirmed using 5,121 independent check points distributed in the world.

  10. How universal is the relationship between remotely sensed vegetation indices and crop leaf area index? A global assessment

    USDA-ARS?s Scientific Manuscript database

    This study aims to assess the relationship between Leaf Area Index (LAI) and remotely sensed Vegetation Indices (VIs) for major crops, based on a globally explicit dataset of in situ LAI measurements over a significant set of locations. We used a total of 1394 LAI measurements from 29 sites spannin...

  11. Tools and Services for Working with Multiple Land Remote Sensing Data Products

    NASA Astrophysics Data System (ADS)

    Krehbiel, C.; Friesz, A.; Harriman, L.; Quenzer, R.; Impecoven, K.; Maiersperger, T.

    2016-12-01

    The availability of increasingly large and diverse satellite remote sensing datasets provides both an opportunity and a challenge across broad Earth science research communities. On one hand, the extensive assortment of available data offer unprecedented opportunities to improve our understanding of Earth science and enable data use across a multitude of science disciplines. On the other hand, increasingly complex formats, data structures, and metadata can be an obstacle to data use for the broad user community that is interested in incorporating remote sensing Earth science data into their research. NASA's Land Processes Distributed Active Archive Center (LP DAAC) provides easy to use Python notebook tutorials for services such as accessing land remote sensing data from the LP DAAC Data Pool and interpreting data quality information from MODIS. We use examples to demonstrate the capabilities of the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS), such as spatially and spectrally subsetting data, decoding valuable quality information, and exploring initial analysis results within the user interface. We also show data recipes for R and Python scripts that help users process ASTER L1T and ASTER Global Emissivity Datasets.

  12. Expanding understanding of optical variability in Lake Superior with a 4-year dataset

    NASA Astrophysics Data System (ADS)

    Mouw, Colleen B.; Ciochetto, Audrey B.; Grunert, Brice; Yu, Angela

    2017-07-01

    Lake Superior is one of the largest freshwater lakes on our planet, but few optical observations have been made to allow for the development and validation of visible spectral satellite remote sensing products. The dataset described here focuses on coincidently observing inherent and apparent optical properties along with biogeochemical parameters. Specifically, we observe remote sensing reflectance, absorption, scattering, backscattering, attenuation, chlorophyll concentration, and suspended particulate matter over the ice-free months of 2013-2016. The dataset substantially increases the optical knowledge of the lake. In addition to visible spectral satellite algorithm development, the dataset is valuable for characterizing the variable light field, particle, phytoplankton, and colored dissolved organic matter distributions, and helpful in food web and carbon cycle investigations. The compiled data can be freely accessed at https://seabass.gsfc.nasa.gov/archive/URI/Mouw/LakeSuperior/.

  13. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data.

    PubMed

    Vanegas, Fernando; Bratanov, Dmitry; Powell, Kevin; Weiss, John; Gonzalez, Felipe

    2018-01-17

    Recent advances in remote sensed imagery and geospatial image processing using unmanned aerial vehicles (UAVs) have enabled the rapid and ongoing development of monitoring tools for crop management and the detection/surveillance of insect pests. This paper describes a (UAV) remote sensing-based methodology to increase the efficiency of existing surveillance practices (human inspectors and insect traps) for detecting pest infestations (e.g., grape phylloxera in vineyards). The methodology uses a UAV integrated with advanced digital hyperspectral, multispectral, and RGB sensors. We implemented the methodology for the development of a predictive model for phylloxera detection. In this method, we explore the combination of airborne RGB, multispectral, and hyperspectral imagery with ground-based data at two separate time periods and under different levels of phylloxera infestation. We describe the technology used-the sensors, the UAV, and the flight operations-the processing workflow of the datasets from each imagery type, and the methods for combining multiple airborne with ground-based datasets. Finally, we present relevant results of correlation between the different processed datasets. The objective of this research is to develop a novel methodology for collecting, processing, analising and integrating multispectral, hyperspectral, ground and spatial data to remote sense different variables in different applications, such as, in this case, plant pest surveillance. The development of such methodology would provide researchers, agronomists, and UAV practitioners reliable data collection protocols and methods to achieve faster processing techniques and integrate multiple sources of data in diverse remote sensing applications.

  14. Re-sampling remotely sensed data to improve national and regional mapping of forest conditions with confidential field data

    Treesearch

    Raymond L. Czaplewski

    2005-01-01

    Forest Service Research and Development (R&D) and State and Private Forestry Deputy Areas, in partnership with the National Forest System Remote Sensing Applications Center (RSAC), built a 250-m resolution (6.25-ha pixel) dataset for the entire USA. It assembles multi-seasonal hyperspectral MODIS data and derivatives, Landsat derivatives (i.e., summary statistics...

  15. Rapid-response tools and datasets for post-fire remediation: Linking remote sensing and process-based hydrological models

    Treesearch

    M. E. Miller; William Elliot; M. Billmire; Pete Robichaud; K. A. Endsley

    2016-01-01

    Post-wildfire flooding and erosion can threaten lives, property and natural resources. Increased peak flows and sediment delivery due to the loss of surface vegetation cover and fire-induced changes in soil properties are of great concern to public safety. Burn severity maps derived from remote sensing data reflect fire-induced changes in vegetative cover and soil...

  16. Uncertainty Management in Remote Sensing of Climate Data. Summary of A Workshop

    NASA Technical Reports Server (NTRS)

    McConnell, M.; Weidman, S.

    2009-01-01

    Great advances have been made in our understanding of the climate system over the past few decades, and remotely sensed data have played a key role in supporting many of these advances. Improvements in satellites and in computational and data-handling techniques have yielded high quality, readily accessible data. However, rapid increases in data volume have also led to large and complex datasets that pose significant challenges in data analysis (NRC, 2007). Uncertainty characterization is needed for every satellite mission and scientists continue to be challenged by the need to reduce the uncertainty in remotely sensed climate records and projections. The approaches currently used to quantify the uncertainty in remotely sensed data, including statistical methods used to calibrate and validate satellite instruments, lack an overall mathematically based framework.

  17. Rapid Target Detection in High Resolution Remote Sensing Images Using Yolo Model

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Chen, X.; Gao, Y.; Li, Y.

    2018-04-01

    Object detection in high resolution remote sensing images is a fundamental and challenging problem in the field of remote sensing imagery analysis for civil and military application due to the complex neighboring environments, which can cause the recognition algorithms to mistake irrelevant ground objects for target objects. Deep Convolution Neural Network(DCNN) is the hotspot in object detection for its powerful ability of feature extraction and has achieved state-of-the-art results in Computer Vision. Common pipeline of object detection based on DCNN consists of region proposal, CNN feature extraction, region classification and post processing. YOLO model frames object detection as a regression problem, using a single CNN predicts bounding boxes and class probabilities in an end-to-end way and make the predict faster. In this paper, a YOLO based model is used for object detection in high resolution sensing images. The experiments on NWPU VHR-10 dataset and our airport/airplane dataset gain from GoogleEarth show that, compare with the common pipeline, the proposed model speeds up the detection process and have good accuracy.

  18. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-12-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  19. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-08-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologues data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and interferences from humidity are the leading error sources. We introduce an a posteriori correction method of the humidity interference error and we recommend applying it for isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  20. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors

    PubMed Central

    Zheng, Guang; Moskal, L. Monika

    2009-01-01

    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels. PMID:22574042

  1. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.

    PubMed

    Zheng, Guang; Moskal, L Monika

    2009-01-01

    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels.

  2. Evaluation of CLM4 Solar Radiation Partitioning Scheme Using Remote Sensing and Site Level FPAR Datasets

    DOE PAGES

    Wang, Kai; Mao, Jiafu; Dickinson, Robert; ...

    2013-06-05

    This paper examines a land surface solar radiation partitioning scheme, i.e., that of the Community Land Model version 4 (CLM4) with coupled carbon and nitrogen cycles. Taking advantage of a unique 30-year fraction of absorbed photosynthetically active radiation (FPAR) dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) data set, multiple other remote sensing datasets, and site level observations, we evaluated the CLM4 FPAR ’s seasonal cycle, diurnal cycle, long-term trends and spatial patterns. These findings show that the model generally agrees with observations in the seasonal cycle, long-term trends, and spatial patterns,more » but does not reproduce the diurnal cycle. Discrepancies also exist in seasonality magnitudes, peak value months, and spatial heterogeneity. Here, we identify the discrepancy in the diurnal cycle as, due to, the absence of dependence on sun angle in the model. Implementation of sun angle dependence in a one-dimensional (1-D) model is proposed. The need for better relating of vegetation to climate in the model, indicated by long-term trends, is also noted. Evaluation of the CLM4 land surface solar radiation partitioning scheme using remote sensing and site level FPAR datasets provides targets for future development in its representation of this naturally complicated process.« less

  3. The MUSICA MetOp/IASI H2O and δD products: characterisation and long-term comparison to NDACC/FTIR data

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.

    2014-04-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in-situ datasets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing dataset is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, mid-latitudes, and arctic) and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier-Transform InfraRed) remote sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study is both, a theoretical and an empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.

  4. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data

    PubMed Central

    Vanegas, Fernando; Weiss, John; Gonzalez, Felipe

    2018-01-01

    Recent advances in remote sensed imagery and geospatial image processing using unmanned aerial vehicles (UAVs) have enabled the rapid and ongoing development of monitoring tools for crop management and the detection/surveillance of insect pests. This paper describes a (UAV) remote sensing-based methodology to increase the efficiency of existing surveillance practices (human inspectors and insect traps) for detecting pest infestations (e.g., grape phylloxera in vineyards). The methodology uses a UAV integrated with advanced digital hyperspectral, multispectral, and RGB sensors. We implemented the methodology for the development of a predictive model for phylloxera detection. In this method, we explore the combination of airborne RGB, multispectral, and hyperspectral imagery with ground-based data at two separate time periods and under different levels of phylloxera infestation. We describe the technology used—the sensors, the UAV, and the flight operations—the processing workflow of the datasets from each imagery type, and the methods for combining multiple airborne with ground-based datasets. Finally, we present relevant results of correlation between the different processed datasets. The objective of this research is to develop a novel methodology for collecting, processing, analysing and integrating multispectral, hyperspectral, ground and spatial data to remote sense different variables in different applications, such as, in this case, plant pest surveillance. The development of such methodology would provide researchers, agronomists, and UAV practitioners reliable data collection protocols and methods to achieve faster processing techniques and integrate multiple sources of data in diverse remote sensing applications. PMID:29342101

  5. A Fresh Look at Spatio-Temporal Remote Sensing Data: Data Formats, Processing Flow, and Visualization

    NASA Astrophysics Data System (ADS)

    Gens, R.

    2017-12-01

    With increasing number of experimental and operational satellites in orbit, remote sensing based mapping and monitoring of the dynamic Earth has entered into the realm of `big data'. Just the Landsat series of satellites provide a near continuous archive of 45 years of data. The availability of such spatio-temporal datasets has created opportunities for long-term monitoring diverse features and processes operating on the Earth's terrestrial and aquatic systems. Processes such as erosion, deposition, subsidence, uplift, evapotranspiration, urbanization, land-cover regime shifts can not only be monitored and change can be quantified using time-series data analysis. This unique opportunity comes with new challenges in management, analysis, and visualization of spatio-temporal datasets. Data need to be stored in a user-friendly format, and relevant metadata needs to be recorded, to allow maximum flexibility for data exchange and use. Specific data processing workflows need to be defined to support time-series analysis for specific applications. Value-added data products need to be generated keeping in mind the needs of the end-users, and using best practices in complex data visualization. This presentation systematically highlights the various steps for preparing spatio-temporal remote sensing data for time series analysis. It showcases a prototype workflow for remote sensing based change detection that can be generically applied while preserving the application-specific fidelity of the datasets. The prototype includes strategies for visualizing change over time. This has been exemplified using a time-series of optical and SAR images for visualizing the changing glacial, coastal, and wetland landscapes in parts of Alaska.

  6. Integration of Remotely Sensed Data Into Geospatial Reference Information Databases. Un-Ggim National Approach

    NASA Astrophysics Data System (ADS)

    Arozarena, A.; Villa, G.; Valcárcel, N.; Pérez, B.

    2016-06-01

    Remote sensing satellites, together with aerial and terrestrial platforms (mobile and fixed), produce nowadays huge amounts of data coming from a wide variety of sensors. These datasets serve as main data sources for the extraction of Geospatial Reference Information (GRI), constituting the "skeleton" of any Spatial Data Infrastructure (SDI). Since very different situations can be found around the world in terms of geographic information production and management, the generation of global GRI datasets seems extremely challenging. Remotely sensed data, due to its wide availability nowadays, is able to provide fundamental sources for any production or management system present in different countries. After several automatic and semiautomatic processes including ancillary data, the extracted geospatial information is ready to become part of the GRI databases. In order to optimize these data flows for the production of high quality geospatial information and to promote its use to address global challenges several initiatives at national, continental and global levels have been put in place, such as European INSPIRE initiative and Copernicus Programme, and global initiatives such as the Group on Earth Observation/Global Earth Observation System of Systems (GEO/GEOSS) and United Nations Global Geospatial Information Management (UN-GGIM). These workflows are established mainly by public organizations, with the adequate institutional arrangements at national, regional or global levels. Other initiatives, such as Volunteered Geographic Information (VGI), on the other hand may contribute to maintain the GRI databases updated. Remotely sensed data hence becomes one of the main pillars underpinning the establishment of a global SDI, as those datasets will be used by public agencies or institutions as well as by volunteers to extract the required spatial information that in turn will feed the GRI databases. This paper intends to provide an example of how institutional arrangements and cooperative production systems can be set up at any territorial level in order to exploit remotely sensed data in the most intensive manner, taking advantage of all its potential.

  7. Remote Sensing based modelling of Annual Surface Mass Balances of Chhota Shigiri Glacier, Western Himalayas, India

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, Anita; Ramsankaran, Raaj

    2017-04-01

    The current study aims at modelling glacier mass balances over Chhota Shigiri glacier (32.28o N; 77.58° E) in Himachal Pradesh, India using the Equilibrium Line Altitude (ELA) gradient approach proposed by Rabatel et al. (2005). The model requires yearly ELA, average mass balance and mass balance gradient to estimate annual mass balance of a glacier which can be obtained either through field measurements or remote sensing observations. However, in view of the general scenario of lack of field data for Himalayan glaciers, in this study the model has been applied only using the inputs derived through multi-temporal satellite remote sensing observations thus eliminating the need for any field measurements. Preliminary analysis show that the obtained results are comparable with the observed field mass balance. The results also demonstrate that this approach with remote sensing inputs has potential to be used for glacier mass balance estimations provided good quality multi-temporal remote sensing dataset are available.

  8. The role of satellite remote sensing in structured ecosystem risk assessments.

    PubMed

    Murray, Nicholas J; Keith, David A; Bland, Lucie M; Ferrari, Renata; Lyons, Mitchell B; Lucas, Richard; Pettorelli, Nathalie; Nicholson, Emily

    2018-04-01

    The current set of global conservation targets requires methods for monitoring the changing status of ecosystems. Protocols for ecosystem risk assessment are uniquely suited to this task, providing objective syntheses of a wide range of data to estimate the likelihood of ecosystem collapse. Satellite remote sensing can deliver ecologically relevant, long-term datasets suitable for analysing changes in ecosystem area, structure and function at temporal and spatial scales relevant to risk assessment protocols. However, there is considerable uncertainty about how to select and effectively utilise remotely sensed variables for risk assessment. Here, we review the use of satellite remote sensing for assessing spatial and functional changes of ecosystems, with the aim of providing guidance on the use of these data in ecosystem risk assessment. We suggest that decisions on the use of satellite remote sensing should be made a priori and deductively with the assistance of conceptual ecosystem models that identify the primary indicators representing the dynamics of a focal ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Remote Sensing-Based, 5-m, Vegetation Distributions, Kougarok Study Site, Seward Peninsula, Alaska, ca. 2009 - 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langford, Zachary; Kumar, Jitendra; Hoffman, Forrest

    A multi-sensor remote sensing-based deep learning approach was developed for generating high-resolution (5~m) vegetation maps for the western Alaskan Arctic on the Seward Peninsula, Alaska. This data was developed using the fusion of hyperspectral, multispectral, and terrain datasets. The current data is located in the Kougarok watershed but we plan to expand this over the Seward Peninsula.

  10. Assessing the Interdisciplinary Use of Socioeconomic and Remote Sensing Data in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Downs, R. R.; Schumacher, J.

    2013-12-01

    Remotely sensed data are widely used in Earth science research and applications not just to improve understanding of natural systems but also to elucidate interactions between natural and human systems and to model and predict human impacts on the environment, whether planned or unplanned. It is therefore often necessary for both remote sensing and socioeconomic data to be used together in both Earth science and social science research, for example in modeling past, present, and future land cover change, in assessing societal vulnerability to geophysical and climatological hazards, in measuring the human health impacts of air and water pollution, or in developing improved approaches to managing water, ecological, and other resources. The NASA Socioeconomic Data and Applications Center (SEDAC) was established as part of the Earth Observing System Data and Information System (EOSDIS) to facilitate access to and use of socioeconomic data in conjunction with remote sensing data in both research and applications. SEDAC provides access both to socioeconomic data that have been transformed into forms more readily usable by Earth scientists and other users, and to integrated datasets that incorporate both socioeconomic and remote sensing data. SEDAC data have been cited in at least 2,000 scientific papers covering a wide range of scientific disciplines and problem areas. In many cases, SEDAC data are cited in these papers along with other remote sensing datasets available from NASA or other sources. However, such citations do not necessarily indicate significant, integrated use of SEDAC and remote sensing data. To assess the level and type of integrated data use, we analyze a selection of recent SEDAC data citations in Earth science journals to characterize the ways in which SEDAC data have been used in the underlying research project and the paper itself. Papers were selected based on the presence of a SEDAC data citation and one or more keywords related to a remote sensing instrument or dataset. We assess if and how the SEDAC and remote sensing data are used together, e.g., in an empirical analysis, model, and/or visualization. We also ascertain the multidisciplinary backgrounds of the author or authors, as well as the Web of Science category and impact factor associated with the journal, to help characterize the user community and the overall scientific impact of the data use. Another issue is whether or not authors are formally citing SEDAC data and remote sensing in reference sections as opposed to referring to data informally, e.g., in figure captions. A key challenge in promoting the cross-disciplinary use of scientific data is the identification of ways in which scientists and other users not only access data from other disciplines but also use these data in their research. Objective assessment of scientific outputs such as the peer-reviewed scientific literature provides important insight into how individual scientists and scientific teams are taking advantage of the ongoing explosion in the variety and quantity of digital data from multiple disciplines to address pressing research problems and applications.

  11. Web-GIS visualisation of permafrost-related Remote Sensing products for ESA GlobPermafrost

    NASA Astrophysics Data System (ADS)

    Haas, A.; Heim, B.; Schaefer-Neth, C.; Laboor, S.; Nitze, I.; Grosse, G.; Bartsch, A.; Kaab, A.; Strozzi, T.; Wiesmann, A.; Seifert, F. M.

    2016-12-01

    The ESA GlobPermafrost (www.globpermafrost.info) provides a remote sensing service for permafrost research and applications. The service comprises of data product generation for various sites and regions as well as specific infrastructure allowing overview and access to datasets. Based on an online user survey conducted within the project, the user community extensively applies GIS software to handle remote sensing-derived datasets and requires preview functionalities before accessing them. In response, we develop the Permafrost Information System PerSys which is conceptualized as an open access geospatial data dissemination and visualization portal. PerSys will allow visualisation of GlobPermafrost raster and vector products such as land cover classifications, Landsat multispectral index trend datasets, lake and wetland extents, InSAR-based land surface deformation maps, rock glacier velocity fields, spatially distributed permafrost model outputs, and land surface temperature datasets. The datasets will be published as WebGIS services relying on OGC-standardized Web Mapping Service (WMS) and Web Feature Service (WFS) technologies for data display and visualization. The WebGIS environment will be hosted at the AWI computing centre where a geodata infrastructure has been implemented comprising of ArcGIS for Server 10.4, PostgreSQL 9.2 and a browser-driven data viewer based on Leaflet (http://leafletjs.com). Independently, we will provide an `Access - Restricted Data Dissemination Service', which will be available to registered users for testing frequently updated versions of project datasets. PerSys will become a core project of the Arctic Permafrost Geospatial Centre (APGC) within the ERC-funded PETA-CARB project (www.awi.de/petacarb). The APGC Data Catalogue will contain all final products of GlobPermafrost, allow in-depth dataset search via keywords, spatial and temporal coverage, data type, etc., and will provide DOI-based links to the datasets archived in the long-term, open access PANGAEA data repository.

  12. A global dataset of crowdsourced land cover and land use reference data.

    PubMed

    Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael

    2017-06-13

    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general.

  13. A global dataset of crowdsourced land cover and land use reference data

    PubMed Central

    Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F.; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael

    2017-01-01

    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general. PMID:28608851

  14. A geospatial database model for the management of remote sensing datasets at multiple spectral, spatial, and temporal scales

    NASA Astrophysics Data System (ADS)

    Ifimov, Gabriela; Pigeau, Grace; Arroyo-Mora, J. Pablo; Soffer, Raymond; Leblanc, George

    2017-10-01

    In this study the development and implementation of a geospatial database model for the management of multiscale datasets encompassing airborne imagery and associated metadata is presented. To develop the multi-source geospatial database we have used a Relational Database Management System (RDBMS) on a Structure Query Language (SQL) server which was then integrated into ArcGIS and implemented as a geodatabase. The acquired datasets were compiled, standardized, and integrated into the RDBMS, where logical associations between different types of information were linked (e.g. location, date, and instrument). Airborne data, at different processing levels (digital numbers through geocorrected reflectance), were implemented in the geospatial database where the datasets are linked spatially and temporally. An example dataset consisting of airborne hyperspectral imagery, collected for inter and intra-annual vegetation characterization and detection of potential hydrocarbon seepage events over pipeline areas, is presented. Our work provides a model for the management of airborne imagery, which is a challenging aspect of data management in remote sensing, especially when large volumes of data are collected.

  15. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    NASA Technical Reports Server (NTRS)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data for the NASA Johnson Space Center into a NASA-Wide GIS Institutional Portal.

  16. Identifying Populace Susceptible to Flooding Using ArcGIS and Remote Sensing Datasets

    NASA Astrophysics Data System (ADS)

    Fernandez, Sim Joseph; Milano, Alan

    2016-07-01

    Remote sensing technologies are growing vastly as with its various applications. The Department of Science and Technology (DOST), Republic of the Philippines, has made projects exploiting LiDAR datasets from remote sensing technologies. The Phil-LiDAR 1 project of DOST is a flood hazard mapping project. Among the project's objectives is the identification of building features which can be associated to the flood-exposed population. The extraction of building features from the LiDAR dataset is arduous as it requires manual identification of building features on an elevation map. The mapping of building footprints is made meticulous in order to compensate the accuracy between building floor area and building height both of which are crucial in flood decision making. A building identification method was developed to generate a LiDAR derivative which will serve as a guide in mapping building footprints. The method utilizes several tools of a Geographic Information System (GIS) software called ArcGIS which can operate on physical attributes of buildings such as roofing curvature, slope and blueprint area in order to obtain the LiDAR derivative from LiDAR dataset. The method also uses an intermediary process called building removal process wherein buildings and other features lying below the defined minimum building height - 2 meters in the case of Phil-LiDAR 1 project - are removed. The building identification method was developed in the hope to hasten the identification of building features especially when orthophotographs and/or satellite imageries are not made available.

  17. Multi-Data Approach for remote sensing-based regional crop rotation mapping: A case study for the Rur catchment, Germany

    NASA Astrophysics Data System (ADS)

    Waldhoff, Guido; Lussem, Ulrike; Bareth, Georg

    2017-09-01

    Spatial land use information is one of the key input parameters for regional agro-ecosystem modeling. Furthermore, to assess the crop-specific management in a spatio-temporal context accurately, parcel-related crop rotation information is additionally needed. Such data is scarcely available for a regional scale, so that only modeled crop rotations can be incorporated instead. However, the spectrum of the occurring multiannual land use patterns on arable land remains unknown. Thus, this contribution focuses on the mapping of the actually practiced crop rotations in the Rur catchment, located in the western part of Germany. We addressed this by combining multitemporal multispectral remote sensing data, ancillary information and expert-knowledge on crop phenology in a GIS-based Multi-Data Approach (MDA). At first, a methodology for the enhanced differentiation of the major crop types on an annual basis was developed. Key aspects are (i) the usage of physical block data to separate arable land from other land use types, (ii) the classification of remote sensing scenes of specific time periods, which are most favorable for the differentiation of certain crop types, and (iii) the combination of the multitemporal classification results in a sequential analysis strategy. Annual crop maps of eight consecutive years (2008-2015) were combined to a crop sequence dataset to have a profound data basis for the mapping of crop rotations. In most years, the remote sensing data basis was highly fragmented. Nevertheless, our method enabled satisfying crop mapping results. As an example for the annual crop mapping workflow, the procedure and the result of 2015 are illustrated. For the generation of the crop sequence dataset, the eight annual crop maps were geometrically smoothened and integrated into a single vector data layer. The resulting dataset informs about the occurring crop sequence for individual areas on arable land, so that crop rotation schemes can be derived. The resulting dataset reveals that the spectrum of the practiced crop rotations is extremely heterogeneous and contains a large amount of crop sequences, which strongly diverge from model crop rotations. Consequently, the integration of remote sensing-based crop rotation data can considerably reduce uncertainties regarding the management in regional agro-ecosystem modeling. Finally, the developed methods and the results are discussed in detail.

  18. The Oasis impact structure, Libya: geological characteristics from ALOS PALSAR-2 data interpretation

    NASA Astrophysics Data System (ADS)

    van Gasselt, Stephan; Kim, Jung Rack; Choi, Yun-Soo; Kim, Jaemyeong

    2017-02-01

    Optical and infrared remote sensing may provide first-order clues for the identification of potential impact structures on the Earth. Despite the free availability of at least optical image data at highest resolution, research has shown that remote sensing analysis always remains inconclusive and extensive groundwork is needed for the confirmation of the impact origin of such structures. Commonly, optical image data and digital terrain models have been employed mainly for such remote sensing studies of impact structures. With the advent of imaging radar data, a few excursions have been made to also employ radar datasets. Despite its long use, capabilities of imaging radar for studying surface and subsurface structures have not been exploited quantitatively when applied for the identification and description of such features due to the inherent complexity of backscatter processes. In this work, we make use of higher-level derived radar datasets in order to gain clearer qualitative insights that help to describe and identify potential impact structures. We make use of high-resolution data products from the ALOS PALSAR-1 and ALOS PALSAR-2 L-band sensors to describe the heavily eroded Oasis impact structure located in the Libyan Desert. While amplitude radar data with single polarization have usually been utilized to accompany the suite of remote sensing datasets when interpreting impact structures in the past, we conclude that the integration of amplitude data with HH/HV/HH-HV polarization modes in standard and, in particular, in Ultra-Fine mode, as well as entropy-alpha decomposition data, significantly helps to identify and discriminate surface units based on their consolidation. Based on the overarching structural pattern, we determined the diameter of the eroded Oasis structure at 15.6 ± 0.5 km.

  19. Hurricane Harvey Riverine Flooding: Part 2: Integration of Heterogeneous Earth Observation Data for Comparative Analysis with High-Resolution Inundation Boundaries Reconstructed from Flood2D-GPU Model

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Sava, E.; Cervone, G.

    2017-12-01

    Hurricane Harvey has been noted as the wettest cyclone on record for the US as well as the most destructive (so far) for the 2017 hurricane season. An entire year worth of rainfall occurred over the course of a few days. The city of Houston was greatly impacted as the storm lingered over the city for five days, causing a record-breaking 50+ inches of rain as well as severe damage from flooding. Flood model simulations were performed to reconstruct the event in order to better understand, assess, and predict flooding dynamics for the future. Additionally, number of remote sensing platforms, and on ground instruments that provide near real-time data have also been used for flood identification, monitoring, and damage assessment. Although both flood models and remote sensing techniques are able to identify inundated areas, rapid and accurate flood prediction at a high spatio-temporal resolution remains a challenge. Thus a methodological approach which fuses the two techniques can help to better validate what is being modeled and observed. Recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed emergency responders to more efficiently extract increasingly precise and relevant knowledge from the available information. In this work the use of multiple sources of contributed data, coupled with remotely sensed and open source geospatial datasets is demonstrated to generate an understanding of potential damage assessment for the floods after Hurricane Harvey in Harris County, Texas. The feasibility of integrating multiple sources at different temporal and spatial resolutions into hydrodynamic models for flood inundation simulations is assessed. Furthermore the contributed datasets are compared against a reconstructed flood extent generated from the Flood2D-GPU model.

  20. Leveraging freely available remote sensing and ancillary datasets for semi-automated identification of potential wetland areas using a Geographic Information System (GIS).

    DOT National Transportation Integrated Search

    2016-06-01

    The purpose of this study was to develop a wetland identification tool that makes use of freely available geospatial : datasets to identify potential wetland locations at a spatial scale relevant for transportation corridor assessments. The tool was ...

  1. The IEEE GRSS Standardized Remote Sensing Data Website: A Step Towards "Science 2.0" in Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dell'Acqua, Fabio; Iannelli, Gianni Cristian; Kerekes, John; Lisini, Gianni; Moser, Gabriele; Ricardi, Niccolo; Pierce, Leland

    2016-08-01

    The issue of homogeneity in performance assessment of proposed algorithms for information extraction is generally perceived also in the Earth Observation (EO) domain. Different authors propose different datasets to test their developed algorithms and to the reader it is frequently difficult to assess which is better for his/her specific application, given the wide variability in test sets that makes pure comparison of e.g. accuracy values less meaningful than one would desire. With our work, we gave a modest contribution to ease the problem by making it possible to automatically distribute a limited set of possible "standard" open datasets, together with some ground truth info, and automatically assess processing results provided by the users.

  2. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).

    PubMed

    Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.

  3. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    PubMed Central

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858

  4. Long-term records of global radiation, carbon and water fluxes derived from multi-satellite data and a process-based model

    NASA Astrophysics Data System (ADS)

    Ryu, Youngryel; Jiang, Chongya

    2016-04-01

    To gain insights about the underlying impacts of global climate change on terrestrial ecosystem fluxes, we present a long-term (1982-2015) global radiation, carbon and water fluxes products by integrating multi-satellite data with a process-based model, the Breathing Earth System Simulator (BESS). BESS is a coupled processed model that integrates radiative transfer in the atmosphere and canopy, photosynthesis (GPP), and evapotranspiration (ET). BESS was designed most sensitive to the variables that can be quantified reliably, fully taking advantages of remote sensing atmospheric and land products. Originally, BESS entirely relied on MODIS as input variables to produce global GPP and ET during the MODIS era. This study extends the work to provide a series of long-term products from 1982 to 2015 by incorporating AVHRR data. In addition to GPP and ET, more land surface processes related datasets are mapped to facilitate the discovery of the ecological variations and changes. The CLARA-A1 cloud property datasets, the TOMS aerosol datasets, along with the GLASS land surface albedo datasets, were input to a look-up table derived from an atmospheric radiative transfer model to produce direct and diffuse components of visible and near infrared radiation datasets. Theses radiation components together with the LAI3g datasets and the GLASS land surface albedo datasets, were used to calculate absorbed radiation through a clumping corrected two-stream canopy radiative transfer model. ECMWF ERA interim air temperature data were downscaled by using ALP-II land surface temperature dataset and a region-dependent regression model. The spatial and seasonal variations of CO2 concentration were accounted by OCO-2 datasets, whereas NOAA's global CO2 growth rates data were used to describe interannual variations. All these remote sensing based datasets are used to run the BESS. Daily fluxes in 1/12 degree were computed and then aggregated to half-month interval to match with the spatial-temporal resolution of LAI3g dataset. The BESS GPP and ET products were compared to other independent datasets including MPI-BGC and CLM. Overall, the BESS products show good agreement with the other two datasets, indicating a compelling potential for bridging remote sensing and land surface models.

  5. Feature extraction based on extended multi-attribute profiles and sparse autoencoder for remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman

    2018-02-01

    The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.

  6. Advances in soil erosion modelling through remote sensing data availability at European scale

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Karydas, Christos; Borrelli, Pasqualle; Ballabio, Cristiano; Meusburger, Katrin

    2014-08-01

    Under the European Union's Thematic Strategy for Soil Protection, the European Commission's Directorate-General for the Environment (DG Environment) has identified the mitigation of soil losses by erosion as a priority area. Policy makers call for an overall assessment of soil erosion in their geographical area of interest. They have asked that risk areas for soil erosion be mapped under present land use and climate conditions, and that appropriate measures be taken to control erosion within the legal and social context of natural resource management. Remote sensing data help to better assessment of factors that control erosion, such as vegetation coverage, slope length and slope angle. In this context, the data availability of remote sensing data during the past decade facilitates the more precise estimation of soil erosion risk. Following the principles of the Universal Soil Loss Equation (USLE), various options to calculate vegetative cover management (C-factor) have been investigated. The use of the CORINE Land Cover dataset in combination with lookup table values taken from the literature is presented as an option that has the advantage of a coherent input dataset but with the drawback of static input. Recent developments in the Copernicus programme have made detailed datasets available on land cover, leaf area index and base soil characteristics. These dynamic datasets allow for seasonal estimates of vegetation coverage, and their application in the G2 soil erosion model which represents a recent approach to the seasonal monitoring of soil erosion. The use of phenological datasets and the LUCAS land use/cover survey are proposed as auxiliary information in the selection of the best methodology.

  7. Assessing Wetland Hydroperiod and Soil Moisture with Remote Sensing: A Demonstration for the NASA Plum Brook Station Year 2

    NASA Technical Reports Server (NTRS)

    Brooks, Colin; Bourgeau-Chavez, Laura; Endres, Sarah; Battaglia, Michael; Shuchman, Robert

    2015-01-01

    Assist with the evaluation and measuring of wetlands hydroperiod at the Plum Brook Station using multi-source remote sensing data as part of a larger effort on projecting climate change-related impacts on the station's wetland ecosystems. MTRI expanded on the multi-source remote sensing capabilities to help estimate and measure hydroperiod and the relative soil moisture of wetlands at NASA's Plum Brook Station. Multi-source remote sensing capabilities are useful in estimating and measuring hydroperiod and relative soil moisture of wetlands. This is important as a changing regional climate has several potential risks for wetland ecosystem function. The year two analysis built on the first year of the project by acquiring and analyzing remote sensing data for additional dates and types of imagery, combined with focused field work. Five deliverables were planned and completed: (1) Show the relative length of hydroperiod using available remote sensing datasets, (2) Date linked table of wetlands extent over time for all feasible non-forested wetlands, (3) Utilize LIDAR data to measure topographic height above sea level of all wetlands, wetland to catchment area radio, slope of wetlands, and other useful variables (4), A demonstration of how analyzed results from multiple remote sensing data sources can help with wetlands vulnerability assessment; and (5) A MTRI style report summarizing year 2 results.

  8. Applying aerial digital photography as a spectral remote sensing technique for macrophytic cover assessment in small rural streams

    NASA Astrophysics Data System (ADS)

    Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.

    2011-12-01

    Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (<3m width). In the current study, a remote sensing approach for monitoring and research of small ecosystem was developed. The method is based on differentiation between two indicative vegetation species out of the ecosystem flora. Since when studied, the channel was covered mostly by a filamentous green alga (Cladophora glomerata) and watercress (Nasturtium officinale), these species were chosen as indicative; nonetheless, common reed (Phragmites australis) was also classified in order to exclude it from the stream ROI. The procedure included: A. For both section and habitat scales classifications, acquisition of aerial digital RGB datasets. B. For section scale classification, hyperspectral (HSR) dataset acquisition. C. For calibration, HSR reflectance measurements of specific ground targets, in close proximity to each dataset acquisition swath. D. For habitat scale classification, manual, in-stream flora grid transects classification. The digital RGB datasets were converted to reflectance units by spectral calibration against colored reference plates. These red, green, blue, white, and black EVA foam reference plates were measured by an ASD field spectrometer and each was given a spectral value. Each spectral value was later applied to the spectral calibration and radiometric correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB classification and the in-situ transects indicates that: A. Stream vegetation classification resolution is about 4 cm by the SRGB method compared to about 1 m by HSR. Moreover, this resolution is also higher than of the manual grid transect classification. B. The SRGB method is by far the most cost-efficient. The combination of spectral information (rather than the cognitive color) and high spatial resolution of aerial photography provides noise filtration and better sub-water detection capabilities than the HSR technique. C. Only the SRGB method applies for habitat and section scales; hence, its application together with in-situ grid transects for validation, may be optimal for use in similar scenarios.
    The HSR dataset was first degraded to 17 bands with the same spectral range as the RGB dataset and also to a dataset with 3 equivalent bands

  9. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification

    NASA Astrophysics Data System (ADS)

    Anwer, Rao Muhammad; Khan, Fahad Shahbaz; van de Weijer, Joost; Molinier, Matthieu; Laaksonen, Jorma

    2018-04-01

    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene classification.

  10. In with the new, out with the old? Auto-extraction for remote sensing archaeology

    NASA Astrophysics Data System (ADS)

    Cowley, David C.

    2012-09-01

    This paper explores aspects of the inter-relationships between traditional archaeological interpretation of remote sensed data (principally visual examination of aerial photographs/satellite) and those drawing on automated feature extraction and processing. Established approaches to archaeological interpretation of aerial photographs are heavily reliant on individual observation (eye/brain) in an experience and knowledge-based process. Increasingly, however, much more complex and extensive datasets are becoming available to archaeology and these require critical reflection on analytical and interpretative processes. Archaeological applications of Airborne Laser Scanning (ALS) are becoming increasingly routine, and as the spatial resolution of hyper-spectral data improves, its potentially massive implications for archaeological site detection may prove to be a sea-change. These complex datasets demand new approaches, as traditional methods based on direct observation by an archaeological interpreter will never do more than scratch the surface, and will fail to fully extend the boundaries of knowledge. Inevitably, changing analytical and interpretative processes can create tensions, especially, as has been the case in archaeology, when the innovations in data and analysis come from outside the discipline. These tensions often centre on the character of the information produced, and a lack of clarity on the place of archaeological interpretation in the workflow. This is especially true for ALS data and autoextraction techniques, and carries implications for all forms of remote sensed archaeological datasets, including hyperspectral data and aerial photographs.

  11. Application of an imputation method for geospatial inventory of forest structural attributes across multiple spatial scales in the Lake States, U.S.A

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.

    Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.

  12. Special section introduction on MicroMars to MegaMars

    USGS Publications Warehouse

    Bridges, Nathan T.; Dundas, Colin M.; Edgar, Lauren

    2016-01-01

    The study of Earth's surface and atmosphere evolved from local investigations to the incorporation of remote sensing on a global scale. The study of Mars has followed the opposite progression, beginning with telescopic observations, followed by flyby and orbital missions, landers, and finally rover missions in the last ∼20 years. This varied fleet of spacecraft (seven of which are currently operating as of this writing) provides a rich variety of datasets at spatial scales ranging from microscopic images to synoptic orbital remote sensing.

  13. High-resolution Land Cover Datasets, Composite Curve Numbers, and Storm Water Retention in the Tampa Bay, FL region

    EPA Science Inventory

    Policy makers need to understand how land cover change alters storm water regimes, yet existing methods do not fully utilize newly available datasets to quantify storm water changes at a landscape-scale. Here, we use high-resolution, remotely-sensed land cover, imperviousness, an...

  14. Integration of heterogeneous features for remote sensing scene classification

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Xiong, Xingnan; Ning, Chen; Shi, Aiye; Lv, Guofang

    2018-01-01

    Scene classification is one of the most important issues in remote sensing (RS) image processing. We find that features from different channels (shape, spectral, texture, etc.), levels (low-level and middle-level), or perspectives (local and global) could provide various properties for RS images, and then propose a heterogeneous feature framework to extract and integrate heterogeneous features with different types for RS scene classification. The proposed method is composed of three modules (1) heterogeneous features extraction, where three heterogeneous feature types, called DS-SURF-LLC, mean-Std-LLC, and MS-CLBP, are calculated, (2) heterogeneous features fusion, where the multiple kernel learning (MKL) is utilized to integrate the heterogeneous features, and (3) an MKL support vector machine classifier for RS scene classification. The proposed method is extensively evaluated on three challenging benchmark datasets (a 6-class dataset, a 12-class dataset, and a 21-class dataset), and the experimental results show that the proposed method leads to good classification performance. It produces good informative features to describe the RS image scenes. Moreover, the integration of heterogeneous features outperforms some state-of-the-art features on RS scene classification tasks.

  15. High Resolution Stratigraphic Mapping in Complex Terrain: A Comparison of Traditional Remote Sensing Techniques with Unmanned Aerial Vehicle - Structure from Motion Photogrammetry

    NASA Astrophysics Data System (ADS)

    Nesbit, P. R.; Hugenholtz, C.; Durkin, P.; Hubbard, S. M.; Kucharczyk, M.; Barchyn, T.

    2016-12-01

    Remote sensing and digital mapping have started to revolutionize geologic mapping in recent years as a result of their realized potential to provide high resolution 3D models of outcrops to assist with interpretation, visualization, and obtaining accurate measurements of inaccessible areas. However, in stratigraphic mapping applications in complex terrain, it is difficult to acquire information with sufficient detail at a wide spatial coverage with conventional techniques. We demonstrate the potential of a UAV and Structure from Motion (SfM) photogrammetric approach for improving 3D stratigraphic mapping applications within a complex badland topography. Our case study is performed in Dinosaur Provincial Park (Alberta, Canada), mapping late Cretaceous fluvial meander belt deposits of the Dinosaur Park formation amidst a succession of steeply sloping hills and abundant drainages - creating a challenge for stratigraphic mapping. The UAV-SfM dataset (2 cm spatial resolution) is compared directly with a combined satellite and aerial LiDAR dataset (30 cm spatial resolution) to reveal advantages and limitations of each dataset before presenting a unique workflow that utilizes the dense point cloud from the UAV-SfM dataset for analysis. The UAV-SfM dense point cloud minimizes distortion, preserves 3D structure, and records an RGB attribute - adding potential value in future studies. The proposed UAV-SfM workflow allows for high spatial resolution remote sensing of stratigraphy in complex topographic environments. This extended capability can add value to field observations and has the potential to be integrated with subsurface petroleum models.

  16. Fluid Lensing based Machine Learning for Augmenting Earth Science Coral Datasets

    NASA Astrophysics Data System (ADS)

    Li, A.; Instrella, R.; Chirayath, V.

    2016-12-01

    Recently, there has been increased interest in monitoring the effects of climate change upon the world's marine ecosystems, particularly coral reefs. These delicate ecosystems are especially threatened due to their sensitivity to ocean warming and acidification, leading to unprecedented levels of coral bleaching and die-off in recent years. However, current global aquatic remote sensing datasets are unable to quantify changes in marine ecosystems at spatial and temporal scales relevant to their growth. In this project, we employ various supervised and unsupervised machine learning algorithms to augment existing datasets from NASA's Earth Observing System (EOS), using high resolution airborne imagery. This method utilizes NASA's ongoing airborne campaigns as well as its spaceborne assets to collect remote sensing data over these afflicted regions, and employs Fluid Lensing algorithms to resolve optical distortions caused by the fluid surface, producing cm-scale resolution imagery of these diverse ecosystems from airborne platforms. Support Vector Machines (SVMs) and K-mean clustering methods were applied to satellite imagery at 0.5m resolution, producing segmented maps classifying coral based on percent cover and morphology. Compared to a previous study using multidimensional maximum a posteriori (MAP) estimation to separate these features in high resolution airborne datasets, SVMs are able to achieve above 75% accuracy when augmented with existing MAP estimates, while unsupervised methods such as K-means achieve roughly 68% accuracy, verified by manually segmented reference data provided by a marine biologist. This effort thus has broad applications for coastal remote sensing, by helping marine biologists quantify behavioral trends spanning large areas and over longer timescales, and to assess the health of coral reefs worldwide.

  17. First observations of tropospheric δD data observed by ground- and space-based remote sensing and surface in-situ measurement techniques at MUSICA's principle reference station (Izaña Observatory, Spain)

    NASA Astrophysics Data System (ADS)

    González, Yenny; Schneider, Matthias; Christner, Emanuel; Rodríguez, Omaira E.; Sepúlveda, Eliezer; Dyroff, Christoph; Wiegele, Andreas

    2013-04-01

    The main goal of the project MUSICA (Multiplatform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi global tropospheric water vapor isototopologue dataset of a good and well-documented quality. Therefore, new ground- and space-based remote sensing observations (NDACC-FTIR and IASI/METOP) are combined with in-situ measurements. This work presents the first comparison between in-situ and remote sensing observations made at the Izaña Atmospheric Research Centre (Tenerife, Canary Islands, Spain). The in-situ measurements are made by a Picarro L2120-i water vapor isotopologue analyzer. At Izaña the in-situ data are affected by local small-scale mixing processes: during daylight, the thermally buoyant upslope flow prompts the mixing between the Marine Boundary Layer (MBL) and the low Free Troposphere (FT). However, the remote sensors detect δD values averaged over altitudes that are more representative for the free troposphere. This difference has to be considered for the comparison. In general, a good agreement between the MUSICA remote sensing and the in situ H2O-versus-δD plots is found, which demonstrates that the MUSICA δD remote sensing products add scientifically valuable information to the H2O data.

  18. Deep learning decision fusion for the classification of urban remote sensing data

    NASA Astrophysics Data System (ADS)

    Abdi, Ghasem; Samadzadegan, Farhad; Reinartz, Peter

    2018-01-01

    Multisensor data fusion is one of the most common and popular remote sensing data classification topics by considering a robust and complete description about the objects of interest. Furthermore, deep feature extraction has recently attracted significant interest and has become a hot research topic in the geoscience and remote sensing research community. A deep learning decision fusion approach is presented to perform multisensor urban remote sensing data classification. After deep features are extracted by utilizing joint spectral-spatial information, a soft-decision made classifier is applied to train high-level feature representations and to fine-tune the deep learning framework. Next, a decision-level fusion classifies objects of interest by the joint use of sensors. Finally, a context-aware object-based postprocessing is used to enhance the classification results. A series of comparative experiments are conducted on the widely used dataset of 2014 IEEE GRSS data fusion contest. The obtained results illustrate the considerable advantages of the proposed deep learning decision fusion over the traditional classifiers.

  19. Semantic Segmentation of Convolutional Neural Network for Supervised Classification of Multispectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Xue, L.; Liu, C.; Wu, Y.; Li, H.

    2018-04-01

    Semantic segmentation is a fundamental research in remote sensing image processing. Because of the complex maritime environment, the classification of roads, vegetation, buildings and water from remote Sensing Imagery is a challenging task. Although the neural network has achieved excellent performance in semantic segmentation in the last years, there are a few of works using CNN for ground object segmentation and the results could be further improved. This paper used convolution neural network named U-Net, its structure has a contracting path and an expansive path to get high resolution output. In the network , We added BN layers, which is more conducive to the reverse pass. Moreover, after upsampling convolution , we add dropout layers to prevent overfitting. They are promoted to get more precise segmentation results. To verify this network architecture, we used a Kaggle dataset. Experimental results show that U-Net achieved good performance compared with other architectures, especially in high-resolution remote sensing imagery.

  20. Integrating Remote Sensing Data with Socioeconomic Data: Sensitivity, Confidentiality, Privacy, and Intellectual Property Challenges

    NASA Astrophysics Data System (ADS)

    Downs, R. R.; Adamo, S. B.

    2014-12-01

    The integration of remote sensing data with socioeconomic data presents new opportunities for scientific discovery and analysis that can improve understanding of the environmental sustainability issues that society faces today. Such integrated data products and services can be used to study interdisciplinary issues by investigators representing various disciplines. In addition to the scientific benefits that can be attained by integrating remote sensing data with socioeconomic data, the integration of these data also present challenges that reflect the complex issues that arise when sharing and integrating different types of science data. When integrating one or more datasets that contain sensitive information, data producers need to be aware of the limitations that have been placed upon the data to protect private property, species or other inhabitants that reside on the property, or restricted information about a particular location. Similarly, confidentiality and privacy issues are a concern for data that have been collected about individual humans and families who have volunteered to serve as human research subjects or whose personal information may have been collected without their knowledge. In addition, intellectual property rights that are associated with a particular dataset may prevent integration with other data or pose constraints on the use of the resulting data products or services. These challenges will be described along with approaches that can be applied to address them when planning projects that involve the integration of remote sensing data with socioeconomic data.

  1. Assessing Climate-Induced Change in River Flow Using Satellite Remote Sensing and Process Modeling in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.

    2017-12-01

    Snow- and glacier-fed river systems originating from High Mountain Asia (HMA) support diverse ecosystems and provide the basis for food and energy production for more than a billion people living downstream. Climate-driven changes in the melting of snow and glaciers and in precipitation patterns are expected to significantly alter the flow of the rivers in the HMA region at various temporal scales, which in turn could heavily affect the socioeconomics of the region. Hence, climate change effects on seasonal and long-term hydrological conditions may have far reaching economic impact annually and over the century. We are developing a decision support tool utilizing integrated microwave remote sensing datasets, process modeling and economic models to inform water resource management decisions and ecosystem sustainability as related to the High Mountain Asia (HMA) region's response to climate change. The availability of consistent time-series microwave remote sensing datasets from Earth-orbiting scatterometers, radiometers and synthetic aperture radar (SAR) imagery provides the basis for the observational framework of this monitoring system. We discuss the assembly, processing and application of scatterometer and SAR data sets from the Advanced Scatterometer (ASCAT) and Sentinal-1 SARs, and the enlistment of these data to monitor seasonal melt and thaw status of glacier-dominated and surrounding regions. We present current status and future plans for this effort. Our team's study emphasizes processes and economic modeling within the Trishuli basin; our remote sensing analysis supports analyses across the HiMAT domain.

  2. Constraining the dynamics of the water budget at high spatial resolution in the world's water towers using models and remote sensing data; Snake River Basin, USA

    NASA Astrophysics Data System (ADS)

    Watson, K. A.; Masarik, M. T.; Flores, A. N.

    2016-12-01

    Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.

  3. Random-Forest Classification of High-Resolution Remote Sensing Images and Ndsm Over Urban Areas

    NASA Astrophysics Data System (ADS)

    Sun, X. F.; Lin, X. G.

    2017-09-01

    As an intermediate step between raw remote sensing data and digital urban maps, remote sensing data classification has been a challenging and long-standing research problem in the community of remote sensing. In this work, an effective classification method is proposed for classifying high-resolution remote sensing data over urban areas. Starting from high resolution multi-spectral images and 3D geometry data, our method proceeds in three main stages: feature extraction, classification, and classified result refinement. First, we extract color, vegetation index and texture features from the multi-spectral image and compute the height, elevation texture and differential morphological profile (DMP) features from the 3D geometry data. Then in the classification stage, multiple random forest (RF) classifiers are trained separately, then combined to form a RF ensemble to estimate each sample's category probabilities. Finally the probabilities along with the feature importance indicator outputted by RF ensemble are used to construct a fully connected conditional random field (FCCRF) graph model, by which the classification results are refined through mean-field based statistical inference. Experiments on the ISPRS Semantic Labeling Contest dataset show that our proposed 3-stage method achieves 86.9% overall accuracy on the test data.

  4. Modeling Habitat Suitability of Migratory Birds from Remote Sensing Images Using Convolutional Neural Networks.

    PubMed

    Su, Jin-He; Piao, Ying-Chao; Luo, Ze; Yan, Bao-Ping

    2018-04-26

    With the application of various data acquisition devices, a large number of animal movement data can be used to label presence data in remote sensing images and predict species distribution. In this paper, a two-stage classification approach for combining movement data and moderate-resolution remote sensing images was proposed. First, we introduced a new density-based clustering method to identify stopovers from migratory birds’ movement data and generated classification samples based on the clustering result. We split the remote sensing images into 16 × 16 patches and labeled them as positive samples if they have overlap with stopovers. Second, a multi-convolution neural network model is proposed for extracting the features from temperature data and remote sensing images, respectively. Then a Support Vector Machines (SVM) model was used to combine the features together and predict classification results eventually. The experimental analysis was carried out on public Landsat 5 TM images and a GPS dataset was collected on 29 birds over three years. The results indicated that our proposed method outperforms the existing baseline methods and was able to achieve good performance in habitat suitability prediction.

  5. Data Quality Screening Service

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Lynnes, Christopher; Hearty, Thomas; Won, Young-In; Fox, Peter; Zednik, Stephan

    2013-01-01

    A report describes the Data Quality Screening Service (DQSS), which is designed to help automate the filtering of remote sensing data on behalf of science users. Whereas this process often involves much research through quality documents followed by laborious coding, the DQSS is a Web Service that provides data users with data pre-filtered to their particular criteria, while at the same time guiding the user with filtering recommendations of the cognizant data experts. The DQSS design is based on a formal semantic Web ontology that describes data fields and the quality fields for applying quality control within a data product. The accompanying code base handles several remote sensing datasets and quality control schemes for data products stored in Hierarchical Data Format (HDF), a common format for NASA remote sensing data. Together, the ontology and code support a variety of quality control schemes through the implementation of the Boolean expression with simple, reusable conditional expressions as operands. Additional datasets are added to the DQSS simply by registering instances in the ontology if they follow a quality scheme that is already modeled in the ontology. New quality schemes are added by extending the ontology and adding code for each new scheme.

  6. Intercomparison of in-situ and remote sensing δD signals in tropospheric water vapour

    NASA Astrophysics Data System (ADS)

    Schneider, Matthias; González, Yenny; Dyroff, Christoph; Christner, Emanuel; García, Omaira; Wiegele, Andreas; Andrey, Javier; Barthlott, Sabine; Blumenstock, Thomas; Guirado, Carmen; Hase, Frank; Ramos, Ramon; Rodríguez, Sergio; Sepúveda, Eliezer

    2014-05-01

    The main mission of the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi-global tropospheric water vapour isototopologue dataset of a good and well-documented quality. We present a first empirical validation of MUSICA's remote sensing δD products (ground-based FTIR within NDACC, Network for the Detection of Atmospheric Composition Change, and space-based with IASI, Infrared Atmospheric Sounding Interferometer, flown on METOP). As reference we use in-situ measurements made on the island of Tenerife at two different altitudes (2370 and 3550 m a.s.l., using two Picarro L2120-i water isotopologue analyzers) and aboard an aircraft (between 200 and 6800 m a.s.l., using the homemade ISOWAT instrument).

  7. Troubleshooting RSIG

    EPA Pesticide Factsheets

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  8. A hybrid Land Cover Dataset for Russia: a new methodology for merging statistics, remote sensing and in-situ information

    NASA Astrophysics Data System (ADS)

    Schepaschenko, D.; McCallum, I.; Shvidenko, A.; Kraxner, F.; Fritz, S.

    2009-04-01

    There is a critical need for accurate land cover information for resource assessment, biophysical modeling, greenhouse gas studies, and for estimating possible terrestrial responses and feedbacks to climate change. However, practically all existing land cover datasets have quite a high level of uncertainty and suffer from a lack of important details that does not allow for relevant parameterization, e.g., data derived from different forest inventories. The objective of this study is to develop a methodology in order to create a hybrid land cover dataset at the level which would satisfy requirements of the verified terrestrial biota full greenhouse gas account (Shvidenko et al., 2008) for large regions i.e. Russia. Such requirements necessitate a detailed quantification of land classes (e.g., for forests - dominant species, age, growing stock, net primary production, etc.) with additional information on uncertainties of the major biometric and ecological parameters in the range of 10-20% and a confidence interval of around 0.9. The approach taken here allows the integration of different datasets to explore synergies and in particular the merging and harmonization of land and forest inventories, ecological monitoring, remote sensing data and in-situ information. The following datasets have been integrated: Remote sensing: Global Land Cover 2000 (Fritz et al., 2003), Vegetation Continuous Fields (Hansen et al., 2002), Vegetation Fire (Sukhinin, 2007), Regional land cover (Schmullius et al., 2005); GIS: Soil 1:2.5 Mio (Dokuchaev Soil Science Institute, 1996), Administrative Regions 1:2.5 Mio, Vegetation 1:4 Mio, Bioclimatic Zones 1:4 Mio (Stolbovoi & McCallum, 2002), Forest Enterprises 1:2.5 Mio, Rivers/Lakes and Roads/Railways 1:1 Mio (IIASA's data base); Inventories and statistics: State Land Account (FARSC RF, 2006), State Forest Account - SFA (FFS RF, 2003), Disturbances in forests (FFS RF, 2006). The resulting hybrid land cover dataset at 1-km resolution comprises the following classes: Forest (each grid links to the SFA database, which contains 86,613 records); Agriculture (5 classes, parameterized by 89 administrative units); Wetlands (8 classes, parameterized by 83 zone/region units); Open Woodland, Burnt area; Shrub/grassland (50 classes, parameterized by 300 zone/region units); Water; Unproductive area. This study has demonstrated the ability to produce a highly detailed (both spatially and thematically) land cover dataset over Russia. Future efforts include further validation of the hybrid land cover dataset for Russia, and its use for assessment of the terrestrial biota full greenhouse gas budget across Russia. The methodology proposed in this study could be applied at the global level. Results of such an undertaking would however be highly dependent upon the quality of the available ground data. The implementation of the hybrid land cover dataset was undertaken in a way that it can be regularly updated based on new ground data and remote sensing products (ie. MODIS).

  9. Assessing Wetland Hydroperiod and Soil Moisture With Remote Sensing: A Demonstration for the NASA Plum Brook Station Year 2

    NASA Technical Reports Server (NTRS)

    Brooks, Colin; Bourgeau-Chavez, Laura; Endres, Sarah; Battaglia, Michael; Shuchman, Robert

    2015-01-01

    Primary Goal: Assist with the evaluation and measuring of wetlands hydroperiod at the PlumBrook Station using multi-source remote sensing data as part of a larger effort on projecting climate change-related impacts on the station's wetland ecosystems. MTRI expanded on the multi-source remote sensing capabilities to help estimate and measure hydroperiod and the relative soil moisture of wetlands at NASA's Plum Brook Station. Multi-source remote sensing capabilities are useful in estimating and measuring hydroperiod and relative soil moisture of wetlands. This is important as a changing regional climate has several potential risks for wetland ecosystem function. The year two analysis built on the first year of the project by acquiring and analyzing remote sensing data for additional dates and types of imagery, combined with focused field work. Five deliverables were planned and completed: 1) Show the relative length of hydroperiod using available remote sensing datasets 2) Date linked table of wetlands extent over time for all feasible non-forested wetlands 3) Utilize LIDAR data to measure topographic height above sea level of all wetlands, wetland to catchment area radio, slope of wetlands, and other useful variables 4) A demonstration of how analyzed results from multiple remote sensing data sources can help with wetlands vulnerability assessment 5) A MTRI style report summarizing year 2 results. This report serves as a descriptive summary of our completion of these our deliverables. Additionally, two formal meetings were held with Larry Liou and Amanda Sprinzl to provide project updates and receive direction on outputs. These were held on 2/26/15 and 9/17/15 at the Plum Brook Station. Principal Component Analysis (PCA) is a multivariate statistical technique used to identify dominant spatial and temporal backscatter signatures. PCA reduces the information contained in the temporal dataset to the first few new Principal Component (PC) images. Some advantages of PCA include the ability to filter out temporal autocorrelation and reduce speckle to the higher order PC images. A PCA was performed using ERDAS Imagine on a time series of PALSAR dates. Hydroperiod maps were created by separating the PALSAR dates into two date ranges, 2006-2008 and 2010, and performing an unsupervised classification on the PCAs.

  10. RSIG Data Inventory

    EPA Pesticide Factsheets

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  11. RSIG Video Demonstrations

    EPA Pesticide Factsheets

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  12. How RSIG Regrids Data

    EPA Pesticide Factsheets

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  13. An agreement coefficient for image comparison

    USGS Publications Warehouse

    Ji, Lei; Gallo, Kevin

    2006-01-01

    Combination of datasets acquired from different sensor systems is necessary to construct a long time-series dataset for remotely sensed land-surface variables. Assessment of the agreement of the data derived from various sources is an important issue in understanding the data continuity through the time-series. Some traditional measures, including correlation coefficient, coefficient of determination, mean absolute error, and root mean square error, are not always optimal for evaluating the data agreement. For this reason, we developed a new agreement coefficient for comparing two different images. The agreement coefficient has the following properties: non-dimensional, bounded, symmetric, and distinguishable between systematic and unsystematic differences. The paper provides examples of agreement analyses for hypothetical data and actual remotely sensed data. The results demonstrate that the agreement coefficient does include the above properties, and therefore is a useful tool for image comparison.

  14. Comparison of Different Machine Learning Algorithms for Lithological Mapping Using Remote Sensing Data and Morphological Features: A Case Study in Kurdistan Region, NE Iraq

    NASA Astrophysics Data System (ADS)

    Othman, Arsalan; Gloaguen, Richard

    2015-04-01

    Topographic effects and complex vegetation cover hinder lithology classification in mountain regions based not only in field, but also in reflectance remote sensing data. The area of interest "Bardi-Zard" is located in the NE of Iraq. It is part of the Zagros orogenic belt, where seven lithological units outcrop and is known for its chromite deposit. The aim of this study is to compare three machine learning algorithms (MLAs): Maximum Likelihood (ML), Support Vector Machines (SVM), and Random Forest (RF) in the context of a supervised lithology classification task using Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite, its derived, spatial information (spatial coordinates) and geomorphic data. We emphasize the enhancement in remote sensing lithological mapping accuracy that arises from the integration of geomorphic features and spatial information (spatial coordinates) in classifications. This study identifies that RF is better than ML and SVM algorithms in almost the sixteen combination datasets, which were tested. The overall accuracy of the best dataset combination with the RF map for the all seven classes reach ~80% and the producer and user's accuracies are ~73.91% and 76.09% respectively while the kappa coefficient is ~0.76. TPI is more effective with SVM algorithm than an RF algorithm. This paper demonstrates that adding geomorphic indices such as TPI and spatial information in the dataset increases the lithological classification accuracy.

  15. Hyperspectral Image Classification for Land Cover Based on an Improved Interval Type-II Fuzzy C-Means Approach

    PubMed Central

    Li, Zhao-Liang

    2018-01-01

    Few studies have examined hyperspectral remote-sensing image classification with type-II fuzzy sets. This paper addresses image classification based on a hyperspectral remote-sensing technique using an improved interval type-II fuzzy c-means (IT2FCM*) approach. In this study, in contrast to other traditional fuzzy c-means-based approaches, the IT2FCM* algorithm considers the ranking of interval numbers and the spectral uncertainty. The classification results based on a hyperspectral dataset using the FCM, IT2FCM, and the proposed improved IT2FCM* algorithms show that the IT2FCM* method plays the best performance according to the clustering accuracy. In this paper, in order to validate and demonstrate the separability of the IT2FCM*, four type-I fuzzy validity indexes are employed, and a comparative analysis of these fuzzy validity indexes also applied in FCM and IT2FCM methods are made. These four indexes are also applied into different spatial and spectral resolution datasets to analyze the effects of spectral and spatial scaling factors on the separability of FCM, IT2FCM, and IT2FCM* methods. The results of these validity indexes from the hyperspectral datasets show that the improved IT2FCM* algorithm have the best values among these three algorithms in general. The results demonstrate that the IT2FCM* exhibits good performance in hyperspectral remote-sensing image classification because of its ability to handle hyperspectral uncertainty. PMID:29373548

  16. Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series

    NASA Astrophysics Data System (ADS)

    Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik

    2016-06-01

    Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model biophysical parameters.

  17. A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States

    DOE PAGES

    Robinson, Nathaniel; Allred, Brady; Jones, Matthew; ...

    2017-08-21

    Satellite derived vegetation indices (VIs) are broadly used in ecological research, ecosystem modeling, and land surface monitoring. The Normalized Difference Vegetation Index (NDVI), perhaps the most utilized VI, has countless applications across ecology, forestry, agriculture, wildlife, biodiversity, and other disciplines. Calculating satellite derived NDVI is not always straight-forward, however, as satellite remote sensing datasets are inherently noisy due to cloud and atmospheric contamination, data processing failures, and instrument malfunction. Readily available NDVI products that account for these complexities are generally at coarse resolution; high resolution NDVI datasets are not conveniently accessible and developing them often presents numerous technical and methodologicalmore » challenges. Here, we address this deficiency by producing a Landsat derived, high resolution (30 m), long-term (30+ years) NDVI dataset for the conterminous United States. We use Google Earth Engine, a planetary-scale cloud-based geospatial analysis platform, for processing the Landsat data and distributing the final dataset. We use a climatology driven approach to fill missing data and validate the dataset with established remote sensing products at multiple scales. We provide access to the composites through a simple web application, allowing users to customize key parameters appropriate for their application, question, and region of interest.« less

  18. A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Nathaniel; Allred, Brady; Jones, Matthew

    Satellite derived vegetation indices (VIs) are broadly used in ecological research, ecosystem modeling, and land surface monitoring. The Normalized Difference Vegetation Index (NDVI), perhaps the most utilized VI, has countless applications across ecology, forestry, agriculture, wildlife, biodiversity, and other disciplines. Calculating satellite derived NDVI is not always straight-forward, however, as satellite remote sensing datasets are inherently noisy due to cloud and atmospheric contamination, data processing failures, and instrument malfunction. Readily available NDVI products that account for these complexities are generally at coarse resolution; high resolution NDVI datasets are not conveniently accessible and developing them often presents numerous technical and methodologicalmore » challenges. Here, we address this deficiency by producing a Landsat derived, high resolution (30 m), long-term (30+ years) NDVI dataset for the conterminous United States. We use Google Earth Engine, a planetary-scale cloud-based geospatial analysis platform, for processing the Landsat data and distributing the final dataset. We use a climatology driven approach to fill missing data and validate the dataset with established remote sensing products at multiple scales. We provide access to the composites through a simple web application, allowing users to customize key parameters appropriate for their application, question, and region of interest.« less

  19. Spatial aspects of building and population exposure data and their implications for global earthquake exposure modeling

    USGS Publications Warehouse

    Dell’Acqua, F.; Gamba, P.; Jaiswal, K.

    2012-01-01

    This paper discusses spatial aspects of the global exposure dataset and mapping needs for earthquake risk assessment. We discuss this in the context of development of a Global Exposure Database for the Global Earthquake Model (GED4GEM), which requires compilation of a multi-scale inventory of assets at risk, for example, buildings, populations, and economic exposure. After defining the relevant spatial and geographic scales of interest, different procedures are proposed to disaggregate coarse-resolution data, to map them, and if necessary to infer missing data by using proxies. We discuss the advantages and limitations of these methodologies and detail the potentials of utilizing remote-sensing data. The latter is used especially to homogenize an existing coarser dataset and, where possible, replace it with detailed information extracted from remote sensing using the built-up indicators for different environments. Present research shows that the spatial aspects of earthquake risk computation are tightly connected with the availability of datasets of the resolution necessary for producing sufficiently detailed exposure. The global exposure database designed by the GED4GEM project is able to manage datasets and queries of multiple spatial scales.

  20. Web-based interactive access, analysis and comparison of remotely sensed and in situ measured temperature data

    NASA Astrophysics Data System (ADS)

    Eberle, Jonas; Urban, Marcel; Hüttich, Christian; Schmullius, Christiane

    2014-05-01

    Numerous datasets providing temperature information from meteorological stations or remote sensing satellites are available. However, the challenging issue is to search in the archives and process the time series information for further analysis. These steps can be automated for each individual product, if the pre-conditions are complied, e.g. data access through web services (HTTP, FTP) or legal rights to redistribute the datasets. Therefore a python-based package was developed to provide data access and data processing tools for MODIS Land Surface Temperature (LST) data, which is provided by NASA Land Processed Distributed Active Archive Center (LPDAAC), as well as the Global Surface Summary of the Day (GSOD) and the Global Historical Climatology Network (GHCN) daily datasets provided by NOAA National Climatic Data Center (NCDC). The package to access and process the information is available as web services used by an interactive web portal for simple data access and analysis. Tools for time series analysis were linked to the system, e.g. time series plotting, decomposition, aggregation (monthly, seasonal, etc.), trend analyses, and breakpoint detection. Especially for temperature data a plot was integrated for the comparison of two temperature datasets based on the work by Urban et al. (2013). As a first result, a kernel density plot compares daily MODIS LST from satellites Aqua and Terra with daily means from GSOD and GHCN datasets. Without any data download and data processing, the users can analyze different time series datasets in an easy-to-use web portal. As a first use case, we built up this complimentary system with remotely sensed MODIS data and in situ measurements from meteorological stations for Siberia within the Siberian Earth System Science Cluster (www.sibessc.uni-jena.de). References: Urban, Marcel; Eberle, Jonas; Hüttich, Christian; Schmullius, Christiane; Herold, Martin. 2013. "Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale." Remote Sens. 5, no. 5: 2348-2367. Further materials: Eberle, Jonas; Clausnitzer, Siegfried; Hüttich, Christian; Schmullius, Christiane. 2013. "Multi-Source Data Processing Middleware for Land Monitoring within a Web-Based Spatial Data Infrastructure for Siberia." ISPRS Int. J. Geo-Inf. 2, no. 3: 553-576.

  1. Areas of Weakly Anomalous to Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. Note: 'o' is used in this description to represent lowercase sigma

  2. Web Access to RSIG Data

    EPA Pesticide Factsheets

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  3. NASA's Applied Remote Sensing Training (ARSET) Webinar Series

    Atmospheric Science Data Center

    2018-01-30

    ... Wednesday, January 17, 2018 Data Analysis Tools for High Resolution Air Quality Satellite Datasets   ...   For agenda, registration and additional course information, please access  https://go.nasa.gov/2jmhRVD   ...

  4. Tips for Running RSIG2D

    EPA Pesticide Factsheets

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  5. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel

    NASA Astrophysics Data System (ADS)

    Levin, Noam; Tessler, Naama; Smith, Andrew; McAlpine, Clive

    2016-09-01

    Wildfires are expected to increase in Mediterranean landscapes as a result of climate change and changes in land-use practices. In order to advance our understanding of human and physical factors shaping spatial patterns of wildfires in the region, we compared two independently generated datasets of wildfires for Israel that cover approximately the same study period. We generated a site-based dataset containing the location of 10,879 wildfires (1991-2011), and compared it to a dataset of burnt areas derived from MODIS imagery (2000-2011). We hypothesized that the physical and human factors explaining the spatial distribution of burnt areas derived from remote sensing (mostly large fires, >100 ha) will differ from those explaining site-based wildfires recorded by national agencies (mostly small fires, <10 ha). Small wildfires recorded by forestry agencies were concentrated within planted forests and near built-up areas, whereas the largest wildfires were located in more remote regions, often associated with military training areas and herbaceous vegetation. We conclude that to better understand wildfire dynamics, consolidation of wildfire databases should be achieved, combining field reports and remote sensing. As nearly all wildfires in Mediterranean landscapes are caused by human activities, improving the management of forest areas and raising public awareness to fire risk are key considerations in reducing fire danger.

  6. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel.

    PubMed

    Levin, Noam; Tessler, Naama; Smith, Andrew; McAlpine, Clive

    2016-09-01

    Wildfires are expected to increase in Mediterranean landscapes as a result of climate change and changes in land-use practices. In order to advance our understanding of human and physical factors shaping spatial patterns of wildfires in the region, we compared two independently generated datasets of wildfires for Israel that cover approximately the same study period. We generated a site-based dataset containing the location of 10,879 wildfires (1991-2011), and compared it to a dataset of burnt areas derived from MODIS imagery (2000-2011). We hypothesized that the physical and human factors explaining the spatial distribution of burnt areas derived from remote sensing (mostly large fires, >100 ha) will differ from those explaining site-based wildfires recorded by national agencies (mostly small fires, <10 ha). Small wildfires recorded by forestry agencies were concentrated within planted forests and near built-up areas, whereas the largest wildfires were located in more remote regions, often associated with military training areas and herbaceous vegetation. We conclude that to better understand wildfire dynamics, consolidation of wildfire databases should be achieved, combining field reports and remote sensing. As nearly all wildfires in Mediterranean landscapes are caused by human activities, improving the management of forest areas and raising public awareness to fire risk are key considerations in reducing fire danger.

  7. Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks

    NASA Astrophysics Data System (ADS)

    Audebert, Nicolas; Le Saux, Bertrand; Lefèvre, Sébastien

    2018-06-01

    In this work, we investigate various methods to deal with semantic labeling of very high resolution multi-modal remote sensing data. Especially, we study how deep fully convolutional networks can be adapted to deal with multi-modal and multi-scale remote sensing data for semantic labeling. Our contributions are threefold: (a) we present an efficient multi-scale approach to leverage both a large spatial context and the high resolution data, (b) we investigate early and late fusion of Lidar and multispectral data, (c) we validate our methods on two public datasets with state-of-the-art results. Our results indicate that late fusion make it possible to recover errors steaming from ambiguous data, while early fusion allows for better joint-feature learning but at the cost of higher sensitivity to missing data.

  8. Use Cases for Combining Web Services with ArcPython Tools for Enabling Quality Control of Land Remote Sensing Data Products.

    NASA Astrophysics Data System (ADS)

    Krehbiel, C.; Maiersperger, T.; Friesz, A.; Harriman, L.; Quenzer, R.; Impecoven, K.

    2016-12-01

    Three major obstacles facing big Earth data users include data storage, management, and analysis. As the amount of satellite remote sensing data increases, so does the need for better data storage and management strategies to exploit the plethora of data now available. Standard GIS tools can help big Earth data users whom interact with and analyze increasingly large and diverse datasets. In this presentation we highlight how NASA's Land Processes Distributed Active Archive Center (LP DAAC) is tackling these big Earth data challenges. We provide a real life use case example to describe three tools and services provided by the LP DAAC to more efficiently exploit big Earth data in a GIS environment. First, we describe the Open-source Project for a Network Data Access Protocol (OPeNDAP), which calls to specific data, minimizing the amount of data that a user downloads and improves the efficiency of data downloading and processing. Next, we cover the LP DAAC's Application for Extracting and Exploring Analysis Ready Samples (AppEEARS), a web application interface for extracting and analyzing land remote sensing data. From there, we review an ArcPython toolbox that was developed to provide quality control services to land remote sensing data products. Locating and extracting specific subsets of larger big Earth datasets improves data storage and management efficiency for the end user, and quality control services provides a straightforward interpretation of big Earth data. These tools and services are beneficial to the GIS user community in terms of standardizing workflows and improving data storage, management, and analysis tactics.

  9. The Art in Visualizing Natural Landscapes from Space

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Shipman, J. S.; Adams, T.

    2017-12-01

    Satellite remote sensing data can capture the changing Earth at cm resolution, across hundreds of spectral channels, and multiple times per hour. There is an art in combining these datasets together to fully capture the beauty of our planet. The resulting artistic piece can be further transformed by building in an accompanying musical score, allowing for a deeper emotional connection with the public. We make use of visible, near, middle and long wave infrared and radar data as well as different remote sensing techniques to uniquely capture our changing landscape in the spaceborne data. We will generate visually compelling imagery and videos that represent hazardous events from dust storms to landslides and from volcanic eruptions to forest fires. We will demonstrate how specific features of the Earth's landscape can be emphasized through the use of different datasets and color combinations and how, by adding a musical score, we can directly connect with the viewer and heighten their experience. We will also discuss our process to integrate the different aspects of our project together and how it could be developed to capture the beauty of other planets across the solar system using spaceborne imagery and data. Bringing together experts in art installations, composing musical scores, and remote sensing image visualization can lead to new and exciting artistic representations of geoscience data. The resulting product demonstrates there is an art to visualizing remote sensing data to capture the beauty of our planet and that incorporating a musical score can take us all to new places and emotions to enhance our experience.

  10. Using computational modeling of river flow with remotely sensed data to infer channel bathymetry

    USGS Publications Warehouse

    Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Shimizu, Y.

    2012-01-01

    As part of an ongoing investigation into the use of computational river flow and morphodynamic models for the purpose of correcting and extending remotely sensed river datasets, a simple method for inferring channel bathymetry is developed and discussed. The method is based on an inversion of the equations expressing conservation of mass and momentum to develop equations that can be solved for depth given known values of vertically-averaged velocity and water-surface elevation. The ultimate goal of this work is to combine imperfect remotely sensed data on river planform, water-surface elevation and water-surface velocity in order to estimate depth and other physical parameters of river channels. In this paper, the technique is examined using synthetic data sets that are developed directly from the application of forward two-and three-dimensional flow models. These data sets are constrained to satisfy conservation of mass and momentum, unlike typical remotely sensed field data sets. This provides a better understanding of the process and also allows assessment of how simple inaccuracies in remotely sensed estimates might propagate into depth estimates. The technique is applied to three simple cases: First, depth is extracted from a synthetic dataset of vertically averaged velocity and water-surface elevation; second, depth is extracted from the same data set but with a normally-distributed random error added to the water-surface elevation; third, depth is extracted from a synthetic data set for the same river reach using computed water-surface velocities (in place of depth-integrated values) and water-surface elevations. In each case, the extracted depths are compared to the actual measured depths used to construct the synthetic data sets (with two- and three-dimensional flow models). Errors in water-surface elevation and velocity that are very small degrade depth estimates and cannot be recovered. Errors in depth estimates associated with assuming water-surface velocities equal to depth-integrated velocities are substantial, but can be reduced with simple corrections.

  11. Bundle block adjustment of large-scale remote sensing data with Block-based Sparse Matrix Compression combined with Preconditioned Conjugate Gradient

    NASA Astrophysics Data System (ADS)

    Zheng, Maoteng; Zhang, Yongjun; Zhou, Shunping; Zhu, Junfeng; Xiong, Xiaodong

    2016-07-01

    In recent years, new platforms and sensors in photogrammetry, remote sensing and computer vision areas have become available, such as Unmanned Aircraft Vehicles (UAV), oblique camera systems, common digital cameras and even mobile phone cameras. Images collected by all these kinds of sensors could be used as remote sensing data sources. These sensors can obtain large-scale remote sensing data which consist of a great number of images. Bundle block adjustment of large-scale data with conventional algorithm is very time and space (memory) consuming due to the super large normal matrix arising from large-scale data. In this paper, an efficient Block-based Sparse Matrix Compression (BSMC) method combined with the Preconditioned Conjugate Gradient (PCG) algorithm is chosen to develop a stable and efficient bundle block adjustment system in order to deal with the large-scale remote sensing data. The main contribution of this work is the BSMC-based PCG algorithm which is more efficient in time and memory than the traditional algorithm without compromising the accuracy. Totally 8 datasets of real data are used to test our proposed method. Preliminary results have shown that the BSMC method can efficiently decrease the time and memory requirement of large-scale data.

  12. a Framework for Capacity Building in Mapping Coastal Resources Using Remote Sensing in the Philippines

    NASA Astrophysics Data System (ADS)

    Tamondong, A.; Cruz, C.; Ticman, T.; Peralta, R.; Go, G. A.; Vergara, M.; Estabillo, M. S.; Cadalzo, I. E.; Jalbuena, R.; Blanco, A.

    2016-06-01

    Remote sensing has been an effective technology in mapping natural resources by reducing the costs and field data gathering time and bringing in timely information. With the launch of several earth observation satellites, an increase in the availability of satellite imageries provides an immense selection of data for the users. The Philippines has recently embarked in a program which will enable the gathering of LiDAR data in the whole country. The capacity of the Philippines to take advantage of these advancements and opportunities is lacking. There is a need to transfer the knowledge of remote sensing technology to other institutions to better utilize the available data. Being an archipelagic country with approximately 36,000 kilometers of coastline, and most of its people depending on its coastal resources, remote sensing is an optimal choice in mapping such resources. A project involving fifteen (15) state universities and colleges and higher education institutions all over the country headed by the University of the Philippines Training Center for Applied Geodesy and Photogrammetry and funded by the Department of Science and Technology was formed to carry out the task of capacity building in mapping the country's coastal resources using LiDAR and other remotely sensed datasets. This paper discusses the accomplishments and the future activities of the project.

  13. Multitask SVM learning for remote sensing data classification

    NASA Astrophysics Data System (ADS)

    Leiva-Murillo, Jose M.; Gómez-Chova, Luis; Camps-Valls, Gustavo

    2010-10-01

    Many remote sensing data processing problems are inherently constituted by several tasks that can be solved either individually or jointly. For instance, each image in a multitemporal classification setting could be taken as an individual task but relation to previous acquisitions should be properly considered. In such problems, different modalities of the data (temporal, spatial, angular) gives rise to changes between the training and test distributions, which constitutes a difficult learning problem known as covariate shift. Multitask learning methods aim at jointly solving a set of prediction problems in an efficient way by sharing information across tasks. This paper presents a novel kernel method for multitask learning in remote sensing data classification. The proposed method alleviates the dataset shift problem by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine (SVM) as core learner and two regularization schemes are introduced: 1) the Euclidean distance of the predictors in the Hilbert space; and 2) the inclusion of relational operators between tasks. Experiments are conducted in the challenging remote sensing problems of cloud screening from multispectral MERIS images and for landmine detection.

  14. Validation of Ocean Color Remote Sensing Reflectance Using Autonomous Floats

    NASA Technical Reports Server (NTRS)

    Gerbi, Gregory P.; Boss, Emanuel; Werdell, P. Jeremy; Proctor, Christopher W.; Haentjens, Nils; Lewis, Marlon R.; Brown, Keith; Sorrentino, Diego; Zaneveld, J. Ronald V.; Barnard, Andrew H.; hide

    2016-01-01

    The use of autonomous proling oats for observational estimates of radiometric quantities in the ocean is explored, and the use of this platform for validation of satellite-based estimates of remote sensing reectance in the ocean is examined. This effort includes comparing quantities estimated from oat and satellite data at nominal wavelengths of 412, 443, 488, and 555 nm, and examining sources and magnitudes of uncertainty in the oat estimates. This study had 65 occurrences of coincident high-quality observations from oats and MODIS Aqua and 15 occurrences of coincident high-quality observations oats and Visible Infrared Imaging Radi-ometer Suite (VIIRS). The oat estimates of remote sensing reectance are similar to the satellite estimates, with disagreement of a few percent in most wavelengths. The variability of the oatsatellite comparisons is similar to the variability of in situsatellite comparisons using a validation dataset from the Marine Optical Buoy (MOBY). This, combined with the agreement of oat-based and satellite-based quantities, suggests that oats are likely a good platform for validation of satellite-based estimates of remote sensing reectance.

  15. Observations of Stratiform Lightning Flashes and Their Microphysical and Kinematic Environments

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Williams, Earle

    2016-01-01

    During the Midlatitude Continental Convective Clouds Experiment (MC3E), combined observations of clouds and precipitation were made from airborne and ground-based in situ and remote sensing platforms. These observations were coordinated for multiple mesoscale convective systems (MCSs) that passed over the MC3E domain in northern Oklahoma. Notably, during a storm on 20 May 2011 in situ and remote sensing airborne observations were made near the times and locations of stratiform positive cloud-to-ground (+CG) lightning flashes. These +CGs resulted from extremely large stratiform lightning flashes that were hundreds of km in length and lasted several seconds. This dataset provides an unprecedented look at kinematic and microphysical environments in the vicinity of large, powerful, and long-lived stratiform lightning flashes. We will use this dataset to understand the influence of low liquid water contents (LWCs) in the electrical charging of MCS stratiform regions.

  16. Observations of Stratiform Lightning Flashes and Their Microphysical and Kinematic Environments

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Williams, Earle

    2017-01-01

    During the Midlatitude Continental Convective Clouds Experiment (MC3E), combined observations of clouds and precipitation were made from airborne and ground-based in situ and remote sensing platforms. These observations were coordinated for multiple mesoscale convective systems (MCSs) that passed over the MC3E domain in northern Oklahoma. Notably, during a storm on 20 May 2011 in situ and remote sensing airborne observations were made near the times and locations of stratiform positive cloud-to-ground (+CG) lightning flashes. These +CGs resulted from extremely large stratiform lightning flashes that were hundreds of km in length and lasted several seconds. This dataset provides an unprecedented look at kinematic and microphysical environments in the vicinity of large, powerful, and long-lived stratiform lightning flashes. We will use this dataset to understand the influence of low liquid water contents (LWCs) in the electrical charging of MCS stratiform regions.

  17. Using CHIRPS Rainfall Dataset to detect rainfall trends in West Africa

    NASA Astrophysics Data System (ADS)

    Blakeley, S. L.; Husak, G. J.

    2016-12-01

    In West Africa, agriculture is often rain-fed, subjecting agricultural productivity and food availability to climate variability. Agricultural conditions will change as warming temperatures increase evaporative demand, and with a growing population dependent on the food supply, farmers will become more reliant on improved adaptation strategies. Development of such adaptation strategies will need to consider West African rainfall trends to remain relevant in a changing climate. Here, using the CHIRPS rainfall product (provided by the Climate Hazards Group at UC Santa Barbara), I examine trends in West African rainfall variability. My analysis will focus on seasonal rainfall totals, the structure of the rainy season, and the distribution of rainfall. I then use farmer-identified drought years to take an in-depth analysis of intra-seasonal rainfall irregularities. I will also examine other datasets such as potential evapotranspiration (PET) data, other remotely sensed rainfall data, rain gauge data in specific locations, and remotely sensed vegetation data. Farmer bad year data will also be used to isolate "bad" year markers in these additional datasets to provide benchmarks for identification in the future of problematic rainy seasons.

  18. Applying n-bit floating point numbers and integers, and the n-bit filter of HDF5 to reduce file sizes of remote sensing products in memory-sensitive environments

    NASA Astrophysics Data System (ADS)

    Zinke, Stephan

    2017-02-01

    Memory sensitive applications for remote sensing data require memory-optimized data types in remote sensing products. Hierarchical Data Format version 5 (HDF5) offers user defined floating point numbers and integers and the n-bit filter to create data types optimized for memory consumption. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) applies a compaction scheme to the disseminated products of the Day and Night Band (DNB) data of Suomi National Polar-orbiting Partnership (S-NPP) satellite's instrument Visible Infrared Imager Radiometer Suite (VIIRS) through the EUMETSAT Advanced Retransmission Service, converting the original 32 bits floating point numbers to user defined floating point numbers in combination with the n-bit filter for the radiance dataset of the product. The radiance dataset requires a floating point representation due to the high dynamic range of the DNB. A compression factor of 1.96 is reached by using an automatically determined exponent size and an 8 bits trailing significand and thus reducing the bandwidth requirements for dissemination. It is shown how the parameters needed for user defined floating point numbers are derived or determined automatically based on the data present in a product.

  19. Mapping of government land encroachment in Cameron Highlands using multiple remote sensing datasets

    NASA Astrophysics Data System (ADS)

    Zin, M. H. M.; Ahmad, B.

    2014-02-01

    The cold and refreshing highland weather is one of the factors that give impact to socio-economic growth in Cameron Highlands. This unique weather of the highland surrounded by tropical rain forest can only be found in a few places in Malaysia. It makes this place a famous tourism attraction and also provides a very suitable temperature for agriculture activities. Thus it makes agriculture such as tea plantation, vegetable, fruits and flowers one of the biggest economic activities in Cameron Highlands. However unauthorized agriculture activities are rampant. The government land, mostly forest area have been encroached by farmers, in many cases indiscriminately cutting down trees and hill slopes. This study is meant to detect and assess this encroachment using multiple remote sensing datasets. The datasets were used together with cadastral parcel data where survey lines describe property boundary, pieces of land are subdivided into lots of government and private. The general maximum likelihood classification method was used on remote sensing image to classify the land-cover in the study area. Ground truth data from field observation were used to assess the accuracy of the classification. Cadastral parcel data was overlaid on the classification map in order to detect the encroachment area. The result of this study shows that there is a land cover change of 93.535 ha in the government land of the study area between years 2001 to 2010, nevertheless almost no encroachment took place in the studied forest reserve area. The result of this study will be useful for the authority in monitoring and managing the forest.

  20. Clouds over the summertime Sahara: an evaluation of Met Office retrievals from Meteosat Second Generation using airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Kealy, John C.; Marenco, Franco; Marsham, John H.; Garcia-Carreras, Luis; Francis, Pete N.; Cooke, Michael C.; Hocking, James

    2017-05-01

    Novel methods of cloud detection are applied to airborne remote sensing observations from the unique Fennec aircraft dataset, to evaluate the Met Office-derived products on cloud properties over the Sahara based on the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on-board the Meteosat Second Generation (MSG) satellite. Two cloud mask configurations are considered, as well as the retrievals of cloud-top height (CTH), and these products are compared to airborne cloud remote sensing products acquired during the Fennec campaign in June 2011 and June 2012. Most detected clouds (67 % of the total) have a horizontal extent that is smaller than a SEVIRI pixel (3 km × 3 km). We show that, when partially cloud-contaminated pixels are included, a match between the SEVIRI and aircraft datasets is found in 80 ± 8 % of the pixels. Moreover, under clear skies the datasets are shown to agree for more than 90 % of the pixels. The mean cloud field, derived from the satellite cloud mask acquired during the Fennec flights, shows that areas of high surface albedo and orography are preferred sites for Saharan cloud cover, consistent with published theories. Cloud-top height retrievals however show large discrepancies over the region, which are ascribed to limiting factors such as the cloud horizontal extent, the derived effective cloud amount, and the absorption by mineral dust. The results of the CTH analysis presented here may also have further-reaching implications for the techniques employed by other satellite applications facilities across the world.

  1. The Atlanta Urban Heat Island Mitigation and Air Quality Modeling Project: How High-Resoution Remote Sensing Data Can Improve Air Quality Models

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.

    2006-01-01

    The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.

  2. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability

    NASA Astrophysics Data System (ADS)

    Herman, Matthew R.; Nejadhashemi, A. Pouyan; Abouali, Mohammad; Hernandez-Suarez, Juan Sebastian; Daneshvar, Fariborz; Zhang, Zhen; Anderson, Martha C.; Sadeghi, Ali M.; Hain, Christopher R.; Sharifi, Amirreza

    2018-01-01

    As the global demands for the use of freshwater resources continues to rise, it has become increasingly important to insure the sustainability of this resources. This is accomplished through the use of management strategies that often utilize monitoring and the use of hydrological models. However, monitoring at large scales is not feasible and therefore model applications are becoming challenging, especially when spatially distributed datasets, such as evapotranspiration, are needed to understand the model performances. Due to these limitations, most of the hydrological models are only calibrated for data obtained from site/point observations, such as streamflow. Therefore, the main focus of this paper is to examine whether the incorporation of remotely sensed and spatially distributed datasets can improve the overall performance of the model. In this study, actual evapotranspiration (ETa) data was obtained from the two different sets of satellite based remote sensing data. One dataset estimates ETa based on the Simplified Surface Energy Balance (SSEBop) model while the other one estimates ETa based on the Atmosphere-Land Exchange Inverse (ALEXI) model. The hydrological model used in this study is the Soil and Water Assessment Tool (SWAT), which was calibrated against spatially distributed ETa and single point streamflow records for the Honeyoey Creek-Pine Creek Watershed, located in Michigan, USA. Two different techniques, multi-variable and genetic algorithm, were used to calibrate the SWAT model. Using the aforementioned datasets, the performance of the hydrological model in estimating ETa was improved using both calibration techniques by achieving Nash-Sutcliffe efficiency (NSE) values >0.5 (0.73-0.85), percent bias (PBIAS) values within ±25% (±21.73%), and root mean squared error - observations standard deviation ratio (RSR) values <0.7 (0.39-0.52). However, the genetic algorithm technique was more effective with the ETa calibration while significantly reducing the model performance for estimating the streamflow (NSE: 0.32-0.52, PBIAS: ±32.73%, and RSR: 0.63-0.82). Meanwhile, using the multi-variable technique, the model performance for estimating the streamflow was maintained with a high level of accuracy (NSE: 0.59-0.61, PBIAS: ±13.70%, and RSR: 0.63-0.64) while the evapotranspiration estimations were improved. Results from this assessment shows that incorporation of remotely sensed and spatially distributed data can improve the hydrological model performance if it is coupled with a right calibration technique.

  3. 3D Reconstruction of geological structures based on remote sensing data: example from Anaran anticline, Lurestan province, Zagros folds and thrust belt, Iran.

    NASA Astrophysics Data System (ADS)

    Snidero, M.; Amilibia, A.; Gratacos, O.; Muñoz, J. A.

    2009-04-01

    This work presents a methodological workflow for the 3D reconstruction of geological surfaces at regional scale, based on remote sensing data and geological maps. This workflow has been tested on the reconstruction of the Anaran anticline, located in the Zagros Fold and Thrust belt mountain front. The used remote sensing data-set is a combination of Aster and Spot images as well as a high resolution digital elevation model. A consistent spatial positioning of the complete data-set in a 3D environment is necessary to obtain satisfactory results during the reconstruction. The Aster images have been processed by the Optimum Index Factor (OIF) technique, in order to facilitate the geological mapping. By pansharpening of the resulting Aster image with the SPOT panchromatic one we obtain the final high-resolution image used during the 3D mapping. Structural data (dip data) has been acquired through the analysis of the 3D mapped geological traces. Structural analysis of the resulting data-set allows us to divide the structure in different cylindrical domains. Related plunge lines orientation has been used to project data along the structure, covering areas with little or no information. Once a satisfactory dataset has been acquired, we reconstruct a selected horizon following the dip-domain concept. By manual editing, the obtained surfaces have been adjusted to the mapped geological limits as well as to the modeled faults. With the implementation of the Discrete Smooth Interpolation (DSI) algorithm, the final surfaces have been reconstructed along the anticline. Up to date the results demonstrate that the proposed methodology is a powerful tool for 3D reconstruction of geological surfaces when working with remote sensing data, in very inaccessible areas (eg. Iran, China, Africa). It is especially useful in semiarid regions where the structure strongly controls the topography. The reconstructed surfaces clearly show the geometry in the different sectors of the structure: presence of a back thrust affecting the back limb in the southern part of the anticline, the geometry of the grabens located along the anticline crest, the crosscutting relationship in the north-south faulted zone with the main thrust, the northern dome periclinal closure.

  4. Goddard Atmospheric Composition Data Center: Aura Data and Services in One Place

    NASA Technical Reports Server (NTRS)

    Leptoukh, G.; Kempler, S.; Gerasimov, I.; Ahmad, S.; Johnson, J.

    2005-01-01

    The Goddard Atmospheric Composition Data and Information Services Center (AC-DISC) is a portal to the Atmospheric Composition specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques for the better science data usage. It provides convenient access to Atmospheric Composition data and information from various remote-sensing missions, from TOMS, UARS, MODIS, and AIRS, to the most recent data from Aura OMI, MLS, HIRDLS (once these datasets are released to the public), as well as Atmospheric Composition datasets residing at other remote archive site.

  5. Bringing an ecological view of change to Landsat-based remote sensing

    USGS Publications Warehouse

    Kennedy, Robert E.; Andrefouet, Serge; Cohen, Warren; Gomez, Cristina; Griffiths, Patrick; Hais, Martin; Healey, Sean; Helmer, Eileen H.; Hostert, Patrick; Lyons, Mitchell; Meigs, Garrett; Pflugmacher, Dirk; Phinn, Stuart; Powell, Scott; Scarth, Peter; Susmita, Sen; Schroeder, Todd A.; Schneider, Annemarie; Sonnenschein, Ruth; Vogelmann, James; Wulder, Michael A.; Zhu, Zhe

    2014-01-01

    When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more subtle processes of interest to ecologists. Recent technical advances have led to a fundamental shift toward an ecological view of change. Although this conceptual shift began with coarser-scale global imagery, it has now reached users of Landsat imagery, since these datasets have temporal and spatial characteristics appropriate to many ecological questions. We argue that this ecologically relevant perspective of change allows the novel characterization of important dynamic processes, including disturbances, long-term trends, cyclical functions, and feedbacks, and that these improvements are already facilitating our understanding of critical driving forces, such as climate change, ecological interactions, and economic pressures.

  6. Datasets related to in-land water for limnology and remote sensing applications: distance-to-land, distance-to-water, water-body identifier and lake-centre co-ordinates.

    PubMed

    Carrea, Laura; Embury, Owen; Merchant, Christopher J

    2015-11-01

    Datasets containing information to locate and identify water bodies have been generated from data locating static-water-bodies with resolution of about 300 m (1/360 ∘ ) recently released by the Land Cover Climate Change Initiative (LC CCI) of the European Space Agency. The LC CCI water-bodies dataset has been obtained from multi-temporal metrics based on time series of the backscattered intensity recorded by ASAR on Envisat between 2005 and 2010. The new derived datasets provide coherently: distance to land, distance to water, water-body identifiers and lake-centre locations. The water-body identifier dataset locates the water bodies assigning the identifiers of the Global Lakes and Wetlands Database (GLWD), and lake centres are defined for in-land waters for which GLWD IDs were determined. The new datasets therefore link recent lake/reservoir/wetlands extent to the GLWD, together with a set of coordinates which locates unambiguously the water bodies in the database. Information on distance-to-land for each water cell and the distance-to-water for each land cell has many potential applications in remote sensing, where the applicability of geophysical retrieval algorithms may be affected by the presence of water or land within a satellite field of view (image pixel). During the generation and validation of the datasets some limitations of the GLWD database and of the LC CCI water-bodies mask have been found. Some examples of the inaccuracies/limitations are presented and discussed. Temporal change in water-body extent is common. Future versions of the LC CCI dataset are planned to represent temporal variation, and this will permit these derived datasets to be updated.

  7. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei

    2018-04-01

    Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure and increase the robustness of the proposed algorithm. The proposed algorithm is validated with a publicly available 10-class object detection dataset.

  8. A data fusion framework for floodplain analysis using GIS and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Necsoiu, Dorel Marius

    Throughout history floods have been part of the human experience. They are recurring phenomena that form a necessary and enduring feature of all river basin and lowland coastal systems. In an average year, they benefit millions of people who depend on them. In the more developed countries, major floods can be the largest cause of economic losses from natural disasters, and are also a major cause of disaster-related deaths in the less developed countries. Flood disaster mitigation research was conducted to determine how remotely sensed data can effectively be used to produce accurate flood plain maps (FPMs), and to identify/quantify the sources of error associated with such data. Differences were analyzed between flood maps produced by an automated remote sensing analysis tailored to the available satellite remote sensing datasets (rFPM), the 100-year flooded areas "predicted" by the Flood Insurance Rate Maps, and FPMs based on DEM and hydrological data (aFPM). Landuse/landcover was also examined to determine its influence on rFPM errors. These errors were identified and the results were integrated in a GIS to minimize landuse/landcover effects. Two substantial flood events were analyzed. These events were selected because of their similar characteristics (i.e., the existence of FIRM or Q3 data; flood data which included flood peaks, rating curves, and flood profiles; and DEM and remote sensing imagery). Automatic feature extraction was determined to be an important component for successful flood analysis. A process network, in conjunction with domain specific information, was used to map raw remotely sensed data onto a representation that is more compatible with a GIS data model. From a practical point of view, rFPM provides a way to automatically match existing data models to the type of remote sensing data available for each event under investigation. Overall, results showed how remote sensing could contribute to the complex problem of flood management by providing an efficient way to revise the National Flood Insurance Program maps.

  9. Difficulties with estimating city-wide urban forest cover change from national, remotely-sensed tree canopy maps

    Treesearch

    Jeffrey T. Walton

    2008-01-01

    Two datasets of percent urban tree canopy cover were compared. The first dataset was based on a 1991 AVHRR forest density map. The second was the US Geological Survey's National Land Cover Database (NLCD) 2001 sub-pixel tree canopy. A comparison of these two tree canopy layers was conducted in 36 census designated places of western New York State. Reference data...

  10. Modification of the random forest algorithm to avoid statistical dependence problems when classifying remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Cánovas-García, Fulgencio; Alonso-Sarría, Francisco; Gomariz-Castillo, Francisco; Oñate-Valdivieso, Fernando

    2017-06-01

    Random forest is a classification technique widely used in remote sensing. One of its advantages is that it produces an estimation of classification accuracy based on the so called out-of-bag cross-validation method. It is usually assumed that such estimation is not biased and may be used instead of validation based on an external data-set or a cross-validation external to the algorithm. In this paper we show that this is not necessarily the case when classifying remote sensing imagery using training areas with several pixels or objects. According to our results, out-of-bag cross-validation clearly overestimates accuracy, both overall and per class. The reason is that, in a training patch, pixels or objects are not independent (from a statistical point of view) of each other; however, they are split by bootstrapping into in-bag and out-of-bag as if they were really independent. We believe that putting whole patch, rather than pixels/objects, in one or the other set would produce a less biased out-of-bag cross-validation. To deal with the problem, we propose a modification of the random forest algorithm to split training patches instead of the pixels (or objects) that compose them. This modified algorithm does not overestimate accuracy and has no lower predictive capability than the original. When its results are validated with an external data-set, the accuracy is not different from that obtained with the original algorithm. We analysed three remote sensing images with different classification approaches (pixel and object based); in the three cases reported, the modification we propose produces a less biased accuracy estimation.

  11. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-Based Earth Science Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lloyd, S. A.; Acker, J. G.; Prados, A. I.; Leptoukh, G. G.

    2008-12-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite- based remote sensing datasets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable dataset to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface. Giovanni provides a simple way to visualize, analyze and access vast amounts of satellite-based Earth science data. Giovanni's features and practical examples of its use will be demonstrated, with an emphasis on how satellite remote sensing can help students understand recent events in the atmosphere and biosphere. Giovanni is actually a series of sixteen similar web-based data interfaces, each of which covers a single satellite dataset (such as TRMM, TOMS, OMI, AIRS, MLS, HALOE, etc.) or a group of related datasets (such as MODIS and MISR for aerosols, SeaWIFS and MODIS for ocean color, and the suite of A-Train observations co-located along the CloudSat orbital path). Recently, ground-based datasets have been included in Giovanni, including the Northern Eurasian Earth Science Partnership Initiative (NEESPI), and EPA fine particulate matter (PM2.5) for air quality. Model data such as the Goddard GOCART model and MERRA meteorological reanalyses (in process) are being increasingly incorporated into Giovanni to facilitate model- data intercomparison. A full suite of data analysis and visualization tools is also available within Giovanni. The GES DISC is currently developing a systematic series of training modules for Earth science satellite data, associated with our development of additional datasets and data visualization tools for Giovanni. Training sessions will include an overview of the Earth science datasets archived at Goddard, an overview of terms and techniques associated with satellite remote sensing, dataset-specific issues, an overview of Giovanni functionality, and a series of examples of how data can be readily accessed and visualized.

  12. Remote sensing of vegetation structure using computer vision

    NASA Astrophysics Data System (ADS)

    Dandois, Jonathan P.

    High-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology---allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal conditions under which forest structure measurements should be obtained with UAS-SFM remote sensing. Ultimately remote sensing of vegetation by computer vision offers the potential to provide an 'ecologist's eye view', capturing not only canopy 3D and spectral properties, but also seeing the trees in the forest and the leaves on the trees.

  13. The micron- to kilometer-scale Moon: linking samples to orbital observations, Apollo to LRO

    NASA Astrophysics Data System (ADS)

    Crites, S.; Lucey, P. G.; Taylor, J.; Martel, L.; Sun, L.; Honniball, C.; Lemelin, M.

    2017-12-01

    The Apollo missions have shaped the field of lunar science and our understanding of the Moon, from global-scale revelations like the magma ocean hypothesis, to providing ground truth for compositional remote sensing and absolute ages to anchor cratering chronologies. While lunar meteorite samples can provide a global- to regional-level view of the Moon, samples returned from known locations are needed to directly link orbital-scale observations with laboratory measurements-a link that can be brought to full fruition with today's extremely high spatial resolution observations from Lunar Reconnaissance Orbiter and other recent missions. Korotev et al. (2005) described a scenario of the Moon without Apollo to speculate about our understanding of the Moon if our data were confined to lunar meteorites and remote sensing. I will review some of the major points discussed by Korotev et al. (2005), and focus on some of the ways in which spectroscopic remote sensing in particular has benefited from the Apollo samples. For example, could the causes and effects of lunar-style space weathering have been unraveled without the Apollo samples? What would be the limitations on remote sensing compositional measurements that rely on Apollo samples for calibration and validation? And what new opportunities to bring together orbital and sample analyses now exist, in light of today's high spatial and spectral resolution remote sensing datasets?

  14. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water.

    PubMed

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Remote Sensing Applications to Water Quality Management in Florida

    NASA Astrophysics Data System (ADS)

    Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.

    2013-12-01

    Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria

  16. Multispectral, hyperspectral, and LiDAR remote sensing and geographic information fusion for improved earthquake response

    NASA Astrophysics Data System (ADS)

    Kruse, F. A.; Kim, A. M.; Runyon, S. C.; Carlisle, Sarah C.; Clasen, C. C.; Esterline, C. H.; Jalobeanu, A.; Metcalf, J. P.; Basgall, P. L.; Trask, D. M.; Olsen, R. C.

    2014-06-01

    The Naval Postgraduate School (NPS) Remote Sensing Center (RSC) and research partners have completed a remote sensing pilot project in support of California post-earthquake-event emergency response. The project goals were to dovetail emergency management requirements with remote sensing capabilities to develop prototype map products for improved earthquake response. NPS coordinated with emergency management services and first responders to compile information about essential elements of information (EEI) requirements. A wide variety of remote sensing datasets including multispectral imagery (MSI), hyperspectral imagery (HSI), and LiDAR were assembled by NPS for the purpose of building imagery baseline data; and to demonstrate the use of remote sensing to derive ground surface information for use in planning, conducting, and monitoring post-earthquake emergency response. Worldview-2 data were converted to reflectance, orthorectified, and mosaicked for most of Monterey County; CA. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired at two spatial resolutions were atmospherically corrected and analyzed in conjunction with the MSI data. LiDAR data at point densities from 1.4 pts/m2 to over 40 points/ m2 were analyzed to determine digital surface models. The multimodal data were then used to develop change detection approaches and products and other supporting information. Analysis results from these data along with other geographic information were used to identify and generate multi-tiered products tied to the level of post-event communications infrastructure (internet access + cell, cell only, no internet/cell). Technology transfer of these capabilities to local and state emergency response organizations gives emergency responders new tools in support of post-disaster operational scenarios.

  17. Integrating satellite remote sensing data and field data to predict rangeland structural indicators at the continental scale

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Okin, G.

    2016-12-01

    Rangelands provide a variety of important ecosystem goods and services across drylands globally. They are also the most important emitters of dust across the globe. Field data collection based on points does not represent spatially continuous information about surface variables and, given the vast size of the world's rangelands, cannot cover even a small fraction of their area. Remote sensing is potentially a labor- and time-saving method to observe important rangeland vegetation variables at both temporal and spatial scales. Information on vegetation cover, bare gap size, and plant height provide key rangeland vegetation variables in arid and semiarid rangelands, in part because they strongly impact dust emission and determine wildlife habitat characteristics. This study reports on relationships between remote sensing in the reflected solar spectrum and field measures related to these three variables, and shows how these relationships can be extended to produce spatially and temporally continuous datasets coupled with quantitative estimates of error. Field data for this study included over 3,800 Assessment, Inventory, and Monitoring (AIM) measurements on Bureau of Land Management (BLM) lands throughout the western US. Remote sensing data were derived from MODIS nadir BRDF-adjusted reflectance (NBAR) and Landsat 8 OLI surface reflectance. Normalized bare gap size, total foliar cover, herbaceous cover and herbaceous height exhibit the greatest predictability from remote sensing variables with physically-reasonable relationships between remote sensing variables and field measures. Data fields produced using these relationships across the western US exhibit good agreement with independent high-resolution imagery.

  18. Multicriteria analysis for sources of renewable energy using data from remote sensing

    NASA Astrophysics Data System (ADS)

    Matejicek, L.

    2015-04-01

    Renewable energy sources are major components of the strategy to reduce harmful emissions and to replace depleting fossil energy resources. Data from remote sensing can provide information for multicriteria analysis for sources of renewable energy. Advanced land cover quantification makes it possible to search for suitable sites. Multicriteria analysis, together with other data, is used to determine the energy potential and socially acceptability of suggested locations. The described case study is focused on an area of surface coal mines in the northwestern region of the Czech Republic, where the impacts of surface mining and reclamation constitute a dominant force in land cover changes. High resolution satellite images represent the main input datasets for identification of suitable sites. Solar mapping, wind predictions, the location of weirs in watersheds, road maps and demographic information complement the data from remote sensing for multicriteria analysis, which is implemented in a geographic information system (GIS). The input spatial datasets for multicriteria analysis in GIS are reclassified to a common scale and processed with raster algebra tools to identify suitable sites for sources of renewable energy. The selection of suitable sites is limited by the CORINE land cover database to mining and agricultural areas. The case study is focused on long term land cover changes in the 1985-2015 period. Multicriteria analysis based on CORINE data shows moderate changes in mapping of suitable sites for utilization of selected sources of renewable energy in 1990, 2000, 2006 and 2012. The results represent map layers showing the energy potential on a scale of a few preference classes (1-7), where the first class is linked to minimum preference and the last class to maximum preference. The attached histograms show the moderate variability of preference classes due to land cover changes caused by mining activities. The results also show a slight increase in the more preferred classes for utilization of sources of renewable energy due to an increase area of reclaimed sites. Using data from remote sensing, such as the multispectral images and the CORINE land cover datasets, can reduce the financial resources currently required for finding and assessing suitable areas.

  19. Large Scale Flood Risk Analysis using a New Hyper-resolution Population Dataset

    NASA Astrophysics Data System (ADS)

    Smith, A.; Neal, J. C.; Bates, P. D.; Quinn, N.; Wing, O.

    2017-12-01

    Here we present the first national scale flood risk analyses, using high resolution Facebook Connectivity Lab population data and data from a hyper resolution flood hazard model. In recent years the field of large scale hydraulic modelling has been transformed by new remotely sensed datasets, improved process representation, highly efficient flow algorithms and increases in computational power. These developments have allowed flood risk analysis to be undertaken in previously unmodeled territories and from continental to global scales. Flood risk analyses are typically conducted via the integration of modelled water depths with an exposure dataset. Over large scales and in data poor areas, these exposure data typically take the form of a gridded population dataset, estimating population density using remotely sensed data and/or locally available census data. The local nature of flooding dictates that for robust flood risk analysis to be undertaken both hazard and exposure data should sufficiently resolve local scale features. Global flood frameworks are enabling flood hazard data to produced at 90m resolution, resulting in a mis-match with available population datasets which are typically more coarsely resolved. Moreover, these exposure data are typically focused on urban areas and struggle to represent rural populations. In this study we integrate a new population dataset with a global flood hazard model. The population dataset was produced by the Connectivity Lab at Facebook, providing gridded population data at 5m resolution, representing a resolution increase over previous countrywide data sets of multiple orders of magnitude. Flood risk analysis undertaken over a number of developing countries are presented, along with a comparison of flood risk analyses undertaken using pre-existing population datasets.

  20. Evaluation of Remote Sensing and Hydrological Model Based Soil Moisture Datasets in Drought Perspective

    NASA Astrophysics Data System (ADS)

    Hüsami Afşar, M.; Bulut, B.; Yilmaz, M. T.

    2017-12-01

    Soil moisture is one of the fundamental parameters of the environment that plays a major role in carbon, energy, and water cycles. Spatial distribution and temporal changes of soil moisture is one of the important components in climatic, ecological and natural hazards at global, regional and local levels scales. Therefore retrieval of soil moisture datasets has a great importance in these studies. Given soil moisture can be retrieved through different platforms (i.e., in-situ measurements, numerical modeling, and remote sensing) for the same location and time period, it is often desirable to evaluate these different datasets to assign the most accurate estimates for different purposes. During last decades, efforts have been given to provide evaluations about different soil moisture products based on various statistical analysis of the soil moisture time series (i.e., comparison of correlation, bias, and their error standard deviation). On the other hand, there is still need for the comparisons of the soil moisture products in drought analysis context. In this study, LPRM and NOAH Land Surface Model soil moisture datasets are investigated in drought analysis context using station-based watershed average datasets obtained over four USDA ARS watersheds as ground truth. Here, the drought analysis are performed using the standardized soil moisture datasets (i.e., zero mean and one standard deviation) while the droughts are defined as consecutive negative anomalies less than -1 for longer than 3 months duration. Accordingly, the drought characteristics (duration and severity) and false alarm and hit/miss ratios of LPRM and NOAH datasets are validated using station-based datasets as ground truth. Results showed that although the NOAH soil moisture products have better correlations, LPRM based soil moisture retrievals show better consistency in drought analysis. This project is supported by TUBITAK Project number 114Y676.

  1. Passive optical remote sensing of Congo River bathymetry using Landsat

    NASA Astrophysics Data System (ADS)

    Ache Rocha Lopes, V.; Trigg, M. A.; O'Loughlin, F.; Laraque, A.

    2014-12-01

    While there have been notable advances in deriving river characteristics such as width, using satellite remote sensing datasets, deriving river bathymetry remains a significant challenge. Bathymetry is fundamental to hydrodynamic modelling of river systems and being able to estimate this parameter remotely would be of great benefit, especially when attempting to model hard to access areas where the collection of field data is difficult. One such region is the Congo Basin, where due to past political instability and large scale there are few studies that characterise river bathymetry. In this study we test whether it is possible to use passive optical remote sensing to estimate the depth of the Congo River using Landsat 8 imagery in the region around Malebo Pool, located just upstream of the Kinshasa gauging station. Methods of estimating bathymetry using remotely sensed datasets have been used extensively for coastal regions and now more recently have been demonstrated as feasible for optically shallow rivers. Previous river bathymetry studies have focused on shallow rivers and have generally used aerial imagery with a finer spatial resolution than Landsat. While the Congo River has relatively low suspended sediment concentration values the application of passive bathymetry estimation to a river of this scale has not been attempted before. Three different analysis methods are tested in this study: 1) a single band algorithm; 2) a log ratio method; and 3) a linear transform method. All three methods require depth data for calibration and in this study area bathymetry measurements are available for three cross-sections resulting in approximately 300 in-situ measurements of depth, which are used in the calibration and validation. The performance of each method is assessed, allowing the feasibility of passive depth measurement in the Congo River to be determined. Considering the scarcity of in-situ bathymetry measurements on the Congo River, even an approximate estimate of depths from these methods will be of considerable value in its hydraulic characterisation.

  2. Mapping Palm Swamp Wetland Ecosystems in the Peruvian Amazon: a Multi-Sensor Remote Sensing Approach

    NASA Astrophysics Data System (ADS)

    Podest, E.; McDonald, K. C.; Schroeder, R.; Pinto, N.; Zimmerman, R.; Horna, V.

    2012-12-01

    Wetland ecosystems are prevalent in the Amazon basin, especially in northern Peru. Of specific interest are palm swamp wetlands because they are characterized by constant surface inundation and moderate seasonal water level variation. This combination of constantly saturated soils and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, it is critical to develop methods to quantify their spatial extent and inundation state in order to assess their carbon dynamics. Spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We developed a remote sensing methodology using multi-sensor remote sensing data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR), Shuttle Radar Topography Mission (SRTM) DEM, and Landsat to derive maps at 100 meter resolution of palm swamp extent and inundation based on ground data collections; and combined active and passive microwave data from AMSR-E and QuikSCAT to derive inundation extent at 25 kilometer resolution on a weekly basis. We then compared information content and accuracy of the coarse resolution products relative to the high-resolution datasets. The synergistic combination of high and low resolution datasets allowed for characterization of palm swamps and assessment of their flooding status. This work has been undertaken partly within the framework of the JAXA ALOS Kyoto & Carbon Initiative. PALSAR data have been provided by JAXA. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  3. Ship detection in panchromatic images: a new method and its DSP implementation

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Jiang, Zhiguo; Zhang, Haopeng; Wang, Mengfei; Meng, Gang

    2016-03-01

    In this paper, a new ship detection method is proposed after analyzing the characteristics of panchromatic remote sensing images and ship targets. Firstly, AdaBoost(Adaptive Boosting) classifiers trained by Haar features are utilized to make coarse detection of ship targets. Then LSD (Line Segment Detector) is adopted to extract the line features in target slices to make fine detection. Experimental results on a dataset of panchromatic remote sensing images with a spatial resolution of 2m show that the proposed algorithm can achieve high detection rate and low false alarm rate. Meanwhile, the algorithm can meet the needs of practical applications on DSP (Digital Signal Processor).

  4. The Role of Combination Techniques in Maximizing the Utility of Precipitation Estimates from Several Multi-Purpose Remote-Sensing Systems

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.; Curtis, Scott; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Multi-purpose remote-sensing products from various satellites have proved crucial in developing global estimates of precipitation. Examples of these products include low-earth-orbit and geosynchronous-orbit infrared (leo- and geo-IR), Outgoing Longwave Radiation (OLR), Television Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS) data, and passive microwave data such as that from the Special Sensor Microwave/ Imager (SSM/I). Each of these datasets has served as the basis for at least one useful quasi-global precipitation estimation algorithm; however, the quality of estimates varies tremendously among the algorithms for the different climatic regions around the globe.

  5. Characterization of precipitation features over CONUS derived from satellite, radar, and rain gauge datasets (2002-2012)

    NASA Astrophysics Data System (ADS)

    Prat, O. P.; Nelson, B. R.

    2013-12-01

    We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, surface observations, and models to derive precipitation characteristics over CONUS for the period 2002-2012. This comparison effort includes satellite multi-sensor datasets of TMPA 3B42, CMORPH, and PERSIANN. The satellite based QPEs are compared over the concurrent period with the NCEP Stage IV product, which is a near real time product providing precipitation data at the hourly temporal scale gridded at a nominal 4-km spatial resolution. In addition, remotely sensed precipitation datasets are compared with surface observations from the Global Historical Climatology Network (GHCN-Daily) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model), which provides gridded precipitation estimates that are used as a baseline for multi-sensor QPE products comparison. The comparisons are performed at the annual, seasonal, monthly, and daily scales with focus on selected river basins (Southeastern US, Pacific Northwest, Great Plains). While, unconditional annual rain rates present a satisfying agreement between all products, results suggest that satellite QPE datasets exhibit important biases in particular at higher rain rates (≥4 mm/day). Conversely, on seasonal scales differences between remotely sensed data and ground surface observations can be greater than 50% and up to 90% for low daily accumulation (≤1 mm/day) such as in the Western US (summer) and Central US (winter). The conditional analysis performed using different daily rainfall accumulation thresholds (from low rainfall intensity to intense precipitation) shows that while intense events measured at the ground are infrequent (around 2% for daily accumulation above 2 inches/day), remotely sensed products displayed differences from 20-50% and up to 90-100%. A discussion on the impact of differing spatial and temporal resolutions with respect to the datasets ability to capture extreme precipitation events is also provided. Furthermore, this work is part of a broader effort to evaluate long-term multi-sensor QPEs in the perspective of developing Climate Data Records (CDRs) for precipitation.

  6. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Pour, Amin Beiranvand; Park, Yongcheol; Park, Tae-Yoon S.; Hong, Jong Kuk; Hashim, Mazlan; Woo, Jusun; Ayoobi, Iman

    2018-06-01

    Satellite remote sensing imagery is especially useful for geological investigations in Antarctica because of its remoteness and extreme environmental conditions that constrain direct geological survey. The highest percentage of exposed rocks and soils in Antarctica occurs in Northern Victoria Land (NVL). Exposed Rocks in NVL were part of the paleo-Pacific margin of East Gondwana during the Paleozoic time. This investigation provides a satellite-based remote sensing approach for regional geological mapping in the NVL, Antarctica. Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) datasets were used to extract lithological-structural and mineralogical information. Several spectral-band ratio indices were developed using Landsat-8 and ASTER bands and proposed for Antarctic environments to map spectral signatures of snow/ice, iron oxide/hydroxide minerals, Al-OH-bearing and Fe, Mg-OH and CO3 mineral zones, and quartz-rich felsic and mafic-to-ultramafic lithological units. The spectral-band ratio indices were tested and implemented to Level 1 terrain-corrected (L1T) products of Landsat-8 and ASTER datasets covering the NVL. The surface distribution of the mineral assemblages was mapped using the spectral-band ratio indices and verified by geological expeditions and laboratory analysis. Resultant image maps derived from spectral-band ratio indices that developed in this study are fairly accurate and correspond well with existing geological maps of the NVL. The spectral-band ratio indices developed in this study are especially useful for geological investigations in inaccessible locations and poorly exposed lithological units in Antarctica environments.

  7. Low-altitude remote sensing dataset of DEM and RGB mosaic for AB corridor on July 13 2013 and L2 corridor on July 21 2013

    DOE Data Explorer

    Baptiste Dafflon

    2015-04-07

    Low-altitude remote sensing dataset including DEM and RGB mosaic for AB (July 13 2013) and L2 corridor (July 21 2013).Processing flowchart for each corridor:Ground control points (GCP, 20.3 cm square white targets, every 20 m) surveyed with RTK GPS. Acquisition of RGB pictures using a Kite-based platform. Structure from Motion based reconstruction using hundreds of pictures and GCP coordinates. Export of DEM and RGB mosaic in geotiff format (NAD 83, 2012 geoid, UTM zone 4 north) with pixel resolution of about 2 cm, and x,y,z accuracy in centimeter range (less than 10 cm). High-accuracy and high-resolution inside GCPs zone for L2 corridor (500x20m), AB corridor (500x40) DEM will be updated once all GCPs will be measured. Only zones between GCPs are accurate although all the mosaic is provided.

  8. Remotely-sensed and in-situ observations of Greenland firn aquifers

    NASA Astrophysics Data System (ADS)

    Forster, R. R.; Miège, C.; Koenig, L.; Solomon, D. K.; Schmerr, N. C.; Miller, O. L.; Ligtenberg, S.; Montgomery, L. N.; Brucker, L.; Miller, J.; Legchenko, A.

    2017-12-01

    In 2011, prior to seasonal melt, our research team drilled into an unknown firn aquifer system in Southeast Greenland. Since 2013, we have conducted four field seasons, complemented with modeling and remote sensing to gain knowledge regarding firn aquifers and surrounding snow/firn/ice. We aim to provide a more complete picture of the system including formation conditions, controlling mechanisms, spatial and temporal changes, and connections with the larger ice sheet hydrologic system. This work summarizes remote sensing data since 1993 showing the spatial and temporal evolution of the aquifer extent. To complement the remote sensing and better characterize the firn aquifer in the field, we use a combination of three different geophysics methods. Ground penetrating radar provides us knowledge of the water table elevation and its variations, magnetic-resonance soundings give us the water volume held in the aquifer and the active seismic data allow us to locate the bottom of the aquifer. In addition, firn/ice-core stratigraphy suggests that the timing and evolution of the aquifer bottom is controlled by thermodynamics. Our compilation of remote sensing measurements point to a dynamic and expanding aquifer system. We found that firn aquifers have existed at least since 1993 (dataset start) in the high melt and high accumulation region of the South Eastern Greenland ice sheet. Firn aquifers are now growing toward the interior related to the warming air temperatures in the Arctic and more intense melt during summers. These remotely sensed observations and in-situ measurements are required to validate improved ice sheet mass balance models that incorporate firn aquifers. They are also needed to further investigate the potential of firn aquifer discharge to the glacier bed via crevasse hydrofracturing influencing ice dynamics.

  9. Accessing and Utilizing Remote Sensing Data for Vectorborne Infectious Diseases Surveillance and Modeling

    NASA Technical Reports Server (NTRS)

    Kiang, Richard; Adimi, Farida; Kempler, Steven

    2008-01-01

    Background: The transmission of vectorborne infectious diseases is often influenced by environmental, meteorological and climatic parameters, because the vector life cycle depends on these factors. For example, the geophysical parameters relevant to malaria transmission include precipitation, surface temperature, humidity, elevation, and vegetation type. Because these parameters are routinely measured by satellites, remote sensing is an important technological tool for predicting, preventing, and containing a number of vectorborne infectious diseases, such as malaria, dengue, West Nile virus, etc. Methods: A variety of NASA remote sensing data can be used for modeling vectorborne infectious disease transmission. We will discuss both the well known and less known remote sensing data, including Landsat, AVHRR (Advanced Very High Resolution Radiometer), MODIS (Moderate Resolution Imaging Spectroradiometer), TRMM (Tropical Rainfall Measuring Mission), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), EO-1 (Earth Observing One) ALI (Advanced Land Imager), and SIESIP (Seasonal to Interannual Earth Science Information Partner) dataset. Giovanni is a Web-based application developed by the NASA Goddard Earth Sciences Data and Information Services Center. It provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data. After remote sensing data is obtained, a variety of techniques, including generalized linear models and artificial intelligence oriented methods, t 3 can be used to model the dependency of disease transmission on these parameters. Results: The processes of accessing, visualizing and utilizing precipitation data using Giovanni, and acquiring other data at additional websites are illustrated. Malaria incidence time series for some parts of Thailand and Indonesia are used to demonstrate that malaria incidences are reasonably well modeled with generalized linear models and artificial intelligence based techniques. Conclusions: Remote sensing data relevant to the transmission of vectorborne infectious diseases can be conveniently accessed at NASA and some other websites. These data are useful for vectorborne infectious disease surveillance and modeling.

  10. USGS Emergency Response and the Hazards Data Distribution System (HDDS)

    NASA Astrophysics Data System (ADS)

    Jones, B. K.; Lamb, R.

    2013-12-01

    Remotely sensed datasets such as satellite imagery and aerial photography can be an invaluable resource to support the response and recovery from many types of emergency events such as floods, earthquakes, landslides, wildfires, and other natural or human-induced disasters. When disaster strikes there is often an urgent need and high demand for rapid acquisition and coordinated distribution of pre- and post-event geospatial products and remotely sensed imagery. These products and images are necessary to record change, analyze impacts, and facilitate response to the rapidly changing conditions on the ground. The coordinated and timely provision of relevant imagery and other datasets is one important component of the USGS support for domestic and international emergency response activities. The USGS Hazards Data Distribution System (HDDS) serves as a single, consolidated point-of-access for relevant satellite and aerial image datasets during an emergency event response. The HDDS provides data visibility and immediate download services through a complementary pair of graphical map-based and traditional directory-based interfaces. This system allows emergency response personnel to rapidly select and obtain pre-event ('baseline') and post-event emergency response imagery from many different sources. These datasets will typically include images that are acquired directly by USGS, but may also include many other types of images that are collected and contributed by partner agencies and organizations during the course of an emergency event response. Over the past decade, USGS Emergency Response and HDDS have supported hundreds of domestic and international disaster events by providing critically needed pre- and post-event remotely sensed imagery and other related geospatial products as required by the emergency response community. Some of the larger national events supported by HDDS have included Hurricane Sandy (2012), the Deepwater Horizon Oil Spill (2010), and Hurricane Katrina (2005). Some of the major international events supported by HDDS have included the Japan earthquake and tsunami (2011), the historic flood event in Pakistan (2010), and the earthquake in Haiti (2010). This presentation will provide an overview of the USGS HDDS system, and the various types and sources of remotely sensed imagery that are distributed through this system. There will be particular focus on recent upgrades to the HDDS interface. There will also be a brief discussion of the USGS role in the International Charter 'Space and Major Disasters' and the satellite imagery that can be made available through this mechanism in the case of major disasters.

  11. Remote sensing captures varying temporal patterns of vegetation between human-altered and natural landscapes.

    PubMed

    Leong, Misha; Roderick, George K

    2015-01-01

    Global change has led to shifts in phenology, potentially disrupting species interactions such as plant-pollinator relationships. Advances in remote sensing techniques allow one to detect vegetation phenological diversity between different land use types, but it is not clear how this translates to other communities in the ecosystem. Here, we investigated the phenological diversity of the vegetation across a human-altered landscape including urban, agricultural, and natural land use types. We found that the patterns of change in the vegetation indices (EVI and NDVI) of human-altered landscapes are out of synchronization with the phenology in neighboring natural California grassland habitat. Comparing these findings to a spatio-temporal pollinator distribution dataset, EVI and NDVI were significant predictors of total bee abundance, a relationship that improved with time lags. This evidence supports the importance of differences in temporal dynamics between land use types. These findings also highlight the potential to utilize remote sensing data to make predictions for components of biodiversity that have tight vegetation associations, such as pollinators.

  12. Classification of Large-Scale Remote Sensing Images for Automatic Identification of Health Hazards: Smoke Detection Using an Autologistic Regression Classifier.

    PubMed

    Wolters, Mark A; Dean, C B

    2017-01-01

    Remote sensing images from Earth-orbiting satellites are a potentially rich data source for monitoring and cataloguing atmospheric health hazards that cover large geographic regions. A method is proposed for classifying such images into hazard and nonhazard regions using the autologistic regression model, which may be viewed as a spatial extension of logistic regression. The method includes a novel and simple approach to parameter estimation that makes it well suited to handling the large and high-dimensional datasets arising from satellite-borne instruments. The methodology is demonstrated on both simulated images and a real application to the identification of forest fire smoke.

  13. Ecoregional analysis of nearshore sea-surface temperature in the North Pacific

    EPA Science Inventory

    Aim Sea surface temperature (SST) has been a parameter widely-identified to be useful to the investigation of marine species distribution, migration, and invasion, especially as SSTs are predicted to be affected by climate change. Here we use a remotely-sensed dataset to focus on...

  14. Mapping and monitoring potato cropping systems in Maine: geospatial methods and land use assessments

    USDA-ARS?s Scientific Manuscript database

    Geospatial frameworks and GIS-based approaches were used to assess current cropping practices in potato production systems in Maine. Results from the geospatial integration of remotely-sensed cropland layers (2008-2011) and soil datasets for Maine revealed a four-year potato systems footprint estima...

  15. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures

    EPA Science Inventory

    We used an extensive dataset of remotely sensed summertime river temperature to compare longitudinal profiles (temperature versus distance) for 54 rivers in the Pacific Northwest. We evaluated (1) how often profiles fit theoretical expectations of asymptotic downstream warming, a...

  16. Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation

    NASA Astrophysics Data System (ADS)

    Jana, Raghavendra B.; Mohanty, Binayak P.

    2011-03-01

    SummaryUse of remotely sensed data products in the earth science and water resources fields is growing due to increasingly easy availability of the data. Traditionally, pedotransfer functions (PTFs) employed for soil hydraulic parameter estimation from other easily available data have used basic soil texture and structure information as inputs. Inclusion of surrogate/supplementary data such as topography and vegetation information has shown some improvement in the PTF's ability to estimate more accurate soil hydraulic parameters. Artificial neural networks (ANNs) are a popular tool for PTF development, and are usually applied across matching spatial scales of inputs and outputs. However, different hydrologic, hydro-climatic, and contaminant transport models require input data at different scales, all of which may not be easily available from existing databases. In such a scenario, it becomes necessary to scale the soil hydraulic parameter values estimated by PTFs to suit the model requirements. Also, uncertainties in the predictions need to be quantified to enable users to gauge the suitability of a particular dataset in their applications. Bayesian Neural Networks (BNNs) inherently provide uncertainty estimates for their outputs due to their utilization of Markov Chain Monte Carlo (MCMC) techniques. In this paper, we present a PTF methodology to estimate soil water retention characteristics built on a Bayesian framework for training of neural networks and utilizing several in situ and remotely sensed datasets jointly. The BNN is also applied across spatial scales to provide fine scale outputs when trained with coarse scale data. Our training data inputs include ground/remotely sensed soil texture, bulk density, elevation, and Leaf Area Index (LAI) at 1 km resolutions, while similar properties measured at a point scale are used as fine scale inputs. The methodology was tested at two different hydro-climatic regions. We also tested the effect of varying the support scale of the training data for the BNNs by sequentially aggregating finer resolution training data to coarser resolutions, and the applicability of the technique to upscaling problems. The BNN outputs are corrected for bias using a non-linear CDF-matching technique. Final results show good promise of the suitability of this Bayesian Neural Network approach for soil hydraulic parameter estimation across spatial scales using ground-, air-, or space-based remotely sensed geophysical parameters. Inclusion of remotely sensed data such as elevation and LAI in addition to in situ soil physical properties improved the estimation capabilities of the BNN-based PTF in certain conditions.

  17. Comparison of remote sensing algorithms for retrieval of suspended particulate matter concentration from reflectance in coastal waters

    NASA Astrophysics Data System (ADS)

    Freeman, Lauren A.; Ackleson, Steven G.; Rhea, William Joseph

    2017-10-01

    Suspended particulate matter (SPM) is a key environmental indicator for rivers, estuaries, and coastal waters, which can be calculated from remote sensing reflectance obtained by an airborne or satellite imager. Here, algorithms from prior studies are applied to a dataset of in-situ at surface hyperspectral remote sensing reflectance, collected in three geographic regions representing different water types. These data show the optically inherent exponential nature of the relationship between reflectance and sediment concentration. However, linear models are also shown to provide a reasonable estimate of sediment concentration when utilized with care in similar conditions to those under which the algorithms were developed, particularly at lower SPM values (0 to 20 mg/L). Fifteen published SPM algorithms are tested, returning strong correlations of R2>0.7, and in most cases, R2>0.8. Very low SPM values show weaker correlation with algorithm calculated SPM that is not wavelength dependent. None of the tested algorithms performs well for high SPM values (>30 mg/L), with most algorithms underestimating SPM. A shift toward a smaller number of simple exponential or linear models relating satellite remote sensing reflectance to suspended sediment concentration with regional consideration will greatly aid larger spatiotemporal studies of suspended sediment trends.

  18. A Metastatistical Approach to Satellite Estimates of Extreme Rainfall Events

    NASA Astrophysics Data System (ADS)

    Zorzetto, E.; Marani, M.

    2017-12-01

    The estimation of the average recurrence interval of intense rainfall events is a central issue for both hydrologic modeling and engineering design. These estimates require the inference of the properties of the right tail of the statistical distribution of precipitation, a task often performed using the Generalized Extreme Value (GEV) distribution, estimated either from a samples of annual maxima (AM) or with a peaks over threshold (POT) approach. However, these approaches require long and homogeneous rainfall records, which often are not available, especially in the case of remote-sensed rainfall datasets. We use here, and tailor it to remotely-sensed rainfall estimates, an alternative approach, based on the metastatistical extreme value distribution (MEVD), which produces estimates of rainfall extreme values based on the probability distribution function (pdf) of all measured `ordinary' rainfall event. This methodology also accounts for the interannual variations observed in the pdf of daily rainfall by integrating over the sample space of its random parameters. We illustrate the application of this framework to the TRMM Multi-satellite Precipitation Analysis rainfall dataset, where MEVD optimally exploits the relatively short datasets of satellite-sensed rainfall, while taking full advantage of its high spatial resolution and quasi-global coverage. Accuracy of TRMM precipitation estimates and scale issues are here investigated for a case study located in the Little Washita watershed, Oklahoma, using a dense network of rain gauges for independent ground validation. The methodology contributes to our understanding of the risk of extreme rainfall events, as it allows i) an optimal use of the TRMM datasets in estimating the tail of the probability distribution of daily rainfall, and ii) a global mapping of daily rainfall extremes and distributional tail properties, bridging the existing gaps in rain gauges networks.

  19. Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach

    USGS Publications Warehouse

    Senay, Gabriel B.; Bohms, Stefanie; Singh, Ramesh K.; Gowda, Prasanna H.; Velpuri, Naga Manohar; Alemu, Henok; Verdin, James P.

    2013-01-01

    The increasing availability of multi-scale remotely sensed data and global weather datasets is allowing the estimation of evapotranspiration (ET) at multiple scales. We present a simple but robust method that uses remotely sensed thermal data and model-assimilated weather fields to produce ET for the contiguous United States (CONUS) at monthly and seasonal time scales. The method is based on the Simplified Surface Energy Balance (SSEB) model, which is now parameterized for operational applications, renamed as SSEBop. The innovative aspect of the SSEBop is that it uses predefined boundary conditions that are unique to each pixel for the "hot" and "cold" reference conditions. The SSEBop model was used for computing ET for 12 years (2000-2011) using the MODIS and Global Data Assimilation System (GDAS) data streams. SSEBop ET results compared reasonably well with monthly eddy covariance ET data explaining 64% of the observed variability across diverse ecosystems in the CONUS during 2005. Twelve annual ET anomalies (2000-2011) depicted the spatial extent and severity of the commonly known drought years in the CONUS. More research is required to improve the representation of the predefined boundary conditions in complex terrain at small spatial scales. SSEBop model was found to be a promising approach to conduct water use studies in the CONUS, with a similar opportunity in other parts of the world. The approach can also be applied with other thermal sensors such as Landsat.

  20. Leveraging Machine Learning to Estimate Soil Salinity through Satellite-Based Remote Sensing

    NASA Astrophysics Data System (ADS)

    Welle, P.; Ravanbakhsh, S.; Póczos, B.; Mauter, M.

    2016-12-01

    Human-induced salinization of agricultural soils is a growing problem which now affects an estimated 76 million hectares and causes billions of dollars of lost agricultural revenues annually. While there are indications that soil salinization is increasing in extent, current assessments of global salinity levels are outdated and rely heavily on expert opinion due to the prohibitive cost of a worldwide sampling campaign. A more practical alternative to field sampling may be earth observation through remote sensing, which takes advantage of the distinct spectral signature of salts in order to estimate soil conductivity. Recent efforts to map salinity using remote sensing have been met with limited success due to tractability issues of managing the computational load associated with large amounts of satellite data. In this study, we use Google Earth Engine to create composite satellite soil datasets, which combine data from multiple sources and sensors. These composite datasets contain pixel-level surface reflectance values for dates in which the algorithm is most confident that the surface contains bare soil. We leverage the detailed soil maps created and updated by the United States Geological Survey as label data and apply machine learning regression techniques such as Gaussian processes to learn a smooth mapping from surface reflection to noisy estimates of salinity. We also explore a semi-supervised approach using deep generative convolutional networks to leverage the abundance of unlabeled satellite images in producing better estimates for salinity values where we have relatively fewer measurements across the globe. The general method results in two significant contributions: (1) an algorithm that can be used to predict levels of soil salinity in regions without detailed soil maps and (2) a general framework that serves as an example for how remote sensing can be paired with extensive label data to generate methods for prediction of physical phenomenon.

  1. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea.

    PubMed

    Angelliaume, Sébastien; Ceamanos, Xavier; Viallefont-Robinet, Françoise; Baqué, Rémi; Déliot, Philippe; Miegebielle, Véronique

    2017-08-02

    Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur), the airborne system developed by ONERA (the French Aerospace Lab), during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on the sea surface.

  2. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea

    PubMed Central

    Angelliaume, Sébastien; Ceamanos, Xavier; Viallefont-Robinet, Françoise; Baqué, Rémi; Déliot, Philippe

    2017-01-01

    Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur), the airborne system developed by ONERA (the French Aerospace Lab), during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on the sea surface. PMID:28767059

  3. Expanding dryland ecosystem flux datasets enable novel quantification of water availability and carbon exchange in Southwestern North America

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Scott, R. L.; Smith, W. K.; Litvak, M. E.; MacBean, N.

    2017-12-01

    Global-scale studies suggest that water-limited dryland ecosystems dominate the increasing trend in magnitude and interannual variability of the land CO2 sink. However, the terrestrial biosphere models and remote sensing models used in large-scale analyses are poorly constrained by flux measurements in drylands, which are under-represented in global datasets. In this talk, I will address this gap with eddy covariance data from 30 ecosystems across the Southwest of North America with observed ranges in annual precipitation of 100 - 1000 mm, annual temperatures of 2 - 25 °C, and records of 3 - 10 years each (160 site-years). This extensive dryland dataset enables new approaches including 1) separation of temporal and spatial patterns to infer fast and slow ecosystem responses to change, and 2) partitioning of precipitation into hydrologic losses, evaporation, and ecosystem-available water. I will then compare direct flux measurements with models and remote sensing used to scale fluxes regionally. Combining eddy covariance and streamflow measurements, I will show how evapotranspiration (ET), which is the efflux of soil moisture remaining after hydrologic losses, is a better metric than precipitation of water available to drive ecosystem CO2 exchange. Furthermore, I will present a novel method to partition ET into evaporation and transpiration using the tight coupling of transpiration and photosynthesis. In contrast with typical carbon sink function in wetter, more-studied regions, dryland sites express an annual net carbon uptake varying from -350 to +330 gC m-2. Due to less respiration losses relative to photosynthesis gains during winter, declines in winter precipitation across the Southwest since 1999 are reducing annual net CO2 uptake. Interannual variability of net uptake is larger than for wetter regions, and half the sites pivot between sinks in wet years to sources in dry years. Biospheric and remote sensing models capture only 20-30 % of interannual variability in ET and CO2 fluxes, suggesting the impact of dryland regions on the variability of global CO2 may be up to 3 - 5 times larger than current estimates. Finally, I will highlight progress in ongoing work to develop improved remote sensing models of dryland CO2 uptake using novel indices including solar-induced fluorescence.

  4. Photosynthetic parameters in the Beaufort Sea in relation to the phytoplankton community structure

    NASA Astrophysics Data System (ADS)

    Huot, Y.; Babin, M.; Bruyant, F.

    2013-05-01

    To model phytoplankton primary production from remotely sensed data, a method to estimate photosynthetic parameters describing the photosynthetic rates per unit biomass is required. Variability in these parameters must be related to environmental variables that are measurable remotely. In the Arctic, a limited number of measurements of photosynthetic parameters have been carried out with the concurrent environmental variables needed. Such measurements and their relationship to environmental variables will be required to improve the accuracy of remotely sensed estimates of phytoplankton primary production and our ability to predict future changes. During the MALINA cruise, a large dataset of these parameters was obtained. Together with previously published datasets, we use environmental and trophic variables to provide functional relationships for these parameters. In particular, we describe several specific aspects: the maximum rate of photosynthesis (Pmaxchl) normalized to chlorophyll decreases with depth and is higher for communities composed of large cells; the saturation parameter (Ek) decreases with depth but is independent of the community structure; and the initial slope of the photosynthesis versus irradiance curve (αchl) normalized to chlorophyll is independent of depth but is higher for communities composed of larger cells. The photosynthetic parameters were not influenced by temperature over the range encountered during the cruise (-2 to 8 °C).

  5. Do deep convolutional neural networks really need to be deep when applied for remote scene classification?

    NASA Astrophysics Data System (ADS)

    Luo, Chang; Wang, Jie; Feng, Gang; Xu, Suhui; Wang, Shiqiang

    2017-10-01

    Deep convolutional neural networks (CNNs) have been widely used to obtain high-level representation in various computer vision tasks. However, for remote scene classification, there are not sufficient images to train a very deep CNN from scratch. From two viewpoints of generalization power, we propose two promising kinds of deep CNNs for remote scenes and try to find whether deep CNNs need to be deep for remote scene classification. First, we transfer successful pretrained deep CNNs to remote scenes based on the theory that depth of CNNs brings the generalization power by learning available hypothesis for finite data samples. Second, according to the opposite viewpoint that generalization power of deep CNNs comes from massive memorization and shallow CNNs with enough neural nodes have perfect finite sample expressivity, we design a lightweight deep CNN (LDCNN) for remote scene classification. With five well-known pretrained deep CNNs, experimental results on two independent remote-sensing datasets demonstrate that transferred deep CNNs can achieve state-of-the-art results in an unsupervised setting. However, because of its shallow architecture, LDCNN cannot obtain satisfactory performance, regardless of whether in an unsupervised, semisupervised, or supervised setting. CNNs really need depth to obtain general features for remote scenes. This paper also provides baseline for applying deep CNNs to other remote sensing tasks.

  6. Palm Swamp Wetland Ecosystems of the Upper Amazon: Characterizing their Distribution and Inundation State Using Multiple Resolution Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Podest, E.; McDonald, K. C.; Schröder, R.; Pinto, N.; Zimmermann, R.; Horna, V.

    2011-12-01

    Palm swamp wetlands are prevalent in the Amazon basin, including extensive regions in northern Peru. These ecosystems are characterized by constant surface inundation and moderate seasonal water level variation. The combination of constantly saturated soils, giving rise to low oxygen conditions, and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, knowledge of their spatial extent and inundation state is crucial for assessing the associated land-atmosphere carbon exchange. Precise spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We are developing a remote sensing methodology using multiple resolution microwave remote sensing data to determine palm swamp distribution and inundation state over focus regions in the Amazon basin in northern Peru. For this purpose, two types of multi-temporal microwave data are used: 1) high-resolution (100 m) data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR) to derive maps of palm swamp extent and inundation from dual-polarization fine-beam and multi-temporal HH-polarized ScanSAR, and 2) coarse resolution (25 km) combined active and passive microwave data from QuikSCAT and AMSR-E to derive inundated area fraction on a weekly basis. We compare information content and accuracy of the coarse resolution products to the PALSAR-based datasets to ensure information harmonization. The synergistic combination of high and low resolution datasets will allow for characterization of palm swamps and assessment of their flooding status. This work has been undertaken partly within the framework of the JAXA ALOS Kyoto & Carbon Initiative. PALSAR data have been provided by JAXA/EORC. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  7. Volcanic eruptions, hazardous ash clouds and visualization tools for accessing real-time infrared remote sensing data

    NASA Astrophysics Data System (ADS)

    Webley, P.; Dehn, J.; Dean, K. G.; Macfarlane, S.

    2010-12-01

    Volcanic eruptions are a global hazard, affecting local infrastructure, impacting airports and hindering the aviation community, as seen in Europe during Spring 2010 from the Eyjafjallajokull eruption in Iceland. Here, we show how remote sensing data is used through web-based interfaces for monitoring volcanic activity, both ground based thermal signals and airborne ash clouds. These ‘web tools’, http://avo.images.alaska.edu/, provide timely availability of polar orbiting and geostationary data from US National Aeronautics and Space Administration, National Oceanic and Atmosphere Administration and Japanese Meteorological Agency satellites for the North Pacific (NOPAC) region. This data is used operationally by the Alaska Volcano Observatory (AVO) for monitoring volcanic activity, especially at remote volcanoes and generates ‘alarms’ of any detected volcanic activity and ash clouds. The webtools allow the remote sensing team of AVO to easily perform their twice daily monitoring shifts. The web tools also assist the National Weather Service, Alaska and Kamchatkan Volcanic Emergency Response Team, Russia in their operational duties. Users are able to detect ash clouds, measure the distance from the source, area and signal strength. Within the web tools, there are 40 x 40 km datasets centered on each volcano and a searchable database of all acquired data from 1993 until present with the ability to produce time series data per volcano. Additionally, a data center illustrates the acquired data across the NOPAC within the last 48 hours, http://avo.images.alaska.edu/tools/datacenter/. We will illustrate new visualization tools allowing users to display the satellite imagery within Google Earth/Maps, and ArcGIS Explorer both as static maps and time-animated imagery. We will show these tools in real-time as well as examples of past large volcanic eruptions. In the future, we will develop the tools to produce real-time ash retrievals, run volcanic ash dispersion models from detected ash clouds and develop the browser interfaces to display other remote sensing datasets, such as volcanic sulfur dioxide detection.

  8. Remotely Sensed Data for High Resolution Agro-Environmental Policy Analysis

    NASA Astrophysics Data System (ADS)

    Welle, Paul

    Policy analyses of agricultural and environmental systems are often limited due to data constraints. Measurement campaigns can be costly, especially when the area of interest includes oceans, forests, agricultural regions or other dispersed spatial domains. Satellite based remote sensing offers a way to increase the spatial and temporal resolution of policy analysis concerning these systems. However, there are key limitations to the implementation of satellite data. Uncertainty in data derived from remote-sensing can be significant, and traditional methods of policy analysis for managing uncertainty on large datasets can be computationally expensive. Moreover, while satellite data can increasingly offer estimates of some parameters such as weather or crop use, other information regarding demographic or economic data is unlikely to be estimated using these techniques. Managing these challenges in practical policy analysis remains a challenge. In this dissertation, I conduct five case studies which rely heavily on data sourced from orbital sensors. First, I assess the magnitude of climate and anthropogenic stress on coral reef ecosystems. Second, I conduct an impact assessment of soil salinity on California agriculture. Third, I measure the propensity of growers to adapt their cropping practices to soil salinization in agriculture. Fourth, I analyze whether small-scale desalination units could be applied on farms in California in order mitigate the effects of drought and salinization as well as prevent agricultural drainage from entering vulnerable ecosystems. And fifth, I assess the feasibility of satellite-based remote sensing for salinity measurement at global scale. Through these case studies, I confront both the challenges and benefits associated with implementing satellite based-remote sensing for improved policy analysis.

  9. LEARNERS: Interdisciplinary Learning Technology Projects Provide Visualizations and Simulations for Use of Geospatial Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Farrell, N.; Hoban, S.

    2001-05-01

    The NASA Leading Educators to Applications, Research and NASA-related Educational Resources in Science (LEARNERS) initiative supports seven projects for enhancing kindergarten-to-high school science, geography, technology and mathematics education through Internet-based products derived from content on NASA's mission. Topics incorporated in LEARNERS projects include remote sensing of the Earth for agriculture and weather/climate studies, virtual exploration of remote worlds using robotics and digital imagery. Learners are engaged in inquiry or problem-based learning, often assuming the role of an expert scientist as part of an interdisciplinary science team, to study and explain practical problems using real-time NASA data. The presentation/poster will demonstrate novel uses of remote sensing data for K-12 and Post-Secondary students. This will include the use of visualizations, tools for educators, datasets, and classroom scenarios.

  10. HDF Update

    NASA Technical Reports Server (NTRS)

    Pourmal, Elena

    2016-01-01

    The HDF Group maintains and evolves HDF software used by NASA ESDIS program to manage remote sense data. In this talk we will discuss new features of HDF (Virtual Datasets, Single writerMultiple reader access, Community supported HDF5 compression filters) that address storage and IO performance requirements of the applications that work with the ESDIS data products.

  11. Bidirectional reflectance function in coastal waters: modeling and validation

    NASA Astrophysics Data System (ADS)

    Gilerson, Alex; Hlaing, Soe; Harmel, Tristan; Tonizzo, Alberto; Arnone, Robert; Weidemann, Alan; Ahmed, Samir

    2011-11-01

    The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms, specifically tuned for typical coastal waters and other case 2 conditions, are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multi- and hyperspectral radiometers which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths.

  12. The integration of geophysical and enhanced Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index data into a rule-based, piecewise regression-tree model to estimate cheatgrass beginning of spring growth

    USGS Publications Warehouse

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.; Brown, Jesslyn F.

    2015-01-01

    Cheatgrass exhibits spatial and temporal phenological variability across the Great Basin as described by ecological models formed using remote sensing and other spatial data-sets. We developed a rule-based, piecewise regression-tree model trained on 99 points that used three data-sets – latitude, elevation, and start of season time based on remote sensing input data – to estimate cheatgrass beginning of spring growth (BOSG) in the northern Great Basin. The model was then applied to map the location and timing of cheatgrass spring growth for the entire area. The model was strong (R2 = 0.85) and predicted an average cheatgrass BOSG across the study area of 29 March–4 April. Of early cheatgrass BOSG areas, 65% occurred at elevations below 1452 m. The highest proportion of cheatgrass BOSG occurred between mid-April and late May. Predicted cheatgrass BOSG in this study matched well with previous Great Basin cheatgrass green-up studies.

  13. Multiscale Trend Analysis for Pampa Grasslands Using Ground Data and Vegetation Sensor Imagery

    PubMed Central

    Scottá, Fernando C.; da Fonseca, Eliana L.

    2015-01-01

    This study aimed to evaluate changes in the aboveground net primary productivity (ANPP) of grasslands in the Pampa biome by using experimental plots and changes in the spectral responses of similar vegetation communities obtained by remote sensing and to compare both datasets with meteorological variations to validate the transition scales of the datasets. Two different geographic scales were considered in this study. At the local scale, an analysis of the climate and its direct influences on grassland ANPP was performed using data from a long-term experiment. At the regional scale, the influences of climate on the grassland reflectance patterns were determined using vegetation sensor imagery data. Overall, the monthly variations of vegetation canopy growth analysed using environmental changes (air temperature, total rainfall and total evapotranspiration) were similar. The results from the ANPP data and the NDVI data showed the that variations in grassland growth were similar and independent of the analysis scale, which indicated that local data and the relationships of local data with climate can be considered at the regional scale in the Pampa biome by using remote sensing. PMID:26197320

  14. Hydrological assessment of atmospheric forcing uncertainty in the Euro-Mediterranean area using a land surface model

    NASA Astrophysics Data System (ADS)

    Gelati, Emiliano; Decharme, Bertrand; Calvet, Jean-Christophe; Minvielle, Marie; Polcher, Jan; Fairbairn, David; Weedon, Graham P.

    2018-04-01

    Physically consistent descriptions of land surface hydrology are crucial for planning human activities that involve freshwater resources, especially in light of the expected climate change scenarios. We assess how atmospheric forcing data uncertainties affect land surface model (LSM) simulations by means of an extensive evaluation exercise using a number of state-of-the-art remote sensing and station-based datasets. For this purpose, we use the CO2-responsive ISBA-A-gs LSM coupled with the CNRM version of the Total Runoff Integrated Pathways (CTRIP) river routing model. We perform multi-forcing simulations over the Euro-Mediterranean area (25-75.5° N, 11.5° W-62.5° E, at 0.5° resolution) from 1979 to 2012. The model is forced using four atmospheric datasets. Three of them are based on the ERA-Interim reanalysis (ERA-I). The fourth dataset is independent from ERA-Interim: PGF, developed at Princeton University. The hydrological impacts of atmospheric forcing uncertainties are assessed by comparing simulated surface soil moisture (SSM), leaf area index (LAI) and river discharge against observation-based datasets: SSM from the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative projects (ESA-CCI), LAI of the Global Inventory Modeling and Mapping Studies (GIMMS), and Global Runoff Data Centre (GRDC) river discharge. The atmospheric forcing data are also compared to reference datasets. Precipitation is the most uncertain forcing variable across datasets, while the most consistent are air temperature and SW and LW radiation. At the monthly timescale, SSM and LAI simulations are relatively insensitive to forcing uncertainties. Some discrepancies with ESA-CCI appear to be forcing-independent and may be due to different assumptions underlying the LSM and the remote sensing retrieval algorithm. All simulations overestimate average summer and early-autumn LAI. Forcing uncertainty impacts on simulated river discharge are larger on mean values and standard deviations than on correlations with GRDC data. Anomaly correlation coefficients are not inferior to those computed from raw monthly discharge time series, indicating that the model reproduces inter-annual variability fairly well. However, simulated river discharge time series generally feature larger variability compared to measurements. They also tend to overestimate winter-spring high flows and underestimate summer-autumn low flows. Considering that several differences emerge between simulations and reference data, which may not be completely explained by forcing uncertainty, we suggest several research directions. These range from further investigating the discrepancies between LSMs and remote sensing retrievals to developing new model components to represent physical and anthropogenic processes.

  15. NASA Earth Science Research Results for Improved Regional Crop Yield Prediction

    NASA Astrophysics Data System (ADS)

    Mali, P.; O'Hara, C. G.; Shrestha, B.; Sinclair, T. R.; G de Goncalves, L. G.; Salado Navarro, L. R.

    2007-12-01

    National agencies such as USDA Foreign Agricultural Service (FAS), Production Estimation and Crop Assessment Division (PECAD) work specifically to analyze and generate timely crop yield estimates that help define national as well as global food policies. The USDA/FAS/PECAD utilizes a Decision Support System (DSS) called CADRE (Crop Condition and Data Retrieval Evaluation) mainly through an automated database management system that integrates various meteorological datasets, crop and soil models, and remote sensing data; providing significant contribution to the national and international crop production estimates. The "Sinclair" soybean growth model has been used inside CADRE DSS as one of the crop models. This project uses Sinclair model (a semi-mechanistic crop growth model) for its potential to be effectively used in a geo-processing environment with remote-sensing-based inputs. The main objective of this proposed work is to verify, validate and benchmark current and future NASA earth science research results for the benefit in the operational decision making process of the PECAD/CADRE DSS. For this purpose, the NASA South American Land Data Assimilation System (SALDAS) meteorological dataset is tested for its applicability as a surrogate meteorological input in the Sinclair model meteorological input requirements. Similarly, NASA sensor MODIS products is tested for its applicability in the improvement of the crop yield prediction through improving precision of planting date estimation, plant vigor and growth monitoring. The project also analyzes simulated Visible/Infrared Imager/Radiometer Suite (VIIRS, a future NASA sensor) vegetation product for its applicability in crop growth prediction to accelerate the process of transition of VIIRS research results for the operational use of USDA/FAS/PECAD DSS. The research results will help in providing improved decision making capacity to the USDA/FAS/PECAD DSS through improved vegetation growth monitoring from high spatial and temporal resolution remote sensing datasets; improved time-series meteorological inputs required for crop growth models; and regional prediction capability through geo-processing-based yield modeling.

  16. Development and Validation of Remote Sensing-Based Surface Inundation Products for Vector-Borne Disease Risk in East Africa

    NASA Astrophysics Data System (ADS)

    Jensen, K.; McDonald, K. C.; Ceccato, P.; Schroeder, R.; Podest, E.

    2014-12-01

    The potential impact of climate variability and change on the spread of infectious disease is of increasingly critical concern to public health. Newly-available remote sensing datasets may be combined with predictive modeling to develop new capabilities to mitigate risks of vector-borne diseases such as malaria, leishmaniasis, and rift valley fever. We have developed improved remote sensing-based products for monitoring water bodies and inundation dynamics that have potential utility for improving risk forecasts of vector-borne disease epidemics. These products include daily and seasonal surface inundation based on the global mappings of inundated area fraction derived at the 25-km scale from active and passive microwave instruments ERS, QuikSCAT, ASCAT, and SSM/I data - the Satellite Water Microwave Product Series (SWAMPS). Focusing on the East African region, we present validation of this product using multi-temporal classification of inundated areas in this region derived from high resolution PALSAR (100m) and Landsat (30m) observations. We assess historical occurrence of malaria in the east African country of Eritrea with respect to the time series SWAMPS datasets, and we aim to construct a framework for use of these new datasets to improve prediction of future malaria risk in this region. This work is supported through funding from the NASA Applied Sciences Program, the NASA Terrestrial Ecology Program, and the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Program. This study is also supported and monitored by National Oceanic and Atmospheric Administration (NOAA) under Grant - CREST Grant # NA11SEC4810004. The statements contained within the manuscript/research article are not the opinions of the funding agency or the U.S. government, but reflect the authors' opinions. This work was conducted in part under the framework of the ALOS Kyoto and Carbon Initiative. ALOS PALSAR data were provided by JAXA EORC.

  17. The Hico Image Processing System: A Web-Accessible Hyperspectral Remote Sensing Toolbox

    NASA Astrophysics Data System (ADS)

    Harris, A. T., III; Goodman, J.; Justice, B.

    2014-12-01

    As the quantity of Earth-observation data increases, the use-case for hosting analytical tools in geospatial data centers becomes increasingly attractive. To address this need, HySpeed Computing and Exelis VIS have developed the HICO Image Processing System, a prototype cloud computing system that provides online, on-demand, scalable remote sensing image processing capabilities. The system provides a mechanism for delivering sophisticated image processing analytics and data visualization tools into the hands of a global user community, who will only need a browser and internet connection to perform analysis. Functionality of the HICO Image Processing System is demonstrated using imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), an imaging spectrometer located on the International Space Station (ISS) that is optimized for acquisition of aquatic targets. Example applications include a collection of coastal remote sensing algorithms that are directed at deriving critical information on water and habitat characteristics of our vulnerable coastal environment. The project leverages the ENVI Services Engine as the framework for all image processing tasks, and can readily accommodate the rapid integration of new algorithms, datasets and processing tools.

  18. Airborne and satellite remote sensing of the mid-infrared water vapour continuum.

    PubMed

    Newman, Stuart M; Green, Paul D; Ptashnik, Igor V; Gardiner, Tom D; Coleman, Marc D; McPheat, Robert A; Smith, Kevin M

    2012-06-13

    Remote sensing of the atmosphere from space plays an increasingly important role in weather forecasting. Exploiting observations from the latest generation of weather satellites relies on an accurate knowledge of fundamental spectroscopy, including the water vapour continuum absorption. Field campaigns involving the Facility for Airborne Atmospheric Measurements research aircraft have collected a comprehensive dataset, comprising remotely sensed infrared radiance observations collocated with accurate measurements of the temperature and humidity structure of the atmosphere. These field measurements have been used to validate the strength of the infrared water vapour continuum in comparison with the latest laboratory measurements. The recent substantial changes to self-continuum coefficients in the widely used MT_CKD (Mlawer-Tobin-Clough-Kneizys-Davies) model between 2400 and 3200 cm(-1) are shown to be appropriate and in agreement with field measurements. Results for the foreign continuum in the 1300-2000 cm(-1) band suggest a weak temperature dependence that is not currently included in atmospheric models. A one-dimensional variational retrieval experiment is performed that shows a small positive benefit from using new laboratory-derived continuum coefficients for humidity retrievals.

  19. Rapid Change Detection Algorithm for Disaster Management

    NASA Astrophysics Data System (ADS)

    Michel, U.; Thunig, H.; Ehlers, M.; Reinartz, P.

    2012-07-01

    This paper focuses on change detection applications in areas where catastrophic events took place which resulted in rapid destruction especially of manmade objects. Standard methods for automated change detection prove not to be sufficient; therefore a new method was developed and tested. The presented method allows a fast detection and visualization of change in areas of crisis or catastrophes. While often new methods of remote sensing are developed without user oriented aspects, organizations and authorities are not able to use these methods because of absence of remote sensing know how. Therefore a semi-automated procedure was developed. Within a transferable framework, the developed algorithm can be implemented for a set of remote sensing data among different investigation areas. Several case studies are the base for the retrieved results. Within a coarse dividing into statistical parts and the segmentation in meaningful objects, the framework is able to deal with different types of change. By means of an elaborated Temporal Change Index (TCI) only panchromatic datasets are used to extract areas which are destroyed, areas which were not affected and in addition areas where rebuilding has already started.

  20. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    NASA Astrophysics Data System (ADS)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  1. Mapping poverty from space in rural Assam, India

    NASA Astrophysics Data System (ADS)

    Watmough, G.; Atkinson, P.; Hutton, C.

    2014-12-01

    This paper investigates the relationships between welfare and geographical factors derived from remotely sensed satellite data within Assam, India. The pressure that natural resources experience from population growth is a significant barrier to sustainable human development and ecological conservation. Integrating social and geographic data offers the potential to increase our understanding of population-environment relationships. We construct a village welfare index for an extensive area of Assam in Northeast India. Classification and regression tree techniques were used to model the relationships between welfare and geographic conditions derived from remotely sensed data. Geographic metrics accounted for 61% of the variation in the lowest welfare quintile and 57% in the highest welfare quintile. Travel time to market towns, percentage of a village covered with woodland and winter crop were significantly related to welfare. These results support findings in the literature across a range of different developing countries which have used socioeconomic and geographic data derived only from household surveys. Model accuracy is unprecedented considering that the majority of information for the prediction is derived from remotely sensed data. As satellite data can provide continually updated geographic metrics, the results indicate the potential for substantially increasing our understanding of poverty-environment relationships by coupling remotely sensed and socioeconomic datasets. Further studies should be conducted using time series analysis as knowledge of population-environment inter-linkages will be required to help foster more effective policies for sustainable human development and ecological conservation.

  2. An evaluation of the role played by remote sensing technology following the World Trade Center attack

    NASA Astrophysics Data System (ADS)

    Huyck, Charles K.; Adams, Beverley J.; Kehrlein, David I.

    2003-06-01

    Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dense, yet relatively small area, made the combination of imagery and mapped data strategically useful. This paper reviews the role played by aerial photography, satellite imagery, and LIDAR data at Ground Zero. It examines how emergency managers utilized these datasets, and identifies significant problems that were encountered. It goes on to explore additional ways in which imagery could have been used, while presenting recommendations for more effective use in future disasters and Homeland Security applications. To plan adequately for future events, it was important to capture knowledge from individuals who responded to the World Trade Center attack. In recognition, interviews with key emergency management and geographic information system (GIS) personnel provide the basis of this paper. Successful techniques should not be forgotten, or serious problems dismissed. Although widely used after September 11th, it is important to recognize that with better planning, remote sensing and GIS could have played an even greater role. Together with a data acquisition timeline, an expanded discussion of these issues is available in the MCEER/NSF report “Emergency Response in the Wake of the World Trade Center Attack; The Remote Sensing Perspective” (Huyck and Adams, 2002)

  3. A patch-based convolutional neural network for remote sensing image classification.

    PubMed

    Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di

    2017-11-01

    Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Remote sensing supported surveillance and characterization of tailings behavior at a gold mine site, Finland.

    NASA Astrophysics Data System (ADS)

    Rauhala, Anssi; Tuomela, Anne; Rossi, Pekka M.; Davids, Corine

    2017-04-01

    The management of vast amounts of tailings produced is one of the key issues in mining operations. The effective and economic disposal of the waste requires knowledge concerning both basic physical properties of the tailings as well as more complex aspects such as consolidation behavior. The behavior of tailings in itself is a very complex issue that can be affected by flocculation, sedimentation, consolidation, segregation, deposition, freeze-thaw, and desiccation phenomena. The utilization of remote sensing in an impoundment-scale monitoring of tailings could benefit the management of tailings, and improve our knowledge on tailings behavior. In order to gain better knowledge of tailings behavior in cold climate, we have utilized both modern remote sensing techniques and more traditional in situ and laboratory measurements in characterizing thickened gold tailings behavior at a Finnish gold mine site, where the production has been halted due to low gold prices. The remote sensing measurements consisted of elevation datasets collected from unmanned aerial vehicles during summers 2015 and 2016, and a further campaign is planned for the summer 2017. The ongoing traditional measurements include for example particle-size distribution, frost heave, frost depth, water retention, temperature profile, and rheological measurements. Initial results from the remote sensing indicated larger than expected settlements on parts of the tailings impoundment, and also highlighted some of the complexities related to data processing. The interpretation of the results and characterization of the behavior is in this case complicated by possible freeze-thaw effects and potential settlement of the impoundment bottom structure consisting of natural peat. Experiments with remote sensing and unmanned aerial vehicles indicate that they could offer potential benefits in frequent mine site monitoring, but there is a need towards more robust and streamlined data acquisition and processing. The gathered data and obtained results form the basis for further modelling efforts which aim at better management of tailings storage facilities.

  5. Modeling Habitat Suitability of Migratory Birds from Remote Sensing Images Using Convolutional Neural Networks

    PubMed Central

    Su, Jin-He; Piao, Ying-Chao; Luo, Ze; Yan, Bao-Ping

    2018-01-01

    Simple Summary The understanding of the spatio-temporal distribution of the species habitats would facilitate wildlife resource management and conservation efforts. Existing methods have poor performance due to the limited availability of training samples. More recently, location-aware sensors have been widely used to track animal movements. The aim of the study was to generate suitability maps of bar-head geese using movement data coupled with environmental parameters, such as remote sensing images and temperature data. Therefore, we modified a deep convolutional neural network for the multi-scale inputs. The results indicate that the proposed method can identify the areas with the dense goose species around Qinghai Lake. In addition, this approach might also be interesting for implementation in other species with different niche factors or in areas where biological survey data are scarce. Abstract With the application of various data acquisition devices, a large number of animal movement data can be used to label presence data in remote sensing images and predict species distribution. In this paper, a two-stage classification approach for combining movement data and moderate-resolution remote sensing images was proposed. First, we introduced a new density-based clustering method to identify stopovers from migratory birds’ movement data and generated classification samples based on the clustering result. We split the remote sensing images into 16 × 16 patches and labeled them as positive samples if they have overlap with stopovers. Second, a multi-convolution neural network model is proposed for extracting the features from temperature data and remote sensing images, respectively. Then a Support Vector Machines (SVM) model was used to combine the features together and predict classification results eventually. The experimental analysis was carried out on public Landsat 5 TM images and a GPS dataset was collected on 29 birds over three years. The results indicated that our proposed method outperforms the existing baseline methods and was able to achieve good performance in habitat suitability prediction. PMID:29701686

  6. Intercomparison of Remotely Sensed Vegetation Indices, Ground Spectroscopy, and Foliar Chemistry Data from NEON

    NASA Astrophysics Data System (ADS)

    Hulslander, D.; Warren, J. N.; Weintraub, S. R.

    2017-12-01

    Hyperspectral imaging systems can be used to produce spectral reflectance curves giving rich information about composition, relative abundances of materials, mixes and combinations. Indices based on just a few spectral bands have been used for over 40 years to study vegetation health, mineral abundance, and more. These indices are much simpler to visualize and use than a full hyperspectral data set which may contain over 400 bands. Yet historically, it has been difficult to directly relate remotely sensed spectral indices to quantitative biophysical properties significant to forest ecology such as canopy nitrogen, lignin, and chlorophyll. This linkage is a critical piece in enabling the detection of high value ecological information, usually only available from labor-intensive canopy foliar chemistry sampling, to the geographic and temporal coverage available via remote sensing. Previous studies have shown some promising results linking ground-based data and remotely sensed indices, but are consistently limited in time, geographic extent, and land cover type. Moreover, previous studies are often focused on tuning linkage algorithms for the purpose of achieving good results for only one study site or one type of vegetation, precluding development of more generalized algorithms. The National Ecological Observatory Network (NEON) is a unique system of 47 terrestrial sites covering all of the major eco-climatic domains of the US, including AK, HI, and Puerto Rico. These sites are regularly monitored and sampled using uniform instrumentation and protocols, including both foliar chemistry sampling and remote sensing flights for high resolution hyperspectral, LiDAR, and digital camera data acquisition. In this study we compare the results of foliar chemistry analysis to the remote sensing vegetation indices and investigate possible sources for variance and difference through the use of the larger hyperspectral dataset as well as ground based spectrometer measurements of samples subsequently analyzed for foliar chemistry.

  7. Utilizing GNSS Reflectometry to Assess Surface Inundation Dynamics in Tropical Wetlands

    NASA Astrophysics Data System (ADS)

    Jensen, K.; McDonald, K. C.; Podest, E.; Chew, C. C.

    2017-12-01

    Tropical wetlands play a significant role in global atmospheric methane and terrestrial water storage. Despite the growing number of remote sensing products from satellite sensors, both spatial distribution and temporal variability of wetlands remain highly uncertain. An emerging innovative approach to mapping wetlands is offered by GNSS reflectometry (GNSS-R), a bistatic radar concept that takes advantage of GNSS transmitting satellites to yield observations with global coverage and rapid revisit time. This technology offers the potential to capture dynamic inundation changes in wetlands at higher temporal fidelity and sensitivity under the canopy than presently possible. We present an integrative analysis of radiometric modeling, ground measurements, and several microwave remote sensing datasets traditionally used for wetland observations. From a theoretical standpoint, GNSS-R sensitivities for vegetation and wetlands are investigated with a bistatic radar model in order to understand the interactions of the signal with various land surface components. GNSS reflections from the TechDemoSat-1 (TDS-1), Soil Moisture Active Passive (SMAP), and Cyclone GNSS (CYGNSS) missions are tested experimentally with contemporaneous (1) field measurements collected from the Pacaya Samiria National Reserve in the Peruvian Amazon, (2) imaging radar from Sentinel-1 and PALSAR-2 observed over a variety of tropical wetland systems, and (3) pan-tropical coarse-resolution (25km) microwave datasets (Surface Water Microwave Product Series). We find that GNSS-R data provide the potential to extend capabilities of current remote sensing techniques to characterize surface inundation extent, and we explore how to maximize synergism between different satellite sensors to produce an enhanced wetland monitoring product.

  8. Semi-automated surface mapping via unsupervised classification

    NASA Astrophysics Data System (ADS)

    D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.

    2017-09-01

    Due to the increasing volume of the returned data from space mission, the human search for correlation and identification of interesting features becomes more and more unfeasible. Statistical extraction of features via machine learning methods will increase the scientific output of remote sensing missions and aid the discovery of yet unknown feature hidden in dataset. Those methods exploit algorithm trained on features from multiple instrument, returning classification maps that explore intra-dataset correlation, allowing for the discovery of unknown features. We present two applications, one for Mercury and one for Vesta.

  9. Comparing soil moisture anomalies from multiple independent sources over different regions across the globe

    NASA Astrophysics Data System (ADS)

    Cammalleri, Carmelo; Vogt, Jürgen V.; Bisselink, Bernard; de Roo, Ad

    2017-12-01

    Agricultural drought events can affect large regions across the world, implying the need for a suitable global tool for an accurate monitoring of this phenomenon. Soil moisture anomalies are considered a good metric to capture the occurrence of agricultural drought events, and they have become an important component of several operational drought monitoring systems. In the framework of the JRC Global Drought Observatory (GDO, http://edo.jrc.ec.europa.eu/gdo/), the suitability of three datasets as possible representations of root zone soil moisture anomalies has been evaluated: (1) the soil moisture from the Lisflood distributed hydrological model (namely LIS), (2) the remotely sensed Land Surface Temperature data from the MODIS satellite (namely LST), and (3) the ESA Climate Change Initiative combined passive/active microwave skin soil moisture dataset (namely CCI). Due to the independency of these three datasets, the triple collocation (TC) technique has been applied, aiming at quantifying the likely error associated with each dataset in comparison to the unknown true status of the system. TC analysis was performed on five macro-regions (namely North America, Europe, India, southern Africa and Australia) detected as suitable for the experiment, providing insight into the mutual relationship between these datasets as well as an assessment of the accuracy of each method. Even if no definitive statement on the spatial distribution of errors can be provided, a clear outcome of the TC analysis is the good performance of the remote sensing datasets, especially CCI, over dry regions such as Australia and southern Africa, whereas the outputs of LIS seem to be more reliable over areas that are well monitored through meteorological ground station networks, such as North America and Europe. In a global drought monitoring system, the results of the error analysis are used to design a weighted-average ensemble system that exploits the advantages of each dataset.

  10. Using aerial images for establishing a workflow for the quantification of water management measures

    NASA Astrophysics Data System (ADS)

    Leuschner, Annette; Merz, Christoph; van Gasselt, Stephan; Steidl, Jörg

    2017-04-01

    Quantified landscape characteristics, such as morphology, land use or hydrological conditions, play an important role for hydrological investigations as landscape parameters directly control the overall water balance. A powerful assimilation and geospatial analysis of remote sensing datasets in combination with hydrological modeling allows to quantify landscape parameters and water balances efficiently. This study focuses on the development of a workflow to extract hydrologically relevant data from aerial image datasets and derived products in order to allow an effective parametrization of a hydrological model. Consistent and self-contained data source are indispensable for achieving reasonable modeling results. In order to minimize uncertainties and inconsistencies, input parameters for modeling should be extracted from one remote-sensing dataset mainly if possbile. Here, aerial images have been chosen because of their high spatial and spectral resolution that permits the extraction of various model relevant parameters, like morphology, land-use or artificial drainage-systems. The methodological repertoire to extract environmental parameters range from analyses of digital terrain models, multispectral classification and segmentation of land use distribution maps and mapping of artificial drainage-systems based on spectral and visual inspection. The workflow has been tested for a mesoscale catchment area which forms a characteristic hydrological system of a young moraine landscape located in the state of Brandenburg, Germany. These dataset were used as input-dataset for multi-temporal hydrological modelling of water balances to detect and quantify anthropogenic and meteorological impacts. ArcSWAT, as a GIS-implemented extension and graphical user input interface for the Soil Water Assessment Tool (SWAT) was chosen. The results of this modeling approach provide the basis for anticipating future development of the hydrological system, and regarding system changes for the adaption of water resource management decisions.

  11. Water Balance in the Amazon Basin from a Land Surface Model Ensemble

    NASA Technical Reports Server (NTRS)

    Getirana, Augusto C. V.; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hong-Yi; Decharme, Bertrand; Zhang, Zhengqiu; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; hide

    2014-01-01

    Despite recent advances in land surfacemodeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-ofthe- art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 18 spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to matchmonthly Global Precipitation Climatology Project (GPCP) andGlobal Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l'Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets andGravity Recovery and ClimateExperiment (GRACE)TWSestimates in two subcatchments of main tributaries (Madeira and Negro Rivers).At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day(exp -1) and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.

  12. The utility of the cropland data layer for Forest Inventory and Analysis

    Treesearch

    Greg C. Liknes; Mark D. Nelson; Dale D. Gormanson; Mark Hansen

    2009-01-01

    The Forest Service, U.S. Department of Agriculture's (USDA's) Northern Research Station Forest Inventory and Analysis program (NRS-FIA) uses digital land cover products derived from remotely sensed imagery, such as the National Land Cover Dataset (NLCD), for the purpose of variance reduction via postsampling stratification. The update cycle of the NLCD...

  13. How similar are forest disturbance maps derived from different Landsat time series algorithms?

    Treesearch

    Warren B. Cohen; Sean P. Healey; Zhiqiang Yang; Stephen V. Stehman; C. Kenneth Brewer; Evan B. Brooks; Noel Gorelick; Chengqaun Huang; M. Joseph Hughes; Robert E. Kennedy; Thomas R. Loveland; Gretchen G. Moisen; Todd A. Schroeder; James E. Vogelmann; Curtis E. Woodcock; Limin Yang; Zhe Zhu

    2017-01-01

    Disturbance is a critical ecological process in forested systems, and disturbance maps are important for understanding forest dynamics. Landsat data are a key remote sensing dataset for monitoring forest disturbance and there recently has been major growth in the development of disturbance mapping algorithms. Many of these algorithms take advantage of the high temporal...

  14. Reconstruction of time-varying tidal flat topography using optical remote sensing imageries

    NASA Astrophysics Data System (ADS)

    Tseng, Kuo-Hsin; Kuo, Chung-Yen; Lin, Tang-Huang; Huang, Zhi-Cheng; Lin, Yu-Ching; Liao, Wen-Hung; Chen, Chi-Farn

    2017-09-01

    Tidal flats (TFs) occupy approximately 7% of the total coastal shelf areas worldwide. However, TFs are unavailable in most global digital elevation models (DEMs) due to water-impermeable nature of existing remote sensing approaches (e.g., radar used for WorldDEM™ and Shuttle Radar Topography Mission DEM and optical stereo-pairs used for ASTER Global Digital Elevation Map Version 2). However, this problem can be circumvented using remote sensing imageries to observe land exposure at different tidal heights during each revisit. This work exploits Landsat-4/-5/-7/-8 Thematic Mapper (TM)/Enhanced TM Plus/Operational Land Imager imageries to reconstruct topography of a TF, namely, Hsiang-Shan Wetland in Taiwan, to unveil its formation and temporal changes since the 1980s. We first classify water areas by applying modified normalized difference water index to each Landsat image and normalize chances of water exposure to create an inundation probability map. This map is then scaled by tidal amplitudes extracted from DTU10 tide model to convert the probabilities into actual elevations. After building DEM at intertidal zone, a water level-area curve is established, and accuracy of DEM is validated by sea level (SL) at the timing of each Landsat snapshot. A 22-year (1992-2013) dataset composed of 227 Landsat scenes are analyzed and compared with tide gauge data. Root-mean-square differences of SL reaches 48 cm with a correlation coefficient of 0.93, indicating that the present technique is useful for constructing accurate coastal DEMs, and that products can be utilized for estimating instant SL. This study shows the possibility of exploring evolution of intertidal zones using an archive of optical remote sensing imageries. The technique developed in the present study potentially helps in quantifying SL from the start of optical remote sensing era.

  15. Supervised classification of aerial imagery and multi-source data fusion for flood assessment

    NASA Astrophysics Data System (ADS)

    Sava, E.; Harding, L.; Cervone, G.

    2015-12-01

    Floods are among the most devastating natural hazards and the ability to produce an accurate and timely flood assessment before, during, and after an event is critical for their mitigation and response. Remote sensing technologies have become the de-facto approach for observing the Earth and its environment. However, satellite remote sensing data are not always available. For these reasons, it is crucial to develop new techniques in order to produce flood assessments during and after an event. Recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed emergency responders to more efficiently extract increasingly precise and relevant knowledge from the available information. This research presents a fusion technique using satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and tweets. A new computational methodology is proposed based on machine learning algorithms to automatically identify water pixels in CAP imagery. Specifically, wavelet transformations are paired with multiple classifiers, run in parallel, to build models discriminating water and non-water regions. The learned classification models are first tested against a set of control cases, and then used to automatically classify each image separately. A measure of uncertainty is computed for each pixel in an image proportional to the number of models classifying the pixel as water. Geo-tagged tweets are continuously harvested and stored on a MongoDB and queried in real time. They are fused with CAP classified data, and with satellite remote sensing derived flood extent results to produce comprehensive flood assessment maps. The final maps are then compared with FEMA generated flood extents to assess their accuracy. The proposed methodology is applied on two test cases, relative to the 2013 floods in Boulder CO, and the 2015 floods in Texas.

  16. Ground-based Remote Sensing for Quantifying Subsurface and Surface Co-variability to Scale Arctic Ecosystem Functioning

    NASA Astrophysics Data System (ADS)

    Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.

    2016-12-01

    Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.

  17. Detection and Monitoring of Oil Spills Using Moderate/High-Resolution Remote Sensing Images.

    PubMed

    Li, Ying; Cui, Can; Liu, Zexi; Liu, Bingxin; Xu, Jin; Zhu, Xueyuan; Hou, Yongchao

    2017-07-01

    Current marine oil spill detection and monitoring methods using high-resolution remote sensing imagery are quite limited. This study presented a new bottom-up and top-down visual saliency model. We used Landsat 8, GF-1, MAMS, HJ-1 oil spill imagery as dataset. A simplified, graph-based visual saliency model was used to extract bottom-up saliency. It could identify the regions with high visual saliency object in the ocean. A spectral similarity match model was used to obtain top-down saliency. It could distinguish oil regions and exclude the other salient interference by spectrums. The regions of interest containing oil spills were integrated using these complementary saliency detection steps. Then, the genetic neural network was used to complete the image classification. These steps increased the speed of analysis. For the test dataset, the average running time of the entire process to detect regions of interest was 204.56 s. During image segmentation, the oil spill was extracted using a genetic neural network. The classification results showed that the method had a low false-alarm rate (high accuracy of 91.42%) and was able to increase the speed of the detection process (fast runtime of 19.88 s). The test image dataset was composed of different types of features over large areas in complicated imaging conditions. The proposed model was proved to be robust in complex sea conditions.

  18. J-Earth: An Essential Resource for Terrestrial Remote Sensing and Data Analysis

    NASA Astrophysics Data System (ADS)

    Dunn, S.; Rupp, J.; Cheeseman, S.; Christensen, P. R.; Prashad, L. C.; Dickenshied, S.; Anwar, S.; Noss, D.; Murray, K.

    2011-12-01

    There is a need for a software tool that has the ability to display and analyze various types of earth science and social data through a simple, user-friendly interface. The J-Earth software tool has been designed to be easily accessible for download and intuitive use, regardless of the technical background of the user base. This tool does not require courses or text books to learn to use, yet is powerful enough to allow a more general community of users to perform complex data analysis. Professions that will benefit from this tool range from geologists, geographers, and climatologists to sociologists, economists, and ecologists as well as policy makers. J-Earth was developed by the Arizona State University Mars Space Flight Facility as part of the JMARS (Java Mission-planning and Analysis for Remote Sensing) suite of open-source tools. The program is a Geographic Information Systems (GIS) application used for viewing and processing satellite and airborne remote sensing data. While the functionality of JMARS has historically focused on the research needs of the planetary science community, J-Earth has been designed for a much broader Earth-based user audience. NASA instrument products accessible within J-Earth include data from ASTER, GOES, Landsat, MODIS, and TIMS. While J-Earth contains exceptionally comprehensive and high resolution satellite-derived data and imagery, this tool also includes many socioeconomic data products from projects lead by international organizations and universities. Datasets used in J-Earth take the form of grids, rasters, remote sensor "stamps", maps, and shapefiles. Some highly demanded global datasets available within J-Earth include five levels of administrative/political boundaries, climate data for current conditions as well as models for future climates, population counts and densities, land cover/land use, and poverty indicators. While this application does share the same powerful functionality of JMARS, J-Earth's apperance is enhanced for much easier data analysis. J-Earth utilizes a layering system to view data from different sources which can then be exported, scaled, colored and superimposed for quick comparisons. Users may now perform spatial analysis over several diverse datasets with respect to a defined geographic area or the entire globe. In addition, several newly acquired global datasets contain a temporal dimension which when accessed through J-Earth, make this a unique and powerful tool for spatial analysis over time. The functionality and ease of use set J-Earth apart from all other terrestrial GIS software packages and enable endless social, political, and scientific possibilities

  19. Estimating the global terrestrial hydrologic cycle through modeling, remote sensing, and data assimilation

    NASA Astrophysics Data System (ADS)

    Pan, Ming; Troy, Tara; Sahoo, Alok; Sheffield, Justin; Wood, Eric

    2010-05-01

    Documentation of the water cycle and its evolution over time is a primary scientific goal of the Global Energy and Water Cycle Experiment (GEWEX) and fundamental to assessing global change impacts. In developed countries, observation systems that include in-situ, remote sensing and modeled data can provide long-term, consistent and generally high quality datasets of water cycle variables. The export of these technologies to less developed regions has been rare, but it is these regions where information on water availability and change is probably most needed in the face of regional environmental change due to climate, land use and water management. In these data sparse regions, in situ data alone are insufficient to develop a comprehensive picture of how the water cycle is changing, and strategies that merge in-situ, model and satellite observations within a framework that results in consistent water cycle records is essential. Such an approach is envisaged by the Global Earth Observing System of Systems (GOESS), but has yet to be applied. The goal of this study is to quantify the variation and changes in the global water cycle over the past 50 years. We evaluate the global water cycle using a variety of independent large-scale datasets of hydrologic variables that are used to bridge the gap between sparse in-situ observations, including remote-sensing based retrievals, observation-forced hydrologic modeling, and weather model reanalyses. A data assimilation framework that blends these disparate sources of information together in a consistent fashion with attention to budget closure is applied to make best estimates of the global water cycle and its variation. The framework consists of a constrained Kalman filter applied to the water budget equation. With imperfect estimates of the water budget components, the equation additionally has an error residual term that is redistributed across the budget components using error statistics, which are estimated from the uncertainties among data products. The constrained Kalman filter treats the budget closure constraint as a perfect observation within the assimilation framework. Precipitation is estimated using gauge observations, reanalysis products, and remote sensing products for below 50°N. Evapotranspiration is estimated in a number of ways: from the VIC land surface hydrologic model forced with a hybrid reanalysis-observation global forcing dataset, from remote sensing retrievals based on a suite of energy balance and process based models, and from an atmospheric water budget approach using reanalysis products for the atmospheric convergence and storage terms and our best estimate for precipitation. Terrestrial water storage changes, including surface and subsurface changes, are estimated using estimates from both VIC and the GRACE remote sensing retrievals. From these components, discharge can then be calculated as a residual of the water budget and compared with gauge observations to evaluate the closure of the water budget. Through the use of these largely independent data products, we estimate both the mean seasonal cycle of the water budget components and their uncertainties for a set of 20 large river basins across the globe. We particularly focus on three regions of interest in global changes studies: the Northern Eurasian region which is experiencing rapid change in terrestrial processes; the Amazon which is a central part of the global water, energy and carbon budgets; and Africa, which is predicted to face some of the most critical challenges for water and food security in the coming decades.

  20. a Fully Automated Pipeline for Classification Tasks with AN Application to Remote Sensing

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Claesen, M.; Takeda, H.; De Moor, B.

    2016-06-01

    Nowadays deep learning has been intensively in spotlight owing to its great victories at major competitions, which undeservedly pushed `shallow' machine learning methods, relatively naive/handy algorithms commonly used by industrial engineers, to the background in spite of their facilities such as small requisite amount of time/dataset for training. We, with a practical point of view, utilized shallow learning algorithms to construct a learning pipeline such that operators can utilize machine learning without any special knowledge, expensive computation environment, and a large amount of labelled data. The proposed pipeline automates a whole classification process, namely feature-selection, weighting features and the selection of the most suitable classifier with optimized hyperparameters. The configuration facilitates particle swarm optimization, one of well-known metaheuristic algorithms for the sake of generally fast and fine optimization, which enables us not only to optimize (hyper)parameters but also to determine appropriate features/classifier to the problem, which has conventionally been a priori based on domain knowledge and remained untouched or dealt with naïve algorithms such as grid search. Through experiments with the MNIST and CIFAR-10 datasets, common datasets in computer vision field for character recognition and object recognition problems respectively, our automated learning approach provides high performance considering its simple setting (i.e. non-specialized setting depending on dataset), small amount of training data, and practical learning time. Moreover, compared to deep learning the performance stays robust without almost any modification even with a remote sensing object recognition problem, which in turn indicates that there is a high possibility that our approach contributes to general classification problems.

  1. The Community Intercomparison Suite (CIS)

    NASA Astrophysics Data System (ADS)

    Watson-Parris, Duncan; Schutgens, Nick; Cook, Nick; Kipling, Zak; Kershaw, Phil; Gryspeerdt, Ed; Lawrence, Bryan; Stier, Philip

    2017-04-01

    Earth observations (both remote and in-situ) create vast amounts of data providing invaluable constraints for the climate science community. Efficient exploitation of these complex and highly heterogeneous datasets has been limited however by the lack of suitable software tools, particularly for comparison of gridded and ungridded data, thus reducing scientific productivity. CIS (http://cistools.net) is an open-source, command line tool and Python library which allows the straight-forward quantitative analysis, intercomparison and visualisation of remote sensing, in-situ and model data. The CIS can read gridded and ungridded remote sensing, in-situ and model data - and many other data sources 'out-of-the-box', such as ESA Aerosol and Cloud CCI product, MODIS, Cloud CCI, Cloudsat, AERONET. Perhaps most importantly however CIS also employs a modular plugin architecture to allow for the reading of limitless different data types. Users are able to write their own plugins for reading the data sources which they are familiar with, and share them within the community, allowing all to benefit from their expertise. To enable the intercomparison of this data the CIS provides a number of operations including: the aggregation of ungridded and gridded datasets to coarser representations using a number of different built in averaging kernels; the subsetting of data to reduce its extent or dimensionality; the co-location of two distinct datasets onto a single set of co-ordinates; the visualisation of the input or output data through a number of different plots and graphs; the evaluation of arbitrary mathematical expressions against any number of datasets; and a number of other supporting functions such as a statistical comparison of two co-located datasets. These operations can be performed efficiently on local machines or large computing clusters - and is already available on the JASMIN computing facility. A case-study using the GASSP collection of in-situ aerosol observations will demonstrate the power of using CIS to perform model evaluations. The use of an open-source, community developed tool in this way opens up a huge amount of data which would previously have been inaccessible to many users, while also providing replicable, repeatable analysis which scientists and policy-makers alike can trust and understand.

  2. Quantifying the Terrestrial Surface Energy Fluxes Using Remotely-Sensed Satellite Data

    NASA Astrophysics Data System (ADS)

    Siemann, Amanda Lynn

    The dynamics of the energy fluxes between the land surface and the atmosphere drive local and regional climate and are paramount to understand the past, present, and future changes in climate. Although global reanalysis datasets, land surface models (LSMs), and climate models estimate these fluxes by simulating the physical processes involved, they merely simulate our current understanding of these processes. Global estimates of the terrestrial, surface energy fluxes based on observations allow us to capture the dynamics of the full climate system. Remotely-sensed satellite data is the source of observations of the land surface which provide the widest spatial coverage. Although net radiation and latent heat flux global, terrestrial, surface estimates based on remotely-sensed satellite data have progressed, comparable sensible heat data products and ground heat flux products have not progressed at this scale. Our primary objective is quantifying and understanding the terrestrial energy fluxes at the Earth's surface using remotely-sensed satellite data with consistent development among all energy budget components [through the land surface temperature (LST) and input meteorology], including validation of these products against in-situ data, uncertainty assessments, and long-term trend analysis. The turbulent fluxes are constrained by the available energy using the Bowen ratio of the un-constrained products to ensure energy budget closure. All final products are within uncertainty ranges of literature values, globally. When validated against the in-situ estimates, the sensible heat flux estimates using the CFSR air temperature and constrained with the products using the MODIS albedo produce estimates closest to the FLUXNET in-situ observations. Poor performance over South America is consistent with the largest uncertainties in the energy budget. From 1984-2007, the longwave upward flux increase due to the LST increase drives the net radiation decrease, and the decrease in the available energy balances the decrease in the sensible heat flux. These datasets are useful for benchmarking climate models and LSM output at the global annual scale and the regional scale subject to the regional uncertainties and performance. Future work should improve the input data, particularly the temperature gradient and Zilitinkevich empirical constant, to reduce uncertainties.

  3. A Study by Remote Sensing Methods of Volcanism at Craters of the Moon National Park, Idaho

    NASA Astrophysics Data System (ADS)

    Haberle, C. W.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Lim, D. S. S.; Garry, B.; Sears, D. W. G.; Downs, M.; Busto, J.; Skok, J. R.; Elphic, R. C.; Kobayashi, L.; Heldmann, J. L.; Christensen, P. R.

    2014-12-01

    Craters of the Moon (COTM) National Park, on the eastern Snake River Plain, and its associated lava fields are currently a focus of the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team. COTM was selected for study owing to similarities with volcanic features observed on the Moon, Mars and Vesta. The COTM basaltic lava fields emanate from an 80 km long rift zone where at least eight eruptive episodes, occurring 15,000 to 2,000 BP, have created an expansive volcanic field covering an area of approximately 1,650 km2. This polygenetic volcanic field hosts a diverse collection of basaltic volcanic edifices such as phreatic explosion craters, eruptive fissures, cinder cones, spatter cones, shield volcanoes and expansive lava flows. Engineering challenges and high cost limit the number of robotic and human field investigations of planetary bodies and, due to these constraints, exhaustive remote sensing investigations of planetary surface properties are undertaken prior to field deployment. This creates an unavoidable dependence upon remote sensing, a critical difference between field investigations of planetary bodies and most terrestrial field investigations. Studies of this nature have utility in terrestrial investigations as they can help link spatially encompassing datasets and conserve field resources. We present preliminary results utilizing Earth orbital datasets to determine the efficacy of products derived from remotely sensed data when compared to geologic field observations. Multispectral imaging data (ASTER, AVIRIS, TIMS) collected at a range of spatial and spectral resolutions are paired with high resolution imagery from both orbit and unmanned aircraft systems. This enables the creation of derived products detailing morphology, compositional variation, mineralogy, relative age and vegetation. The surface morphology of flows within COTM differs from flow to flow and observations of these properties can aid in determining the driving mechanisms. The entirety of the COTM volcanic field is the target of this investigation although areas of interest have been selected for more focused investigation to support planned and ongoing field investigations at Highway A'a flow, North Crater cinder cone and King's Bowl phreatic explosion crater and flow.

  4. New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Zhang, Zhibo

    2013-01-01

    Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.

  5. Modeling forest biomass and growth: Coupling long-term inventory and LiDAR data

    Treesearch

    Chad Babcock; Andrew O. Finley; Bruce D. Cook; Aaron Weiskittel; Christopher W. Woodall

    2016-01-01

    Combining spatially-explicit long-term forest inventory and remotely sensed information from Light Detection and Ranging (LiDAR) datasets through statistical models can be a powerful tool for predicting and mapping above-ground biomass (AGB) at a range of geographic scales. We present and examine a novel modeling approach to improve prediction of AGB and estimate AGB...

  6. Combining forest inventory, satellite remote sensing, and geospatial data for mapping forest attributes of the conterminous United States

    Treesearch

    Mark Nelson; Greg Liknes; Charles H. Perry

    2009-01-01

    Analysis and display of forest composition, structure, and pattern provides information for a variety of assessments and management decision support. The objective of this study was to produce geospatial datasets and maps of conterminous United States forest land ownership, forest site productivity, timberland, and reserved forest land. Satellite image-based maps of...

  7. Semantic labeling of high-resolution aerial images using an ensemble of fully convolutional networks

    NASA Astrophysics Data System (ADS)

    Sun, Xiaofeng; Shen, Shuhan; Lin, Xiangguo; Hu, Zhanyi

    2017-10-01

    High-resolution remote sensing data classification has been a challenging and promising research topic in the community of remote sensing. In recent years, with the rapid advances of deep learning, remarkable progress has been made in this field, which facilitates a transition from hand-crafted features designing to an automatic end-to-end learning. A deep fully convolutional networks (FCNs) based ensemble learning method is proposed to label the high-resolution aerial images. To fully tap the potentials of FCNs, both the Visual Geometry Group network and a deeper residual network, ResNet, are employed. Furthermore, to enlarge training samples with diversity and gain better generalization, in addition to the commonly used data augmentation methods (e.g., rotation, multiscale, and aspect ratio) in the literature, aerial images from other datasets are also collected for cross-scene learning. Finally, we combine these learned models to form an effective FCN ensemble and refine the results using a fully connected conditional random field graph model. Experiments on the ISPRS 2-D Semantic Labeling Contest dataset show that our proposed end-to-end classification method achieves an overall accuracy of 90.7%, a state-of-the-art in the field.

  8. Geological applications of machine learning on hyperspectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Tse, C. H.; Li, Yi-liang; Lam, Edmund Y.

    2015-02-01

    The CRISM imaging spectrometer orbiting Mars has been producing a vast amount of data in the visible to infrared wavelengths in the form of hyperspectral data cubes. These data, compared with those obtained from previous remote sensing techniques, yield an unprecedented level of detailed spectral resolution in additional to an ever increasing level of spatial information. A major challenge brought about by the data is the burden of processing and interpreting these datasets and extract the relevant information from it. This research aims at approaching the challenge by exploring machine learning methods especially unsupervised learning to achieve cluster density estimation and classification, and ultimately devising an efficient means leading to identification of minerals. A set of software tools have been constructed by Python to access and experiment with CRISM hyperspectral cubes selected from two specific Mars locations. A machine learning pipeline is proposed and unsupervised learning methods were implemented onto pre-processed datasets. The resulting data clusters are compared with the published ASTER spectral library and browse data products from the Planetary Data System (PDS). The result demonstrated that this approach is capable of processing the huge amount of hyperspectral data and potentially providing guidance to scientists for more detailed studies.

  9. Modelling the standing timber volume of Baden-Württemberg-A large-scale approach using a fusion of Landsat, airborne LiDAR and National Forest Inventory data

    NASA Astrophysics Data System (ADS)

    Maack, Joachim; Lingenfelder, Marcus; Weinacker, Holger; Koch, Barbara

    2016-07-01

    Remote sensing-based timber volume estimation is key for modelling the regional potential, accessibility and price of lignocellulosic raw material for an emerging bioeconomy. We used a unique wall-to-wall airborne LiDAR dataset and Landsat 7 satellite images in combination with terrestrial inventory data derived from the National Forest Inventory (NFI), and applied generalized additive models (GAM) to estimate spatially explicit timber distribution and volume in forested areas. Since the NFI data showed an underlying structure regarding size and ownership, we additionally constructed a socio-economic predictor to enhance the accuracy of the analysis. Furthermore, we balanced the training dataset with a bootstrap method to achieve unbiased regression weights for interpolating timber volume. Finally, we compared and discussed the model performance of the original approach (r2 = 0.56, NRMSE = 9.65%), the approach with balanced training data (r2 = 0.69, NRMSE = 12.43%) and the final approach with balanced training data and the additional socio-economic predictor (r2 = 0.72, NRMSE = 12.17%). The results demonstrate the usefulness of remote sensing techniques for mapping timber volume for a future lignocellulose-based bioeconomy.

  10. Tracking Cholera in Coastal Regions using Satellite Observations

    PubMed Central

    Jutla, Antarpreet S; Akanda, Ali S; Islam, Shafiqul

    2010-01-01

    Cholera remains a significant health threat across the globe. The pattern and magnitude of the seven global pandemics suggest that cholera outbreaks primarily originate in coastal regions and then spread inland through secondary means. Cholera bacteria show strong association with plankton abundance in coastal ecosystems. This review study investigates relationship(s) between cholera incidence and coastal processes and explores utility of using remote sensing data to track coastal plankton blooms, using chlorophyll as a surrogate variable for plankton abundance, and subsequent cholera outbreaks. Most studies over the last several decades have primarily focused on the microbiological and epidemiological understanding of cholera outbreaks. Accurate identification and mechanistic understanding of large scale climatic, geophysical and oceanic processes governing cholera-chlorophyll relationship is important for developing cholera prediction models. Development of a holistic understanding of these processes requires long and reliable chlorophyll dataset(s), which are beginning to be available through satellites. We have presented a schematic pathway and a modeling framework that relate cholera with various hydroclimatic and oceanic variables for understanding disease dynamics using latest advances in remote sensing. Satellite data, with its unprecedented spatial and temporal coverage, have potentials to monitor coastal processes and track cholera outbreaks in endemic regions. PMID:21072249

  11. Analyzing the performance of PROSPECT model inversion based on different spectral information for leaf biochemical properties retrieval

    NASA Astrophysics Data System (ADS)

    Sun, Jia; Shi, Shuo; Yang, Jian; Du, Lin; Gong, Wei; Chen, Biwu; Song, Shalei

    2018-01-01

    Leaf biochemical constituents provide useful information about major ecological processes. As a fast and nondestructive method, remote sensing techniques are critical to reflect leaf biochemistry via models. PROSPECT model has been widely applied in retrieving leaf traits by providing hemispherical reflectance and transmittance. However, the process of measuring both reflectance and transmittance can be time-consuming and laborious. Contrary to use reflectance spectrum alone in PROSPECT model inversion, which has been adopted by many researchers, this study proposes to use transmission spectrum alone, with the increasing availability of the latter through various remote sensing techniques. Then we analyzed the performance of PROSPECT model inversion with (1) only transmission spectrum, (2) only reflectance and (3) both reflectance and transmittance, using synthetic datasets (with varying levels of random noise and systematic noise) and two experimental datasets (LOPEX and ANGERS). The results show that (1) PROSPECT-5 model inversion based solely on transmission spectrum is viable with results generally better than that based solely on reflectance spectrum; (2) leaf dry matter can be better estimated using only transmittance or reflectance than with both reflectance and transmittance spectra.

  12. Model-data integration for developing the Cropland Carbon Monitoring System (CCMS)

    NASA Astrophysics Data System (ADS)

    Jones, C. D.; Bandaru, V.; Pnvr, K.; Jin, H.; Reddy, A.; Sahajpal, R.; Sedano, F.; Skakun, S.; Wagle, P.; Gowda, P. H.; Hurtt, G. C.; Izaurralde, R. C.

    2017-12-01

    The Cropland Carbon Monitoring System (CCMS) has been initiated to improve regional estimates of carbon fluxes from croplands in the conterminous United States through integration of terrestrial ecosystem modeling, use of remote-sensing products and publically available datasets, and development of improved landscape and management databases. In order to develop these improved carbon flux estimates, experimental datasets are essential for evaluating the skill of estimates, characterizing the uncertainty of these estimates, characterizing parameter sensitivities, and calibrating specific modeling components. Experiments were sought that included flux tower measurement of CO2 fluxes under production of major agronomic crops. Currently data has been collected from 17 experiments comprising 117 site-years from 12 unique locations. Calibration of terrestrial ecosystem model parameters using available crop productivity and net ecosystem exchange (NEE) measurements resulted in improvements in RMSE of NEE predictions of between 3.78% to 7.67%, while improvements in RMSE for yield ranged from -1.85% to 14.79%. Model sensitivities were dominated by parameters related to leaf area index (LAI) and spring growth, demonstrating considerable capacity for model improvement through development and integration of remote-sensing products. Subsequent analyses will assess the impact of such integrated approaches on skill of cropland carbon flux estimates.

  13. Monitoring glacier change: advances in cross-disciplinary research and data sharing methods

    NASA Astrophysics Data System (ADS)

    Arendt, A. A.; O'Neel, S.; Cogley, G.; Hill, D. F.; Hood, E. W.

    2016-12-01

    Recent studies have emphasized the importance of understanding interactions between glacier change and downstream ecosystems, ocean dynamics and human infrastructure. Despite the need for integrated assessments, few in-situ and remote sensing glacier monitoring studies also collect concurrent data on surrounding systems affected by glacier change. In addition, the sharing of glacier datasets across disciplines has often been hampered by limitations in data sharing technologies and a lack of data standardization. Here we provide an overview of recent efforts to facilitate distribution of glacier inventory/change datasets under the framework provided by the Global Terrestrial Network for Glaciers (GTN-G). New, web accessible data products include glacier thickness data and updated glacier extents from the Randolph Glacier Inventory. We also highlight a 2016 data collection effort led by the US Geological Survey on the Wolverine Glacier watershed, Alaska, USA. A large international team collected glaciological, water quality, snow cover, firn composition, vegetation and freshwater ecology data, using remote sensing/in-situ data and model simulations. We summarize preliminary results and outline our use of cloud-computing technologies to coordinate the integration of complex data types across multiple research teams.

  14. Simulating Local and Intercontinental Pollutant Effects of Biomass Burning: Integration of Several Remotely Sensed Datasets

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Vastano, John A.; Guild, Liane; Hlavka, Christine; Brass, James A.; Russell, Philip B. (Technical Monitor)

    1994-01-01

    Burning to clear land for crops and to destroy pests is an integral and largely unavoidable part of tropical agriculture. It is easy to note but difficult to quantify using remote sensing. This report describes our efforts to integrate remotely sensed data into our computer model of tropical chemical trace-gas emissions, weather, and reaction chemistry (using the MM5 mesoscale model and our own Global-Regional Atmospheric Chemistry Simulator). The effects of burning over the continents of Africa and South America have been noticed in observations from several satellites. Smoke plumes hundreds of kilometers long may be seen individually, or may merge into a large smoke pall over thousands of kilometers of these continents. These features are related to intense pollution in the much more confined regions with heavy burning. These emissions also translocate nitrogen thousands of kilometers in the tropical ecosystems, with large fixed-nitrogen losses balanced partially by locally intense fertilization downwind, where nitric acid is rained out. At a much larger scale, various satellite measurements have indicated the escape of carbon monoxide and ozone into large filaments which extend across the Tropical and Southern Atlantic Ocean. Our work relates the source emissions, estimated in part from remote sensing, in part from conventional surface reports, to the concentrations of these gases over these intercontinental regions. We will mention work in progress to use meteorological satellite data (AVHRR, GOES, and Meteosat) to estimate the surface temperature and extent and height of clouds, and explain why these uses are so important in our computer simulations of global biogeochemistry. We will compare our simulations and interpretation of remote observations to the international cooperation involving Brazil, South Africa, and the USA in the TRACE-A (Transport and Atmospheric Chemistry near the Equator - Atlantic) and SAFARI (Southern Africa Fire Atmosphere Research Initiative) and remote-sensing /aircraft/ecosystem observational campaigns.

  15. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  16. Quantifying Arctic Terrestrial Environment Behaviors Using Geophysical, Point-Scale and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Hubbard, S. S.; Ulrich, C.; Peterson, J. E.; Wu, Y.; Wainwright, H. M.; Gangodagamage, C.; Kholodov, A. L.; Kneafsey, T. J.

    2013-12-01

    Improvement in parameterizing Arctic process-rich terrestrial models to simulate feedbacks to a changing climate requires advances in estimating the spatiotemporal variations in active layer and permafrost properties - in sufficiently high resolution yet over modeling-relevant scales. As part of the DOE Next-Generation Ecosystem Experiments (NGEE-Arctic), we are developing advanced strategies for imaging the subsurface and for investigating land and subsurface co-variability and dynamics. Our studies include acquisition and integration of various measurements, including point-based, surface-based geophysical, and remote sensing datasets These data have been collected during a series of campaigns at the NGEE Barrow, AK site along transects that traverse a range of hydrological and geomorphological conditions, including low- to high- centered polygons and drained thaw lake basins. In this study, we describe the use of galvanic-coupled electrical resistance tomography (ERT), capacitively-coupled resistivity (CCR) , permafrost cores, above-ground orthophotography, and digital elevation model (DEM) to (1) explore complementary nature and trade-offs between characterization resolution, spatial extent and accuracy of different datasets; (2) develop inversion approaches to quantify permafrost characteristics (such as ice content, ice wedge frequency, and presence of unfrozen deep layer) and (3) identify correspondences between permafrost and land surface properties (such as water inundation, topography, and vegetation). In terms of methods, we developed a 1D-based direct search approach to estimate electrical conductivity distribution while allowing exploration of multiple solutions and prior information in a flexible way. Application of the method to the Barrow datasets reveals the relative information content of each dataset for characterizing permafrost properties, which shows features variability from below one meter length scales to large trends over more than a kilometer. Further, we used Pole- and Kite-based low-altitude aerial photography with inferred DEM, as well as DEM from LiDAR dataset, to quantify land-surface properties and their co-variability with the subsurface properties. Comparison of the above- and below-ground characterization information indicate that while some permafrost characteristics correspond with changes in hydrogeomorphological expressions, others features show more complex linkages with landscape properties. Overall, our results indicate that remote sensing data, point-scale measurements and surface geophysical measurements enable the identification of regional zones having similar relations between subsurface and land surface properties. Identification of such zonation and associated permafrost-land surface properties can be used to guide investigations of carbon cycling processes and for model parameterization.

  17. Species distribution modelling for Rhipicephalus microplus (Acari: Ixodidae) in Benin, West Africa: comparing datasets and modelling algorithms.

    PubMed

    De Clercq, E M; Leta, S; Estrada-Peña, A; Madder, M; Adehan, S; Vanwambeke, S O

    2015-01-01

    Rhipicephalus microplus is one of the most widely distributed and economically important ticks, transmitting Babesia bigemina, B. bovis and Anaplasma marginale. It was recently introduced to West Africa on live animals originating from Brazil. Knowing the precise environmental suitability for the tick would allow veterinary health officials to draft vector control strategies for different regions of the country. To test the performance of modelling algorithms and different sets of environmental explanatory variables, species distribution models for this tick species in Benin were developed using generalized linear models, linear discriminant analysis and random forests. The training data for these models were a dataset containing reported absence or presence in 104 farms, randomly selected across Benin. These farms were sampled at the end of the rainy season, which corresponds with an annual peak in tick abundance. Two environmental datasets for the country of Benin were compared: one based on interpolated climate data (WorldClim) and one based on remotely sensed images (MODIS). The pixel size for both environmental datasets was 1 km. Highly suitable areas occurred mainly along the warmer and humid coast extending northwards to central Benin. The northern hot and drier areas were found to be unsuitable. The models developed and tested on data from the entire country were generally found to perform well, having an AUC value greater than 0.92. Although statistically significant, only small differences in accuracy measures were found between the modelling algorithms, or between the environmental datasets. The resulting risk maps differed nonetheless. Models based on interpolated climate suggested gradual variations in habitat suitability, while those based on remotely sensed data indicated a sharper contrast between suitable and unsuitable areas, and a patchy distribution of the suitable areas. Remotely sensed data yielded more spatial detail in the predictions. When computing accuracy measures on a subset of data along the invasion front, the modelling technique Random Forest outperformed the other modelling approaches, and results with MODIS-derived variables were better than those using WorldClim data. The high environmental suitability for R. microplus in the southern half of Benin raises concern at the regional level for animal health, including its potential to substantially alter transmission risk of Babesia bovis. The northern part of Benin appeared overall of low environmental suitability. Continuous surveillance in the transition zone however remains relevant, in relation to important cattle movements in the region, and to the invasive character of R. microplus. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Using NASA UAVSAR Datasets to Link Soil Moisture to Crop Conditions

    NASA Astrophysics Data System (ADS)

    Davitt, A. W. D.; McDonald, K. C.; Azarderakhsh, M.; Winter, J.

    2015-12-01

    California and The Central Valley are experiencing one of that region's worst, persistent droughts, which represents the continuation of a prolonged drought that started in the early 2000's. Due to the continued drought, many agricultural regions in The Central Valley have been experiencing water shortages, negatively impacting agricultural production and the socio-economics of the region. Due to these impacts, there has been an increased incentive to find new ways to conserve water for use in irrigation. Recent advances in remote sensing techniques provide the ability for end users to better understand field conditions so they may make more informed decisions on irrigation timing and amounts. However, a good understanding of soil moisture and its role in crop health and yield is lacking to support informed water management decisions. Though known to be important, a robust understanding of the role of the spatio-temporal patterns in soil moisture linked to crop health is lacking. Remote sensing platforms such as NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provide the capacity to obtain within-field measurements to estimate within-field and field-to-field variability in soil moisture. UAVSAR radar images acquired from 2010 to 2014 for Yolo County, California are being examined to determine the suitability of high resolution (field scale) multi-temporal L-band radar backscatter imagery for soil moisture assessment and crop conditions through the growing season. By using such data and linking to in-situ meteorology measurements, modeling (MIMICS), and other remote sensing derived datasets (Sentinel, Landsat, MODIS, and TOPS-SIMS), an integrated monitoring system can potentially support the assessment of agricultural field conditions. This allows growers to optimize the use of limited water supplies through informed water management practices, potentially improving crop conditions and yield in a water stressed region.

  19. Spatial Estimation of Evapotranspiration in an Irrigated Semi-arid Region Using LSMs Driven by Remote Sensing Data.

    NASA Astrophysics Data System (ADS)

    Etchanchu, J.; Delogu, E.; Saadi, S.; Chebbi, W.; Trapon, D.; Rivalland, V.; Boulet, G.; Boone, A. A.; Fanise, P.; Mougenot, B.; LE Dantec, V.

    2017-12-01

    Evapotranspiration and sensible-latent heat flux partition are important decision critera to manage crops, detect water stress and plan irrigation, particularly in a semi-arid context. Nowadays, remote sensing information (at medium -MODIS- and high resolution -LANDSAT, SPOT-) allows us to spatially estimate the different terms of the energy balance at daily and infra-daily time step through various approaches, either by forcing data in an energy balance model (EVASPA, Gallego-Elvira et al., 2013, and SPARSE, Boulet et al., 2015) or data assimilation in coupled water/energy balance models (SURFEX-ISBA, Noilhan et Planton, 1989). However, these different methods of flux estimations still require an evaluation through comparison to in-situ measurements and inter-comparison.The area selected for this study is the Kairouan agricultural plain, a semi-arid region in central Tunisia. Different flux datasets were acquired over two years, on an extensive rainfed oliveyard with very low vegetation cover, and on irrigated and rainfed wheat plots. In the same time, a third dataset has been acquired over a complex agricultural landscape with an eXtra-Large Aperture Scintillometer (XLAS) set-up on a 4 km transect.First, EC fluxes from towers are compared to the different model simulations at plot scale. Then a spatial comparison with retrievals of sensible and latent heat fluxes from XLAS is performed which allows to take into account the heterogeneity of the landscape (mix of wheat, irrigated oliveyards and bare soil). Effects on irrigation scenarios, through an automatic irrigation triggering method are tested and discussed. Finally, we cross-compare the different modeling approaches.We tackle the various issues: the accuracy of the measurements, the temporal frequency of remote sensing data, and the difficulty to calibrate the models.

  20. Geo Issue Tracking System

    NASA Astrophysics Data System (ADS)

    Khakpour, Mohammad; Paulik, Christoph; Hahn, Sebastian

    2016-04-01

    Communication about remote sensing data quality between data providers and users as well as between the users is often difficult. The users have a hard time figuring out if a product has known problems over their region of interest and data providers have to spend a lot of effort to make this information available, if it exists. Scientific publications are one tool for communicating with the users base but they are static and mostly one way. As a data provider it is also often difficult to make feedback, received from users, available to the complete user base. The Geo Issue Tracking System (GeoITS) is an Open Source Web Application which has been developed to mitigate these problems. GeoITS combines a mapping interface (Google Maps) with a simple wiki platform. It allows users to give region specific feedback on a remote sensing product by drawing a polygon on the map and describing the problems they had using the remote sensing product in this area. These geolocated wiki entries are then viewable by other users as well as the data providers which can modify and extend the entries. In this way the conversations between the users and the data provider are no longer hidden in e.g. emails but open for all users of the dataset. This new kind of communication platform can enable better cooperation between users and data providers. It will also provide data providers with the ability to track problems their dataset might have in certain areas and resolve them with new product releases. The source code is available via http://github.com/TUW-GEO/geoits_dev A running instance can be tried at https://geoits.herokuapp.com/

  1. Annual regression-based estimates of evapotranspiration for the contiguous United States based on climate, remote sensing, and stream gage data

    NASA Astrophysics Data System (ADS)

    Reitz, M. D.; Sanford, W. E.; Senay, G. B.; Cazenas, J.

    2015-12-01

    Evapotranspiration (ET) is a key quantity in the hydrologic cycle, accounting for ~70% of precipitation across the contiguous United States (CONUS). However, it is a challenge to estimate, due to difficulty in making direct measurements and gaps in our theoretical understanding. Here we present a new data-driven, ~1km2 resolution map of long-term average actual evapotranspiration rates across the CONUS. The new ET map is a function of the USGS Landsat-derived National Land Cover Database (NLCD), precipitation, temperature, and daily average temperature range (from the PRISM climate dataset), and is calibrated to long-term water balance data from 679 watersheds. It is unique from previously presented ET maps in that (1) it was co-developed with estimates of runoff and recharge; (2) the regression equation was chosen from among many tested, previously published and newly proposed functional forms for its optimal description of long-term water balance ET data; (3) it has values over open-water areas that are derived from separate mass-transfer and humidity equations; and (4) the data include additional precipitation representing amounts converted from 2005 USGS water-use census irrigation data. The regression equation is calibrated using data from 2000-2013, but can also be applied to individual years with their corresponding input datasets. Comparisons among this new map, the more detailed remote-sensing-based estimates of MOD16 and SSEBop, and AmeriFlux ET tower measurements shows encouraging consistency, and indicates that the empirical ET estimate approach presented here produces closer agreement with independent flux tower data for annual average actual ET than other more complex remote sensing approaches.

  2. Downscaling essential climate variable soil moisture using multisource data from 2003 to 2010 in China

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Lin; An, Ru; You, Jia-jun; Wang, Ying; Chen, Yuehong; Shen, Xiao-ji; Gao, Wei; Wang, Yi-nan; Zhang, Yu; Wang, Zhe; Quaye-Ballard, Jonathan Arthur

    2017-10-01

    Soil moisture plays an important role in the water cycle within the surface ecosystem, and it is the basic condition for the growth of plants. Currently, the spatial resolutions of most soil moisture data from remote sensing range from ten to several tens of km, while those observed in-situ and simulated for watershed hydrology, ecology, agriculture, weather, and drought research are generally <1 km. Therefore, the existing coarse-resolution remotely sensed soil moisture data need to be downscaled. This paper proposes a universal and multitemporal soil moisture downscaling method suitable for large areas. The datasets comprise land surface, brightness temperature, precipitation, and soil and topographic parameters from high-resolution data and active/passive microwave remotely sensed essential climate variable soil moisture (ECV_SM) data with a spatial resolution of 25 km. Using this method, a total of 288 soil moisture maps of 1-km resolution from the first 10-day period of January 2003 to the last 10-day period of December 2010 were derived. The in-situ observations were used to validate the downscaled ECV_SM. In general, the downscaled soil moisture values for different land cover and land use types are consistent with the in-situ observations. Mean square root error is reduced from 0.070 to 0.061 using 1970 in-situ time series observation data from 28 sites distributed over different land uses and land cover types. The performance was also assessed using the GDOWN metric, a measure of the overall performance of the downscaling methods based on the same dataset. It was positive in 71.429% of cases, indicating that the suggested method in the paper generally improves the representation of soil moisture at 1-km resolution.

  3. Integrating heterogeneous earth observation data for assessment of high-resolution inundation boundaries generated during flood emergencies.

    NASA Astrophysics Data System (ADS)

    Sava, E.; Cervone, G.; Kalyanapu, A. J.; Sampson, K. M.

    2017-12-01

    The increasing trend in flooding events, paired with rapid urbanization and an aging infrastructure is projected to enhance the risk of catastrophic losses and increase the frequency of both flash and large area floods. During such events, it is critical for decision makers and emergency responders to have access to timely actionable knowledge regarding preparedness, emergency response, and recovery before, during and after a disaster. Large volumes of data sets derived from sophisticated sensors, mobile phones, and social media feeds are increasingly being used to improve citizen services and provide clues to the best way to respond to emergencies through the use of visualization and GIS mapping. Such data, coupled with recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed decision makers to more efficiently extract precise and relevant knowledge and better understand how damage caused by disasters have real time effects on urban population. This research assesses the feasibility of integrating multiple sources of contributed data into hydrodynamic models for flood inundation simulation and estimating damage assessment. It integrates multiple sources of high-resolution physiographic data such as satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and `during-event' social media observations of flood inundation in order to improve the identification of flood mapping. The goal is to augment remote sensing imagery with new open-source datasets to generate flood extend maps at higher temporal and spatial resolution. The proposed methodology is applied on two test cases, relative to the 2013 Boulder Colorado flood and the 2015 floods in Texas.

  4. Identification of mineral resources in Afghanistan-Detecting and mapping resource anomalies in prioritized areas using geophysical and remote sensing (ASTER and HyMap) data

    USGS Publications Warehouse

    King, Trude V.V.; Johnson, Michaela R.; Hubbard, Bernard E.; Drenth, Benjamin J.

    2011-01-01

    During the independent analysis of the geophysical, ASTER, and imaging spectrometer (HyMap) data by USGS scientists, previously unrecognized targets of potential mineralization were identified using evaluation criteria most suitable to the individual dataset. These anomalous zones offer targets of opportunity that warrant additional field verification. This report describes the standards used to define the anomalies, summarizes the results of the evaluations for each type of data, and discusses the importance and implications of regions of anomaly overlap between two or three of the datasets.

  5. NLCD - MODIS albedo data

    EPA Pesticide Factsheets

    The NLCD-MODIS land cover-albedo database integrates high-quality MODIS albedo observations with areas of homogeneous land cover from NLCD. The spatial resolution (pixel size) of the database is 480m-x-480m aligned to the standardized UGSG Albers Equal-Area projection. The spatial extent of the database is the continental United States. This dataset is associated with the following publication:Wickham , J., C.A. Barnes, and T. Wade. Combining NLCD and MODIS to Create a Land Cover-Albedo Dataset for the Continental United States. REMOTE SENSING OF ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 170(0): 143-153, (2015).

  6. Accuracy Dimensions in Remote Sensing

    NASA Astrophysics Data System (ADS)

    Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.

    2018-04-01

    The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice-oriented approaches are evaluated too, finally widely-used dimension metrics like Root Mean Squared Error (RMSE) or confusion matrix are discussed. The authors present data quality features of well-defined and poorly defined object. The central part of the study is the land cover mapping, describing its accuracy management model, presented relevance and uncertainty measures of its influencing quality dimensions. In the paper theory is supported by a case study, where the remote sensing technology is used for supporting the area-based agricultural subsidies of the European Union, in Hungarian administration.

  7. Using NASA Remote Sensing Data to Reduce Uncertainty of Land-use Transitions in Global Carbon-Climate Models

    NASA Astrophysics Data System (ADS)

    Chini, L. P.; Hurtt, G. C.; Frolking, S. E.; Sahajpal, R.; Potapov, P.; Hansen, M.; Fisk, J.

    2016-12-01

    For the 5th IPCC Assessment almost all Earth System Models (ESMs) incorporated new gridded products of land-use and land-use change that were harmonized to ensure a continuous transition from historical to future data in a consistent format for all models. However, these Land-Use Harmonization (LUH) data products are estimates, constrained with data where available, and with modeling assumptions, and the remaining challenge is to quantify, and reduce, the uncertainty in these products. At the same time, satellite remote sensing of the terrestrial biosphere has also evolved. Global-scale land cover extent and change monitoring is now possible given systematically acquired earth observation data sets, advanced characterization algorithms and data intensive computing capabilities. Here we consider: how can satellite remote sensing products be used to generate (and reduce uncertainty in) new gridded maps of land-use transitions for use in coupled carbon-climate simulations? As part of the international effort to develop the next generation of land-use datasets (LUH2), new NASA remote-sensing-based maps of global forest extent and change (Hansen et al. 2013) were used as both an added constraint and diagnostic in the LUH process. Harmonizing this remote sensing data with the LUH data was a major computational challenge involving 143 billion 30m Landsat pixels, and the simulation of over 20 billion LUH unknowns. Our approach involved first harmonizing the definitions of forest loss between the observed and simulated data for the years 2000-2012. Next, new spatial patterns of historical wood harvest were calculated to match the observed forest loss transitions while simultaneously meeting all other constraints of the model, and ensuring consistency throughout the historical time-period. After reconciling definitions and developing new wood harvest patterns the LUH2 global forest loss for the period 2000-2012 was reduced from over 8.3 million km2 to 1.78 million km2 (compared with the remote-sensing-based forest loss of 2.03 million km2). Next steps are to evaluate the ability of these land-use transitions to improve the representation of land-use-related climate forcings in ESM experiments, and to then build upon the LUH framework to incorporate additional remote-sensing data constraints.

  8. Toward interactive search in remote sensing imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Reid B; Hush, Do; Harvey, Neal

    2010-01-01

    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new designmore » criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.« less

  9. Global biodiversity monitoring: from data sources to essential biodiversity variables

    USGS Publications Warehouse

    Proenca, Vania; Martin, Laura J.; Pereira, Henrique M.; Fernandez, Miguel; McRae, Louise; Belnap, Jayne; Böhm, Monika; Brummitt, Neil; Garcia-Moreno, Jaime; Gregory, Richard D.; Honrado, Joao P; Jürgens, Norbert; Opige, Michael; Schmeller, Dirk S.; Tiago, Patricia; van Sway, Chris A

    2016-01-01

    Essential Biodiversity Variables (EBVs) consolidate information from varied biodiversity observation sources. Here we demonstrate the links between data sources, EBVs and indicators and discuss how different sources of biodiversity observations can be harnessed to inform EBVs. We classify sources of primary observations into four types: extensive and intensive monitoring schemes, ecological field studies and satellite remote sensing. We characterize their geographic, taxonomic and temporal coverage. Ecological field studies and intensive monitoring schemes inform a wide range of EBVs, but the former tend to deliver short-term data, while the geographic coverage of the latter is limited. In contrast, extensive monitoring schemes mostly inform the population abundance EBV, but deliver long-term data across an extensive network of sites. Satellite remote sensing is particularly suited to providing information on ecosystem function and structure EBVs. Biases behind data sources may affect the representativeness of global biodiversity datasets. To improve them, researchers must assess data sources and then develop strategies to compensate for identified gaps. We draw on the population abundance dataset informing the Living Planet Index (LPI) to illustrate the effects of data sources on EBV representativeness. We find that long-term monitoring schemes informing the LPI are still scarce outside of Europe and North America and that ecological field studies play a key role in covering that gap. Achieving representative EBV datasets will depend both on the ability to integrate available data, through data harmonization and modeling efforts, and on the establishment of new monitoring programs to address critical data gaps.

  10. An ontological system for interoperable spatial generalisation in biodiversity monitoring

    NASA Astrophysics Data System (ADS)

    Nieland, Simon; Moran, Niklas; Kleinschmit, Birgit; Förster, Michael

    2015-11-01

    Semantic heterogeneity remains a barrier to data comparability and standardisation of results in different fields of spatial research. Because of its thematic complexity, differing acquisition methods and national nomenclatures, interoperability of biodiversity monitoring information is especially difficult. Since data collection methods and interpretation manuals broadly vary there is a need for automatised, objective methodologies for the generation of comparable data-sets. Ontology-based applications offer vast opportunities in data management and standardisation. This study examines two data-sets of protected heathlands in Germany and Belgium which are based on remote sensing image classification and semantically formalised in an OWL2 ontology. The proposed methodology uses semantic relations of the two data-sets, which are (semi-)automatically derived from remote sensing imagery, to generate objective and comparable information about the status of protected areas by utilising kernel-based spatial reclassification. This automatised method suggests a generalisation approach, which is able to generate delineation of Special Areas of Conservation (SAC) of the European biodiversity Natura 2000 network. Furthermore, it is able to transfer generalisation rules between areas surveyed with varying acquisition methods in different countries by taking into account automated inference of the underlying semantics. The generalisation results were compared with the manual delineation of terrestrial monitoring. For the different habitats in the two sites an accuracy of above 70% was detected. However, it has to be highlighted that the delineation of the ground-truth data inherits a high degree of uncertainty, which is discussed in this study.

  11. Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge datasets (2002-2012)

    NASA Astrophysics Data System (ADS)

    Prat, O. P.; Nelson, B. R.

    2014-10-01

    We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, and surface observations to derive precipitation characteristics over CONUS for the period 2002-2012. This comparison effort includes satellite multi-sensor datasets (bias-adjusted TMPA 3B42, near-real time 3B42RT), radar estimates (NCEP Stage IV), and rain gauge observations. Remotely sensed precipitation datasets are compared with surface observations from the Global Historical Climatology Network (GHCN-Daily) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model). The comparisons are performed at the annual, seasonal, and daily scales over the River Forecast Centers (RFCs) for CONUS. Annual average rain rates present a satisfying agreement with GHCN-D for all products over CONUS (± 6%). However, differences at the RFC are more important in particular for near-real time 3B42RT precipitation estimates (-33 to +49%). At annual and seasonal scales, the bias-adjusted 3B42 presented important improvement when compared to its near real time counterpart 3B42RT. However, large biases remained for 3B42 over the Western US for higher average accumulation (≥ 5 mm day-1) with respect to GHCN-D surface observations. At the daily scale, 3B42RT performed poorly in capturing extreme daily precipitation (> 4 in day-1) over the Northwest. Furthermore, the conditional analysis and the contingency analysis conducted illustrated the challenge of retrieving extreme precipitation from remote sensing estimates.

  12. Temporal analysis of remotely sensed turbidity in a coastal archipelago

    NASA Astrophysics Data System (ADS)

    Suominen, Tapio; Tolvanen, Harri

    2016-07-01

    A topographically fragmental archipelago with dynamic waters set the preconditions for assessing coherent remotely sensed information. We generated a turbidity dataset for an archipelago coast in the Baltic Sea from MERIS data (FSG L1b), using CoastColour L1P, L2R and L2W processors. We excluded land and mixed pixels by masking the imagery with accurate (1:10 000) shoreline data. Using temporal linear averaging (TLA), we produced satellite-imagery datasets applicable to temporal composites for the summer seasons of three years. The turbidity assessments and temporally averaged data were compared to in situ observations obtained with coastal monitoring programs. The ability of TLA to estimate missing pixel values was further assessed by cross-validation with the leave-one-out method. The correspondence between L2W turbidity and in situ observations was good (r = 0.89), and even after applying TLA the correspondence remained acceptable (r = 0.78). The datasets revealed spatially divergent temporal water characteristics, which may be relevant to the management, design of monitoring and habitat models. Monitoring observations may be spatially biased if the temporal succession of water properties is not taken into account in coastal areas with anisotropic dispersion of waters and asynchronous annual cycles. Accordingly, areas of varying turbidity may offer a different habitat for aquatic biota than areas of static turbidity, even though they may appear similar if water properties are measured for short annual periods.

  13. Profile and Remote Sensing Observation Datasets (Trace Gases and Aerosols) for Regional- Scale Model Evaluation under the Air Quality Model Evaluation International Initiative (AQMEII)- North American and European Perspectives

    EPA Science Inventory

    While the vast majority of operational air-pollution networks across the world are designed to measure relevant metrics at the surface, the air pollution problem is a three-dimensional phenomenon. The lack of adequate observations aloft to routinely characterize the nature of ai...

  14. Prototyping an Early-warning System for Rainfall-triggered Landslides on a Regional Scale Using a Physically-based Model and Remote Sensing Datasets

    NASA Astrophysics Data System (ADS)

    Liao, Z.; Hong, Y.; Kirschbaum, D. B.; Fukuoka, H.; Sassa, K.; Karnawati, D.; Fathani, F.

    2010-12-01

    Recent advancements in the availability of remotely sensed datasets provide an opportunity to advance the predictability of rainfall-triggered landslides at larger spatial scales. An early-warning system based on a physical landslide model and remote sensing information is used to simulate the dynamical response of the soil water content to the spatiotemporal variability of rainfall in complex terrain. The system utilizes geomorphologic datasets including a 30-meter ASTER DEM, a 1-km downscaled FAO soil map, and satellite-based Tropical Rainfall Measuring Mission (TRMM) precipitation. The applied physical model SLIDE (SLope-Infiltration-Distributed Equilibrium) defines a direct relationship between a factor of safety and the rainfall depth on an infinite slope. This prototype model is applied to a case study in Honduras during Hurricane Mitch in 1998 and a secondary case of typhoon-induced shallow landslides over Java Island, Indonesia. In Honduras, two study areas were selected which cover approximately 1,200 square kilometers and where a high density of shallow landslides occurred. The results were quantitatively evaluated using landslide inventory data compiled by the United States Geological Survey (USGS) following Hurricane Mitch, and show a good agreement between the modeling results and observations. The success rate for accurately estimating slope failure locations reached as high as 78% and 75%, while the error indices were 35% and 49%, respectively for each of the two selected study areas. Advantages and limitations of this application are discussed with respect to future assessment and challenges of performing a slope-stability estimation using coarse data at 1200 square kilometers. In Indonesia, the system has been applied over the whole Java Island. The prototyped early-warning system has been enhanced by integration of a susceptibility mapping and a precipitation forecasting model (i.e. Weather Research Forecast). The performance has been evaluated using a local landslide inventory, and results show that the system successfully predicted landslides in correspondence to the time of occurrence of the real landslide events in this case.

  15. Actual evapotranspiration modeling using the operational Simplified Surface Energy Balance (SSEBop) approach

    USGS Publications Warehouse

    Savoca, Mark E.; Senay, Gabriel B.; Maupin, Molly A.; Kenny, Joan F.; Perry, Charles A.

    2013-01-01

    Remote-sensing technology and surface-energy-balance methods can provide accurate and repeatable estimates of actual evapotranspiration (ETa) when used in combination with local weather datasets over irrigated lands. Estimates of ETa may be used to provide a consistent, accurate, and efficient approach for estimating regional water withdrawals for irrigation and associated consumptive use (CU), especially in arid cropland areas that require supplemental water due to insufficient natural supplies from rainfall, soil moisture, or groundwater. ETa in these areas is considered equivalent to CU, and represents the part of applied irrigation water that is evaporated and/or transpired, and is not available for immediate reuse. A recent U.S. Geological Survey study demonstrated the application of the remote-sensing-based Simplified Surface Energy Balance (SSEB) model to estimate 10-year average ETa at 1-kilometer resolution on national and regional scales, and compared those ETa values to the U.S. Geological Survey’s National Water-Use Information Program’s 1995 county estimates of CU. The operational version of the operational SSEB (SSEBop) method is now used to construct monthly, county-level ETa maps of the conterminous United States for the years 2000, 2005, and 2010. The performance of the SSEBop was evaluated using eddy covariance flux tower datasets compiled from 2005 datasets, and the results showed a strong linear relationship in different land cover types across diverse ecosystems in the conterminous United States (correlation coefficient [r] ranging from 0.75 to 0.95). For example, r for woody savannas (0.75), grassland (0.75), forest (0.82), cropland (0.84), shrub land (0.89), and urban (0.95). A comparison of the remote-sensing SSEBop method for estimating ETa and the Hamon temperature method for estimating potential ET (ETp) also was conducted, using regressions of all available county averages of ETa for 2005 and 2010, and yielded correlations of r = 0.60 and r = 0.71, respectively. Correlations generally are stronger in the Southeast where ETa is close to ETp. SSEBop ETa provides more spatial detail and accuracy in the Southwest where irrigation is practiced in a smaller proportion of the region.

  16. Leveraging Available Technologies for Improved Interoperability and Visualization of Remote Sensing and In-situ Oceanographic data at the PO.DAAC

    NASA Astrophysics Data System (ADS)

    Tsontos, V. M.; Arms, S. C.; Thompson, C. K.; Quach, N.; Lam, T.

    2016-12-01

    Earth science applications increasingly rely on the integration of multivariate data from diverse observational platforms. Whether for satellite mission cal/val, science or decision support, the coupling of remote sensing and in-situ field data is integral also to oceanographic workflows. This has prompted archives such as the PO.DAAC, NASA's physical oceanographic data archive, that historically has had a remote sensing focus, to adapt to better accommodate complex field campaign datasets. However, the inherent heterogeneity of in-situ datasets and their variable adherence to meta/data standards poses a significant impediment to interoperability, a problem originating early in the data lifecycle and significantly impacting stewardship and usability of these data long-term. Here we introduce a new initiative underway at PO.DAAC that seeks to catalyze efforts to address these challenges. It involves the enhancement and integration of available high TRL (Technology Readiness level) components for improved interoperability and support of in-situ data with a focus on a novel yet representative class of oceanographic field data: data from electronic tags deployed on a variety of marine species as biological sampling platforms in support of fisheries management and ocean observation efforts. This project seeks to demonstrate, deliver and ultimately sustain operationally a reusable and accessible set of tools to: 1) mediate reconciliation of heterogeneous source data into a tractable number of standardized formats consistent with earth science data standards; 2) harmonize existing metadata models for satellite and field datasets; 3) demonstrate the value added of integrated data access via a range of available tools and services hosted at the PO.DAAC, including a web-based visualization tool for comprehensive mapping of satellite and in-situ data. An innovative part of our project plan involves partnering with the leading electronic tag manufacturer to promote the adoption of appropriate data standards in their processing software. The proposed project thus adopts a model lifecycle approach complimented by broadly applicable technologies to address key data management and interoperability issues for in-situ data

  17. Use of In-Situ and Remotely Sensed Snow Observations for the National Water Model in Both an Analysis and Calibration Framework.

    NASA Astrophysics Data System (ADS)

    Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.

    2017-12-01

    Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to force the model over an independent period for analysis against both snow and streamflow observations to see if improvements took place. The goal of this work is to further improve snow physics in the NWM, along with identifying areas where further work will take place in the future, such as data assimilation or further forcing improvements.

  18. Effective and efficient analysis of spatio-temporal data

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongnan

    Spatio-temporal data mining, i.e., mining knowledge from large amount of spatio-temporal data, is a highly demanding field because huge amounts of spatio-temporal data have been collected in various applications, ranging from remote sensing, to geographical information systems (GIS), computer cartography, environmental assessment and planning, etc. The collection data far exceeded human's ability to analyze which make it crucial to develop analysis tools. Recent studies on data mining have extended to the scope of data mining from relational and transactional datasets to spatial and temporal datasets. Among the various forms of spatio-temporal data, remote sensing images play an important role, due to the growing wide-spreading of outer space satellites. In this dissertation, we proposed two approaches to analyze the remote sensing data. The first one is about applying association rules mining onto images processing. Each image was divided into a number of image blocks. We built a spatial relationship for these blocks during the dividing process. This made a large number of images into a spatio-temporal dataset since each image was shot in time-series. The second one implemented co-occurrence patterns discovery from these images. The generated patterns represent subsets of spatial features that are located together in space and time. A weather analysis is composed of individual analysis of several meteorological variables. These variables include temperature, pressure, dew point, wind, clouds, visibility and so on. Local-scale models provide detailed analysis and forecasts of meteorological phenomena ranging from a few kilometers to about 100 kilometers in size. When some of above meteorological variables have some special change tendency, some kind of severe weather will happen in most cases. Using the discovery of association rules, we found that some special meteorological variables' changing has tight relation with some severe weather situation that will happen very soon. This dissertation is composed of three parts: an introduction, some basic knowledges and relative works, and my own three contributions to the development of approaches for spatio-temporal data mining: DYSTAL algorithm, STARSI algorithm, and COSTCOP+ algorithm.

  19. Visualizing Earth and Planetary Remote Sensing Data Using JMARS

    NASA Astrophysics Data System (ADS)

    Dickenshied, S.; Christensen, P. R.; Carter, S.; Anwar, S.; Noss, D.

    2014-12-01

    JMARS (Java Mission-planning and Analysis for Remote Sensing) is a free geospatial application developed by the Mars Space Flight Facility at Arizona State University. Originally written as a mission planning tool for the THEMIS instrument on board the MARS Odyssey Spacecraft, it was released as an analysis tool to the general public in 2003. Since then it has expanded to be used for mission planning and scientific data analysis by additional NASA missions to Mars, the Moon, and Vesta, and it has come to be used by scientists, researchers and students of all ages from more than 40 countries around the world. The public version of JMARS now also includes remote sensing data for Mercury, Venus, Earth, the Moon, Mars, and a number of the moons of Jupiter and Saturn. Additional datasets for asteroids and other smaller bodies are being added as they becomes available and time permits. JMARS fuses data from different instruments in a geographical context. One core strength of JMARS is that it provides access to geospatially registered data via a consistent interface. Such data include global images (graphical and numeric), local mosaics, individual instrument images, spectra, and vector-oriented data. By hosting these products, users are able to avoid searching for, downloading, decoding, and projecting data on their own using a disparate set of tools and procedures. The JMARS team processes, indexes, and reorganizes data to make it quickly and easily accessible in a consistent manner. JMARS leverages many open-source technologies and tools to accomplish these data preparation steps. In addition to visualizing multiple datasets in context with one another, JMARS allows a user to find data products from differing missions that intersect the same geographical location, time range, or observational parameters. Any number of georegistered datasets can then be viewed or analyzed simultaneously with one another. A user can easily create a mosaic of graphic data, plot numeric data, or project any arbitrary scene over surface topography. All of these visualization options can be exported for use in presentations, publications, or for further analysis in other tools.

  20. Spatial Variability in Column CO2 Inferred from High Resolution GEOS-5 Global Model Simulations: Implications for Remote Sensing and Inversions

    NASA Technical Reports Server (NTRS)

    Ott, L.; Putman, B.; Collatz, J.; Gregg, W.

    2012-01-01

    Column CO2 observations from current and future remote sensing missions represent a major advancement in our understanding of the carbon cycle and are expected to help constrain source and sink distributions. However, data assimilation and inversion methods are challenged by the difference in scale of models and observations. OCO-2 footprints represent an area of several square kilometers while NASA s future ASCENDS lidar mission is likely to have an even smaller footprint. In contrast, the resolution of models used in global inversions are typically hundreds of kilometers wide and often cover areas that include combinations of land, ocean and coastal areas and areas of significant topographic, land cover, and population density variations. To improve understanding of scales of atmospheric CO2 variability and representativeness of satellite observations, we will present results from a global, 10-km simulation of meteorology and atmospheric CO2 distributions performed using NASA s GEOS-5 general circulation model. This resolution, typical of mesoscale atmospheric models, represents an order of magnitude increase in resolution over typical global simulations of atmospheric composition allowing new insight into small scale CO2 variations across a wide range of surface flux and meteorological conditions. The simulation includes high resolution flux datasets provided by NASA s Carbon Monitoring System Flux Pilot Project at half degree resolution that have been down-scaled to 10-km using remote sensing datasets. Probability distribution functions are calculated over larger areas more typical of global models (100-400 km) to characterize subgrid-scale variability in these models. Particular emphasis is placed on coastal regions and regions containing megacities and fires to evaluate the ability of coarse resolution models to represent these small scale features. Additionally, model output are sampled using averaging kernels characteristic of OCO-2 and ASCENDS measurement concepts to create realistic pseudo-datasets. Pseudo-data are averaged over coarse model grid cell areas to better understand the ability of measurements to characterize CO2 distributions and spatial gradients on both short (daily to weekly) and long (monthly to seasonal) time scales

  1. Monitoring the lake area changes of the Qinghai-Tibet Plateau using coarse-resolution time series remote sensing data

    NASA Astrophysics Data System (ADS)

    Ma, M.

    2015-12-01

    The Qinghai-Tibet Plateau (QTP) is the world's highest and largest plateau and is occasionally referred to as "the roof of the world". As the important "water tower", there are 1,091 lakes of more than 1.0 km2 in the QTP areas, which account for 49.4% of the total area of lakes in China. Some studies focus on the lake area changes of the QTP areas, which mainly use the middle-resolution remote sensing data (e.g. Landsat TM). In this study, the coarse-resolution time series remote sensing data, MODIS data at a spatial resolution of 250m, was used to monitor the lake area changes of the QTP areas during the last 15 years. The dataset is the MOD13Q1 and the Normal Difference Vegetation Index (NDVI) is used to identify the lake area when the NDVI is less than 0. The results show the obvious inner-annual changes of most of the lakes. Therefore the annually average and maximum lake areas are calculated based on the time series remote data, which can better quantify the change characteristics than the single scene of image data from the middle-resolution data. The results indicate that there are big spatial variances of the lake area changes in the QTB. The natural driving factors are analyzed for revealing the causes of changes.

  2. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing

    PubMed Central

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-01-01

    Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive. PMID:28604641

  3. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.

    PubMed

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-06-12

    Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  4. Redefining nondiscriminatory access to remote sensing imagery and its impact on global transparency

    NASA Astrophysics Data System (ADS)

    Aten, Michelle L.

    2003-04-01

    Global transparency is founded on the Open Skies philosophy and its precept of non-discriminatory access. Global transparency implies that anyone can have anytime, anyplace access to a wide-array of remotely sensed imagery. The custom of non-discriminatory access requires that datasets of interest must be affordable, usable, and obtainable in a timely fashion devoid of political, economic or technical obstacles. Thus, an assessment of the correlation between the availability of satellite imagery and changes in governmental policies, pricing fluctuations of data, and advances in technology is critical to assessing the viability of global transparency. The Open Skies philosophy was originally proposed at the 1955 Geneva Summit to advocate mutually beneficial aerial reconnaissance missions over the USSR and the US as a verification tool for arms control and non-proliferation agreements. However, due to Cold War tensions, this philosophy and the custom of non-discriminatory were not widely adopted in the civilian remote sensing community until the commissioning of the Landsat Program in 1972. Since this time, commercial high-resolution satellites have drastically changed the circumstances on which the fundamental tenets of this philosophy are based. Since the successful launch of the first of this satellite class, the IKONOS satellite, high-resolution imagery is now available to non-US governments and an unlimited set of non-state actors. As more advanced capabilities are added to the growing assortment of remote sensing satellites, the reality of global transparency will rapidly evolve. This assessment includes an overview of historical precedents and a brief explanation of relevant US policy decisions that define non-discriminatory access with respect to US government and US based corporate assets. It also presents the dynamics of the political, economic, and technical barriers that may dictate or influence the remote sensing community's access to satellite data. In conclusion, this analysis considers strategies for balancing the dual-use nature of hyperspectral and high-resolution satellite imagery and discusses the potential impact of these policies on gloal transparency.

  5. [Application of optical flow dynamic texture in land use/cover change detection].

    PubMed

    Yan, Li; Gong, Yi-Long; Zhang, Yi; Duan, Wei

    2014-11-01

    In the present study, a novel change detection approach for high resolution remote sensing images is proposed based on the optical flow dynamic texture (OFDT), which could achieve the land use & land cover change information automatically with a dynamic description of ground-object changes. This paper describes the ground-object gradual change process from the principle using optical flow theory, which breaks the ground-object sudden change hypothesis in remote sensing change detection methods in the past. As the steps of this method are simple, it could be integrated in the systems and software such as Land Resource Management and Urban Planning software that needs to find ground-object changes. This method takes into account the temporal dimension feature between remote sensing images, which provides a richer set of information for remote sensing change detection, thereby improving the status that most of the change detection methods are mainly dependent on the spatial dimension information. In this article, optical flow dynamic texture is the basic reflection of changes, and it is used in high resolution remote sensing image support vector machine post-classification change detection, combined with spectral information. The texture in the temporal dimension which is considered in this article has a smaller amount of data than most of the textures in the spatial dimensions. The highly automated texture computing has only one parameter to set, which could relax the onerous manual evaluation present status. The effectiveness of the proposed approach is evaluated with the 2011 and 2012 QuickBird datasets covering Duerbert Mongolian Autonomous County of Daqing City, China. Then, the effects of different optical flow smooth coefficient and the impact on the description of the ground-object changes in the method are deeply analyzed: The experiment result is satisfactory, with an 87.29% overall accuracy and an 0.850 7 Kappa index, and the method achieves better performance than the post-classification change detection methods using spectral information only.

  6. Environmental Public Health Applications Using Remotely Sensed Data.

    PubMed

    Al-Hamdan, Mohammad Z; Crosson, William L; Economou, Sigrid A; Estes, Maurice G; Estes, Sue M; Hemmings, Sarah N; Kent, Shia T; Puckett, Mark; Quattrochi, Dale A; Rickman, Douglas L; Wade, Gina M; McClure, Leslie A

    2014-01-01

    We describe a remote sensing and GIS-based study that has three objectives: (1) characterize fine particulate matter (PM 2.5 ), insolation and land surface temperature using NASA satellite observations, EPA ground-level monitor data and North American Land Data Assimilation System (NLDAS) data products on a national scale; (2) link these data with public health data from the REasons for Geographic And Racial Differences in Stroke (REGARDS) national cohort study to determine whether these environmental risk factors are related to cognitive decline, stroke and other health outcomes; and (3) disseminate the environmental datasets and public health linkage analyses to end users for decision-making through the Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This study directly addresses a public health focus of the NASA Applied Sciences Program, utilization of Earth Sciences products, by addressing issues of environmental health to enhance public health decision-making.

  7. Optical and Physical Methods for Mapping Flooding with Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Fayne, Jessica Fayne; Bolten, John; Lakshmi, Venkat; Ahamed, Aakash

    2016-01-01

    Flood and surface water mapping is becoming increasingly necessary, as extreme flooding events worldwide can damage crop yields and contribute to billions of dollars economic damages as well as social effects including fatalities and destroyed communities (Xaio et al. 2004; Kwak et al. 2015; Mueller et al. 2016).Utilizing earth observing satellite data to map standing water from space is indispensable to flood mapping for disaster response, mitigation, prevention, and warning (McFeeters 1996; Brakenridge and Anderson 2006). Since the early 1970s(Landsat, USGS 2013), researchers have been able to remotely sense surface processes such as extreme flood events to help offset some of these problems. Researchers have demonstrated countless methods and modifications of those methods to help increase knowledge of areas at risk and areas that are flooded using remote sensing data from optical and radar systems, as well as free publically available and costly commercial datasets.

  8. Space-Time Data fusion for Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Nguyen, H.; Cressie, N.

    2011-01-01

    NASA has been collecting massive amounts of remote sensing data about Earth's systems for more than a decade. Missions are selected to be complementary in quantities measured, retrieval techniques, and sampling characteristics, so these datasets are highly synergistic. To fully exploit this, a rigorous methodology for combining data with heterogeneous sampling characteristics is required. For scientific purposes, the methodology must also provide quantitative measures of uncertainty that propagate input-data uncertainty appropriately. We view this as a statistical inference problem. The true but notdirectly- observed quantities form a vector-valued field continuous in space and time. Our goal is to infer those true values or some function of them, and provide to uncertainty quantification for those inferences. We use a spatiotemporal statistical model that relates the unobserved quantities of interest at point-level to the spatially aggregated, observed data. We describe and illustrate our method using CO2 data from two NASA data sets.

  9. a Novel Deep Convolutional Neural Network for Spectral-Spatial Classification of Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Li, N.; Wang, C.; Zhao, H.; Gong, X.; Wang, D.

    2018-04-01

    Spatial and spectral information are obtained simultaneously by hyperspectral remote sensing. Joint extraction of these information of hyperspectral image is one of most import methods for hyperspectral image classification. In this paper, a novel deep convolutional neural network (CNN) is proposed, which extracts spectral-spatial information of hyperspectral images correctly. The proposed model not only learns sufficient knowledge from the limited number of samples, but also has powerful generalization ability. The proposed framework based on three-dimensional convolution can extract spectral-spatial features of labeled samples effectively. Though CNN has shown its robustness to distortion, it cannot extract features of different scales through the traditional pooling layer that only have one size of pooling window. Hence, spatial pyramid pooling (SPP) is introduced into three-dimensional local convolutional filters for hyperspectral classification. Experimental results with a widely used hyperspectral remote sensing dataset show that the proposed model provides competitive performance.

  10. An Approach to Data Center-Based KDD of Remote Sensing Datasets

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Mack, Robert; Wharton, Stephen W. (Technical Monitor)

    2001-01-01

    The data explosion in remote sensing is straining the ability of data centers to deliver the data to the user community, yet many large-volume users actually seek a relatively small information component within the data, which they extract at their sites using Knowledge Discovery in Databases (KDD) techniques. To improve the efficiency of this process, the Goddard Earth Sciences Distributed Active Archive Center (GES DAAC) has implemented a KDD subsystem that supports execution of the user's KDD algorithm at the data center, dramatically reducing the volume that is sent to the user. The data are extracted from the archive in a planned, organized "campaign"; the algorithms are executed, and the output products sent to the users over the network. The first campaign, now complete, has resulted in overall reductions in shipped volume from 3.3 TB to 0.4 TB.

  11. Environmental Public Health Applications Using Remotely Sensed Data

    PubMed Central

    Al-Hamdan, Mohammad Z.; Crosson, William L.; Economou, Sigrid A.; Estes, Maurice G.; Estes, Sue M.; Hemmings, Sarah N.; Kent, Shia T.; Puckett, Mark; Quattrochi, Dale A.; Rickman, Douglas L.; Wade, Gina M.; McClure, Leslie A.

    2012-01-01

    We describe a remote sensing and GIS-based study that has three objectives: (1) characterize fine particulate matter (PM2.5), insolation and land surface temperature using NASA satellite observations, EPA ground-level monitor data and North American Land Data Assimilation System (NLDAS) data products on a national scale; (2) link these data with public health data from the REasons for Geographic And Racial Differences in Stroke (REGARDS) national cohort study to determine whether these environmental risk factors are related to cognitive decline, stroke and other health outcomes; and (3) disseminate the environmental datasets and public health linkage analyses to end users for decision-making through the Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This study directly addresses a public health focus of the NASA Applied Sciences Program, utilization of Earth Sciences products, by addressing issues of environmental health to enhance public health decision-making. PMID:24910505

  12. Using Satellite Remote Sensing and Household Survey Data to Assess Human Health and Nutrition Response to Environmental Change

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Grace, Kathryn; Shively, Gerald; Johnson, Kiersten B.; Carroll, Mark

    2014-01-01

    Climate change and degradation of ecosystem services functioning may threaten the ability of current agricultural systems to keep up with demand for adequate and inexpensive food and for clean water, waste disposal and other broader ecosystem services. Human health is likely to be affected by changes occurring across multiple geographic and time scales. Impacts range from increasing transmissibility and the range of vector-borne diseases, such as malaria and yellow fever, to undermining nutrition through deleterious impacts on food production and concomitant increases in food prices. This paper uses case studies to describe methods that make use of satellite remote sensing and Demographic and Health Survey data to better understand individual-level human health and nutrition outcomes. By bringing these diverse datasets together, the connection between environmental change and human health outcomes can be described through new research and analysis.

  13. Towards a High-Resolution Global Inundation Delineation Dataset

    NASA Astrophysics Data System (ADS)

    Fluet-Chouinard, E.; Lehner, B.

    2011-12-01

    Although their importance for biodiversity, flow regulation and ecosystem service provision is widely recognized, wetlands and temporarily inundated landscapes remain poorly mapped globally because of their inherent elusive nature. Inventorying of wetland resources has been identified in international agreements as an essential component of appropriate conservation efforts and management initiatives of these threatened ecosystems. However, despite recent advances in remote sensing surface water monitoring, current inventories of surface water variations remain incomplete at the regional-to-global scale due to methodological limitations restricting truly global application. Remote sensing wetland applications such as SAR L-band are particularly constrained by image availability and heterogeneity of acquisition dates, while coarse resolution passive microwave and multi-sensor methods cannot discriminate distinct surface water bodies. As a result, the most popular global wetland dataset remains to this day the Global Lake & Wetland Database (Lehner and Doll, 2004) a spatially inconsistent database assembled from various existing data sources. The approach taken in this project circumvents the limitations of current global wetland monitoring methods by combining globally available topographic and hydrographic data to downscale coarse resolution global inundation data (Prigent et al., 2007) and thus create a superior inundation delineation map product. The developed procedure downscales inundation data from the coarse resolution (~27km) of current passive microwave sensors to the finer spatial resolution (~500m) of the topographic and hydrographic layers of HydroSHEDS' data suite (Lehner et al., 2006), while retaining the high temporal resolution of the multi-sensor inundation dataset. From the downscaling process emerges new information on the specific location of inundation, but also on its frequency and duration. The downscaling algorithm employs a decision tree classifier trained on regional remote sensing wetland maps, to derive inundation probability followed by a seeded region growing segmentation process to redistribute the inundated area at the finer resolution. Assessment of the algorithm's performance is accomplished by evaluating the level of agreement between its outputted downscaled inundation maps and existing regional remote sensing inundation delineation. Upon completion, this project's will offer a dynamic globally seamless inundation map at an unprecedented spatial and temporal scale, which will provide the baseline inventory long requested by the research community, and will open the door to a wide array of possible conservation and hydrological modeling applications which were until now data-restricted. Literature Lehner, B., K. Verdin, and A. Jarvis. 2008. New global hydrography derived from spaceborne elevation data. Eos 89, no. 10. Lehner, B, and P Doll. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296, no. 1-4: 1-22. Prigent, C., F. Papa, F. Aires, W. B. Rossow, and E. Matthews. 2007. Global inundation dynamics inferred from multiple satellite observations, 1993-2000. Journal of Geophysical Research 112, no. D12: 1-13.

  14. Using 311 Data as a Proxy For Weather Impacts

    NASA Astrophysics Data System (ADS)

    Zou, X.

    2017-12-01

    According to the World Bank, two-thirds of the global population will lives in urban areas by 2050. The impacts of major weather events have sometimes led to huge economic losses in urban areas and impacts are projected to increase as cities grow. Using remote sensing to study weather in urban areas is challenge because urban areas are small relative to the resolutions of many satellite products. In addition, most human activity is indoors and underground, which neither satellites nor other remote sensing instruments can measure. As a substitute for these instruments, there are datasets that can potentially provide information about the local impacts of the weather. Many cities use the U.S. Federal Communications Commision code for non-emergencies (311) as a hotline for residents to report municipal issues. For example, New York City's 311 dataset contains over a 100 million reports, many of which are potentially related to the impacts of weather events. To isolate the impacts, we aggregate over space and time to reduce the noise in the data and normalize the data to account for uneven distributions of people and complaints. We then compare the potentially weather related 311 reports with global monthly summaries of weather observations from the Global Historical Climatology Network (GHCN) to analyze the impact of weather events as reported by the residents of NYC.

  15. Remote-sensing application for facilitating land resource assessment and monitoring for utility-scale solar energy development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Yuki; Grippo, Mark A.

    2015-01-01

    A monitoring plan that incorporates regional datasets and integrates cost-effective data collection methods is necessary to sustain the long-term environmental monitoring of utility-scale solar energy development in expansive, environmentally sensitive desert environments. Using very high spatial resolution (VHSR; 15 cm) multispectral imagery collected in November 2012 and January 2014, an image processing routine was developed to characterize ephemeral streams, vegetation, and land surface in the southwestern United States where increased utility-scale solar development is anticipated. In addition to knowledge about desert landscapes, the methodology integrates existing spectral indices and transformation (e.g., visible atmospherically resistant index and principal components); a newlymore » developed index, erosion resistance index (ERI); and digital terrain and surface models, all of which were derived from a common VHSR image. The methodology identified fine-scale ephemeral streams with greater detail than the National Hydrography Dataset and accurately estimated vegetation distribution and fractional cover of various surface types. The ERI classified surface types that have a range of erosive potentials. The remote-sensing methodology could ultimately reduce uncertainty and monitoring costs for all stakeholders by providing a cost-effective monitoring approach that accurately characterizes the land resources at potential development sites.« less

  16. Prediction of Chl-a concentrations in an eutrophic lake using ANN models with hybrid inputs

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Yuzugullu, O.

    2017-12-01

    Chlorophyll-a (Chl-a) concentrations in water bodies exhibit both spatial and temporal variations. As a result, frequent sampling is required with higher number of samples. This motivates the use of remote sensing as a monitoring tool. Yet, prediction performances of models that convert radiance values into Chl-a concentrations can be poor in shallow lakes. In this study, Chl-a concentrations in Lake Eymir, a shallow eutrophic lake in Ankara (Turkey), are determined using artificial neural network (ANN) models that use hybrid inputs composed of water quality and meteorological data as well as remotely sensed radiance values to improve prediction performance. Following a screening based on multi-collinearity and principal component analysis (PCA), dissolved-oxygen concentration (DO), pH, turbidity, and humidity were selected among several parameters as the constituents of the hybrid input dataset. Radiance values were obtained from QuickBird-2 satellite. Conversion of the hybrid input into Chl-a concentrations were studied for two different periods in the lake. ANN models were successful in predicting Chl-a concentrations. Yet, prediction performance declined for low Chl-a concentrations in the lake. In general, models with hybrid inputs were superior over the ones that solely used remotely sensed data.

  17. Calibration of a distributed hydrologic model for six European catchments using remote sensing data

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.

    2017-12-01

    While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.

  18. Assimilation of remote sensing data into a process-based ecosystem model for monitoring changes of soil water content in croplands

    NASA Astrophysics Data System (ADS)

    Ju, Weimin; Gao, Ping; Wang, Jun; Li, Xianfeng; Chen, Shu

    2008-10-01

    Soil water content (SWC) is an important factor affecting photosynthesis, growth, and final yields of crops. The information on SWC is of importance for mitigating the reduction of crop yields caused by drought through proper agricultural water management. A variety of methodologies have been developed to estimate SWC at local and regional scales, including field sampling, remote sensing monitoring and model simulations. The reliability of regional SWC simulation depends largely on the accuracy of spatial input datasets, including vegetation parameters, soil and meteorological data. Remote sensing has been proved to be an effective technique for controlling uncertainties in vegetation parameters. In this study, the vegetation parameters (leaf area index and land cover type) derived from the Moderate Resolution Imaging Spectrometer (MODIS) were assimilated into a process-based ecosystem model BEPS for simulating the variations of SWC in croplands of Jiangsu province, China. Validation shows that the BEPS model is able to capture 81% and 83% of across-site variations of SWC at 10 and 20 cm depths during the period from September to December, 2006 when a serous autumn drought occurred. The simulated SWC responded the events of rainfall well at regional scale, demonstrating the usefulness of our methodology for SWC and practical agricultural water management at large scales.

  19. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing.

    PubMed

    Richardson, Andrew D; Hufkens, Koen; Milliman, Tom; Frolking, Steve

    2018-04-09

    Phenology is a valuable diagnostic of ecosystem health, and has applications to environmental monitoring and management. Here, we conduct an intercomparison analysis using phenological transition dates derived from near-surface PhenoCam imagery and MODIS satellite remote sensing. We used approximately 600 site-years of data, from 128 camera sites covering a wide range of vegetation types and climate zones. During both "greenness rising" and "greenness falling" transition phases, we found generally good agreement between PhenoCam and MODIS transition dates for agricultural, deciduous forest, and grassland sites, provided that the vegetation in the camera field of view was representative of the broader landscape. The correlation between PhenoCam and MODIS transition dates was poor for evergreen forest sites. We discuss potential reasons (including sub-pixel spatial heterogeneity, flexibility of the transition date extraction method, vegetation index sensitivity in evergreen systems, and PhenoCam geolocation uncertainty) for varying agreement between time series of vegetation indices derived from PhenoCam and MODIS imagery. This analysis increases our confidence in the ability of satellite remote sensing to accurately characterize seasonal dynamics in a range of ecosystems, and provides a basis for interpreting those dynamics in the context of tangible phenological changes occurring on the ground.

  20. Visual analytics of inherently noisy crowdsourced data on ultra high resolution displays

    NASA Astrophysics Data System (ADS)

    Huynh, Andrew; Ponto, Kevin; Lin, Albert Yu-Min; Kuester, Falko

    The increasing prevalence of distributed human microtasking, crowdsourcing, has followed the exponential increase in data collection capabilities. The large scale and distributed nature of these microtasks produce overwhelming amounts of information that is inherently noisy due to the nature of human input. Furthermore, these inputs create a constantly changing dataset with additional information added on a daily basis. Methods to quickly visualize, filter, and understand this information over temporal and geospatial constraints is key to the success of crowdsourcing. This paper present novel methods to visually analyze geospatial data collected through crowdsourcing on top of remote sensing satellite imagery. An ultra high resolution tiled display system is used to explore the relationship between human and satellite remote sensing data at scale. A case study is provided that evaluates the presented technique in the context of an archaeological field expedition. A team in the field communicated in real-time with and was guided by researchers in the remote visual analytics laboratory, swiftly sifting through incoming crowdsourced data to identify target locations that were identified as viable archaeological sites.

  1. The hydrological cycle in the high Pamir Mountains: how temperature and seasonal precipitation distribution influence stream flow in the Gunt catchment, Tajikistan

    NASA Astrophysics Data System (ADS)

    Pohl, E.; Knoche, M.; Gloaguen, R.; Andermann, C.; Krause, P.

    2014-12-01

    Complex climatic interactions control hydrological processes in high mountains that in their turn regulate the erosive forces shaping the relief. To unravel the hydrological cycle of a glaciated watershed (Gunt River) considered representative of the Pamirs' hydrologic regime we developed a remote sensing-based approach. At the boundary between two distinct climatic zones dominated by Westerlies and Indian summer monsoon, the Pamir is poorly instrumented and only a few in situ meteorological and hydrological data are available. We adapted a suitable conceptual distributed hydrological model (J2000g). Interpolations of the few available in situ data are inadequate due to strong, relief induced, spatial heterogeneities. Instead we use raster data, preferably from remote sensing sources depending on availability and validation. We evaluate remote sensing-based precipitation and temperature products. MODIS MOD11 surface temperatures show good agreement with in situ data, perform better than other products and represent a good proxy for air temperatures. For precipitation we tested remote sensing products as well as the HAR10 climate model data and the interpolation-based APHRODITE dataset. All products show substantial differences both in intensity and seasonal distribution with in-situ data. Despite low resolutions, the datasets are able to sustain high model efficiencies (NSE ≥0.85). In contrast to neighbouring regions in the Himalayas or the Hindukush, discharge is dominantly the product of snow and glacier melt and thus temperature is the essential controlling factor. 80% of annual precipitation is provided as snow in winter and spring contrasting peak discharges during summer. Hence, precipitation and discharge are negatively correlated and display complex hysteresis effects that allow to infer the effect of inter-annual climatic variability on river flow. We infer the existence of two subsurface reservoirs. The groundwater reservoir (providing 40% of annual discharge) recharges in spring and summer and releases slowly during fall and winter. A not fully constrained shallow reservoir with very rapid retention times buffers melt waters during spring and summer. This study highlights the importance of a better understanding of the hydrologic cycle to constrain natural hazards such as floods and landslides as well as water availability in the downstream areas. The negative glacier mass balance (-0.6 m w.e. yr-1) indicates glacier retreat, that will effect the currently 30% contribution of glacier melt to stream flow.

  2. Propagation Limitations in Remote Sensing.

    DTIC Science & Technology

    Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .

  3. What Controls the Hydrodynamics of the Central Congo River?

    NASA Astrophysics Data System (ADS)

    O'Loughlin, F.; Bates, P. D.

    2014-12-01

    Despite being the second largest river basin in the world, with a drainage area greater than 3.7 million square kilometres, little is known about the hydraulics of the Congo River. This lack of knowledge is mainly due to a mixture of conflicts and the difficulty of accessing existing data. We present results of studies which have focused primarily on the middle reach of the Congo River, located between Kisangani and Kinshasa, and its six main tributaries (Kasai, Ubangai, Sangha, Ruki, Lulonga and Lomami rivers). Through a combination of remotely sensed datasets and a hydrodynamic model we investigated what factors control the hydrodynamics of the middle reach. From the analysis of the remotely sensed datasets, we discover that variability in river width of the middle reach of the Congo is large and cannot be represented by empirical equations which relate channel geometry to basin area and discharge. Water surface slopes vary from 3.5 cm/km to 9 cm/km, which is far more than previous studies suggest. The remote datasets indicate that there exist 5 large constrictions in the river width which may result in backwater affecting between 11 and 33 percent of middle reach at low and high water respectively. These results were corroborated by the hydrodynamic model. In fact, when all constrictions caused by a narrowing in width of 1 km or more are considered, water levels along 43 percent of the middle reach change by at least 0.5 m. Using the hydrodynamic model we also investigated the importance of the wetlands to the attenuation of the flood wave through the system. Initial results suggest that for the Congo River, floodplains have far more impact on the peak magnitude than the timing of the flood wave. When the model was run with no floodplain interactions an increase in the magnitude of flood peak was observed, with the timing of the waves being consistent with observed measurements.

  4. How can cloud processing enable generation of new knowledge through multidisciplinary research? The case of Co-ReSyF for coastal research

    NASA Astrophysics Data System (ADS)

    Politi, Eirini; Scarrott, Rory; Tuohy, Eimear; Terra Homem, Miguel; Caumont, Hervé; Grosso, Nuno; Mangin, Antoine; Catarino, Nuno

    2017-04-01

    According to the United Nations Environment Programme (UNEP), half the world's population lives within 60 km of the sea, and three-quarters of all large cities are located on the coast. Natural hazards and changing coastal processes due to environmental and climate change and intensified human activities, can affect coastal regions in many ways, such as coastal inundation, erosion and marine pollution among others, causing loss of life and degradation of vulnerable coastal and marine habitats. To fully understand how the environment is changing across transitional landscapes, such as the coastal zone, a combination of methods and disciplines is required. Geospatial approaches that harness global and regional datasets, along with new generation remote sensing products and climate variables, can help characterise trajectories of change in coastal systems and improve our knowledge and understanding of complex processes. However, such approaches often require Big Data and often Real-Time (RT) datasets to ensure timeliness in risk prediction, assessment and management. In addition, the task of identifying suitable datasets from the plethora of data repositories and sources that currently exist can be challenging, even for experienced researchers. As geospatial datasets continue to increase in quantity and quality, processing has become slower and demanding of better, often faster, computing facilities. To address these issues, an EU-funded project is developing an online platform to bring geospatial data, processing and coastal communities together in a collaborative cloud-based environment. The European Commission (EC) H2020 Coastal Water Research Synergy Framework (Co-ReSyF) project is developing a platform based on cloud computing to maximise processing effort and task orchestration. Users will be able to access, view and process satellite data, and visualise and share their outputs on the platform. This will allow faster processing and innovative data synergies, by advancing collaboration between different scientific communities. With core research applications currently ranging from bathymetry mapping to oil spill detection, sea level change and exploitation of data-rich time series to explore oceanic processes, the Co-ReSyF capabilities will be further enhanced by its users, who will be able to upload their own algorithms and processors onto the system. Co-ReSyF aims to address gaps and issues faced by remote sensing scientists and researchers, but also target non-remote sensing coastal experts, marine scientists and downstream users, with main focus on enabling Big Data access and processing for coastal and marine applications.

  5. Global retrieval of soil moisture and vegetation properties using data-driven methods

    NASA Astrophysics Data System (ADS)

    Rodriguez-Fernandez, Nemesio; Richaume, Philippe; Kerr, Yann

    2017-04-01

    Data-driven methods such as neural networks (NNs) are a powerful tool to retrieve soil moisture from multi-wavelength remote sensing observations at global scale. In this presentation we will review a number of recent results regarding the retrieval of soil moisture with the Soil Moisture and Ocean Salinity (SMOS) satellite, either using SMOS brightness temperatures as input data for the retrieval or using SMOS soil moisture retrievals as reference dataset for the training. The presentation will discuss several possibilities for both the input datasets and the datasets to be used as reference for the supervised learning phase. Regarding the input datasets, it will be shown that NNs take advantage of the synergy of SMOS data and data from other sensors such as the Advanced Scatterometer (ASCAT, active microwaves) and MODIS (visible and infra red). NNs have also been successfully used to construct long time series of soil moisture from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and SMOS. A NN with input data from ASMR-E observations and SMOS soil moisture as reference for the training was used to construct a dataset sharing a similar climatology and without a significant bias with respect to SMOS soil moisture. Regarding the reference data to train the data-driven retrievals, we will show different possibilities depending on the application. Using actual in situ measurements is challenging at global scale due to the scarce distribution of sensors. In contrast, in situ measurements have been successfully used to retrieve SM at continental scale in North America, where the density of in situ measurement stations is high. Using global land surface models to train the NN constitute an interesting alternative to implement new remote sensing surface datasets. In addition, these datasets can be used to perform data assimilation into the model used as reference for the training. This approach has recently been tested at the European Centre for Medium-Range Weather Forecasts (ECMWF). Finally, retrievals using radiative transfer models can also be used as a reference SM dataset for the training phase. This approach was used to retrieve soil moisture from ASMR-E, as mentioned above, and also to implement the official European Space Agency (ESA) SMOS soil moisture product in Near-Real-Time. We will finish with a discussion of the retrieval of vegetation parameters from SMOS observations using data-driven methods.

  6. A GIS and statistical approach to identify variables that control water quality in hydrothermally altered and mineralized watersheds, Silverton, Colorado, USA

    USGS Publications Warehouse

    Yager, Douglas B.; Johnson, Raymond H.; Rockwell, Barnaby W.; Caine, Jonathan S.; Smith, Kathleen S.

    2013-01-01

    Hydrothermally altered bedrock in the Silverton mining area, southwest Colorado, USA, contains sulfide minerals that weather to produce acidic and metal-rich leachate that is toxic to aquatic life. This study utilized a geographic information system (GIS) and statistical approach to identify watershed-scale geologic variables in the Silverton area that influence water quality. GIS analysis of mineral maps produced using remote sensing datasets including Landsat Thematic Mapper, advanced spaceborne thermal emission and reflection radiometer, and a hybrid airborne visible infrared imaging spectrometer and field-based product enabled areas of alteration to be quantified. Correlations between water quality signatures determined at watershed outlets, and alteration types intersecting both total watershed areas and GIS-buffered areas along streams were tested using linear regression analysis. Despite remote sensing datasets having varying watershed area coverage due to vegetation cover and differing mineral mapping capabilities, each dataset was useful for delineating acid-generating bedrock. Areas of quartz–sericite–pyrite mapped by AVIRIS have the highest correlations with acidic surface water and elevated iron and aluminum concentrations. Alkalinity was only correlated with area of acid neutralizing, propylitically altered bedrock containing calcite and chlorite mapped by AVIRIS. Total watershed area of acid-generating bedrock is more significantly correlated with acidic and metal-rich surface water when compared with acid-generating bedrock intersected by GIS-buffered areas along streams. This methodology could be useful in assessing the possible effects that alteration type area has in either generating or neutralizing acidity in unmined watersheds and in areas where new mining is planned.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getirana, Augusto; Dutra, Emanuel; Guimberteau, Matthieu

    Despite recent advances in modeling and remote sensing of land surfaces, estimates of the global water budget are still fairly uncertain. The objective of this study is to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables [total water storage (TWS), evapotranspiration (ET), surface runoff (R) and baseflow (B)] are evaluated at the basin scale using both remote sensing and in situ data. Fourteen LSMs were run using meteorological forcings at a 3-hourly time step and 1-degree spatial resolution. Three experiments are performed using precipitation which has been rescaledmore » to match monthly global GPCP and GPCC datasets and the daily HYBAM dataset for the Amazon basin. R and B are used to force the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration, and GRACE TWS estimates in different catchments. At the basin scale, simulated ET ranges from 2.39mm.d-1 to 3.26mm.d-1 and a low spatial correlation between ET and P indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget variables vary significantly as a function of both the LSM and precipitation used, but simulated TWS generally agree at the basin scale. The best water budget simulations resulted from experiments using the HYBAM dataset, mostly explained by a denser rainfall gauge network the daily rescaling.« less

  8. An effective approach for gap-filling continental scale remotely sensed time-series

    PubMed Central

    Weiss, Daniel J.; Atkinson, Peter M.; Bhatt, Samir; Mappin, Bonnie; Hay, Simon I.; Gething, Peter W.

    2014-01-01

    The archives of imagery and modeled data products derived from remote sensing programs with high temporal resolution provide powerful resources for characterizing inter- and intra-annual environmental dynamics. The impressive depth of available time-series from such missions (e.g., MODIS and AVHRR) affords new opportunities for improving data usability by leveraging spatial and temporal information inherent to longitudinal geospatial datasets. In this research we develop an approach for filling gaps in imagery time-series that result primarily from cloud cover, which is particularly problematic in forested equatorial regions. Our approach consists of two, complementary gap-filling algorithms and a variety of run-time options that allow users to balance competing demands of model accuracy and processing time. We applied the gap-filling methodology to MODIS Enhanced Vegetation Index (EVI) and daytime and nighttime Land Surface Temperature (LST) datasets for the African continent for 2000–2012, with a 1 km spatial resolution, and an 8-day temporal resolution. We validated the method by introducing and filling artificial gaps, and then comparing the original data with model predictions. Our approach achieved R2 values above 0.87 even for pixels within 500 km wide introduced gaps. Furthermore, the structure of our approach allows estimation of the error associated with each gap-filled pixel based on the distance to the non-gap pixels used to model its fill value, thus providing a mechanism for including uncertainty associated with the gap-filling process in downstream applications of the resulting datasets. PMID:25642100

  9. Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence.

    PubMed

    Sandino, Juan; Pegg, Geoff; Gonzalez, Felipe; Smith, Grant

    2018-03-22

    The environmental and economic impacts of exotic fungal species on natural and plantation forests have been historically catastrophic. Recorded surveillance and control actions are challenging because they are costly, time-consuming, and hazardous in remote areas. Prolonged periods of testing and observation of site-based tests have limitations in verifying the rapid proliferation of exotic pathogens and deterioration rates in hosts. Recent remote sensing approaches have offered fast, broad-scale, and affordable surveys as well as additional indicators that can complement on-ground tests. This paper proposes a framework that consolidates site-based insights and remote sensing capabilities to detect and segment deteriorations by fungal pathogens in natural and plantation forests. This approach is illustrated with an experimentation case of myrtle rust ( Austropuccinia psidii ) on paperbark tea trees ( Melaleuca quinquenervia ) in New South Wales (NSW), Australia. The method integrates unmanned aerial vehicles (UAVs), hyperspectral image sensors, and data processing algorithms using machine learning. Imagery is acquired using a Headwall Nano-Hyperspec ® camera, orthorectified in Headwall SpectralView ® , and processed in Python programming language using eXtreme Gradient Boosting (XGBoost), Geospatial Data Abstraction Library (GDAL), and Scikit-learn third-party libraries. In total, 11,385 samples were extracted and labelled into five classes: two classes for deterioration status and three classes for background objects. Insights reveal individual detection rates of 95% for healthy trees, 97% for deteriorated trees, and a global multiclass detection rate of 97%. The methodology is versatile to be applied to additional datasets taken with different image sensors, and the processing of large datasets with freeware tools.

  10. Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence

    PubMed Central

    2018-01-01

    The environmental and economic impacts of exotic fungal species on natural and plantation forests have been historically catastrophic. Recorded surveillance and control actions are challenging because they are costly, time-consuming, and hazardous in remote areas. Prolonged periods of testing and observation of site-based tests have limitations in verifying the rapid proliferation of exotic pathogens and deterioration rates in hosts. Recent remote sensing approaches have offered fast, broad-scale, and affordable surveys as well as additional indicators that can complement on-ground tests. This paper proposes a framework that consolidates site-based insights and remote sensing capabilities to detect and segment deteriorations by fungal pathogens in natural and plantation forests. This approach is illustrated with an experimentation case of myrtle rust (Austropuccinia psidii) on paperbark tea trees (Melaleuca quinquenervia) in New South Wales (NSW), Australia. The method integrates unmanned aerial vehicles (UAVs), hyperspectral image sensors, and data processing algorithms using machine learning. Imagery is acquired using a Headwall Nano-Hyperspec® camera, orthorectified in Headwall SpectralView®, and processed in Python programming language using eXtreme Gradient Boosting (XGBoost), Geospatial Data Abstraction Library (GDAL), and Scikit-learn third-party libraries. In total, 11,385 samples were extracted and labelled into five classes: two classes for deterioration status and three classes for background objects. Insights reveal individual detection rates of 95% for healthy trees, 97% for deteriorated trees, and a global multiclass detection rate of 97%. The methodology is versatile to be applied to additional datasets taken with different image sensors, and the processing of large datasets with freeware tools. PMID:29565822

  11. New Statistical Model for Variability of Aerosol Optical Thickness: Theory and Application to MODIS Data over Ocean

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail Dmitrievic; Geogdzhayev, Igor V.; Tsigaridis, Konstantinos; Marshak, Alexander; Levy, Robert; Cairns, Brian

    2016-01-01

    A novel model for the variability in aerosol optical thickness (AOT) is presented. This model is based on the consideration of AOT fields as realizations of a stochastic process, that is the exponent of an underlying Gaussian process with a specific autocorrelation function. In this approach AOT fields have lognormal PDFs and structure functions having the correct asymptotic behavior at large scales. The latter is an advantage compared with fractal (scale-invariant) approaches. The simple analytical form of the structure function in the proposed model facilitates its use for the parameterization of AOT statistics derived from remote sensing data. The new approach is illustrated using a month-long global MODIS AOT dataset (over ocean) with 10 km resolution. It was used to compute AOT statistics for sample cells forming a grid with 5deg spacing. The observed shapes of the structure functions indicated that in a large number of cases the AOT variability is split into two regimes that exhibit different patterns of behavior: small-scale stationary processes and trends reflecting variations at larger scales. The small-scale patterns are suggested to be generated by local aerosols within the marine boundary layer, while the large-scale trends are indicative of elevated aerosols transported from remote continental sources. This assumption is evaluated by comparison of the geographical distributions of these patterns derived from MODIS data with those obtained from the GISS GCM. This study shows considerable potential to enhance comparisons between remote sensing datasets and climate models beyond regional mean AOTs.

  12. Hyperspectral landcover classification for the Yakima Training Center, Yakima, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmaus, K.L.; Perry, E.M.; Petrie, G.M.

    1998-04-01

    The US Department of Energy`s (DOE`s) Pacific Northwest National Laboratory (PNNL) was tasked in FY97-98 to conduct a multisensor feature extraction project for the Terrain Modeling Project Office (TMPO) of the National Imagery and Mapping Agency (NIMA). The goal of this research is the development of near-autonomous methods to remotely classify and characterize regions of military interest, in support of the TMPO of NIMA. These methods exploit remotely sensed datasets including hyperspectral (HYDICE) imagery, near-infrared and thermal infrared (Daedalus 3600), radar, and terrain datasets. The study site for this project is the US Army`s Yakima Training Center (YTC), a 326,741-acremore » training area located near Yakima, Washington. Two study areas at the YTC were selected to conduct and demonstrate multisensor feature extraction, the 2-km x 2-km Cantonment Area and the 3-km x 3-km Choke Point area. Classification of the Cantonment area afforded a comparison of classification results at different scales.« less

  13. Earth view: A business guide to orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1990-01-01

    The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.

  14. Hillslope characterization: Identifying key controls on local-scale plant communities' distribution using remote sensing and subsurface data fusion.

    NASA Astrophysics Data System (ADS)

    Falco, N.; Wainwright, H. M.; Dafflon, B.; Leger, E.; Peterson, J.; Steltzer, H.; Wilmer, C.; Williams, K. H.; Hubbard, S. S.

    2017-12-01

    Mountainous watershed systems are characterized by extreme heterogeneity in hydrological and pedological properties that influence biotic activities, plant communities and their dynamics. To gain predictive understanding of how ecosystem and watershed system evolve under climate change, it is critical to capture such heterogeneity and to quantify the effect of key environmental variables such as topography, and soil properties. In this study, we exploit advanced geophysical and remote sensing techniques - coupled with machine learning - to better characterize and quantify the interactions between plant communities' distribution and subsurface properties. First, we have developed a remote sensing data fusion framework based on the random forest (RF) classification algorithm to estimate the spatial distribution of plant communities. The framework allows the integration of both plant spectral and structural information, which are derived from multispectral satellite images and airborne LiDAR data. We then use the RF method to evaluate the estimated plant community map, exploiting the subsurface properties (such as bedrock depth, soil moisture and other properties) and geomorphological parameters (such as slope, curvature) as predictors. Datasets include high-resolution geophysical data (electrical resistivity tomography) and LiDAR digital elevation maps. We demonstrate our approach on a mountain hillslope and meadow within the East River watershed in Colorado, which is considered to be a representative headwater catchment in the Upper Colorado Basin. The obtained results show the existence of co-evolution between above and below-ground processes; in particular, dominant shrub communities in wet and flat areas. We show that successful integration of remote sensing data with geophysical measurements allows identifying and quantifying the key environmental controls on plant communities' distribution, and provides insights into their potential changes in the future climate conditions.

  15. Estimating Water Levels with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Lucero, E.; Russo, T. A.; Zentner, M.; May, J.; Nguy-Robertson, A. L.

    2016-12-01

    Reservoirs serve multiple functions and are vital for storage, electricity generation, and flood control. For many areas, traditional ground-based reservoir measurements may not be available or data dissemination may be problematic. Consistent monitoring of reservoir levels in data-poor areas can be achieved through remote sensing, providing information to researchers and the international community. Estimates of trends and relative reservoir volume can be used to identify water supply vulnerability, anticipate low power generation, and predict flood risk. Image processing with automated cloud computing provides opportunities to study multiple geographic areas in near real-time. We demonstrate the prediction capability of a cloud environment for identifying water trends at reservoirs in the US, and then apply the method to data-poor areas in North Korea, Iran, Azerbaijan, Zambia, and India. The Google Earth Engine cloud platform hosts remote sensing data and can be used to automate reservoir level estimation with multispectral imagery. We combine automated cloud-based analysis from Landsat image classification to identify reservoir surface area trends and radar altimetry to identify reservoir level trends. The study estimates water level trends using three years of data from four domestic reservoirs to validate the remote sensing method, and five foreign reservoirs to demonstrate the method application. We report correlations between ground-based reservoir level measurements in the US and our remote sensing methods, and correlations between the cloud analysis and altimetry data for reservoirs in data-poor areas. The availability of regular satellite imagery and an automated, near real-time application method provides the necessary datasets for further temporal analysis, reservoir modeling, and flood forecasting. All statements of fact, analysis, or opinion are those of the author and do not reflect the official policy or position of the Department of Defense or any of its components or the U.S. Government

  16. Deriving temporally continuous soil moisture estimations at fine resolution by downscaling remotely sensed product

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Ge, Yong; Wang, Jianghao; Heuvelink, Gerard B. M.

    2018-06-01

    Land surface soil moisture (SSM) has important roles in the energy balance of the land surface and in the water cycle. Downscaling of coarse-resolution SSM remote sensing products is an efficient way for producing fine-resolution data. However, the downscaling methods used most widely require full-coverage visible/infrared satellite data as ancillary information. These methods are restricted to cloud-free days, making them unsuitable for continuous monitoring. The purpose of this study is to overcome this limitation to obtain temporally continuous fine-resolution SSM estimations. The local spatial heterogeneities of SSM and multiscale ancillary variables were considered in the downscaling process both to solve the problem of the strong variability of SSM and to benefit from the fusion of ancillary information. The generation of continuous downscaled remote sensing data was achieved via two principal steps. For cloud-free days, a stepwise hybrid geostatistical downscaling approach, based on geographically weighted area-to-area regression kriging (GWATARK), was employed by combining multiscale ancillary variables with passive microwave remote sensing data. Then, the GWATARK-estimated SSM and China Soil Moisture Dataset from Microwave Data Assimilation SSM data were combined to estimate fine-resolution data for cloudy days. The developed methodology was validated by application to the 25-km resolution daily AMSR-E SSM product to produce continuous SSM estimations at 1-km resolution over the Tibetan Plateau. In comparison with ground-based observations, the downscaled estimations showed correlation (R ≥ 0.7) for both ascending and descending overpasses. The analysis indicated the high potential of the proposed approach for producing a temporally continuous SSM product at fine spatial resolution.

  17. Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in northern Minnesota

    USGS Publications Warehouse

    Corcoran, Jennifer M.; Knight, Joseph F.; Gallant, Alisa L.

    2013-01-01

    Wetland mapping at the landscape scale using remotely sensed data requires both affordable data and an efficient accurate classification method. Random forest classification offers several advantages over traditional land cover classification techniques, including a bootstrapping technique to generate robust estimations of outliers in the training data, as well as the capability of measuring classification confidence. Though the random forest classifier can generate complex decision trees with a multitude of input data and still not run a high risk of over fitting, there is a great need to reduce computational and operational costs by including only key input data sets without sacrificing a significant level of accuracy. Our main questions for this study site in Northern Minnesota were: (1) how does classification accuracy and confidence of mapping wetlands compare using different remote sensing platforms and sets of input data; (2) what are the key input variables for accurate differentiation of upland, water, and wetlands, including wetland type; and (3) which datasets and seasonal imagery yield the best accuracy for wetland classification. Our results show the key input variables include terrain (elevation and curvature) and soils descriptors (hydric), along with an assortment of remotely sensed data collected in the spring (satellite visible, near infrared, and thermal bands; satellite normalized vegetation index and Tasseled Cap greenness and wetness; and horizontal-horizontal (HH) and horizontal-vertical (HV) polarization using L-band satellite radar). We undertook this exploratory analysis to inform decisions by natural resource managers charged with monitoring wetland ecosystems and to aid in designing a system for consistent operational mapping of wetlands across landscapes similar to those found in Northern Minnesota.

  18. Radar and optical remote sensing in offshore domain to detect, characterize, and quantify ocean surface oil slicks

    NASA Astrophysics Data System (ADS)

    Angelliaume, S.; Ceamanos, X.; Viallefont-Robinet, F.; Baqué, R.; Déliot, Ph.; Miegebielle, V.

    2017-10-01

    Radar and optical sensors are operationally used by authorities or petroleum companies for detecting and characterizing maritime pollution. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as the oil real fraction, which is critical for both exploration purposes and efficient cleanup operations. Today state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI, the airborne system developed by ONERA, during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this data set lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the electromagnetic spectrum. Specific processing techniques have been developed in order to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows to estimate slick surface properties such as the spatial abundance of oil and the relative concentration of hydrocarbons on the sea surface.

  19. Investigating the thermophysical properties of indurated materials on Mars

    NASA Astrophysics Data System (ADS)

    Murphy, Nathaniel William

    Indurated materials have been observed on the surface of Mars at every landing site and inferred from orbital remote-sensing data by the Viking, Mars Global Surveyor, and Mars Odyssey spacecraft. However, indurated materials on Mars are poorly understood because there is no ground truth for the indurated surfaces inferred from thermal remote-sensing data. I adopted two approaches to investigate indurated materials on Mars: (1) remote-sensing analysis of the Isidis basin, which shows some of the highest thermal inertia values derived from TES 1 observations, and (2) laboratory analyses of terrestrial indurated materials. To characterize the surface of the Isidis basin, I combined a variety of remote-sensing datasets, including thermal inertia data derived from TES and MO-THEMIS, TES albedo, THEMIS thermal and visible imaging, and Earth-based radar observations. From these observations I concluded that the thermal inertia values in the Isidis basin are likely the result of variations in the degree of cementation of indurated materials. To examine the thermophysical properties of indurated materials I collected four examples of terrestrial indurated materials. These included two types of gypcrete collected from a gypcrete deposit near Upham Hills, NM, clay-materials from Lunar Lake Playa, NV, and a pyroclastic material from the Bandelier Tuff near Los Alamos, NM. Despite significant differences in their physical properties and origins, all of these materials have thermal inertia values consistent with inferred indurated surfaces on Mars. There are no strong correlations between the thermal and physical properties of the collected samples due to thermal effects of the fabrics of the indurated materials. 1 Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft. 2 Thermal Emission Imaging System onboard the Mars Odyssey spacecraft

  20. NASA's NI-SAR Observing Strategy and Data Availability for Agricultural Monitoring and Assessment

    NASA Astrophysics Data System (ADS)

    Siqueira, P.; Dubayah, R.; Kellndorfer, J. M.; Saatchi, S. S.; Chapman, B. D.

    2014-12-01

    The monitoring and characterization of global crop development by remote sensing is a complex task, in part, because of the time varying nature of the target and the diversity of crop types and agricultural practices that vary worldwide. While some of these difficulties are overcome with the availability of national and market-derived resources (e.g. publication of crop statistics by the USDA and FAO), monitoring by remote sensing has the ability of augmenting those resources to better identify changes over time, and to provide timely assessments for the current year's production. Of the remote sensing techniques that are used for agricultural applications, optical observations of NDVI from Landsat, AVHRR, MODIS and similar sensors have historically provided the majority of data that is used by the community. In addition, radiometer and radar sensors, are often used for estimating soil moisture and structural information for these agricultural regions. The combination of these remote sensing datasets and national resources constitutes the state of the art for crop monitoring and yield forecasts. To help improve these crop monitoring efforts in the future, the joint NASA-ISRO SAR mission known as NI-SAR is being planned for launch in 2020, and will have L- and S-band fully polarimetric radar systems, a fourteen day repeat period, and a swath width on the order of several hundred kilometers. To address the needs of the science and applications communities that NI-SAR will support, the systems observing strategy is currently being planned such that data rate and the system configuration will address the needs of the community. In this presentation, a description of the NI-SAR system will be given along with the currently planned observing strategy and derived products that will be relevant to the overall GEOGLAM initiative.

  1. Study of Diagenetic Features in Rudist Buildups of Cretaceous Edwards Formation Using Ground Based Hyperspectral Scanning and Terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Krupnik, D.; Khan, S.; Okyay, U.; Hartzell, P. J.; Biber, K.

    2015-12-01

    Ground based remote sensing is a novel technique for development of digital outcrop models which can be instrumental in performing detailed qualitative and quantitative sedimentological analysis for the study of depositional environment, diagenetic processes, and hydrocarbon reservoir characterization. For this investigation, ground-based hyperspectral data collection is combined with terrestrial LiDAR to study outcrops of Late Albian rudist buildups of the Edwards formation in the Lake Georgetown Spillway in Williamson County, Texas. The Edwards formation consists of shallow water deposits of reef and associated inter-reef facies, including rudist bioherms and biostromes. It is a significant aquifer and was investigated as a hydrocarbon play in south central Texas. Hyperspectral data were used to map compositional variation in the outcrop by distinguishing spectral properties unique to each material. Lithological variation was mapped in detail to investigate the structure and composition of rudist buildups. Hyperspectral imagery was registered to a 3D model produced from the LiDAR point cloud with an accuracy of up to one pixel. Flat-topped toucasid-rich bioherm facies were distinguished from overlying toucasid-rich biostrome facies containing chert nodules, overlying sucrosic dolostones, and uppermost peloid wackestones and packstones of back-reef facies. Ground truth was established by petrographic study of samples from this area and has validated classification products of remote sensing data. Several types of porosity were observed and have been associated with increased dolomitization. This ongoing research involves integration of remotely sensed datasets to analyze geometrical and compositional properties of this carbonate formation at a finer scale than traditional methods have achieved and seeks to develop a workflow for quick and efficient ground based remote sensing-assisted outcrop studies.

  2. The LANDFIRE Refresh strategy: updating the national dataset

    USGS Publications Warehouse

    Nelson, Kurtis J.; Connot, Joel A.; Peterson, Birgit E.; Martin, Charley

    2013-01-01

    The LANDFIRE Program provides comprehensive vegetation and fuel datasets for the entire United States. As with many large-scale ecological datasets, vegetation and landscape conditions must be updated periodically to account for disturbances, growth, and natural succession. The LANDFIRE Refresh effort was the first attempt to consistently update these products nationwide. It incorporated a combination of specific systematic improvements to the original LANDFIRE National data, remote sensing based disturbance detection methods, field collected disturbance information, vegetation growth and succession modeling, and vegetation transition processes. This resulted in the creation of two complete datasets for all 50 states: LANDFIRE Refresh 2001, which includes the systematic improvements, and LANDFIRE Refresh 2008, which includes the disturbance and succession updates to the vegetation and fuel data. The new datasets are comparable for studying landscape changes in vegetation type and structure over a decadal period, and provide the most recent characterization of fuel conditions across the country. The applicability of the new layers is discussed and the effects of using the new fuel datasets are demonstrated through a fire behavior modeling exercise using the 2011 Wallow Fire in eastern Arizona as an example.

  3. Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets

    NASA Technical Reports Server (NTRS)

    Jolliff, Brad L. (Editor); Ryder, Graham (Editor)

    1998-01-01

    It has been more than 25 years since Apollo 17 returned the last of the Apollo lunar samples. Since then, a vast amount of data has been obtained from the study of rocks and soils from the Apollo and Luna sample collections and, more recently, on a set of about a dozen lunar meteorites collected on Earth. Based on direct studies of the samples, many constraints have been established for the age, early differentiation, crust and mantle structure, and subsequent impact modification of the Moon. In addition, geophysical experiments at the surface, as well as remote sensing from orbit and Earth-based telescopic studies, have provided additional datasets about the Moon that constrain the nature of its surface and internal structure. Some might be tempted to say that we know all there is to know about the Moon and that it is time to move on from this simple satellite to more complex objects. However, the ongoing Lunar Prospector mission and the highly successful Clementine mission have provided important clues to the real geological complexity of the Moon, and have shown us that we still do not yet adequately understand the geologic history of Earth's companion. These missions, like Galileo during its lunar flyby, are providing global information viewed through new kinds of windows, and providing a fresh context for models of lunar origin, evolution, and resources, and perhaps even some grist for new questions and new hypotheses. The probable detection and characterization of water ice at the poles, the extreme concentration of Th and other radioactive elements in the Procellarum-Imbrium-Frigon's resurfaced areas of the nearside of the Moon, and the high-resolution gravity modeling enabled by these missions are examples of the kinds of exciting new results that must be integrated with the extant body of knowledge based on sample studies, in situ experiments, and remote-sensing missions to bring about the best possible understanding of the Moon and its history.

  4. UAV-LiDAR accuracy and comparison to Structure from Motion photogrammetry

    NASA Astrophysics Data System (ADS)

    Kucharczyk, M.; Hugenholtz, C.; Zou, X.; Nesbit, P. R.; Barchyn, T.

    2016-12-01

    We compare the spatial accuracy of a UAV-LiDAR system with Structure from Motion (SfM) photogrammetry. UAV-based LiDAR remote sensing potentially offers advantages over SfM photogrammetry in vegetated terrain, particularly with respect to canopy penetration and related measurements of ground surface elevation and vegetation height; however, little quantitative evidence has been presented to date. To address this, we performed a case study at a field site in Alberta, Canada with six different land cover types: short grass, tall grass, short shrubs, tall shrubs, deciduous trees, and coniferous trees. Both UAV datasets were acquired on the same day. The SfM dataset was derived from images acquired by a senseFly eBee fixed-wing UAV equipped with a 16.1 megapixel RGB camera. The UAV-LiDAR system is a proprietary design that consists of a single-rotor helicopter (2-m rotor diameter) equipped with a Riegl VUX-1UAV laser scanner, KVH 1750 inertial measurement unit, and dual NovAtel GNSS receivers. We measured vegetation height from at least 30 samples in each land cover type and acquired check point measurements to determine horizontal and vertical accuracy. Vegetation height was measured manually for grasses and shrubs with a level staff, and with a total station for trees. Coordinates of horizontal and vertical check points were surveyed with real-time kinematic (RTK) GNSS. We followed standard methods for computing horizontal and vertical accuracies based on the 2015 guidelines from the American Society of Photogrammetry and Remote Sensing. Results will be presented at the AGU Fall Meeting.

  5. Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the U.S.

    NASA Technical Reports Server (NTRS)

    Mladenova, Iliana E.; Bolten, John D.; Crow, Wade T.; Anderson, Martha C.; Hain, C. R.; Johnson, David M.; Mueller, Rick

    2017-01-01

    This paper presents an intercomparative study of 12 operationally produced large-scale datasets describing soil moisture, evapotranspiration (ET), and or vegetation characteristics within agricultural regions of the contiguous United States (CONUS). These datasets have been developed using a variety of techniques, including, hydrologic modeling, satellite-based retrievals, data assimilation, and survey in-field data collection. The objectives are to assess the relative utility of each dataset for monitoring crop yield variability, to quantitatively assess their capacity for predicting end-of-season corn and soybean yields, and to examine the evolution of the yield-index correlations during the growing season. This analysis is unique both with regards to the number and variety of examined yield predictor datasets and the detailed assessment of the water availability timing on the end-of-season crop production during the growing season. Correlation results indicate that over CONUS, at state-level soil moisture and ET indices can provide better information for forecasting corn and soybean yields than vegetation-based indices such as normalized difference vegetation index. The strength of correlation with corn and soybean yields strongly depends on the interannual variability in yield measured at a given location. In this case study, some of the remotely derived datasets examined provide skill comparable to that of in situ field survey-based data further demonstrating the utility of these remote sensing-based approaches for estimating crop yield.

  6. Evaluation of Uncertainty in Precipitation Datasets for New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Besha, A. A.; Steele, C. M.; Fernald, A.

    2014-12-01

    Climate change, population growth and other factors are endangering water availability and sustainability in semiarid/arid areas particularly in the southwestern United States. Wide coverage of spatial and temporal measurements of precipitation are key for regional water budget analysis and hydrological operations which themselves are valuable tool for water resource planning and management. Rain gauge measurements are usually reliable and accurate at a point. They measure rainfall continuously, but spatial sampling is limited. Ground based radar and satellite remotely sensed precipitation have wide spatial and temporal coverage. However, these measurements are indirect and subject to errors because of equipment, meteorological variability, the heterogeneity of the land surface itself and lack of regular recording. This study seeks to understand precipitation uncertainty and in doing so, lessen uncertainty propagation into hydrological applications and operations. We reviewed, compared and evaluated the TRMM (Tropical Rainfall Measuring Mission) precipitation products, NOAA's (National Oceanic and Atmospheric Administration) Global Precipitation Climatology Centre (GPCC) monthly precipitation dataset, PRISM (Parameter elevation Regression on Independent Slopes Model) data and data from individual climate stations including Cooperative Observer Program (COOP), Remote Automated Weather Stations (RAWS), Soil Climate Analysis Network (SCAN) and Snowpack Telemetry (SNOTEL) stations. Though not yet finalized, this study finds that the uncertainty within precipitation estimates datasets is influenced by regional topography, season, climate and precipitation rate. Ongoing work aims to further evaluate precipitation datasets based on the relative influence of these phenomena so that we can identify the optimum datasets for input to statewide water budget analysis.

  7. Characterization Of Ocean Wind Vector Retrievals Using ERS-2 High-Resolution Long-Term Dataset And Buoy Measurements

    NASA Astrophysics Data System (ADS)

    Polverari, F.; Talone, M.; Crapolicchio, R. Levy, G.; Marzano, F.

    2013-12-01

    The European Remote-sensing Satellite (ERS)-2 scatterometer provides wind retrievals over Ocean. To satisfy the needs of high quality and homogeneous set of scatterometer measurements, the European Space Agency (ESA) has developed the project Advanced Scatterometer Processing System (ASPS) with which a long-term dataset of new ERS-2 wind products, with an enhanced resolution of 25km square, has been generated by the reprocessing of the entire ERS mission. This paper presents the main results of the validation work of such new dataset using in situ measurements provided by the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). The comparison indicates that, on average, the scatterometer data agree well with buoys measurements, however the scatterometer tends to overestimates lower winds and underestimates higher winds.

  8. Hazards Data Distribution System (HDDS)

    USGS Publications Warehouse

    Jones, Brenda; Lamb, Rynn M.

    2015-07-09

    When emergencies occur, first responders and disaster response teams often need rapid access to aerial photography and satellite imagery that is acquired before and after the event. The U.S. Geological Survey (USGS) Hazards Data Distribution System (HDDS) provides quick and easy access to pre- and post-event imagery and geospatial datasets that support emergency response and recovery operations. The HDDS provides a single, consolidated point-of-entry and distribution system for USGS-hosted remotely sensed imagery and other geospatial datasets related to an event response. The data delivery services are provided through an interactive map-based interface that allows emergency response personnel to rapidly select and download pre-event ("baseline") and post-event emergency response imagery.

  9. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  10. Physical properties (particle size, rock abundance) from thermal infrared remote observations: Implications for Mars landing sites

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.; Edgett, Kenneth S.

    1994-01-01

    Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites.

  11. A high throughput geocomputing system for remote sensing quantitative retrieval and a case study

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting

    2011-12-01

    The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.

  12. In-situ databases and comparison of ESA Ocean Colour Climate Change Initiative (OC-CCI) products with precursor data, towards an integrated approach for ocean colour validation and climate studies

    NASA Astrophysics Data System (ADS)

    Brotas, Vanda; Valente, André; Couto, André B.; Grant, Mike; Chuprin, Andrei; Jackson, Thomas; Groom, Steve; Sathyendranath, Shubha

    2014-05-01

    Ocean colour (OC) is an Oceanic Essential Climate Variable, which is used by climate modellers and researchers. The European Space Agency (ESA) Climate Change Initiative project, is the ESA response for the need of climate-quality satellite data, with the goal of providing stable, long-term, satellite-based ECV data products. The ESA Ocean Colour CCI focuses on the production of Ocean Colour ECV uses remote sensing reflectances to derive inherent optical properties and chlorophyll a concentration from ESA's MERIS (2002-2012) and NASA's SeaWiFS (1997 - 2010) and MODIS (2002-2012) sensor archives. This work presents an integrated approach by setting up a global database of in situ measurements and by inter-comparing OC-CCI products with pre-cursor datasets. The availability of in situ databases is fundamental for the validation of satellite derived ocean colour products. A global distribution in situ database was assembled, from several pre-existing datasets, with data spanning between 1997 and 2012. It includes in-situ measurements of remote sensing reflectances, concentration of chlorophyll-a, inherent optical properties and diffuse attenuation coefficient. The database is composed from observations of the following datasets: NOMAD, SeaBASS, MERMAID, AERONET-OC, BOUSSOLE and HOTS. The result was a merged dataset tuned for the validation of satellite-derived ocean colour products. This was an attempt to gather, homogenize and merge, a large high-quality bio-optical marine in situ data, as using all datasets in a single validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. An inter-comparison analysis between OC-CCI chlorophyll-a product and satellite pre-cursor datasets was done with single missions and merged single mission products. Single mission datasets considered were SeaWiFS, MODIS-Aqua and MERIS; merged mission datasets were obtained from the GlobColour (GC) as well as the Making Earth Science Data Records for Use in Research Environments (MEaSUREs). OC-CCI product was found to be most similar to SeaWiFS record, and generally, the OC-CCI record was most similar to records derived from single mission than merged mission initiatives. Results suggest that CCI product is a more consistent dataset than other available merged mission initiatives. In conclusion, climate related science, requires long term data records to provide robust results, OC-CCI product proves to be a worthy data record for climate research, as it combines multi-sensor OC observations to provide a >15-year global error-characterized record.

  13. A Hybrid Semi-supervised Classification Scheme for Mining Multisource Geospatial Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsavai, Raju; Bhaduri, Budhendra L

    2011-01-01

    Supervised learning methods such as Maximum Likelihood (ML) are often used in land cover (thematic) classification of remote sensing imagery. ML classifier relies exclusively on spectral characteristics of thematic classes whose statistical distributions (class conditional probability densities) are often overlapping. The spectral response distributions of thematic classes are dependent on many factors including elevation, soil types, and ecological zones. A second problem with statistical classifiers is the requirement of large number of accurate training samples (10 to 30 |dimensions|), which are often costly and time consuming to acquire over large geographic regions. With the increasing availability of geospatial databases, itmore » is possible to exploit the knowledge derived from these ancillary datasets to improve classification accuracies even when the class distributions are highly overlapping. Likewise newer semi-supervised techniques can be adopted to improve the parameter estimates of statistical model by utilizing a large number of easily available unlabeled training samples. Unfortunately there is no convenient multivariate statistical model that can be employed for mulitsource geospatial databases. In this paper we present a hybrid semi-supervised learning algorithm that effectively exploits freely available unlabeled training samples from multispectral remote sensing images and also incorporates ancillary geospatial databases. We have conducted several experiments on real datasets, and our new hybrid approach shows over 25 to 35% improvement in overall classification accuracy over conventional classification schemes.« less

  14. Enhance field water-color measurements with a Secchi disk and its implication for fusion of active and passive ocean-color remote sensing.

    PubMed

    Lee, Zhongping; Shang, Shaoling; Du, Keping; Liu, Bingyi; Lin, Gong; Wei, Jianwei; Li, Xiaolong

    2018-05-01

    Inversion of the total absorption (a) and backscattering coefficients of bulk water through a fusion of remote sensing reflectance (R rs ) and Secchi disk depth (Z SD ) is developed. An application of such a system to a synthesized wide-range dataset shows a reduction of ∼3 folds in the uncertainties of inverted a(λ) (in a range of ∼0.01-6.8  m -1 ) from R rs (λ) for the 350-560 nm range. Such a fusion is further proposed to process concurrent active (ocean LiDAR) and passive (ocean-color) measurements, which can lead to nearly "exact" analytical inversion of an R rs spectrum. With such a fusion, it is found that the uncertainty in the inverted total a in the 350-560 nm range could be reduced to ∼2% for the synthesized data, which can thus significantly improve the derivation of a coefficients of other varying components. Although the inclusion of Z SD places an extra constraint in the inversion of R rs , no apparent improvement over the quasi-analytical algorithm (QAA) was found when the fusion of Z SD and R rs was applied to a field dataset, which calls for more accurate determination of the absorption coefficients from water samples.

  15. Velocity Field of the McMurdo Shear Zone from Annual Three-Dimensional Ground Penetrating Radar Imaging and Crevasse Matching

    NASA Astrophysics Data System (ADS)

    Ray, L.; Jordan, M.; Arcone, S. A.; Kaluzienski, L. M.; Koons, P. O.; Lever, J.; Walker, B.; Hamilton, G. S.

    2017-12-01

    The McMurdo Shear Zone (MSZ) is a narrow, intensely crevassed strip tens of km long separating the Ross and McMurdo ice shelves (RIS and MIS) and an important pinning feature for the RIS. We derive local velocity fields within the MSZ from two consecutive annual ground penetrating radar (GPR) datasets that reveal complex firn and marine ice crevassing; no englacial features are evident. The datasets were acquired in 2014 and 2015 using robot-towed 400 MHz and 200 MHz GPR over a 5 km x 5.7 km grid. 100 west-to-east transects at 50 m spacing provide three-dimensional maps that reveal the length of many firn crevasses, and their year-to-year structural evolution. Hand labeling of crevasse cross sections near the MSZ western and eastern boundaries reveal matching firn and marine ice crevasses, and more complex and chaotic features between these boundaries. By matching crevasse features from year to year both on the eastern and western boundaries and within the chaotic region, marine ice crevasses along the western and eastern boundaries are shown to align directly with firn crevasses, and the local velocity field is estimated and compared with data from strain rate surveys and remote sensing. While remote sensing provides global velocity fields, crevasse matching indicates greater local complexity attributed to faulting, folding, and rotation.

  16. Remote sensing of key grassland nutrients using hyperspectral techniques in KwaZulu-Natal, South Africa

    NASA Astrophysics Data System (ADS)

    Singh, Leeth; Mutanga, Onisimo; Mafongoya, Paramu; Peerbhay, Kabir

    2017-07-01

    The concentration of forage fiber content is critical in explaining the palatability of forage quality for livestock grazers in tropical grasslands. Traditional methods of determining forage fiber content are usually time consuming, costly, and require specialized laboratory analysis. With the potential of remote sensing technologies, determination of key fiber attributes can be made more accurately. This study aims to determine the effectiveness of known absorption wavelengths for detecting forage fiber biochemicals, neutral detergent fiber, acid detergent fiber, and lignin using hyperspectral data. Hyperspectral reflectance spectral measurements (350 to 2500 nm) of grass were collected and implemented within the random forest (RF) ensemble. Results show successful correlations between the known absorption features and the biochemicals with coefficients of determination (R2) ranging from 0.57 to 0.81 and root mean square errors ranging from 6.97 to 3.03 g/kg. In comparison, using the entire dataset, the study identified additional wavelengths for detecting fiber biochemicals, which contributes to the accurate determination of forage quality in a grassland environment. Overall, the results showed that hyperspectral remote sensing in conjunction with the competent RF ensemble could discriminate each key biochemical evaluated. This study shows the potential to upscale the methodology to a space-borne multispectral platform with similar spectral configurations for an accurate and cost effective mapping analysis of forage quality.

  17. Assessment of remotely sensed chlorophyll-a concentration in Guanabara Bay, Brazil

    NASA Astrophysics Data System (ADS)

    Oliveira, Eduardo N.; Fernandes, Alexandre M.; Kampel, Milton; Cordeiro, Renato C.; Brandini, Nilva; Vinzon, Susana B.; Grassi, Renata M.; Pinto, Fernando N.; Fillipo, Alessandro M.; Paranhos, Rodolfo

    2016-04-01

    The Guanabara Bay (GB) is an estuarine system in the metropolitan region of Rio de Janeiro (Brazil), with a surface area of ˜346 km2 threatened by anthropogenic pressure. Remote sensing can provide frequent data for studies and monitoring of water quality parameters, such as chlorophyll-a concentration (Chl-a). Different combination of Medium Resolution Imaging Spectrometer (MERIS) remote sensing reflectance band ratios were used to estimate Chl-a. Standard algorithms such as Ocean Color 3-band, Ocean Color-4 band, fluorescence line height, and maximum chlorophyll index were also tested. The MERIS Chl-a estimates were statistically compared with a dataset of in situ Chl-a (2002 to 2012). Good correlations were obtained with the use of green, red, and near-infrared bands. The best performing algorithm was based on the red (665 nm) and green (560 nm) band ratio, named "RG3" algorithm (r2=0.71, chl-a=62,565*x1.6118). The RG3 was applied to a time series of MERIS images (2003- to 2012). The GB has a high temporal and spatial variability of Chl-a, with highest values found in the wet season (October to March) and in some of the most internal regions of the estuary. Lowest concentrations are found in the central circulation channel due to the flushing of ocean water masses promoted by pumping tide.

  18. Path Network Recovery Using Remote Sensing Data and Geospatial-Temporal Semantic Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William C. McLendon III; Brost, Randy C.

    Remote sensing systems produce large volumes of high-resolution images that are difficult to search. The GeoGraphy (pronounced Geo-Graph-y) framework [2, 20] encodes remote sensing imagery into a geospatial-temporal semantic graph representation to enable high level semantic searches to be performed. Typically scene objects such as buildings and trees tend to be shaped like blocks with few holes, but other shapes generated from path networks tend to have a large number of holes and can span a large geographic region due to their connectedness. For example, we have a dataset covering the city of Philadelphia in which there is a singlemore » road network node spanning a 6 mile x 8 mile region. Even a simple question such as "find two houses near the same street" might give unexpected results. More generally, nodes arising from networks of paths (roads, sidewalks, trails, etc.) require additional processing to make them useful for searches in GeoGraphy. We have assigned the term Path Network Recovery to this process. Path Network Recovery is a three-step process involving (1) partitioning the network node into segments, (2) repairing broken path segments interrupted by occlusions or sensor noise, and (3) adding path-aware search semantics into GeoQuestions. This report covers the path network recovery process, how it is used, and some example use cases of the current capabilities.« less

  19. SMERGE: A multi-decadal root-zone soil moisture product for CONUS

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Dong, J.; Tobin, K. J.; Torres, R.

    2017-12-01

    Multi-decadal root-zone soil moisture products are of value for a range of water resource and climate applications. The NASA-funded root-zone soil moisture merging project (SMERGE) seeks to develop such products through the optimal merging of land surface model predictions with surface soil moisture retrievals acquired from multi-sensor remote sensing products. This presentation will describe the creation and validation of a daily, multi-decadal (1979-2015), vertically-integrated (both surface to 40 cm and surface to 100 cm), 0.125-degree root-zone product over the contiguous United States (CONUS). The modeling backbone of the system is based on hourly root-zone soil moisture simulations generated by the Noah model (v3.2) operating within the North American Land Data Assimilation System (NLDAS-2). Remotely-sensed surface soil moisture retrievals are taken from the multi-sensor European Space Agency Climate Change Initiative soil moisture data set (ESA CCI SM). In particular, the talk will detail: 1) the exponential smoothing approach used to convert surface ESA CCI SM retrievals into root-zone soil moisture estimates, 2) the averaging technique applied to merge (temporally-sporadic) remotely-sensed with (continuous) NLDAS-2 land surface model estimates of root-zone soil moisture into the unified SMERGE product, and 3) the validation of the SMERGE product using long-term, ground-based soil moisture datasets available within CONUS.

  20. An optimal sample data usage strategy to minimize overfitting and underfitting effects in regression tree models based on remotely-sensed data

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Picotte, Joshua J.; Howard, Danny; Smith, Kelcy; Nelson, Kurtis

    2016-01-01

    Regression tree models have been widely used for remote sensing-based ecosystem mapping. Improper use of the sample data (model training and testing data) may cause overfitting and underfitting effects in the model. The goal of this study is to develop an optimal sampling data usage strategy for any dataset and identify an appropriate number of rules in the regression tree model that will improve its accuracy and robustness. Landsat 8 data and Moderate-Resolution Imaging Spectroradiometer-scaled Normalized Difference Vegetation Index (NDVI) were used to develop regression tree models. A Python procedure was designed to generate random replications of model parameter options across a range of model development data sizes and rule number constraints. The mean absolute difference (MAD) between the predicted and actual NDVI (scaled NDVI, value from 0–200) and its variability across the different randomized replications were calculated to assess the accuracy and stability of the models. In our case study, a six-rule regression tree model developed from 80% of the sample data had the lowest MAD (MADtraining = 2.5 and MADtesting = 2.4), which was suggested as the optimal model. This study demonstrates how the training data and rule number selections impact model accuracy and provides important guidance for future remote-sensing-based ecosystem modeling.

  1. A Student-Friendly Graphical User Interface to Extract Data from Remote Sensing Level-2 Products.

    NASA Astrophysics Data System (ADS)

    Bernardello, R.

    2016-02-01

    Remote sensing era has provided an unprecedented amount of publicly available data. The United States National Aeronautics and Space Administration Goddard Space Flight Center (NASA-GSFC) has achieved remarkable results in the distribution of these data to the scientific community through the OceanColor web page (http://oceancolor.gsfc.nasa.gov/). However, the access to these data, is not straightforward and needs a certain investment of time in learning the use of existing software. Satellite sensors acquire raw data that are processed through several steps towards a format usable by the scientific community. These products are distributed in Hierarchical Data Format (HDF) which often represents the first obstacle for students, teachers and scientists not used to deal with extensive matrices. We present here SATellite data PROcessing (SATPRO) a newly developed Graphical User Interface (GUI) designed in MATLAB environment to provide an easy, immediate yet reliable way to select and extract Level-2 data from NASA SeaWIFS and MODIS-Aqua databases for oceanic surface temperature and chlorophyll. Since no previous experience with MATLAB is required, SATPRO allows the user to explore the available dataset without investing any software-learning time. SATPRO is an ideal tool to introduce undergraduate students to the use of remote sensing data in oceanography and can also be useful for research projects at the graduate level.

  2. Applications of Remote Sensing to Emergency Management.

    DTIC Science & Technology

    1980-02-15

    Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.

  3. 3D visualization of numeric planetary data using JMARS

    NASA Astrophysics Data System (ADS)

    Dickenshied, S.; Christensen, P. R.; Anwar, S.; Carter, S.; Hagee, W.; Noss, D.

    2013-12-01

    JMARS (Java Mission-planning and Analysis for Remote Sensing) is a free geospatial application developed by the Mars Space Flight Facility at Arizona State University. Originally written as a mission planning tool for the THEMIS instrument on board the MARS Odyssey Spacecraft, it was released as an analysis tool to the general public in 2003. Since then it has expanded to be used for mission planning and scientific data analysis by additional NASA missions to Mars, the Moon, and Vesta, and it has come to be used by scientists, researchers and students of all ages from more than 40 countries around the world. The public version of JMARS now also includes remote sensing data for Mercury, Venus, Earth, the Moon, Mars, and a number of the moons of Jupiter and Saturn. Additional datasets for asteroids and other smaller bodies are being added as they becomes available and time permits. In addition to visualizing multiple datasets in context with one another, significant effort has been put into on-the-fly projection of georegistered data over surface topography. This functionality allows a user to easily create and modify 3D visualizations of any regional scene where elevation data is available in JMARS. This can be accomplished through the use of global topographic maps or regional numeric data such as HiRISE or HRSC DTMs. Users can also upload their own regional or global topographic dataset and use it as an elevation source for 3D rendering of their scene. The 3D Layer in JMARS allows the user to exaggerate the z-scale of any elevation source to emphasize the vertical variance throughout a scene. In addition, the user can rotate, tilt, and zoom the scene to any desired angle and then illuminate it with an artificial light source. This scene can be easily overlain with additional JMARS datasets such as maps, images, shapefiles, contour lines, or scale bars, and the scene can be easily saved as a graphic image for use in presentations or publications.

  4. Passive Microwave Remote Sensing of Colorado Watersheds Using Calibrated, Enhanced-Resolution Brightness Temperatures (CETB) from AMSR-E and SSM/I for Estimation of Snowmelt Timing

    NASA Astrophysics Data System (ADS)

    Johnson, M.; Ramage, J. M.; Troy, T. J.; Brodzik, M. J.

    2017-12-01

    Understanding the timing of snowmelt is critical for water resources management in snow-dominated watersheds. Passive microwave remote sensing has been used to estimate melt-refreeze events through brightness temperature satellite observations taken with sensors like the Special Sensor Microwave Imager (SSM/I) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E). Previous studies were limited to lower resolution ( 25 km) datasets, making it difficult to quantify the snowpack in heterogeneous, high-relief areas. This study investigates the use of newly available passive microwave calibrated, enhanced-resolution brightness temperatures (CETB) produced at the National Snow and Ice Data Center to estimate melt timing at much higher spatial resolution ( 3-6 km). CETB datasets generated from SSM/I and AMSR-E records will be used to examine three mountainous basins in Colorado. The CETB datasets retain twice-daily (day/night) observations of brightness temperatures. Therefore, we employ the diurnal amplitude variation (DAV) method to detect melt onset and melt occurrences to determine if algorithms developed for legacy data are valid with the improved CETB dataset. We compare melt variability with nearby stream discharge records to determine an optimum melt onset algorithm using the newly reprocessed data. This study investigates the effectiveness of the CETB product for several locations in Colorado (North Park, Rabbit Ears, Fraser) that were the sites of previous ground/airborne surveys during the NASA Cold Land Processes Field Experiment (CLPX 2002-2003). In summary, this work lays the foundation for the utilization of higher resolution reprocessed CETB data for snow evolution more broadly in a range of environments. Consequently, the new processing methods and improved spatial resolution will enable hydrologists to better analyze trends in snow-dominated mountainous watersheds for more effective water resources management.

  5. Linking Field and Satellite Observations to Reveal Differences in Single vs. Double-Cropped Soybean Yields in Central Brazil

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.

    2016-12-01

    Soy-corn double cropping (DC) has been widely adopted in Central Brazil alongside single cropped (SC) soybean production. DC involves different cropping calendars, soy varieties, and may be associated with different crop yield patterns and volatility than SC. Study of the performance of the region's agriculture in a changing climate depends on tracking differences in the productivity of SC vs. DC, but has been limited by crop yield data that conflate the two systems. We predicted SC and DC yields across Central Brazil, drawing on field observations and remotely sensed data. We first modeled field yield estimates as a function of remotely sensed DC status and vegetation index (VI) metrics, and other management and biophysical factors. We then used the statistical model estimated to predict SC and DC soybean yields at each 500 m2 grid cell of Central Brazil for harvest years 2001 - 2015. The yield estimation model was constructed using 1) a repeated cross-sectional survey of soybean yields and management factors for years 2007-2015, 2) a custom agricultural land cover classification dataset which assimilates earlier datasets for the region, and 3) 500m 8-day MODIS image composites used to calculate the wide dynamic range vegetation index (WDRVI) and derivative metrics such as area under the curve for WDRVI values in critical crop development periods. A statistical yield estimation model which primarily entails WDRVI metrics, DC status, and spatial fixed effects was developed on a subset of the yield dataset. Model validation was conducted by predicting previously withheld yield records, and then assessing error and goodness-of-fit for predicted values with metrics including root mean squared error (RMSE), mean squared error (MSE), and R2. We found a statistical yield estimation model which incorporates WDRVI and DC status to be way to estimate crop yields over the region. Statistical properties of the resulting gridded yield dataset may be valuable for understanding linkages between crop yields, farm management factors, and climate.

  6. A standard for measuring metadata quality in spectral libraries

    NASA Astrophysics Data System (ADS)

    Rasaiah, B.; Jones, S. D.; Bellman, C.

    2013-12-01

    A standard for measuring metadata quality in spectral libraries Barbara Rasaiah, Simon Jones, Chris Bellman RMIT University Melbourne, Australia barbara.rasaiah@rmit.edu.au, simon.jones@rmit.edu.au, chris.bellman@rmit.edu.au ABSTRACT There is an urgent need within the international remote sensing community to establish a metadata standard for field spectroscopy that ensures high quality, interoperable metadata sets that can be archived and shared efficiently within Earth observation data sharing systems. Metadata are an important component in the cataloguing and analysis of in situ spectroscopy datasets because of their central role in identifying and quantifying the quality and reliability of spectral data and the products derived from them. This paper presents approaches to measuring metadata completeness and quality in spectral libraries to determine reliability, interoperability, and re-useability of a dataset. Explored are quality parameters that meet the unique requirements of in situ spectroscopy datasets, across many campaigns. Examined are the challenges presented by ensuring that data creators, owners, and data users ensure a high level of data integrity throughout the lifecycle of a dataset. Issues such as field measurement methods, instrument calibration, and data representativeness are investigated. The proposed metadata standard incorporates expert recommendations that include metadata protocols critical to all campaigns, and those that are restricted to campaigns for specific target measurements. The implication of semantics and syntax for a robust and flexible metadata standard are also considered. Approaches towards an operational and logistically viable implementation of a quality standard are discussed. This paper also proposes a way forward for adapting and enhancing current geospatial metadata standards to the unique requirements of field spectroscopy metadata quality. [0430] BIOGEOSCIENCES / Computational methods and data processing [0480] BIOGEOSCIENCES / Remote sensing [1904] INFORMATICS / Community standards [1912] INFORMATICS / Data management, preservation, rescue [1926] INFORMATICS / Geospatial [1930] INFORMATICS / Data and information governance [1946] INFORMATICS / Metadata [1952] INFORMATICS / Modeling [1976] INFORMATICS / Software tools and services [9810] GENERAL OR MISCELLANEOUS / New fields

  7. A closer look at temperature changes with remote sensing

    NASA Astrophysics Data System (ADS)

    Metz, Markus; Rocchini, Duccio; Neteler, Markus

    2014-05-01

    Temperature is a main driver for important ecological processes. Time series temperature data provide key environmental indicators for various applications and research fields. High spatial and temporal resolution is crucial in order to perform detailed analyses in various fields of research. While meteorological station data are commonly used, they often lack completeness or are not distributed in a representative way. Remotely sensed thermal images from polar orbiting satellites are considered to be a good alternative to the scarce meteorological data as they offer almost continuous coverage of the Earth with very high temporal resolution. A drawback of temperature data obtained by satellites is the occurrence of gaps (due to clouds, aerosols) that must be filled. We have reconstructed a seamless and gap-free time series for land surface temperature (LST) at continental scale for Europe from MODIS LST products (Moderate Resolution Imaging Sensor instruments onboard the Terra and Aqua satellites), keeping the temporal resolution of four records per day and enhancing the spatial resolution from 1 km to 250 m. Here we present a new procedure to reconstruct MODIS LST time series with unprecedented detail in space and time, at the same time providing continental coverage. Our method constitutes a unique new combination of weighted temporal averaging with statistical modeling and spatial interpolation. We selected as auxiliary variables datasets which are globally available in order to propose a worldwide reproducible method. Compared to existing similar datasets, the substantial quantitative difference translates to a qualitative difference in applications and results. We consider both our dataset and the new procedure for its creation to be of utmost interest to a broad interdisciplinary audience. Moreover, we provide examples for its implications and applications, such as disease risk assessment, epidemiology, environmental monitoring, and temperature anomalies. In the near future, aggregated derivatives of our dataset (following the BIOCLIM variable scheme) will be freely made online available for direct usage in GIS based applications.

  8. Assessment of variations in taxonomic diversity, forest structure, and aboveground biomass using remote sensing along an altitudinal gradient in tropical montane forest of Costa Rica

    NASA Astrophysics Data System (ADS)

    Robinson, C. M.; Saatchi, S. S.; Clark, D.; Fricker, G. A.; Wolf, J.; Gillespie, T. W.; Rovzar, C. M.; Andelman, S.

    2012-12-01

    This research sought to understand how alpha and beta diversity of plants vary and relate to the three-dimensional vegetation structure and aboveground biomass along environmental gradients in the tropical montane forests of Braulio Carrillo National Park in Costa Rica. There is growing evidence that ecosystem structure plays an important role in defining patterns of species diversity and along with abiotic factors (climate and edaphic) control the phenotypic and functional variations across landscapes. It is well documented that strong subdivisions at local and regional scales are found mainly on geologic or climate gradients. These general determinants of biodiversity are best demonstrated in regions with natural gradients such as tropical montane forests. Altitudinal gradients provide a landscape scale changes through variations in topography, climate, and edaphic conditions on which we tested several theoretical and biological hypotheses regarding drivers of biodiversity. The study was performed by using forest inventory and botanical data from nine 1-ha plots ranging from 100 m to 2800 m above sea level and remote sensing data from airborne lidar and radar sensors to quantify variations in forest structure. In this study we report on the effectiveness of relating patterns of tree taxonomic alpha diversity to three-dimensional structure of a tropical montane forest using lidar and radar observations of forest structure and biomass. We assessed alpha and beta diversity at the species, genus, and family levels utilizing datasets provided by the Terrestrial Ecology Assessment and Monitoring (TEAM) Network. Through the comparison to active remote sensing imagery, our results show that there is a strong relationship between forest 3D-structure, and alpha and beta diversity controlled by variations in abiotic factors along the altitudinal gradient. Using spatial analysis with the aid of remote sensing data, we find distinct patterns along the environmental gradients defining species turnover and changes in functional diversity. The study will provide novel approaches to use detailed spatial information from remote sensing data to study relations between functional and taxonomic dimensions of diversity.

  9. Information content of in situ and remotely sensed chlorophyll-a: Learning from size-structured phytoplankton model

    NASA Astrophysics Data System (ADS)

    Laiolo, Leonardo; Matear, Richard; Baird, Mark E.; Soja-Woźniak, Monika; Doblin, Martina A.

    2018-07-01

    Chlorophyll-a measurements in the form of in situ observations and satellite ocean colour products are commonly used in data assimilation to calibrate marine biogeochemical models. Here, a two size-class phytoplankton biogeochemical model, with a 0D configuration, was used to simulate the surface chlorophyll-a dynamics (simulated surface Chl-a) for cyclonic and anticyclonic eddies off East Australia. An optical model was then used to calculate the inherent optical properties from the simulation and convert them into remote-sensing reflectance (Rrs). Subsequently, Rrs was used to produce a satellite-like estimate of the simulated surface Chl-a concentrations through the MODIS OC3M algorithm (simulated OC3M Chl-a). Identical parameter optimisation experiments were performed through the assimilation of the two separate datasets (simulated surface Chl-a and simulated OC3M Chl-a), with the purpose of investigating the contrasting information content of simulated surface Chl-a and remotely-sensed data sources. The results we present are based on the analysis of the distribution of a cost function, varying four parameters of the biogeochemical model. In our idealized experiments the simulated OC3M Chl-a product is a poor proxy for the total simulated surface Chl-a concentration. Furthermore, our result show the OC3M algorithm can underestimate the simulated chlorophyll-a concentration in offshore eddies off East Australia (Case I waters), because of the weak relationship between large-sized phytoplankton and remote-sensing reflectance. Although Case I waters are usually characteristic of oligotrophic environments, with a photosynthetic community typically represented by relatively small-sized phytoplankton, mesoscale features such as eddies can generate seasonally favourable conditions for a photosynthetic community with a greater proportion of large phytoplankton cells. Furthermore, our results show that in mesoscale features such as eddies, in situ chlorophyll-a observations and the ocean colour products can carry different information related to phytoplankton sizes. Assimilating both remote-sensing reflectance and measurements of in situ chlorophyll-a concentration reduces the uncertainty of the parameter values more than either data set alone, thus reducing the spread of acceptable solutions, giving an improved simulation of the natural environment.

  10. Evaluation of Landscape Structure Using AVIRIS Quicklooks and Ancillary Data

    NASA Technical Reports Server (NTRS)

    Sanderson, Eric W.; Ustin, Susan L.

    1998-01-01

    Currently the best tool for examining landscape structure is remote sensing, because remotely sensed data provide complete and repeatable coverage over landscapes in many climatic regimes. Many sensors, with a variety of spatial scales and temporal repeat cycles, are available. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has imaged over 4000 scenes from over 100 different sites throughout North America. For each of these scenes, one-band "quicklook" images have been produced for review by AVIRIS investigators. These quicklooks are free, publicly available over the Internet, and provide the most complete set of landscape structure data yet produced. This paper describes the methodologies used to evaluate the landscape structure of quicklooks and generate corresponding datasets for climate, topography and land use. A brief discussion of preliminary results is included at the end. Since quicklooks correspond exactly to their parent AVIRIS scenes, the methods used to derive climate, topography and land use data should be applicable to any AVIRIS analysis.

  11. The Tetracorder user guide: version 4.4

    USGS Publications Warehouse

    Livo, Keith Eric; Clark, Roger N.

    2014-01-01

    Imaging spectroscopy mapping software assists in the identification and mapping of materials based on their chemical properties as expressed in spectral measurements of a planet including the solid or liquid surface or atmosphere. Such software can be used to analyze field, aircraft, or spacecraft data; remote sensing datasets; or laboratory spectra. Tetracorder is a set of software algorithms commanded through an expert system to identify materials based on their spectra (Clark and others, 2003). Tetracorder also can be used in traditional remote sensing analyses, because some of the algorithms are a version of a matched filter. Thus, depending on the instructions fed to the Tetracorder system, results can range from simple matched filter output, to spectral feature fitting, to full identification of surface materials (within the limits of the spectral signatures of materials over the spectral range and resolution of the imaging spectroscopy data). A basic understanding of spectroscopy by the user is required for developing an optimum mapping strategy and assessing the results.

  12. Unified Planetary Coordinates System: A Searchable Database of Geodetic Information

    NASA Technical Reports Server (NTRS)

    Becker, K. J.a; Gaddis, L. R.; Soderblom, L. A.; Kirk, R. L.; Archinal, B. A.; Johnson, J. R.; Anderson, J. A.; Bowman-Cisneros, E.; LaVoie, S.; McAuley, M.

    2005-01-01

    Over the past 40 years, an enormous quantity of orbital remote sensing data has been collected for Mars from many missions and instruments. Unfortunately these datasets currently exist in a wide range of disparate coordinate systems, making it extremely difficult for the scientific community to easily correlate, combine, and compare data from different Mars missions and instruments. As part of our work for the PDS Imaging Node and on behalf of the USGS Astrogeology Team, we are working to solve this problem and to provide the NASA scientific research community with easy access to Mars orbital data in a unified, consistent coordinate system along with a wide variety of other key geometric variables. The Unified Planetary Coordinates (UPC) system is comprised of two main elements: (1) a database containing Mars orbital remote sensing data computed using a uniform coordinate system, and (2) a process by which continual maintainance and updates to the contents of the database are performed.

  13. Apis - a Digital Inventory of Archaeological Heritage Based on Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Doneus, M.; Forwagner, U.; Liem, J.; Sevara, C.

    2017-08-01

    Heritage managers are in need of dynamic spatial inventories of archaeological and cultural heritage that provide them with multipurpose tools to interactively understand information about archaeological heritage within its landscape context. Specifically, linking site information with the respective non-invasive prospection data is of increasing importance as it allows for the assessment of inherent uncertainties related to the use and interpretation of remote sensing data by the educated and knowledgeable heritage manager. APIS, the archaeological prospection information system of the Aerial Archive of the University of Vienna, is specifically designed to meet these needs. It provides storage and easy access to all data concerning aerial photographs and archaeological sites through a single GIS-based application. Furthermore, APIS has been developed in an open source environment, which allows it to be freely distributed and modified. This combination in one single open source system facilitates an easy workflow for data management, interpretation, storage, and retrieval. APIS and a sample dataset will be released free of charge under creative commons license in near future.

  14. Global Environmental Data for Mapping Infectious Disease Distribution

    PubMed Central

    Hay, S.I.; Tatem, A.J.; Graham, A.J.; Goetz, S.J.; Rogers, D.J.

    2011-01-01

    This contribution documents the satellite data archives, data processing methods and temporal Fourier analysis (TFA) techniques used to create the remotely sensed datasets on the DVD distributed with this volume. The aim is to provide a detailed reference guide to the genesis of the data, rather than a standard review. These remotely sensed data cover the entire globe at either 1 × 1 or 8 × 8 km spatial resolution. We briefly evaluate the relationships between the 1 × 1 and 8 × 8 km global TFA products to explore their inter-compatibility. The 8 × 8 km TFA surfaces are used in the mapping procedures detailed in the subsequent disease mapping reviews, since the 1 × 1 km products have been validated less widely. Details are also provided on additional, current and planned sensors that should be able to provide continuity with these environmental variable surfaces, as well as other sources of global data that may be used for mapping infectious disease. PMID:16647967

  15. Mid Term Progress Report: Desertification Assessment and Monitoring in China Based on Remote Sensing

    NASA Astrophysics Data System (ADS)

    Gao, Zhihai; del Barrio, Gabriel; Li, Xiaosong; Wang, Bengyu; Puigdefabregas, Juan; Sanjuan, Maria E.; Bai, Lina; Wu, Junjun; Sun, Bin; Li, Changlong

    2014-11-01

    The objective of Dragon 3 Project 10367 is the development of techniques research for desertification assessment and monitoring in China using remote sensing data in combination with climate and environmental-related data. The main achievements acquired since2012could be summarized as follows: (1)Photosynthetic vegetation(PV)and non-photosynthetic vegetation(NPV)fraction were retrieved separately through utilizing Auto Monte Carlo Unmixing technique (AutoMCU), based on BJ-1 data and field measured spectral library. (2) The accuracy of sandy land classification was as high as81.52%when the object-oriented method and Support Vector Machine (SVM) classifiers were used. (3) A new Monthly net primary productivity (NPP)dataset from 2002 to 2010 for the whole China were established with Envisat-MERIS fraction of absorbed photosynthetically active radiation (FPAR) data. (4) The 2dRUE proved to be a good indicator for land degradation, based on which, land degradation status in the general potential extent of desertification in China(PEDC) was assessed preliminarily.

  16. Mid Term Progress Report: Desertification Assessment and Monitoring in China Based on Remote Sensing

    NASA Astrophysics Data System (ADS)

    Gao, Zhihai; del Barrio, Gabriel; Li, Xiaosong; Wang, Wengyu; Puigdefabregas, Juan; Sanjuan, Maria E.; Bai, Lina; Wu, Junjun; Sun, Bin; Li, Changlong

    2014-11-01

    The objective of Dragon 3 Project 10367 is the development of techniques research for desertification assessment and monitoring in China using remote sensing data in combination with climate and environmental-related data. The main achievements acquired since 2012 could be summarized as follows:(1) Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) fraction were retrieved separately through utilizing Auto Monte Carlo Unmixing technique (AutoMCU), based on BJ-1 data and field measured spectral library.(2) The accuracy of sandy land classification was as high as 81.52% when the object-oriented method and Support Vector Machine (SVM) classifiers were used.(3) A new Monthly net primary productivity (NPP) dataset from 2002 to 2010 for the whole China were established with Envisat-MERIS fraction of absorbed photosynthetically active radiation (FPAR) data.(4) The 2dRUE proved to be a good indicator for land degradation, based on which, land degradation status in the general potential extent of desertification in China (PEDC) was assessed preliminarily.

  17. Targets Mask U-Net for Wind Turbines Detection in Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Han, M.; Wang, H.; Wang, G.; Liu, Y.

    2018-04-01

    To detect wind turbines precisely and quickly in very high resolution remote sensing images (VHRRSI) we propose target mask U-Net. This convolution neural network (CNN), which is carefully designed to be a wide-field detector, models the pixel class assignment to wind turbines and their context information. The shadow, which is the context information of the target in this study, has been regarded as part of a wind turbine instance. We have trained the target mask U-Net on training dataset, which is composed of down sampled image blocks and instance mask blocks. Some post-processes have been integrated to eliminate wrong spots and produce bounding boxes of wind turbine instances. The evaluation metrics prove the reliability and effectiveness of our method for the average F1-score of our detection method is up to 0.97. The comparison of detection accuracy and time consuming with the weakly supervised targets detection method based on CNN illustrates the superiority of our method.

  18. Urban Area Detection in Very High Resolution Remote Sensing Images Using Deep Convolutional Neural Networks.

    PubMed

    Tian, Tian; Li, Chang; Xu, Jinkang; Ma, Jiayi

    2018-03-18

    Detecting urban areas from very high resolution (VHR) remote sensing images plays an important role in the field of Earth observation. The recently-developed deep convolutional neural networks (DCNNs), which can extract rich features from training data automatically, have achieved outstanding performance on many image classification databases. Motivated by this fact, we propose a new urban area detection method based on DCNNs in this paper. The proposed method mainly includes three steps: (i) a visual dictionary is obtained based on the deep features extracted by pre-trained DCNNs; (ii) urban words are learned from labeled images; (iii) the urban regions are detected in a new image based on the nearest dictionary word criterion. The qualitative and quantitative experiments on different datasets demonstrate that the proposed method can obtain a remarkable overall accuracy (OA) and kappa coefficient. Moreover, it can also strike a good balance between the true positive rate (TPR) and false positive rate (FPR).

  19. NLCD 2011 database

    EPA Pesticide Factsheets

    National Land Cover Database 2011 (NLCD 2011) is the most recent national land cover product created by the Multi-Resolution Land Characteristics (MRLC) Consortium. NLCD 2011 provides - for the first time - the capability to assess wall-to-wall, spatially explicit, national land cover changes and trends across the United States from 2001 to 2011. As with two previous NLCD land cover products NLCD 2011 keeps the same 16-class land cover classification scheme that has been applied consistently across the United States at a spatial resolution of 30 meters. NLCD 2011 is based primarily on a decision-tree classification of circa 2011 Landsat satellite data. This dataset is associated with the following publication:Homer, C., J. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. Herold, J. Wickham , and K. Megown. Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING. American Society for Photogrammetry and Remote Sensing, Bethesda, MD, USA, 81(0): 345-354, (2015).

  20. Seeing from Space: What Icebergs Can Tell Us About Ice-ocean Interactions

    NASA Astrophysics Data System (ADS)

    Scheick, J.; Enderlin, E. M.; Hamilton, G. S.

    2017-12-01

    Icebergs are an important component of the ice-ocean system, yet until recently they have remained the focus of relatively few studies. Icebergs are an important distributed freshwater and nutrient source and can pose significant hazards for navigation and infrastructure, warranting further study. Importantly, icebergs are also easily observable en masse using satellite imagery and other remote sensing platforms, allowing for the collection of large datasets from already existing archives. Here we present some of the many ways that remotely sensed icebergs can be used to inform our understanding of ice-ocean interactions, as well as some of the limitations of these methods and what information is still needed. We will explore the size and spatial distribution of icebergs through time and what that can tell us about the calving behavior of the parent glacier and/or ocean-driven melting below the waterline. We will also explore the use of icebergs as depth finders and drifters to infer bathymetry and components of fjord circulation, respectively.

  1. Intercomparison of TCCON and MUSICA Water Vapour Products

    NASA Astrophysics Data System (ADS)

    Weaver, D.; Strong, K.; Deutscher, N. M.; Schneider, M.; Blumenstock, T.; Robinson, J.; Notholt, J.; Sherlock, V.; Griffith, D. W. T.; Barthlott, S.; García, O. E.; Smale, D.; Palm, M.; Jones, N. B.; Hase, F.; Kivi, R.; Ramos, Y. G.; Yoshimura, K.; Sepúlveda, E.; Gómez-Peláez, Á. J.; Gisi, M.; Kohlhepp, R.; Warneke, T.; Dohe, S.; Wiegele, A.; Christner, E.; Lejeune, B.; Demoulin, P.

    2014-12-01

    We present an intercomparison between the water vapour products from the Total Carbon Column Observing Network (TCCON) and the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA), two datasets from ground-based Fourier Transform InfraRed (FTIR) spectrometers with good global representation. Where possible, comparisons to radiosondes are also included. The near-infrared TCCON measurements are optimized to provide precise monitoring of greenhouse gases for carbon cycle studies; however, TCCON's retrievals also produce water vapour products. The mid-infrared MUSICA products result from retrievals optimized to give precise and accurate information about H2O, HDO, and δD. The MUSICA water vapour products have been validated by extensive intercomparisons with H2O and δD in-situ measurements made from ground, radiosonde, and aircraft (Schneider et al. 2012, 2014), as well as by intercomparisons with satellite-based H2O and δD remote sensing measurements (Wiegele et al., 2014). This dataset provides a valuable reference point for other measurements of water vapour. This study is motivated by the limited intercomparisons performed for TCCON water vapour products and limited characterisation of their uncertainties. We compare MUSICA and TCCON products to assess the potential for TCCON measurements to contribute to studies of the water cycle, water vapour's role in climate and use as a tracer for atmospheric dynamics, and to evaluate the performance of climate models. The TCCON and MUSICA products result from measurements taken using the same FTIR instruments, enabling a comparison with constant instrumentation. The retrieval techniques differ, however, in their method and a priori information. We assess the impact of these differences and characterize the comparability of the TCCON and MUSICA datasets.

  2. Using the SPEI to Estimate Food Production in East Africa

    NASA Astrophysics Data System (ADS)

    Husak, G. J.; Hobbins, M.; Verdin, J. P.; Peterson, P.; Funk, C. C.

    2015-12-01

    The Famine Early Warning Systems Network (FEWS NET) monitors critical environmental variables that impact food production in developing countries. Due to a sparse network of observations in the developing world, many of these variables are estimated using remotely sensed data. As scientists develop new techniques to leverage available observations and remotely sensed information there are opportunities to create products that identify the environmental conditions that stress agriculture and reduce food production. FEWS NET pioneered the development of the Climate Hazards Group InfraRed Precipitation with stations (CHIRPS) dataset, to estimate precipitation and monitor growing conditions throughout the world. These data are used to drive land surface models, hydrologic models and basic crop models among others. A new dataset estimating the reference evapotranspiration (ET0) has been developed using inputs from the ERA-Interim GCM. This ET0 dataset stretches back to 1981, allowing for a long-term record, stretching many seasons and drought events. Combining the CHIRPS data to estimate water availability and the ET0 data to estimate evaporative demand, one can estimate the approximate water gap (surplus or deficit) over a specific time period. Normalizing this difference creates the Standardized Precipitation Evapotranspiration Index (SPEI), which presents these gaps in comparison to the historical record for a specific location and accumulation period. In this study we evaluate the SPEI as a tool to estimate crop yields for different regions of Kenya. Identifying the critical time of analysis for the SPEI is the first step in building a relationship between the water gap and food production. Once this critical period is identified, we look at the predictability of food production using the SPEI, and assess the utility of it for monitoring food security, with the goal of incorporating the SPEI in the standard monitoring suite of FEWS NET tools.

  3. Object-Oriented Image Clustering Method Using UAS Photogrammetric Imagery

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Larson, A.; Schultz-Fellenz, E. S.; Sussman, A. J.; Swanson, E.; Coppersmith, R.

    2016-12-01

    Unmanned Aerial Systems (UAS) have been used widely as an imaging modality to obtain remotely sensed multi-band surface imagery, and are growing in popularity due to their efficiency, ease of use, and affordability. Los Alamos National Laboratory (LANL) has employed the use of UAS for geologic site characterization and change detection studies at a variety of field sites. The deployed UAS equipped with a standard visible band camera to collect imagery datasets. Based on the imagery collected, we use deep sparse algorithmic processing to detect and discriminate subtle topographic features created or impacted by subsurface activities. In this work, we develop an object-oriented remote sensing imagery clustering method for land cover classification. To improve the clustering and segmentation accuracy, instead of using conventional pixel-based clustering methods, we integrate the spatial information from neighboring regions to create super-pixels to avoid salt-and-pepper noise and subsequent over-segmentation. To further improve robustness of our clustering method, we also incorporate a custom digital elevation model (DEM) dataset generated using a structure-from-motion (SfM) algorithm together with the red, green, and blue (RGB) band data for clustering. In particular, we first employ an agglomerative clustering to create an initial segmentation map, from where every object is treated as a single (new) pixel. Based on the new pixels obtained, we generate new features to implement another level of clustering. We employ our clustering method to the RGB+DEM datasets collected at the field site. Through binary clustering and multi-object clustering tests, we verify that our method can accurately separate vegetation from non-vegetation regions, and are also able to differentiate object features on the surface.

  4. Simultaneous comparison and assessment of eight remotely sensed maps of Philippine forests

    NASA Astrophysics Data System (ADS)

    Estoque, Ronald C.; Pontius, Robert G.; Murayama, Yuji; Hou, Hao; Thapa, Rajesh B.; Lasco, Rodel D.; Villar, Merlito A.

    2018-05-01

    This article compares and assesses eight remotely sensed maps of Philippine forest cover in the year 2010. We examined eight Forest versus Non-Forest maps reclassified from eight land cover products: the Philippine Land Cover, the Climate Change Initiative (CCI) Land Cover, the Landsat Vegetation Continuous Fields (VCF), the MODIS VCF, the MODIS Land Cover Type product (MCD12Q1), the Global Tree Canopy Cover, the ALOS-PALSAR Forest/Non-Forest Map, and the GlobeLand30. The reference data consisted of 9852 randomly distributed sample points interpreted from Google Earth. We created methods to assess the maps and their combinations. Results show that the percentage of the Philippines covered by forest ranges among the maps from a low of 23% for the Philippine Land Cover to a high of 67% for GlobeLand30. Landsat VCF estimates 36% forest cover, which is closest to the 37% estimate based on the reference data. The eight maps plus the reference data agree unanimously on 30% of the sample points, of which 11% are attributable to forest and 19% to non-forest. The overall disagreement between the reference data and Philippine Land Cover is 21%, which is the least among the eight Forest versus Non-Forest maps. About half of the 9852 points have a nested structure such that the forest in a given dataset is a subset of the forest in the datasets that have more forest than the given dataset. The variation among the maps regarding forest quantity and allocation relates to the combined effects of the various definitions of forest and classification errors. Scientists and policy makers must consider these insights when producing future forest cover maps and when establishing benchmarks for forest cover monitoring.

  5. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  6. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, GIOVANNI

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Acker, J. G.; Kempler, S. J.

    2016-12-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to research scientists, applications scientists, applications users, and students around the world. The GES DISC is the home (archive) of NASA Precipitation and Hydrology, as well as Atmospheric Composition and Dynamics remote sensing data and information. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI, http://giovanni.gsfc.nasa.gov/) allows users to explore satellite-based data using sophisticated analyses and visualizations without downloading data and software, which is particularly suitable for novices to use NASA datasets in STEM activities. In this presentation, we will briefly introduce GIOVANNI and recommend datasets for STEM. Examples of using these datasets in STEM activities will be presented as well.

  7. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, Giovanni

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Acker, J.; Kempler, S.

    2016-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to users around the world including research and application scientists, students, citizen scientists, etc. The GESDISC is the home (archive) of remote sensing datasets for NASA Precipitation and Hydrology, Atmospheric Composition and Dynamics, etc. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels in different countries. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, http:giovanni.gsfc.nasa.gov) allows users to explore satellite-based datasets using sophisticated analyses and visualization without downloading data and software, which is particularly suitable for novices (such as students) to use NASA datasets in STEM (science, technology, engineering and mathematics) activities. In this presentation, we will briefly introduce Giovanni along with examples for STEM activities.

  8. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  9. An integrated multiscale river basin observing system in the Heihe River Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.

    2015-12-01

    Using the watershed as the unit to establish an integrated watershed observing system has been an important trend in integrated eco-hydrologic studies in the past ten years. Thus far, a relatively comprehensive watershed observing system has been established in the Heihe River Basin, northwest China. In addition, two comprehensive remote sensing hydrology experiments have been conducted sequentially in the Heihe River Basin, including the Watershed Allied Telemetry Experimental Research (WATER) (2007-2010) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (2012-2015). Among these two experiments, an important result of WATER has been the generation of some multi-scale, high-quality comprehensive datasets, which have greatly supported the development, improvement and validation of a series of ecological, hydrological and quantitative remote-sensing models. The goal of a breakthrough for solving the "data bottleneck" problem has been achieved. HiWATER was initiated in 2012. This project has established a world-class hydrological and meteorological observation network, a flux measurement matrix and an eco-hydrological wireless sensor network. A set of super high-resolution airborne remote-sensing data has also been obtained. In addition, there has been important progress with regard to the scaling research. Furthermore, the automatic acquisition, transmission, quality control and remote control of the observational data has been realized through the use of wireless sensor network technology. The observation and information systems have been highly integrated, which will provide a solid foundation for establishing a research platform that integrates observation, data management, model simulation, scenario analysis and decision-making support to foster 21st-century watershed science in China.

  10. Parallel hyperspectral compressive sensing method on GPU

    NASA Astrophysics Data System (ADS)

    Bernabé, Sergio; Martín, Gabriel; Nascimento, José M. P.

    2015-10-01

    Remote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.

  11. Potential reciprocal effect between land use / land cover change and climate change

    NASA Astrophysics Data System (ADS)

    Daham, Afrah; Han, Dawei; Rico-Ramirez, Miguel

    2016-04-01

    Land use/land cover (LULC) activity influences climate change and one way to explore climate change is to analyse the change in LULC patterns. Modelling the Spatio-temporal pattern of LULC change requires the use of satellite remote sensing data and aerial photographs with different pre-processing steps. The aim of this research is to analyse the reciprocal effects of LUCC (Land Use and Cover Change) and the climate change on each other in the study area which covers part of Bristol, South Gloucestershire, Bath and Somerset in England for the period (1975-2015). LUCC is assessed using remote sensing data. Three sets of remotely sensed data, LanSAT-1 Multispectral Scanner (MSS) data obtained in (1975 and 1976), LanSAT-5 Thematic Mapper (TM) data obtained in (1984 and 1997), and LandSAT-7 Enhanced Thematic Mapper Plus (ETM+) acquired in (2003 and 2015), with a time span of forty years were used in the study. One of the most common problems in the satellite images is the presence of cloud covers. In this study, the cloud cover problem is handled using a novel algorithm, which is capable of reducing the cloud coverage in the classified images significantly. This study also examines a suite of possible photogrammetry techniques applicable to detect the change in LULC. At the moment photogrammertic techniques are used to derive the ground truth for supervised classification from the high resolution aerial photos which were provided by Ordnance Survey (contract number: 240215) and global mapper for the years in (2001 and 2014). After obtaining the classified images almost free of clouds, accuracy assessment is implemented with the derived classified images using confusion matrix at some ground truth points. Eight classes (Improved grassland, Built up areas and gardens, Arable and horticulture, Broad-leaved / mixed woodland, Coniferous woodland, Oceanic seas, Standing open water and reservoir, and Mountain; heath; bog) have been classified in the chosen study area. Also, CORINE Land Cover (CLC) maps are used to study the environmental changes and to validate the obtained maps from remote sensing and photogrammetry data. On climate change, different sources of climate data were used in this research. Three rainfall datasets from the Global Precipitation Climatology Centre (GPCC), the Climate Research Unit (CRU) and Gridded Estimates of daily Areal Rainfall (CEH-GEAR) in the study area were compared at a resolution of 0.5 degrees. The dataset were available for the operational period 1975-2015. The historically observed rainfall datasets for the study area were obtained from the Met Office Integrated Data Archive System (MIDAS) Land and Marine downloaded through the British Atmospheric Data Centre (BADC) website, which includes the rainfall and the temperature, are collected from all the weather stations in the UK in the last 40 years. Only four gauging stations were available to represent the spatial variability of rainfall within and around the study area. The monthly rainfall time series were evaluated against a dataset based on four rain gauges. These data are processed and analysed statistically to find the changes in climate of the study area in the last 40 years. The potential reciprocal effect between the LULC change and the climate change is done by finding the correlation between LUCC and the variables Rainfall and Temperature. In addition, The Soil and Water Assessment Tool (SWAT) model is used to study the impact of LULC change on the water system and climate.

  12. REMOTE SENSING TECHNOLOGIES APPLICATIONS RESEARCH

    EPA Science Inventory

    Remote sensing technologies applications research supports the ORD Landscape Sciences Program (LSP) in two separate areas: operational remote sensing, and remote sensing research and development. Operational remote sensing is provided to the LSP through the use of current and t...

  13. A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification

    PubMed Central

    Liu, Fuxian

    2018-01-01

    One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references. PMID:29581722

  14. A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification.

    PubMed

    Yu, Yunlong; Liu, Fuxian

    2018-01-01

    One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references.

  15. Outcomes of a NASA Workshop to Develop a Portfolio of Low Latency Datasets for Time-Sensitive Applications

    NASA Technical Reports Server (NTRS)

    Davies, Diane K.; Brown, Molly E.; Green, David S.; Michael, Karen A.; Murray, John J.; Justice, Christopher O.; Soja, Amber J.

    2016-01-01

    It is widely accepted that time-sensitive remote sensing data serve the needs of decision makers in the applications communities and yet to date, a comprehensive portfolio of NASA low latency datasets has not been available. This paper will describe the NASA low latency, or Near-Real Time (NRT), portfolio, how it was developed and plans to make it available online through a portal that leverages the existing EOSDIS capabilities such as the Earthdata Search Client (https:search.earthdata.nasa.gov), the Common Metadata Repository (CMR) and the Global Imagery Browse Service (GIBS). This paper will report on the outcomes of a NASA Workshop to Develop a Portfolio of Low Latency Datasets for Time-Sensitive Applications (27-29 September 2016 at NASA Langley Research Center, Hampton VA). The paper will also summarize findings and recommendations from the meeting outlining perceived shortfalls and opportunities for low latency research and application science.

  16. Tunnel-Site Selection by Remote Sensing Techniques

    DTIC Science & Technology

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  17. Discovery and Analysis of Intersecting Datasets: JMARS as a Comparative Science Platform

    NASA Astrophysics Data System (ADS)

    Carter, S.; Christensen, P. R.; Dickenshied, S.; Anwar, S.; Noss, D.

    2014-12-01

    A great deal can be discovered from comparing and studying a chosen region or area on a planetary body. In this age, science has an enormous amount of instruments and data to study from; often the first obstacle can be finding the right information. Developed at Arizona State University, Java Mission-planning and Analysis for Remote Sensing (JMARS), enables users to easily find and study related datasets. JMARS supports a long list of planetary bodies in our solar system, including Earth, the Moon, Mars, and other planets, satellites, and asteroids. Within JMARS a user can start with a particular area and search for all datasets that have images/information intersecting that region of interest. Once a user has found data they are interested in comparing, they can view the image at once and see the numeric information at that location. This information can be analyzed in a few powerful ways. If the dataset of interest varies with time but the location stays constant, then the user may want to compare specific locations through time. This can be done the Investigate Tool in JMARS. Users can create a Data Spike and the information at that point will be plotted through time. If the region does not have a temporal dataset, then a different method would be suitable and involves a profile line. Also using the Investigate Tool, a user can create a Data Profile (a line which can contain as many vertices as necessary) and all numeric data underneath the line will be plotted on one graph for easy comparison. This can be used to compare differences between similar datasets - perhaps the same measurement but from different instruments - or to find correlations from one dataset to another. A third form of analysis is planned for future development. This method involves entire areas (polygons). Sampling of the different data sources beneath an area can reveal statistics like maximum, minimum, and average values, and standard deviation. These values can be compared to other data sources under the given area. JMARS has the ability to geographically locate and display a vast array of remote sensing data for a user. In addition to its powerful searching ability, it also enables users to compare datasets using the Data Spike and Data Profile techniques. Plots and tables from this data can be exported and used in presentations, papers, or external software for further study.

  18. System and method for evaluating wind flow fields using remote sensing devices

    DOEpatents

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2016-12-13

    The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.

  19. Exploring Models and Data for Remote Sensing Image Caption Generation

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoqiang; Wang, Binqiang; Zheng, Xiangtao; Li, Xuelong

    2018-04-01

    Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at https://github.com/201528014227051/RSICD_optimal

  20. Photosynthetic parameters in the Beaufort Sea in relation to the phytoplankton community structure

    NASA Astrophysics Data System (ADS)

    Huot, Y.; Babin, M.; Bruyant, F.

    2013-01-01

    To model phytoplankton primary production from remotely sensed data a method to estimate photosynthetic parameters describing the photosynthetic rates per unit biomass is required. Variability in these parameters must be related to environmental variables that are measurable remotely. In the Arctic, a limited number of measurements of photosynthetic parameter have been carried out with the concurrent environmental variables needed. Therefore, to improve the accuracy of remote estimates of phytoplankton primary production as well as our ability to predict changes in the future such measurements and relationship to environmental variables are required. During the MALINA cruise, a large dataset of these parameters were obtained. Together with previously published datasets, we use environmental and trophic variables to provide functional relationships for these parameters. In particular, we describe several specific aspects: the maximum rate of photosynthesis (Pmaxchl) normalized to chlorophyll decreases with depth and is higher for communities composed of large cells; the saturation parameter (Ek) decreases with depth but is independent of the community structure; and the initial slope of the photosynthesis versus irradiance curve (αchl) normalized to chlorophyll is independent of depth but is higher for communities composed of larger cells. The photosynthetic parameters were not influenced by temperature over the range encountered during the cruise (-2 to 8 °C).

  1. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  2. Introduction to the physics and techniques of remote sensing

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1987-01-01

    This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.

  3. The total carbon column observing network.

    PubMed

    Wunch, Debra; Toon, Geoffrey C; Blavier, Jean-François L; Washenfelder, Rebecca A; Notholt, Justus; Connor, Brian J; Griffith, David W T; Sherlock, Vanessa; Wennberg, Paul O

    2011-05-28

    A global network of ground-based Fourier transform spectrometers has been founded to remotely measure column abundances of CO(2), CO, CH(4), N(2)O and other molecules that absorb in the near-infrared. These measurements are directly comparable with the near-infrared total column measurements from space-based instruments. With stringent requirements on the instrumentation, acquisition procedures, data processing and calibration, the Total Carbon Column Observing Network (TCCON) achieves an accuracy and precision in total column measurements that is unprecedented for remote-sensing observations (better than 0.25% for CO(2)). This has enabled carbon-cycle science investigations using the TCCON dataset, and allows the TCCON to provide a link between satellite measurements and the extensive ground-based in situ network. © 2011 The Royal Society

  4. [Thematic Issue: Remote Sensing.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1978-01-01

    Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…

  5. 75 FR 65304 - Advisory Committee on Commercial Remote Sensing (ACCRES); Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Commercial Remote Sensing (ACCRES); Request for Nominations AGENCY: National Oceanic and Atmospheric... Commercial Remote Sensing (ACCRES). SUMMARY: The Advisory Committee on Commercial Remote Sensing (ACCRES) was... Atmosphere, on matters relating to the U.S. commercial remote sensing industry and NOAA's activities to carry...

  6. Remote quantification of phycocyanin in potable water sources through an adaptive model

    NASA Astrophysics Data System (ADS)

    Song, Kaishan; Li, Lin; Tedesco, Lenore P.; Li, Shuai; Hall, Bob E.; Du, Jia

    2014-09-01

    Cyanobacterial blooms in water supply sources in both central Indiana USA (CIN) and South Australia (SA) are a cause of great concerns for toxin production and water quality deterioration. Remote sensing provides an effective approach for quick assessment of cyanobacteria through quantification of phycocyanin (PC) concentration. In total, 363 samples spanning a large variation of optically active constituents (OACs) in CIN and SA waters were collected during 24 field surveys. Concurrently, remote sensing reflectance spectra (Rrs) were measured. A partial least squares-artificial neural network (PLS-ANN) model, artificial neural network (ANN) and three-band model (TBM) were developed or tuned by relating the Rrs with PC concentration. Our results indicate that the PLS-ANN model outperformed the ANN and TBM with both the original spectra and simulated ESA/Sentinel-3/Ocean and Land Color Instrument (OLCI) and EO-1/Hyperion spectra. The PLS-ANN model resulted in a high coefficient of determination (R2) for CIN dataset (R2 = 0.92, R: 0.3-220.7 μg/L) and SA (R2 = 0.98, R: 0.2-13.2 μg/L). In comparison, the TBM model yielded an R2 = 0.77 and 0.94 for the CIN and SA datasets, respectively; while the ANN obtained an intermediate modeling accuracy (CIN: R2 = 0.86; SA: R2 = 0.95). Applying the simulated OLCI and Hyperion aggregated datasets, the PLS-ANN model still achieved good performance (OLCI: R2 = 0.84; Hyperion: R2 = 0.90); the TBM also presented acceptable performance for PC estimations (OLCI: R2 = 0.65, Hyperion: R2 = 0.70). Based on the results, the PLS-ANN is an effective modeling approach for the quantification of PC in productive water supplies based on its effectiveness in solving the non-linearity of PC with other OACs. Furthermore, our investigation indicates that the ratio of inorganic suspended matter (ISM) to PC concentration has close relationship to modeling relative errors (CIN: R2 = 0.81; SA: R2 = 0.92), indicating that ISM concentration exert significant impact on PC estimation accuracy.

  7. Remote Characterization of Biomass Measurements: Case Study of Mangrove Forests

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola E.

    2010-01-01

    Accurately quantifying forest biomass is of crucial importance for climate change studies. By quantifying the amount of above and below ground biomass and consequently carbon stored in forest ecosystems, we are able to derive estimates of carbon sequestration, emission and storage and help close the carbon budget. Mangrove forests, in addition to providing habitat and nursery grounds for over 1300 animal species, are also an important sink of biomass. Although they only constitute about 3% of the total forested area globally, their carbon storage capacity -- in forested biomass and soil carbon -- is greater than that of tropical forests (Lucas et al, 2007). In addition, the amount of mangrove carbon -- in the form of litter and leaves exported into offshore areas is immense, resulting in over 10% of the ocean's dissolved organic carbon originating from mangroves (Dittmar et al, 2006) The measurement of forest above ground biomass is carried out on two major scales: on the plot scale, biomass can be measured using field measurements through allometric equation derivation and measurements of forest plots. On the larger scale, the field data are used to calibrate remotely sensed data to obtain stand-wide or even regional estimates of biomass. Currently, biomass can be calculated using average stand biomass values and optical data, such as aerial photography or satellite images (Landsat, Modis, Ikonos, SPOT, etc.). More recent studies have concentrated on deriving forest biomass values using radar (JERS, SIR-C, SRTM, Airsar) and/or lidar (ICEsat/GLAS, LVIS) active remote sensing to retrieve more accurate and detailed measurements of forest biomass. The implementation of a generation of new active sensors (UAVSar, DesdynI, Alos/Palsar, TerraX) has prompted the development of new tecm'liques of biomass estimation that use the combination of multiple sensors and datasets, to quantify past, current and future biomass stocks. Focusing on mangrove forest biomass estimation, this book chapter has 3 main objectives: a) To describe in detail the field methodologies used to derive accurate estimates of biomass in mangrove forests b) To explain how mangrove forest biomass can be measured using several remote sensing techniques and datasets c) To give a detailed explanation of the measurement challenges and errors that arise in each estimate of forest biomass

  8. SMALT - Soil Moisture from Altimetry project

    NASA Astrophysics Data System (ADS)

    Smith, Richard; Benveniste, Jérôme; Dinardo, Salvatore; Lucas, Bruno Manuel; Berry, Philippa; Wagner, Wolfgang; Hahn, Sebastian; Egido, Alejandro

    Soil surface moisture is a key scientific parameter; however, it is extremely difficult to measure remotely, particularly in arid and semi-arid terrain. This paper outlines the development of a novel methodology to generate soil moisture estimates in these regions from multi-mission satellite radar altimetry. Key to this approach is the development of detailed DRy Earth ModelS (DREAMS), which encapsulate the detailed and intricate surface brightness variations over the Earth’s land surface, resulting from changes in surface roughness and composition. DREAMS have been created over a number of arid and semi-arid deserts worldwide to produce historical SMALT timeseries over soil moisture variation. These products are available in two formats - a high resolution track product which utilises the altimeter’s high frequency content alongtrack and a multi-looked 6” gridded product at facilitate easy comparison/integeration with other remote sensing techniques. An overview of the SMALT processing scheme, covering the progression of the data from altimeter sigma0 through to final soil moisture estimate, is included along with example SMALT products. Validation has been performed over a number of deserts by comparing SMALT products with other remote sensing techniques, results of the comparison between SMALT and Metop Warp 5.5 are presented here. Comparisons with other remote sensing techniques have been limited in scope due to differences in the operational aspects of the instruments, the restricted geographical coverage of the DREAMS and the low repeat temporal sampling rate of the altimeter. The potential to expand the SMALT technique into less arid areas has been investigated. Small-scale comparison with in-situ and GNSS-R data obtained by the LEiMON experimental campaign over Tuscany, where historical trends exist within both SMALT and SMC probe datasets. A qualitative analysis of unexpected backscatter characteristics in dedicated dry environments is performed with comparison between Metop ASCAT and altimeter sigma0 over Saharan Africa. Geographical correlated areas of agreement and disagreement corresponding to underlying terrain are identified. SMALT products provide a first order estimation of soil moisture in areas of very dry terrain, where other datasets are limited. Potential to improve and expand the technique has been found, although further work is required to produce products with the same accuracy confidence as more established techniques. The data are made freely available to the scientific community through the website http://tethys.eaprs.cse.dmu.ac.uk/SMALT

  9. SMALT - Soil Moisture from Altimetry

    NASA Astrophysics Data System (ADS)

    Smith, Richard; Salloway, Mark; Berry, Philippa; Hahn, Sebastian; Wagner, Wolfgang; Egido, Alejandro; Dinardo, Salvatore; Lucas, Bruno Manuel; Benveniste, Jerome

    2014-05-01

    Soil surface moisture is a key scientific parameter; however, it is extremely difficult to measure remotely, particularly in arid and semi-arid terrain. This paper outlines the development of a novel methodology to generate soil moisture estimates in these regions from multi-mission satellite radar altimetry. Key to this approach is the development of detailed DRy Earth ModelS (DREAMS), which encapsulate the detailed and intricate surface brightness variations over the Earth's land surface, resulting from changes in surface roughness and composition. DREAMS have been created over a number of arid and semi-arid deserts worldwide to produce historical SMALT timeseries over soil moisture variation. These products are available in two formats - a high resolution track product which utilises the altimeter's high frequency content alongtrack and a multi-looked 6" gridded product at facilitate easy comparison/integeration with other remote sensing techniques. An overview of the SMALT processing scheme, covering the progression of the data from altimeter sigma0 through to final soil moisture estimate, is included along with example SMALT products. Validation has been performed over a number of deserts by comparing SMALT products with other remote sensing techniques, results of the comparison between SMALT and Metop Warp 5.5 are presented here. Comparisons with other remote sensing techniques have been limited in scope due to differences in the operational aspects of the instruments, the restricted geographical coverage of the DREAMS and the low repeat temporal sampling rate of the altimeter. The potential to expand the SMALT technique into less arid areas has been investigated. Small-scale comparison with in-situ and GNSS-R data obtained by the LEiMON experimental campaign over Tuscany, where historical trends exist within both SMALT and SMC probe datasets. A qualitative analysis of unexpected backscatter characteristics in dedicated dry environments is performed with comparison between Metop ASCAT and altimeter sigma0 over Saharan Africa. Geographical correlated areas of agreement and disagreement corresponding to underlying terrain are identified. SMALT products provide a first order estimation of soil moisture in areas of very dry terrain, where other datasets are limited. Potential to improve and expand the technique has been found, although further work is required to produce products with the same accuracy confidence as more established techniques. The data are made freely available to the scientific community through the website http://tethys.eaprs.cse.dmu.ac.uk/SMALT

  10. Literature relevant to remote sensing of water quality

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  11. Learning Methods of Remote Sensing In the 2013 Curriculum of Secondary School

    NASA Astrophysics Data System (ADS)

    Lili Somantri, Nandi

    2016-11-01

    The new remote sensing material included in the subjects of geography in the curriculum of 1994. For geography teachers generation of 90s and over who in college do not get the material remote sensing, for teaching is a tough matter. Most teachers only give a theoretical matter, and do not carry out practical reasons in the lack of facilities and infrastructure of computer laboratories. Therefore, in this paper studies the importance about the method or manner of teaching remote sensing material in schools. The purpose of this paper is 1) to explain the position of remote sensing material in the study of geography, 2) analyze the Geography Curriculum 2013 Subjects related to remote sensing material, 3) describes a method of teaching remote sensing material in schools. The method used in this paper is a descriptive analytical study supported by the literature. The conclusion of this paper that the position of remote sensing in the study of geography is a method or a way to obtain spatial data earth's surface. In the 2013 curriculum remote sensing material has been applied to the study of land use and transportation. Remote sensing methods of teaching must go through a practicum, which starts from the introduction of the theory of remote sensing, data extraction phase of remote sensing imagery to produce maps, both visually and digitally, field surveys, interpretation of test accuracy, and improved maps.

  12. JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.

    DTIC Science & Technology

    1991-01-17

    Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,

  13. Integrating remote sensing and spatially explicit epidemiological modeling

    NASA Astrophysics Data System (ADS)

    Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rinaldo, Andrea

    2015-04-01

    Spatially explicit epidemiological models are a crucial tool for the prediction of epidemiological patterns in time and space as well as for the allocation of health care resources. In addition they can provide valuable information about epidemiological processes and allow for the identification of environmental drivers of the disease spread. Most epidemiological models rely on environmental data as inputs. They can either be measured in the field by the means of conventional instruments or using remote sensing techniques to measure suitable proxies of the variables of interest. The later benefit from several advantages over conventional methods, including data availability, which can be an issue especially in developing, and spatial as well as temporal resolution of the data, which is particularly crucial for spatially explicit models. Here we present the case study of a spatially explicit, semi-mechanistic model applied to recurring cholera outbreaks in the Lake Kivu area (Democratic Republic of the Congo). The model describes the cholera incidence in eight health zones on the shore of the lake. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers. Human mobility and its effect on the disease spread is also taken into account. Several model configurations are tested on a data set of reported cases. The best models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via cross validation. The best performing model accounts for seasonality, El Niño Southern Oscillation, precipitation and human mobility.

  14. An Enhanced Text-Mining Framework for Extracting Disaster Relevant Data through Social Media and Remote Sensing Data Fusion

    NASA Astrophysics Data System (ADS)

    Scheele, C. J.; Huang, Q.

    2016-12-01

    In the past decade, the rise in social media has led to the development of a vast number of social media services and applications. Disaster management represents one of such applications leveraging massive data generated for event detection, response, and recovery. In order to find disaster relevant social media data, current approaches utilize natural language processing (NLP) methods based on keywords, or machine learning algorithms relying on text only. However, these approaches cannot be perfectly accurate due to the variability and uncertainty in language used on social media. To improve current methods, the enhanced text-mining framework is proposed to incorporate location information from social media and authoritative remote sensing datasets for detecting disaster relevant social media posts, which are determined by assessing the textual content using common text mining methods and how the post relates spatiotemporally to the disaster event. To assess the framework, geo-tagged Tweets were collected for three different spatial and temporal disaster events: hurricane, flood, and tornado. Remote sensing data and products for each event were then collected using RealEarthTM. Both Naive Bayes and Logistic Regression classifiers were used to compare the accuracy within the enhanced text-mining framework. Finally, the accuracies from the enhanced text-mining framework were compared to the current text-only methods for each of the case study disaster events. The results from this study address the need for more authoritative data when using social media in disaster management applications.

  15. Review: advances in in situ and satellite phenological observations in Japan

    NASA Astrophysics Data System (ADS)

    Nagai, Shin; Nasahara, Kenlo Nishida; Inoue, Tomoharu; Saitoh, Taku M.; Suzuki, Rikie

    2016-04-01

    To accurately evaluate the responses of spatial and temporal variation of ecosystem functioning (evapotranspiration and photosynthesis) and services (regulating and cultural services) to the rapid changes caused by global warming, we depend on long-term, continuous, near-surface, and satellite remote sensing of phenology over wide areas. Here, we review such phenological studies in Japan and discuss our current knowledge, problems, and future developments. In contrast with North America and Europe, Japan has been able to evaluate plant phenology along vertical and horizontal gradients within a narrow area because of the country's high topographic relief. Phenological observation networks that support scientific studies and outreach activities have used near-surface tools such as digital cameras and spectral radiometers. Differences in phenology among ecosystems and tree species have been detected by analyzing the seasonal variation of red, green, and blue digital numbers (RGB values) extracted from phenological images, as well as spectral reflectance and vegetation indices. The relationships between seasonal variations in RGB-derived indices or spectral characteristics and the ecological and CO2 flux measurement data have been well validated. In contrast, insufficient satellite remote-sensing observations have been conducted because of the coarse spatial resolution of previous datasets, which could not detect the heterogeneous plant phenology that results from Japan's complex topography and vegetation. To improve Japanese phenological observations, multidisciplinary analysis and evaluation will be needed to link traditional phenological observations with "index trees," near-surface and satellite remote-sensing observations, "citizen science" (observations by citizens), and results published on the Internet.

  16. NASA Land Cover and Land Use Change (LCLUC): an interdisciplinary research program.

    PubMed

    Justice, Chris; Gutman, Garik; Vadrevu, Krishna Prasad

    2015-01-15

    Understanding Land Cover/Land Use Change (LCLUC) in diverse regions of the world and at varied spatial scales is one of the important challenges in global change research. In this article, we provide a brief overview of the NASA LCLUC program, its focus areas, and the importance of satellite remote sensing observations in LCLUC research including future directions. The LCLUC Program was designed to be a cross-cutting theme within NASA's Earth Science program. The program aims to develop and use remote sensing technologies to improve understanding of human interactions with the environment. Since 1997, the NASA LCLUC program has supported nearly 280 research projects on diverse topics such as forest loss and carbon, urban expansion, land abandonment, wetland loss, agricultural land use change and land use change in mountain systems. The NASA LCLUC program emphasizes studies where land-use changes are rapid or where there are significant regional or global LCLUC implications. Over a period of years, the LCLUC program has contributed to large regional science programs such as Land Biosphere-Atmosphere (LBA), the Northern Eurasia Earth Science Partnership Initiative (NEESPI), and the Monsoon Area Integrated Regional Study (MAIRS). The primary emphasis of the program will remain on using remote sensing datasets for LCLUC research. The program will continue to emphasize integration of physical and social sciences to address regional to global scale issues of LCLUC for the benefit of society. Copyright © 2014. Published by Elsevier Ltd.

  17. Concept of an advanced hyperspectral remote sensing system for pipeline monitoring

    NASA Astrophysics Data System (ADS)

    Keskin, Göksu; Teutsch, Caroline D.; Lenz, Andreas; Middelmann, Wolfgang

    2015-10-01

    Areas occupied by oil pipelines and storage facilities are prone to severe contamination due to leaks caused by natural forces, poor maintenance or third parties. These threats have to be detected as quickly as possible in order to prevent serious environmental damage. Periodical and emergency monitoring activities need to be carried out for successful disaster management and pollution minimization. Airborne remote sensing stands out as an appropriate choice to operate either in an emergency or periodically. Hydrocarbon Index (HI) and Hydrocarbon Detection Index (HDI) utilize the unique absorption features of hydrocarbon based materials at SWIR spectral region. These band ratio based methods require no a priori knowledge of the reference spectrum and can be calculated in real time. This work introduces a flexible airborne pipeline monitoring system based on the online quasi-operational hyperspectral remote sensing system developed at Fraunhofer IOSB, utilizing HI and HDI for oil leak detection on the data acquired by an SWIR imaging sensor. Robustness of HI and HDI compared to state of the art detection algorithms is evaluated in an experimental setup using a synthetic dataset, which was prepared in a systematic way to simulate linear mixtures of selected background and oil spectra consisting of gradually decreasing percentages of oil content. Real airborne measurements in Ettlingen, Germany are used to gather background data while the crude oil spectrum was measured with a field spectrometer. The results indicate that the system can be utilized for online and offline monitoring activities.

  18. Modeling Forest Biomass and Growth: Coupling Long-Term Inventory and Lidar Data

    NASA Technical Reports Server (NTRS)

    Babcock, Chad; Finley, Andrew O.; Cook, Bruce D.; Weiskittel, Andrew; Woodall, Christopher W.

    2016-01-01

    Combining spatially-explicit long-term forest inventory and remotely sensed information from Light Detection and Ranging (LiDAR) datasets through statistical models can be a powerful tool for predicting and mapping above-ground biomass (AGB) at a range of geographic scales. We present and examine a novel modeling approach to improve prediction of AGB and estimate AGB growth using LiDAR data. The proposed model accommodates temporal misalignment between field measurements and remotely sensed data-a problem pervasive in such settings-by including multiple time-indexed measurements at plot locations to estimate AGB growth. We pursue a Bayesian modeling framework that allows for appropriately complex parameter associations and uncertainty propagation through to prediction. Specifically, we identify a space-varying coefficients model to predict and map AGB and its associated growth simultaneously. The proposed model is assessed using LiDAR data acquired from NASA Goddard's LiDAR, Hyper-spectral & Thermal imager and field inventory data from the Penobscot Experimental Forest in Bradley, Maine. The proposed model outperformed the time-invariant counterpart models in predictive performance as indicated by a substantial reduction in root mean squared error. The proposed model adequately accounts for temporal misalignment through the estimation of forest AGB growth and accommodates residual spatial dependence. Results from this analysis suggest that future AGB models informed using remotely sensed data, such as LiDAR, may be improved by adapting traditional modeling frameworks to account for temporal misalignment and spatial dependence using random effects.

  19. Identifying Spatiotemporal Changes In Irrigated Area Across Southwestern Michigan, USA, Using Remote Sensing and Climate Data

    NASA Astrophysics Data System (ADS)

    Xu, T.; Deines, J. M.; Kendall, A. D.; Hyndman, D. W.

    2017-12-01

    Irrigation, which has become more common in humid regions, is the largest consumptive water use across the US and the globe. In southwestern Michigan, there has been a dramatic expansion in irrigation water use for row crops (primarily corn and soybean) in the past decade, mostly from groundwater pumping. The rapid expansion of irrigated row crops has potentially profound implications for terrestrial water balances, food production, and local to regional climate. Detailed maps of spatio-temporal changes in irrigation are essential to better understand irrigation impacts. However, accurate monitoring of irrigation area can be difficult in humid regions using remotely sensed methods due to the similarity in greenness between non-irrigated and irrigated areas in most years. Here, we use remote sensing to create annual, 30m-resolution maps of irrigated cropland by integrating Landsat and MODIS satellite products along with the PRISM climate dataset. From these data we developed spatial time series of vegetation and extreme weather indices, including novel indices we developed specifically to maximize detection of irrigation. Using these input data, machine learning classification was then performed over the region to identify irrigated crop area for each year. The resulting annual irrigation maps suggest that total irrigated area in southwestern Michigan increased by 160% from 2000 to 2017. The accuracy of the maps is assessed relative to maps created for an arid region using the same method. The maps can be integrated into hydrologic models to quantify irrigation impacts and support water resources management.

  20. Spatial heterogeneity of leaf area index across scales from simulation and remote sensing

    NASA Astrophysics Data System (ADS)

    Reichenau, Tim G.; Korres, Wolfgang; Montzka, Carsten; Schneider, Karl

    2016-04-01

    Leaf area index (LAI, single sided leaf area per ground area) influences mass and energy exchange of vegetated surfaces. Therefore LAI is an input variable for many land surface schemes of coupled large scale models, which do not simulate LAI. Since these models typically run on rather coarse resolution grids, LAI is often inferred from coarse resolution remote sensing. However, especially in agriculturally used areas, a grid cell of these products often covers more than a single land-use. In that case, the given LAI does not apply to any single land-use. Therefore, the overall spatial heterogeneity in these datasets differs from that on resolutions high enough to distinguish areas with differing land-use. Detailed process-based plant growth models simulate LAI for separate plant functional types or specific species. However, limited availability of observations causes reduced spatial heterogeneity of model input data (soil, weather, land-use). Since LAI is strongly heterogeneous in space and time and since processes depend on LAI in a nonlinear way, a correct representation of LAI spatial heterogeneity is also desirable on coarse resolutions. The current study assesses this issue by comparing the spatial heterogeneity of LAI from remote sensing (RapidEye) and process-based simulations (DANUBIA simulation system) across scales. Spatial heterogeneity is assessed by analyzing LAI frequency distributions (spatial variability) and semivariograms (spatial structure). Test case is the arable land in the fertile loess plain of the Rur catchment near the Germany-Netherlands border.

  1. Remote sensing of sagebrush canopy nitrogen

    USGS Publications Warehouse

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.

    2012-01-01

    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.

  2. [A review on polarization information in the remote sensing detection].

    PubMed

    Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao

    2010-04-01

    Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.

  3. Comparison of Surface Flow Features from Lidar-Derived Digital Elevation Models with Historical Elevation and Hydrography Data for Minnehaha County, South Dakota

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.

    2009-01-01

    The U.S. Geological Survey (USGS) has taken the lead in the creation of a valuable remote sensing product by incorporating digital elevation models (DEMs) derived from Light Detection and Ranging (lidar) into the National Elevation Dataset (NED), the elevation layer of 'The National Map'. High-resolution lidar-derived DEMs provide the accuracy needed to systematically quantify and fully integrate surface flow including flow direction, flow accumulation, sinks, slope, and a dense drainage network. In 2008, 1-meter resolution lidar data were acquired in Minnehaha County, South Dakota. The acquisition was a collaborative effort between Minnehaha County, the city of Sioux Falls, and the USGS Earth Resources Observation and Science (EROS) Center. With the newly acquired lidar data, USGS scientists generated high-resolution DEMs and surface flow features. This report compares lidar-derived surface flow features in Minnehaha County to 30- and 10-meter elevation data previously incorporated in the NED and ancillary hydrography datasets. Surface flow features generated from lidar-derived DEMs are consistently integrated with elevation and are important in understanding surface-water movement to better detect surface-water runoff, flood inundation, and erosion. Many topographic and hydrologic applications will benefit from the increased availability of accurate, high-quality, and high-resolution surface-water data. The remotely sensed data provide topographic information and data integration capabilities needed for meeting current and future human and environmental needs.

  4. Evaluation of MuSyQ land surface albedo based on LAnd surface Parameters VAlidation System (LAPVAS)

    NASA Astrophysics Data System (ADS)

    Dou, B.; Wen, J.; Xinwen, L.; Zhiming, F.; Wu, S.; Zhang, Y.

    2016-12-01

    satellite derived Land surface albedo is an essential climate variable which controls the earth energy budget and it can be used in applications such as climate change, hydrology, and numerical weather prediction. However, the accuracy and uncertainty of surface albedo products should be evaluated with a reliable reference truth data prior to applications. A new comprehensive and systemic project of china, called the Remote Sensing Application Network (CRSAN), has been launched recent years. Two subjects of this project is developing a Multi-source data Synergized Quantitative Remote Sensin g Production System ( MuSyQ ) and a Web-based validation system named LAnd surface remote sensing Product VAlidation System (LAPVAS) , which aims to generate a quantitative remote sensing product for ecosystem and environmental monitoring and validate them with a reference validation data and a standard validation system, respectively. Land surface BRDF/albedo is one of product datasets of MuSyQ which has a pentad period with 1km spatial resolution and is derived by Multi-sensor Combined BRDF Inversion ( MCBI ) Model. In this MuSyQ albedo evaluation, a multi-validation strategy is implemented by LAPVAS, including directly and multi-scale validation with field measured albedo and cross validation with MODIS albedo product with different land cover. The results reveal that MuSyQ albedo data with a 5-day temporal resolution is in higher sensibility and accuracy during land cover change period, e.g. snowing. But results without regard to snow or changed land cover, MuSyQ albedo generally is in similar accuracy with MODIS albedo and meet the climate modeling requirement of an absolute accuracy of 0.05.

  5. Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science

    NASA Astrophysics Data System (ADS)

    Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.

    2017-09-01

    Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  6. Soil moisture variations in remotely sensed and reanalysis datasets during weak monsoon conditions over central India and central Myanmar

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sourabh; Kar, Sarat C.; Sharma, Anu Rani

    2017-07-01

    Variation of soil moisture during active and weak phases of summer monsoon JJAS (June, July, August, and September) is very important for sustenance of the crop and subsequent crop yield. As in situ observations of soil moisture are few or not available, researchers use data derived from remote sensing satellites or global reanalysis. This study documents the intercomparison of soil moisture from remotely sensed and reanalyses during dry spells within monsoon seasons in central India and central Myanmar. Soil moisture data from the European Space Agency (ESA)—Climate Change Initiative (CCI) has been treated as observed data and was compared against soil moisture data from the ECMWF reanalysis-Interim (ERA-I) and the climate forecast system reanalysis (CFSR) for the period of 2002-2011. The ESA soil moisture correlates rather well with observed gridded rainfall. The ESA data indicates that soil moisture increases over India from west to east and from north to south during monsoon season. The ERA-I overestimates the soil moisture over India, while the CFSR soil moisture agrees well with the remotely sensed observation (ESA). Over Myanmar, both the reanalysis overestimate soil moisture values and the ERA-I soil moisture does not show much variability from year to year. Day-to-day variations of soil moisture in central India and central Myanmar during weak monsoon conditions indicate that, because of the rainfall deficiency, the observed (ESA) and the CFSR soil moisture values are reduced up to 0.1 m3/m3 compared to climatological values of more than 0.35 m3/m3. This reduction is not seen in the ERA-I data. Therefore, soil moisture from the CFSR is closer to the ESA observed soil moisture than that from the ERA-I during weak phases of monsoon in the study region.

  7. Integration of Remote Sensing and Geophysical Applications for Delineation of Geological Structures: Implication for Water Resources in Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, L.; Farag, A. Z. A.

    2017-12-01

    North African countries struggle with insufficient, polluted, oversubscribed, and increasingly expensive water. This natural water shortage, in addition to the lack of a comprehensive scheme for the identification of new water resources challenge the political settings in north Africa. Groundwater is one of the main water resources and its occurrence is controlled by the structural elements which are still poorly understood. Integration of remote sensing images and geophysical tools enable us to delineate the surface and subsurface structures (i.e. faults, joints and shear zones), identify the role of these structures on groundwater flow and then to define the proper locations for groundwater wells. This approach were applied to three different areas in Egypt; southern Sinai, north eastern Sinai and the Eastern Desert using remote sensing, geophysical and hydrogeological datasets as follows: (1) identification of the spatial and temporal rainfall events using meteorological station data and Tropical Rainfall Measuring Mission data; (2) delineation of major faults and shear zones using ALOS Palsar, Landsat 8 and ASTER images, geological maps and field investigation; (3) generation of a normalized difference ratio image using Envisat radar images before and after the rain events to identify preferential water-channeling discontinuities in the crystalline terrain; (4) analysis of well data and derivations of hydrological parameters; (5) validation of the water-channeling discontinuities using Very Low Frequency, testing the structural elements (pre-delineated by remote sensing data) and their depth using gravity, magnetic and Vertical Electrical Sounding methods; (6) generation of regional groundwater flow and isotopic (18O and 2H) distribution maps for the sedimentary aquifer and an approximation flow map for the crystalline aquifer. The outputs include: (1) a conceptual/physical model for the groundwater flow in fractured crystalline and sedimentary aquifers; (2) locations of suggested new wells in light of the findings.

  8. Enhancing Remotely Sensed TIR Data for Public Health Applications: Is West Nile Virus Heat-Related?

    NASA Astrophysics Data System (ADS)

    Weng, Q.; Liu, H.; Jiang, Y.

    2014-12-01

    Public health studies often require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. This technological limitation prevents the wide usage of remote sensing data in epidemiological studies. To solve this issue, we have developed a few image fusion techniques to generate high temporally-resolved image data. We downscaled GOES LST data to 15-minute 1-km resolution to assess community-based heat-related risk in Los Angeles County, California and simulated ASTER datasets by fusing ASTER and MODIS data to derive biophysical variables, including LST, NDVI, and normalized difference water index, to examine the effects of those environmental characteristics on WNV outbreak and dissemination. A spatio-temporal analysis of WNV outbreak and dissemination was conducted by synthesizing the remote sensing variables and mosquito surveillance data, and by focusing on WNV risk areas in July through September due to data sufficiency of mosquito pools. Moderate- and high-risk areas of WNV infections in mosquitoes were identified for five epidemiological weeks. These identified WNV-risk areas were then collocated in GIS with heat hazard, exposure, and vulnerability maps to answer the question of whether WNV is a heat related virus. The results show that elevation and built-up conditions were negatively associated with the WNV propagation, while LST positively correlated with the viral transmission. NDVI was not significantly associated with WNV transmission. San Fernando Valley was found to be the most vulnerable to mosquito infections of WNV. This research provides important insights into how high temporal resolution remote sensing imagery may be used to study time-dependant events in public health, especially in the operational surveillance and control of vector-borne, water-borne, or other epidemic diseases.

  9. Impacts of a Changing Climate and Land Use on Reindeer Pastoralism: Indigenous Knowledge and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Maynard, N. G.; Oskal, A.; Turi, A.; Mathiesen, J. M.; Eira, S. D.; Yurchak, I. M. G.; Etylin, B.; Gebelein, J.

    2009-01-01

    The Arctic is home to many indigenous peoples, including those who depend on reindeer herding for their livelihood, in one of the harshest environments in the world. For the largely nomadic peoples, reindeer not only form a substantial part of the Arctic food base and economy, but they are also culturally important, shaping their way of life, mythologies, festivals and ceremonies. Reindeer pastoralism or husbandry has been practiced by numerous peoples all across Eurasia for thousands of years and involves moving herds of reindeer, which are very docile animals, from pasture to pasture depending on the season. Thus, herders must adapt on a daily basis to find optimal conditions for their herds according to the constantly changing conditions. Climate change and variability plus rapid development are increasingly creating major changes in the physical environment, ecology, and cultures of these indigenous reindeer herder communities in the North, and climate changes are occurring significantly faster in the Arctic than the rest of the globe, with correspondingly dramatic impacts (Oskal, 2008). In response to these changes, Eurasian reindeer herders have created the EALAT project, a comprehensive new initiative to study these impacts and to develop local adaptation strategies based upon their traditional knowledge of the land and its uses - in targeted partnership with the science and remote sensing community - involving extensive collaborations and coproduction of knowledge to minimize the impacts of the various changes. This chapter provides background on climate and development challenges to reindeer husbandry across the Arctic and an overview of the EALAT initiative, with an emphasis on indigenous knowledge, remote sensing, Geographic Information Systems (GIS), and other scientific data to 'co-produce' datasets for use by herders for improved decision-making and herd management. It also provides a description of the EALAT monitoring data integration and sharing system and portal being developed for reindeer pastoralism. In addition, the chapter provides some preliminary results from the EALAT Project, including some early remote sensing research results.

  10. Producing fractional rangeland component predictions in a sagebrush ecosystem, a Wyoming sensitivity analysis

    USGS Publications Warehouse

    Xian, George; Homer, Collin G.; Granneman, Brian; Meyer, Debra K.

    2012-01-01

    Remote sensing information has been widely used to monitor vegetation condition and variations in a variety of ecosystems, including shrublands. Careful application of remotely sensed imagery can provide additional spatially explicit, continuous, and extensive data on the composition and condition of shrubland ecosystems. Historically, the most widely available remote sensing information has been collected by Landsat, which has offered large spatial coverage and moderate spatial resolution data globally for nearly three decades. Such medium-resolution satellite remote sensing information can quantify the distribution and variation of terrestrial ecosystems. Landsat imagery has been frequently used with other high-resolution remote sensing data to classify sagebrush components and quantify their spatial distributions (Ramsey and others, 2004; Seefeldt and Booth, 2004; Stow and others, 2008; Underwood and others, 2007). Modeling algorithms have been developed to use field measurements and satellite remote sensing data to quantify the extent and evaluate the quality of shrub ecosystem components in large geographic areas (Homer and others, 2009). The percent cover of sagebrush ecosystem components, including bare-ground, herbaceous, litter, sagebrush, and shrub, have been quantified for entire western states (Homer and others, 2012). Furthermore, research has demonstrated the use of current measurements with historical archives of Landsat imagery to quantify the variations of these components for the last two decades (Xian and others, 2012). The modeling method used to quantify the extent and spatial distribution of sagebrush components over a large area also has required considerable amounts of training data to meet targeted accuracy requirements. These training data have maintained product accuracy by ensuring that they are derived from good quality field measurements collected during appropriate ecosystem phenology and subsequently maximized by extrapolation on high-resolution remote sensing data (Homer and others, 2012). This method has proven its utility; however, to develop these products across even larger areas will require additional cost efficiencies to ensure that an adequate product can be developed for the lowest cost possible. Given the vast geographic extent of shrubland ecosystems in the western United States, identifying cost efficiencies with optimal training data development and subsequent application to medium resolution satellite imagery provide the most likely areas for methodological efficiency gains. The primary objective of this research was to conduct a series of sensitivity tests to evaluate the most optimal and practical way to develop Landsat scale information for estimating the extent and distribution of sagebrush ecosystem components over large areas in the conterminous United States. An existing dataset of sagebrush components developed from extensive field measurements, high-resolution satellite imagery, and medium resolution Landsat imagery in Wyoming was used as the reference database (Homer and others, 2012). Statistical analysis was performed to analyze the relation between the accuracy of sagebrush components and the amount and distribution of training data on Landsat scenes needed to obtain accurate predictions.

  11. Understanding tree growth in response to moisture variability: Linking 32 years of satellite based soil moisture observations with tree rings

    NASA Astrophysics Data System (ADS)

    Albrecht, Franziska; Dorigo, Wouter; Gruber, Alexander; Wagner, Wolfgang; Kainz, Wolfgang

    2014-05-01

    Climate change induced drought variability impacts global forest ecosystems and forest carbon cycle dynamics. Physiological drought stress might even become an issue in regions generally not considered water-limited. The water balance at the soil surface is essential for forest growth. Soil moisture is a key driver linking precipitation and tree development. Tree ring based analyses are a potential approach to study the driving role of hydrological parameters for tree growth. However, at present two major research gaps are apparent: i) soil moisture records are hardly considered and ii) only a few studies are linking tree ring chronologies and satellite observations. Here we used tree ring chronologies obtained from the International Tree ring Data Bank (ITRDB) and remotely sensed soil moisture observations (ECV_SM) to analyze the moisture-tree growth relationship. The ECV_SM dataset, which is being distributed through ESA's Climate Change Initiative for soil moisture covers the period 1979 to 2010 at a spatial resolution of 0.25°. First analyses were performed for Mongolia, a country characterized by a continental arid climate. We extracted 13 tree ring chronologies suitable for our analysis from the ITRDB. Using monthly satellite based soil moisture observations we confirmed previous studies on the seasonality of soil moisture in Mongolia. Further, we investigated the relationship between tree growth (as reflected by tree ring width index) and remotely sensed soil moisture records by applying correlation analysis. In terms of correlation coefficient a strong response of tree growth to soil moisture conditions of current April to August was observed, confirming a strong linkage between tree growth and soil water storage. The highest correlation was found for current April (R=0.44), indicating that sufficient water supply is vital for trees at the beginning of the growing season. To verify these results, we related the chronologies to reanalysis precipitation and temperature datasets. Precipitation was important during both the current and previous growth season. Temperature showed the strongest correlation for previous (R=0.12) and current October (R=0.21). Hence, our results demonstrated that water supply is most likely limiting tree growth during the growing season, while temperature is determining its length. We are confident that long-term satellite based soil moisture observations can bridge spatial and temporal limitations that are inherent to in situ measurements, which are traditionally used for tree ring research. Our preliminary results are a foundation for further studies linking remotely sensed datasets and tree ring chronologies, an approach that has not been widely investigated among the scientific community.

  12. Assessment of the Accuracy of the Conventional Ray-Tracing Technique: Implications in Remote Sensing and Radiative Transfer Involving Ice Clouds.

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Van Diedenhoven, Bastiaan; Iwabuchi, Hironobu

    2014-01-01

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TMþIGOM are considered as a benchmark because the IITM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TMþIGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 micrometers) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical thickness and effective diameter. In the MODIS infrared window bands centered at 8.5, 11, and 12 micrometers biases in the optical thickness and effective diameter are up to 12% and 10%, respectively. The CGOM-based simulation errors in ice cloud radiative forcing calculations are on the order of 10Wm(exp 2).

  13. Linkages between Land Surface Phenology Metrics and Natural and Anthropogenic Events in Drylands (Invited)

    NASA Astrophysics Data System (ADS)

    de Beurs, K.; Brown, M. E.; Ahram, A.; Walker, J.; Henebry, G. M.

    2013-12-01

    Tracking vegetation dynamics across landscapes using remote sensing, or 'land surface phenology,' is a key mechanism that allows us to understand ecosystem changes. Land surface phenology models rely on vegetation information from remote sensing, such as the datasets derived from the Advanced Very High Resolution Radiometer (AVHRR), the newer MODIS sensors on Aqua and Terra, and sometimes the higher spatial resolution Landsat data. Vegetation index data can aid in the assessment of variables such as the start of season, growing season length and overall growing season productivity. In this talk we use Landsat, MODIS and AVHRR data and derive growing season metrics based on land surface phenology models that couple vegetation indices with satellite derived accumulated growing degreeday and evapotranspiration estimates. We calculate the timing and the height of the peak of the growing season and discuss the linkage of these land surface phenology metrics with natural and anthropogenic changes on the ground in dryland ecosystems. First we will discuss how the land surface phenology metrics link with annual and interannual price fluctuations in 229 markets distributed over Africa. Our results show that there is a significant correlation between the peak height of the growing season and price increases for markets in countries such as Nigeria, Somalia and Niger. We then demonstrate how land surface phenology metrics can improve models of post-conflict resolution in global drylands. We link the Uppsala Conflict Data Program's dataset of political, economic and social factors involved in civil war termination with an NDVI derived phenology metric and the Palmer Drought Severity Index (PDSI). An analysis of 89 individual conflicts in 42 dryland countries (totaling 892 individual country-years of data between 1982 and 2005) revealed that, even accounting for economic and political factors, countries that have higher NDVI growth following conflict have a lower risk of reverting to civil war. Finally, the patchy and heterogeneous arrangement of vegetation in dryland areas sometimes complicates the extraction of phenological signals using existing remote sensing data. We conclude by demonstrating how the phenological analysis of a range of dryland land cover classes benefits from the availability of synthetic images at Landsat spatial resolution and MODIS time intervals.

  14. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    NASA Astrophysics Data System (ADS)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in models and estimating their impact on the land carbon balance.

  15. Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing

    PubMed Central

    Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick

    2015-01-01

    UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R2-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R2-values up to 0.77) corresponded with the OBRA findings. A 10% error was achieved under sub-optimal data collection conditions, which indicates that the method could be suitable for many SAV mapping applications. PMID:26437410

  16. Mapping Post-Fire Vegetation Recovery at Different Lithologies of Taygetos mt (greece) with Multi-Temporal Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Vassilakis, Emmanuel; Mallinis, George; Christopoulou, Anastasia; Farangitakis, Georgios-Pavlos; Papanikolaou, Ioannis; Arianoutsou, Margarita

    2017-04-01

    Mt Taygetos (2407m), located at southern Peloponnese (Greece) suffered a large fire during the summer of 2007. The fire burned approximately 45% of the area covered by the endemic Greek fir (Abies cephalonica) and Black Pine (Pinus nigra) forest ecosystems. The aim of the current study is to examine the potential differences on post-fire vegetation recovery imposed by the lithology as well as the geomorphology of the given area over sites of the same climatic and landscape conditions (elevation, aspect, slope etc.). The main lithologies consist of carbonate, permeable, not easily erodible formations (limestones and marbles) and clastic, impermeable (schists, slate and flysch) erodible ones. A time-series of high spatial resolution satellite images were interpreted, analyzed and compared in order to detect changes in vegetation coverage which could prioritize areas of interest for fieldwork campaigns. The remote sensing datasets were acquired before (Ikonos-2), a few months after (Quickbird-2) and some years after (Worldview-3) the 2007 fire. High resolution Digital Elevation Model was used for the ortho-rectification and co-registration of the remote sensing data, but also for the extraction of the mountainous landscape characteristics. The multi-temporal image dataset was analyzed through GEographic-Object Based Image Analysis (GEOBIA). Objects corresponding to different vegetation types through time were identified through spectral and textural features. The classification results were combined with basic layers such as lithological outcrops, pre-fire vegetation, landscape morphology etc., supplementing a spatial geodatabase used for classifying burnt areas with varying post-fire plant community recovery. We validated the results of the classification during fieldwork and found that at a local scale, where the landscape features are quite similar, the bedrock type proves to be an important factor for vegetation recovery, as it clearly defines the soil generation along with its properties. Plant species recovery seems to be controlled by the local lithology as it was found weaker in plots overlying limestones and marbles, comparing to that observed over schists, even for the same species. In conclusion, post-fire vegetation recovery seems to be a complex process controlled not only from species biology, but also from the geological features.

  17. Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing.

    PubMed

    Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick

    2015-09-30

    UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R²-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R²-values up to 0.77) corresponded with the OBRA findings. A 10% error was achieved under sub-optimal data collection conditions, which indicates that the method could be suitable for many SAV mapping applications.

  18. A Warning System for Rainfall-Induced Debris Flows: A Integrated Remote Sensing and Data Mining Approach

    NASA Astrophysics Data System (ADS)

    Elkadiri, R.; Sultan, M.; Nurmemet, I.; Al Harbi, H.; Youssef, A.; Elbayoumi, T.; Zabramwi, Y.; Alzahrani, S.; Bahamil, A.

    2014-12-01

    We developed methodologies that heavily rely on observations extracted from a wide-range of remote sensing data sets (TRMM, Landsat ETM, ENVISAT, ERS, SPOT, Orbview, GeoEye) to develop a warning system for rainfall-induced debris flows in the Jazan province in the Red Sea Hills. The developed warning system integrates static controlling factors and dynamic triggering factors. The algorithm couples a susceptibility map with a rainfall I-D curve, both are developed using readily available remote sensing datasets. The static susceptibility map was constructed as follows: (1) an inventory was compiled for debris flows identified from high spatial resolution datasets and field verified; (2) 10 topographical and land cover predisposing factors (i.e. slope angle, slope aspect, normalized difference vegetation index, topographical position index, stream power index, flow accumulation, distance to drainage line, soil weathering index, elevation and topographic wetness index) were generated; (3) an artificial neural network model (ANN) was constructed, optimized and validated; (4) a debris-flow susceptibility map was generated using the ANN model and refined (using differential backscatter coefficient radar images). The rainfall threshold curve was derived as follows: (1) a spatial database was generated to host temporal co-registered and radiometrically and atmospherically corrected Landsat images; (2) temporal change detection images were generated for pairs of successively acquired Landsat images and criteria were established to identify "the change" related to debris flows, (3) the duration and intensity of the precipitation event that caused each of the identified debris flow events was assumed to be that of the most intense event within the investigated period; and (4) the I-D curve was extracted using data (intensity and duration of precipitation) for the inventoried events. Our findings include: (1) the spatial controlling factors with the highest predictive power of debris-flow locations are: topographic position index, slope, NDVI and distance to drainage line; (2) the ANN model showed an excellent prediction performance (area under receiver operating characteristic [ROC] curve: 0.961); 3) the preliminary I-D curve is I=39.797×D-0.7355 (I: Intensity and D: duration).

  19. Assessment of a bidirectional reflectance distribution correction of above-water and satellite water-leaving radiance in coastal waters.

    PubMed

    Hlaing, Soe; Gilerson, Alexander; Harmel, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir

    2012-01-10

    Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm. This confirms the advantages of the proposed model over the current one, demonstrating the need for a specific case 2 water BRDF correction algorithm as well as the feasibility of enhancing performance of current and future satellite ocean color remote sensing missions for monitoring of typical coastal waters. © 2012 Optical Society of America

  20. Ecosystem CO2 Exchange Across Semiarid Southwestern North America: A Synthesis of Multi-Year Flux Site Observations and its Comparison with Estimates from Terrestrial Biome Models and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Scott, R. L.; Goulden, M.; Litvak, M. E.; Kolb, T.; Yepez, E. A.; Garatuza, J.; Oechel, W. C.; Krofcheck, D. J.; Ponce-Campos, G. E.; Bowling, D. R.; Meyers, T. P.; Maurer, G.

    2016-12-01

    Global carbon cycle studies reveal that semiarid ecosystems dominate the increasing trend and interannual variability of the land CO2 sink. However, the regional terrestrial biome models (TBM) and remote sensing products (RSP) used in large-scale analyses are poorly constrained by ecosystem flux measurements in semiarid regions, which are under-represented in global flux datasets. Here we present eddy covariance measurements from 25 diverse ecosystems in semiarid southwestern North America with ranges in annual precipitation of 100 - 1000 mm, annual temperatures of 2 - 25 °C, and records of 3 - 10 years each (150 site-years in total). We identified seven subregions with unique seasonal dynamics in climate and ecosystem-atmosphere exchange, including net and gross CO2 exchange (photosynthesis and respiration) and evapotranspiration (ET), and we evaluated how well measured dynamics were captured by satellite-based greenness observations of the Enhanced Vegetation Index (EVI). Annual flux integrals were calculated based on site-appropriate ecohydrologic years. Net ecosystem production (NEP) varied between -550 and + 420 g C m-2, highlighting the wide range of regional sink/source function. Annual photosynthesis and respiration were positively related to water availability but were suppressed in warmer years at a given site and at climatically warmer sites, in contrast to positive temperature responses at wetter sites. When precipitation anomalies were spatially coherent across sites (e.g. related to El Niño Southern Oscillation), we found large regional annual anomalies in net and gross CO2 uptake. TBM and RSP were less effective in capturing spatial gradients in mean ET and CO2 exchange across this semiarid region as compared to wetter regions. Measured interannual variability of ET and gross CO2 exchange was 3 - 5 times larger than estimates from TBM or RSP. These results suggest that semiarid regions play an even larger role in regulating interannual variability of the global carbon cycle than currently estimated by models and remote sensing. In on-going work, we expand this spatial-temporal analysis across a broader gradient of water availability using the Fluxnet 2015 dataset.

  1. Development Of A Web Service And Android 'APP' For The Distribution Of Rainfall Data. A Bottom-Up Remote Sensing Data Mining And Redistribution Project In The Age Of The 'Web 2.0'

    NASA Astrophysics Data System (ADS)

    Mantas, Vasco M.; Pereira, A. J. S. C.; Liu, Zhong

    2013-12-01

    A project was devised to develop a set of freely available applications and web services that can (1) simplify access from Mobile Devices to TOVAS data and (2) support the development of new datasets through data repackaging and mash-up. The bottom-up approach enables the multiplication of new services, often of limited direct interest to the organizations that produces the original, global datasets, but significant to small, local users. Through this multiplication of services, the development cost is transferred to the intermediate or end users and the entire process is made more efficient, even allowing new players to use the data in innovative ways.

  2. Assessing plant nitrogen concentration in winter oilseed rape using hyperspectral measurements

    NASA Astrophysics Data System (ADS)

    Li, Lu; Liu, Shishi; Wang, Shanqing; Lu, Jianwei; Li, Lantao; Ma, Yi; Ming, Jin

    2016-07-01

    This study aims to find the optimal vegetation indices (VIs) to remotely estimate plant nitrogen concentration (PNC) in winter oilseed rape across different growth stages. Since remote sensing cannot "sense" N in live leaves, remote estimation of PNC should be based on understanding the relationships between PNC and chlorophyll (Chl), carotenoid concentration (Car), Car/Chl, dry mass (DM), and leaf area index (LAI). The experiments with eight nitrogen fertilization treatments were conducted in 2014 to 2015 and 2015 to 2016, and measurements were acquired at six-leaf, eight-leaf, and ten-leaf stages. We found that at each stage, Chl, Car, DM, and LAI were all strongly related to PNC. However, across different growth stages, semipartial correlation and linear regression analysis showed that Chl and Car had consistently significant relationships with PNC, whereas LAI and DM were either weakly or barely correlated with PNC. Therefore, the most suitable VIs should be sensitive to the change in Chl and Car while insensitive to the change in DM. We found that anthocyanin reflectance index and the simple ratio of the red band to blue band fit the requirements. The validation with the 2015 to 2016 dataset showed that the selected VIs could provide accurate estimates of PNC in winter oilseed rape.

  3. Emergency Response Imagery Related to Hurricanes Harvey, Irma, and Maria

    NASA Astrophysics Data System (ADS)

    Worthem, A. V.; Madore, B.; Imahori, G.; Woolard, J.; Sellars, J.; Halbach, A.; Helmricks, D.; Quarrick, J.

    2017-12-01

    NOAA's National Geodetic Survey (NGS) and Remote Sensing Division acquired and rapidly disseminated emergency response imagery related to the three recent hurricanes Harvey, Irma, and Maria. Aerial imagery was collected using a Trimble Digital Sensor System, a high-resolution digital camera, by means of NOAA's King Air 350ER and DeHavilland Twin Otter (DHC-6) Aircraft. The emergency response images are used to assess the before and after effects of the hurricanes' damage. The imagery aids emergency responders, such as FEMA, Coast Guard, and other state and local governments, in developing recovery strategies and efforts by prioritizing areas most affected and distributing appropriate resources. Collected imagery is also used to provide damage assessment for use in long-term recovery and rebuilding efforts. Additionally, the imagery allows for those evacuated persons to see images of their homes and neighborhoods remotely. Each of the individual images are processed through ortho-rectification and merged into a uniform mosaic image. These remotely sensed datasets are publically available, and often used by web-based map servers as well as, federal, state, and local government agencies. This poster will show the imagery collected for these three hurricanes and the processes involved in getting data quickly into the hands of those that need it most.

  4. The I4 Online Query Tool for Earth Observations Data

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Vanderbloemen, Lisa A.; Lawrence, Samuel J.

    2015-01-01

    The NASA Earth Observation System Data and Information System (EOSDIS) delivers an average of 22 terabytes per day of data collected by orbital and airborne sensor systems to end users through an integrated online search environment (the Reverb/ECHO system). Earth observations data collected by sensors on the International Space Station (ISS) are not currently included in the EOSDIS system, and are only accessible through various individual online locations. This increases the effort required by end users to query multiple datasets, and limits the opportunity for data discovery and innovations in analysis. The Earth Science and Remote Sensing Unit of the Exploration Integration and Science Directorate at NASA Johnson Space Center has collaborated with the School of Earth and Space Exploration at Arizona State University (ASU) to develop the ISS Instrument Integration Implementation (I4) data query tool to provide end users a clean, simple online interface for querying both current and historical ISS Earth Observations data. The I4 interface is based on the Lunaserv and Lunaserv Global Explorer (LGE) open-source software packages developed at ASU for query of lunar datasets. In order to avoid mirroring existing databases - and the need to continually sync/update those mirrors - our design philosophy is for the I4 tool to be a pure query engine only. Once an end user identifies a specific scene or scenes of interest, I4 transparently takes the user to the appropriate online location to download the data. The tool consists of two public-facing web interfaces. The Map Tool provides a graphic geobrowser environment where the end user can navigate to an area of interest and select single or multiple datasets to query. The Map Tool displays active image footprints for the selected datasets (Figure 1). Selecting a footprint will open a pop-up window that includes a browse image and a link to available image metadata, along with a link to the online location to order or download the actual data. Search results are either delivered in the form of browse images linked to the appropriate online database, similar to the Map Tool, or they may be transferred within the I4 environment for display as footprints in the Map Tool. Datasets searchable through I4 (http://eol.jsc.nasa.gov/I4_tool) currently include: Crew Earth Observations (CEO) cataloged and uncataloged handheld astronaut photography; Sally Ride EarthKAM; Hyperspectral Imager for the Coastal Ocean (HICO); and the ISS SERVIR Environmental Research and Visualization System (ISERV). The ISS is a unique platform in that it will have multiple users over its lifetime, and that no single remote sensing system has a permanent internal or external berth. The open source I4 tool is designed to enable straightforward addition of new datasets as they become available such as ISS-RapidSCAT, Cloud Aerosol Transport System (CATS), and the High Definition Earth Viewing (HDEV) system. Data from other sensor systems, such as those operated by the ISS International Partners or under the auspices of the US National Laboratory program, can also be added to I4 provided sufficient access to enable searching of data or metadata is available. Commercial providers of remotely sensed data from the ISS may be particularly interested in I4 as an additional means of directing potential customers and clients to their products.

  5. Near-earth orbital guidance and remote sensing

    NASA Technical Reports Server (NTRS)

    Powers, W. F.

    1972-01-01

    The curriculum of a short course in remote sensing and parameter optimization is presented. The subjects discussed are: (1) basics of remote sensing and the user community, (2) multivariant spectral analysis, (3) advanced mathematics and physics of remote sensing, (4) the atmospheric environment, (5) imaging sensing, and (6)nonimaging sensing. Mathematical models of optimization techniques are developed.

  6. Operational programs in forest management and priority in the utilization of remote sensing

    NASA Technical Reports Server (NTRS)

    Douglass, R. W.

    1978-01-01

    A speech is given on operational remote sensing programs in forest management and the importance of remote sensing in forestry is emphasized. Forest service priorities in using remote sensing are outlined.

  7. Remote sensing, land use, and demography - A look at people through their effects on the land

    NASA Technical Reports Server (NTRS)

    Paul, C. K.; Landini, A. J.

    1976-01-01

    Relevant causes of failure by the remote sensing community in the urban scene are analyzed. The reasons for the insignificant role of remote sensing in urban land use data collection are called the law of realism, the incompatibility of remote sensing and urban management system data formats is termed the law of nominal/ordinal systems compatibility, and the land use/population correlation dilemma is referred to as the law of missing persons. The study summarizes the three laws of urban land use information for which violations, avoidance, or ignorance have caused the decline of present remote sensing research. Particular attention is given to the rationale for urban land use information and for remote sensing. It is shown that remote sensing of urban land uses compatible with the three laws can be effectively developed by realizing the 10 percent contribution of remote sensing to urban land use planning data collection.

  8. Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, Apr. 29-May 2, 1991, Proceedings. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.

  9. Methods of training the graduate level and professional geologist in remote sensing technology

    NASA Technical Reports Server (NTRS)

    Kolm, K. E.

    1981-01-01

    Requirements for a basic course in remote sensing to accommodate the needs of the graduate level and professional geologist are described. The course should stress the general topics of basic remote sensing theory, the theory and data types relating to different remote sensing systems, an introduction to the basic concepts of computer image processing and analysis, the characteristics of different data types, the development of methods for geological interpretations, the integration of all scales and data types of remote sensing in a given study, the integration of other data bases (geophysical and geochemical) into a remote sensing study, and geological remote sensing applications. The laboratories should stress hands on experience to reinforce the concepts and procedures presented in the lecture. The geologist should then be encouraged to pursue a second course in computer image processing and analysis of remotely sensed data.

  10. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1993-01-01

    Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  11. Characterization of extreme years in Central Europe between 2000 and 2016 according to specific vegetation characteristics based on Earth Observatory data

    NASA Astrophysics Data System (ADS)

    Kern, Anikó; Marjanović, Hrvoje; Barcza, Zoltán

    2017-04-01

    Extreme weather events frequently occur in Central Europe, affecting the state of the vegetation in large areas. Droughts and heat-waves affect all plant functional types, but the response of the vegetation is not uniform and depends on other parameters, plant strategies and the antecedent meteorological conditions as well. Meteorologists struggle with the definition of extreme events and selection of years that can be considered as extreme in terms of meteorological conditions due to the large variability of the meteorological parameters both in time and space. One way to overcome this problem is the definition of extreme weather based on its observed effect on plant state. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Leaf Area Index (LAI), the Fraction of Photosynthetically Active Radiation (FPAR) and the Gross Primary Production (GPP) are different measures of the land vegetation derived from remote sensing data, providing information about the plant state, but it is less known how weather anomalies affect these measures. We used the vegetation related official products created from the measurements of the MODerate resolution Imaging Spectroradiometer (MODIS) on board satellite Terra to select and characterize the extreme years in Central European countries during the 2000-2016 time period. The applied Collection-6 MOD13 NDVI/EVI, MOD15 LAI/FPAR and MOD17 GPP datasets have 500 m × 500 m spatial resolution covering the region of the Carpathian-Basin. After quality and noise filtering (and temporal interpolation in case of MOD13) 8-day anomaly values were derived to investigate the different years. The freely available FORESEE meteorological database was used to study climate variability in the region. Daily precipitation and maximum/minimum temperature fields at 1/12° × 1/12° grid were resampled to the 8-day temporal and 500 m × 500 m spatial resolution of the MODIS products. To discriminate the different behavior of the various plant functional types MODIS (MCD12) and CORINE (CLC2012) land cover datasets were applied and handled together. Based on the determination of the reliable pixels with different plant types the response of broadleaf forests, coniferous forests, grasslands and croplands were discriminated and investigated. Characteristic time periods were selected based on the remote sensing data to define anomalies, and then the meteorological data were used to define critical time periods within the year that has the strongest effect on the observed anomalies. Similarities/dissimilarities between the behaviors of the different remotely sensed measures are also studied to elucidate the consistency of the indices. The results indicate that the diverse remote sensing indices typically co-vary but reveal strong plant functional type dependency. The study suggest that the selection of extreme years based on annual data is not the best choice, as shorter time periods within the years explain the anomalies to a higher degree than annual data. The results can be used to select anomalous years outside of the satellite era as well. Keywords: Remote sensing, meteorology; extreme years; MODIS, NDVI; EVI; LAI; FPAR; GPP; phenology

  12. Remote sensing by satellite - Technical and operational implications for international cooperation

    NASA Technical Reports Server (NTRS)

    Doyle, S. E.

    1976-01-01

    International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.

  13. Spatiotemporal dataset on Chinese population distribution and its driving factors from 1949 to 2013.

    PubMed

    Wang, Lizhe; Chen, Lajiao

    2016-07-05

    Spatio-temporal data on human population and its driving factors is critical to understanding and responding to population problems. Unfortunately, such spatio-temporal data on a large scale and over the long term are often difficult to obtain. Here, we present a dataset on Chinese population distribution and its driving factors over a remarkably long period, from 1949 to 2013. Driving factors of population distribution were selected according to the push-pull migration laws, which were summarized into four categories: natural environment, natural resources, economic factors and social factors. Natural environment and natural resources indicators were calculated using Geographic Information System (GIS) and Remote Sensing (RS) techniques, whereas economic and social factors from 1949 to 2013 were collected from the China Statistical Yearbook and China Compendium of Statistics from 1949 to 2008. All of the data were quality controlled and unified into an identical dataset with the same spatial scope and time period. The dataset is expected to be useful for understanding how population responds to and impacts environmental change.

  14. Spatiotemporal dataset on Chinese population distribution and its driving factors from 1949 to 2013

    NASA Astrophysics Data System (ADS)

    Wang, Lizhe; Chen, Lajiao

    2016-07-01

    Spatio-temporal data on human population and its driving factors is critical to understanding and responding to population problems. Unfortunately, such spatio-temporal data on a large scale and over the long term are often difficult to obtain. Here, we present a dataset on Chinese population distribution and its driving factors over a remarkably long period, from 1949 to 2013. Driving factors of population distribution were selected according to the push-pull migration laws, which were summarized into four categories: natural environment, natural resources, economic factors and social factors. Natural environment and natural resources indicators were calculated using Geographic Information System (GIS) and Remote Sensing (RS) techniques, whereas economic and social factors from 1949 to 2013 were collected from the China Statistical Yearbook and China Compendium of Statistics from 1949 to 2008. All of the data were quality controlled and unified into an identical dataset with the same spatial scope and time period. The dataset is expected to be useful for understanding how population responds to and impacts environmental change.

  15. a Comparative Analysis of Five Cropland Datasets in Africa

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Lu, M.; Wu, W.

    2018-04-01

    The food security, particularly in Africa, is a challenge to be resolved. The cropland area and spatial distribution obtained from remote sensing imagery are vital information. In this paper, according to cropland area and spatial location, we compare five global cropland datasets including CCI Land Cover, GlobCover, MODIS Collection 5, GlobeLand30 and Unified Cropland in circa 2010 of Africa in terms of cropland area and spatial location. The accuracy of cropland area calculated from five datasets was analyzed compared with statistic data. Based on validation samples, the accuracies of spatial location for the five cropland products were assessed by error matrix. The results show that GlobeLand30 has the best fitness with the statistics, followed by MODIS Collection 5 and Unified Cropland, GlobCover and CCI Land Cover have the lower accuracies. For the accuracy of spatial location of cropland, GlobeLand30 reaches the highest accuracy, followed by Unified Cropland, MODIS Collection 5 and GlobCover, CCI Land Cover has the lowest accuracy. The spatial location accuracy of five datasets in the Csa with suitable farming condition is generally higher than in the Bsk.

  16. Clear-sky remote sensing in the vicinity of clouds: what can be learned about aerosol changes?

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Varnai, Tamas; Wen, Guoyong

    2010-05-01

    Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations we examine the effect of three-dimensional (3D) radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. Comparing with CALIPSO clear-sky backscatterer measurements, we show that the cloud adjacency effect may be responsible for a large portion of the enhanced clear sky reflectance observed by MODIS. While aerosol particles are responsible for a large part of the near-cloud enhancements in CALIPSO observations, misidentified or undetected cloud particles are also likely to contribute. As a result, both the nature of these particles (cloud vs. aerosol) and the processes creating them need to be clarified using a quantitative assessment of remote sensing limitations in particle detection and identification. The width and ubiquity of the transition zone near clouds imply that studies of aerosol-cloud interactions and aerosol direct radiative effects need to account for aerosol changes near clouds. Not accounted, these changes can cause systematic biases toward smaller aerosol radiative forcing. On the other hand, including aerosol products near clouds despite their uncertainties may overestimate aerosol radiative forcing. Therefore, there is an urgent need for developing methods that can assess and account for remote sensing challenges and thus allow for including the transition zone into the study. We describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent "bluing" of aerosols in remote sensing retrievals.

  17. Clear-sky remote sensing in the vicinity of clouds: what we learned from MODIS and CALIPSO

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Varnai, Tamas; Wen, Guoyong; Cahalan, Robert

    Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations we examine the effect of three-dimensional (3D) radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. Comparing with CALIPSO clear-sky backscatterer measurements, we show that the cloud adjacency effect may be responsible for a large portion of the enhanced clear sky reflectance observed by MODIS. While aerosol particles are responsible for a large part of the near-cloud enhancements in CALIPSO observations, misidentified or undetected cloud particles are also likely to contribute. As a result, both the nature of these particles (cloud vs. aerosol) and the processes creating them need to be clarified using a quantitative assessment of remote sensing limitations in particle detection and identification. The width and ubiquity of the transition zone near clouds imply that studies of aerosol-cloud interactions and aerosol direct radiative effects need to account for aerosol changes near clouds. Not accounted, these changes can cause systematic biases toward smaller aerosol radiative forcing. On the other hand, including aerosol products near clouds despite their uncertainties may overestimate aerosol radiative forcing. Therefore, there is an urgent need for developing methods that can assess and account for remote sensing challenges and thus allow for including the transition zone into the study. We describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent "bluing" of aerosols in remote sensing retrievals.

  18. The analysis of changes in oxbow lakes characteristics using remote sensing data. A case study from Biebrza River in Poland.

    NASA Astrophysics Data System (ADS)

    Slapinska, Malgorzata; Chormanski, Jaroslaw

    2014-05-01

    Biebrza River Valley is located in North-Eastern part of Poland. Biebrza is a river of intermediate size with almost natural character. River has numerous of oxbow lakes. Biebrza River Valley consists of three Basins: Upper, Middle and Lower, which are characterized by different geomorphological structure. Biebrza River Valley is an area of significant ecological importance, especially because it is one of the biggest wetlands in Europe. It consists of almost undisturbed floodplain marshes and fens. Biebrza river is also characterised by low contamination level and small human influence. Because of those characteristics Biebrza River can be treated as a reference area for other floodplains and fen ecosystems in Europe. Since oxbow lakes are the least known part of the river valleys there is a need for more research on them. The objective of this study is the characterisation of the oxbow lake water quality and indirectly oxbow lake state using remote sensing method. For achieving the objective two remote sensing datasets has been analysed: IKONOS and hyperspectral camera AISA. The utility of both data sources was compared and time variability of oxbow lakes was defined. The first part of the remote sensing analysis of oxbow lakes was held with the usage of the satellite images from IKONOS satellite from 20.07.2008 (images were taken from Biebrza National Park resources). All analysis were made in ArcGIS 10.0 and ENVI 5.0. The second part of the image analysis was conducted with the data gained from airborne hyperspectral camera AISA Eagle in August 2013. The oxbow lakes have been described on: state of the habitat, transparency, state of overgrowing, connectivity with the river, maximum area and maximum length. The general method of describing oxbow lakes is visual habitat state, related with natural succession. Three main habitat states of oxbow lakes were designated: privileged (described as 'good'), eutrophic and disappearing. The results confirm the fact that most of the oxbow lakes are habitats which are disappearing or proceeding to disappearance. It also shows the potential of remote sensing data for monitoring this type of water bodies. The fact that first data was collected in 2008 and second in 2013 enabled detection of changes in oxbow lakes during these 5 years.

  19. Remote sensing in operational range management programs in Western Canada

    NASA Technical Reports Server (NTRS)

    Thompson, M. D.

    1977-01-01

    A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.

  20. Tree-based approach for exploring marine spatial patterns with raster datasets.

    PubMed

    Liao, Xiaohan; Xue, Cunjin; Su, Fenzhen

    2017-01-01

    From multiple raster datasets to spatial association patterns, the data-mining technique is divided into three subtasks, i.e., raster dataset pretreatment, mining algorithm design, and spatial pattern exploration from the mining results. Comparison with the former two subtasks reveals that the latter remains unresolved. Confronted with the interrelated marine environmental parameters, we propose a Tree-based Approach for eXploring Marine Spatial Patterns with multiple raster datasets called TAXMarSP, which includes two models. One is the Tree-based Cascading Organization Model (TCOM), and the other is the Spatial Neighborhood-based CAlculation Model (SNCAM). TCOM designs the "Spatial node→Pattern node" from top to bottom layers to store the table-formatted frequent patterns. Together with TCOM, SNCAM considers the spatial neighborhood contributions to calculate the pattern-matching degree between the specified marine parameters and the table-formatted frequent patterns and then explores the marine spatial patterns. Using the prevalent quantification Apriori algorithm and a real remote sensing dataset from January 1998 to December 2014, a successful application of TAXMarSP to marine spatial patterns in the Pacific Ocean is described, and the obtained marine spatial patterns present not only the well-known but also new patterns to Earth scientists.

  1. Automation of lidar-based hydrologic feature extraction workflows using GIS

    NASA Astrophysics Data System (ADS)

    Borlongan, Noel Jerome B.; de la Cruz, Roel M.; Olfindo, Nestor T.; Perez, Anjillyn Mae C.

    2016-10-01

    With the advent of LiDAR technology, higher resolution datasets become available for use in different remote sensing and GIS applications. One significant application of LiDAR datasets in the Philippines is in resource features extraction. Feature extraction using LiDAR datasets require complex and repetitive workflows which can take a lot of time for researchers through manual execution and supervision. The Development of the Philippine Hydrologic Dataset for Watersheds from LiDAR Surveys (PHD), a project under the Nationwide Detailed Resources Assessment Using LiDAR (Phil-LiDAR 2) program, created a set of scripts, the PHD Toolkit, to automate its processes and workflows necessary for hydrologic features extraction specifically Streams and Drainages, Irrigation Network, and Inland Wetlands, using LiDAR Datasets. These scripts are created in Python and can be added in the ArcGIS® environment as a toolbox. The toolkit is currently being used as an aid for the researchers in hydrologic feature extraction by simplifying the workflows, eliminating human errors when providing the inputs, and providing quick and easy-to-use tools for repetitive tasks. This paper discusses the actual implementation of different workflows developed by Phil-LiDAR 2 Project 4 in Streams, Irrigation Network and Inland Wetlands extraction.

  2. Airborne Tropical TRopopause EXperiment (ATTREX) 2014 Western Pacific Campaign

    NASA Technical Reports Server (NTRS)

    Jensen, E.; Pfister, L.

    2014-01-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATTREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, carbon dioxide, methane, nonmethane hydrocarbons, sulfur hexafluoride, chlorofluorocarbons, nitrous oxide), reactive chemical compounds (ozone, bromine, nitrous oxide), meteorological parameters, and radiative fluxes. During January-March, 2014, the Global Hawk was deployed to Guam for ATTREX flights. Six science flights were conducted from Guam (in addition to the transits across the Pacific), resulting in over 100 hours of Western Pacific TTL sampling and about 180 vertical profiles through the TTL. I will provide an overview of the dataset, with examples of the measurements including meteorological parameters, clouds and water vapor, and chemical tracers.

  3. Atmospheric Correction of High-Spatial-Resolution Commercial Satellite Imagery Products Using MODIS Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronald; Russell, Jeffrey A.; Prados, Don; Stanley, Thomas

    2005-01-01

    Remotely sensed ground reflectance is the basis for many inter-sensor interoperability or change detection techniques. Satellite inter-comparisons and accurate vegetation indices such as the Normalized Difference Vegetation Index, which is used to describe or to imply a wide variety of biophysical parameters and is defined in terms of near-infrared and redband reflectance, require the generation of accurate reflectance maps. This generation relies upon the removal of solar illumination, satellite geometry, and atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance, however, has been widely applied to only a few systems. In this study, we atmospherically corrected commercially available, high spatial resolution IKONOS and QuickBird imagery using several methods to determine the accuracy of the resulting reflectance maps. We used extensive ground measurement datasets for nine IKONOS and QuickBird scenes acquired over a two-year period to establish reflectance map accuracies. A correction approach using atmospheric products derived from Moderate Resolution Imaging Spectrometer data created excellent reflectance maps and demonstrated a reliable, effective method for reflectance map generation.

  4. Optimizing support vector machine learning for semi-arid vegetation mapping by using clustering analysis

    NASA Astrophysics Data System (ADS)

    Su, Lihong

    In remote sensing communities, support vector machine (SVM) learning has recently received increasing attention. SVM learning usually requires large memory and enormous amounts of computation time on large training sets. According to SVM algorithms, the SVM classification decision function is fully determined by support vectors, which compose a subset of the training sets. In this regard, a solution to optimize SVM learning is to efficiently reduce training sets. In this paper, a data reduction method based on agglomerative hierarchical clustering is proposed to obtain smaller training sets for SVM learning. Using a multiple angle remote sensing dataset of a semi-arid region, the effectiveness of the proposed method is evaluated by classification experiments with a series of reduced training sets. The experiments show that there is no loss of SVM accuracy when the original training set is reduced to 34% using the proposed approach. Maximum likelihood classification (MLC) also is applied on the reduced training sets. The results show that MLC can also maintain the classification accuracy. This implies that the most informative data instances can be retained by this approach.

  5. Multi-Scale Drought Analysis using Thermal Remote Sensing: A Case Study in Georgia’s Altamaha River Watershed

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Bhat, S.; Choi, M.; Mecikalski, J. R.; Anderson, M. C.

    2009-12-01

    The unprecedented recent droughts in the Southeast US caused reservoir levels to drop dangerously low, elevated wildfire hazard risks, reduced hydropower generation and caused severe economic hardships. Most drought indices are based on recent rainfall or changes in vegetation condition. However in heterogeneous landscapes, soils and vegetation (type and cover) combine to differentially stress regions even under similar weather conditions. This is particularly true for the heterogeneous landscapes and highly variable rainfall in the Southeastern United States. This research examines the spatiotemperal evolution of watershed scale drought using a remotely sensed stress index. Using thermal-infrared imagery, a fully automated inverse model of Atmosphere-Land Exchange (ALEXI), GIS datasets and analysis tools, modeled daily surface moisture stress is examined at a 10-km resolution grid covering central to southern Georgia. Regional results are presented for the 2000-2008 period. The ALEXI evaporative stress index (ESI) is compared to existing regional drought products and validated using local hydrologic measurements in Georgia’s Altamaha River watershed at scales from 10 to 10,000 km2.

  6. Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images

    NASA Astrophysics Data System (ADS)

    Ardila, Juan P.; Tolpekin, Valentyn A.; Bijker, Wietske; Stein, Alfred

    2011-11-01

    Identification of tree crowns from remote sensing requires detailed spectral information and submeter spatial resolution imagery. Traditional pixel-based classification techniques do not fully exploit the spatial and spectral characteristics of remote sensing datasets. We propose a contextual and probabilistic method for detection of tree crowns in urban areas using a Markov random field based super resolution mapping (SRM) approach in very high resolution images. Our method defines an objective energy function in terms of the conditional probabilities of panchromatic and multispectral images and it locally optimizes the labeling of tree crown pixels. Energy and model parameter values are estimated from multiple implementations of SRM in tuning areas and the method is applied in QuickBird images to produce a 0.6 m tree crown map in a city of The Netherlands. The SRM output shows an identification rate of 66% and commission and omission errors in small trees and shrub areas. The method outperforms tree crown identification results obtained with maximum likelihood, support vector machines and SRM at nominal resolution (2.4 m) approaches.

  7. Earth and Space Science Electronic Theater: State-of-the-Art Visualization from the Latest Remote Sensing Observations. High Definition Television on the SMM IMAX Screen with Ultra High Performance Projector

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2001-01-01

    Fritz Hasler (NASA/Goddard) will demonstrate the latest Blue Marble Digital Earth technology. We will fly in from space through Terra, Landsat 7, to 1 m Ikonos "Spy Satellite" data to Washington, NYC, Chicago, and LA. You will see animations using the new 1 km global datasets from the EOS Terra satellite. Spectacular new animations from Terra, Landsat 7, and SeaWiFS will be presented. See the latest animations of the super hurricanes like, Floyd, Luis, and Mitch, from GOES & TRMM. See movies assembled using new low cost HDTV nonlinear editing equipment that is revolutionizing the way we communicate scientific results. See climate change in action with Global Land & Ocean productivity changes over the last 20 years. Remote sensing observations of ocean SST, height, winds, color, and El Nino from GOES, AVHRR, SSMI & SeaWiFS are put in context with atmospheric and ocean simulations. Compare symmetrical equatorial eddies observed by GOES with the simulations.

  8. An Application of Rotation- and Translation-Invariant Overcomplete Wavelets to the registration of Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Zavorine, Ilya

    1999-01-01

    A wavelet-based image registration approach has previously been proposed by the authors. In this work, wavelet coefficient maxima obtained from an orthogonal wavelet decomposition using Daubechies filters were utilized to register images in a multi-resolution fashion. Tested on several remote sensing datasets, this method gave very encouraging results. Despite the lack of translation-invariance of these filters, we showed that when using cross-correlation as a feature matching technique, features of size larger than twice the size of the filters are correctly registered by using the low-frequency subbands of the Daubechies wavelet decomposition. Nevertheless, high-frequency subbands are still sensitive to translation effects. In this work, we are considering a rotation- and translation-invariant representation developed by E. Simoncelli and integrate it in our image registration scheme. The two types of filters, Daubechies and Simoncelli filters, are then being compared from a registration point of view, utilizing synthetic data as well as data from the Landsat/ Thematic Mapper (TM) and from the NOAA Advanced Very High Resolution Radiometer (AVHRR).

  9. An Application of Rotation- and Translation-Invariant Overcomplete Wavelets to the Registration of Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Zavorine, Ilya

    1999-01-01

    A wavelet-based image registration approach has previously been proposed by the authors. In this work, wavelet coefficient maxima obtained from an orthogonal wavelet decomposition using Daubechies filters were utilized to register images in a multi-resolution fashion. Tested on several remote sensing datasets, this method gave very encouraging results. Despite the lack of translation-invariance of these filters, we showed that when using cross-correlation as a feature matching technique, features of size larger than twice the size of the filters are correctly registered by using the low-frequency subbands of the Daubechies wavelet decomposition. Nevertheless, high-frequency subbands are still sensitive to translation effects. In this work, we are considering a rotation- and translation-invariant representation developed by E. Simoncelli and integrate it in our image registration scheme. The two types of filters, Daubechies and Simoncelli filters, are then being compared from a registration point of view, utilizing synthetic data as well as data from the Landsat/ Thematic Mapper (TM) and from the NOAA Advanced Very High Resolution Radiometer (AVHRR).

  10. Combining Crop Model and Remote Sensing Data at High Resolution for the Assessment of Rice Agricultural Practices in the South-Eastern France (Take 5 Experiment SPOT4-SPOT5)

    NASA Astrophysics Data System (ADS)

    Courault, D.; Ruget, F.; Talab-ou-Ali, H.; Hagolle, O.; Delmotte, S.; Barbier, J. M.; Boschetti, M.; Mouret, J. C.

    2016-08-01

    Crop systems are constantly changing due to modifications in the agricultural practices to respond to market changes, the constraints of the environment, the climate hazards... Rice cultivation practiced in the Camargue region (SE France) have decreased these last years, however rice plays a crucial role for the hydrological balance of the region and for crop systems desalinizing soils. The aim of this study is to analyze the potentialities of remote sensing data acquired at high spatial and temporal resolution (HRST) to identify the main agricultural practices and estimate their impact on rice production. A large dataset acquired over the Camargue from the Take5 experiment (SPOT4 in 2013 and SPOT5 in 2015), completed by Landsat data has been used. Two assimilation methods of HRST data were evaluated within a crop model. Results showed the impact of the spatial variability of practices on the yields. The sowing dates were retrieved from inverse procedures and gave satisfactory results compared to ground surveys.

  11. Climate Forcing Datasets for Agricultural Modeling: Merged Products for Gap-Filling and Historical Climate Series Estimation

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Goldberg, Richard; Chryssanthacopoulos, James

    2014-01-01

    The AgMERRA and AgCFSR climate forcing datasets provide daily, high-resolution, continuous, meteorological series over the 1980-2010 period designed for applications examining the agricultural impacts of climate variability and climate change. These datasets combine daily resolution data from retrospective analyses (the Modern-Era Retrospective Analysis for Research and Applications, MERRA, and the Climate Forecast System Reanalysis, CFSR) with in situ and remotely-sensed observational datasets for temperature, precipitation, and solar radiation, leading to substantial reductions in bias in comparison to a network of 2324 agricultural-region stations from the Hadley Integrated Surface Dataset (HadISD). Results compare favorably against the original reanalyses as well as the leading climate forcing datasets (Princeton, WFD, WFD-EI, and GRASP), and AgMERRA distinguishes itself with substantially improved representation of daily precipitation distributions and extreme events owing to its use of the MERRA-Land dataset. These datasets also peg relative humidity to the maximum temperature time of day, allowing for more accurate representation of the diurnal cycle of near-surface moisture in agricultural models. AgMERRA and AgCFSR enable a number of ongoing investigations in the Agricultural Model Intercomparison and Improvement Project (AgMIP) and related research networks, and may be used to fill gaps in historical observations as well as a basis for the generation of future climate scenarios.

  12. Fusion of PAN and multispectral remote sensing images in shearlet domain by considering regional metrics

    NASA Astrophysics Data System (ADS)

    Poobalasubramanian, Mangalraj; Agrawal, Anupam

    2016-10-01

    The presented work proposes fusion of panchromatic and multispectral images in a shearlet domain. The proposed fusion rules rely on the regional considerations which makes the system efficient in terms of spatial enhancement. The luminance hue saturation-based color conversion system is utilized to avoid spectral distortions. The proposed fusion method is tested on Worldview2 and Ikonos datasets, and the proposed method is compared against other methodologies. The proposed fusion method performs well against the other compared methods in terms of subjective and objective evaluations.

  13. PROCEEDINGS OF THE FOURTH SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT; 12, 13, 14 APRIL 1966.

    DTIC Science & Technology

    The symposium was conducted as part of a continuing program investigating the field of remote sensing , its potential in scientific research and...information on all aspects of remote sensing , with special emphasis on such topics as needs for remotely sensed data, data management, and the special... remote sensing programs, data acquisition, data analysis and application, and equipment design, were presented. (Author)

  14. Remote sensing and image interpretation

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)

    1979-01-01

    A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

  15. Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: NASA Applied Sciences Program; USGS Land Remote Sensing: Overview; QuickBird System Status and Product Overview; ORBIMAGE Overview; IKONOS 2004 Calibration and Validation Status; OrbView-3 Spatial Characterization; On-Orbit Modulation Transfer Function (MTF) Measurement of QuickBird; Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season; Image Quality Evaluation of QuickBird Super Resolution and Revisit of IKONOS: Civil and Commercial Application Project (CCAP); On-Orbit System MTF Measurement; QuickBird Post Launch Geopositional Characterization Update; OrbView-3 Geometric Calibration and Geopositional Accuracy; Geopositional Statistical Methods; QuickBird and OrbView-3 Geopositional Accuracy Assessment; Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images; Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps; Stennis Space Center Verification and Validation Capabilities; Joint Agency Commercial Imagery Evaluation (JACIE) Team; Adjacency Effects in High Resolution Imagery; Effect of Pulse Width vs. GSD on MTF Estimation; Camera and Sensor Calibration at the USGS; QuickBird Geometric Verification; Comparison of MODTRAN to Heritage-based Results in Vicarious Calibration at University of Arizona; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Estimating Sub-Pixel Proportions of Sagebrush with a Regression Tree; How Do YOU Use the National Land Cover Dataset?; The National Map Hazards Data Distribution System; Recording a Troubled World; What Does This-Have to Do with This?; When Can a Picture Save a Thousand Homes?; InSAR Studies of Alaska Volcanoes; Earth Observing-1 (EO-1) Data Products; Improving Access to the USGS Aerial Film Collections: High Resolution Scanners; Improving Access to the USGS Aerial Film Collections: Phoenix Digitizing System Product Distribution; System and Product Characterization: Issues Approach; Innovative Approaches to Analysis of Lidar Data for the National Map; Changes in Imperviousness near Military Installations; Geopositional Accuracy Evaluations of QuickBird and OrbView-3: Civil and Commercial Applications Project (CCAP); Geometric Accuracy Assessment: OrbView ORTHO Products; QuickBird Radiometric Calibration Update; OrbView-3 Radiometric Calibration; QuickBird Radiometric Characterization; NASA Radiometric Characterization; Establishing and Verifying the Traceability of Remote-Sensing Measurements to International Standards; QuickBird Applications; Airport Mapping and Perpetual Monitoring Using IKONOS; OrbView-3 Relative Accuracy Results and Impacts on Exploitation and Accuracy Improvement; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Applying High-Resolution Satellite Imagery and Remotely Sensed Data to Local Government Applications: Sioux Falls, South Dakota; Automatic Co-Registration of QuickBird Data for Change Detection Applications; Developing Coastal Surface Roughness Maps Using ASTER and QuickBird Data Sources; Automated, Near-Real Time Cloud and Cloud Shadow Detection in High Resolution VNIR Imagery; Science Applications of High Resolution Imagery at the USGS EROS Data Center; Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research; Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems; Determining Regional Arctic Tundra Carbon Exchange: A Bottom-Up Approach; Using IKONOS Imagery to Assess Impervious Surface Area, Riparian Buffers and Stream Health in the Mid-Atlantic Region; Commercial Remote Sensing Space Policy Civil Implementation Update; USGS Commercial Remote Sensing Data Contracts (CRSDC); and Commercial Remote Sensing Space Policy (CRSSP): Civil Near-Term Requirements Collection Update.

  16. Geotechnical applications of remote sensing and remote data transmission; Proceedings of the Symposium, Cocoa Beach, FL, Jan. 31-Feb. 1, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.I.; Pettersson, C.B.

    1988-01-01

    Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis ofmore » surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.« less

  17. Education in Environmental Remote Sensing: Potentials and Problems.

    ERIC Educational Resources Information Center

    Kiefer, Ralph W.; Lillesand, Thomas M.

    1983-01-01

    Discusses remote sensing principles and applications and the status and needs of remote sensing education in the United States. A summary of the fundamental policy issues that will determine remote sensing's future role in environmental and resource managements is included. (Author/BC)

  18. THE EPA REMOTE SENSING ARCHIVE

    EPA Science Inventory

    What would you do if you were faced with organizing 30 years of remote sensing projects that had been haphazardly stored at two separate locations for years then combined? The EPA Remote Sensing Archive, currently located in Las Vegas, Nevada. contains the remote sensing data and...

  19. NASA's High Mountain Asia Team (HiMAT): collaborative research to study changes of the High Asia region

    NASA Astrophysics Data System (ADS)

    Arendt, A. A.; Houser, P.; Kapnick, S. B.; Kargel, J. S.; Kirschbaum, D.; Kumar, S.; Margulis, S. A.; McDonald, K. C.; Osmanoglu, B.; Painter, T. H.; Raup, B. H.; Rupper, S.; Tsay, S. C.; Velicogna, I.

    2017-12-01

    The High Mountain Asia Team (HiMAT) is an assembly of 13 research groups funded by NASA to improve understanding of cryospheric and hydrological changes in High Mountain Asia (HMA). Our project goals are to quantify historical and future variability in weather and climate over the HMA, partition the components of the water budget across HMA watersheds, explore physical processes driving changes, and predict couplings and feedbacks between physical and human systems through assessment of hazards and downstream impacts. These objectives are being addressed through analysis of remote sensing datasets combined with modeling and assimilation methods to enable data integration across multiple spatial and temporal scales. Our work to date has focused on developing improved high resolution precipitation, snow cover and snow water equivalence products through a variety of statistical uncertainty analysis, dynamical downscaling and assimilation techniques. These and other high resolution climate products are being used as input and validation for an assembly of land surface and General Circulation Models. To quantify glacier change in the region we have calculated multidecadal mass balances of a subset of HMA glaciers by comparing commercial satellite imagery with earlier elevation datasets. HiMAT is using these tools and datasets to explore the impact of atmospheric aerosols and surface impurities on surface energy exchanges, to determine drivers of glacier and snowpack melt rates, and to improve our capacity to predict future hydrological variability. Outputs from the climate and land surface assessments are being combined with landslide and glacier lake inventories to refine our ability to predict hazards in the region. Economic valuation models are also being used to assess impacts on water resources and hydropower. Field data of atmospheric aerosol, radiative flux and glacier lake conditions are being collected to provide ground validation for models and remote sensing products. In this presentation we will discuss initial results and outline plans for a scheduled release of our datasets and findings to the broader community. We will also describe our methods for cross-team collaboration through the adoption of cloud computing and data integration tools.

  20. Research on remote sensing image pixel attribute data acquisition method in AutoCAD

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyang; Sun, Guangtong; Liu, Jun; Liu, Hui

    2013-07-01

    The remote sensing image has been widely used in AutoCAD, but AutoCAD lack of the function of remote sensing image processing. In the paper, ObjectARX was used for the secondary development tool, combined with the Image Engine SDK to realize remote sensing image pixel attribute data acquisition in AutoCAD, which provides critical technical support for AutoCAD environment remote sensing image processing algorithms.

  1. Bibliography of Remote Sensing Techniques Used in Wetland Research.

    DTIC Science & Technology

    1993-01-01

    remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.... Change detection, Wetland assessment, Remote sensing ,

  2. The South American Land Data Assimilation System (SALDAS) 5-Year Retrospective Atmospheric Forcing Datasets

    NASA Technical Reports Server (NTRS)

    deGoncalves, Luis Gustavo G.; Shuttleworth, William J.; Vila, Daniel; Larroza, Elaine; Bottino, Marcus J.; Herdies, Dirceu L.; Aravequia, Jose A.; De Mattos, Joao G. Z.; Toll, David L.; Rodell, Matthew; hide

    2008-01-01

    The definition and derivation of a 5-year, 0.125deg, 3-hourly atmospheric forcing dataset for the South America continent is described which is appropriate for use in a Land Data Assimilation System and which, because of the limited surface observational networks available in this region, uses remotely sensed data merged with surface observations as the basis for the precipitation and downward shortwave radiation fields. The quality of this data set is evaluated against available surface observations. There are regional difference in the biases for all variables in the dataset, with biases in precipitation of the order 0-1 mm/day and RMSE of 5-15 mm/day, biases in surface solar radiation of the order 10 W/sq m and RMSE of 20 W/sq m, positive biases in temperature typically between 0 and 4 K, depending on region, and positive biases in specific humidity around 2-3 g/Kg in tropical regions and negative biases around 1-2 g/Kg further south.

  3. A dataset mapping the potential biophysical effects of vegetation cover change

    NASA Astrophysics Data System (ADS)

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-02-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

  4. A dataset mapping the potential biophysical effects of vegetation cover change

    PubMed Central

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-01-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes. PMID:29461538

  5. Kite Aerial Photography as a Tool for Remote Sensing

    ERIC Educational Resources Information Center

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  6. Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations

    USDA-ARS?s Scientific Manuscript database

    Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...

  7. Reflections on Earth--Remote-Sensing Research from Your Classroom.

    ERIC Educational Resources Information Center

    Campbell, Bruce A.

    2001-01-01

    Points out the uses of remote sensing in different areas, and introduces the program "Reflections on Earth" which provides access to basic and instructional information on remote sensing to students and teachers. Introduces students to concepts related to remote sensing and measuring distances. (YDS)

  8. Remote-Sensing Practice and Potential

    DTIC Science & Technology

    1974-05-01

    Six essential processes that must be accomplished if use of a remote - sensing system is to result in useful information are defined as problem...to be useful in remote - sensing projects are described. An overview of the current state-of-the-art of remote sensing is presented.

  9. History and future of remote sensing technology and education

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1980-01-01

    A historical overview of the discovery and development of photography, related sciences, and remote sensing technology is presented. The role of education to date in the development of remote sensing is discussed. The probable future and potential of remote sensing and training is described.

  10. Serving Satellite Remote Sensing Data to User Community through the OGC Interoperability Protocols

    NASA Astrophysics Data System (ADS)

    di, L.; Yang, W.; Bai, Y.

    2005-12-01

    Remote sensing is one of the major methods for collecting geospatial data. Hugh amount of remote sensing data has been collected by space agencies and private companies around the world. For example, NASA's Earth Observing System (EOS) is generating more than 3 Tb of remote sensing data per day. The data collected by EOS are processed, distributed, archived, and managed by the EOS Data and Information System (EOSDIS). Currently, EOSDIS is managing several petabytes of data. All of those data are not only valuable for global change research, but also useful for local and regional application and decision makings. How to make the data easily accessible to and usable by the user community is one of key issues for realizing the full potential of these valuable datasets. In the past several years, the Open Geospatial Consortium (OGC) has developed several interoperability protocols aiming at making geospatial data easily accessible to and usable by the user community through Internet. The protocols particularly relevant to the discovery, access, and integration of multi-source satellite remote sensing data are the Catalog Service for Web (CS/W) and Web Coverage Services (WCS) Specifications. The OGC CS/W specifies the interfaces, HTTP protocol bindings, and a framework for defining application profiles required to publish and access digital catalogues of metadata for geographic data, services, and related resource information. The OGC WCS specification defines the interfaces between web-based clients and servers for accessing on-line multi-dimensional, multi-temporal geospatial coverage in an interoperable way. Based on definitions by OGC and ISO 19123, coverage data include all remote sensing images as well as gridded model outputs. The Laboratory for Advanced Information Technology and Standards (LAITS), George Mason University, has been working on developing and implementing OGC specifications for better serving NASA Earth science data to the user community for many years. We have developed the NWGISS software package that implements multiple OGC specifications, including OGC WMS, WCS, CS/W, and WFS. As a part of NASA REASON GeoBrain project, the NWGISS WCS and CS/W servers have been extended to provide operational access to NASA EOS data at data pools through OGC protocols and to make both services chainable in the web-service chaining. The extensions in the WCS server include the implementation of WCS 1.0.0 and WCS 1.0.2, and the development of WSDL description of the WCS services. In order to find the on-line EOS data resources, the CS/W server is extended at the backend to search metadata in NASA ECHO. This presentation reports those extensions and discuss lessons-learned on the implementation. It also discusses the advantage, disadvantages, and future improvement of OGC specifications, particularly the WCS.

  11. Ten ways remote sensing can contribute to conservation

    USGS Publications Warehouse

    Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2014-01-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?

  12. Ten ways remote sensing can contribute to conservation.

    PubMed

    Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2015-04-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions? © 2014 Society for Conservation Biology.

  13. Hurricane Data Analysis Tool

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory

    2011-01-01

    In order to facilitate Earth science data access, the NASA Goddard Earth Sciences Data Information Services Center (GES DISC) has developed a web prototype, the Hurricane Data Analysis Tool (HDAT; URL: http://disc.gsfc.nasa.gov/HDAT), to allow users to conduct online visualization and analysis of several remote sensing and model datasets for educational activities and studies of tropical cyclones and other weather phenomena. With a web browser and few mouse clicks, users can have a full access to terabytes of data and generate 2-D or time-series plots and animation without downloading any software and data. HDAT includes data from the NASA Tropical Rainfall Measuring Mission (TRMM), the NASA Quick Scatterometer(QuikSCAT) and NECP Reanalysis, and the NCEP/CPC half-hourly, 4-km Global (60 N - 60 S) IR Dataset. The GES DISC archives TRMM data. The daily global rainfall product derived from the 3-hourly multi-satellite precipitation product (3B42 V6) is available in HDAT. The TRMM Microwave Imager (TMI) sea surface temperature from the Remote Sensing Systems is in HDAT as well. The NASA QuikSCAT ocean surface wind and the NCEP Reanalysis provide ocean surface and atmospheric conditions, respectively. The global merged IR product, also known as, the NCEP/CPC half-hourly, 4-km Global (60 N -60 S) IR Dataset, is one of TRMM ancillary datasets. They are globally-merged pixel-resolution IR brightness temperature data (equivalent blackbody temperatures), merged from all available geostationary satellites (GOES-8/10, METEOSAT-7/5 & GMS). The GES DISC has collected over 10 years of the data beginning from February of 2000. This high temporal resolution (every 30 minutes) dataset not only provides additional background information to TRMM and other satellite missions, but also allows observing a wide range of meteorological phenomena from space, such as, hurricanes, typhoons, tropical cyclones, mesoscale convection system, etc. Basic functions include selection of area of interest and time, single imagery, overlay of two different products, animation,a time skip capability and different image size outputs. Users can save an animation as a file (animated gif) and import it in other presentation software, such as, Microsoft PowerPoint. Since the tool can directly access the real data, more features and functionality can be added in the future.

  14. Role of remote sensing in documenting living resources

    NASA Technical Reports Server (NTRS)

    Wagner, P. E.; Anderson, R. R.; Brun, B.; Eisenberg, M.; Genys, J. B.; Lear, D. W., Jr.; Miller, M. H.

    1978-01-01

    Specific cases of known or potentially useful applications of remote sensing in assessing biological resources are discussed. It is concluded that the more usable remote sensing techniques relate to the measurement of population fluctuations in aquatic systems. Sensing of the flora and the fauna of the Bay is considered with emphasis on direct sensing of aquatic plant populations and of water quality. Recommendations for remote sensing projects are given.

  15. Commercial future: making remote sensing a media event

    NASA Astrophysics Data System (ADS)

    Lurie, Ian

    1999-12-01

    The rapid growth of commercial remote sensing has made high quality digital sensing data widely available -- now, remote sensing must become and remain a strong, commercially viable industry. However, this new industry cannot survive without an educated consumer base. To access markets, remote sensing providers must make their product more accessible, both literally and figuratively: Potential customers must be able to find the data they require, when they require it, and they must understand the utility of the information available to them. The Internet and the World Wide Web offer the perfect medium to educate potential customers and to sell remote sensing data to those customers. A well-designed web presence can provide both an information center and a market place for companies offering their data for sale. A very high potential web-based market for remote sensing lies in media. News agencies, web sites, and a host of other visual media services can use remote sensing data to provide current, relevant information regarding news around the world. This paper will provide a model for promotion and sale of remote sensing data via the Internet.

  16. 77 FR 39220 - Advisory Committee on Commercial Remote Sensing (ACCRES); Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Commercial Remote Sensing (ACCRES); Charter Renewal AGENCY: National Oceanic and Atmospheric Administration... Committee on Commercial Remote Sensing (ACCRES) was renewed on March 14, 2012. SUPPLEMENTARY INFORMATION: In... Commercial Remote Sensing (ACCRES) is in the public interest in connection with the performance of duties...

  17. 76 FR 66042 - Advisory Committee on Commercial Remote Sensing (ACCRES); Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... Commercial Remote Sensing (ACCRES); Request for Nominations ACTION: Notice requesting nominations for the Advisory Committee on Commercial Remote Sensing (ACCRES). SUMMARY: The Advisory Committee on Commercial Remote Sensing (ACCRES) was established to advise the Secretary of Commerce, through the Under Secretary...

  18. An introduction to quantitative remote sensing. [data processing

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Russell, J.

    1974-01-01

    The quantitative approach to remote sensing is discussed along with the analysis of remote sensing data. Emphasis is placed on the application of pattern recognition in numerically oriented remote sensing systems. A common background and orientation for users of the LARS computer software system is provided.

  19. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    PubMed Central

    Wang, Kai; Franklin, Steven E.; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS). PMID:22163432

  20. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists.

    PubMed

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).

  1. Remote Sensing and Reflectance Profiling in Entomology.

    PubMed

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  2. Comparative Evaluation of Background Subtraction Algorithms in Remote Scene Videos Captured by MWIR Sensors

    PubMed Central

    Yao, Guangle; Lei, Tao; Zhong, Jiandan; Jiang, Ping; Jia, Wenwu

    2017-01-01

    Background subtraction (BS) is one of the most commonly encountered tasks in video analysis and tracking systems. It distinguishes the foreground (moving objects) from the video sequences captured by static imaging sensors. Background subtraction in remote scene infrared (IR) video is important and common to lots of fields. This paper provides a Remote Scene IR Dataset captured by our designed medium-wave infrared (MWIR) sensor. Each video sequence in this dataset is identified with specific BS challenges and the pixel-wise ground truth of foreground (FG) for each frame is also provided. A series of experiments were conducted to evaluate BS algorithms on this proposed dataset. The overall performance of BS algorithms and the processor/memory requirements were compared. Proper evaluation metrics or criteria were employed to evaluate the capability of each BS algorithm to handle different kinds of BS challenges represented in this dataset. The results and conclusions in this paper provide valid references to develop new BS algorithm for remote scene IR video sequence, and some of them are not only limited to remote scene or IR video sequence but also generic for background subtraction. The Remote Scene IR dataset and the foreground masks detected by each evaluated BS algorithm are available online: https://github.com/JerryYaoGl/BSEvaluationRemoteSceneIR. PMID:28837112

  3. Remote Sensing in Geography in the New Millennium: Prospects, Challenges, and Opportunities

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Jensen, John R.; Morain, Stanley A.; Walsh, Stephen J.; Ridd, Merrill K.

    1999-01-01

    Remote sensing science contributes greatly to our understanding of the Earth's ecosystems and cultural landscapes. Almost all the natural and social sciences, including geography, rely heavily on remote sensing to provide quantitative, and indispensable spatial information. Many geographers have made significant contributions to remote sensing science since the 1970s, including the specification of advanced remote sensing systems, improvements in analog and digital image analysis, biophysical modeling, and terrain analysis. In fact, the Remote Sensing Specialty Group (RSSG) is one of the largest specialty groups within the AAG with over 500 members. Remote sensing in concert with a geographic information systems, offers much value to geography as both an incisive spatial-analytical tool and as a scholarly pursuit that adds to the body of geographic knowledge on the whole. The "power" of remote sensing as a research endeavor in geography lies in its capabilities for obtaining synoptic, near-real time data at many spatial and temporal scales, and in many regions of the electromagnetic spectrum - from microwave, to RADAR, to visible, and reflective and thermal infrared. In turn, these data present a vast compendium of information for assessing Earth attributes and characte6stics that are at the very core of geography. Here we revisit how remote sensing has become a fundamental and important tool for geographical research, and how with the advent of new and improved sensing systems to be launched in the near future, remote sensing will further advance geographical analysis in the approaching New Millennium.

  4. Agricultural Production Monitoring in the Sahel Using Remote Sensing: Present Possibilities and Research Needs

    DTIC Science & Technology

    1993-01-01

    during the agricultural season. Satellite remote sensing can contribute significantly to such a system by collecting information on crops and on...well as techniques to derive biophysical variables from remotely-sensed data. Finally, the integration of these remote - sensing techniques with crop

  5. Methodology for classification of geographical features with remote sensing images: Application to tidal flats

    NASA Astrophysics Data System (ADS)

    Revollo Sarmiento, G. N.; Cipolletti, M. P.; Perillo, M. M.; Delrieux, C. A.; Perillo, Gerardo M. E.

    2016-03-01

    Tidal flats generally exhibit ponds of diverse size, shape, orientation and origin. Studying the genesis, evolution, stability and erosive mechanisms of these geographic features is critical to understand the dynamics of coastal wetlands. However, monitoring these locations through direct access is hard and expensive, not always feasible, and environmentally damaging. Processing remote sensing images is a natural alternative for the extraction of qualitative and quantitative data due to their non-invasive nature. In this work, a robust methodology for automatic classification of ponds and tidal creeks in tidal flats using Google Earth images is proposed. The applicability of our method is tested in nine zones with different morphological settings. Each zone is processed by a segmentation stage, where ponds and tidal creeks are identified. Next, each geographical feature is measured and a set of shape descriptors is calculated. This dataset, together with a-priori classification of each geographical feature, is used to define a regression model, which allows an extensive automatic classification of large volumes of data discriminating ponds and tidal creeks against other various geographical features. In all cases, we identified and automatically classified different geographic features with an average accuracy over 90% (89.7% in the worst case, and 99.4% in the best case). These results show the feasibility of using freely available Google Earth imagery for the automatic identification and classification of complex geographical features. Also, the presented methodology may be easily applied in other wetlands of the world and perhaps employing other remote sensing imagery.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Riley, Erin A.; Kleiss, Jessica

    Cloud amount is an essential and extensively used macrophysical parameter of cumulus clouds. It is commonly defined as a cloud fraction (CF) from zenith-pointing ground-based active and passive remote sensing. However, conventional retrievals of CF from the remote sensing data with very narrow field-of-view (FOV) may not be representative of the surrounding area. Here we assess its representativeness using an integrated dataset collected at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site in Oklahoma, USA. For our assessment with focus on selected days with single-layer cumulus clouds (2005-2016), we include the narrow-FOVmore » ARM Active Remotely Sensed Clouds Locations (ARSCL) and large-FOV Total Sky Imager (TSI) cloud products, the 915-MHz Radar Wind Profiler (RWP) measurements of wind speed and direction, and also high-resolution satellite images from Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS). We demonstrate that a root-mean-square difference (RMSD) between the 15-min averaged ARSCL cloud fraction (CF) and the 15-min averaged TSI fractional sky cover (FSC) is large (up to 0.3). We also discuss how the horizontal distribution of clouds can modify the obtained large RMSD using a new uniformity metric. The latter utilizes the spatial distribution of the FSC over the 100° FOV TSI images obtained with high temporal resolution (30 sec sampling). We demonstrate that cases with more uniform spatial distribution of FSC show better agreement between the narrow-FOV CF and large-FOV FSC, reducing the RMSD by up to a factor of 2.« less

  7. Determining phytoplankton community structure from ocean color at the Martha's Vineyard Coastal Observatory (MVCO)

    NASA Astrophysics Data System (ADS)

    Kramer, S. J.; Sosik, H. M.; Roesler, C. S.

    2016-02-01

    Satellite remote sensing of ocean color allows for estimates of phytoplankton biomass on broad spatial and temporal scales. Recently, a variety of approaches have been offered for determining phytoplankton taxonomic composition or phytoplankton functional types (PFTs) from remote sensing reflectance. These bio-optical algorithms exploit spectral differences to discriminate waters dominated by different types of cells. However, the efficacy of these models remains difficult to constrain due to limited datasets for detailed validation. In this study, we examined the region around the Martha's Vineyard Coastal Observatory (MVCO), a near-shore location on the New England shelf with optically complex coastal waters. This site offers many methods for detailed validation of ocean color algorithms: an AERONET-OC above-water radiometry system provides sea-truth ocean color observations; time series of absorption and backscattering coefficients are measured; and phytoplankton composition is assessed with a combination of continuous in situ flow cytometry and intermittent discrete sampling for HPLC pigments. Our analysis showed that even models originally parameterized for the Northwest Atlantic perform poorly in capturing the variability in relationships between optical properties and water constituents at coastal sites such as MVCO. We refined models with local parameterizations of variability in absorption and backscattering coefficients, and achieved much better agreement of modeled and observed relationships between predicted spectral reflectance, chlorophyll concentration, and indices of phytoplankton composition such as diatom dominance. Applying these refined models to satellite remote sensing imagery offers the possibility of describing large-scale variations in phytoplankton community structure both at MVCO and on the surrounding shelf over space and time.

  8. Neural Network-Based Retrieval of Surface and Root Zone Soil Moisture using Multi-Frequency Remotely-Sensed Observations

    NASA Astrophysics Data System (ADS)

    Hamed Alemohammad, Seyed; Kolassa, Jana; Prigent, Catherine; Aires, Filipe; Gentine, Pierre

    2017-04-01

    Knowledge of root zone soil moisture is essential in studying plant's response to different stress conditions since plant photosynthetic activity and transpiration rate are constrained by the water available through their roots. Current global root zone soil moisture estimates are based on either outputs from physical models constrained by observations, or assimilation of remotely-sensed microwave-based surface soil moisture estimates with physical model outputs. However, quality of these estimates are limited by the accuracy of the model representations of physical processes (such as radiative transfer, infiltration, percolation, and evapotranspiration) as well as errors in the estimates of the surface parameters. Additionally, statistical approaches provide an alternative efficient platform to develop root zone soil moisture retrieval algorithms from remotely-sensed observations. In this study, we present a new neural network based retrieval algorithm to estimate surface and root zone soil moisture from passive microwave observations of SMAP satellite (L-band) and AMSR2 instrument (X-band). SMAP early morning observations are ideal for surface soil moisture retrieval. AMSR2 mid-night observations are used here as an indicator of plant hydraulic properties that are related to root zone soil moisture. The combined observations from SMAP and AMSR2 together with other ancillary observations including the Solar-Induced Fluorescence (SIF) estimates from GOME-2 instrument provide necessary information to estimate surface and root zone soil moisture. The algorithm is applied to observations from the first 18 months of SMAP mission and retrievals are validated against in-situ observations and other global datasets.

  9. Phytoplankton global mapping from space with a support vector machine algorithm

    NASA Astrophysics Data System (ADS)

    de Boissieu, Florian; Menkes, Christophe; Dupouy, Cécile; Rodier, Martin; Bonnet, Sophie; Mangeas, Morgan; Frouin, Robert J.

    2014-11-01

    In recent years great progress has been made in global mapping of phytoplankton from space. Two main trends have emerged, the recognition of phytoplankton functional types (PFT) based on reflectance normalized to chlorophyll-a concentration, and the recognition of phytoplankton size class (PSC) based on the relationship between cell size and chlorophyll-a concentration. However, PFTs and PSCs are not decorrelated, and one approach can complement the other in a recognition task. In this paper, we explore the recognition of several dominant PFTs by combining reflectance anomalies, chlorophyll-a concentration and other environmental parameters, such as sea surface temperature and wind speed. Remote sensing pixels are labeled thanks to coincident in-situ pigment data from GeP&CO, NOMAD and MAREDAT datasets, covering various oceanographic environments. The recognition is made with a supervised Support Vector Machine classifier trained on the labeled pixels. This algorithm enables a non-linear separation of the classes in the input space and is especially adapted for small training datasets as available here. Moreover, it provides a class probability estimate, allowing one to enhance the robustness of the classification results through the choice of a minimum probability threshold. A greedy feature selection associated to a 10-fold cross-validation procedure is applied to select the most discriminative input features and evaluate the classification performance. The best classifiers are finally applied on daily remote sensing datasets (SeaWIFS, MODISA) and the resulting dominant PFT maps are compared with other studies. Several conclusions are drawn: (1) the feature selection highlights the weight of temperature, chlorophyll-a and wind speed variables in phytoplankton recognition; (2) the classifiers show good results and dominant PFT maps in agreement with phytoplankton distribution knowledge; (3) classification on MODISA data seems to perform better than on SeaWIFS data, (4) the probability threshold screens correctly the areas of smallest confidence such as the interclass regions.

  10. Undergraduate Research Experiences in Support of Dryland Monitoring: Field and Satellite Remote Sensing of Change in Savanna Structure, Biomass, and Carbon after Prescribed Fires

    NASA Astrophysics Data System (ADS)

    Washington-Allen, R. A.; Twidwell, D. L., Jr.; Mendieta, V. P.; Delgado, A.; Redman, B.; Trollope, W. S.; Trollope, L.; Govender, N.; Smit, I.; Popescu, S. C.; de Bruno Austin, C.; Reeves, M. C.

    2009-12-01

    The status and trend of degradation in the world’s Drylands, that support over 1.2 billion people, is unknown because monitoring & assessment has not occurred on a globally consistent basis and skilled personnel with a cultivated interest in natural resource science and management are lacking. A major monitoring dataset is the 37-year Landsat data archive that has been released free to the world, but this dataset requires persons who understand how to process and interpret this and similar datasets applicable to the desertification problem. The College of Agriculture & Life Sciences (COALS) at Texas A&M University (TAMU) has an initiative to provide undergraduates with both international and research experiences. The lead author used start-up money, USFS project funds for livestock footprint studies in the US, and seed money from COALS to 1) develop academic mentor contacts in Mozambique, Namibia, Botswana, South Africa, and Tunisia to prepare a National Science Foundation Research Experience for Undergraduates (NSF-REU) Site proposal and 2) launch a pilot REU for two TAMU undergraduate students. Mr. Delgado and Mr. Redman received lidar processing and visualization, field survey training on global positioning systems (GPS), terrestrial LIDAR, and ground penetrating radar technologies and conducted carbon change studies by collecting pre- and post-fire laser scans on experimental burn (EPB) sites in Texas and South Africa. Mr. Redman also developed GIS databases of Landsat timeseries for these EPBs and others in southern Africa. Mr. Delgado participated in the Savanna Fire Ignition Research Experiment (SavFIRE) in Kruger National Park (KNP) by collected laser scan data on 3 EPBs. He also received mentoring from Dr. Winston Trollope, a prominent fire ecologist, and Mr. Chris Austin both of Working with Fire International and Navashni Govender, KNP’s Fire Ecologist. He also was an active participant in a NASA sponsored workshop on remote sensing of global savannas.

  11. Method of determining forest production from remotely sensed forest parameters

    DOEpatents

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  12. Removal of Surface-Reflected Light for the Measurement of Remote-Sensing Reflectance from an Above-Surface Platform

    DTIC Science & Technology

    2010-12-01

    remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear

  13. Removal of Surface-Reflected Light for the Measurement of Remote-Sensing Reflectance from an Above-Surface Platform

    DTIC Science & Technology

    2010-12-06

    remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear

  14. An Enhanced Algorithm for Automatic Radiometric Harmonization of High-Resolution Optical Satellite Imagery Using Pseudoinvariant Features and Linear Regression

    NASA Astrophysics Data System (ADS)

    Langheinrich, M.; Fischer, P.; Probeck, M.; Ramminger, G.; Wagner, T.; Krauß, T.

    2017-05-01

    The growing number of available optical remote sensing data providing large spatial and temporal coverage enables the coherent and gapless observation of the earth's surface on the scale of whole countries or continents. To produce datasets of that size, individual satellite scenes have to be stitched together forming so-called mosaics. Here the problem arises that the different images feature varying radiometric properties depending on the momentary acquisition conditions. The interpretation of optical remote sensing data is to a great extent based on the analysis of the spectral composition of an observed surface reflection. Therefore the normalization of all images included in a large image mosaic is necessary to ensure consistent results concerning the application of procedures to the whole dataset. In this work an algorithm is described which enables the automated spectral harmonization of satellite images to a reference scene. As the stable and satisfying functionality of the proposed algorithm was already put to operational use to process a high number of SPOT-4/-5, IRS LISS-III and Landsat-5 scenes in the frame of the European Environment Agency's Copernicus/GMES Initial Operations (GIO) High-Resolution Layer (HRL) mapping of the HRL Forest for 20 Western, Central and (South)Eastern European countries, it is further evaluated on its reliability concerning the application to newer Sentinel-2 multispectral imaging products. The results show that the algorithm is comparably efficient for the processing of satellite image data from sources other than the sensor configurations it was originally designed for.

  15. Large-Scale Variation in Forest Carbon Turnover Rate and its Relation to Climate - Remote Sensing vs. Global Vegetation Models

    NASA Astrophysics Data System (ADS)

    Carvalhais, N.; Thurner, M.; Beer, C.; Forkel, M.; Rademacher, T. T.; Santoro, M.; Tum, M.; Schmullius, C.

    2015-12-01

    While vegetation productivity is known to be strongly correlated to climate, there is a need for an improved understanding of the underlying processes of vegetation carbon turnover and their importance at a global scale. This shortcoming has been due to the lack of spatially extensive information on vegetation carbon stocks, which we recently have been able to overcome by a biomass dataset covering northern boreal and temperate forests originating from radar remote sensing. Based on state-of-the-art products on biomass and NPP, we are for the first time able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests. The implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current global vegetation models. In contrast to our observation-based findings, investigated models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well to observation-based NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in global vegetation models and estimating their impact on the land carbon balance.

  16. Grassland Npp Monitoring Based on Multi-Source Remote Sensing Data Fusion

    NASA Astrophysics Data System (ADS)

    Cai, Y. R.; Zheng, J. H.; Du, M. J.; Mu, C.; Peng, J.

    2018-04-01

    Vegetation is an important part of the terrestrial ecosystem. It plays an important role in the energy and material exchange of the ground-atmosphere system and is a key part of the global carbon cycle process.Climate change has an important influence on the carbon cycle of terrestrial ecosystems. Net Primary Productivity (Net Primary Productivity)is an important parameter for evaluating global terrestrial ecosystems. For the Xinjiang region, the study of grassland NPP has gradually become a hot issue in the ecological environment.Increasing the estimation accuracy of NPP is of great significance to the development of the ecosystem in Xinjiang. Based on the third-generation GIMMS AVHRR NDVI global vegetation dataset and the MODIS NDVI (MOD13A3) collected each month by the United States Atmospheric and Oceanic Administration (NOAA),combining the advantages of different remotely sensed datasets, this paper obtained the maximum synthesis fusion for New normalized vegetation index (NDVI) time series in 2006-2015.Analysis of Net Primary Productivity of Grassland Vegetation in Xinjiang Using Improved CASA Model The method described in this article proves the feasibility of applying data processing, and the accuracy of the NPP calculation using the fusion processed NDVI has been greatly improved. The results show that: (1) The NPP calculated from the new normalized vegetation index (NDVI) obtained from the fusion of GIMMS AVHRR NDVI and MODIS NDVI is significantly higher than the NPP calculated from these two raw data; (2) The grassland NPP in Xinjiang Interannual changes show an overall increase trend; interannual changes in NPP have a certain relationship with precipitation.

  17. A rapid local singularity analysis algorithm with applications

    NASA Astrophysics Data System (ADS)

    Chen, Zhijun; Cheng, Qiuming; Agterberg, Frits

    2015-04-01

    The local singularity model developed by Cheng is fast gaining popularity in characterizing mineralization and detecting anomalies of geochemical, geophysical and remote sensing data. However in one of the conventional algorithms involving the moving average values with different scales is time-consuming especially while analyzing a large dataset. Summed area table (SAT), also called as integral image, is a fast algorithm used within the Viola-Jones object detection framework in computer vision area. Historically, the principle of SAT is well-known in the study of multi-dimensional probability distribution functions, namely in computing 2D (or ND) probabilities (area under the probability distribution) from the respective cumulative distribution functions. We introduce SAT and it's variation Rotated Summed Area Table in the isotropic, anisotropic or directional local singularity mapping in this study. Once computed using SAT, any one of the rectangular sum can be computed at any scale or location in constant time. The area for any rectangular region in the image can be computed by using only 4 array accesses in constant time independently of the size of the region; effectively reducing the time complexity from O(n) to O(1). New programs using Python, Julia, matlab and C++ are implemented respectively to satisfy different applications, especially to the big data analysis. Several large geochemical and remote sensing datasets are tested. A wide variety of scale changes (linear spacing or log spacing) for non-iterative or iterative approach are adopted to calculate the singularity index values and compare the results. The results indicate that the local singularity analysis with SAT is more robust and superior to traditional approach in identifying anomalies.

  18. Multi-year mapping of irrigated croplands over the US High Plains Aquifer using satellite data

    NASA Astrophysics Data System (ADS)

    Deines, J.; Kendall, A. D.; Hyndman, D. W.

    2016-12-01

    Irrigated agriculture is the largest consumer of freshwater globally. Effective water management is crucial to support ongoing agricultural intensification to meet increasing demand for food, fuel, and fiber production. Knowledge of where and when irrigation occurs is critical for effective management and hydrological modeling, yet data on patterns of irrigation through time are surprisingly rare. Existing regional datasets in the United States tend to be either aspatial county-level estimates or static, single-year remotely sensed products with relatively low spatial resolution ( 250 m or coarser). Spatially explicit, dynamic maps are needed to understand water use trends, create accurate hydrological models, and inform forecasts of future water availability under projected climate change. In the High Plains Aquifer (HPA), repeat mapping efforts in 2002 and 2007 indicated only 60% of irrigated lands were static between these periods. To better understand annual irrigation dynamics, we used remote sensing to produce annual maps of irrigated cropland across the HPA region from a data fusion of Landsat satellites, annual time series of vegetation indices, and ancillary data such as precipitation, soil properties, and terrain slope. We performed machine learning classification using Google Earth Engine, allowing efficient image processing over a large region for multiple years. We then analyzed maps for water use trends and found that although total irrigated area has increased only slightly, there was substantial variability in the spatial pattern of irrigated lands over time. This dataset will support efforts towards groundwater sustainability by providing consistent, spatially explicit tracking of irrigation dynamics over time.

  19. The Application of Chinese High-Spatial Remote Sensing Satellite Image in Land Law Enforcement Information Extraction

    NASA Astrophysics Data System (ADS)

    Wang, N.; Yang, R.

    2018-04-01

    Chinese high -resolution (HR) remote sensing satellites have made huge leap in the past decade. Commercial satellite datasets, such as GF-1, GF-2 and ZY-3 images, the panchromatic images (PAN) resolution of them are 2 m, 1 m and 2.1 m and the multispectral images (MS) resolution are 8 m, 4 m, 5.8 m respectively have been emerged in recent years. Chinese HR satellite imagery has been free downloaded for public welfare purposes using. Local government began to employ more professional technician to improve traditional land management technology. This paper focused on analysing the actual requirements of the applications in government land law enforcement in Guangxi Autonomous Region. 66 counties in Guangxi Autonomous Region were selected for illegal land utilization spot extraction with fusion Chinese HR images. The procedure contains: A. Defines illegal land utilization spot type. B. Data collection, GF-1, GF-2, and ZY-3 datasets were acquired in the first half year of 2016 and other auxiliary data were collected in 2015. C. Batch process, HR images were collected for batch preprocessing through ENVI/IDL tool. D. Illegal land utilization spot extraction by visual interpretation. E. Obtaining attribute data with ArcGIS Geoprocessor (GP) model. F. Thematic mapping and surveying. Through analysing 42 counties results, law enforcement officials found 1092 illegal land using spots and 16 suspicious illegal mining spots. The results show that Chinese HR satellite images have great potential for feature information extraction and the processing procedure appears robust.

  20. Parametrization of Land Surface Temperature Fields with Optical and Microwave Remote Sensing in Brazil's Atlantic Forest

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Khan, A.; Carnaval, A. C.

    2016-12-01

    Brazil is home to two of the largest and most biodiverse ecosystems in the world, primarily encompassed in forests and wetlands. A main region of interest in this project is Brazil's Atlantic Forest (AF). Although this forest is only a fraction of the size of the Amazon rainforest, it harbors significant biological richness, making it one of the world's major hotspots for biodiversity. The AF is located on the East to Southeast region of Brazil, bordering the Atlantic Ocean. As luscious and biologically rich as this region is, the area covered by the Atlantic Forest has been diminishing over past decades, mainly due to human influences and effects of climate change. We examine 1 km resolution Land Surface Temperature (LST) data from NASA's Moderate-resolution Imaging Spectroradiometer (MODIS) combined with 25 km resolution radiometric temperature derived from NASA's Advanced Microwave Scanning Radiometer on EOS (AMSR-E) to develop a capability employing both in combination to assess LST. Since AMSR-E is a microwave remote sensing instrument, products derived from its measurements are minimally effected by cloud cover. On the other hand, MODIS data are heavily influenced by cloud cover. We employ a statistical downscaling technique to the coarse-resolution AMSR-E datasets to enhance its spatial resolution to match that of MODIS. Our approach employs 16-day composite MODIS LST data in combination with synergistic ASMR-E radiometric brightness temperature data to develop a combined, downscaled dataset. Our goal is to use this integrated LST retrieval with complementary in situ station data to examine associated influences on regional biodiversity

  1. A Fast, Minimalist Search Tool for Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Lynnes, C. S.; Macharrie, P. G.; Elkins, M.; Joshi, T.; Fenichel, L. H.

    2005-12-01

    We present a tool that emphasizes speed and simplicity in searching remotely sensed Earth Science data. The tool, nicknamed "Mirador" (Spanish for a scenic overlook), provides only four freetext search form fields, for Keywords, Location, Data Start and Data Stop. This contrasts with many current Earth Science search tools that offer highly structured interfaces in order to ensure precise, non-zero results. The disadvantages of the structured approach lie in its complexity and resultant learning curve, as well as the time it takes to formulate and execute the search, thus discouraging iterative discovery. On the other hand, the success of the basic Google search interface shows that many users are willing to forgo high search precision if the search process is fast enough to enable rapid iteration. Therefore, we employ several methods to increase the speed of search formulation and execution. Search formulation is expedited by the minimalist search form, with only one required field. Also, a gazetteer enables the use of geographic terms as shorthand for latitude/longitude coordinates. The search execution is accelerated by initially presenting dataset results (returned from a Google Mini appliance) with an estimated number of "hits" for each dataset based on the user's space-time constraints. The more costly file-level search is executed against a PostGres database only when the user "drills down", and then covering only the fraction of the time period needed to return the next page of results. The simplicity of the search form makes the tool easy to learn and use, and the speed of the searches enables an iterative form of data discovery.

  2. Database Objects vs Files: Evaluation of alternative strategies for managing large remote sensing data

    NASA Astrophysics Data System (ADS)

    Baru, Chaitan; Nandigam, Viswanath; Krishnan, Sriram

    2010-05-01

    Increasingly, the geoscience user community expects modern IT capabilities to be available in service of their research and education activities, including the ability to easily access and process large remote sensing datasets via online portals such as GEON (www.geongrid.org) and OpenTopography (opentopography.org). However, serving such datasets via online data portals presents a number of challenges. In this talk, we will evaluate the pros and cons of alternative storage strategies for management and processing of such datasets using binary large object implementations (BLOBs) in database systems versus implementation in Hadoop files using the Hadoop Distributed File System (HDFS). The storage and I/O requirements for providing online access to large datasets dictate the need for declustering data across multiple disks, for capacity as well as bandwidth and response time performance. This requires partitioning larger files into a set of smaller files, and is accompanied by the concomitant requirement for managing large numbers of file. Storing these sub-files as blobs in a shared-nothing database implemented across a cluster provides the advantage that all the distributed storage management is done by the DBMS. Furthermore, subsetting and processing routines can be implemented as user-defined functions (UDFs) on these blobs and would run in parallel across the set of nodes in the cluster. On the other hand, there are both storage overheads and constraints, and software licensing dependencies created by such an implementation. Another approach is to store the files in an external filesystem with pointers to them from within database tables. The filesystem may be a regular UNIX filesystem, a parallel filesystem, or HDFS. In the HDFS case, HDFS would provide the file management capability, while the subsetting and processing routines would be implemented as Hadoop programs using the MapReduce model. Hadoop and its related software libraries are freely available. Another consideration is the strategy used for partitioning large data collections, and large datasets within collections, using round-robin vs hash partitioning vs range partitioning methods. Each has different characteristics in terms of spatial locality of data and resultant degree of declustering of the computations on the data. Furthermore, we have observed that, in practice, there can be large variations in the frequency of access to different parts of a large data collection and/or dataset, thereby creating "hotspots" in the data. We will evaluate the ability of different approaches for dealing effectively with such hotspots and alternative strategies for dealing with hotspots.

  3. SWAT use of gridded observations for simulating runoff - a Vietnam river basin study

    NASA Astrophysics Data System (ADS)

    Vu, M. T.; Raghavan, S. V.; Liong, S. Y.

    2011-12-01

    Many research studies that focus on basin hydrology have used the SWAT model to simulate runoff. One common practice in calibrating the SWAT model is the application of station data rainfall to simulate runoff. But over regions lacking robust station data, there is a problem of applying the model to study the hydrological responses. For some countries and remote areas, the rainfall data availability might be a constraint due to many different reasons such as lacking of technology, war time and financial limitation that lead to difficulty in constructing the runoff data. To overcome such a limitation, this research study uses some of the available globally gridded high resolution precipitation datasets to simulate runoff. Five popular gridded observation precipitation datasets: (1) Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE), (2) Tropical Rainfall Measuring Mission (TRMM), (3) Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN), (4) Global Precipitation Climatology Project (GPCP), (5) modified Global Historical Climatology Network version 2 (GHCN2) and one reanalysis dataset National Centers for Environment Prediction/National Center for Atmospheric Research (NCEP/NCAR) are used to simulate runoff over the Dakbla River (a small tributary of the Mekong River) in Vietnam. Wherever possible, available station data are also used for comparison. Bilinear interpolation of these gridded datasets is used to input the precipitation data at the closest grid points to the station locations. Sensitivity Analysis and Auto-calibration are performed for the SWAT model. The Nash-Sutcliffe Efficiency (NSE) and Coefficient of Determination (R2) indices are used to benchmark the model performance. This entails a good understanding of the response of the hydrological model to different datasets and a quantification of the uncertainties in these datasets. Such a methodology is also useful for planning on Rainfall-runoff and even reservoir/river management both at rural and urban scales.

  4. Field Data Collection: an Essential Element in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Pettinger, L. R.

    1971-01-01

    Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.

  5. Remote sensing and eLearning 2.0 for school education

    NASA Astrophysics Data System (ADS)

    Voss, Kerstin; Goetzke, Roland; Hodam, Henryk

    2010-10-01

    The "Remote Sensing in Schools" project aims at improving the integration of "Satellite remote sensing" into school teaching. Therefore, it is the project's overall objective to teach students in primary and secondary schools the basics and fields of application of remote sensing. Existing results show that many teachers are interested in remote sensing and at same time motivated to integrate it into their teaching. Despite the good intention, in the end, the implementation often fails due to the complexity and poor set-up of the information provided. Therefore, a comprehensive and well-structured learning platform on the topic of remote sensing is developed. The platform shall allow a structured introduction to the topic.

  6. Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyong; Zhou, Feng; Xu, Lin; Meng, Deyu; Xu, Zongben; Paisley, John

    2018-05-01

    This paper presents a new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework. First, we formulate the HSI classification problem from a Bayesian perspective. Then, we adopt a convolutional neural network (CNN) to learn the posterior class distributions using a patch-wise training strategy to better use the spatial information. Next, spatial information is further considered by placing a spatial smoothness prior on the labels. Finally, we iteratively update the CNN parameters using stochastic gradient decent (SGD) and update the class labels of all pixel vectors using an alpha-expansion min-cut-based algorithm. Compared with other state-of-the-art methods, the proposed classification method achieves better performance on one synthetic dataset and two benchmark HSI datasets in a number of experimental settings.

  7. In-database processing of a large collection of remote sensing data: applications and implementation

    NASA Astrophysics Data System (ADS)

    Kikhtenko, Vladimir; Mamash, Elena; Chubarov, Dmitri; Voronina, Polina

    2016-04-01

    Large archives of remote sensing data are now available to scientists, yet the need to work with individual satellite scenes or product files constrains studies that span a wide temporal range or spatial extent. The resources (storage capacity, computing power and network bandwidth) required for such studies are often beyond the capabilities of individual geoscientists. This problem has been tackled before in remote sensing research and inspired several information systems. Some of them such as NASA Giovanni [1] and Google Earth Engine have already proved their utility for science. Analysis tasks involving large volumes of numerical data are not unique to Earth Sciences. Recent advances in data science are enabled by the development of in-database processing engines that bring processing closer to storage, use declarative query languages to facilitate parallel scalability and provide high-level abstraction of the whole dataset. We build on the idea of bridging the gap between file archives containing remote sensing data and databases by integrating files into relational database as foreign data sources and performing analytical processing inside the database engine. Thereby higher level query language can efficiently address problems of arbitrary size: from accessing the data associated with a specific pixel or a grid cell to complex aggregation over spatial or temporal extents over a large number of individual data files. This approach was implemented using PostgreSQL for a Siberian regional archive of satellite data products holding hundreds of terabytes of measurements from multiple sensors and missions taken over a decade-long span. While preserving the original storage layout and therefore compatibility with existing applications the in-database processing engine provides a toolkit for provisioning remote sensing data in scientific workflows and applications. The use of SQL - a widely used higher level declarative query language - simplifies interoperability between desktop GIS, web applications and geographic web services and interactive scientific applications (MATLAB, IPython). The system is also automatically ingesting direct readout data from meteorological and research satellites in near-real time with distributed acquisition workflows managed by Taverna workflow engine [2]. The system has demonstrated its utility in performing non-trivial analytic processing such as the computation of the Robust Satellite Technique (RST) indices [3]. It had been useful in different tasks such as studying urban heat islands, analyzing patterns in the distribution of wildfire occurrences, detecting phenomena related to seismic and earthquake activity. Initial experience has highlighted several limitations of the proposed approach yet it has demonstrated ability to facilitate the use of large archives of remote sensing data by geoscientists. 1. J.G. Acker, G. Leptoukh, Online analysis enhances use of NASA Earth science data. EOS Trans. AGU, 2007, 88(2), P. 14-17. 2. D. Hull, K. Wolsfencroft, R. Stevens, C. Goble, M.R. Pocock, P. Li and T. Oinn, Taverna: a tool for building and running workflows of services. Nucleic Acids Research. 2006. V. 34. P. W729-W732. 3. V. Tramutoli, G. Di Bello, N. Pergola, S. Piscitelli, Robust satellite techniques for remote sensing of seismically active areas // Annals of Geophysics. 2001. no. 44(2). P. 295-312.

  8. Remote sensing programs and courses in engineering and water resources

    NASA Technical Reports Server (NTRS)

    Kiefer, R. W.

    1981-01-01

    The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.

  9. Remote sensing research in geographic education: An alternative view

    NASA Technical Reports Server (NTRS)

    Wilson, H.; Cary, T. K.; Goward, S. N.

    1981-01-01

    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  10. Research on assessment and improvement method of remote sensing image reconstruction

    NASA Astrophysics Data System (ADS)

    Sun, Li; Hua, Nian; Yu, Yanbo; Zhao, Zhanping

    2018-01-01

    Remote sensing image quality assessment and improvement is an important part of image processing. Generally, the use of compressive sampling theory in remote sensing imaging system can compress images while sampling which can improve efficiency. A method of two-dimensional principal component analysis (2DPCA) is proposed to reconstruct the remote sensing image to improve the quality of the compressed image in this paper, which contain the useful information of image and can restrain the noise. Then, remote sensing image quality influence factors are analyzed, and the evaluation parameters for quantitative evaluation are introduced. On this basis, the quality of the reconstructed images is evaluated and the different factors influence on the reconstruction is analyzed, providing meaningful referential data for enhancing the quality of remote sensing images. The experiment results show that evaluation results fit human visual feature, and the method proposed have good application value in the field of remote sensing image processing.

  11. Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...

  12. Application of the remote-sensing communication model to a time-sensitive wildfire remote-sensing system

    Treesearch

    Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan

    2016-01-01

    Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...

  13. 75 FR 32360 - Proposed Information Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and.... Abstract NOAA has established requirements for the licensing of private operators of remote-sensing space... Land Remote- Sensing Policy Act of 1992 and with the national security and international obligations of...

  14. 78 FR 44536 - Proposed Information Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and... for the licensing of private operators of remote-sensing space systems. The information in applications and subsequent reports is needed to ensure compliance with the Land Remote- Sensing Policy Act of...

  15. Advancement of China’s Visible Light Remote Sensing Technology In Aerospace,

    DTIC Science & Technology

    1996-03-19

    Aerospace visible light film systems were among the earliest space remote sensing systems to be developed in China. They have been applied very well...makes China the third nation in the world to master space remote sensing technology, it also puts recoverable remote sensing satellites among the first

  16. Polarimetric passive remote sensing of periodic surfaces

    NASA Technical Reports Server (NTRS)

    Veysoglu, Murat E.; Yueh, H. A.; Shin, R. T.; Kong, J. A.

    1991-01-01

    The concept of polarimetry in active remote sensing is extended to passive remote sensing. The potential use of the third and fourth Stokes parameters U and V, which play an important role in polarimetric active remote sensing, is demonstrated for passive remote sensing. It is shown that, by the use of the reciprocity principle, the polarimetric parameters of passive remote sensing can be obtained through the solution of the associated direct scattering problem. These ideas are applied to study polarimetric passive remote sensing of periodic surfaces. The solution of the direct scattering problem is obtained by an integral equation formulation which involves evaluation of periodic Green's functions and normal derivative of those on the surface. Rapid evaluation of the slowly convergent series associated with these functions is observed to be critical for the feasibility of the method. New formulas, which are rapidly convergent, are derived for the calculation of these series. The study has shown that the brightness temperature of the Stokes parameter U can be significant in passive remote sensing. Values as high as 50 K are observed for certain configurations.

  17. From planets to crops and back: Remote sensing makes sense

    NASA Astrophysics Data System (ADS)

    Mustard, John F.

    2017-04-01

    Remotely sensed data and the instruments that acquire them are core parts of Earth and planetary observation systems. They are used to quantify the Earth's interconnected systems, and remote sensing is the only way to get a daily, or more frequent, snapshot of the status of the Earth. It really is the Earth's stethoscope. In a similar manner remote sensing is the rock hammer of the planetary scientist and the only way comprehensive data sets can be acquired. To risk offending many remotely sensed data acquired across the electromagnetic spectrum, it is the tricorder to explore known and unknown planets. Arriving where we are today in the use of remotely sensed data in the solar system has been a continually evolving synergy between Earth observation, planetary exploration, and fundamental laboratory work.

  18. Remote sensing of on-road vehicle emissions: Mechanism, applications and a case study from Hong Kong

    NASA Astrophysics Data System (ADS)

    Huang, Yuhan; Organ, Bruce; Zhou, John L.; Surawski, Nic C.; Hong, Guang; Chan, Edward F. C.; Yam, Yat Shing

    2018-06-01

    Vehicle emissions are a major contributor to air pollution in cities and have serious health impacts to their inhabitants. On-road remote sensing is an effective and economic tool to monitor and control vehicle emissions. In this review, the mechanism, accuracy, advantages and limitations of remote sensing were introduced. Then the applications and major findings of remote sensing were critically reviewed. It was revealed that the emission distribution of on-road vehicles was highly skewed so that the dirtiest 10% vehicles accounted for over half of the total fleet emissions. Such findings highlighted the importance and effectiveness of using remote sensing for in situ identification of high-emitting vehicles for further inspection and maintenance programs. However, the accuracy and number of vehicles affected by screening programs were greatly dependent on the screening criteria. Remote sensing studies showed that the emissions of gasoline and diesel vehicles were significantly reduced in recent years, with the exception of NOx emissions of diesel vehicles in spite of greatly tightened automotive emission regulations. Thirdly, the experience and issues of using remote sensing for identifying high-emitting vehicles in Hong Kong (where remote sensing is a legislative instrument for enforcement purposes) were reported. That was followed by the first time ever identification and discussion of the issue of frequent false detection of diesel high-emitters using remote sensing. Finally, the challenges and future research directions of on-road remote sensing were elaborated.

  19. Remote sensing of natural resources: Quarterly literature review

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A quarterly review of technical literature concerning remote sensing techniques is presented. The format contains indexed and abstracted materials with emphasis on data gathering techniques performed or obtained remotely from space, aircraft, or ground-based stations. Remote sensor applications including the remote sensing of natural resources are presented.

  20. Time Series Remote Sensing in Monitoring the Spatio-Temporal Dynamics of Plant Invasions: A Study of Invasive Saltcedar (Tamarix Spp.)

    NASA Astrophysics Data System (ADS)

    Diao, Chunyuan

    In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.

  1. Monitoring Global Food Security with New Remote Sensing Products and Tools

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Husak, G. J.; Magadzire, T.; Verdin, J. P.

    2012-12-01

    Global agriculture monitoring is a crucial aspect of monitoring food security in the developing world. The Famine Early Warning Systems Network (FEWS NET) has a long history of using remote sensing and crop modeling to address food security threats in the form of drought, floods, pests, and climate change. In recent years, it has become apparent that FEWS NET requires the ability to apply monitoring and modeling frameworks at a global scale to assess potential impacts of foreign production and markets on food security at regional, national, and local levels. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara (UCSB) Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of the increased mandate for remote monitoring. We present our monitoring products for measuring actual evapotranspiration (ETa), normalized difference vegetation index (NDVI) in a near-real-time mode, and satellite-based rainfall estimates and derivatives. USGS FEWS NET has implemented a Simplified Surface Energy Balance (SSEB) model to produce operational ETa anomalies for Africa and Central Asia. During the growing season, ETa anomalies express surplus or deficit crop water use, which is directly related to crop condition and biomass. We present current operational products and provide supporting validation of the SSEB model. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with an improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a relatively high spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. We provide an overview of these data and cite specific applications for crop monitoring. FEWS NET uses satellite rainfall estimates as inputs for monitoring agricultural food production and driving crop water balance models. We present a series of derived rainfall products and provide an update on efforts to improve satellite-based estimates. We also present advancements in monitoring tools, namely, the Early Warning eXplorer (EWX) and interactive rainfall and NDVI time series viewers. The EWX is a data analysis and visualization tool that allows users to rapidly visualize multiple remote sensing datasets and compare standardized anomaly maps and time series. The interactive time series viewers allow users to analyze rainfall and NDVI time series over multiple spatial domains. New and improved data products and more targeted analysis tools are a necessity as food security monitoring requirements expand and resources become limited.

  2. New and Improved Remotely Sensed Products and Tools for Agricultural Monitoring Applications in Support of Famine Early Warning

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Pedreros, D.; Husak, G. J.; Bohms, S.

    2011-12-01

    The high global food prices in 2008 led to the acknowledgement that there is a need to monitor the inter-connectivity of global and regional markets and their potential impacts on food security in many more regions than previously considered. The crisis prompted an expansion of monitoring by the Famine Early Warning Systems Network (FEWS NET) to include additional countries, beyond those where food security has long been of concern. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of this increased mandate for remote monitoring. We present a new product for measuring actual evapotranspiration (ETa) based on the implementation of a surface energy balance model and site improvements of two standard FEWS NET monitoring products: normalized difference vegetation index (NDVI) and satellite-based rainfall estimates. USGS FEWS NET has implemented a simplified surface energy balance model to produce operational ETa anomalies for Africa. During the growing season, ETa anomalies express surplus or deficit crop water use which is directly related to crop condition and biomass. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with a much improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a vastly improved spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. FEWS NET uses satellite rainfall estimates as inputs for monitoring agricultural food production. By combining high resolution (0.05 deg) rainfall mean fields with Tropical Rainfall Measuring Mission rainfall estimates and infrared temperature data, we provide pentadal (5-day) rainfall fields suitable for crop monitoring and modeling. We also present two new monitoring tools, the Early Warning eXplorer (EWX) and the Decision Support Interface (DSI). The EWX is a data analysis tool which provides the ability to rapidly visualize multiple remote sensing datasets and compare standardized anomaly maps and time series. The DSI uses remote sensing data in an automated fashion to map areas of drought concern and ranks their severity at both crop zone and administrative levels. New and improved data products and more targeted analysis tools are a necessity as food security monitoring requirements expand and resources become limited.

  3. Spatial Metadata for Global Change Investigations Using Remote Sensing

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Quattrochi, Dale A.; Lam, Nina Siu-Ngan; Arnold, James E. (Technical Monitor)

    2002-01-01

    Satellite and aircraft-borne remote sensors have gathered petabytes of data over the past 30+ years. These images are an important resource for establishing cause and effect relationships between human-induced land cover changes and alterations in climate and other biophysical patterns at local to global scales. However, the spatial, temporal, and spectral characteristics of these datasets vary, thus complicating long-term studies involving several types of imagery. As the geographical and temporal coverage, the spectral and spatial resolution, and the number of individual sensors increase, the sheer volume and complexity of available data sets will complicate management and use of the rapidly growing archive of earth imagery. Mining this vast data resource for images that provide the necessary information for climate change studies becomes more difficult as more sensors are launched and more imagery is obtained.

  4. Forest mensuration with remote sensing: A retrospective and a vision for the future

    Treesearch

    Randolph H. Wynne

    2004-01-01

    Remote sensing, while occasionally oversold, has clear potential to reduce the overall cost of traditional forest inventories. Perhaps most important, some of the information needed for more intensive, rather than extensive, forest management is available from remote sensing. These new information needs may justify increased use and the increased cost of remote sensing...

  5. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  6. Remote Sensing: Analyzing Satellite Images to Create Higher Order Thinking Skills.

    ERIC Educational Resources Information Center

    Marks, Steven K.; And Others

    1996-01-01

    Presents a unit that uses remote-sensing images from satellites and other spacecraft to provide new perspectives of the earth and generate greater global awareness. Relates the levels of Bloom's hierarchy to different aspects of the remote sensing unit to confirm that the concepts and principles of remote sensing and related images belong in…

  7. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  8. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  9. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  10. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  11. Annotated bibliography of remote sensing methods for monitoring desertification

    USGS Publications Warehouse

    Walker, A.S.; Robinove, Charles J.

    1981-01-01

    Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.

  12. Using Landsat ETM+ and ASTER Sensors to Aid the Mineral Assessment of the Desert National Wildlife Refuge, Clark and Lincoln Counties, Nevada

    NASA Astrophysics Data System (ADS)

    Cramer, Timothy F.

    The Desert National Wildlife Refuge in southern Nevada has been selected for remote sensing analysis as part of a mineral assessment required for renewal of mineral withdrawal. The area of interest is nearly 3,000 km2 and covers portions of 5 different ranges with little to no infrastructure. Assessing such a large area using traditional field methods is very time intensive and expensive. The study described here serves as a pilot study, testing the capability of Landsat ETM+ and ASTER satellite imagery to remotely identify areas of potentially mineralized lithologies. This is done by generating a number of band ratio, band index, and mineral likelihood maps identifying 5 key mineral classes (silica, clay, iron oxide, dolomite and calcite), which commonly have patterned zonation around ore deposits. When compiled with available geologic and geochemical data sets, these intermediate products can provide guidance for targeted field evaluation and exploration. Field observations and spectral data collected in the laboratory can then be integrated with ASTER imagery to guide a Spectral Angle Mapper algorithm to generate a distribution map of the five mineral classes. The methods presented found the ASTER platform to be capable of remotely assessing the distribution of various lithologies and the mineral potential of large, remote areas. Furthermore areas of both high and low potential for ore deposits can be identified and used to guide field evaluation and exploration. Remote sensing studies of this caliber can be performed relatively quickly and inexpensively resulting in datasets, which can result in more accurate mapping and the identification of both lithologic boundaries and previously unidentified alteration associated with mineralization. Future mineral assessments and exploration activity should consider similar studies prior to field work.

  13. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.

    1976-01-01

    The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.

  14. Communicating remote sensing concepts in an interdisciplinary environment

    NASA Technical Reports Server (NTRS)

    Chung, R.

    1981-01-01

    Although remote sensing is currently multidisciplinary in its applications, many of its terms come from the engineering sciences, particularly from the field of pattern recognition. Scholars from fields such as the social sciences, botany, and biology, may experience initial difficulty with remote sensing terminology, even though parallel concepts exist in their own fields. Some parallel concepts and terminologies from nonengineering fields, which might enhance the understanding of remote sensing concepts in an interdisciplinary situation are identified. Feedbacks which this analogue strategy might have on remote sensing itself are explored.

  15. People, Places and Pixels: Remote Sensing in the Service of Society

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh

    2003-01-01

    What is the role of Earth remote sensing and other geospatial technologies in our society? Recent global events have brought into focus the role of geospatial science and technology such as remote sensing, GIS, GPS in assisting the professionals who are responsible for operations such as rescue and recovery of sites after a disaster or a terrorist act. This paper reviews the use of recent remote sensing products from satellites such as IKONOS in these efforts. Aerial and satellite imagery used in land mine detection has been evaluated and the results of this evaluation will be discussed. Synopsis of current and future ISS Earth Remote Sensing capabilities will be provided. The role of future missions in humanitarian use of remote sensing will be explored.

  16. Development of an Automated Precipitation Processing Model and Applications in Hydrologic Investigations

    NASA Astrophysics Data System (ADS)

    Milewski, A. M.; Markondiah Jayaprakash, S.; Sultan, M.; Becker, R.

    2006-12-01

    Given the advances in new technologies, more and more scientists are beginning to utilize remote sensing or satellite imagery in their research applications. Remote sensing data offer a synoptic view and observational quantitative parameters over large domains and thus provide cost-effective solutions by reducing the labor involved in collecting extensive field observations. One of the valuable data sets that can be extracted from remote sensing observations is precipitation. Prior to the deployment of the relevant satellite-based sensors, users had to resort to rainfall stations to obtain precipitation data. Currently, users can freely download digital Tropical Rainfall Measuring Mission (TRMM) and Special Spectral Measuring Imager (SSM/I) precipitation data, however, the process of data extraction is not user friendly as it requires computer programming to fully utilize these datasets. We have developed the Automated Precipitation Processing Module (APPM) to simplify the tedious manual process needed to retrieve rainfall estimates via satellite measurements. The function of the APPM is to process the TRMM and SSM/I data according to the user's spatial and temporal inputs. Using APPM, we processed all available TRMM and SSM/I data for six continents (processed data is available on six compact discs: one/continent: refer to www.esrs.wmich.edu). The input data includes global SSM/I (1987-1998) and TRMM (1998-2005) covering an area extending from 50 degrees North to 50 degrees South. Advantages of using our software include: (1) user friendly technology, (2) reduction in processing time (e.g., processing of the entire TRMM & SSM/I dataset (1987-2005) for Africa was reduced from one year to one week), and (3) reduction in required computer resources (original TRMM & SSM/I data: 1.5 terabytes; processed: 300 megabytes). The APPM reads raw binary data and allows for: (1) sub-setting global dataset given user-defined boundaries (latitude and longitude), (2) selection of temporal range of interest, (3) Definition of minimum threshold precipitation value, (4) plotting of rainfall events versus time and recording events that exceed a specified threshold value, and (5) merge outputs of SSM/I and TRMM data into one continuous record. The maximum allowable temporal range is from 1987 to 2005, which is the time frame during which precipitation sensors were deployed. Most hydrologic investigations require dense networks of hydrologic monitoring systems that are expensive which makes this situation difficult in many parts of the world. Through the use of the APPM and the Soil Water and Assessment Tool (SWAT) model the ground water recharge and surface water runoff was computed for the past 18 years in several arid areas of the world (Egypt, Sinai, and Israel). Results include 13 watersheds in Egypt, 10 watersheds in Sinai, and 2 watersheds in Israel. The selected watersheds provide ample calibration data (rain gauges, stream flow) on a continuous basis for the duration of the model (1987- 2005). The average precipitation amounts (35mm/yr) in these areas are controlled by extreme rainfall events (~15) where precipitation exceeds 20mm/day. Implications for utilizing temporal global remote sensing data for calculating continuous rainfall/runoff models on global and regional scales for the past two decades are now within reach.

  17. Regional Geological Mapping in the Graham Land of Antarctic Peninsula Using LANDSAT-8 Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Pour, A. B.; Hashim, M.; Park, Y.

    2017-10-01

    Geological investigations in Antarctica confront many difficulties due to its remoteness and extreme environmental conditions. In this study, the applications of Landsat-8 data were investigated to extract geological information for lithological and alteration mineral mapping in poorly exposed lithologies in inaccessible domains such in Antarctica. The north-eastern Graham Land, Antarctic Peninsula (AP) was selected in this study to conduct a satellite-based remote sensing mapping technique. Continuum Removal (CR) spectral mapping tool and Independent Components Analysis (ICA) were applied to Landsat-8 spectral bands to map poorly exposed lithologies at regional scale. Pixels composed of distinctive absorption features of alteration mineral assemblages associated with poorly exposed lithological units were detected by applying CR mapping tool to VNIR and SWIR bands of Landsat-8.Pixels related to Si-O bond emission minima features were identified using CR mapping tool to TIR bands in poorly mapped andunmapped zones in north-eastern Graham Land at regional scale. Anomaly pixels in the ICA image maps related to spectral featuresof Al-O-H, Fe, Mg-O-H and CO3 groups and well-constrained lithological attributions from felsic to mafic rocks were detectedusing VNIR, SWIR and TIR datasets of Landsat-8. The approach used in this study performed very well for lithological andalteration mineral mapping with little available geological data or without prior information of the study region.

  18. The application of remote sensing techniques to the study of ophiolites

    NASA Astrophysics Data System (ADS)

    Khan, Shuhab D.; Mahmood, Khalid

    2008-08-01

    Satellite remote sensing methods are a powerful tool for detailed geologic analysis, especially in inaccessible regions of the earth's surface. Short-wave infrared (SWIR) bands are shown to provide spectral information bearing on the lithologic, structural, and geochemical character of rock bodies such as ophiolites, allowing for a more comprehensive assessment of the lithologies present, their stratigraphic relationships, and geochemical character. Most remote sensing data are widely available for little or no cost, along with user-friendly software for non-specialists. In this paper we review common remote sensing systems and methods that allow for the discrimination of solid rock (lithologic) components of ophiolite complexes and their structural relationships. Ophiolites are enigmatic rock bodies which associated with most, if not all, plate collision sutures. Ophiolites are ideal for remote sensing given their widely recognized diversity of lithologic types and structural relationships. Accordingly, as a basis for demonstrating the utility of remote sensing techniques, we briefly review typical ophiolites in the Tethyan tectonic belt. As a case study, we apply integrated remote sensing studies of a well-studied example, the Muslim Bagh ophiolite, located in Balochistan, western Pakistan. On this basis, we attempt to demonstrate how remote sensing data can validate and reconcile existing information obtained from field studies. The lithologic and geochemical diversity of Muslim Bagh are representative of Tethyan ophiolites. Despite it's remote location it has been extensively mapped and characterized by structural and geochemical studies, and is virtually free of vegetative cover. Moreover, integrating the remote sensing data with 'ground truth' information thus offers the potential of an improved template for interpreting remote sensing data sets of other ophiolites for which little or no field information is available.

  19. Remote Sensing and Remote Control Activities in Europe and America: Part 2--Remote Sensing Ground Stations in Europe,

    DTIC Science & Technology

    1996-04-08

    Development tasks and products of remote sensing ground stations in Europe are represented by the In-Sec Corporation and the Schlumberger Industries Corporation. The article presents the main products of these two corporations.

  20. [Estimation of desert vegetation coverage based on multi-source remote sensing data].

    PubMed

    Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui

    2012-12-01

    Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.

Top