Sample records for remote sensing operations

  1. REMOTE SENSING TECHNOLOGIES APPLICATIONS RESEARCH

    EPA Science Inventory

    Remote sensing technologies applications research supports the ORD Landscape Sciences Program (LSP) in two separate areas: operational remote sensing, and remote sensing research and development. Operational remote sensing is provided to the LSP through the use of current and t...

  2. Remote sensing in operational range management programs in Western Canada

    NASA Technical Reports Server (NTRS)

    Thompson, M. D.

    1977-01-01

    A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.

  3. Operational programs in forest management and priority in the utilization of remote sensing

    NASA Technical Reports Server (NTRS)

    Douglass, R. W.

    1978-01-01

    A speech is given on operational remote sensing programs in forest management and the importance of remote sensing in forestry is emphasized. Forest service priorities in using remote sensing are outlined.

  4. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  5. Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science

    NASA Astrophysics Data System (ADS)

    Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.

    2017-09-01

    Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  6. 75 FR 52307 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...: National Oceanic and Atmospheric Administration (NOAA). Title: Licensing of Private Remote-Sensing Space... National Satellite Land Remote Sensing Data Archive; 3 hours for the submission of an operational quarterly... and Uses: NOAA has established requirements for the licensing of private operators of remote-sensing...

  7. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  8. Remote sensing utility in a disaster struck urban environment

    NASA Technical Reports Server (NTRS)

    Rush, M.; Holguin, A.; Vernon, S.

    1974-01-01

    A project to determine the ways in which remote sensing can contribute to solutions of urban public health problems in time of natural disaster is discussed. The objectives of the project are to determine and describe remote sensing standard operating procedures for public health assistance during disaster relief operations which will aid the agencies and organizations involved in disaster intervention. Proposed tests to determine the validity of the remote sensing system are reported.

  9. Western Regional Remote Sensing Conference Proceedings, 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Diverse applications of LANDSAT data, problem solutions, and operational goals are described by remote sensing users from 14 western states. The proposed FY82 federal budget reductions for technology transfer activities and the planned transition of the operational remote sensing system to NOAA's supervision are also considered.

  10. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  11. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  12. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  13. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  14. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  15. Remote sensing by satellite - Technical and operational implications for international cooperation

    NASA Technical Reports Server (NTRS)

    Doyle, S. E.

    1976-01-01

    International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.

  16. 75 FR 32360 - Proposed Information Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and.... Abstract NOAA has established requirements for the licensing of private operators of remote-sensing space... Land Remote- Sensing Policy Act of 1992 and with the national security and international obligations of...

  17. 78 FR 44536 - Proposed Information Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and... for the licensing of private operators of remote-sensing space systems. The information in applications and subsequent reports is needed to ensure compliance with the Land Remote- Sensing Policy Act of...

  18. Commercialization of the land remote sensing system: An examination of mechanisms and issues

    NASA Technical Reports Server (NTRS)

    Cauley, J. K.; Gaelick, C.; Greenberg, J. S.; Logsdon, J.; Monk, T.

    1983-01-01

    In September 1982 the Secretary of Commerce was authorized (by Title II of H.R. 5890 of the 97th Congress) to plan and provide for the management and operation of the civil land remote sensing satellite systems, to provide for user fees, and to plan for the transfer of the ownership and operation of future civil operational land remote sensing satellite systems to the private sector. As part of the planning for transfer, a number of approaches were to be compared including wholly private ownership and operation of the system by an entity competitively selected, mixed government/private ownership and operation, and a legislatively-chartered privately-owned corporation. The results of an analysis and comparison of a limited number of financial and organizational approaches for either transfer of the ownership and operation of the civil operational land remote sensing program to the private sector or government retention are presented.

  19. Operational Use of Remote Sensing within USDA

    NASA Technical Reports Server (NTRS)

    Bethel, Glenn R.

    2007-01-01

    A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.

  20. Western Regional Remote Sensing Conference Proceedings, 1979

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Remote sensing users from the 14 western states explained their diverse applications of LANDSAT data, discussed operational goals, and exchanged problems and solutions. In addition, conference participants stressed the need for increased cooperation among state and local governments, private industry, and universities to aid NASA's objective of transferring to user agencies the ability to operationally use remote sensing technology for resource and environmental quality management.

  1. Remote Sensing of In-Flight Icing Conditions: Operational, Meteorological, and Technological Considerations

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles C.

    2000-01-01

    Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to convert sensed conditions into a measure of icing potential. Technology development also requires refinement of inversion techniques. These goals can be accomplished with collaboration among federal agencies including NASA, the FAA, the National Center for Atmospheric Research, NOAA, and the Department of Defense. This report reviews operational, meteorological, and technological considerations in developing the capability to remotely map in-flight icing conditions from the ground and from the air.

  2. Navigating the "Research-to-Operations" Bridge of Death: Collaborative Transition of Remotely-Sensed Snow Data from Research into Operational Water Resources Forecasting

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; Bender, S.; Painter, T. H.; Bernard, B.

    2016-12-01

    Water and resource management agencies can benefit from hydrologic forecasts during both flood and drought conditions. Improved predictions of seasonal snowmelt-driven runoff volume and timing can assist operational water managers with decision support and efficient resource management within the spring runoff season. Using operational models and forecasting systems, NOAA's Colorado Basin River Forecast Center (CBRFC) produces hydrologic forecasts for stakeholders and water management groups in the western United States. Collaborative incorporation of research-oriented remote sensing data into CBRFC operational models and systems is one route by which CBRFC forecasts can be improved, ultimately for the benefit of water managers. Successful navigation of research-oriented remote sensing products across the "research-to-operations"/R2O gap (also known as the "valley of death") to operational destinations requires dedicated personnel on both the research and operations sides, working in a highly collaborative environment. Since 2012, the operational CBRFC has collaborated with the research-oriented Jet Propulsion Laboratory (JPL) under funding from NASA to transition remotely-sensed snow data into CBRFC's operational models and forecasting systems. Two specific datasets from JPL, the MODIS Dust Radiative Forcing in Snow (MODDRFS) and the MODIS Snow Covered-Area and Grain size (MODSCAG) products, are used in CBRFC operations as of 2016. Over the past several years, JPL and CBRFC have worked together to analyze patterns in JPL's remote sensing snow datasets from the operational perspective of the CBRFC and to develop techniques to bridge the R2O gap. Retrospective and real-time analyses have yielded valuable insight into the remotely-sensed snow datasets themselves, CBRFC's operational systems, and the collaborative R2O process. Examples of research-oriented JPL snow data, as used in CBRFC operations, are described. A timeline of the collaboration, challenges encountered during the journey across the R2O gap, or "valley of death", and solutions to those challenges are also illustrated.

  3. Commercial use of remote sensing in agriculture: a case study

    NASA Astrophysics Data System (ADS)

    Gnauck, Gary E.

    1999-12-01

    Over 25 years of research have clearly shown that an analysis of remote sensing imagery can provide information on agricultural crops. Most of this research has been funded by and directed toward the needs of government agencies. Commercial use of agricultural remote sensing has been limited to very small-scale operations supplying remote sensing services to a few selected customers. Datron/Transco Inc. undertook an internally funded remote sensing program directed toward the California cash crop industry (strawberries, lettuce, tomatoes, other fresh vegetables and cotton). The objectives of this program were twofold: (1) to assess the need and readiness of agricultural land managers to adopt remote sensing as a management tool, and (2) determine what technical barriers exist to large-scale implementation of this technology on a commercial basis. The program was divided into three phases: Planning, Engineering Test and Evaluation, and Commercial Operations. Findings: Remote sensing technology can deliver high resolution multispectral imagery with rapid turnaround, that can provide information on crop stress insects, disease and various soil parameters. The limiting factors to the use of remote sensing in agriculture are a lack of familiarization by the land managers, difficulty in translating 'information' into increased revenue or reduced cost for the land manager, and the large economies of scale needed to make the venture commercially viable.

  4. 15 CFR 960.11 - Conditions for operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.11 Conditions for... all facilities which comprise the remote sensing space system for the purpose of conducting license... possession, the licensee shall offer such data to the National Satellite Land Remote Sensing Data Archive at...

  5. 15 CFR 960.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.3 Definitions. For purposes of the regulations in this part, the following terms have the following meanings: Act means the Land Remote Sensing... application for a NOAA license to operate a remote sensing space system. Assistant Administrator means the...

  6. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  7. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  8. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  9. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  10. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  11. Field Data Collection: an Essential Element in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Pettinger, L. R.

    1971-01-01

    Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.

  12. Remote sensing of the Earth from Space: A program in crisis

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The present situation in earth remote sensing, determining why certain problems exist, and trying to find out what can be done to solve these problems are discussed. The conclusion is that operational remote sensing is in disarray. The difficulties involve policy and institutional issues. Recommendations are given.

  13. The Integration of Remote-Sensing Detection Techniques into the Operational Decision-Making of Marine Oil Spills

    NASA Astrophysics Data System (ADS)

    Garron, J.; Trainor, S.

    2017-12-01

    Remotely-sensed data collected from satellites, airplanes and unmanned aerial systems can be used in marine oil spills to identify the overall footprint, estimate fate and transport, and to identify resources at risk. Mandates for the use of best available technology exists for addressing marine oil spills under the jurisdiction of the USCG (33 CFR 155.1050), though clear pathways to familiarization of these technologies during a marine oil spill, or more importantly, between marine oil spills, does not. Similarly, remote-sensing scientists continue to experiment with highly tuned oil detection, fate and transport techniques that can benefit decision-making during a marine oil spill response, but the process of translating these prototypical tools to operational information remains undefined, leading most researchers to describe the "potential" of these new tools in an operational setting rather than their actual use, and decision-makers relying on traditional field observational methods. Arctic marine oil spills are no different in their mandates and the remote-sensing research undertaken, but are unique via the dark, cold, remote, infrastructure-free environment in which they can occur. These conditions increase the reliance of decision-makers in an Arctic oil spill on remotely-sensed data and tools for their manipulation. In the absence of another large-scale oil spill in the US, and limited literature on the subject, this study was undertaken to understand how remotely-sensed data and tools are being used in the Incident Command System of a marine oil spill now, with an emphasis on Arctic implementation. Interviews, oil spill scenario/drill observations and marine oil spill after action reports were collected and analyzed to determine the current state of remote-sensing data use for decision-making during a marine oil spill, and to define a set of recommendations for the process of integrating new remote-sensing tools and information in future oil spill responses. Using automated synthetic aperture radar analyses of oil spills in a common operational picture as a scientific case study, this presentation is a demonstration of how landscape-level scientific data can be integrated into Arctic planning and operational decision-making.

  14. On multidisciplinary research on the application of remote sensing to water resources problems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This research is directed toward development of a practical, operational remote sensing water quality monitoring system. To accomplish this, five fundamental aspects of the problem have been under investigation during the past three years. These are: (1) development of practical and economical methods of obtaining, handling and analyzing remote sensing data; (2) determination of the correlation between remote sensed imagery and actual water quality parameters; (3) determination of the optimum technique for monitoring specific water pollution parameters and for evaluating the reliability with which this can be accomplished; (4) determination of the extent of masking due to depth of penetration, bottom effects, film development effects, and angle falloff, and development of techniques to eliminate or minimize them; and (5) development of operational procedures which might be employed by a municipal, state or federal agency for the application of remote sensing to water quality monitoring, including space-generated data.

  15. Recent Advances in Registration, Integration and Fusion of Remotely Sensed Data: Redundant Representations and Frames

    NASA Technical Reports Server (NTRS)

    Czaja, Wojciech; Le Moigne-Stewart, Jacqueline

    2014-01-01

    In recent years, sophisticated mathematical techniques have been successfully applied to the field of remote sensing to produce significant advances in applications such as registration, integration and fusion of remotely sensed data. Registration, integration and fusion of multiple source imagery are the most important issues when dealing with Earth Science remote sensing data where information from multiple sensors, exhibiting various resolutions, must be integrated. Issues ranging from different sensor geometries, different spectral responses, differing illumination conditions, different seasons, and various amounts of noise need to be dealt with when designing an image registration, integration or fusion method. This tutorial will first define the problems and challenges associated with these applications and then will review some mathematical techniques that have been successfully utilized to solve them. In particular, we will cover topics on geometric multiscale representations, redundant representations and fusion frames, graph operators, diffusion wavelets, as well as spatial-spectral and operator-based data fusion. All the algorithms will be illustrated using remotely sensed data, with an emphasis on current and operational instruments.

  16. People, Places and Pixels: Remote Sensing in the Service of Society

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh

    2003-01-01

    What is the role of Earth remote sensing and other geospatial technologies in our society? Recent global events have brought into focus the role of geospatial science and technology such as remote sensing, GIS, GPS in assisting the professionals who are responsible for operations such as rescue and recovery of sites after a disaster or a terrorist act. This paper reviews the use of recent remote sensing products from satellites such as IKONOS in these efforts. Aerial and satellite imagery used in land mine detection has been evaluated and the results of this evaluation will be discussed. Synopsis of current and future ISS Earth Remote Sensing capabilities will be provided. The role of future missions in humanitarian use of remote sensing will be explored.

  17. Remote Sensing Wind and Wind Shear System.

    DTIC Science & Technology

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  18. Investigation on sense of control parameters for joystick interface in remote operated container crane application

    NASA Astrophysics Data System (ADS)

    Abdullah, U. N. N.; Handroos, H.

    2017-09-01

    Introduction: This paper presents the study of sense of control parameters to improve the lack of direct motion feeling through remote operated container crane station (ROCCS) joystick interface. The investigations of the parameters in this study are important to develop the engineering parameters related to the sense of control goal in the next design process. Methodology: Structured interviews and observations were conducted to obtain the user experience data from thirteen remote container crane operators from two international terminals. Then, interview analysis, task analysis, activity analysis and time line analysis were conducted to compare and contrast the results from interviews and observations. Results: Four experience parameters were identified to support the sense of control goal in the later design improvement of the ROCC joystick interface. The significance of difficulties to control, unsynchronized movements, facilitate in control and decision making in unexpected situation as parameters to the sense of control goal were validated by' feedbacks from operators as well as analysis. Contribution: This study provides feedback directly from end users towards developing a sustainable control interface for ROCCS in specific and remote operated off-road vehicles in general.

  19. Radar Remote Sensing of Waves and Currents in the Nearshore Zone

    DTIC Science & Technology

    2006-01-01

    and application of novel microwave, acoustic, and optical remote sensing techniques. The objectives of this effort are to determine the extent to which...Doppler radar techniques are useful for nearshore remote sensing applications. Of particular interest are estimates of surf zone location and extent...surface currents, waves, and bathymetry. To date, optical (video) techniques have been the primary remote sensing technology used for these applications. A key advantage of the radar is its all weather day-night operability.

  20. Brazil's remote sensing activities in the Eighties

    NASA Technical Reports Server (NTRS)

    Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.

    1985-01-01

    Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.

  1. Oceanographic Remote Sensing; A Position Paper,

    DTIC Science & Technology

    1979-01-26

    The purpose of a Navy R&D remote sensing plan should be to set forth the requirements and direction of basic and exploratory research in satellite... remote sensing which supports the overall Navy oceanographic research and operational programs. The aim of the plan would be to outline the established...addressed. The plan should help serve as a single technology and program reference for implementation and planning of Navy related satellite remote

  2. Geotechnical applications of remote sensing and remote data transmission; Proceedings of the Symposium, Cocoa Beach, FL, Jan. 31-Feb. 1, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.I.; Pettersson, C.B.

    1988-01-01

    Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis ofmore » surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.« less

  3. Current and emerging operational uses of remote sensing in Swedish forestry

    Treesearch

    Hakan Olsson; Mikael Egberth; Jonas Engberg; Johan E.S. Fransson; Tina Granqvist Pahlen; < i> et al< /i>

    2007-01-01

    Satellite remote sensing is being used operationally by Swedish authorities in applications involving, for example, change detection of clear felled areas, use of k-Nearest Neighbour estimates of forest parameters, and post-stratification (in combination with National Forest Inventory plots). For forest management planning of estates, aerial...

  4. Investigation related to multispectral imaging systems

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Erickson, J. D.

    1974-01-01

    A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.

  5. Bridging the Scales from Field to Region with Practical Tools to Couple Time- and Space-Synchronized Data from Flux Towers and Networks with Proximal and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.

    2017-12-01

    Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this approach can be utilized for matching remote sensing and tower data to aid in ground truthing, improve scientific interactions, and promote joint grant writing and other forms of collaboration between the flux and remote sensing communities.

  6. Imputing forest structure attributes from stand inventory and remotely sensed data in western Oregon, USA

    Treesearch

    Andrew T. Hudak; A. Tod Haren; Nicholas L. Crookston; Robert J. Liebermann; Janet L. Ohmann

    2014-01-01

    Imputation is commonly used to assign reference stand observations to target stands based on covariate relationships to remotely sensed data to assign inventory attributes across the entire landscape. However, most remotely sensed data are collected at higher resolution than the stand inventory data often used by operational foresters. Our primary goal was to compare...

  7. Practical applications of remote sensing technology

    NASA Technical Reports Server (NTRS)

    Whitmore, Roy A., Jr.

    1990-01-01

    Land managers increasingly are becoming dependent upon remote sensing and automated analysis techniques for information gathering and synthesis. Remote sensing and geographic information system (GIS) techniques provide quick and economical information gathering for large areas. The outputs of remote sensing classification and analysis are most effective when combined with a total natural resources data base within the capabilities of a computerized GIS. Some examples are presented of the successes, as well as the problems, in integrating remote sensing and geographic information systems. The need to exploit remotely sensed data and the potential that geographic information systems offer for managing and analyzing such data continues to grow. New microcomputers with vastly enlarged memory, multi-fold increases in operating speed and storage capacity that was previously available only on mainframe computers are a reality. Improved raster GIS software systems have been developed for these high performance microcomputers. Vector GIS systems previously reserved for mini and mainframe systems are available to operate on these enhanced microcomputers. One of the more exciting areas that is beginning to emerge is the integration of both raster and vector formats on a single computer screen. This technology will allow satellite imagery or digital aerial photography to be presented as a background to a vector display.

  8. Spatial information technologies for remote sensing today and tomorrow; Proceedings of the Ninth Pecora Symposium, Sioux Falls, SD, October 2-4, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.

  9. Measurement of Hydrologic Resource Parameters Through Remote Sensing in the Feather River Headwaters Area

    NASA Technical Reports Server (NTRS)

    Thorley, G. A.; Draeger, W. C.; Lauer, D. T.; Lent, J.; Roberts, E.

    1971-01-01

    The four problem are as being investigated are: (1) determination of the feasibility of providing the resource manager with operationally useful information through the use of remote sensing techniques; (2) definition of the spectral characteristics of earth resources and the optimum procedures for calibrating tone and color characteristics of multispectral imagery (3) determination of the extent to which humans can extract useful earth resource information through remote sensing imagery; (4) determination of the extent to which automatic classification and data processing can extract useful information from remote sensing data.

  10. Operational LANDSAT remote sensing system development

    NASA Technical Reports Server (NTRS)

    Cotter, D. J.

    1981-01-01

    The reduction of $121.6 million dollars from NOAA's LANDSAT development program for FY 1982, and the shortened time period for transferring remote sensing technology to the private sector resulted in changes in the Agency's plans for managing the operational system. Proposed legislation for congressional consideration or enactment to establish conditions under which this private sector transfer will occur, and the expected gradual rise in the price of data products are discussed. No money exists for capital investment and none is projected for investing in an operational data handling system for the LANDSAT D satellite. Candidates knowledgeable of various aspects of the needs and uses of remote sensing are urged to consider participation in NOAA's advisory committee.

  11. Integration of Remote Sensing Data In Operational Flood Forecast In Southwest Germany

    NASA Astrophysics Data System (ADS)

    Bach, H.; Appel, F.; Schulz, W.; Merkel, U.; Ludwig, R.; Mauser, W.

    Methods to accurately assess and forecast flood discharge are mandatory to minimise the impact of hydrological hazards. However, existing rainfall-runoff models rarely accurately consider the spatial characteristics of the watershed, which is essential for a suitable and physics-based description of processes relevant for runoff formation. Spatial information with low temporal variability like elevation, slopes and land use can be mapped or extracted from remote sensing data. However, land surface param- eters of high temporal variability, like soil moisture and snow properties are hardly available and used in operational forecasts. Remote sensing methods can improve flood forecast by providing information on the actual water retention capacities in the watershed and facilitate the regionalisation of hydrological models. To prove and demonstrate this, the project 'InFerno' (Integration of remote sensing data in opera- tional water balance and flood forecast modelling) has been set up, funded by DLR (50EE0053). Within InFerno remote sensing data (optical and microwave) are thor- oughly processed to deliver spatially distributed parameters of snow properties and soil moisture. Especially during the onset of a flood this information is essential to estimate the initial conditions of the model. At the flood forecast centres of 'Baden- Württemberg' and 'Rheinland-Pfalz' (Southwest Germany) the remote sensing based maps on soil moisture and snow properties will be integrated in the continuously op- erated water balance and flood forecast model LARSIM. The concept is to transfer the developed methodology from the Neckar to the Mosel basin. The major challenges lie on the one hand in the implementation of algorithms developed for a multisensoral synergy and the creation of robust, operationally applicable remote sensing products. On the other hand, the operational flood forecast must be adapted to make full use of the new data sources. In the operational phase of the project ESA's ENVISAT satellite, which will be launched in 2002, will serve as remote sensing data source. Until EN- VISAT data is available, algorithm retrieval, software development and product gener- ation is performed using existing sensors with ENVISAT-like specifications. Based on these data sets test cases and demonstration runs are conducted and will be presented to prove the advantages of the approach.

  12. Carbon stores, sinks, and sources in forests of northwestern Russia: can we reconcile forest inventories with remote sensing results?

    Treesearch

    Olga N. Krankina; Mark E. Harmon; Warren B. Cohen; Doug R. Oetter; Olga Zyrina; Maureen V. Duane

    2004-01-01

    Forest inventories and remote sensing are the two principal data sources used to estimate carbon (C) stocks and fluxes for large forest regions. National governments have historically relied on forest inventories for assessments but developments in remote sensing technology provide additional opportunities for operational C monitoring. The estimate of total C stock in...

  13. 15 CFR 960.4 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...

  14. 15 CFR 960.5 - Confidentiality of information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...

  15. 15 CFR 960.4 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...

  16. 15 CFR 960.5 - Confidentiality of information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...

  17. 15 CFR 960.5 - Confidentiality of information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...

  18. 15 CFR 960.4 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...

  19. 15 CFR 960.5 - Confidentiality of information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...

  20. 15 CFR 960.4 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...

  1. 15 CFR 960.4 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...

  2. 15 CFR 960.5 - Confidentiality of information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...

  3. Does this interface make my sensor look bad? Basic principles for designing usable, useful interfaces for sensor technology operators

    NASA Astrophysics Data System (ADS)

    McNamara, Laura A.; Berg, Leif; Butler, Karin; Klein, Laura

    2017-05-01

    Even as remote sensing technology has advanced in leaps and bounds over the past decade, the remote sensing community lacks interfaces and interaction models that facilitate effective human operation of our sensor platforms. Interfaces that make great sense to electrical engineers and flight test crews can be anxiety-inducing to operational users who lack professional experience in the design and testing of sophisticated remote sensing platforms. In this paper, we reflect on an 18-month collaboration which our Sandia National Laboratory research team partnered with an industry software team to identify and fix critical issues in a widely-used sensor interface. Drawing on basic principles from cognitive and perceptual psychology and interaction design, we provide simple, easily learned guidance for minimizing common barriers to system learnability, memorability, and user engagement.

  4. Use of Remote Sensing for Decision Support in Africa

    NASA Technical Reports Server (NTRS)

    Policelli, Frederick S.

    2007-01-01

    Over the past 30 years, the scientific community has learned a great deal about the Earth as an integrated system. Much of this research has been enabled by the development of remote sensing technologies and their operation from space. Decision makers in many nations have begun to make use of remote sensing data for resource management, policy making, and sustainable development planning. This paper makes an attempt to provide a survey of the current state of the requirements and use of remote sensing for sustainable development in Africa. This activity has shown that there are not many climate data ready decision support tools already functioning in Africa. There are, however, endusers with known requirements who could benefit from remote sensing data.

  5. The application of remote sensing to resource management and environmental quality programs in Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.; Martinko, E. A.

    1976-01-01

    Activities of the Kansas Applied Remote Sensing Program (KARS) designed to establish interactions on cooperative projects with decision makers in Kansas agencies in the development and application of remote sensing procedures are reported. Cooperative demonstration projects undertaken with several different agencies involved three principal areas of effort: Wildlife Habitat and Environmental Analysis; Urban and Regional Analysis; Agricultural and Rural Analysis. These projects were designed to concentrate remote sensing concepts and methodologies on existing agency problems to insure the continued relevancy of the program and maximize the possibility for immediate operational use. Completed projects are briefly discussed.

  6. The Radio Frequency Environment at 240-270 MHz with Application to Signal-of-Opportunity Remote Sensing

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James

    2017-01-01

    Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.

  7. An international organization for remote sensing

    NASA Technical Reports Server (NTRS)

    Helm, Neil R.; Edelson, Burton I.

    1991-01-01

    A recommendation is presented for the formation of a new commercially oriented international organization to acquire or develop, coordinate or manage, the space and ground segments for a global operational satellite system to furnish the basic data for remote sensing and meteorological, land, and sea resource applications. The growing numbers of remote sensing programs are examined and possible ways of reducing redundant efforts and improving the coordination and distribution of these global efforts are discussed. This proposed remote sensing organization could play an important role in international cooperation and the distribution of scientific, commercial, and public good data.

  8. Development and Testing of Physically-Based Methods for Filling Gaps in Remotely Sensed River Data

    DTIC Science & Technology

    2011-09-30

    Filling Gaps in Remotely Sensed River Data Jonathan M. Nelson US Geological Survey National Research Program Geomorphology and Sediment Transport...the research work carried out under this grant are to develop and test two methods for filling in gaps in remotely sensed river data. The first...information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215

  9. The International Space Station: A Unique Platform For Terrestrial Remote Sensing

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.

    2012-01-01

    The International Space Station (ISS) became operational in November of 2000, and until recently remote sensing activities and operations have focused on handheld astronaut photography of the Earth. This effort builds from earlier NASA and Russian space programs (e.g. Evans et al. 2000; Glazovskiy and Dessinov 2000). To date, astronauts have taken more than 600,000 images of the Earth s land surface, oceans, and atmospheric phenomena from orbit using film and digital cameras as part two payloads: NASA s Crew Earth Observations experiment (http://eol.jsc.nasa.gov/) and Russia s Uragan experiment (Stefanov et al. 2012). Many of these images have unique attributes - varying look angles, ground resolutions, and illumination - that are not available from other remote sensing platforms. Despite this large volume of imagery and clear capability for Earth remote sensing, the ISS historically has not been perceived as an Earth observations platform by many remote sensing scientists. With the recent installation of new facilities and sophisticated sensor systems, and additional systems manifested and in development, that perception is changing to take advantage of the unique capabilities and viewing opportunities offered by the ISS.

  10. Potential impact of remote sensing data on sea-state analysis and prediction

    NASA Technical Reports Server (NTRS)

    Cardone, V. J.

    1983-01-01

    The severe North Atlantic storm which damaged the ocean liner Queen Elizabeth 2 (QE2) was studied to assess the impact of remotely sensed marine surface wind data obtained by SEASAT-A, on sea state specifications and forecasts. Alternate representations of the surface wind field in the QE2 storm were produced from the SEASAT enhanced data base, and from operational analyses based upon conventional data. The wind fields were used to drive a high resolution spectral ocean surface wave prediction model. Results show that sea state analyses would have been vastly improved during the period of storm formation and explosive development had remote sensing wind data been available in real time. A modest improvement in operational 12 to 24 hour wave forecasts would have followed automatically from the improved initial state specification made possible by the remote sensing data in both numerical and sea state prediction models. Significantly improved 24 to 48 hour wave forecasts require in addition to remote sensing data, refinement in the numerical and physical aspects of weather prediction models.

  11. [An operational remote sensing algorithm of land surface evapotranspiration based on NOAA PAL dataset].

    PubMed

    Hou, Ying-Yu; He, Yan-Bo; Wang, Jian-Lin; Tian, Guo-Liang

    2009-10-01

    Based on the time series 10-day composite NOAA Pathfinder AVHRR Land (PAL) dataset (8 km x 8 km), and by using land surface energy balance equation and "VI-Ts" (vegetation index-land surface temperature) method, a new algorithm of land surface evapotranspiration (ET) was constructed. This new algorithm did not need the support from meteorological observation data, and all of its parameters and variables were directly inversed or derived from remote sensing data. A widely accepted ET model of remote sensing, i. e., SEBS model, was chosen to validate the new algorithm. The validation test showed that both the ET and its seasonal variation trend estimated by SEBS model and our new algorithm accorded well, suggesting that the ET estimated from the new algorithm was reliable, being able to reflect the actual land surface ET. The new ET algorithm of remote sensing was practical and operational, which offered a new approach to study the spatiotemporal variation of ET in continental scale and global scale based on the long-term time series satellite remote sensing images.

  12. Remote sensing of wetlands

    NASA Technical Reports Server (NTRS)

    Roller, N. E. G.

    1977-01-01

    The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.

  13. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 3 : use of scanning LiDAR in structural evaluation of bridges.

    DOT National Transportation Integrated Search

    2009-12-01

    This volume introduces several applications of remote bridge inspection technologies studied in : this Integrated Remote Sensing and Visualization (IRSV) study using ground-based LiDAR : systems. In particular, the application of terrestrial LiDAR fo...

  14. The use of remotely sensed data for operational fisheries oceanography

    NASA Technical Reports Server (NTRS)

    Fiuza, Armando F. G.

    1992-01-01

    Satellite remote sensing data are used under two contexts in fisheries: as a tool for fisheries research and as a means to provide operational support to fishing activities. Fishing operations need synoptic data provided timely; fisheries research needs that type of data and, also, good short-term climatologies. A description is given of several experiences conducted around the world which have employed or are using satellite data for operational fisheries problems. An overview is included of the Portuguese program for fisheries support using remotely sensed data provided by satellites and in situ observations conducted by fishermen. Environmental products useful for fisheries necessarily combine satellite and in situ data. The role of fishermen as a source of good, near-real-time in situ environmental data is stressed; so far, this role seems to have been largely overlooked.

  15. A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles: REMOTE SENSING OF THERMODYNAMIC PROFILES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wulfmeyer, Volker; Hardesty, R. Michael; Turner, David D.

    A review of remote sensing technology for lower tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer—usually characterized by an inversion—and the lowermore » troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global navigation satellite system, as well as water vapor and temperature Raman lidar and water vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less

  16. Geometric correction of synchronous scanned Operational Modular Imaging Spectrometer II hyperspectral remote sensing images using spatial positioning data of an inertial navigation system

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaohu; Neubauer, Franz; Zhao, Dong; Xu, Shichao

    2015-01-01

    The high-precision geometric correction of airborne hyperspectral remote sensing image processing was a hard nut to crack, and conventional methods of remote sensing image processing by selecting ground control points to correct the images are not suitable in the correction process of airborne hyperspectral image. The optical scanning system of an inertial measurement unit combined with differential global positioning system (IMU/DGPS) is introduced to correct the synchronous scanned Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing images. Posture parameters, which were synchronized with the OMIS II, were first obtained from the IMU/DGPS. Second, coordinate conversion and flight attitude parameters' calculations were conducted. Third, according to the imaging principle of OMIS II, mathematical correction was applied and the corrected image pixels were resampled. Then, better image processing results were achieved.

  17. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase two, volume 4 : web-based bridge information database--visualization analytics and distributed sensing.

    DOT National Transportation Integrated Search

    2012-03-01

    This report introduces the design and implementation of a Web-based bridge information visual analytics system. This : project integrates Internet, multiple databases, remote sensing, and other visualization technologies. The result : combines a GIS ...

  18. Quarterly literature review of the remote sensing of natural resources

    NASA Technical Reports Server (NTRS)

    Fears, C. B. (Editor); Inglis, M. H. (Editor)

    1977-01-01

    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports.

  19. The University of Kansas Applied Sensing Program: An operational perspective

    NASA Technical Reports Server (NTRS)

    Martinko, E. A.

    1981-01-01

    The Kansas applied remote sensing (KARS) program conducts demonstration projects and applied research on remote sensing techniques which enable local, regional, state and federal agency personnel to better utilize available satellite and airborne remote sensing systems. As liason with Kansas agencies for the Earth Resources Laboratory (ERL), Kansas demonstration project, KARS coordinated interagency communication, field data collection, hands-on training, and follow-on technical assistance and worked with Kansas agency personnel in evaluating land cover maps provided by ERL. Short courses are being conducted to provide training in state-of-the-art remote sensing technology for university faculty, state personnel, and persons from private industry and federal government. Topics are listed which were considered in intensive five-day courses covering the acquisition, interpretation, and application of information derived through remote sensing with specific training and hands-on experience in image interpretation and the analysis of LANDSAT data are listed.

  20. The International Geoscience and Remote Sensing Symposium (IGARSS) 84. Remote Sensing: from Research Towards Operational Use, Volume 2

    NASA Technical Reports Server (NTRS)

    Guyenne, T. D. (Editor); Hunt, James J. (Editor)

    1984-01-01

    Synthetic aperature radar; systems components; data collection; data evaluation; optical sensor data; air pollution; water pollution; land and sea observation; active sensors (ir and w); and ers-1 are discussed.

  1. Integrating multiple satellite data for crop monitoring

    USDA-ARS?s Scientific Manuscript database

    Remote sensing provides a valuable data source for detecting crop types, monitoring crop condition and predicting crop yields from space. Routine and continuous remote sensing data are critical for agricultural research and operational applications. Since crop field dimensions tend to be relatively ...

  2. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  3. Scaling field data to calibrate and validate moderate spatial resolution remote sensing models

    USGS Publications Warehouse

    Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Zhu, Z.

    2007-01-01

    Validation and calibration are essential components of nearly all remote sensing-based studies. In both cases, ground measurements are collected and then related to the remote sensing observations or model results. In many situations, and particularly in studies that use moderate resolution remote sensing, a mismatch exists between the sensor's field of view and the scale at which in situ measurements are collected. The use of in situ measurements for model calibration and validation, therefore, requires a robust and defensible method to spatially aggregate ground measurements to the scale at which the remotely sensed data are acquired. This paper examines this challenge and specifically considers two different approaches for aggregating field measurements to match the spatial resolution of moderate spatial resolution remote sensing data: (a) landscape stratification; and (b) averaging of fine spatial resolution maps. The results show that an empirically estimated stratification based on a regression tree method provides a statistically defensible and operational basis for performing this type of procedure. 

  4. a Hadoop-Based Distributed Framework for Efficient Managing and Processing Big Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Wang, C.; Hu, F.; Hu, X.; Zhao, S.; Wen, W.; Yang, C.

    2015-07-01

    Various sensors from airborne and satellite platforms are producing large volumes of remote sensing images for mapping, environmental monitoring, disaster management, military intelligence, and others. However, it is challenging to efficiently storage, query and process such big data due to the data- and computing- intensive issues. In this paper, a Hadoop-based framework is proposed to manage and process the big remote sensing data in a distributed and parallel manner. Especially, remote sensing data can be directly fetched from other data platforms into the Hadoop Distributed File System (HDFS). The Orfeo toolbox, a ready-to-use tool for large image processing, is integrated into MapReduce to provide affluent image processing operations. With the integration of HDFS, Orfeo toolbox and MapReduce, these remote sensing images can be directly processed in parallel in a scalable computing environment. The experiment results show that the proposed framework can efficiently manage and process such big remote sensing data.

  5. Equivalent Sensor Radiance Generation and Remote Sensing from Model Parameters. Part 1; Equivalent Sensor Radiance Formulation

    NASA Technical Reports Server (NTRS)

    Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.

    2013-01-01

    In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.

  6. Multi-sensor Cloud Retrieval Simulator and Remote Sensing from Model Parameters . Pt. 1; Synthetic Sensor Radiance Formulation; [Synthetic Sensor Radiance Formulation

    NASA Technical Reports Server (NTRS)

    Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.

    2013-01-01

    In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.

  7. Merlin: an integrated path differential absorption (IPDA) lidar for global methane remote sensing

    NASA Astrophysics Data System (ADS)

    Bode, M.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.

    2017-11-01

    The Methane Remote Sensing LIDAR Mission (MERLIN) is a joint French-German cooperation on the development, launch and operation of a climate monitoring satellite, executed by the French Space Agency CNES and the German Space Administration DLR.

  8. Merlin: an integrated path differential absorption (IPDA) lidar for global methane remote sensing

    NASA Astrophysics Data System (ADS)

    Bode, M.; Wührer, C.; Alpers, M.; Millet, B.; Ehret, G.; Bousquet, P.

    2017-09-01

    The Methane Remote Sensing LIDAR Mission (MERLIN) is a joint French-German cooperation on the development, launch and operation of a climate monitoring satellite, executed by the French Space Agency CNES and the German Space Administration DLR.

  9. Mississippi Sound Remote Sensing Study

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  10. The use of high altitude aerial photography to inventory wildlife habitat in Kansas: An initial evaluation

    NASA Technical Reports Server (NTRS)

    Merchant, J. W.; Waddell, B. H.

    1974-01-01

    The use of aerial photography as a method for determining the wildlife conditions of an area is discussed. Color infrared photography is investigated as the most effective type of remote sensor. The characteristics of the remote sensing systems are described. Examples of the remote sensing operation and the method for reducing the data are presented.

  11. Application of remote sensing to state and regional problems. [Mississippi

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Carter, B. D.; Solomon, J. L.; Williams, S. G.; Powers, J. S.; Clark, J. R. (Principal Investigator)

    1980-01-01

    Progress is reported in the following areas: remote sensing applications to land use planning Lowndes County, applications of LANDSAT data to strip mine inventory and reclamation, white tailed deer habitat evaluation using LANDSAT data, remote sensing data analysis support system, and discrimination of unique forest habitats in potential lignite areas of Mississippi. Other projects discussed include LANDSAT change discrimination in gravel operations, environmental impact modeling for highway corridors, and discrimination of fresh water wetlands for inventory and monitoring.

  12. Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network

    NASA Astrophysics Data System (ADS)

    Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao

    2018-03-01

    Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.

  13. Development of multi-mission satellite data systems at the German Remote Sensing Data Centre

    NASA Astrophysics Data System (ADS)

    Lotz-Iwen, H. J.; Markwitz, W.; Schreier, G.

    1998-11-01

    This paper focuses on conceptual aspects of the access to multi-mission remote sensing data by online catalogue and information systems. The system ISIS of the German Remote Sensing Data Centre is described as an example of a user interface to earth observation data. ISIS has been designed to support international scientific research as well as operational applications by offering online access to the database via public networks. It provides catalogue retrieval, visualisation and transfer of image data, and is integrated in international activities dedicated to catalogue and archive interoperability. Finally, an outlook is given on international projects dealing with access to remote sensing data in distributed archives.

  14. What is a picture worth? A history of remote sensing

    USGS Publications Warehouse

    Moore, Gerald K.

    1979-01-01

    Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.

  15. A comparison of operational remote sensing-based models for estimating crop evapotranspiration

    USDA-ARS?s Scientific Manuscript database

    The integration of remotely sensed data into models of actual evapotranspiration has allowed for the estimation of water consumption across agricultural regions. Two modeling approaches have been successfully applied. The first approach computes a surface energy balance using the radiometric surface...

  16. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    USDA-ARS?s Scientific Manuscript database

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  17. Small unmanned aircraft systems for remote sensing and Earth science research

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Moorman, Brian J.; Riddell, Kevin; Whitehead, Ken

    2012-06-01

    To understand and predict Earth-surface dynamics, scientists often rely on access to the latest remote sensing data. Over the past several decades, considerable progress has been made in the development of specialized Earth observation sensors for measuring a wide range of processes and features. Comparatively little progress has been made, however, in the development of new platforms upon which these sensors can be deployed. Conventional platforms are still almost exclusively restricted to piloted aircraft and satellites. For many Earth science research questions and applications these platforms do not yet have the resolution or operational flexibility to provide answers affordably. The most effective remote sensing data match the spatiotemporal scale of the process or feature of interest. An emerging technology comprising unmanned aircraft systems (UAS), also known as unmanned aerial vehicles (UAV), is poised to offer a viable alternative to conventional platforms for acquiring high-resolution remote sensing data with increased operational flexibility, lower cost, and greater versatility (Figure 1).

  18. A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles

    DOE PAGES

    Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; ...

    2015-07-08

    A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less

  19. A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.

    A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less

  20. Application of remote sensing for planning purposes

    NASA Technical Reports Server (NTRS)

    Hughes, T. H. (Editor)

    1977-01-01

    Types of remotely sensed data are many and varied but, all are primarily dependent on the sensor platform and the kind of sensing system used. A sensor platform is the type of aircraft or satellite to which a sensing system is attached; each platform has its own inherent advantages and disadvantages. Selected attributes of several current or recently used platforms are outlined. Though sensing systems are highly varied, they may be divided into various operational categories such as cameras, electromechanical scanners, and radars.

  1. Deriving hourly evapotranspiration (ET) rates with SEBS: A lysimetric evaluation

    USDA-ARS?s Scientific Manuscript database

    Numerous energy balance (EB) algorithms have been developed to use remote sensing data for mapping evapotranspiration (ET) on a regional basis. Adopting any single or combination of these models for an operational ET remote sensing program requires a thorough evaluation. The Surface Energy Balance S...

  2. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 1 : summary report.

    DOT National Transportation Integrated Search

    2009-12-01

    The Integrated Remote Sensing and Visualization System (IRSV) is being designed to accommodate the needs of todays Bridge : Engineers at the state and local level from the following aspects: : Better understanding and enforcement of a complex ...

  3. GLCF: Landsat GeoCover

    Science.gov Websites

    Congress of the United States provided NASA with funding to operate a Science Data Purchase, through the auspices of the NASA Stennis Space Centers Commercial Remote Sensing Program, now part of their Earth Science Applications Directorate. NASA Stennis solicited commercial remote sensing companies for potential

  4. Remote sensing new model for monitoring the east Asian migratory locust infections based on its breeding circle

    NASA Astrophysics Data System (ADS)

    Han, Xiuzhen; Ma, Jianwen; Bao, Yuhai

    2006-12-01

    Currently the function of operational locust monitor system mainly focused on after-hazards monitoring and assessment, and to found the way effectively to perform early warning and prediction has more practical meaning. Through 2001, 2002 two years continuously field sample and statistics for locusts eggs hatching, nymph growth, adults 3 phases observation, sample statistics and calculation, spectral measurements as well as synchronically remote sensing data processing we raise the view point of Remote Sensing three stage monitor the locust hazards. Based on the point of view we designed remote sensing monitor in three stages: (1) during the egg hitching phase remote sensing can retrieve parameters of land surface temperature (LST) and soil moisture; (2) during nymph growth phase locust increases appetite greatly and remote sensing can calculate vegetation index, leaf area index, vegetation cover and analysis changes; (3) during adult phase the locust move and assembly towards ponds and water ditches as well as less than 75% vegetation cover areas and remote sensing combination with field data can monitor and predicts potential areas for adult locusts to assembly. In this way the priority of remote sensing technology is elaborated effectively and it also provides technique support for the locust monitor system. The idea and techniques used in the study can also be used as reference for other plant diseases and insect pests.

  5. Scientific Programming Using Java: A Remote Sensing Example

    NASA Technical Reports Server (NTRS)

    Prados, Don; Mohamed, Mohamed A.; Johnson, Michael; Cao, Changyong; Gasser, Jerry

    1999-01-01

    This paper presents results of a project to port remote sensing code from the C programming language to Java. The advantages and disadvantages of using Java versus C as a scientific programming language in remote sensing applications are discussed. Remote sensing applications deal with voluminous data that require effective memory management, such as buffering operations, when processed. Some of these applications also implement complex computational algorithms, such as Fast Fourier Transformation analysis, that are very performance intensive. Factors considered include performance, precision, complexity, rapidity of development, ease of code reuse, ease of maintenance, memory management, and platform independence. Performance of radiometric calibration code written in Java for the graphical user interface and of using C for the domain model are also presented.

  6. An integrated approach to the remote sensing of floating ice

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Ramseier, R. O.; Weeks, W. F.; Gloersen, P.

    1976-01-01

    Review article on remote sensing applications to glaciology. Ice parameters sensed include: ice cover vs open water, ice thickness, distribution and morphology of ice formations, vertical resolution of ice thickness, ice salinity (percolation and drainage of brine; flushing of ice body with fresh water), first-year ice and multiyear ice, ice growth rate and surface heat flux, divergence of ice packs, snow cover masking ice, behavior of ice shelves, icebergs, lake ice and river ice; time changes. Sensing techniques discussed include: satellite photographic surveys, thermal IR, passive and active microwave studies, microwave radiometry, microwave scatterometry, side-looking radar, and synthetic aperture radar. Remote sensing of large aquatic mammals and operational ice forecasting are also discussed.

  7. Surface Energy Balance System for Estimating Daily Evapotranspiration Rates in the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    Numerous energy balance (EB) algorithms have been developed to use remote sensing data for mapping evapotranspiration (ET) on a regional basis. Adopting any single or a combination of these models for an operational ET remote sensing program requires thorough evaluation. The Surface Energy Balance S...

  8. EMC problems on board the remote sensing and communications satellites equipped with electric propulsions

    NASA Astrophysics Data System (ADS)

    Plokhikh, A.; Vazhenin, N.; Soganova, G.

    Wide application of electric propulsions (EP) as attitude control and orbit correction thrusters for a numerous class of satellites (remote sensing and communications satellites including) imposes new problems before the developers in meeting the electromagnetic compatibility requirements on board these satellites. This is connected with the fact that any EP is a source of interference broad-band emission reaching, as a rule, frequency ranges used by on-board radio systems designed for remote sensing and communications. In this case, reliable joint operation should be secured for the highly sensitive on -board radio receiving systems and sensors of remote sensing systems on one hand and EP on the other. In view of this, analysis is rather actual for the influence of EP interference emission upon the parameters and characteristics of modern remote sensing and communications systems. Procedures and results of typical operating characteristics calculation for the radio systems with the presence of operating EP on board are discussed in the paper on the basis of systematic approach with the following characteristics being among them: signal-to-noise ratio, range, data transmission rate, error probability, etc. EP effect is taken into account by the statistical analysis for the results of joint influence of valid signal and interference produced by EP upon the quality indices of communication systems and paths of the sensors being the parts of remote sensing systems. Test data for the measured EP interference characteristics were used for qualitative assessments. All necessary measurements were made by authors on the basis of the test procedure developed by them for assessing self- em ission of EP under ground conditions that may be used as a base for the certification of such measurements. Analysis was made on the basis of test data obtained and calculation procedures developed by authors for the EP influence upon the qualitative characteristics of remote sensing and communications radio systems that revealed the presence of destructive effect resulting in substantial decrease in maximum range and data transmission rate, as well as reduction of sensitivity for the sensors of remote sensing systems. Recommendations are given on the basis of analysis made for the optimization of radio systems and calibration of their sensors at a presence of electric propulsions on board the satellites.

  9. Remote sensing of coal mine pollution in the upper Potomac River basin

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A survey of remote sensing data pertinent to locating and monitoring sources of pollution resulting from surface and shaft mining operations was conducted in order to determine the various methods by which ERTS and aircraft remote sensing data can be used as a replacement for, or a supplement to traditional methods of monitoring coal mine pollution of the upper Potomac Basin. The gathering and analysis of representative samples of the raw and processed data obtained during the survey are described, along with plans to demonstrate and optimize the data collection processes.

  10. Microwave remote sensing: Active and passive. Volume 1 - Microwave remote sensing fundamentals and radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1981-01-01

    The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.

  11. New Earth Observation Capabilities For The Commercial Sector

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2017-01-01

    Earth observation data collected from orbital remote sensing systems are becoming increasingly critical to the short- and long-term operations of many commercial industries including agriculture, energy exploration, environmental management, transportation, and urban planning and operations. In this panel, I will present an overview of current and planned NASA remote sensing systems for Earth observation with relevance to commercial and industrial applications. Special emphasis will be given to the International Space Station (ISS) as a platform for both commercial technology demonstration/development and operational data collection through the ISS National Laboratory.

  12. Operational Remote Sensing Services in North Eastern Region of India for Natural Resources Management, Early Warning for Disaster Risk Reduction and Dissemination of Information and Services

    NASA Astrophysics Data System (ADS)

    Raju, P. L. N.; Sarma, K. K.; Barman, D.; Handique, B. K.; Chutia, D.; Kundu, S. S.; Das, R. Kr.; Chakraborty, K.; Das, R.; Goswami, J.; Das, P.; Devi, H. S.; Nongkynrih, J. M.; Bhusan, K.; Singh, M. S.; Singh, P. S.; Saikhom, V.; Goswami, C.; Pebam, R.; Borgohain, A.; Gogoi, R. B.; Singh, N. R.; Bharali, A.; Sarma, D.; Lyngdoh, R. B.; Mandal, P. P.; Chabukdhara, M.

    2016-06-01

    North Eastern Region (NER) of India comprising of eight states considered to be most unique and one of the most challenging regions to govern due to its unique physiographic condition, rich biodiversity, disaster prone and diverse socio-economic characteristics. Operational Remote Sensing services increased manifolds in the region with the establishment of North Eastern Space Applications Centre (NESAC) in the year 2000. Since inception, NESAC has been providing remote sensing services in generating inventory, planning and developmental activities, and management of natural resources, disasters and dissemination of information and services through geo-web services for NER. The operational remote sensing services provided by NESAC can be broadly divided into three categories viz. natural resource planning and developmental services, disaster risk reduction and early warning services and information dissemination through geo-portal services. As a apart of natural resources planning and developmental services NESAC supports the state forest departments in preparing the forest working plans by providing geospatial inputs covering entire NER, identifying the suitable culturable wastelands for cultivation of silkworm food plants, mapping of natural resources such as land use/land cover, wastelands, land degradation etc. on temporal basis. In the area of disaster risk reduction, NESAC has initiated operational services for early warning and post disaster assessment inputs for flood early warning system (FLEWS) using satellite remote sensing, numerical weather prediction, hydrological modeling etc.; forest fire alert system with actionable attribute information; Japanese Encephalitis Early Warning System (JEWS) based on mosquito vector abundance, pig population and historical disease intensity and agriculture drought monitoring for the region. The large volumes of geo-spatial databases generated as part of operational services are made available to the administrators and local government bodies for better management, preparing prospective planning, and sustainable use of available resources. The knowledge dissemination is being done through online web portals wherever the internet access is available and as well as offline space based information kiosks, where the internet access is not available or having limited bandwidth availability. This paper presents a systematic and comprehensive study on the remote sensing services operational in NER of India for natural resources management, disaster risk reduction and dissemination of information and services, in addition to outlining future areas and direction of space applications for the region.

  13. Effect of the revisit interval on the accuracy of remote sensing-based estimates of evapotranspiration at field scales

    USDA-ARS?s Scientific Manuscript database

    Accurate spatially distributed estimates of evapotranspiration (ET) derived from remotely sensed data are critical to a broad range of practical and operational applications. However, due to lengthy return intervals and cloud cover, data acquisition is not continuous over time. To fill the data gaps...

  14. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase two, volume 1 : outreach and commercialization of IRSV prototype.

    DOT National Transportation Integrated Search

    2012-03-01

    The Integrated Remote Sensing and Visualization System (IRSV) was developed in Phase One of this project in order to : accommodate the needs of todays Bridge Engineers at the state and local level. Overall goals of this project are: : Better u...

  15. Private sector involvement in civil space remote sensing. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The U.S. Space Policy concerning the investment and direct participation in the establishment and operations of remote sensing systems is addressed. Private sector views and state and local government views are presented. Results of a market analysis are pregiven and the economic feasibility of such a program is considered.

  16. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Deal, William R.; Chattopadhyay, Goutam

    2012-01-01

    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  17. L-band microwave remote sensing and land data assimilation improve the representation of pre-storm soil moisture conditions for hydrologic forecasting

    USDA-ARS?s Scientific Manuscript database

    Recent advances in remote sensing and land data assimilation purport to improve the quality of antecedent soil moisture information available for operational hydrologic forecasting. We objectively validate this claim by calculating the strength of the relationship between storm-scale runoff ratio (i...

  18. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 2 : knowledge modeling and database development.

    DOT National Transportation Integrated Search

    2009-12-01

    The Integrated Remote Sensing and Visualization System (IRSV) is being designed to accommodate the needs of todays Bridge Engineers at the : state and local level from several aspects that were documented in Volume One, Summary Report. The followi...

  19. High resolution remote sensing missions of a tethered satellite

    NASA Technical Reports Server (NTRS)

    Vetrella, S.; Moccia, A.

    1986-01-01

    The application of the Tethered Satellite (TS) as an operational remote sensing platform is studied. It represents a new platform capable of covering the altitudes between airplanes and free flying satellites, offering an adequate lifetime, high geometric and radiometric resolution and improved cartographic accuracy. Two operational remote sensing missions are proposed: one using two linear array systems for along track stereoscopic observation and one using a synthetic aperture radar combined with an interferometric technique. These missions are able to improve significantly the accuracy of future real time cartographic systems from space, also allowing, in the case of active microwave systems, the Earth's observation both in adverse weather and at any time, day or night. Furthermore, a simulation program is described in which, in order to examine carefully the potentiality of the TS as a new remote sensing platform, the orbital and attitude dynamics description of the TSS is integrated with the sensor viewing geometry, the Earth's ellipsoid, the atmospheric effects, the Sun illumination and the digital elevation model. A preliminary experiment has been proposed which consist of a metric camera to be deployed downwards during the second Shuttle demonstration flight.

  20. The potential and prospects of proximal remote sensing of arthropod pests.

    PubMed

    Nansen, Christian

    2016-04-01

    Bench-top or proximal remote sensing applications are widely used as part of quality control and machine vision systems in commercial operations. In addition, these technologies are becoming increasingly important in insect systematics and studies of insect physiology and pest management. This paper provides a review and discussion of how proximal remote sensing may contribute valuable quantitative information regarding identification of species, assessment of insect responses to insecticides, insect host responses to parasitoids and performance of biological control agents. The future role of proximal remote sensing is discussed as an exciting path for novel paths of multidisciplinary research among entomologists and scientists from a wide range of other disciplines, including image processing engineers, medical engineers, research pharmacists and computer scientists. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Remote sensing and human health: new sensors and new opportunities.

    PubMed

    Beck, L R; Lobitz, B M; Wood, B L

    2000-01-01

    Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Système Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.

  2. On multidisciplinary research on the application of remote sensing to water resources problems. [Wisconsin

    NASA Technical Reports Server (NTRS)

    Clapp, J. L.

    1973-01-01

    Research objectives during 1972-73 were to: (1) Ascertain the extent to which special aerial photography can be operationally used in monitoring water pollution parameters. (2) Ascertain the effectiveness of remote sensing in the investigation of nearshore mixing and coastal entrapment in large water bodies. (3) Develop an explicit relationship of the extent of the mixing zone in terms of the outfall, effluent and water body characteristics. (4) Develop and demonstrate the use of the remote sensing method as an effective legal implement through which administrative agencies and courts can not only investigate possible pollution sources but also legally prove the source of water pollution. (5) Evaluate the field potential of remote sensing techniques in monitoring algal blooms and aquatic macrophytes, and the use of these as indicators of lake eutrophication level. (6) Develop a remote sensing technique for the determination of the location and extent of hydrologically active source areas in a watershed.

  3. Remote sensing and human health: new sensors and new opportunities

    NASA Technical Reports Server (NTRS)

    Beck, L. R.; Lobitz, B. M.; Wood, B. L.

    2000-01-01

    Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Systeme Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.

  4. Cloud-top height retrieval from polarizing remote sensor POLDER

    NASA Astrophysics Data System (ADS)

    He, Xianqiang; Pan, Delu; Yan, Bai; Mao, Zhihua

    2006-10-01

    A new cloud-top height retrieval method is proposed by using polarizing remote sensing. In cloudy conditions, it shows that, in purple and blue bands, linear polarizing radiance at the top-of-atmosphere (TOA) is mainly contributed by Rayleigh scattering of the atmosphere's molecules above cloud, and the contribution by cloud reflection and aerosol scattering can be neglected. With such characteristics, the basis principle and method of cloud-top height retrieval using polarizing remote sensing are presented in detail, and tested by the polarizing remote sensing data of POLDER. The satellite-derived cloud-top height product can not only show the distribution of global cloud-top height, but also obtain the cloud-top height distribution of moderate-scale meteorological phenomena like hurricanes and typhoons. This new method is promising to become the operational algorithm for cloud-top height retrieval for POLDER and the future polarizing remote sensing satellites.

  5. GPS Remote Sensing Measurements Using Aerosonde UAV

    NASA Technical Reports Server (NTRS)

    Grant, Michael S.; Katzberg, Stephen J.; Lawrence, R. W.

    2005-01-01

    In February 2004, a NASA-Langley GPS Remote Sensor (GPSRS) unit was flown on an Aerosonde unmanned aerial vehicle (UAV) from the Wallops Flight Facility (WFF) in Virginia. Using direct and surface-reflected 1.575 GHz coarse acquisition (C/A) coded GPS signals, remote sensing measurements were obtained over land and portions of open water. The strength of the surface-reflected GPS signal is proportional to the amount of moisture in the surface, and is also influenced by surface roughness. Amplitude and other characteristics of the reflected signal allow an estimate of wind speed over open water. In this paper we provide a synopsis of the instrument accommodation requirements, installation procedures, and preliminary results from what is likely the first-ever flight of a GPS remote sensing instrument on a UAV. The correct operation of the GPSRS unit on this flight indicates that Aerosonde-like UAV's can serve as platforms for future GPS remote sensing science missions.

  6. International Commercial Remote Sensing Practices and Policies: A Comparative Analysis

    NASA Astrophysics Data System (ADS)

    Stryker, Timothy

    In recent years, there has been much discussion about U.S. commercial remoteUnder the Act, the Secretary of Commerce sensing policies and how effectively theylicenses the operations of private U.S. address U.S. national security, foreignremote sensing satellite systems, in policy, commercial, and public interests.consultation with the Secretaries of Defense, This paper will provide an overview of U.S.State, and Interior. PDD-23 provided further commercial remote sensing laws,details concerning the operation of advanced regulations, and policies, and describe recentsystems, as well as criteria for the export of NOAA initiatives. It will also addressturnkey systems and/or components. In July related foreign practices, and the overall2000, pursuant to the authority delegated to legal context for trade and investment in thisit by the Secretary of Commerce, NOAA critical industry.iss ued new regulations for the industry. Licensing and Regulationsatellite systems. NOAA's program is The 1992 Land Remote Sensing Policy Act ("the Act"), and the 1994 policy on Foreign Access to Remote Sensing Space Capabilities (known as Presidential Decision Directive-23, or PDD-23) put into place an ambitious legal and policy framework for the U.S. Government's licensing of privately-owned, high-resolution satellite systems. Previously, capabilities afforded national security and observes the international obligations of the United States; maintain positive control of spacecraft operations; maintain a tasking record in conjunction with other record-keeping requirements; provide U.S. Government access to and use of data when required for national security or foreign policy purposes; provide for U.S. Government review of all significant foreign agreements; obtain U.S. Government approval for any encryption devices used; make available unenhanced data to a "sensed state" as soon as such data are available and on reasonable cost terms and conditions; make available unenhanced data as requested by the U.S. Government Archive; and, obtain a priori U.S. Government approval of all plans and procedures to deal with safe disposition of the satellite. Further information on NOAA's regulations and NOAA's licensing program is available at www.licensing.noaa.gov. Monitoring and Enforcement NOAA's enforcement mission is focused on the legislative mandate which states that the Secretary of Commerce has a continuing obligation to ensure that licensed imaging systems are operated lawfully to preserve the national security and foreign policies of the United States. NOAA has constructed an end-to-end monitoring and compliance program to review the activities of licensed companies. This program includes a pre- launch review, an operational baseline audit, and an annual comprehensive national security audit. If at any time there is suspicion or concern that a system is being operated unlawfully, a no-notice inspection may be initiated. setbacks, three U.S. companies are now operational, with more firms expected to become so in the future. While NOAA does not disclose specific systems capabilities for proprietary reasons, its current licensing resolution thresholds for general commercial availability are as follows: 0.5 meter Ground Sample Distance (GSD) for panchromatic systems, 2 meter GSD for multi-spectral systems, 3 meter Impulse Response (IPR) for Synthetic Aperture Radar systems, and 20 meter GSD for hyperspectral systems (with certain 8-meter hyperspectral derived products also licensed for commercial distribution). These thresholds are subject to change based upon foreign availability and other considerations. It should also be noted that license applications are reviewed and granted on a case-by-case basis, pursuant to each system's technology and concept of operations. In 2001, NOAA, along with the Department of Commerce's International Trade Administration, commissioned a study by the RAND Corporation to assess the risks faced by the U.S. commercial remote sensing satellite industry. In commissioning this study, NOAA's goal was to better understand the role that U.S. Government policies and regulations have in shaping the prospects for emerging commercial remote sensing satellite firms. The study assessed the risks against broader trends in the larger U.S. remote sensing industry and geospatial technology and effective policy implementation. The Department of Commerce is working with NOAA licensees to identify foreign actions which could restrict market access by U.S. firms, and seeking to provide a "level playing field" for U.S. service providers. The Department of Commerce has dedicated new resources to its licensing activities. In Fiscal Year 2002, the Department obtained 1.2 million in funding to support the NOAA program, through staff, equipment, technical support, constituent outreach, and market and policy studies. To better understand the market and make more well-informed licensing decisions, NOAA is participating in a broad-based market study effort under the direction of the American Society for Photogrammetry and Remote Sensing (ASPRS) and NASA's Commercial Remote Sensing Program. This study is providing long-term analysis of the commercial remote sensing industry. It is being supported by interviews with industry and government experts, a web-based survey, and a thorough review and analysis of related literature. The project should more clearly determine future remote sensing needs and requirements, and maximize the industry's baselines, standards, and socio-economic potential. NOAA, through its participation in this study, has gained important new insights into the status and future trends of this industry. The study's initial findings estimate 2001 industry revenue at 2 billion, growing at 13% per year, to an approximate level of 6 billion in 2010 (in constant, calendar year 2000 dollars). Currently, across all sectors, the most active market segments are in nati onal /glo bal security, mapping/geography, civil government, and have provided for appropriate measures for monitoring and compliance. This approach provides a valuable framework for companies, investors, customers, and foreign partners. The clearly-defined ground rules are designed to facilitate full private sector competition, innovation, and domestic and international market development. International market development remains a key issue for the U.S. Government and for U.S. industry in general. NOAA has learned of some interest by foreign governments in promulgating new laws and regulations to address this growing industry. However, to date, most governments have yet to publicize new commercial remote sensing laws or regulations. In some instances, data policies for commercial remote sensing have been developed, but only in the context of government-owned and operated systems, or private systems in which a government is the controlling shareholder. Other than some initial consultations and limited agreements between supplier nations, there has to date been little overall international coordination of commercial remote sensing policies and practices. The result has been an uncertain and non- uniform international business environment, which can cause difficulties for all commercial remote sensing operators. Related international market distortions inhibit the maturation of the industry and the normalization of business practices. This situation may make it more difficult for key stakeholders to make decisions on investments, purchases, regulatory affairs, and international partnerships. To put this growing industry on a more level footing, there should be further coordination

  7. Snowpack ground-truth manual

    NASA Technical Reports Server (NTRS)

    Jones, E. B.

    1983-01-01

    As remote sensing increasingly becomes more of an operational tool in the field of snow management and snow hydrology, there is need for some degree of standardization of ""snowpack ground truth'' techniques. This manual provides a first step in standardizing these procedures and was prepared to meet the needs of remote sensing researchers in planning missions requiring ground truth as well as those providing the ground truth. Focus is on ground truth for remote sensors primarily operating in the microwave portion of the electromagnetic spectrum; nevertheless, the manual should be of value to other types of sensor programs. This first edition of ground truth procedures must be updated as new or modified techniques are developed.

  8. Introduction to the Special Session on Thermal Remote Sensing Data for Earth Science Research: The Critical Need for Continued Data Collection and Development of Future Thermal Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale a.; Luvall, Jeffrey C.; Anderson, Martha; Hook, Simon

    2006-01-01

    There is a rich and long history of thermal infrared (TIR) remote sensing data for multidisciplinary Earth science research. The continuity of TIR data collection, however, is now in jeopardy given there are no planned future Earth observing TIR remote sensing satellite systems with moderately high spatial resolutions to replace those currently in orbit on NASA's Terra suite of sensors. This session will convene researchers who have actively worked in the field of TIR remote sensing to present results that elucidate the importance of thermal remote sensing to the wider Earth science research community. Additionally, this session will also exist as a forum for presenting concepts and ideas for new thermal sensing systems with high spatial resolutions for future Earth science satellite missions, as opposed to planned systems such as the Visible/Infrared Imager/Radiometer (VIIRS) suite of sensors on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) that will collect TIR data at very coarse iairesolutions.

  9. The U.S. Geological Survey Land Remote Sensing Program

    USGS Publications Warehouse

    ,

    2003-01-01

    In 2002, the U. S. Geological Survey (USGS) launched a program to enhance the acquisition, preservation, and use of remotely sensed data for USGS science programs, as well as for those of cooperators and customers. Remotely sensed data are fundamental tools for studying the Earth's land surface, including coastal and near-shore environments. For many decades, the USGS has been a leader in providing remotely sensed data to the national and international communities. Acting on its historical topographic mapping mission, the USGS has archived and distributed aerial photographs of the United States for more than half a century. Since 1972, the USGS has acquired, processed, archived, and distributed Landsat and other satellite and airborne remotely sensed data products to users worldwide. Today, the USGS operates and manages the Landsats 5 and 7 missions and cooperates with the National Aeronautics and Space Administration (NASA) to define and implement future satellite missions that will continue and expand the collection of moderate-resolution remotely sensed data. In addition to being a provider of remotely sensed data, the USGS is a user of these data and related remote sensing technology. These data are used in natural resource evaluations for energy and minerals, coastal environmental surveys, assessments of natural hazards (earthquakes, volcanoes, and landslides), biological surveys and investigations, water resources status and trends analyses and studies, and geographic and cartographic applications, such as wildfire detection and tracking and as a source of information for The National Map. The program furthers these distinct but related roles by leading the USGS activities in providing remotely sensed data while advancing applications of such data for USGS programs and a wider user community.

  10. Remote sensing utility in a disaster struck urban environment. [technology utilization

    NASA Technical Reports Server (NTRS)

    Rush, M.; Holguin, A.

    1975-01-01

    Standard operating procedures, utilizing remote sensing, are outlined for public health assistance during natural disaster relief operations. A manual to aid decision making for public health authorities is included. Flow charts which show the procedures that need to be implemented during a natural disaster are also included. Emphasis is placed on a preventive approach to the effects of disasters, and specifically to post-disaster problems that relate to public health concerns during the emergency phase of relief.

  11. Considerations and techniques for incorporating remotely sensed imagery into the land resource management process.

    NASA Technical Reports Server (NTRS)

    Brooner, W. G.; Nichols, D. A.

    1972-01-01

    Development of a scheme for utilizing remote sensing technology in an operational program for regional land use planning and land resource management program applications. The scheme utilizes remote sensing imagery as one of several potential inputs to derive desired and necessary data, and considers several alternative approaches to the expansion and/or reduction and analysis of data, using automated data handling techniques. Within this scheme is a five-stage program development which includes: (1) preliminary coordination, (2) interpretation and encoding, (3) creation of data base files, (4) data analysis and generation of desired products, and (5) applications.

  12. A proposal for continuation of support for the application of remotely sensed data to state and regional problems. Part 1: Technical proposal

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The objectives, procedures, accomplishments, plans, and ultimate uses of information from current projects at the Mississippi Remote Sensing Center are discussed for the following applications: (1) land use planning; (2) strip mine inventory and reclamation; (3) biological management for white tailed deer; (4) forest habitats in potential lignite areas; (5) change discrimination in gravel operations; (6) discrimination of freshwater wetlands for inventory and monitoring; and (7) remote sensing data analysis support systems. The initiation of a conceptual design for a LANDSAT based, state wide information system is proposed.

  13. The application of remote sensing techniques: Technical and methodological issues

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Wagner, T. W.

    1974-01-01

    Capabilities and limitations of modern imaging electromagnetic sensor systems are outlined, and the products of such systems are compared with those of the traditional aerial photographic system. Focus is given to the interface between the rapidly developing remote sensing technology and the information needs of operational agencies, and communication gaps are shown to retard early adoption of the technology by these agencies. An assessment is made of the current status of imaging remote sensors and their potential for the future. Public sources of remote sensor data and several cost comparisons are included.

  14. WinASEAN for remote sensing data analysis

    NASA Astrophysics Data System (ADS)

    Duong, Nguyen Dinh; Takeuchi, Shoji

    The image analysis system ASEAN (Advanced System for Environmental ANalysis with Remote Sensing Data) was designed and programmed by a software development group, ImaSOFr, Department of Remote Sensing Technology and GIS, Institute for Geography, National Centre for Natural Science and Technology of Vietnam under technical cooperation with the Remote Sensing Technology Centre of Japan and financial support from the National Space Development Agency of Japan. ASEAN has been in continuous development since 1989, with different versions ranging from the simplest one for MS-DOS with standard VGA 320×200×256 colours, through versions supporting SpeedStar 1.0 and SpeedStar PRO 2.0 true colour graphics cards, up to the latest version named WinASEAN, which is designed for the Windows 3.1 operating system. The most remarkable feature of WinASEAN is the use of algorithms that speed up the image analysis process, even on PC platforms. Today WinASEAN is continuously improved in cooperation with NASDA (National Space Development Agency of Japan), RESTEC (Remote Sensing Technology Center of Japan) and released as public domain software for training, research and education through the Regional Remote Sensing Seminar on Tropical Eco-system Management which is organised by NASDA and ESCAR In this paper, the authors describe the functionality of WinASEAN, some of the relevant analysis algorithms, and discuss its possibilities of computer-assisted teaching and training of remote sensing.

  15. Software Suite to Support In-Flight Characterization of Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas; Holekamp, Kara; Gasser, Gerald; Tabor, Wes; Vaughan, Ronald; Ryan, Robert; Pagnutti, Mary; Blonski, Slawomir; Kenton, Ross

    2014-01-01

    A characterization software suite was developed to facilitate NASA's in-flight characterization of commercial remote sensing systems. Characterization of aerial and satellite systems requires knowledge of ground characteristics, or ground truth. This information is typically obtained with instruments taking measurements prior to or during a remote sensing system overpass. Acquired ground-truth data, which can consist of hundreds of measurements with different data formats, must be processed before it can be used in the characterization. Accurate in-flight characterization of remote sensing systems relies on multiple field data acquisitions that are efficiently processed, with minimal error. To address the need for timely, reproducible ground-truth data, a characterization software suite was developed to automate the data processing methods. The characterization software suite is engineering code, requiring some prior knowledge and expertise to run. The suite consists of component scripts for each of the three main in-flight characterization types: radiometric, geometric, and spatial. The component scripts for the radiometric characterization operate primarily by reading the raw data acquired by the field instruments, combining it with other applicable information, and then reducing it to a format that is appropriate for input into MODTRAN (MODerate resolution atmospheric TRANsmission), an Air Force Research Laboratory-developed radiative transport code used to predict at-sensor measurements. The geometric scripts operate by comparing identified target locations from the remote sensing image to known target locations, producing circular error statistics defined by the Federal Geographic Data Committee Standards. The spatial scripts analyze a target edge within the image, and produce estimates of Relative Edge Response and the value of the Modulation Transfer Function at the Nyquist frequency. The software suite enables rapid, efficient, automated processing of ground truth data, which has been used to provide reproducible characterizations on a number of commercial remote sensing systems. Overall, this characterization software suite improves the reliability of ground-truth data processing techniques that are required for remote sensing system in-flight characterizations.

  16. The Federal Oil Spill Team for Emergency Response Remote Sensing (FOSTERRS)

    NASA Astrophysics Data System (ADS)

    Stough, T.; Jones, C. E.; Leifer, I.; Lindsay, F. E.; Murray, J. J.; Ramirez, E. M.; Salemi, A.; Streett, D.

    2014-12-01

    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, for which remote sensing plays a critical role in detection and monitoring of oil spills. The FOSTERRS interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft) and analysis techniques are quickly, effectively and seamlessly available to oil spills responders. FOSTERRS enables cooperation between agencies with core environmental remote sensing assets and capabilities and academic and industry experts to act as an oil spill remote sensing information clearinghouse. The US government and its collaborators have a broad variety of aircraft and satellite sensors, imagery interrogation techniques and other technology that can provide indispensable remote sensing information to agencies, emergency responders and the public during an oil spill. Specifically, FOSTERRS will work to ensure that (1) suitable aircraft and satellite imagery and radar observations are quickly made available in a manner that can be integrated into oil spill detection and mitigation efforts, (2) existing imagery interrogation techniques are in the hands of those who will provide the 24 x 7 operational support and (3) efforts are made to develop new technology where the existing techniques do not provide oil spills responders with important information they need. The FOSTERRS mission goal places it in an ideal place for identification of critical technological needs, and identifying bottlenecks in technology acceptance. The core FOSTERRS team incorporates representation for operations and science for agencies with relevant instrumental and platform assets (NASA, NOAA, USGS, NRL). FOSTERRS membership will open to a wide range of end-user agencies and planned observer status from industry and academic experts, and eventually international partners. Through these collaborations, FOSTERRS facilitates interagency and cooperation and communication to the larger end-user community on remote sensing and its best use.

  17. Passive remote sensing of large-scale methane emissions from Oil Fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Thompson, David R.; Thorpe, Andrew K.; Kolyer, Richard W.; Jonsson, Haflidi; Krings, Thomas; Frankenberg, Christian; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Fladeland, Matthew; Schüttemeyer, Dirk; Burrows, John P.; Bovensmann, Heinrich

    2016-04-01

    The CO2 and MEthane EXperiment (COMEX) was a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities. As a part of this effort, seven flights were performed between June 3 and September 4, 2014 with the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) over the Kern River, Kern Front, and Poso Creek Oil Fields located in California's San Joaquin Valley. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with: a Picarro fast in-situ greenhouse gas (GHG) analyzer operated by the NASA Ames Research Center, ARC; a 5-hole turbulence probe; and an atmospheric measurement package operated by CIRPAS measuring aerosols, temperature, dew-point, and other atmospheric parameters. Three of the flights were accompanied by the Next Generation Airborne Visual InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft. Large-scale, high-concentration CH4 plumes were detected by the MAMAP instrument over the fields and tracked over several kilometers. The spatial distribution of the MAMAP observed plumes was compared to high spatial resolution CH4 anomaly maps derived by AVIRIS-NG imaging spectroscopy data. Remote sensing data collected by MAMAP was used to infer CH4 emission rates and their distributions over the three fields. Aggregated emission estimates for the three fields were compared to aggregated emissions inferred by subsequent airborne in-situ validation measurements collected by the Picarro instrument. Comparison of remote sensing and in-situ flux estimates will be presented, demonstrating the ability of airborne remote sensing data to provide accurate emission estimates for concentrations above the detection limit. This opens new applications of airborne atmospheric remote sensing in the area of anthropogenic top-down emission monitoring as well as for atmospheric CH4 leakage monitoring during accidents like the Elgin blow-out (March 2012) in the North Sea or the recent Aliso Canyon gas leak incident (2015/2016) in California.

  18. A review of future remote sensing satellite capabilities

    NASA Technical Reports Server (NTRS)

    Calabrese, M. A.

    1980-01-01

    Existing, planned and future NASA capabilities in the field of remote sensing satellites are reviewed in relation to the use of remote sensing techniques for the identification of irrigated lands. The status of the currently operational Landsat 2 and 3 satellites is indicated, and it is noted that Landsat D is scheduled to be in operation in two years. The orbital configuration and instrumentation of Landsat D are discussed, with particular attention given to the thematic mapper, which is expected to improve capabilities for small field identification and crop discrimination and classification. Future possibilities are then considered, including a multi-spectral resource sampler supplying high spatial and temporal resolution data possibly based on push-broom scanning, Shuttle-maintained Landsat follow-on missions, a satellite to obtain high-resolution stereoscopic data, further satellites providing all-weather radar capability and the Large Format Camera.

  19. Key Issues in the Analysis of Remote Sensing Data: A report on the workshop

    NASA Technical Reports Server (NTRS)

    Swain, P. H. (Principal Investigator)

    1981-01-01

    The procedures of a workshop assessing the state of the art of machine analysis of remotely sensed data are summarized. Areas discussed were: data bases, image registration, image preprocessing operations, map oriented considerations, advanced digital systems, artificial intelligence methods, image classification, and improved classifier training. Recommendations of areas for further research are presented.

  20. Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures

    USDA-ARS?s Scientific Manuscript database

    Operational application of a remote sensing-based two source energy balance model (TSEB) to estimate evaportranspiration (ET) and the components evaporation (E), transpiration (T) at a range of space and time scales is very useful for managing water resources in arid and semiarid watersheds. The TSE...

  1. Airborne imaging spectrometers developed in China

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Xue, Yongqi

    1998-08-01

    Airborne imaging spectral technology, principle means in airborne remote sensing, has been developed rapidly both in the world and in China recently. This paper describes Modular Airborne Imaging Spectrometer (MAIS), Operational Modular Airborne Imaging Spectrometer (OMAIS) and Pushbroom Hyperspectral Imagery (PHI) that have been developed or are being developed in Airborne Remote Sensing Lab of Shanghai Institute of Technical Physics, CAS.

  2. Review of Remote Sensing Needs and Applications in Africa

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.

    2007-01-01

    Remote sensing data has had an important role in identifying and responding to inter-annual variations in the African environment during the past three decades. As a largely agricultural region with diverse but generally limited government capacity to acquire and distribute ground observations of rainfall, temperature and other parameters, remote sensing is sometimes the only reliable measure of crop growing conditions in Africa. Thus, developing and maintaining the technical and scientific capacity to analyze and utilize satellite remote sensing data in Africa is critical to augmenting the continent's local weather/climate observation networks as well as its agricultural and natural resource development and management. The report Review of Remote Sensing Needs and Applications in Africa' has as its central goal to recommend to the US Agency for International Development an appropriate approach to support sustainable remote sensing applications at African regional remote sensing centers. The report focuses on "RS applications" to refer to the acquisition, maintenance and archiving, dissemination, distribution, analysis, and interpretation of remote sensing data, as well as the integration of interpreted data with other spatial data products. The report focuses on three primary remote sensing centers: (1) The AGRHYMET Regional Center in Niamey, Niger, created in 1974, is a specialized institute of the Permanent Interstate Committee for Drought Control in the Sahel (CILSS), with particular specialization in science and techniques applied to agricultural development, rural development, and natural resource management. (2) The Regional Centre for Maiming of Resources for Development (RCMRD) in Nairobi, Kenya, established in 1975 under the auspices of the United Nations Economic Commission for Africa and the Organization of African Unity (now the African Union), is an intergovernmental organization, with 15 member states from eastern and southern Africa. (3) The Regional Remote Sensing Unit (RRSU) in Gaborone, Botswana, began work in June 1988 and operates under the Agriculture Information Management System (AIMS), as part of the Food, Agriculture and Natural Resources (FANR) Directorate, based at the Southern Africa Development Community (SADC) Secretariat.

  3. The Earth Resources Observation Systems data center's training technical assistance, and applications research activities

    USGS Publications Warehouse

    Sturdevant, J.A.

    1981-01-01

    The Earth Resources Observation Systems (EROS) Data Center (EDO, administered by the U.S. Geological Survey, U.S. Department of the Interior, provides remotely sensed data to the user community and offers a variety of professional services to further the understanding and use of remote sensing technology. EDC reproduces and sells photographic and electronic copies of satellite images of areas throughout the world. Other products include aerial photographs collected by 16 organizations, including the U.S. Geological Survey and the National Aeronautics and Space Administration. Primary users of the remotely sensed data are Federal, State, and municipal government agencies, universities, foreign nations, and private industries. The professional services available at EDC are primarily directed at integrating satellite and aircraft remote sensing technology into the programs of the Department of the Interior and its cooperators. This is accomplished through formal training workshops, user assistance, cooperative demonstration projects, and access to equipment and capabilities in an advanced data analysis laboratory. In addition, other Federal agencies, State and local governments, universities, and the general public can get assistance from the EDC Staff. Since 1973, EDC has contributed to the accelerating growth in development and operational use of remotely sensed data for land resource problems through its role as educator and by conducting basic and applied remote sensing applications research. As remote sensing technology continues to evolve, EDC will continue to respond to the increasing demand for timely information on remote sensing applications. Questions most often asked about EDC's research and training programs include: Who may attend an EDC remote sensing training course? Specifically, what is taught? Who may cooperate with EDC on remote sensing projects? Are interpretation services provided on a service basis? This report attempts to define the goals and objectives of and policies on the following EDC services: Training Program.User Assistance.Data Analysis Laboratory.Cooperative Demonstration Projects.Research Projects.

  4. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    NASA Technical Reports Server (NTRS)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and aquatic organics.

  5. Touch sensors and control.

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Sword, A. J.

    1973-01-01

    Description of the equipment employed and results obtained in experiments with tactile feedback and different levels of automatic control. In the experiments described tactile feedback was investigated by incorporating a touch sensing and touch display system into a teleoperator, while the levels of automatic control were investigated by incorporating supervisory control features in the teleoperator control system. In particular, a hand contact system which senses and reproduces to the operator the contact between the end-effector and the object being touched or manipulated is described, as well as a jaw contact system which senses and reproduces to the operator the shape and location of the object held in the remote jaws, and an arm control system consisting of a control station where the operator controls the motion of the arm by transmitting commands, a remote station that accepts the commands and uses them, and a communications link that limits information flow. In addition, an algorithmic language for remote manipulation is described, and the desired features that an automatic arm controller should possess are reviewed.

  6. Development of satellite remote sensing techniques as an economic tool for forestry industry

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.; Jadkowski, Mark A.

    1989-01-01

    A cooperative commercial development project designed to focus on cost-effective and practical applications of satellite remote sensing in forest management is discussed. The project, initiated in September, 1988 is being executed in three phases: (1) development of a forest resource inventory and geographic information system (GIS) updating systems; (2) testing and evaluation of remote-sensing products against forest industry specifications; and (3) integration of remote-sensing services and products in an operational setting. An advisory group represented by eleven major forest-product companies will provide direct involvement of the target market. The advisory group will focus on the following questions: Does the technology work for them? How can it be packaged to provide the needed forest-management information? Can the products and information be provided in a cost-effective manner?

  7. Role of remote sensing in desert locust early warning

    NASA Astrophysics Data System (ADS)

    Cressman, Keith

    2013-01-01

    Desert locust (Schistocerca gregaria, Forskål) plagues have historically had devastating consequences on food security in Africa and Asia. The current strategy to reduce the frequency of plagues and manage desert locust infestations is early warning and preventive control. To achieve this, the Food and Agriculture Organization of the United Nations operates one of the oldest, largest, and best-known migratory pest monitoring systems in the world. Within this system, remote sensing plays an important role in detecting rainfall and green vegetation. Despite recent technological advances in data management and analysis, communications, and remote sensing, monitoring desert locusts and preventing plagues in the years ahead will continue to be a challenge from a geopolitical and financial standpoint for affected countries and the international donor community. We present an overview of the use of remote sensing in desert locust early warning.

  8. The application of remote sensing to resource management and environmental quality programs in Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.; Martinko, E. A. (Principal Investigator)

    1983-01-01

    The activities of the Kansas Applied Remote Sensing (KARS) Program during the period April 1, 1982 through Marsh 31, 1983 are described. The most important work revolved around the Kansas Interagency Task Force on Applied Remote Sensing and its efforts to establish an operational service oriented remote sensing program in Kansas state government. Concomitant with this work was the upgrading of KARS capabilities to process data for state agencies through the vehicle of a low cost digital data processing system. The KARS Program continued to take an active role in irrigation mapping. KARS is now integrating data acquired through analysis of LANDSAT into geographic information systems designed for evaluating groundwater resources. KARS also continues to work at the national level on the national inventory of state natural resources information systems.

  9. [Analysis of the effect of detector's operating temperature on SNR in space-based remote sensor].

    PubMed

    Li, Zhan-feng; Wang, Shu-rong; Huang, Yu

    2012-03-01

    Limb viewing is a new viewing geometry for space-based atmospheric remote sensing, but the spectral radiance of atmosphere scattering reduces rapidly with limb height. So the signal-noise-ratio (SNR) is a key performance parameter of limb remote sensor. A SNR model varying with detector's temperature is proposed, based on analysis of spectral radiative transfer and noise' source in representative instruments. The SNR at limb height 70 km under space conditions was validated by simulation experiment on limb remote sensing spectrometer prototype. Theoretic analysis and experiment's results indicate congruously that when detector's temperature reduces to some extent, a maximum SNR will be reached. After considering the power consumption, thermal conductivity and other issues, optimal operating temperature of detector can be decided.

  10. Optimal Remote Sensing with Small Unmanned Aircraft Systems and Risk Management

    NASA Astrophysics Data System (ADS)

    Stark, Brandon

    Over the past decade, the rapid rise of Unmanned Aircraft Systems (UASs) has blossomed into a new component of the aviation industry. Though regulations within the United States lagged, the promise of the ability of Small Unmanned Aircraft Systems (SUASs), or those UAS that weigh less than 55 lbs, has driven significant advances in small scale aviation technology. The dream of a small, low-cost aerial platform that can fly anywhere and keep humans safely away from the `dull, dangerous and dirty' jobs, has encouraged many to examine the possibilities of utilizing SUAS in new and transformative ways, especially as a new tool in remote sensing. However, as with any new tool, there remains significant challenges in realizing the full potential of SUAS-based remote sensing. Within this dissertation, two specific challenges are addressed: validating the use of SUAS as a remote sensing platform and improving the safety and management of SUAS. The use of SUAS in remote sensing is a relatively new challenge and while it has many similarities to other remote sensing platforms, the dynamic nature of its operation makes it unique. In this dissertation, a closer look at the methodology of using SUAS reveals that while many view SUAS as an alternative to satellite imagery, this is an incomplete view and that the current common implementation introduces a new source of error that has significant implications on the reliability of the data collected. It can also be seen that a new approach to remote sensing with an SUAS can be developed by addressing the spatial, spectral and temporal factors that can now be more finely adjusted with the use of SUAS. However, to take the full advantage of the potential of SUAS, they must uphold the promise of improved safety. This is not a trivial challenge, especially for the integration into the National Airspace System (NAS) and for the safety management and oversight of diverse UAS operations. In this dissertation, the challenge of integrating SUAS in the NAS is addressed by presenting an analysis of enabling flight operations at night, developing a swarm safety management system for improving SUAS robustness, investigating the use of new technology on SUAS to improve air safety, and developing a novel framework to better understand human-SUAS interaction. Addressing the other side of safety, this dissertation discusses the struggle of large diverse organizations to balance acceptance, safety and oversight for UAS operations and the development of a novel implementation of a UAS Safety Management System.

  11. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 5 : automated management bridge information system.

    DOT National Transportation Integrated Search

    2009-12-01

    This volume focuses on one of the key components of the IRSV system, i.e., the AMBIS module. This module serves as one of : the tools used in this study to translate raw remote sensing data in the form of either high-resolution aerial photos or v...

  12. Utility of remotely sensed imagery for assessing the impact of salvage logging after forest fires

    Treesearch

    Sarah A. Lewis; Peter R. Robichaud; Andrew T. Hudak; Brian Austin; Robert J. Liebermann

    2012-01-01

    Remotely sensed imagery provides a useful tool for land managers to assess the extent and severity of post-wildfire salvage logging disturbance. This investigation uses high resolution QuickBird and National Agricultural Imagery Program (NAIP) imagery to map soil exposure after ground-based salvage operations. Three wildfires with varying post-fire salvage activities...

  13. Status and prospects for LiDAR remote sensing of forested ecosystems

    Treesearch

    M. A. Wulder; N. C. Coops; A. T. Hudak; F. Morsdorf; R. Nelson; G. Newnham; M. Vastaranta

    2013-01-01

    The science associated with the use of airborne and satellite Light Detection and Ranging (LiDAR) to remotely sense forest structure has rapidly progressed over the past decade. LiDAR has evolved from being a poorly understood, potentially useful tool to an operational technology in a little over a decade, and these instruments have become a major success story in...

  14. Narragansett Bay From Space: A Perspective for the 21st Century

    NASA Technical Reports Server (NTRS)

    Mustard, John F.; Swanson, Craig; Deacutis, Chris

    2001-01-01

    In 1996, the NASA Administrator Dan Goldin and Rhode Island Congressman Patrick Kennedy challenged researchers in the Department of Geological Sciences at Brown University to developed a series of projects to apply remotely sensed data to problems of immediate concern to the State of Rhode Island. The result of that challenge was the project Narragansett Bay from Space: A Perspective for the 21st Century. The goals of the effort were to a) identify problems in coordination with state and local agencies, b) apply NASA technology to the problems and c) to involve small business that would benefit from incorporating remotely sensed data into their business operations. The overall effort was to serve two functions: help provide high quality science results based on remotely sensed data and increase the capacity of environmental managers and companies to use remotely sensed data. The effort has succeeded on both these fronts by providing new, quantitative information on the extent of environmental problems and developing a greater awareness and acceptance of remotely sensed data as a tool for monitoring and research.

  15. Transitioning Earth Remote Sensing Data to Benefit Society: A Paradigm for a Center of Excellence

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Bjorgo, Einar; Burn, Anthony

    2015-01-01

    Over the past decade there has been a substantial increase in the number of Earth remote sensing satellites launched for research and operational usage and numerous others planned by the international community. These satellites have been used to varying degrees by their supporting agencies for weather and environmental monitoring, climate studies, disaster monitoring and response, and other humanitarian activities. While there are success stories on useful applications of remote sensing data, the broader use of these satellite assets by other organizations and entities has been limited for a number of reasons including lack of data services, data dissemination issues, and a general failure to engage the broader end user community with useful data access and knowledge of how to use the data and products. This paper describes some of these current limitations on the broader use of Earth remote sensing data by the international community and describes the concept of a general "Center of Excellence" to facilitate the development, transition, and utilization of these Earth remote sensing observations by the broader international community.

  16. Research Issues in Image Registration for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Eastman, Roger D.; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2007-01-01

    Image registration is an important element in data processing for remote sensing with many applications and a wide range of solutions. Despite considerable investigation the field has not settled on a definitive solution for most applications and a number of questions remain open. This article looks at selected research issues by surveying the experience of operational satellite teams, application-specific requirements for Earth science, and our experiments in the evaluation of image registration algorithms with emphasis on the comparison of algorithms for subpixel accuracy. We conclude that remote sensing applications put particular demands on image registration algorithms to take into account domain-specific knowledge of geometric transformations and image content.

  17. Irrigated lands: Monitoring by remote sensing

    NASA Technical Reports Server (NTRS)

    Epiphanio, J. C. N.; Vitorelli, I.

    1983-01-01

    The use of remote sensing for irrigated areas, especially in the region of Guaira, Brazil (state of Sao Paulo), is examined. Major principles of utilizing LANDSAT data for the detection and mapping of irrigated lands are discussed. In addition, initial results obtained by computer processing of digital data, use of MSS (Multispectral Scanner System)/LANDSAT products, and the availability of new remote sensing products are highlighted. Future activities include the launching of the TM (Thematic Mapper)/LANDSAT 4 with 30 meters of resolution and SPOT (Systeme Probatorie d'Observation de la Terre) with 10 to 20 meters of resolution, to be operational in 1984 and 1986 respectively.

  18. Remote Sensing of Drought: Progress and Opportunities for Improving Drought Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    AghaKouchak, A.; Huning, L. S.; Love, C. A.; Farahmand, A.

    2017-12-01

    This presentation surveys current and emerging drought monitoring approaches using satellite remote sensing observations from climatological and ecosystem perspectives. Satellite observations that are not currently used for operational drought monitoring, such as near-surface air relative humidity and water vapor, provide opportunities to improve early drought warning. Current and future satellite missions offer opportunities to develop composite and multi-indicator drought models. This presentation describes how different satellite observations can be combined for overall drought development and impact assessment. Finally, we provide an overview of the research gaps and challenges that are facing us ahead in the remote sensing of drought.

  19. Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenung, S. M.; Wegener, S. S.

    1999-01-01

    Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.

  20. The California Cooperative Remote Sensing Project

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Sheffner, Edwin J.

    1988-01-01

    The USDA, the California Department of Water Resources (CDWR), the Remote Sensing Research Program of the University of California (UCB) and NASA have completed a 4-yr cooperative project on the use of remote sensing in monitoring California agriculture. This report is a summary of the project and the final report of NASA's contribution to it. The cooperators developed procedures that combined the use of LANDSAT Multispectral Scanner imagery and digital data with good ground survey data for area estimation and mapping of the major crops in California. An inventory of the Central Valley was conducted as an operational test of the procedures. The satellite and survey data were acquired by USDA and UCB and processed by CDWR and NASA. The inventory was completed on schedule, thus demonstrating the plausibility of the approach, although further development of the data processing system is necessary before it can be used efficiently in an operational environment.

  1. Other remote sensing systems: Retrospect and outlook

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The history of remote sensing is reviewed and the scope and versatility of the several remote sensing systems already in orbit are discussed, especially those with sensors operating in other EM spectral modes. The multisensor approach is examined by interrelating LANDSAT observations with data from other satellite systems. The basic principles and practices underlying the use of thermal infrared and radar sensors are explored and the types of observations and interpretations emanating from the Nimbus, Heat Capacity Mapping Mission, and SEASAT programs are examined. Approved or proposed Earth resources oriented missions for the 1980's previewed include LANDSAT D, Stereosat, Gravsat, the French satellite SPOT-1, and multimission modular spacecraft launched from space shuttle. The pushbroom imager, the linear array pushbroom radiometer, the multispectral linear array, and the operational LANDSAT observing system, to be designed the LANDSAT-E series are also envisioned for this decade.

  2. Methods of satellite oceanography

    NASA Technical Reports Server (NTRS)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  3. Remote-sensing image encryption in hybrid domains

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiang; Zhu, Guiliang; Ma, Shilong

    2012-04-01

    Remote-sensing technology plays an important role in military and industrial fields. Remote-sensing image is the main means of acquiring information from satellites, which always contain some confidential information. To securely transmit and store remote-sensing images, we propose a new image encryption algorithm in hybrid domains. This algorithm makes full use of the advantages of image encryption in both spatial domain and transform domain. First, the low-pass subband coefficients of image DWT (discrete wavelet transform) decomposition are sorted by a PWLCM system in transform domain. Second, the image after IDWT (inverse discrete wavelet transform) reconstruction is diffused with 2D (two-dimensional) Logistic map and XOR operation in spatial domain. The experiment results and algorithm analyses show that the new algorithm possesses a large key space and can resist brute-force, statistical and differential attacks. Meanwhile, the proposed algorithm has the desirable encryption efficiency to satisfy requirements in practice.

  4. Autonomous Exploration for Gathering Increased Science

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin J.; Castano, Rebecca; Estlin, Tara A.; Gaines, Daniel M.; Anderson, Robert C.; Thompson, David R.; DeGranville, Charles K.; Chien, Steve A.; Tang, Benyang; Burl, Michael C.; hide

    2010-01-01

    The Autonomous Exploration for Gathering Increased Science System (AEGIS) provides automated targeting for remote sensing instruments on the Mars Exploration Rover (MER) mission, which at the time of this reporting has had two rovers exploring the surface of Mars (see figure). Currently, targets for rover remote-sensing instruments must be selected manually based on imagery already on the ground with the operations team. AEGIS enables the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. In particular, this technology will be used to automatically acquire sub-framed, high-resolution, targeted images taken with the MER panoramic cameras. This software provides: 1) Automatic detection of terrain features in rover camera images, 2) Feature extraction for detected terrain targets, 3) Prioritization of terrain targets based on a scientist target feature set, and 4) Automated re-targeting of rover remote-sensing instruments at the highest priority target.

  5. Satellite remote sensing for hydrology and water management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, E.C.; Power, C.H.; Micallef, A.

    Interest in satellite remote sensing is fast moving away from pure science and individual case studies towards truly operational applications. At the same time the micro-computer revolution is ensuring that data reception and processing facilities need no longer be the preserve of a small number of global centers, but can be common-place installations in smaller countries and even local regional agency offices or laboratories. As remote sensing matures, and its applications proliferate, a new type of treatment is required to ensure both that decision makers, managers and engineers with problems to solve are informed of today's opportunities and that scientistsmore » are provided with integrated overviews of the ever-growing need for their services. This book addresses these needs uniquely focusing on the area bounded by satellite remote sensing, pure and applied hydrological sciences, and a specific world region, namely the Mediterranean basin.« less

  6. USDA/federal user of LANDSAT remote sensing

    NASA Technical Reports Server (NTRS)

    Allen, R.

    1981-01-01

    Developed and potential uses of remote sensing in crop condition and acreage assessment, renewable resources inventories, conservation practices, and water and forest management applications are described. Operational approaches, the adaptation of procedures to needs, and the agency's concern about data continuity and cost are discussed as well as support for future technology development for enhanced sensing capability. The use of improved camera systems for soil mapping and conservation monitoring from space shuttle, and of aerospace radar to improve soil moisture monitoring are mentioned.

  7. An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.

    2015-07-01

    Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design their own data processing algorithm.

  8. NOAA National Ocean Service Remote Sensing Applications and Concept of Operations

    DTIC Science & Technology

    2007-01-01

    remote sensing technologies to monitor harmful algal blooms, hypoxia, coral bleaching , contamination, land use changes and bathymetry, and making the...NOAA’s Polar Environmental Satellites are used to help predict the likelihood of mass coral bleaching events. Both intensity and duration of...abnormally warm surface temperatures are used to help predict coral bleaching events. When a temperature anomaly reaches a critically high value or

  9. High Efficiency, 100 mJ per pulse, Nd:YAG Oscillator Optimized for Space-Based Earth and Planetary Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Stysley, Paul R.; Poulios, Demetrios; Fredrickson, Robert M.; Kay, Richard B.; Cory, Kenneth C.

    2014-01-01

    We report on a newly solid state laser transmitter, designed and packaged for Earth and planetary space-based remote sensing applications for high efficiency, low part count, high pulse energy scalability/stability, and long life. Finally, we have completed a long term operational test which surpassed 2 Billion pulses with no measured decay in pulse energy.

  10. Survey and analysis of potential users of remote sensing data

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Remote sensing applications for the activities of the regional interstate organizations, the federal agencies, and the private sector are examined. The survey covered activities in all 50 states. Emphasis has been placed on on-going operational programs and no attempt was made to cover the activities of the federal agencies except insofar as they impinged on State or other regional or metropolitan programs.

  11. Remote sensing training for Corps of Engineering personnel: The university training module concept

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A concept to permit Corps of Engineers personnel to obtain and maintain an appropriate level of individual proficiency in the application of remote sensing to water resource management is described. Recommendations are made for specific training courses and include structure and staffing requirements, syllabi and methods of operation, supporting materials, and procedures for integrating information systems management into the University Training Modules.

  12. Remote sensing applications to Missouri environmental resources information system

    NASA Technical Reports Server (NTRS)

    Myers, R. E.

    1977-01-01

    An efficient system for retrieval of remotely sensed data to be used by natural resources oriented agencies, and a natural resources data system that can meet the needs of state agencies were studied. To accomplish these objectives, natural resources data sources were identified, and study of systems already in operation which address themselves to the more efficient utilization of natural resources oriented data was prepared.

  13. System for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Lin, Jenshan; Norton, David P.; Pearton, Stephen J.; Ren, Fan

    2010-01-01

    A low-power, wireless gas-sensing system is designed to safeguard the apparatus to which it is attached, as well as associated personnel. It also ensures the efficiency and operational integrity of the hydrogen-powered apparatus. This sensing system can be operated with lower power consumption (less than 30 nanowatts), but still has a fast response. The detecting signal can be wirelessly transmitted to remote locations, or can be posted on the Web. This system can also be operated by harvesting energy.

  14. A Search-and-Rescue Robot System for Remotely Sensing the Underground Coal Mine Environment

    PubMed Central

    Gao, Junyao; Zhao, Fangzhou; Liu, Yi

    2017-01-01

    This paper introduces a search-and-rescue robot system used for remote sensing of the underground coal mine environment, which is composed of an operating control unit and two mobile robots with explosion-proof and waterproof function. This robot system is designed to observe and collect information of the coal mine environment through remote control. Thus, this system can be regarded as a multifunction sensor, which realizes remote sensing. When the robot system detects danger, it will send out signals to warn rescuers to keep away. The robot consists of two gas sensors, two cameras, a two-way audio, a 1 km-long fiber-optic cable for communication and a mechanical explosion-proof manipulator. Especially, the manipulator is a novel explosion-proof manipulator for cleaning obstacles, which has 3-degree-of-freedom, but is driven by two motors. Furthermore, the two robots can communicate in series for 2 km with the operating control unit. The development of the robot system may provide a reference for developing future search-and-rescue systems. PMID:29065560

  15. International collaboration: The cornerstone of satellite land remote sensing in the 21st century

    USGS Publications Warehouse

    Bailey, G. Bryan; Lauer, Donald T.; Carneggie, David M.

    2001-01-01

    Satellite land remotely sensed data are used by scientists and resource managers world-wide to study similar multidisciplinary earth science problems. Most of their information requirements can be met by a small number of satellite sensor types. Moderate-resolution resource satellites and low-resolution environmental satellites are the most prominent of these, and they are the focus of this paper. Building, launching, and operating satellite systems are very expensive endeavors. Consequently, nations should change the current pattern of independently launching and operating similar, largely redundant resource and environmental satellite systems in favor of true and full collaboration in developing, launching, operating, and sharing the data from such systems of the future. The past decade has seen encouraging signs of increasing international collaboration in earth remote sensing, but full collaboration has not yet been attempted. A general strategy to achieve such international collaboration is presented here, including discussion of potential obstacles, ideas for organizing and overseeing the long-term process toward collaboration, and short-term objectives whereby early successes critical to accomplishing long-term goals can be achieved.

  16. Remote sensing of forest insect disturbances: Current state and future directions

    NASA Astrophysics Data System (ADS)

    Senf, Cornelius; Seidl, Rupert; Hostert, Patrick

    2017-08-01

    Insect disturbance are important agents of change in forest ecosystems around the globe, yet their spatial and temporal distribution and dynamics are not well understood. Remote sensing has gained much attention in mapping and understanding insect outbreak dynamics. Consequently, we here review the current literature on the remote sensing of insect disturbances. We suggest to group studies into three insect types: bark beetles, broadleaved defoliators, and coniferous defoliators. By so doing, we systematically compare the sensors and methods used for mapping insect disturbances within and across insect types. Results suggest that there are substantial differences between methods used for mapping bark beetles and defoliators, and between methods used for mapping broadleaved and coniferous defoliators. Following from this, we highlight approaches that are particularly suited for each insect type. Finally, we conclude by highlighting future research directions for remote sensing of insect disturbances. In particular, we suggest to: 1) Separate insect disturbances from other agents; 2) Extend the spatial and temporal domain of analysis; 3) Make use of dense time series; 4) Operationalize near-real time monitoring of insect disturbances; 5) Identify insect disturbances in the context of coupled human-natural systems; and 6) Improve reference data for assessing insect disturbances. Since the remote sensing of insect disturbances has gained much interest beyond the remote sensing community recently, the future developments identified here will help integrating remote sensing products into operational forest management. Furthermore, an improved spatiotemporal quantification of insect disturbances will support an inclusion of these processes into regional to global ecosystem models.

  17. Remote sensing of forest insect disturbances: Current state and future directions.

    PubMed

    Senf, Cornelius; Seidl, Rupert; Hostert, Patrick

    2017-08-01

    Insect disturbance are important agents of change in forest ecosystems around the globe, yet their spatial and temporal distribution and dynamics are not well understood. Remote sensing has gained much attention in mapping and understanding insect outbreak dynamics. Consequently, we here review the current literature on the remote sensing of insect disturbances. We suggest to group studies into three insect types: bark beetles, broadleaved defoliators, and coniferous defoliators. By so doing, we systematically compare the sensors and methods used for mapping insect disturbances within and across insect types. Results suggest that there are substantial differences between methods used for mapping bark beetles and defoliators, and between methods used for mapping broadleaved and coniferous defoliators. Following from this, we highlight approaches that are particularly suited for each insect type. Finally, we conclude by highlighting future research directions for remote sensing of insect disturbances. In particular, we suggest to: 1) Separate insect disturbances from other agents; 2) Extend the spatial and temporal domain of analysis; 3) Make use of dense time series; 4) Operationalize near-real time monitoring of insect disturbances; 5) Identify insect disturbances in the context of coupled human-natural systems; and 6) Improve reference data for assessing insect disturbances. Since the remote sensing of insect disturbances has gained much interest beyond the remote sensing community recently, the future developments identified here will help integrating remote sensing products into operational forest management. Furthermore, an improved spatiotemporal quantification of insect disturbances will support an inclusion of these processes into regional to global ecosystem models.

  18. PI2GIS: processing image to geographical information systems, a learning tool for QGIS

    NASA Astrophysics Data System (ADS)

    Correia, R.; Teodoro, A.; Duarte, L.

    2017-10-01

    To perform an accurate interpretation of remote sensing images, it is necessary to extract information using different image processing techniques. Nowadays, it became usual to use image processing plugins to add new capabilities/functionalities integrated in Geographical Information System (GIS) software. The aim of this work was to develop an open source application to automatically process and classify remote sensing images from a set of satellite input data. The application was integrated in a GIS software (QGIS), automating several image processing steps. The use of QGIS for this purpose is justified since it is easy and quick to develop new plugins, using Python language. This plugin is inspired in the Semi-Automatic Classification Plugin (SCP) developed by Luca Congedo. SCP allows the supervised classification of remote sensing images, the calculation of vegetation indices such as NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) and other image processing operations. When analysing SCP, it was realized that a set of operations, that are very useful in teaching classes of remote sensing and image processing tasks, were lacking, such as the visualization of histograms, the application of filters, different image corrections, unsupervised classification and several environmental indices computation. The new set of operations included in the PI2GIS plugin can be divided into three groups: pre-processing, processing, and classification procedures. The application was tested consider an image from Landsat 8 OLI from a North area of Portugal.

  19. Applying satellite technology to energy and mineral exploration

    USGS Publications Warehouse

    Carter, William D.; Rowan, Lawrence C.

    1978-01-01

    IGCP Project 143 ("Remote Sensing and Mineral Exploration"), is a worldwide research project designed to make satellite data an operational geological tool along with the geologic pick, hand lens, topographic map, aerial photo and geophysical instruments and data that comprise the exploration package. While remote sensing data will not replace field exploration and mapping, careful study of such data prior to field work should make the effort more efficient.

  20. Recent developments in space shuttle remote sensing, using hand-held film cameras

    NASA Technical Reports Server (NTRS)

    Amsbury, David L.; Bremer, Jeffrey M.

    1992-01-01

    The authors report on the advantages and disadvantages of a number of camera systems which are currently employed for space shuttle remote sensing operations. Systems discussed include the modified Hasselbad, the Rolleiflex 6008, the Linkof 5-inch format system, and the Nikon F3/F4 systems. Film/filter combinations (color positive films, color infrared films, color negative films and polarization filters) are presented.

  1. An Open Source Software and Web-GIS Based Platform for Airborne SAR Remote Sensing Data Management, Distribution and Sharing

    NASA Astrophysics Data System (ADS)

    Changyong, Dou; Huadong, Guo; Chunming, Han; Ming, Liu

    2014-03-01

    With more and more Earth observation data available to the community, how to manage and sharing these valuable remote sensing datasets is becoming an urgent issue to be solved. The web based Geographical Information Systems (GIS) technology provides a convenient way for the users in different locations to share and make use of the same dataset. In order to efficiently use the airborne Synthetic Aperture Radar (SAR) remote sensing data acquired in the Airborne Remote Sensing Center of the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), a Web-GIS based platform for airborne SAR data management, distribution and sharing was designed and developed. The major features of the system include map based navigation search interface, full resolution imagery shown overlaid the map, and all the software adopted in the platform are Open Source Software (OSS). The functions of the platform include browsing the imagery on the map navigation based interface, ordering and downloading data online, image dataset and user management, etc. At present, the system is under testing in RADI and will come to regular operation soon.

  2. COSMO-SkyMed and GIS applications

    NASA Astrophysics Data System (ADS)

    Milillo, Pietro; Sole, Aurelia; Serio, Carmine

    2013-04-01

    Geographic Information Systems (GIS) and Remote Sensing have become key technology tools for the collection, storage and analysis of spatially referenced data. Industries that utilise these spatial technologies include agriculture, forestry, mining, market research as well as the environmental analysis . Synthetic Aperture Radar (SAR) is a coherent active sensor operating in the microwave band which exploits relative motion between antenna and target in order to obtain a finer spatial resolution in the flight direction exploiting the Doppler effect. SAR have wide applications in Remote Sensing such as cartography, surface deformation detection, forest cover mapping, urban planning, disasters monitoring , surveillance etc… The utilization of satellite remote sensing and GIS technology for this applications has proven to be a powerful and effective tool for environmental monitoring. Remote sensing techniques are often less costly and time-consuming for large geographic areas compared to conventional methods, moreover GIS technology provides a flexible environment for, analyzing and displaying digital data from various sources necessary for classification, change detection and database development. The aim of this work si to illustrate the potential of COSMO-SkyMed data and SAR applications in a GIS environment, in particular a demostration of the operational use of COSMO-SkyMed SAR data and GIS in real cases will be provided for what concern DEM validation, river basin estimation, flood mapping and landslide monitoring.

  3. Remote sensing detection of atmospheric pollutants using lidar, sodar and correlation with air quality data in an industrial area

    NASA Astrophysics Data System (ADS)

    Steffens, Juliana; da Costa, Renata F.; Landulfo, Eduardo; Guardani, Roberto; Moreira, Paulo F., Jr.; Held, Gerhard

    2011-11-01

    Optical remote sensing techniques have obvious advantages for monitoring gas and aerosol emissions, since they enable the operation over large distances, far from hostile environments, and fast processing of the measured signal. In this study two remote sensing devices, namely a Lidar (Light Detection and Ranging) for monitoring the vertical profile of backscattered light intensity, and a Sodar (Acoustic Radar, Sound Detection and Ranging) for monitoring the vertical profile of the wind vector were operated during specific periods. The acquired data were processed and compared with data of air quality obtained from ground level monitoring stations, in order to verify the possibility of using the remote sensing techniques to monitor industrial emissions. The campaigns were carried out in the area of the Environmental Research Center (Cepema) of the University of Sao Paulo, in the city of Cubatao, Brazil, a large industrial site, where numerous different industries are located, including an oil refinery, a steel plant, as well as fertilizer, cement and chemical/petrochemical plants. The local environmental problems caused by the industrial activities are aggravated by the climate and topography of the site, unfavorable to pollutant dispersion. Results of a campaign are presented for a 24- hour period, showing data of a Lidar, an air quality monitoring station and a Sodar.

  4. Supporting Remote Sensing Research with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Shanks, P. C.; Kritis, L. A.; Trani, M. G.

    2014-11-01

    We describe several remote sensing research projects supported with small Unmanned Aerial Systems (sUAS) operated by the NGA Basic and Applied Research Office. These sUAS collections provide data supporting Small Business Innovative Research (SBIR), NGA University Research Initiative (NURI), and Cooperative Research And Development Agreements (CRADA) efforts in addition to inhouse research. Some preliminary results related to 3D electro-optical point clouds are presented, and some research goals discussed. Additional details related to the autonomous operational mode of both our multi-rotor and fixed wing small Unmanned Aerial System (sUAS) platforms are presented.

  5. Remotely Operating a Fourier Transform Spectrometer for Atmospheric Remote Sensing

    NASA Technical Reports Server (NTRS)

    Blavier, J.-F.; Toon, G. C.; Sen, B.

    2000-01-01

    This paper describes how the MkIV instrument was adapted for remote operation from the Barcroft site, where the harsh winter conditions make access difficult. Some of the main technical challenges will be discussed including, (i) operation from solar panels and batteries, (ii) cooling the detectors with LN2, (iii) instrument control and monitoring over a cellular phone, and (iv) data storage, processing and analysis. Finally, MkIV spectra measured from Barcroft and compared with those measured from JPL to highlight the advantages of the higher altitude site.

  6. Three examples of applied remote sensing of vegetation

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr.; Benton, A. R., Jr.; Toler, R. W.; Haas, R. H.

    1975-01-01

    Cause studies in which remote sensing techniques were adapted to assist in the solution of particular problem situations in Texas involving vegetation are described. In each case, the final sensing technique developed for operational use by the concerned organizations employed photographic sensors which were optimized through studies of the spectral reflectance characteristics of the vegetation species and background conditions unique to the problem being considered. The three examples described are: (1) Assisting Aquatic Plant Monitoring and Control; (2) Improving Vegetation Utilization in Urban Planning; and (3) Enforcing the Quarantine of Diseased Crops.

  7. Results from the National Aeronautics and Space Administration remote sensing experiments in the New York Bight, 7-17 April 1975

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr. (Compiler); Pearson, A. O. (Compiler)

    1977-01-01

    A cooperative operation was conducted in the New York Bight to evaluate the role of remote sensing technology to monitor ocean dumping. Six NASA remote sensing experiments were flown on the C-54, U-2, and C-130 NASA aircraft, while NOAA obtained concurrent sea truth information using helicopters and surface platforms. The experiments included: (1) a Radiometer/Scatterometer (RADSCAT), (2) an Ocean Color Scanner (OCS), (3) a Multichannel Ocean Color Sensor (MOCS), (4) four Hasselblad cameras, (5) an Ebert spectrometer; and (6) a Reconafax IV infrared scanner and a Precision Radiation Thermometer (PRT-5). The results of these experiments relative to the use of remote sensors to detect, quantify, and determine the dispersion of pollutants dumped into the New York Bight are presented.

  8. From ships to robots: The social relations of sensing the world ocean.

    PubMed

    Lehman, Jessica

    2018-02-01

    The dominant practices of physical oceanography have recently shifted from being based on ship-based ocean sampling and sensing to being based on remote and robotic sensing using satellites, drifting floats and remotely operated and autonomous underwater vehicles. What are the implications of this change for the social relations of oceanographic science? This paper contributes to efforts to address this question, pursuing a situated view of ocean sensing technologies so as to contextualize and analyze new representations of the sea, and interactions between individual scientists, technologies and the ocean. By taking a broad view on oceanography through a 50-year shift from ship-based to remote and robotic sensing, I show the ways in which new technologies may provide an opportunity to fight what Oreskes has called 'ideologies of scientific heroism'. In particular, new sensing relations may emphasize the contributions of women and scientists from less well-funded institutions, as well as the ways in which oceanographic knowledge is always partial and dependent on interactions between nonhuman animals, technologies, and different humans. Thus, I argue that remote and robotic sensing technologies do not simply create more abstracted relations between scientists and the sea, but also may provide opportunities for more equitable scientific practice and refigured sensing relations.

  9. Mapping of submerged vegetation using remote sensing technology

    NASA Technical Reports Server (NTRS)

    Savastano, K. J.; Faller, K. H.; Mcfadin, L. W.; Holley, H.

    1981-01-01

    Techniques for mapping submerged sea grasses using aircraft supported remote sensors are described. The 21 channel solid state array spectroradiometer was successfully used as a remote sensor in the experiment in that the system operated without problem and obtained data. The environmental conditions of clear water, bright sandy bottom and monospecific vegetation (Thalassia) were ideal.

  10. Rapid deployable global sensing hazard alert system

    DOEpatents

    Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M

    2015-04-28

    A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.

  11. Program on Earth Observation Data Management Systems (EODMS)

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Gohagan, J. K.; Hill, C. T.; Morgan, R. P.; Hays, T. R.; Ballard, R. J.; Crnkovick, G. R.; Schaeffer, M. A.

    1976-01-01

    An assessment was made of the needs of a group of potential users of satellite remotely sensed data (state, regional, and local agencies) involved in natural resources management in five states, and alternative data management systems to satisfy these needs are outlined. Tasks described include: (1) a comprehensive data needs analysis of state and local users; (2) the design of remote sensing-derivable information products that serve priority state and local data needs; (3) a cost and performance analysis of alternative processing centers for producing these products; (4) an assessment of the impacts of policy, regulation and government structure on implementing large-scale use of remote sensing technology in this community of users; and (5) the elaboration of alternative institutional arrangements for operational Earth Observation Data Management Systems (EODMS). It is concluded that an operational EODMS will be of most use to state, regional, and local agencies if it provides a full range of information services -- from raw data acquisition to interpretation and dissemination of final information products.

  12. Using Remote Sensing Mapping and Growth Response to Environmental Variability to Aide Aquatic Invasive Plant Management

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Schlick, Greg; Genovese, Vanessa; Wilson, Kenneth D.

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass density), direct operations, and assess management impacts on plant communities. Archived satellite records enable review of results following previous climate and management events and aide in developing long-term strategies. Examples of remote sensing aiding effectiveness of aquatic weed management will be discussed as well as areas for potential technological improvement. Modeling at local and watershed scales using the SWAT modeling tool provides insight into land-use effects on water quality (described by Zhang in same Symposium). Controlled environment growth studies have been conducted to quantify the growth response of invasive aquatic plants to water quality and other environmental factors. Environmental variability occurs across a range of time scales from long-term climate and seasonal trends to short-term water flow mediated variations. Response time for invasive species response are examined at time scales of weeks, day, and hours using a combination of study duration and growth assessment techniques to assess water quality, temperature (air and water), nitrogen, phosphorus, and light effects. These provide response parameters for plant growth models in response to the variation and interact with management and economic models associated with aquatic weed management. Plant growth models are to be informed by remote sensing and applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments and phenology. Initial utilization of remote sensing tools developed for mapping of aquatic invasive plants improved operational efficiency in management practices. These assessment methods provide a comprehensive and quantitative view of aquatic invasive plants communities in the California Delta.

  13. Using Copernicus earth observation services to monitor climate change impacts and adaptations

    NASA Astrophysics Data System (ADS)

    Becker, Daniel; Zebisch, Marc; Sonnenschein, Ruth; Schönthaler, Konstanze; von Andrian-Werburg, Stefan

    2016-04-01

    In the last years, earth observation made a big leap towards an operational monitoring of the state of environment. Remote sensing provides for instance information on the dynamics, trends and anomalies of snow and glaciers, vegetation, soil moisture or water temperature. In particular, the European Copernicus initiative offers new opportunities through new satellites with a higher temporal and spatial resolution, operational services for environmental monitoring and an open data access policy. With the Copernicus climate change service and the ESA climate change initiative, specific earth observation programs are in place to address the impacts of climate change. However, such products and services are until now rarely picked up in the field of policy or decision making oriented climate impact or climate risk assessments. In this talk, we will present results of a study, which focus on the question, if and how remote sensing approaches could be integrated into operational monitoring activities of climate impacts and response measures on a national and subnational scale. We assessed all existing and planned Copernicus services regarding their relevance for climate impact monitoring by comparing them against the indication fields from an indicator system for climate impact and response monitoring in Germany, which has lately been developed in the framework of the German national adaptation strategy. For several climate impact or response indicators, an immediate integration of remote sensing data could be identified and been recommended. For these cases, we will show practical examples on the benefit of remote sensing data. For other indication fields, promising approaches were found, which need further development. We argue that remote sensing is a very valuable complement to the existing indicator schemes by contributing with spatial explicit, timely information but not always easy to integrate with classical approaches, which are oriented towards consistent long term monitoring. Furthermore, we provide specific recommendations for the Copernicus services to ensure a consistent climate change monitoring in future and we indicate options and limitations for integrating service products into practical assessment and monitoring activities.

  14. Using Remote Sensed Imagery to Determine the Impacts from Salvage Logging after the 2015 Tower Fire, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Broers, Anna; Robichaud, Peter; Lewis, Sarah

    2017-04-01

    Wildfires are part of the natural process in most forested landscapes and during subsequent precipitation, the runoff and consequently erosion of the soil increases. Several factors contribute to the increased runoff: loss of runoff storage in the forest floor, the water repellent soil layer and reduced interception by the canopy. Due to climate change, the number of wildfires and their severity is likely to increase, which will lead to increased erosion; this has been investigated by others. Often, land management protocol is to remove the standing dead trees before they decay. In the past years salvage logging has received more attention in research, yet results have been mixed on its effects on increased erosion. The goal of the current research is to determine the change in surface conditions due to salvage logging operations by comparing the pre- and post-fire and post-salvage surface conditions. To determine this change, high resolution WorldView remote sensing imagery was used after 9000-ha 2015 Tower Fire which was located on the border of Idaho and Washington (USA). Ground validation measurements were taken using the forest soil disturbance protocol as well as GPS coordinates and measurements of highly disturbed areas such as skid trails, skyline drag lines and other machinery impacts. Some correlations were found between disturbance classes, bare soil, exposed wheel tracks (rutting) and soil compaction. High resolution WorldView remote sensing images detected changes in the pre- and post-fire environmental conditions and the change due to salvage logging operations. Classifying disturbances using remote sensing imagery is complicated by natural revegetation processes and by the timing of salvage logging operations. Initial results suggest that high resolution imagery can be used to determine onsite impacts of salvage logging operations.

  15. East Africa seminar and workshop of remote sensing of natural resources and environment

    USGS Publications Warehouse

    Deutsch, Morris

    1975-01-01

    Report on total program covering East Africa Seminar and Workshop on remote sensing of natural resources and the environment held in Nairobi, Kenya, March 21 April 3, 1974, attended by participants from 10 English-speaking African nations. Appendices are included for Seminar proceedings, workshop lectures and outlines, field trip reports and critiques by participants, and reports on potential applications of an operational earth resources satellite for the participating countries.

  16. Landsat commercialization

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    1984-04-01

    The House of Representatives will soon vote on a bill that outlines steps to commercialize the land remote-sensing system. The bill follows attempts last year to commercialize both the land and meteorological remote sensing satellite systems. Meanwhile, the National Oceanic and Atmospheric Administration (NOAA) has received bids from seven private companies interested in operating Landsat. The bids resulted from a request for proposals issued by the agency earlier this year. Commercialization of the meteorological satellite system was blocked in November.

  17. Comprehensive UAV agricultural remote-sensing research at Texas A M University

    NASA Astrophysics Data System (ADS)

    Thomasson, J. Alex; Shi, Yeyin; Olsenholler, Jeffrey; Valasek, John; Murray, Seth C.; Bishop, Michael P.

    2016-05-01

    Unmanned aerial vehicles (UAVs) have advantages over manned vehicles for agricultural remote sensing. Flying UAVs is less expensive, is more flexible in scheduling, enables lower altitudes, uses lower speeds, and provides better spatial resolution for imaging. The main disadvantage is that, at lower altitudes and speeds, only small areas can be imaged. However, on large farms with contiguous fields, high-quality images can be collected regularly by using UAVs with appropriate sensing technologies that enable high-quality image mosaics to be created with sufficient metadata and ground-control points. In the United States, rules governing the use of aircraft are promulgated and enforced by the Federal Aviation Administration (FAA), and rules governing UAVs are currently in flux. Operators must apply for appropriate permissions to fly UAVs. In the summer of 2015 Texas A&M University's agricultural research agency, Texas A&M AgriLife Research, embarked on a comprehensive program of remote sensing with UAVs at its 568-ha Brazos Bottom Research Farm. This farm is made up of numerous fields where various crops are grown in plots or complete fields. The crops include cotton, corn, sorghum, and wheat. After gaining FAA permission to fly at the farm, the research team used multiple fixed-wing and rotary-wing UAVs along with various sensors to collect images over all parts of the farm at least once per week. This article reports on details of flight operations and sensing and analysis protocols, and it includes some lessons learned in the process of developing a UAV remote-sensing effort of this sort.

  18. An airborne remote sensing platform of the Helsinki University of Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikulainen, M.; Hallikainen, M.; Kemppinen, M.

    1996-10-01

    In 1994 Helsinki University of Technology acquired a Short SC7 Skyvan turboprop aircraft to be modified to carry remote sensing instruments. As the aircraft is originally designed to carry heavy and space consuming cargo, a modification program was implemented to make the aircraft feasible for remote sensing operations. The twelve-month long modification program had three design objectives: flexibility, accessibility and cost efficiency. The aircraft interior and electrical system were modified. Furthermore, the aircraft is equipped with DGPS-navigation system, multi-channel radiometer system and side looking airborne radar. Future projects include installation of local area network, attitude GPS system, imaging spectrometer andmore » 1.4 GHz radiometer. 6 refs., 5 figs., 1 tab.« less

  19. Novel Technique and Technologies for Active Optical Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  20. Annual Symposium on Machine Processing of Remotely Sensed Data, 4th, Purdue University, West Lafayette, Ind., June 21-23, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    Morrison, D. B. (Editor); Scherer, D. J.

    1977-01-01

    Papers are presented on a variety of techniques for the machine processing of remotely sensed data. Consideration is given to preprocessing methods such as the correction of Landsat data for the effects of haze, sun angle, and reflectance and to the maximum likelihood estimation of signature transformation algorithm. Several applications of machine processing to agriculture are identified. Various types of processing systems are discussed such as ground-data processing/support systems for sensor systems and the transfer of remotely sensed data to operational systems. The application of machine processing to hydrology, geology, and land-use mapping is outlined. Data analysis is considered with reference to several types of classification methods and systems.

  1. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei

    2018-04-01

    Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure and increase the robustness of the proposed algorithm. The proposed algorithm is validated with a publicly available 10-class object detection dataset.

  2. Remote sensing strategies for global resource exploration and environmental management

    NASA Astrophysics Data System (ADS)

    Henderson, Frederick B.

    Since 1972, satellite remote sensing, when integrated with other exploration techniques, has demonstrated operational exploration and engineering cost savings and reduced exploration risks through improved geological mapping. Land and ocean remote sensing satellite systems under development for the 1990's by the United States, France, Japan, Canada, ESA, Russia, China, and others, will significantly increase our ability to explore for, develop, and manage energy and mineral resources worldwide. A major difference between these systems is the "Open Skies" and "Non-Discriminatory Access to Data" policies as have been practiced by the U.S. and France and the restrictive nationalistic data policies as have been practiced by Russia and India. Global exploration will use satellite remote sensing to better map regional structural and basin-like features that control the distribution of energy and mineral resources. Improved sensors will better map lithologic and stratigraphic units and identify alteration effects in rocks, soils, and vegetation cover indicative of undiscovered subsurface resources. These same sensors will also map and monitor resource development. The use of satellite remote sensing data will grow substantially through increasing integration with other geophysical, geochemical, and geologic data using improved geographic information systems (GIS). International exploration will focus on underdeveloped countries rather than on mature exploration areas such as the United States, Europe, and Japan. Energy and mineral companies and government agencies in these countries and others will utilize available remote sensing data to acquire economic intelligence on global resources. If the "Non-Discriminatory Access to Data" principle is observed by satellite producing countries, exploration will remain competitive "on the ground". In this manner, remote sensing technology will continue to be developed to better explore for and manage the world's needed resources. If, however, satellite producing countries follow the Russian and Indian lead and restrict civil satellite data as tools of their national security and economic policies, remote sensing technology may become internationally competitive in space, redundant, prohibitively expensive, and generally unavailable to the world community.

  3. Continuous Water Vapor Profiles from Operational Ground-Based Active and Passive Remote Sensors

    NASA Technical Reports Server (NTRS)

    Turner, D. D.; Feltz, W. F.; Ferrare, R. A.

    2000-01-01

    The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote sensors as well as traditional in situ radiosonde measurements. Remote sensing technologies include an automated Raman lidar and an automated Atmospheric Emitted Radiance Interferometer (AERI), which are able to retrieve water vapor profiles operationally through the lower troposphere throughout the diurnal cycle. Comparisons of these two water vapor remote sensing methods to each other and to radiosondes over an 8-month period are presented and discussed, highlighting the accuracy and limitations of each method. Additionally, the AERI is able to retrieve profiles of temperature while the Raman lidar is able to retrieve aerosol extinction profiles operationally. These data, coupled with hourly wind profiles from a 915-MHz wind profiler, provide complete specification of the state of the atmosphere in noncloudy skies. Several case studies illustrate the utility of these high temporal resolution measurements in the characterization of mesoscale features within a 3-day time period in which passage of a dryline, warm air advection, and cold front occurred.

  4. Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation status

    NASA Astrophysics Data System (ADS)

    Schmidt, Johannes; Fassnacht, Fabian Ewald; Neff, Christophe; Lausch, Angela; Kleinschmit, Birgit; Förster, Michael; Schmidtlein, Sebastian

    2017-08-01

    Remote sensing can be a valuable tool for supporting nature conservation monitoring systems. However, for many areas of conservation interest, there is still a considerable gap between field-based operational monitoring guidelines and the current remote sensing-based approaches. This hampers application in practice of the latter. Here, we propose a remote sensing approach for mapping the conservation status of Calluna-dominated Natura 2000 dwarf shrub habitats that is closely related to field mapping schemes. We transferred the evaluation criteria of the field guidelines to three related variables that can be captured by remote sensing: (1) coverage of the key species, (2) stand structural diversity, and (3) co-occurring species. Continuous information on these variables was obtained by regressing ground reference data from field surveys and UAV flights against airborne hyperspectral imagery. Merging the three resulting quality layers in an RGB representation allowed for illustrating the habitat quality in a continuous way. User-defined thresholds can be applied to this stack of quality layers to derive an overall assessment of habitat quality in terms of nature conservation, i.e. the conservation status. In our study, we found good accordance of the remotely sensed data with field-based information for the three variables key species, stand structural diversity and co-occurring vegetation (R2 of 0.79, 0.69, and 0.71, respectively) and it was possible to derive meaningful habitat quality maps. The conservation status could be derived with an accuracy of 65%. In interpreting these results it should be considered that the remote sensing based layers are independent estimates of habitat quality in their own right and not a mere replacement of the criteria used in the field guidelines. The approach is thought to be transferable to similar regions with minor adaptions. Our results refer to Calluna heathland which we consider a comparably easy target for remote sensing. Hence, the transfer of field guidelines to remote sensing indicators was rather successful in this case but needs further evaluation for other habitats.

  5. Airborne Remote Observations of L-Band Radio Frequency Interference and Implications for Satellite Missions

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Srinivasan, Karthik; Limaye, Ashutosh

    2011-01-01

    Passive remote sensing of the Earth s surface and atmosphere from space has significant importance in operational and research environmental studies, in particular for the scientific understanding, monitoring and prediction of climate change and its impacts. Passive remote sensing requires the measurement of naturally occurring radiations, usually of very low power levels, which contain essential information on the physical process under investigation. As such, these sensed radio frequency bands are a unique natural resource enabling space borne passive sensing of the atmosphere and the Earth s surface that deserves adequate allocation to the Earth Exploration Satellite Service and absolute protection from interference. Unfortunately, radio frequency interference (RFI) is an increasing problem for Earth remote sensing, particularly for passive observations of natural emissions. Because these natural signals tend to be very weak, even low levels of interference received by a passive sensor may degrade the fidelity of scientific data. The characteristics of RFI (low-level interference and radar-pulse noise) are not well known because there has been no systematic surveillance, spectrum inventory or mapping of RFI. While conducting a flight experiment over central Tennessee in May 2010, RFI, a concern for any instrument operating in the passive L band frequency, was observed across 16 subbands between 1402-1427 MHz. Such a survey provides rare characterization data from which to further develop mitigation technologies as well as to identify bandwidths to avoid in future sensor formulation.

  6. Remote monitoring of a thermal plume

    NASA Technical Reports Server (NTRS)

    Kuo, C. Y.; Talay, T. A.

    1979-01-01

    A remote-sensing experiment conducted on May 17, 1977, over the Surry nuclear power station on the James River, Virginia is discussed. Isotherms of the thermal plume from the power station were derived from remotely sensed data and compared with in situ water temperature measurements provided by the Virginia Electric and Power Company, VEPCO. The results of this study were also qualitatively compared with those from other previous studies under comparable conditions of the power station's operation and the ambient flow. These studies included hydraulic model predictions carried out by Pritchard and Carpenter and a 5-year in situ monitoring program based on boat surveys.

  7. Combining remote sensing and water-balance evapotranspiration estimates for the conterminous United States

    USGS Publications Warehouse

    Reitz, Meredith; Senay, Gabriel; Sanford, Ward E.

    2017-01-01

    Evapotranspiration (ET) is a key component of the hydrologic cycle, accounting for ~70% of precipitation in the conterminous U.S. (CONUS), but it has been a challenge to predict accurately across different spatio-temporal scales. The increasing availability of remotely sensed data has led to significant advances in the frequency and spatial resolution of ET estimates, derived from energy balance principles with variables such as temperature used to estimate surface latent heat flux. Although remote sensing methods excel at depicting spatial and temporal variability, estimation of ET independently of other water budget components can lead to inconsistency with other budget terms. Methods that rely on ground-based data better constrain long-term ET, but are unable to provide the same temporal resolution. Here we combine long-term ET estimates from a water-balance approach with the SSEBop (operational Simplified Surface Energy Balance) remote sensing-based ET product for 2000–2015. We test the new combined method, the original SSEBop product, and another remote sensing ET product (MOD16) against monthly measurements from 119 flux towers. The new product showed advantages especially in non-irrigated areas where the new method showed a coefficient of determination R2 of 0.44, compared to 0.41 for SSEBop or 0.35 for MOD16. The resulting monthly data set will be a useful, unique contribution to ET estimation, due to its combination of remote sensing-based variability and ground-based long-term water balance constraints.

  8. Scintillometer networks for calibration and validation of energy balance and soil moisture remote sensing algorithms

    NASA Astrophysics Data System (ADS)

    Hendrickx, Jan M. H.; Kleissl, Jan; Gómez Vélez, Jesús D.; Hong, Sung-ho; Fábrega Duque, José R.; Vega, David; Moreno Ramírez, Hernán A.; Ogden, Fred L.

    2007-04-01

    Accurate estimation of sensible and latent heat fluxes as well as soil moisture from remotely sensed satellite images poses a great challenge. Yet, it is critical to face this challenge since the estimation of spatial and temporal distributions of these parameters over large areas is impossible using only ground measurements. A major difficulty for the calibration and validation of operational remote sensing methods such as SEBAL, METRIC, and ALEXI is the ground measurement of sensible heat fluxes at a scale similar to the spatial resolution of the remote sensing image. While the spatial length scale of remote sensing images covers a range from 30 m (LandSat) to 1000 m (MODIS) direct methods to measure sensible heat fluxes such as eddy covariance (EC) only provide point measurements at a scale that may be considerably smaller than the estimate obtained from a remote sensing method. The Large Aperture scintillometer (LAS) flux footprint area is larger (up to 5000 m long) and its spatial extent better constraint than that of EC systems. Therefore, scintillometers offer the unique possibility of measuring the vertical flux of sensible heat averaged over areas comparable with several pixels of a satellite image (up to about 40 Landsat thermal pixels or about 5 MODIS thermal pixels). The objective of this paper is to present our experiences with an existing network of seven scintillometers in New Mexico and a planned network of three scintillometers in the humid tropics of Panama and Colombia.

  9. Propagation Limitations in Remote Sensing.

    DTIC Science & Technology

    Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .

  10. Diverse Planning for UAV Control and Remote Sensing

    PubMed Central

    Tožička, Jan; Komenda, Antonín

    2016-01-01

    Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs. PMID:28009831

  11. Diverse Planning for UAV Control and Remote Sensing.

    PubMed

    Tožička, Jan; Komenda, Antonín

    2016-12-21

    Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs.

  12. A study of application of remote sensing to river forecasting. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A project is described whose goal was to define, implement and evaluate a pilot demonstration test to show the practicability of applying remotely sensed data to operational river forecasting in gaged or previously ungaged watersheds. A secondary objective was to provide NASA with documentation describing the computer programs that comprise the streamflow forecasting simulation model used. A computer-based simulation model was adapted to a streamflow forecasting application and implemented in an IBM System/360 Model 44 computer, operating in a dedicated mode, with operator interactive control through a Model 2250 keyboard/graphic CRT terminal. The test site whose hydrologic behavior was simulated is a small basin (365 square kilometers) designated Town Creek near Geraldine, Alabama.

  13. SAR-EDU - An education initiative for applied Synthetic Aperture Radar remote sensing

    NASA Astrophysics Data System (ADS)

    Eckardt, Robert; Richter, Nicole; Auer, Stefan; Eineder, Michael; Roth, Achim; Hajnsek, Irena; Walter, Diana; Braun, Matthias; Motagh, Mahdi; Pathe, Carsten; Pleskachevsky, Andrey; Thiel, Christian; Schmullius, Christiane

    2013-04-01

    Since the 1970s, radar remote sensing techniques have evolved rapidly and are increasingly employed in all fields of earth sciences. Applications are manifold and still expanding due to the continuous development of new instruments and missions as well as the availability of very high-quality data. The trend worldwide is towards operational employment of the various algorithms and methods that have been developed. However, the utilization of operational services does not keep up yet with the rate of technical developments and the improvements in sensor technology. With the enhancing availability and variety of space borne Synthetic Aperture Radar (SAR) data and a growing number of analysis algorithms the need for a vital user community is increasing. Therefore the German Aerospace Center (DLR) together with the Friedrich-Schiller-University Jena (FSU) and the Technical University Munich (TUM) launched the education initiative SAR-EDU. The aim of the project is to facilitate access to expert knowledge in the scientific field of radar remote sensing. Within this effort a web portal will be created to provide seminar material on SAR basics, methods and applications to support both, lecturers and students. The overall intension of the project SAR-EDU is to provide seminar material for higher education in radar remote sensing covering the topic holistically from the very basics to the most advanced methods and applications that are available. The principles of processing and interpreting SAR data are going to be taught using test data sets and open-source as well as commercial software packages. The material that is provided by SAR-EDU will be accessible at no charge from a DLR web portal. The educational tool will have a modular structure, consisting of separate modules that broach the issue of a particular topic. The aim of the implementation of SAR-EDU as application-oriented radar remote sensing educational tool is to advocate the development and wider use of operational services on the base of pre-existing algorithms and sensors on the one hand, and to aid the extension of radar remote sensing techniques to a broader field of application on the other. SAR-EDU therefore combines the knowledge, expertise and experience of an excellent German consortium.

  14. USGS Provision of Near Real Time Remotely Sensed Imagery for Emergency Response

    NASA Astrophysics Data System (ADS)

    Jones, B. K.

    2014-12-01

    The use of remotely sensed imagery in the aftermath of a disaster can have an important impact on the effectiveness of the response for many types of disasters such as floods, earthquakes, volcanic eruptions, landslides, and other natural or human-induced disasters. Ideally, responders in areas that are commonly affected by disasters would have access to archived remote sensing imagery plus the ability to easily obtain the new post event data products. The cost of obtaining and storing the data and the lack of trained professionals who can process the data into a mapping product oftentimes prevent this from happening. USGS Emergency Operations provides remote sensing and geospatial support to emergency managers by providing access to satellite images from numerous domestic and international space agencies including those affiliated with the International Charter Space and Major Disasters and their space-based assets and by hosting and distributing thousands of near real time event related images and map products through the Hazards Data Distribution System (HDDS). These data may include digital elevation models, hydrographic models, base satellite images, vector data layers such as roads, aerial photographs, and other pre and post disaster data. These layers are incorporated into a Web-based browser and data delivery service, the Hazards Data Distribution System (HDDS). The HDDS can be made accessible either to the general public or to specific response agencies. The HDDS concept anticipates customer requirements and provides rapid delivery of data and services. This presentation will provide an overview of remotely sensed imagery that is currently available to support emergency response operations and examples of products that have been created for past events that have provided near real time situational awareness for responding agencies.

  15. Ground-based remote sensing of volcanic CO2 and correlated SO2, HF, HCl, and BrO, in safe-distance from the crater

    NASA Astrophysics Data System (ADS)

    Butz, Andre; Solvejg Dinger, Anna; Bobrowski, Nicole; Kostinek, Julian; Fieber, Lukas; Fischerkeller, Constanze; Giuffrida, Giovanni Bruno; Hase, Frank; Klappenbach, Friedrich; Kuhn, Jonas; Lübcke, Peter; Tirpitz, Lukas; Tu, Qiansi

    2017-04-01

    Remote sensing of CO2 enhancements in volcanic plumes can be a tool to estimate volcanic CO2 emissions and thereby, to gain insight into the geological carbon cycle and into volcano interior processes. However, remote sensing of the volcanic CO2 is challenged by the large atmospheric background concentrations masking the minute volcanic signal. Here, we report on a demonstrator study conducted in September 2015 at Mt. Etna on Sicily, where we deployed an EM27/SUN Fourier Transform Spectrometer together with a UV spectrometer on a mobile remote sensing platform. The spectrometers were operated in direct-sun viewing geometry collecting cross-sectional scans of solar absorption spectra through the volcanic plume by operating the platform in stop-and-go patterns in 5 to 10 kilometers distance from the crater region. We successfully detected correlated intra-plume enhancements of CO2 and volcanic SO2, HF, HCl, and BrO. The path-integrated volcanic CO2 enhancements amounted to about 0.5 ppm (on top of the ˜400 ppm background). Key to successful detection of volcanic CO2 was A) the simultaneous observation of the O2 total column which allowed for correcting changes in the CO2 column caused by changes in observer altitude and B) the simultaneous measurement of volcanic species co-emitted with CO2 which allowed for discriminating intra-plume and extra-plume observations. The latter were used for subtracting the atmospheric CO2 background. The field study suggests that our remote sensing observatory is a candidate technique for volcano monitoring in safe distance from the crater region.

  16. The Role of Combination Techniques in Maximizing the Utility of Precipitation Estimates from Several Multi-Purpose Remote-Sensing Systems

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.; Curtis, Scott; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Multi-purpose remote-sensing products from various satellites have proved crucial in developing global estimates of precipitation. Examples of these products include low-earth-orbit and geosynchronous-orbit infrared (leo- and geo-IR), Outgoing Longwave Radiation (OLR), Television Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS) data, and passive microwave data such as that from the Special Sensor Microwave/ Imager (SSM/I). Each of these datasets has served as the basis for at least one useful quasi-global precipitation estimation algorithm; however, the quality of estimates varies tremendously among the algorithms for the different climatic regions around the globe.

  17. Remotely-Sensed Geology from Lander-Based to Orbital Perspectives: Results for FIDO Rover Field Tests

    NASA Technical Reports Server (NTRS)

    Jolliff, B.; Moersch, J.; Knoll, A.; Morris, R.; Arvidson, R.; Gilmore, M.; Greeley, R.; Herkenhoff, K.; McSween, H.; Squyres, S.

    2000-01-01

    Tests of the FIDO (Field Integration Design and Operations) rover and Athena-like operational scenarios were conducted May 7-16, 2000. A group located at the Jet Propulsion Lab, Pasadena, CA, formed the Core Operations Team (COT) that designed experiments and command sequences while another team tracked, maintained, and secured the rover in the field. The COT had no knowledge of the specific field location, thus the tests were done "blind." In addition to FIDO rover instrumentation, the COT had access to LANDSAT 7, TIMS, and AVIRIS regional coverage and color descent images. Using data from the FIDO instruments, primarily a color microscopic imager (CMI), infrared point spectrometer (IPS; 1.5-2.4 microns), and a three-color stereo panoramic camera (Pancam), the COT correlated lithologic features (mineralogy, rock types) from the simulated landing site to a regional scale. The May test results provide an example of how to relate site geology from landed rover investigations to the regional geology using remote sensing. The capability to relate mineralogic signatures using the point IR spectrometer to remotely sensed, multispectral or hyperspectral data proved to be key to integration of the in-situ and remote data. This exercise demonstrated the potential synergy between lander-based and orbital data, and highlighted the need to investigate a landing site in detail and at multiple scales.

  18. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  19. Cloudnet Project

    DOE Data Explorer

    Hogan, Robin

    2008-01-15

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  20. Remote sensing in the coming decade: the vision and the reality

    NASA Astrophysics Data System (ADS)

    Gail, William B.

    2006-08-01

    Investment in understanding the Earth pays off twice. It enables pursuit of scientific questions that rank among the most interesting and profound of our time. It also serves society's practical need for increased prosperity and security. Over the last half-century, we have built a sophisticated network of satellites, aircraft, and ground-based remote sensing systems to provide the raw information from which we derive Earth knowledge. This network has served us well in the development of science and the provision of operational services. In the next decade, the demand for such information will grow dramatically. New remote sensing capabilities will emerge. Rapid evolution of Internet geospatial and location-based services will make communication and sharing of Earth knowledge much easier. Governments, businesses, and consumers will all benefit. But this exciting future is threatened from many directions. Risks range from technology and market uncertainties in the private sector to budget cuts and project setbacks in the public sector. The coming decade will see a dramatic confrontation between the vision of what needs to be accomplished in Earth remote sensing and the reality of our resources and commitment. The outcome will have long-term implications for both the remote sensing community and society as a whole.

  1. SPOT satellite family: Past, present, and future of the operations in the mission and control center

    NASA Technical Reports Server (NTRS)

    Philippe, Pacholczyk

    1993-01-01

    SPOT sun-synchronous remote sensing satellites are operated by CNES since February 1986. Today, the SPOT mission and control center (CCM) operates SPOT1, SPOT2, and is ready to operate SPOT3. During these seven years, the way to operate changed and the CCM, initially designed for the control of one satellite, has been modified and upgraded to support these new operating modes. All these events have shown the performances and the limits of the system. A new generation of satellite (SPOT4) will continue the remote sensing mission during the second half of the 90's. Its design takes into account the experience of the first generation and supports several improvements. A new generation of control center (CMP) has been developed and improves the efficiency, quality, and reliability of the operations. The CMP is designed for operating two satellites at the same time during launching, in-orbit testing, and operating phases. It supports several automatic procedures and improves data retrieval and reporting.

  2. Torque sensor

    NASA Astrophysics Data System (ADS)

    Fgeppert, E.

    1984-09-01

    Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.

  3. Methods and costs associated with outfitting light aircraft for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Rhodes, O. L.; Zetka, E. F.

    1973-01-01

    This document was designed to provide the potential user of a light aircraft remote sensor platform/data gathering system with general information on aircraft definition, implementation complexity, costs, scheduling and operational factors involved in this type of activity. Most of the subject material was developed from actual situations and problem areas encountered during the build-up cycle and early phases of flight operations.

  4. Earth view: A business guide to orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1990-01-01

    The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.

  5. Human-in-the-loop evaluation of RMS Active Damping Augmentation

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.

    1993-01-01

    Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).

  6. The Texas Remote Sensing Training Project

    NASA Technical Reports Server (NTRS)

    Wells, J. B.

    1975-01-01

    The project was designed to train federal, state and regional agency managers, scientists and engineers. A one-week seminar was designed and implemented to build vocabulary, introduce technical subject areas and give students enough training to allow them to relate remote sensing technology to operational agency projects. The seminar was designed to perform the dual function of conveying enough remote sensing information to be of value as a stand-alone and preparing students for detailed pattern recognition training. The LARSYS III portion of the training project was executed exactly as designed in the LARSYS training materials package; the LARSYS package did not contain a LANDSAT training module. Two LANDSAT training modules were developed using Texas LANDSAT data. One module contained central Texas data and the second module contained coastal zone data.

  7. NASA programs in technology transfer and their relation to remote sensing education

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1980-01-01

    Technology transfer to users is a central feature of NASA programs. In each major area of responsibility, a variety of mechanisms was established to provide for this transfer of operational capability to the proper end user, be it a Federal agency, industry, or other public sector users. In addition, the Technology Utilization program was established to cut across all program areas and to make available a wealth of 'spinoff' technology (i.e., secondary applications of space technology to ground-based use). The transfer of remote sensing technology, particularly to state and local users, presents some real challenges in application and education for NASA and the university community. The agency's approach to the transfer of remote sensing technology and the current and potential role of universities in the process are considered.

  8. The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM)

    USGS Publications Warehouse

    Slonecker, Terry; Jones, Daniel K.; Pellerin, Brian A.

    2016-01-01

    Due to a combination of factors, such as a new coastal/aerosol band and improved radiometric sensitivity of the Operational Land Imager aboard Landsat 8, the atmospherically-corrected Surface Reflectance product for Landsat data, and the growing availability of corrected fDOM data from U.S. Geological Survey gaging stations, moderate-resolution remote sensing of fDOM may now be achievable. This paper explores the background of previous efforts and shows preliminary examples of the remote sensing and data relationships between corrected fDOM and Landsat 8 reflectance values. Although preliminary results before and after Hurricane Sandy are encouraging, more research is needed to explore the full potential of Landsat 8 to continuously map fDOM in a number of water profiles.

  9. Multi-crop area estimation and mapping on a microprocessor/mainframe network

    NASA Technical Reports Server (NTRS)

    Sheffner, E.

    1985-01-01

    The data processing system is outlined for a 1985 test aimed at determining the performance characteristics of area estimation and mapping procedures connected with the California Cooperative Remote Sensing Project. The project is a joint effort of the USDA Statistical Reporting Service-Remote Sensing Branch, the California Department of Water Resources, NASA-Ames Research Center, and the University of California Remote Sensing Research Program. One objective of the program was to study performance when data processing is done on a microprocessor/mainframe network under operational conditions. The 1985 test covered the hardware, software, and network specifications and the integration of these three components. Plans for the year - including planned completion of PEDITOR software, testing of software on MIDAS, and accomplishment of data processing on the MIDAS-VAX-CRAY network - are discussed briefly.

  10. The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM).

    PubMed

    Slonecker, E Terrence; Jones, Daniel K; Pellerin, Brian A

    2016-06-30

    Due to a combination of factors, such as a new coastal/aerosol band and improved radiometric sensitivity of the Operational Land Imager aboard Landsat 8, the atmospherically-corrected Surface Reflectance product for Landsat data, and the growing availability of corrected fDOM data from U.S. Geological Survey gaging stations, moderate-resolution remote sensing of fDOM may now be achievable. This paper explores the background of previous efforts and shows preliminary examples of the remote sensing and data relationships between corrected fDOM and Landsat 8 reflectance values. Although preliminary results before and after Hurricane Sandy are encouraging, more research is needed to explore the full potential of Landsat 8 to continuously map fDOM in a number of water profiles. Published by Elsevier Ltd.

  11. Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies

    NASA Technical Reports Server (NTRS)

    Myneni, R. B.; Ganapol, B. D.; Asrar, G.

    1992-01-01

    The problem of remote sensing the canopy photosynthetic and stomatal conductance efficiencies is investigated with the aid of one- and three-dimensional radiative transfer methods coupled to a semi-empirical mechanistic model of leaf photosynthesis and stomatal conductance. Desertlike vegetation is modeled as clumps of leaves randomly distributed on a bright dry soil with partial ground cover. Normalized difference vegetation index (NDVI), canopy photosynthetic (Ep), and stomatal efficiencies (Es) are calculated for various geometrical, optical, and illumination conditions. The contribution of various radiative fluxes to estimates of Ep is evaluated and the magnitude of errors in bulk canopy formulation of problem parameters are quantified. The nature and sensitivity of the relationship between Ep and Es to NDVI is investigated, and an algorithm is proposed for use in operational remote sensing.

  12. Two Optical Atmospheric Remote Sensing Techniques and AN Associated Analytic Solution to a Class of Integral Equations

    NASA Astrophysics Data System (ADS)

    Manning, Robert Michael

    This work concerns itself with the analysis of two optical remote sensing methods to be used to obtain parameters of the turbulent atmosphere pertinent to stochastic electromagnetic wave propagation studies, and the well -posed solution to a class of integral equations that are central to the development of these remote sensing methods. A remote sensing technique is theoretically developed whereby the temporal frequency spectrum of the scintillations of a stellar source or a point source within the atmosphere, observed through a variable radius aperture, is related to the space-time spectrum of atmospheric scintillation. The key to this spectral remote sensing method is the spatial filtering performed by a finite aperture. The entire method is developed without resorting to a priori information such as results from stochastic wave propagation theory. Once the space-time spectrum of the scintillations is obtained, an application of known results of atmospheric wave propagation theory and simple geometric considerations are shown to yield such important information such as the spectrum of atmospheric turbulence, the cross-wind velocity, and the path profile of the atmospheric refractive index structure parameter. A method is also developed to independently verify the Taylor frozen flow hypothesis. The success of the spectral remote sensing method relies on the solution to a Fredholm integral equation of the first kind. An entire class of such equations, that are peculiar to inverse diffraction problems, is studied and a well-posed solution (in the sense of Hadamard) is obtained and probed. Conditions of applicability are derived and shown not to limit the useful operating range of the spectral remote sensing method. The general integral equation solution obtained is then applied to another remote sensing problem having to do with the characterization of the particle size distribution to atmospheric aerosols and hydrometeors. By measuring the diffraction pattern in the focal plane of a lens created by the passage of a laser beam through a distribution of particles, it is shown that the particle-size distribution of the particles can be obtained. An intermediate result of the analysis also gives the total volume concentration of the particles.

  13. Guide to remote-sensor data systems

    NASA Technical Reports Server (NTRS)

    Dewitt, R. R.; Ellison, J. L.

    1980-01-01

    Remote sensing data-handbook presents theoretical and practical information on spaceborne sensors and associated systems for Earth-resources applications. Handbook provides discussion on historical information, principles of operations, factors affecting performances, nature of data output, and system required to process data and trends in research and development.

  14. The atmospheric correction algorithm for HY-1B/COCTS

    NASA Astrophysics Data System (ADS)

    He, Xianqiang; Bai, Yan; Pan, Delu; Zhu, Qiankun

    2008-10-01

    China has launched her second ocean color satellite HY-1B on 11 Apr., 2007, which carried two remote sensors. The Chinese Ocean Color and Temperature Scanner (COCTS) is the main sensor on HY-1B, and it has not only eight visible and near-infrared wavelength bands similar to the SeaWiFS, but also two more thermal infrared bands to measure the sea surface temperature. Therefore, COCTS has broad application potentiality, such as fishery resource protection and development, coastal monitoring and management and marine pollution monitoring. Atmospheric correction is the key of the quantitative ocean color remote sensing. In this paper, the operational atmospheric correction algorithm of HY-1B/COCTS has been developed. Firstly, based on the vector radiative transfer numerical model of coupled oceanatmosphere system- PCOART, the exact Rayleigh scattering look-up table (LUT), aerosol scattering LUT and atmosphere diffuse transmission LUT for HY-1B/COCTS have been generated. Secondly, using the generated LUTs, the exactly operational atmospheric correction algorithm for HY-1B/COCTS has been developed. The algorithm has been validated using the simulated spectral data generated by PCOART, and the result shows the error of the water-leaving reflectance retrieved by this algorithm is less than 0.0005, which meets the requirement of the exactly atmospheric correction of ocean color remote sensing. Finally, the algorithm has been applied to the HY-1B/COCTS remote sensing data, and the retrieved water-leaving radiances are consist with the Aqua/MODIS results, and the corresponding ocean color remote sensing products have been generated including the chlorophyll concentration and total suspended particle matter concentration.

  15. Review of power requirements for satellite remote sensing systems

    NASA Technical Reports Server (NTRS)

    Morain, Stanley A.

    1988-01-01

    The space environment offers a multitude of attributes and opportunities to be used to enhance human life styles and qualities of life for all future generations, worldwide. Among the prospects having immense social as well as economic benefits are earth-observing systems capable of providing near real-time data in such areas as food and fiber production, marine fisheries, ecosystem monitoring, disaster assessment, and global environmental exchanges. The era of Space Station, the Shuttle program, the planned unmanned satellites in both high and low Earth orbit will transfer to operational status what, until now, has been largely research and development proof of concept for remotely sensing Earth's natural and cultural resources. An important aspect of this operational status focuses on the orbital designs and power requirements needed to optimally sense any of these important areas.

  16. The Penn State ORSER system for processing and analyzing ERTS and other MSS data

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Borden, F. Y.; Weeden, H. A.

    1974-01-01

    The author has identified the following significant results. The office for Remote Sensing of Earth Resources (ORSER) of the Space Science and Engineering Laboratory at the Pennsylvania State University has developed an extensive operational system for processing and analyzing ERTS-1 and similar multispectral data. The ORSER system was developed for use by a wide variety of researchers working in remote sensing. Both photointerpretive techniques and automatic computer processing methods have been developed and used, separately and in a combined approach. A remote Job Entry system permits use of an IBM 370/168 computer from any compatible remote terminal, including equipment tied in by long distance telephone connections. An elementary cost analysis has been prepared for the processing of ERTS data.

  17. Remote Sensing of Complex Flows by Doppler Wind Lidar: Issues and Preliminary Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Boquet, Matthieu; Burin Des Roziers, Edward

    Remote sensing of winds using lidar has become popular and useful in the wind energy industry. Extensive experience has been gained with using lidar for applications including land-based and offshore resource assessment, plant operations, and turbine control. Prepared by members of International Energy Agency Task 32, this report describes the state of the art in the use of Doppler wind lidar for resource assessment in complex flows. The report will be used as input for future recommended practices on this topic.

  18. Global geomorphology: Report of Working Group Number 1

    NASA Technical Reports Server (NTRS)

    Douglas, I.

    1985-01-01

    Remote sensing was considered invaluable for seeing landforms in their regional context and in relationship to each other. Sequential images, such as those available from LANDSAT orbits provide a means of detecting landform change and the operation of large scale processes, such as major floods in semiarid regions. The use of remote sensing falls into two broad stages: (1) the characterization or accurate description of the features of the Earth's surface; and (2) the study of landform evolution. Recommendations for future research are made.

  19. THE IDEA IS TO USEMODIS IN CONJUNCTION WITH THE CURRENT LIMITED LANDSAT CAPABILITY, COMMERCIAL SATELLITES, ANDUNMANNED AERIAL VEHICLES (UAV), IN A MULTI-STAGE APPROACH TO MEET EPA INFORMATION NEEDS.REMOTE SENSING OVERVIEW: EPA CAPABILITIES, PRIORITY AGENCY APPLICATIONS, SENSOR/AIRCRAFT CAPABILITIES, COST CONSIDERATIONS, SPECTRAL AND SPATIAL RESOLUTIONS, AND TEMPORAL CONSIDERATIONS

    EPA Science Inventory

    EPA remote sensing capabilities include applied research for priority applications and technology support for operational assistance to clients across the Agency. The idea is to use MODIS in conjunction with the current limited Landsat capability, commercial satellites, and Unma...

  20. Experimental validation of a millimeter wave radar technique to remotely sense atmospheric pressure at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1984-01-01

    Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.

  1. Applications of remote sensing to estuarine problems. [estuaries of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.

    1975-01-01

    A variety of siting problems for the estuaries of the lower Chesapeake Bay have been solved with cost beneficial remote sensing techniques. Principal techniques used were repetitive 1:30,000 color photography of dye emitting buoys to map circulation patterns, and investigation of water color boundaries via color and color infrared imagery to scales of 1:120,000. Problems solved included sewage outfall siting, shoreline preservation and enhancement, oil pollution risk assessment, and protection of shellfish beds from dredge operations.

  2. Some applications of remote sensing in atmospheric monitoring programs

    NASA Technical Reports Server (NTRS)

    Heller, A. N.; Bryson, J. C.; Vasuki, N. C.

    1972-01-01

    The applications of remote sensing in atmospheric monitoring programs are described. The organization, operations, and functions of an air quality monitoring network at New Castle County, Delaware is discussed. The data obtained by the air quality monitoring network ground stations and the equipment used to obtain atmospheric data are explained. It is concluded that correlation of the information obtained by the network will make it possible to anticipate air pollution problems in the Chesapeake Bay area before a crisis develops.

  3. NASA's Agricultural Program: A USDA/Grower Partnership

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Thomas, Michael

    2002-01-01

    Ag20/20 is a partnership between USDA, NASA, and four national commodity associations. It is driven by the information needs of U.S. farmers. Ag20/20 is focused on utilization of earth science and remote sensing for decision-making and oriented toward economically viable operational solutions. Its purpose is to accelerate the use of remote sensing and other geospatial technologies on the farm to: 1) Increase the production efficiency of the American farmer; 2) Reduce crop production risks; 3) Improve environmental stewardship tools for agricultural production.

  4. Special section introduction on MicroMars to MegaMars

    USGS Publications Warehouse

    Bridges, Nathan T.; Dundas, Colin M.; Edgar, Lauren

    2016-01-01

    The study of Earth's surface and atmosphere evolved from local investigations to the incorporation of remote sensing on a global scale. The study of Mars has followed the opposite progression, beginning with telescopic observations, followed by flyby and orbital missions, landers, and finally rover missions in the last ∼20 years. This varied fleet of spacecraft (seven of which are currently operating as of this writing) provides a rich variety of datasets at spatial scales ranging from microscopic images to synoptic orbital remote sensing.

  5. Evaluating the Use of Remote Sensing Data in the USAID Famine Early Warning Systems Network

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Brickley, Elizabeth B.

    2011-01-01

    The US Agency for International Development (USAID) s Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to food insecurity emergencies on three continents. FEWS NET uses satellite remote sensing and ground observations of rainfall and vegetation in order to provide information on drought, floods and other extreme weather events to decision makers. Previous research has presented results from a professional review questionnaire with FEWS NET expert end-users whose focus was to elicit Earth observation requirements. The review provided FEWS NET operational requirements and assessed the usefulness of additional remote sensing data. Here we analyzed 1342 food security update reports from FEWS NET. The reports consider the biophysical, socioeconomic, and contextual influences on the food security in 17 countries in Africa from 2000-2009. The objective was to evaluate the use of remote sensing information in comparison with other important factors in the evaluation of food security crises. The results show that all 17 countries use rainfall information, agricultural production statistics, food prices and food access parameters in their analysis of food security problems. The reports display large scale patterns that are strongly related to history of the FEWS NET program in each country. We found that rainfall data was used 84% of the time, remote sensing of vegetation 28% of the time, and gridded crop models 10%, reflecting the length of use of each product in the regions. More investment is needed in training personnel on remote sensing products to improve use of data products throughout the FEWS NET system.

  6. Challenges of Remote Sensing and Spatial Information Education and Technology Transfer in a Fast Developing Industry

    NASA Astrophysics Data System (ADS)

    Tsai, F.; Chen, L.-C.

    2014-04-01

    During the past decade, Taiwan has experienced an unusual and fast growing in the industry of mapping, remote sensing, spatial information and related markets. A successful space program and dozens of advanced airborne and ground-based remote sensing instruments as well as mobile mapping systems have been implemented and put into operation to support the vast demands of geospatial data acquisition. Moreover, in addition to the government agencies and research institutes, there are also tens of companies in the private sector providing geo-spatial data and services. However, the fast developing industry is also posing a great challenge to the education sector in Taiwan, especially the higher education for geo-spatial information. Facing this fast developing industry, the demands of skilled professionals and new technologies in order to address diversified needs are indubitably high. Consequently, while delighting in the expanding and prospering benefitted from the fast growing industry, how to fulfill these demands has become a challenge for the remote sensing and spatial information disciplines in the higher education institutes in Taiwan. This paper provides a brief insight into the status of the remote sensing and spatial information industry in Taiwan as well as the challenges of the education and technology transfer to support the increasing demands and to ensure the continuous development of the industry. In addition to the report of the current status of the remote sensing and spatial information related courses and programs in the colleges and universities, current and potential threatening issues and possible resolutions are also discussed in different points of view.

  7. Multispectral, hyperspectral, and LiDAR remote sensing and geographic information fusion for improved earthquake response

    NASA Astrophysics Data System (ADS)

    Kruse, F. A.; Kim, A. M.; Runyon, S. C.; Carlisle, Sarah C.; Clasen, C. C.; Esterline, C. H.; Jalobeanu, A.; Metcalf, J. P.; Basgall, P. L.; Trask, D. M.; Olsen, R. C.

    2014-06-01

    The Naval Postgraduate School (NPS) Remote Sensing Center (RSC) and research partners have completed a remote sensing pilot project in support of California post-earthquake-event emergency response. The project goals were to dovetail emergency management requirements with remote sensing capabilities to develop prototype map products for improved earthquake response. NPS coordinated with emergency management services and first responders to compile information about essential elements of information (EEI) requirements. A wide variety of remote sensing datasets including multispectral imagery (MSI), hyperspectral imagery (HSI), and LiDAR were assembled by NPS for the purpose of building imagery baseline data; and to demonstrate the use of remote sensing to derive ground surface information for use in planning, conducting, and monitoring post-earthquake emergency response. Worldview-2 data were converted to reflectance, orthorectified, and mosaicked for most of Monterey County; CA. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired at two spatial resolutions were atmospherically corrected and analyzed in conjunction with the MSI data. LiDAR data at point densities from 1.4 pts/m2 to over 40 points/ m2 were analyzed to determine digital surface models. The multimodal data were then used to develop change detection approaches and products and other supporting information. Analysis results from these data along with other geographic information were used to identify and generate multi-tiered products tied to the level of post-event communications infrastructure (internet access + cell, cell only, no internet/cell). Technology transfer of these capabilities to local and state emergency response organizations gives emergency responders new tools in support of post-disaster operational scenarios.

  8. The remote sensing data from your UAV probably isn't scientific, but it should be!

    NASA Astrophysics Data System (ADS)

    McKee, Mac

    2017-05-01

    The application of unmanned autonomous vehicles (UAVs), or "drones", to generate data to support better decisions for agricultural management and farm operations is a relatively new technology that is now beginning to enter the market. This potentially disruptive technology is still in its infancy and must mature in ways that the current market cannot clearly foresee and probably does not fully understand. Major technical and regulatory hurdles must be overcome before the full potential of this remote sensing technology can be realized in agricultural applications. Further, and most importantly, buyers and sellers in today's market must both gain a deeper understanding of the potential that this technology might achieve and the technical challenges that must be met before advances that will bring significant market value will be possible. A lack of understanding of some of the basic concepts of remote sensing can translate into poor decisions regarding the acquisition and deployment of UAVs in agriculture. This paper focuses on some of the details of remote sensing that few growers, and, indeed, few university researchers fully understand.

  9. Multitask SVM learning for remote sensing data classification

    NASA Astrophysics Data System (ADS)

    Leiva-Murillo, Jose M.; Gómez-Chova, Luis; Camps-Valls, Gustavo

    2010-10-01

    Many remote sensing data processing problems are inherently constituted by several tasks that can be solved either individually or jointly. For instance, each image in a multitemporal classification setting could be taken as an individual task but relation to previous acquisitions should be properly considered. In such problems, different modalities of the data (temporal, spatial, angular) gives rise to changes between the training and test distributions, which constitutes a difficult learning problem known as covariate shift. Multitask learning methods aim at jointly solving a set of prediction problems in an efficient way by sharing information across tasks. This paper presents a novel kernel method for multitask learning in remote sensing data classification. The proposed method alleviates the dataset shift problem by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine (SVM) as core learner and two regularization schemes are introduced: 1) the Euclidean distance of the predictors in the Hilbert space; and 2) the inclusion of relational operators between tasks. Experiments are conducted in the challenging remote sensing problems of cloud screening from multispectral MERIS images and for landmine detection.

  10. Information recovery through image sequence fusion under wavelet transformation

    NASA Astrophysics Data System (ADS)

    He, Qiang

    2010-04-01

    Remote sensing is widely applied to provide information of areas with limited ground access with applications such as to assess the destruction from natural disasters and to plan relief and recovery operations. However, the data collection of aerial digital images is constrained by bad weather, atmospheric conditions, and unstable camera or camcorder. Therefore, how to recover the information from the low-quality remote sensing images and how to enhance the image quality becomes very important for many visual understanding tasks, such like feature detection, object segmentation, and object recognition. The quality of remote sensing imagery can be improved through meaningful combination of the employed images captured from different sensors or from different conditions through information fusion. Here we particularly address information fusion to remote sensing images under multi-resolution analysis in the employed image sequences. The image fusion is to recover complete information by integrating multiple images captured from the same scene. Through image fusion, a new image with high-resolution or more perceptive for human and machine is created from a time series of low-quality images based on image registration between different video frames.

  11. Remote sensing of Earth's atmosphere and surface using a digital array scanned interferometer: A new type of imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Hammer, Philip D.; Valero, Francisco P. J.; Peterson, David L.; Smith, William Hayden

    1991-01-01

    The capabilities of the digital array scanned interferometer (DASI) class of instruments for measuring terrestrial radiation fields over the visible to mid-infrared are evaluated. DASI's are capable of high throughput, sensitivity and spectral resolution and have the potential for field-of-view spatial discrimination (an imaging spectrometer). The simplicity of design and operation of DASI's make them particularly suitable for field and airborne platform based remote sensing. The long term objective is to produce a versatile field instrument which may be applied toward a variety of atmospheric and surface studies. The operation of DASI and its advantages over other spectrometers are discussed.

  12. Private sector involvement in civil space remote sensing. Volume 1: Report

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A survey of private sector developers, users, and interpreters of Earth resources data was conducted in an effort to encourage private investment and participation in remote sensing systems. Results indicate positive interest in participation beyond the current hardware contracting level, however, there is a substantial gap between current market levels and system costs. Issues identified include the selection process for an operating entity, the public/private interface, data collection and access policies, price and profit regulation in a subsidized system, international participation, and the responsibility for research and development. It was agreed that the cost, complexity, and security implications of integrated systems need not be an absolute bar to their private operation.

  13. Hemispheric and Topographic Asymmetry of Magnetospheric Particle Irradiation for Icy Moon Surfaces

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Sturner, S. J.

    2007-01-01

    All surfaces of icy moons without significant atmospheres, i.e. all except Titan in the giant planet systems, are irradiated by hot plasma and more energetic charged particles from the local magnetospheric environments. This irradiation can significantly impact the chemical composition, albedo, and detectable presence of signs of life on the sensible surfaces, while also limiting lifetimes and science operations of orbital spacecraft for extreme radiation environments as at Europa. Planning of surface remote sensing and lander operations, and interpretation of remote sensing and in-situ measurements, should include consideration of natural shielding afforded by the body of the moon, by any intrinsic or induced magnetic fields as at Ganyrnede, and by topographic structures.

  14. A high throughput geocomputing system for remote sensing quantitative retrieval and a case study

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting

    2011-12-01

    The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.

  15. Unique Offerings of the ISS as an Earth Observing Platform

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    2013-01-01

    The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow.

  16. Space-Derived Imagery and a Commercial Remote Sensing Industry: Impossible Dream or Inevitable Reality?

    NASA Astrophysics Data System (ADS)

    Murray, Felsher

    Landsat-1 was launched in 1972 as a research satellite. Many of us viewed this satellite as a precursor to remote sensing "commercialization." Indeed since that time, the birth, growth and maturation of a remote sensing "industry" has been an ongoing objective for much of the U.S. private sector engaged in space and ground-segment activities related to the acquisition, analysis, and dissemination of imagery. In September 1999 a U.S. commercial entity, Space Imaging, Inc. launched its 1-meter pan/4-meter multispectral IKONOS sensor. DigitalGlobe, Inc. (nee EarthWatch, Inc.) matched this feat in October 2001. Thus, a full 30 years later, we are finally on the brink of building a true remote sensing information industry based on the global availability of competitively-priced space- derived imagery of the Earth. The upcoming availability of similar imagery from non-U.S. sources as ImageSat and U.S. sources as ORBIMAGE will only strengthen that reality. However, a remote sensing industry can only grow by allowing these entities (in times of peace) unencumbered access to a world market. And that market continues to expand -- up 11% in 2001, with gross revenues of U.S. commercial remote sensing firms alone reaching 2.44 billion, according to a joint NASA/ASPRS industry survey. However, the 30-year gap between the research-labeled Landsat-1 and our current commercial successes was not technology-driven. That lacuna was purely political -- driven by valid concerns related to national security. Although the world's governments have cooperated thoroughly and completely in areas related to satellite telecommunications, cooperation in space-derived image information is still today done cautiously and on a case-by-case basis -- and then only for science- based undertakings. It is still a fact that, except for the United States, all other Earth-imaging satellites/sensors flying today are owned, operated, and their products disseminated, by national governments -- and not private sector entities. Will the template now fashioned by the U.S. -- that of licensing private industry to build, fly, and operate remote sensing satellites as well as to distribute their imagery worldwide -- be replicated by other nations? Eventually, yes. Availability of the World Wide Web is an international communications reality. Availability of world wide imaging will be just as real. And much of that imagery will be marketed, sold, and distributed via that same global Internet. I feel that as an expected outcome of our technological age, we can ensure not only our own national security but international security as well, by assuring worldwide accessibility to worldwide space- derived image information. This requires -- in fact demands -- the presence of a viable international remote sensing industry. It is not impossible; It is inevitable.

  17. Crosscutting Airborne Remote Sensing Technologies for Oil and Gas and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, A. D.; Frankenberg, C.; Green, R. O.; Eastwood, M. L.; Thompson, D. R.; Thorpe, A. K.

    2015-01-01

    Airborne imaging spectroscopy has evolved dramatically since the 1980s as a robust remote sensing technique used to generate 2-dimensional maps of surface properties over large spatial areas. Traditional applications for passive airborne imaging spectroscopy include interrogation of surface composition, such as mapping of vegetation diversity and surface geological composition. Two recent applications are particularly relevant to the needs of both the oil and gas as well as government sectors: quantification of surficial hydrocarbon thickness in aquatic environments and mapping atmospheric greenhouse gas components. These techniques provide valuable capabilities for petroleum seepage in addition to detection and quantification of fugitive emissions. New empirical data that provides insight into the source strength of anthropogenic methane will be reviewed, with particular emphasis on the evolving constraints enabled by new methane remote sensing techniques. Contemporary studies attribute high-strength point sources as significantly contributing to the national methane inventory and underscore the need for high performance remote sensing technologies that provide quantitative leak detection. Imaging sensors that map spatial distributions of methane anomalies provide effective techniques to detect, localize, and quantify fugitive leaks. Airborne remote sensing instruments provide the unique combination of high spatial resolution (<1 m) and large coverage required to directly attribute methane emissions to individual emission sources. This capability cannot currently be achieved using spaceborne sensors. In this study, results from recent NASA remote sensing field experiments focused on point-source leak detection, will be highlighted. This includes existing quantitative capabilities for oil and methane using state-of-the-art airborne remote sensing instruments. While these capabilities are of interest to NASA for assessment of environmental impact and global climate change, industry similarly seeks to detect and localize leaks of both oil and methane across operating fields. In some cases, higher sensitivities desired for upstream and downstream applications can only be provided by new airborne remote sensing instruments tailored specifically for a given application. There exists a unique opportunity for alignment of efforts between commercial and government sectors to advance the next generation of instruments to provide more sensitive leak detection capabilities, including those for quantitative source strength determination.

  18. The NASA CYGNSS mission: a pathfinder for GNSS scatterometry remote sensing applications

    NASA Astrophysics Data System (ADS)

    Rose, Randy; Gleason, Scott; Ruf, Chris

    2014-10-01

    Global Navigation Satellite System (GNSS) based scatterometry offers breakthrough opportunities for wave, wind, ice, and soil moisture remote sensing. Recent developments in electronics and nano-satellite technologies combined with modeling techniques developed over the past 20 years are enabling a new class of remote sensing capabilities that present more cost effective solutions to existing problems while opening new applications of Earth remote sensing. Key information about the ocean and global climate is hidden from existing space borne observatories because of the frequency band in which they operate. Using GNSS-based bi-static scatterometry performed by a constellation of microsatellites offers remote sensing of ocean wave, wind, and ice data with unprecedented temporal resolution and spatial coverage across the full dynamic range of ocean wind speeds in all precipitating conditions. The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a space borne mission being developed to study tropical cyclone inner core processes. CYGNSS consists of 8 GPS bi-static radar receivers to be deployed on separate micro-satellites in October 2016. CYGNSS will provide data to address what are thought to be the principle deficiencies with current tropical cyclone intensity forecasts: inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the tropical cyclone life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. It is anticipated that numerous additional Earth science applications can also benefit from the cost effective high spatial and temporal sampling capabilities of GNSS remote sensing. These applications include monitoring of rough and dangerous sea states, global observations of sea ice cover and extent, meso-scale ocean circulation studies, and near surface soil moisture observations. This presentation provides a primer for GNSS based scatterometry, an overview of NASA's CYGNSS mission and its expected performance, as well as a summary of possible other GNSS based remote sensing applications.

  19. Hyperspectral forest monitoring and imaging implications

    NASA Astrophysics Data System (ADS)

    Goodenough, David G.; Bannon, David

    2014-05-01

    The forest biome is vital to the health of the earth. Canada and the United States have a combined forest area of 4.68 Mkm2. The monitoring of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of improved information products to land managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory (major forest species), forest health, foliar biochemistry, biomass, and aboveground carbon. Operationally there is a requirement for a mix of airborne and satellite approaches. This paper surveys some methods and results in hyperspectral sensing of forests and discusses the implications for space initiatives with hyperspectral sensing

  20. [Remote sensing monitoring and screening for urban black and odorous water body: A review.

    PubMed

    Shen, Qian; Zhu, Li; Cao, Hong Ye

    2017-10-01

    Continuous improvement of urban water environment and overall control of black and odorous water body are not merely national strategic needs with the action plan for prevention and treatment of water pollution, but also the hot issues attracting the attention of people. Most previous researches concentrated on the study of cause, evaluation and treatment measures of this phenomenon, and there are few researches on the monitoring using remote sensing, which is often a strain to meet the national needs of operational monitoring. This paper mainly summarized the urgent research problems, mainly including the identification and classification standard, research on the key technologies, and the frame of remote sensing screening systems for the urban black and odorous water body. The main key technologies were concluded too, including the high spatial resolution image preprocessing and extraction technique for black and odorous water body, the extraction of water information in city zones, the classification of the black and odorous water, and the identification and classification technique based on satellite-sky-ground remote sensing. This paper summarized the research progress and put forward research ideas of monitoring and screening urban black and odorous water body via high spatial resolution remote sensing technology, which would be beneficial to having an overall grasp of spatial distribution and improvement progress of black and odorous water body, and provide strong technical support for controlling urban black and odorous water body.

  1. Applications of Remote Sensing to Emergency Management.

    DTIC Science & Technology

    1980-02-15

    Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.

  2. 1982 International Geoscience and Remote Sensing Symposium, Munich, West Germany, June 1-4, 1982, Digest. Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    Theoretical and experimental data which have defined and/or extended the effectiveness of remote sensing operations are explored, with consideration given to both scientific and commercial activities. The remote sensing of soil moisture, the sea surface, and oil slicks is discussed, as are programs using satellites for studying geodynamics and geodesy, currents and waves, and coastal zones. NASA, Canadian, and Japanese radar and microwave passive and active systems are described, together with algorithms and techniques for image processing and classification. The SAR-580 project is outlined, and attention is devoted to satellite applications in investigations of the structure of the atmosphere, agriculturemore » and land use, and geology. Design and performance features of various optical scanner, radar, and multispectral data processing systems and procedures are detailed.« less

  3. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  4. Navigation and Remote Sensing Payloads and Methods of the Sarvant Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Molina, P.; Fortuny, P.; Colomina, I.; Remy, M.; Macedo, K. A. C.; Zúnigo, Y. R. C.; Vaz, E.; Luebeck, D.; Moreira, J.; Blázquez, M.

    2013-08-01

    In a large number of scenarios and missions, the technical, operational and economical advantages of UAS-based photogrammetry and remote sensing over traditional airborne and satellite platforms are apparent. Airborne Synthetic Aperture Radar (SAR) or combined optical/SAR operation in remote areas might be a case of a typical "dull, dirty, dangerous" mission suitable for unmanned operation - in harsh environments such as for example rain forest areas in Brazil, topographic mapping of small to medium sparsely inhabited remote areas with UAS-based photogrammetry and remote sensing seems to be a reasonable paradigm. An example of such a system is the SARVANT platform, a fixed-wing aerial vehicle with a six-meter wingspan and a maximumtake- of-weight of 140 kilograms, able to carry a fifty-kilogram payload. SARVANT includes a multi-band (X and P) interferometric SAR payload, as the P-band enables the topographic mapping of densely tree-covered areas, providing terrain profile information. Moreover, the combination of X- and P-band measurements can be used to extract biomass estimations. Finally, long-term plan entails to incorporate surveying capabilities also at optical bands and deliver real-time imagery to a control station. This paper focuses on the remote-sensing concept in SARVANT, composed by the aforementioned SAR sensor and envisioning a double optical camera configuration to cover the visible and the near-infrared spectrum. The flexibility on the optical payload election, ranging from professional, medium-format cameras to mass-market, small-format cameras, is discussed as a driver in the SARVANT development. The paper also focuses on the navigation and orientation payloads, including the sensors (IMU and GNSS), the measurement acquisition system and the proposed navigation and orientation methods. The latter includes the Fast AT procedure, which performs close to traditional Integrated Sensor Orientation (ISO) and better than Direct Sensor Orientation (DiSO), and features the advantage of not requiring the massive image processing load for the generation of tie points, although it does require some Ground Control Points (GCPs). This technique is further supported by the availability of a high quality INS/GNSS trajectory, motivated by single-pass and repeat-pass SAR interferometry requirements.

  5. Effects of the Ionosphere on Passive Microwave Remote Sensing of Ocean Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Abaham, Saji; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Among the remote sensing applications currently being considered from space is the measurement of sea surface salinity. The salinity of the open ocean is important for understanding ocean circulation and for modeling energy exchange with the atmosphere. Passive microwave remote sensors operating near 1.4 GHz (L-band) could provide data needed to fill the gap in current coverage and to complement in situ arrays being planned to provide subsurface profiles in the future. However, the dynamic range of the salinity signal in the open ocean is relatively small and propagation effects along the path from surface to sensor must be taken into account. In particular, Faraday rotation and even attenuation/emission in the ionosphere can be important sources of error. The purpose or this work is to estimate the magnitude of these effects in the context of a future remote sensing system in space to measure salinity in L-band. Data will be presented as a function of time location and solar activity using IRI-95 to model the ionosphere. The ionosphere presents two potential sources of error for the measurement of salinity: Rotation of the polarization vector (Faraday rotation) and attenuation/emission. Estimates of the effect of these two phenomena on passive remote sensing over the oceans at L-band (1.4 GHz) are presented.

  6. A New Framework for Quantifying Lidar Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer, F.; Clifton, Andrew; Bonin, Timothy A.

    2017-03-24

    As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards discuss uncertainty due to mounting, calibration, and classificationmore » of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device. However, real-world experience has shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we propose the development of a new lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from an operational wind farm to assess the ability of the framework to predict errors in lidar-measured wind speed.« less

  7. Remote sensing of Northern mines: supporting operation and environmental monitoring in cold conditions

    NASA Astrophysics Data System (ADS)

    Tuomela, Anne; Davids, Corine; Knutsson, Sven; Knutsson, Roger; Rauhala, Anssi; Rossi, Pekka M.; Rouyet, Line

    2017-04-01

    Northern areas of Finland, Sweden and Norway have mineral-rich deposits. There are several active mines in the area but also closed ones and deposits with plans for future mining. With increasing demand for environmental protection in the sensitive Northern conditions, there is a need for more comprehensive monitoring of the mining environment. In our study, we aim to develop new opportunities to use remote sensing data from satellites and unmanned aerial vehicles (UAVs) in improving mining safety and monitoring, for example in the case of mine waste storage facilities. Remote sensing methods have evolved fast, and could in many cases enable precise, reliable, and cost-efficient data collection over large areas. The study has focused on four mining areas in Northern Fennoscandia. Freely available medium-resolution (e.g. Sentinel-1), commercial high-resolution (e.g. TerraSAR-X) and Synthetic Aperture Radar (SAR) data has been collected during 2015-2016 to study how satellite remote sensing could be used e.g. for displacement monitoring using SAR Interferometry (InSAR). Furthermore, UAVs have been utilized in similar data collection in a local scale, and also in collection of thermal infrared data for hydrological monitoring of the areas. The development and efficient use of the methods in mining areas requires experts from several fields. In addition, the Northern conditions with four distinct seasons bring their own challenges for the efficient use of remote sensing, and further complicate their integration as standardised monitoring methods for mine environments. Based on the initial results, remote sensing could especially enhance the monitoring of large-scale structures in mine areas such as tailings impoundments.

  8. Evaluating the Use of Remote Sensing Data in the U.S. Agency for International Development Famine Early Warning Systems Network

    NASA Technical Reports Server (NTRS)

    Brown, Molly Elizabeth; Brickley, Elizabeth B

    2012-01-01

    The U.S. Agency for International Development (USAID)'s Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to food insecurity emergencies on three continents. FEWS NET uses satellite remote sensing and ground observations of rainfall and vegetation in order to provide information on drought, floods, and other extreme weather events to decision makers. Previous research has presented results from a professional review questionnaire with FEWS NET expert end-users whose focus was to elicit Earth observation requirements. The review provided FEWS NET operational requirements and assessed the usefulness of additional remote sensing data. We analyzed 1342 food security update reports from FEWS NET. The reports consider the biophysical, socioeconomic, and contextual influences on the food security in 17 countries in Africa from 2000 to 2009. The objective was to evaluate the use of remote sensing information in comparison with other important factors in the evaluation of food security crises. The results show that all 17 countries use rainfall information, agricultural production statistics, food prices, and food access parameters in their analysis of food security problems. The reports display large-scale patterns that are strongly related to history of the FEWS NET program in each country. We found that rainfall data were used 84% of the time, remote sensing of vegetation 28% of the time, and gridded crop models 10% of the time, reflecting the length of use of each product in the regions. More investment is needed in training personnel on remote sensing products to improve use of data products throughout the FEWS NET system.

  9. The Indian Space Program

    NASA Technical Reports Server (NTRS)

    Talapatra, Dipak C.

    1993-01-01

    The Indian Space program aimed at providing operation space services in communications and remote sensing and using state-of-the-art space technologies is reviewed. Emphasis is placed on the development and operation of satellites and launch vehicles for providing these space services.

  10. A multiband radiometer and data acquisition system for remote sensing field research

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Robinson, B. F.; Dewitt, D. P.; Silva, L. F.; Vanderbilt, V. C.

    1981-01-01

    Specifications are described for a recently developed prototype multispectral data acquisition system which consists of multiband radiometer with 8 bands between 0.4 and 12.5 micrometers and a data recording module to record data from the radometer and ancillary sources. The systems is adaptable to helicopter, truck, or tripod platforms, as well as hand-held operation. The general characteristics are: (1) comparatively inexpensive to acquire, maintain and operate; (2) simple to operate and calibrate; (3) complete with data hardware and software; and (4) well documented for use by researchers. The instrument system is to be commercially available and can be utilized by many researchers to obtain large numbers of accurate, calibrated spectral measurements. It can be a key element in improving and advancing the capability for field research in remote sensing.

  11. Potential of Sentinel Satellites for Schistosomiasis Monitoring

    NASA Astrophysics Data System (ADS)

    Li, C.-R.; Tang, L.-L.; Niu, H.-B.; Zhou, X.-N.; Liu, Z.-Y.; Ma, L.-L.; Zhou, Y.-S.

    2012-04-01

    Schistosomiasis is a parasitic disease that menaces human health. In terms of impact this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis is the unique intermediate host of Schistosoma, and hence monitoring and controlling of the number of oncomelania is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to oncomelania breeding and reproduction, such as temperature, moisture, vegetation, soil, and rainfall, and can also provide the efficient information to determine the location, area, and spread tendency of oncomelania. Many studies show that the correlation coefficient between oncomelania densities and remote sensing environmental factors depends largely on suitable and high quality remote sensing data used in retrieve environmental factors. Research achievements on retrieving environmental factors (which are related to the living, multiplying and transmission of oncomelania) by multi-source remote data are shown firstly, including: (a) Vegetation information (e.g., Modified Soil-Adjusted Vegetation Index, Normalized Difference Moisture Index, Fractional Vegetation Cover) extracted from optical remote sensing data, such as Landsat TM, HJ-1A/HSI image; (b) Surface temperature retrieval from Thermal Infrared (TIR) and passive-microwave remote sensing data; (c) Water region, soil moisture, forest height retrieval from synthetic aperture radar data, such as Envisat SAR, DLR's ESAR image. Base on which, the requirements of environmental factor accuracy for schistosomiasis monitoring will be analyzed and summarized. Our work on applying remote sensing technique to schistosomiasis monitoring is then presented. The fuzzy information theory is employed to analyze the sensitivity and feasibility relation between oncomelania densities and environmental factors. Then a mechanism model of predicting oncomelania distribution and densities is developed. The new model is validated with field data of Dongting Lake and the dynamic monitoring of schistosomiasis breeding in Dongting Lake region is presented. Finally, emphasis are placed on analyzing the potential of Sentinel satellites for schistosomiasis monitoring. The requirements of optical high resolution data on spectral resolution, spatial resolution, radiometric resolution/accuracy, as well as the requirements of synthetic aperture radar data on operation frequency, spatial resolution, polarization, radiometric accuracy, repeat cycle are presented and then compared with the parameters of Sentinel satellites. The parameters of Sentinel satellites are also compared with those of available remote satellites, such as Envisat, Landsat, whose data are being used for schistosomiasis monitoring. The application potential of Sentinel satellites for the schistosomiasis monitoring will be concluded in the end, which will benefit for the mission operation, model development, etc.

  12. Applications of Earth Remote Sensing in Response to Meteorological Disasters

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Bell, Jordan R.; Schultz, Lori A.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.

    2013-01-01

    NASA's Short-­-term Predic1on Research and Transi1on (SPoRT) Center supports the transi1on of unique NASA and NOAA research activities to the operational weather forecasing community. Our primary partners are NOAA's National Weather Service, their Weather Forecast Offices (WFOs), and National Centers. These organizations predict natural hazards and also assist in the disaster assessment process, benefiting from remotely sensed data. In 2013, SPoRT continued to transition high resolution satellite imagery, derived products, and value-­-added analysis to WFO partners and NASA's Applied Sciences Program.

  13. Image processing methods in two and three dimensions used to animate remotely sensed data. [cloud cover

    NASA Technical Reports Server (NTRS)

    Hussey, K. J.; Hall, J. R.; Mortensen, R. A.

    1986-01-01

    Image processing methods and software used to animate nonimaging remotely sensed data on cloud cover are described. Three FORTRAN programs were written in the VICAR2/TAE image processing domain to perform 3D perspective rendering, to interactively select parameters controlling the projection, and to interpolate parameter sets for animation images between key frames. Operation of the 3D programs and transferring the images to film is automated using executive control language and custom hardware to link the computer and camera.

  14. Flood Management Enhancement Using Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Romanowski, Gregory J.

    1997-01-01

    SENTAR, Inc., entered into a cooperative agreement with NASA Goddard Space Flight Center (GSFC) in December 1994. The intent of the NASA Cooperative Agreement was to stimulate broad public use, via the Internet, of the very large remote sensing databases maintained by NASA and other agencies, thus stimulating U.S. economic growth, improving the quality of life, and contributing to the implementation of a National Information Infrastructure. SENTAR headed a team of collaborating organizations in meeting the goals of this project. SENTAR's teammates were the NASA Marshall Space Flight Center (MSFC) Global Hydrology and Climate Center (GHCC), the U.S. Army Space and Strategic Defense Command (USASSDC), and the Alabama Emergency Management Agency (EMA). For this cooperative agreement, SENTAR and its teammates accessed remotely sensed data in the Distributed Active Archive Centers, and other available sources, for use in enhancing the present capabilities for flood disaster management by the Alabama EMA. The project developed a prototype software system for addressing prediction, warning, and damage assessment for floods, though it currently focuses on assessment. The objectives of the prototype system were to demonstrate the added value of remote sensing data for emergency management operations during floods and the ability of the Internet to provide the primary communications medium for the system. To help achieve these objectives, SENTAR developed an integrated interface for the emergency operations staff to simplify acquiring and manipulating source data and data products for use in generating new data products. The prototype system establishes a systems infrastructure designed to expand to include future flood-related data and models or to include other disasters with their associated remote sensing data requirements and distributed data sources. This report covers the specific work performed during the seventh, and final, milestone period of the project, which began on 1 October 1996 and ended on 31 January 1997. In addition, it provides a summary of the entire project.

  15. Tunnel-Site Selection by Remote Sensing Techniques

    DTIC Science & Technology

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  16. Overview and highlights of Early Warning and Crop Condition Assessment project

    NASA Technical Reports Server (NTRS)

    Boatwright, G. O.; Whitehead, V. S.

    1985-01-01

    Work of the Early Warning and Crop Condition Assessment (EW/CCA) project, one of eight projects in the Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS), is reviewed. Its mission, to develop and test remote sensing techniques that enhance operational methodologies for crop condition assessment, was in response to initiatives issued by the Secretary of Agriculture. Meteorologically driven crop stress indicator models have been developed or modified for wheat, maize, grain sorghum, and soybeans. These models provide early warning alerts of potential or actual crop stresses due to water deficits, adverse temperatures, and water excess that could delay planting or harvesting operations. Recommendations are given for future research involving vegetative index numbers and the NOAA and Landsat satellites.

  17. Lidar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The laser radar, or lidar (for light detection and ranging) is an important tool for atmospheric studies. Lidar provides a unique and powerful method for unobtrusively profiling aerosols, wind, water vapor, temperature, and other atmospheric parameters. This brief overview of lidar remote sensing is focused on atmospheric applications involving pulsed lasers. The level of technical detail is aimed at the educated non-lidar expert and references are provided for further investigation of specific topics. The article is divided into three main sections. The first describes atmospheric scattering processes and the physics behind laser-atmosphere interactions. The second section highlights some of the primary lidar applications, with brief descriptions of each measurement capability. The third section describes the practical aspects of lidar operation, including the governing equation and operational considerations.

  18. Active microwave users working group program planning

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bare, J.; Brown, W. E., Jr.; Childs, L. F.; Dellwig, L. F.; Heighway, J. E.; Joosten, R.; Lewis, A. J.; Linlor, W.; Lundien, J. R.

    1978-01-01

    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured.

  19. Frostless heat pump having thermal expansion valves

    DOEpatents

    Chen, Fang C [Knoxville, TN; Mei, Viung C [Oak Ridge, TN

    2002-10-22

    A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

  20. System and method for evaluating wind flow fields using remote sensing devices

    DOEpatents

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2016-12-13

    The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.

  1. An Interoperable, Agricultural Information System Based on Satellite Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Teng, William; Chiu, Long; Doraiswamy, Paul; Kempler, Steven; Liu, Zhong; Pham, Long; Rui, Hualan

    2005-01-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of US. agricultural products and for global food security. The Goddard Space Flight Center Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide satellite remote sensing data products (e.g., rainfall) and services. The data products will include crop condition and yield prediction maps, generated from a crop growth model with satellite data inputs, in collaboration with the USDA Agricultural Research Service. The AIS will enable the remote, interoperable access to distributed data, by using the GrADS-DODS Server (GDS) and by being compliant with Open GIS Consortium standards. Users will be able to download individual files, perform interactive online analysis, as well as receive operational data flows. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as those of the USDA Foreign Agricultural Service and the U.N. World Food Program.

  2. ASTER VNIR 15 years growth to the standard imaging radiometer in remote sensing

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Masaru; Inada, Hitomi; Kikuchi, Masakuni; Sakuma, Fumihiro

    2015-10-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared Radiometer (VNIR) is the remote sensing equipment which has 3 spectral bands and one along-track stereoscopic band radiometer. ASTER VNIR's planned long life design (more than 5 years) is successfully achieved. ASTER VNIR has been imaging the World-wide Earth surface multiband images and the Global Digital Elevation Model (GDEM). VNIR data create detailed world-wide maps and change-detection of the earth surface as utilization transitions and topographical changes. ASTER VNIR's geometric resolution is 15 meters; it is the highest spatial resolution instrument on NASA's Terra spacecraft. Then, ASTER VNIR was planned for the geometrical basis map makers in Terra instruments. After 15-years VNIR growth to the standard map-maker for space remote-sensing. This paper presents VNIR's feature items during 15-year operation as change-detection images , DEM and calibration result. VNIR observed the World-wide Earth images for biological, climatological, geological, and hydrological study, those successful work shows a way on space remote sensing instruments. Still more, VNIR 15 years observation data trend and onboard calibration trend data show several guide or support to follow-on instruments.

  3. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    NASA Astrophysics Data System (ADS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie

    2014-03-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.

  4. Review of FEWS NET Biophysical Monitoring Requirements

    NASA Technical Reports Server (NTRS)

    Ross, K. W.; Brown, Molly E.; Verdin, J.; Underwood, L. W.

    2009-01-01

    The Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to famine and food insecurity. FEWS NET transforms satellite remote sensing data into rainfall and vegetation information that can be used by these decision makers. The National Aeronautics and Space Administration has recently funded activities to enhance remote sensing inputs to FEWS NET. To elicit Earth observation requirements, a professional review questionnaire was disseminated to FEWS NET expert end-users: it focused upon operational requirements to determine additional useful remote sensing data and; subsequently, beneficial FEWS NET biophysical supplementary inputs. The review was completed by over 40 experts from around the world, enabling a robust set of professional perspectives to be gathered and analyzed rapidly. Reviewers were asked to evaluate the relative importance of environmental variables and spatio-temporal requirements for Earth science data products, in particular for rainfall and vegetation products. The results showed that spatio-temporal resolution requirements are complex and need to vary according to place, time, and hazard: that high resolution remote sensing products continue to be in demand, and that rainfall and vegetation products were valued as data that provide actionable food security information.

  5. Low-cost multispectral imaging for remote sensing of lettuce health

    NASA Astrophysics Data System (ADS)

    Ren, David D. W.; Tripathi, Siddhant; Li, Larry K. B.

    2017-01-01

    In agricultural remote sensing, unmanned aerial vehicle (UAV) platforms offer many advantages over conventional satellite and full-scale airborne platforms. One of the most important advantages is their ability to capture high spatial resolution images (1-10 cm) on-demand and at different viewing angles. However, UAV platforms typically rely on the use of multiple cameras, which can be costly and difficult to operate. We present the development of a simple low-cost imaging system for remote sensing of crop health and demonstrate it on lettuce (Lactuca sativa) grown in Hong Kong. To identify the optimal vegetation index, we recorded images of both healthy and unhealthy lettuce, and used them as input in an expectation maximization cluster analysis with a Gaussian mixture model. Results from unsupervised and supervised clustering show that, among four widely used vegetation indices, the blue wide-dynamic range vegetation index is the most accurate. This study shows that it is readily possible to design and build a remote sensing system capable of determining the health status of lettuce at a reasonably low cost (

  6. Exploring Models and Data for Remote Sensing Image Caption Generation

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoqiang; Wang, Binqiang; Zheng, Xiangtao; Li, Xuelong

    2018-04-01

    Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at https://github.com/201528014227051/RSICD_optimal

  7. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  8. Remote Sensing Laboratory - RSL

    ScienceCinema

    None

    2018-01-16

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  9. The Scientific and Societal Need for Accurate Global Remote Sensing of Marine Suspended Sediments

    NASA Technical Reports Server (NTRS)

    Acker, James G.

    2006-01-01

    Population pressure, commercial development, and climate change are expected to cause continuing alteration of the vital oceanic coastal zone environment. These pressures will influence both the geology and biology of the littoral, nearshore, and continental shelf regions. A pressing need for global observation of coastal change processes is an accurate remotely-sensed data product for marine suspended sediments. The concentration, delivery, transport, and deposition of sediments is strongly relevant to coastal primary production, inland and coastal hydrology, coastal erosion, and loss of fragile wetland and island habitats. Sediment transport and deposition is also related to anthropogenic activities including agriculture, fisheries, aquaculture, harbor and port commerce, and military operations. Because accurate estimation of marine suspended sediment concentrations requires advanced ocean optical analysis, a focused collaborative program of algorithm development and assessment is recommended, following the successful experience of data refinement for remotely-sensed global ocean chlorophyll concentrations.

  10. Earth Survey Applications Division. [a bibliography

    NASA Technical Reports Server (NTRS)

    Carpenter, L. (Editor)

    1981-01-01

    Accomplishments of research and data analysis conducted to study physical parameters and processes inside the Earth and on the Earth's surface, to define techniques and systems for remotely sensing the processes and measuring the parameters of scientific and applications interest, and the transfer of promising operational applications techniques to the user community of Earth resources monitors, managers, and decision makers are described. Research areas covered include: geobotany, magnetic field modeling, crustal studies, crustal dynamics, sea surface topography, land resources, remote sensing of vegetation and soils, and hydrological sciences. Major accomplishments include: production of global maps of magnetic anomalies using Magsat data; computation of the global mean sea surface using GEOS-3 and Seasat altimetry data; delineation of the effects of topography on the interpretation of remotely-sensed data; application of snowmelt runoff models to water resources management; and mapping of snow depth over wheat growing areas using Nimbus microwave data.

  11. Dimension Reduction of Hyperspectral Data on Beowulf Clusters

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek

    2000-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operation. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold a great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, which is used widely in remote sensing, is the Principal Components Analysis (PCA). In light of the growing number of spectral channels of modern instruments, the paper reports on the development of a parallel PCA and its implementation on two Beowulf cluster configurations, on with fast Ethernet switch and the other is with a Myrinet interconnection.

  12. American Society of Photogrammetry and American Congress on Surveying and Mapping, Fall Technical Meeting, ASP Technical Papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    Various topics in the field of photogrammetry are addressed. Among the subjects discussed are: remote sensing of Gulf Stream dynamics using VHRR satellite imagery an interactive rectification system for remote sensing imagery use of a single photo and digital terrain matrix for point positioning crop type analysis using Landsat digital data use of a fisheye lens in solar energy assessment remote sensing inventory of Rocky Mountain elk habitat Washington state's large scale ortho program educational image processing. Also discussed are: operational advantages of on-line photogrammetric triangulation analysis of fracturation field photogrammetry as a tool for measuring glacier movement double modelmore » orthophotos used for forest inventory mapping map revisioning module for the Kern PG2 stereoplotter assessing accuracy of digital land-use and terrain data accuracy of earthwork calculations from digital elevation data.« less

  13. Practical application of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Phelps, R. A.

    1975-01-01

    Remote sensing program imagery from several types of platforms, from light aircraft to the LANDSAT (ERTS) satellites, have been utilized during the past few years, with preference for inexpensive imagery over expensive magnetic tapes. Emphasis has been on practical application of remote sensing data to increase crop yield by decreasing plant stress, disease, weeds and undesirable insects and by improving irrigation. Imagery obtained from low altitudes via aircraft provides the necessary resolution and complements but does not replace data from high altitude aircraft, Gemini and Apollo spacecraft, Skylab space station and LANDSAT satellites. Federal government centers are now able to supply imagery within about thirty days from data of order. Nevertheless, if the full potential of space imagery in practical agricultural operations is to be realized, the time span from date of imaging to user application needs to be shortened from the current several months to not more than two weeks.

  14. A real-time MTFC algorithm of space remote-sensing camera based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Liting; Huang, Gang; Lin, Zhe

    2018-01-01

    A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.

  15. Remote Sensing Laboratory - RSL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip,more » maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.« less

  16. The acquisition, storage, and dissemination of LANDSAT and other LACIE support data

    NASA Technical Reports Server (NTRS)

    Abbotts, L. F.; Nelson, R. M. (Principal Investigator)

    1979-01-01

    Activities performed at the LACIE physical data library are described. These include the researching, acquisition, indexing, maintenance, distribution, tracking, and control of LACIE operational data and documents. Much of the data available can be incorporated into an Earth resources data base. Elements of the data collection that can support future remote sensing programs include: (1) the LANDSAT full-frame image files; (2) the microfilm file of aerial and space photographic and multispectral maps and charts that encompasses a large portion of the Earth's surface; (3) the map/chart collection that includes various scale maps and charts for a good portion of the U.S. and the LACIE area in foreign countries; (4) computer-compatible tapes of good quality LANDSAT scenes; (5) basic remote sensing data, project data, reference material, and associated publications; (6) visual aids to support presentation on remote sensing projects; and (7) research acquisition and handling procedures for managing data.

  17. ELECTRONIC MASTER SLAVE MANIPULATOR

    DOEpatents

    Goertz, R.C.; Thompson, Wm.M.; Olsen, R.A.

    1958-08-01

    A remote control manipulator is described in which the master and slave arms are electrically connected to produce the desired motions. A response signal is provided in the master unit in order that the operator may sense a feel of the object and may not thereby exert such pressures that would ordinarily damage delicate objects. This apparatus will permit the manipulation of objects at a great distance, that may be viewed over a closed TV circuit, thereby permitting a remote operator to carry out operations in an extremely dangerous area with complete safety.

  18. Introduction to the physics and techniques of remote sensing

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1987-01-01

    This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.

  19. Remote sensing entropy to assess the sustainability of rainfall in tropical catchment

    NASA Astrophysics Data System (ADS)

    Mahmud, M. R.; Reba, M. N. M.; Wei, J. S.; Razak, N. H. Abdul

    2018-02-01

    This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments. There were two major issues need to be anticipated in monitoring the tropical catchments; first is the frequent monitoring of the rainfall and second is the appropriate indicator that sensitive to rainfall pattern changes or disorder. For the first issue, the use of satellite remote sensing precipitation data is suggested. Meanwhile for the second issue, the utilization of entropy concept in interpreting the disorder of temporal rainfall can be used to assess the sustain ability had been successfully adopted in some studies. Therefore, we hypothesized that the use of satellite precipitation as main data to compute entropy can be a novel tool in anticipating the above-mentioned conflict earlier. The remote sensing entropy results and in-situ river level showed good agreement indicating its reliability. 72% of the catchment has moderate to good rainfall supply during normal or non-drought condition. However, our result showed that the catchments were highly sensitive to drought especially in the west coast and southern part of the Peninsular Malaysia. High resiliency was identified in the east coast. We summarized that the proposed entropy-quantity scheme was a useful tool for cost-effective, quick, and operational sustainability assessment This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments.

  20. Remote Sensing Image Change Detection Based on NSCT-HMT Model and Its Application.

    PubMed

    Chen, Pengyun; Zhang, Yichen; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola

    2017-06-06

    Traditional image change detection based on a non-subsampled contourlet transform always ignores the neighborhood information's relationship to the non-subsampled contourlet coefficients, and the detection results are susceptible to noise interference. To address these disadvantages, we propose a denoising method based on the non-subsampled contourlet transform domain that uses the Hidden Markov Tree model (NSCT-HMT) for change detection of remote sensing images. First, the ENVI software is used to calibrate the original remote sensing images. After that, the mean-ratio operation is adopted to obtain the difference image that will be denoised by the NSCT-HMT model. Then, using the Fuzzy Local Information C-means (FLICM) algorithm, the difference image is divided into the change area and unchanged area. The proposed algorithm is applied to a real remote sensing data set. The application results show that the proposed algorithm can effectively suppress clutter noise, and retain more detailed information from the original images. The proposed algorithm has higher detection accuracy than the Markov Random Field-Fuzzy C-means (MRF-FCM), the non-subsampled contourlet transform-Fuzzy C-means clustering (NSCT-FCM), the pointwise approach and graph theory (PA-GT), and the Principal Component Analysis-Nonlocal Means (PCA-NLM) denosing algorithm. Finally, the five algorithms are used to detect the southern boundary of the Gurbantunggut Desert in Xinjiang Uygur Autonomous Region of China, and the results show that the proposed algorithm has the best effect on real remote sensing image change detection.

  1. Remote Sensing Image Change Detection Based on NSCT-HMT Model and Its Application

    PubMed Central

    Chen, Pengyun; Zhang, Yichen; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola

    2017-01-01

    Traditional image change detection based on a non-subsampled contourlet transform always ignores the neighborhood information’s relationship to the non-subsampled contourlet coefficients, and the detection results are susceptible to noise interference. To address these disadvantages, we propose a denoising method based on the non-subsampled contourlet transform domain that uses the Hidden Markov Tree model (NSCT-HMT) for change detection of remote sensing images. First, the ENVI software is used to calibrate the original remote sensing images. After that, the mean-ratio operation is adopted to obtain the difference image that will be denoised by the NSCT-HMT model. Then, using the Fuzzy Local Information C-means (FLICM) algorithm, the difference image is divided into the change area and unchanged area. The proposed algorithm is applied to a real remote sensing data set. The application results show that the proposed algorithm can effectively suppress clutter noise, and retain more detailed information from the original images. The proposed algorithm has higher detection accuracy than the Markov Random Field-Fuzzy C-means (MRF-FCM), the non-subsampled contourlet transform-Fuzzy C-means clustering (NSCT-FCM), the pointwise approach and graph theory (PA-GT), and the Principal Component Analysis-Nonlocal Means (PCA-NLM) denosing algorithm. Finally, the five algorithms are used to detect the southern boundary of the Gurbantunggut Desert in Xinjiang Uygur Autonomous Region of China, and the results show that the proposed algorithm has the best effect on real remote sensing image change detection. PMID:28587299

  2. Development of a fusion approach selection tool

    NASA Astrophysics Data System (ADS)

    Pohl, C.; Zeng, Y.

    2015-06-01

    During the last decades number and quality of available remote sensing satellite sensors for Earth observation has grown significantly. The amount of available multi-sensor images along with their increased spatial and spectral resolution provides new challenges to Earth scientists. With a Fusion Approach Selection Tool (FAST) the remote sensing community would obtain access to an optimized and improved image processing technology. Remote sensing image fusion is a mean to produce images containing information that is not inherent in the single image alone. In the meantime the user has access to sophisticated commercialized image fusion techniques plus the option to tune the parameters of each individual technique to match the anticipated application. This leaves the operator with an uncountable number of options to combine remote sensing images, not talking about the selection of the appropriate images, resolution and bands. Image fusion can be a machine and time-consuming endeavour. In addition it requires knowledge about remote sensing, image fusion, digital image processing and the application. FAST shall provide the user with a quick overview of processing flows to choose from to reach the target. FAST will ask for available images, application parameters and desired information to process this input to come out with a workflow to quickly obtain the best results. It will optimize data and image fusion techniques. It provides an overview on the possible results from which the user can choose the best. FAST will enable even inexperienced users to use advanced processing methods to maximize the benefit of multi-sensor image exploitation.

  3. Land remote sensing commercialization: A status report

    NASA Technical Reports Server (NTRS)

    Bishop, W. P.; Heacock, E. L.

    1984-01-01

    The current offer by the United States Department of Commerce to transfer the U.S. land remote sensing program to the private sector is described. A Request for Proposals (RFP) was issued, soliciting offers from U.S. firms to provide a commercial land remote sensing satellite system. Proposals must address a complete system including satellite, communications, and ground data processing systems. Offerors are encouraged to propose to take over the Government LANDSAT system which consists of LANDSAT 4 and LANDSAT D'. Also required in proposals are the market development procedures and plans to ensure that commercialization is feasible and the business will become self-supporting at the earliest possible time. As a matter of Federal Policy, the solicitation is designed to protect both national security and foreign policy considerations. In keeping with these concerns, an offeror must be a U.S. Firm. Requirements for data quality, quantity, distribution and delivery are met by current operational procedures. It is the Government's desire that the Offeror be prepared to develop and operate follow-on systems without Government subsidies. However, to facilitate rapid commercialization, an offeror may elect to include in his proposal mechanisms for short term government financial assistance.

  4. Lunar Prospector: a Preliminary Surface Remote Sensing Resource Assessment for the Moon

    NASA Technical Reports Server (NTRS)

    Mardon, A. A.

    1992-01-01

    The potential existence of lunar volatiles is a scientific discovery that could distinctly change the direction of pathways of inner solar system human expansion. With a dedicated germanium gamma ray spectrometer launched in the early 1990's, surface water concentrations of 0.7 percent could be detected immediately upon full lunar polar orbit operations. The expense of lunar base construction and operation would be dramatically reduced over a scenario with no lunar volatile resources. Global surface mineral distribution could be mapped out and integrated into a GIS database for lunar base site selection. Extensive surface lunar mapping would also result in the utilization of archived Apollo images. A variety of remote sensing systems and their parameters have been proposed for use in the detection of these lunar ice masses. The detection or nondetection of subsurface and surface ice masses in lunar polar crater floors could dramatically direct the development pathways that the human race might follow in its radiation from the Earth to habitable locales in the inner terran solar system. Potential sources of lunar volatiles are described. The use of remote sensing to detect lunar volatiles is addressed.

  5. Wearable system-on-a-chip radiometer for remote temperature sensing and its application to the safeguard of emergency operators.

    PubMed

    Fonte, A; Alimenti, F; Zito, D; Neri, B; De Rossi, D; Lanatà, A; Tognetti, A

    2007-01-01

    The remote sensing and the detection of events that may represent a danger for human beings have become more and more important thanks to the latest advances of the technology. A microwave radiometer is a sensor capable to detect a fire or an abnormal increase of the internal temperature of the human body (hyperthermia), or an onset of a cancer, or even meteorological phenomena (forest fires, pollution release, ice formation on road pavement). In this paper, the overview of a wearable low-cost low-power system-on-a-chip (SoaC) 13 GHz passive microwave radiometer in CMOS 90 nm technology is presented. In particular, we focused on its application to the fire detection for civil safeguard. In detail, this sensor has been thought to be inserted into the fireman jacket in order to help the fireman in the detection of a hidden fire behind a door or a wall. The simulation results obtained by Ptolemy system simulation have confirmed the feasibility of such a SoaC microwave radiometer in a low-cost standard silicon technology for temperature remote sensing and, in particular, for its application to the safeguard of emergency operators.

  6. [Thematic Issue: Remote Sensing.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1978-01-01

    Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…

  7. 75 FR 65304 - Advisory Committee on Commercial Remote Sensing (ACCRES); Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Commercial Remote Sensing (ACCRES); Request for Nominations AGENCY: National Oceanic and Atmospheric... Commercial Remote Sensing (ACCRES). SUMMARY: The Advisory Committee on Commercial Remote Sensing (ACCRES) was... Atmosphere, on matters relating to the U.S. commercial remote sensing industry and NOAA's activities to carry...

  8. Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review

    PubMed Central

    Mosleh, Mostafa K.; Hassan, Quazi K.; Chowdhury, Ehsan H.

    2015-01-01

    Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ∼19% of the global dietary energy in recent times and its annual average consumption per capita was ∼65 kg during 2010–2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield were empirical in nature, so thus it would require further calibration and validation prior to implement over other geographical locations. PMID:25569753

  9. Application of remote sensors in mapping rice area and forecasting its production: a review.

    PubMed

    Mosleh, Mostafa K; Hassan, Quazi K; Chowdhury, Ehsan H

    2015-01-05

    Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ~19% of the global dietary energy in recent times and its annual average consumption per capita was ~65 kg during 2010-2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield were empirical in nature, so thus it would require further calibration and validation prior to implement over other geographical locations.

  10. Research in space commercialization, technology transfer, and communications, volume 2

    NASA Technical Reports Server (NTRS)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communication systems, the communications regulatory environment, expert prediction and consensus, remote sensing, and manned space operations research are discussed.

  11. Construction and Application of Enhanced Remote Sensing Ecological Index

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, C.; Fu, Q.; Yin, B.

    2018-04-01

    In order to monitor the change of regional ecological environment quality, this paper use MODIS and DMSP / OLS remote sensing data, from the production capacity, external disturbance changes and human socio-economic development of the three main factors affecting the quality of ecosystems, select the net primary productivity, vegetation index and light index, using the principal component analysis method to automatically determine the weight coefficient, construction of the formation of enhanced remote sensing ecological index, and the ecological environment quality of Hainan Island from 2001 to 2013 was monitored and analyzed. The enhanced remote sensing ecological index combines the effects of the natural environment and human activities on ecosystems, and according to the contribution of each principal component automatically determine the weight coefficient, avoid the design of the weight of the parameters caused by the calculation of the human error, which provides a new method for the operational operation of regional macro ecological environment quality monitoring. During the period from 2001 to 2013, the ecological environment quality of Hainan Island showed the characteristics of decend first and then rise, the ecological environment in 2005 was affected by severe natural disasters, and the quality of ecological environment dropped sharply. Compared with 2001, in 2013 about 20000 square kilometers regional ecological environmental quality has improved, about 8760 square kilometers regional ecological environment quality is relatively stable, about 5272 square kilometers regional ecological environment quality has decreased. On the whole, the quality of ecological environment in the study area is good, the frequent occurrence of natural disasters, on the quality of the ecological environment to a certain extent.

  12. A Fresh Look at Spatio-Temporal Remote Sensing Data: Data Formats, Processing Flow, and Visualization

    NASA Astrophysics Data System (ADS)

    Gens, R.

    2017-12-01

    With increasing number of experimental and operational satellites in orbit, remote sensing based mapping and monitoring of the dynamic Earth has entered into the realm of `big data'. Just the Landsat series of satellites provide a near continuous archive of 45 years of data. The availability of such spatio-temporal datasets has created opportunities for long-term monitoring diverse features and processes operating on the Earth's terrestrial and aquatic systems. Processes such as erosion, deposition, subsidence, uplift, evapotranspiration, urbanization, land-cover regime shifts can not only be monitored and change can be quantified using time-series data analysis. This unique opportunity comes with new challenges in management, analysis, and visualization of spatio-temporal datasets. Data need to be stored in a user-friendly format, and relevant metadata needs to be recorded, to allow maximum flexibility for data exchange and use. Specific data processing workflows need to be defined to support time-series analysis for specific applications. Value-added data products need to be generated keeping in mind the needs of the end-users, and using best practices in complex data visualization. This presentation systematically highlights the various steps for preparing spatio-temporal remote sensing data for time series analysis. It showcases a prototype workflow for remote sensing based change detection that can be generically applied while preserving the application-specific fidelity of the datasets. The prototype includes strategies for visualizing change over time. This has been exemplified using a time-series of optical and SAR images for visualizing the changing glacial, coastal, and wetland landscapes in parts of Alaska.

  13. Literature relevant to remote sensing of water quality

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  14. Learning Methods of Remote Sensing In the 2013 Curriculum of Secondary School

    NASA Astrophysics Data System (ADS)

    Lili Somantri, Nandi

    2016-11-01

    The new remote sensing material included in the subjects of geography in the curriculum of 1994. For geography teachers generation of 90s and over who in college do not get the material remote sensing, for teaching is a tough matter. Most teachers only give a theoretical matter, and do not carry out practical reasons in the lack of facilities and infrastructure of computer laboratories. Therefore, in this paper studies the importance about the method or manner of teaching remote sensing material in schools. The purpose of this paper is 1) to explain the position of remote sensing material in the study of geography, 2) analyze the Geography Curriculum 2013 Subjects related to remote sensing material, 3) describes a method of teaching remote sensing material in schools. The method used in this paper is a descriptive analytical study supported by the literature. The conclusion of this paper that the position of remote sensing in the study of geography is a method or a way to obtain spatial data earth's surface. In the 2013 curriculum remote sensing material has been applied to the study of land use and transportation. Remote sensing methods of teaching must go through a practicum, which starts from the introduction of the theory of remote sensing, data extraction phase of remote sensing imagery to produce maps, both visually and digitally, field surveys, interpretation of test accuracy, and improved maps.

  15. JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.

    DTIC Science & Technology

    1991-01-17

    Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,

  16. Improving Aquatic Plant Management in the California Sacramento-San Joaquin Delta

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Potter, Chris

    2018-01-01

    Management of aquatic weeds in complex watersheds and river systems present many challenges to assessment, planning and implementation of management practices for floating and submerged aquatic invasive plants. The Delta Region Areawide Aquatic Weed Project (DRAAWP), a USDA sponsored area-wide project, is working to enhance planning, decision-making and operational efficiency in the California Sacramento-San Joaquin Delta. Satellite and airborne remote sensing are used map (area coverage and biomass), direct operations, and assess management impacts on plant communities. Archived satellite records going are used to review results from previous climate and management events and aide in developing long-term strategies. Modeling at local and watershed scales provides insight into land-use effects on water quality. Plant growth models informed by remote sensing are being applied spatially across the Delta to balance location and type of aquatic plant, growth response to altered environments, phenology, environmental regulations, and economics in selection of management practices. Initial utilization of remote sensing tools developed for mapping of aquatic invasive weeds improved operational efficiency by focusing limited chemical use to strategic areas with high plant-control impact and incorporating mechanical harvesting when chemical use is restricted. These assessment methods provide a comprehensive and quantitative view of aquatic invasive plants communities in the California Delta, both spatial and temporal, informed by ecological understanding with the objective of improving management and assessment effectiveness.

  17. A Ground Systems Template for Remote Sensing Systems

    NASA Astrophysics Data System (ADS)

    McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.

    2002-10-01

    Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS.

  18. LANDSAT Remote Sensing: Observations of an Appalachian mountaintop surface coal mining and reclamation operation. [kentucky

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The potential benefits of using LANDSAT remote sensing data by state agencies as an aide in monitoring surface coal mining operations are reviewed. A mountaintop surface mine in eastern Kentucky was surveyed over a 5 year period using satellite multispectral scanner data that were classified by computer analyses. The analyses were guided by aerial photography and by ground surveys of the surface mines procured in 1976. The application of the LANDSAT data indicates that: (1) computer classification of the various landcover categories provides information for monitoring the progress of surface mining and reclamation operations; (2) successive yearly changes in barren and revegetated areas can be qualitatively assessed for surface mines of 100 acres or more of disrupted area; (3) barren areas consisting of limestone and shale mixtures may be recognized, and revegetated areas in various stages of growth may be identified against the hilly forest background.

  19. LANDSAT remote sensing: observations of an Appalachian mountaintop surface coal mining and reclamation operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-10-01

    The potential benefits of using LANDSAT remote sensing data by state agencies as an aide in monitoring surface coal mining operations are reviewed. A mountaintop surface mine in eastern Kentucky was surveyed over a 5 year period using satellite multispectral scanner data that were classified by computer analyses. The analyses were guided by aerial photography and by ground surveys of the surface mines procured in 1976. The application of the LANDSAT data indicates that: (1) computer classification of the various landcover categories provides information for monitoring the progress of surface mining and reclamation operations, (2) successive yearly changes in barrenmore » and revegetated areas can be qualitatively assessed for surface mines of 100 acres or more of disrupted area, (3) barren areas consisting of limestone and shale mixtures may be recognized, and revegetated areas in various stages of growth may be identified against the hilly forest background.« less

  20. Tracking and Monitoring Oil Slicks Using remote Sensing

    NASA Astrophysics Data System (ADS)

    Klemas, V. V.

    2011-12-01

    Tracking and Monitoring Oil Slicks Using Remote Sensing Victor Klemas, Ph.D. , College of Earth, Ocean and Environment, University of Delaware, Newark, DE 19716 Abstract Oil spills can harm marine life in the ocean, estuaries and wetlands. To limit the damage by a spill and facilitate cleanup efforts, emergency managers need information on spill location, size and extent, direction and speed of oil movement, wind, current, and wave information for predicting oil drift and dispersion. The main operational data requirements are fast turn-around time and frequent imaging to monitor the dynamics of the spill. Radar and multispectral remote sensors on satellites and aircraft meet most of these requirements by tracking the spilled oil at various resolutions, over wide areas and at frequent intervals. They also provide key inputs to drift prediction models and facilitate targeting of skimming and booming efforts. Satellite data are frequently supplemented by information provided by aircraft, ships and remotely controlled underwater robots. The Sea Princess tanker grounding off the coast of Wales and the explosion on the Deepwater Horizon rig in the Gulf of Mexico provide two representative, yet different, scenarios for evaluating the effectiveness of remote sensors during oil spill emergencies. Session NH17: Remote Sensing of Natural Hazards Session Chair: Ramesh P. Singh Sponsor: Natural Hazards (NH)

  1. Combining Remote Sensing imagery of both fine and coarse spatial resolution to Estimate Crop Evapotranspiration and quantifying its Influence on Crop Growth Monitoring.

    NASA Astrophysics Data System (ADS)

    Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre

    2010-05-01

    This study has been carried out in the framework of the GLOBAM -Global Agricultural Monitoring system by integration of earth observation and modeling techniques- project whose objective is to fill the methodological gap between the state of the art of local crop monitoring and the operational requirements of the global monitoring system programs. To achieve this goal, the research aims to develop an integrated approach using remote sensing and crop growth modeling. Evapotranspiration (ET) is a valuable parameter in the crop monitoring context since it provides information on the plant water stress status, which strongly influences crop development and, by extension, crop yield. To assess crop evapotranspiration over the GLOBAM study areas (300x300 km sites in Northern Europe and Central Ethiopia), a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced with remote sensing and numerical weather prediction data has been used. This model runs at pre-operational level in the framework of the EUMETSAT LSA-SAF (Land Surface Analysis Satellite Application Facility) using SEVIRI and ECMWF data, as well as the ECOCLIMAP database to characterize the vegetation. The model generates ET images at the Meteosat Second Generation (MSG) spatial resolution (3 km at subsatellite point),with a temporal resolution of 30 min and monitors the entire MSG disk which covers Europe, Africa and part of Sud America . The SVAT model was run for 2007 using two approaches. The first approach is at the standard pre-operational mode. The second incorporates remote sensing information at various spatial resolutions going from LANDSAT (30m) to SEVIRI (3-5 km) passing by AWIFS (56m) and MODIS (250m). Fine spatial resolution data consists of crop type classification which enable to identify areas where pure crop specific MODIS time series can be compiled and used to derive Leaf Area Index estimations for the most important crops (wheat and maize). The use of this information allowed to characterize the type of vegetation and its state of development in a more accurate way than using the ECOCLIMAP database. Finally, the CASA method was applied using the evapotranspiration images with FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) images from LSA-SAF to obtain Dry Matter Productivity (DMP) and crop yield. The potential of using evapotranspiration obtained from remote sensing in crop growth modeling is studied and discussed. Results of comparing the evapotranspiration obtained with ground truth data are shown as well as the influence of using high resolution information to characterize the vegetation in the evapotranspiration estimation. The values of DMP and yield obtained with the CASA method are compared with those obtained using crop growth modeling and field data, showing the potential of using this simplified remote sensing method for crop monitoring and yield forecasting. This methodology could be applied in an operative way to the entire MSG disk, allowing the continuous crop growth monitoring.

  2. Solid-state lasers for coherent communication and remote sensing

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1990-01-01

    Laser development, high efficiency, high power second harmonic generation, operation of optical parametric oscillators for wavelength diversity and tunability, and studies in coherent communications are reviewed.

  3. The laser absorption spectrometer - A new remote sensing instrument for atmospheric pollution monitoring

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.

    1974-01-01

    An instrument capable of remotely monitoring trace atmospheric constituents is described. The instrument, called a laser absorption spectrometer, can be operated from an aircraft or spacecraft to measure the concentration of selected gases in three dimensions. This device will be particularly useful for rapid determination of pollutant levels in urban areas.

  4. [A review on polarization information in the remote sensing detection].

    PubMed

    Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao

    2010-04-01

    Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.

  5. Use of remote-sensing techniques to survey the physical habitat of large rivers

    USGS Publications Warehouse

    Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.; Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffrey W.; Kennedy, Gregory W.; Smith, Stephen B.

    1997-01-01

    Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.

  6. Scalability Issues for Remote Sensing Infrastructure: A Case Study.

    PubMed

    Liu, Yang; Picard, Sean; Williamson, Carey

    2017-04-29

    For the past decade, a team of University of Calgary researchers has operated a large "sensor Web" to collect, analyze, and share scientific data from remote measurement instruments across northern Canada. This sensor Web receives real-time data streams from over a thousand Internet-connected sensors, with a particular emphasis on environmental data (e.g., space weather, auroral phenomena, atmospheric imaging). Through research collaborations, we had the opportunity to evaluate the performance and scalability of their remote sensing infrastructure. This article reports the lessons learned from our study, which considered both data collection and data dissemination aspects of their system. On the data collection front, we used benchmarking techniques to identify and fix a performance bottleneck in the system's memory management for TCP data streams, while also improving system efficiency on multi-core architectures. On the data dissemination front, we used passive and active network traffic measurements to identify and reduce excessive network traffic from the Web robots and JavaScript techniques used for data sharing. While our results are from one specific sensor Web system, the lessons learned may apply to other scientific Web sites with remote sensing infrastructure.

  7. REMOTE SENSING FOR DETECTING SWINE ANIMAL FEEDING OPERATIONS

    EPA Science Inventory

    Surface runoff from animal feeding operations (AFO's) and its infiltration into ground water can
    pose a number of risks to water quality mainly because of the amount of animal manure and wastewater they produce. Excess nutrients generated by livestock facilities can lead to a...

  8. 15 CFR 960.11 - Conditions for operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.11 Conditions for... performance, including, but not limited to, limitations on data collection and dissemination, as appropriate... Administrator records of system tasking, operations and other data as specified in the license for the purposes...

  9. 15 CFR 960.11 - Conditions for operation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.11 Conditions for... performance, including, but not limited to, limitations on data collection and dissemination, as appropriate... Administrator records of system tasking, operations and other data as specified in the license for the purposes...

  10. 15 CFR 960.11 - Conditions for operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.11 Conditions for... performance, including, but not limited to, limitations on data collection and dissemination, as appropriate... Administrator records of system tasking, operations and other data as specified in the license for the purposes...

  11. Achievements of the DOT-NASA Joint Program on Remote Sensing and Spatial Information Technologies: Application to Multimodal Transportation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report presents three-year accomplishments from the national program on Commercial Remote Sensing and Geospatial Technology (CRSGT) application to transportation, administered by the U.S. Department of Transportation (U.S. DOT) in collaboration with the National Aeronautics and Space Administration (NASA). The joint program was authorized under Section 5113 of the Transportation Equity Act for the 21st Century (TEA-21). This is the first national program of its type focusing on transportation applications of emerging commercial remote sensing technologies. U.S. DOT's Research and Special Programs Administration manages the program in coordination with NASA's Earth Science Enterprise's application programs. The program focuses on applications of CRSGT products and systems for providing smarter and more efficient transportation operations and services. The program is performed in partnership with four major National Consortia for Remote Sensing in Transportation (NCRST). Each consortium focuses on research and development of products in one of the four priority areas for transportation application, and includes technical application and demonstration projects carried out in partnership with industries and service providers in their respective areas. The report identifies products and accomplishments from each of the four consortia in meeting the goal of providing smarter and more efficient transportation services. The products and results emerging from the program are being implemented in transportation operations and services through state and local agencies. The Environmental Assessment and Application Consortium (NCRST-E) provides leadership for developing and deploying cost effective environmental and transportation planning services, and integrates CRSGT advances for achieving smarter and cost effective corridor planning. The Infrastructure Management Consortium (NCRST-I) provides leadership in technologies that achieve smarter and cheaper ways of managing transportation infrastructure assets, operation, and inspection, and integrates CRSGT advances for achieving infrastructure security. The Traffic Flow Consortium (NCRST-F) provides leadership to develop new tools for regional traffic flow management including heavy vehicles and intermodal flow of freight, and integrates CRSGT advances for complementing and extending the reach of ITS user services. The Safety, Hazards and Disasters (NCRST-H) provides leadership for deploying remote sensing technology to locate transportation hazards and improve disaster recovery, and integrates CRSGT advances for application to protect transportation systems from terrorism. The DOT-NASA team is proud to present this report of accomplishments on products and results emerging from the joint program for application to transportation practice.

  12. Enhancing the Teaching of Digital Processing of Remote Sensing Image Course through Geospatial Web Processing Services

    NASA Astrophysics Data System (ADS)

    di, L.; Deng, M.

    2010-12-01

    Remote sensing (RS) is an essential method to collect data for Earth science research. Huge amount of remote sensing data, most of them in the image form, have been acquired. Almost all geography departments in the world offer courses in digital processing of remote sensing images. Such courses place emphasis on how to digitally process large amount of multi-source images for solving real world problems. However, due to the diversity and complexity of RS images and the shortcomings of current data and processing infrastructure, obstacles for effectively teaching such courses still remain. The major obstacles include 1) difficulties in finding, accessing, integrating and using massive RS images by students and educators, and 2) inadequate processing functions and computing facilities for students to freely explore the massive data. Recent development in geospatial Web processing service systems, which make massive data, computing powers, and processing capabilities to average Internet users anywhere in the world, promises the removal of the obstacles. The GeoBrain system developed by CSISS is an example of such systems. All functions available in GRASS Open Source GIS have been implemented as Web services in GeoBrain. Petabytes of remote sensing images in NASA data centers, the USGS Landsat data archive, and NOAA CLASS are accessible transparently and processable through GeoBrain. The GeoBrain system is operated on a high performance cluster server with large disk storage and fast Internet connection. All GeoBrain capabilities can be accessed by any Internet-connected Web browser. Dozens of universities have used GeoBrain as an ideal platform to support data-intensive remote sensing education. This presentation gives a specific example of using GeoBrain geoprocessing services to enhance the teaching of GGS 588, Digital Remote Sensing taught at the Department of Geography and Geoinformation Science, George Mason University. The course uses the textbook "Introductory Digital Image Processing, A Remote Sensing Perspective" authored by John Jensen. The textbook is widely adopted in the geography departments around the world for training students on digital processing of remote sensing images. In the traditional teaching setting for the course, the instructor prepares a set of sample remote sensing images to be used for the course. Commercial desktop remote sensing software, such as ERDAS, is used for students to do the lab exercises. The students have to do the excurses in the lab and can only use the simple images. For this specific course at GMU, we developed GeoBrain-based lab excurses for the course. With GeoBrain, students now can explore petabytes of remote sensing images in the NASA, NOAA, and USGS data archives instead of dealing only with sample images. Students have a much more powerful computing facility available for their lab excurses. They can explore the data and do the excurses any time at any place they want as long as they can access the Internet through the Web Browser. The feedbacks from students are all very positive about the learning experience on the digital image processing with the help of GeoBrain web processing services. The teaching/lab materials and GeoBrain services are freely available to anyone at http://www.laits.gmu.edu.

  13. Application of remote sensing to state and regional problems. [mississippi

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Powers, J. S.; Clark, J. R.; Solomon, J. L.; Williams, S. G. (Principal Investigator)

    1981-01-01

    The methods and procedures used, accomplishments, current status, and future plans are discussed for each of the following applications of LANDSAT in Mississippi: (1) land use planning in Lowndes County; (2) strip mine inventory and reclamation; (3) white-tailed deer habitat evaluation; (4) remote sensing data analysis support systems; (5) discrimination of unique forest habitats in potential lignite areas; (6) changes in gravel operations; and (7) determining freshwater wetlands for inventory and monitoring. The documentation of all existing software and the integration of the image analysis and data base software into a single package are now considered very high priority items.

  14. Microwave remote sensing laboratory design

    NASA Technical Reports Server (NTRS)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  15. Optimizing a remote sensing instrument to measure atmospheric surface pressure

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Gatley, C.; Flower, D. A.

    1983-01-01

    Atmospheric surface pressure can be remotely sensed from a satellite by an active instrument which measures return echoes from the ocean at frequencies near the 60 GHz oxygen absorption band. The instrument is optimized by selecting its frequencies of operation, transmitter powers and antenna size through a new procedure baesd on numerical simulation which maximizes the retrieval accuracy. The predicted standard deviation error in the retrieved surface pressure is 1 mb. In addition the measurements can be used to retrieve water vapor, cloud liquid water and sea state, which is related to wind speed.

  16. IMAGES: An interactive image processing system

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.

    1981-01-01

    The IMAGES interactive image processing system was created specifically for undergraduate remote sensing education in geography. The system is interactive, relatively inexpensive to operate, almost hardware independent, and responsive to numerous users at one time in a time-sharing mode. Most important, it provides a medium whereby theoretical remote sensing principles discussed in lecture may be reinforced in laboratory as students perform computer-assisted image processing. In addition to its use in academic and short course environments, the system has also been used extensively to conduct basic image processing research. The flow of information through the system is discussed including an overview of the programs.

  17. Landsat bill passes in Congress

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    1984-04-01

    Commercialization of the land remote-sensing system is virtually guaranteed with the successful completion last week of an informal conference on the differences in the House of Representatives and Senate versions of the Land Remote Sensing Commercialization Act (H.R. 5155). Moreover, the House ratified the compromise version on June 28; the Senate was expected to ratify the bill before the July 4 recess. The bill will then be sent to President Ronald Reagan for his signature. Also on June 28, the Secretary of Commerce announced his selection for final contract negotiations of two of the seven bids received this spring for the operation of Landsat.

  18. Development of a computer model to predict platform station keeping requirements in the Gulf of Mexico using remote sensing data

    NASA Technical Reports Server (NTRS)

    Barber, Bryan; Kahn, Laura; Wong, David

    1990-01-01

    Offshore operations such as oil drilling and radar monitoring require semisubmersible platforms to remain stationary at specific locations in the Gulf of Mexico. Ocean currents, wind, and waves in the Gulf of Mexico tend to move platforms away from their desired locations. A computer model was created to predict the station keeping requirements of a platform. The computer simulation uses remote sensing data from satellites and buoys as input. A background of the project, alternate approaches to the project, and the details of the simulation are presented.

  19. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we highlight use in the arctic of two different small remotely piloted aircraft (ScanEagle and RAVEN) for remote sensing of ice and ocean conditions as well as surveys of marine mammals. Finally, we explain how these can be used in future networked environments with DTN support not only for the collection of ocean and ice data for maritime domain awareness, but also for monitoring oil spill dynamics in high latitude environments, including spills in and under sea ice. The networked operation of heterogeneous air and ocean vehicle systems using DTN communications methods can provide unprecedented levels of spatial-temporal sampling resolution important to improving arctic remote sensing and maritime domain awareness capabilities.

  20. Near-earth orbital guidance and remote sensing

    NASA Technical Reports Server (NTRS)

    Powers, W. F.

    1972-01-01

    The curriculum of a short course in remote sensing and parameter optimization is presented. The subjects discussed are: (1) basics of remote sensing and the user community, (2) multivariant spectral analysis, (3) advanced mathematics and physics of remote sensing, (4) the atmospheric environment, (5) imaging sensing, and (6)nonimaging sensing. Mathematical models of optimization techniques are developed.

  1. Design of online monitoring and forecasting system for electrical equipment temperature of prefabricated substation based on WSN

    NASA Astrophysics Data System (ADS)

    Qi, Weiran; Miao, Hongxia; Miao, Xuejiao; Xiao, Xuanxuan; Yan, Kuo

    2016-10-01

    In order to ensure the safe and stable operation of the prefabricated substations, temperature sensing subsystem, temperature remote monitoring and management subsystem, forecast subsystem are designed in the paper. Wireless temperature sensing subsystem which consists of temperature sensor and MCU sends the electrical equipment temperature to the remote monitoring center by wireless sensor network. Remote monitoring center can realize the remote monitoring and prediction by monitoring and management subsystem and forecast subsystem. Real-time monitoring of power equipment temperature, history inquiry database, user management, password settings, etc., were achieved by monitoring and management subsystem. In temperature forecast subsystem, firstly, the chaos of the temperature data was verified and phase space is reconstructed. Then Support Vector Machine - Particle Swarm Optimization (SVM-PSO) was used to predict the temperature of the power equipment in prefabricated substations. The simulation results found that compared with the traditional methods SVM-PSO has higher prediction accuracy.

  2. Remote sensing, land use, and demography - A look at people through their effects on the land

    NASA Technical Reports Server (NTRS)

    Paul, C. K.; Landini, A. J.

    1976-01-01

    Relevant causes of failure by the remote sensing community in the urban scene are analyzed. The reasons for the insignificant role of remote sensing in urban land use data collection are called the law of realism, the incompatibility of remote sensing and urban management system data formats is termed the law of nominal/ordinal systems compatibility, and the land use/population correlation dilemma is referred to as the law of missing persons. The study summarizes the three laws of urban land use information for which violations, avoidance, or ignorance have caused the decline of present remote sensing research. Particular attention is given to the rationale for urban land use information and for remote sensing. It is shown that remote sensing of urban land uses compatible with the three laws can be effectively developed by realizing the 10 percent contribution of remote sensing to urban land use planning data collection.

  3. Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, Apr. 29-May 2, 1991, Proceedings. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.

  4. Methods of training the graduate level and professional geologist in remote sensing technology

    NASA Technical Reports Server (NTRS)

    Kolm, K. E.

    1981-01-01

    Requirements for a basic course in remote sensing to accommodate the needs of the graduate level and professional geologist are described. The course should stress the general topics of basic remote sensing theory, the theory and data types relating to different remote sensing systems, an introduction to the basic concepts of computer image processing and analysis, the characteristics of different data types, the development of methods for geological interpretations, the integration of all scales and data types of remote sensing in a given study, the integration of other data bases (geophysical and geochemical) into a remote sensing study, and geological remote sensing applications. The laboratories should stress hands on experience to reinforce the concepts and procedures presented in the lecture. The geologist should then be encouraged to pursue a second course in computer image processing and analysis of remotely sensed data.

  5. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1993-01-01

    Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  6. JPL Earth Science Center Visualization Multitouch Table

    NASA Astrophysics Data System (ADS)

    Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.

    2014-12-01

    JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.

  7. Physical Characteristics of Arctic Clouds from Ground-based Remote-sensing with a Polarized Micro-Pulse Lidar and a 95-GHz Cloud Radar in Ny-Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Shiobara, M.; Takano, T.; Okamoto, H.; Yabuki, M.

    2015-12-01

    Clouds and aerosols are key elements having a potential to change climate by their radiative effects on the energy balance in the global climate system. In the Arctic, we have been continuing ground-based remote-sensing measurements for clouds and aerosols using a sky-radiometer, a micro-pulse lidar (MPL) and an all-sky camera in Ny-Ålesund (78.9N, 11.9E), Svalbard since early 2000's. In addition to such regular operations, several new measurements have been performed with a polarization MPL since August 2013, a 95GHz Doppler cloud radar since September 2013, and a dual frequency microwave radiometer since June 2014. An intensive field experiment for cloud-aerosol-radiation interaction study named A-CARE (PI: J. Ukita) was conducted for water clouds in the period of 23 June - 13 July 2014 and for mixed phase clouds in the period of 30 March - 23 April 2015 in Ny-Alesund. The experiment consisted of ground-based remote-sensing and in-situ cloud microphysics measurements. In this paper, preliminary results from these remote-sensing measurements will be presented, particularly in regard to physical characteristics of Arctic clouds based on radar-lidar collocated observation in Ny-Ålesund.

  8. Using remote sensing to calculate plant available nitrogen needed by crops on swine factory farm sprayfields in North Carolina

    NASA Astrophysics Data System (ADS)

    Christenson, Elizabeth; Serre, Marc

    2015-10-01

    North Carolina (NC) is the second largest producer of hogs in the United States with Duplin county, NC having the densest population of hogs in the world. In NC, liquid swine manure is generally stored in open-air lagoons and sprayed onto sprayfields with sprinkler systems to be used as fertilizer for crops. Swine factory farms, termed concentrated animal feeding operations (CAFOs), are regulated by the Department of Environment and Natural Resources (DENR) based on nutrient management plans (NMPs) having balanced plant available nitrogen (PAN). The estimated PAN in liquid manure being sprayed must be less than the estimated PAN needed crops during irrigation. Estimates for PAN needed by crops are dependent on crop and soil types. Objectives of this research were to develop a new, time-efficient method to identify PAN needed by crops on Duplin county sprayfields for years 2010-2014. Using remote sensing data instead of NMP data to identify PAN needed by crops allowed calendar year identification of which crops were grown on sprayfields instead of a five-year range of values. Although permitted data have more detailed crop information than remotely sensed data, identification of PAN needed by crops using remotely sensed data is more time efficient, internally consistent, easily publically accessible, and has the ability to identify annual changes in PAN on sprayfields. Once PAN needed by crops is known, remote sensing can be used to quantify PAN at other spatial scales, such as sub-watershed levels, and can be used to inform targeted water quality monitoring of swine CAFOs.

  9. Remote sensing for industrial applications in the energy business: digital territorial data integration for planning of overhead power transmission lines (OHTLs)

    NASA Astrophysics Data System (ADS)

    Terrazzino, Alfonso; Volponi, Silvia; Borgogno Mondino, Enrico

    2001-12-01

    An investigation has been carried out, concerning remote sensing techniques, in order to assess their potential application to the energy system business: the most interesting results concern a new approach, based on digital data from remote sensing, to infrastructures with a large territorial distribution: in particular OverHead Transmission Lines, for the high voltage transmission and distribution of electricity on large distances. Remote sensing could in principle be applied to all the phases of the system lifetime, from planning to design, to construction, management, monitoring and maintenance. In this article, a remote sensing based approach is presented, targeted to the line planning: optimization of OHTLs path and layout, according to different parameters (technical, environmental and industrial). Planning new OHTLs is of particular interest in emerging markets, where typically the cartography is missing or available only on low accuracy scale (1:50.000 and lower), often not updated. Multi- spectral images can be used to generate thematic maps of the region of interest for the planning (soil coverage). Digital Elevation Models (DEMs), allow the planners to easily access the morphologic information of the surface. Other auxiliary information from local laws, environmental instances, international (IEC) standards can be integrated in order to perform an accurate optimized path choice and preliminary spotting of the OHTLs. This operation is carried out by an ABB proprietary optimization algorithm: the output is a preliminary path that bests fits the optimization parameters of the line in a life cycle approach.

  10. A Design of a Novel Airborne Aerosol Spectrometer for Remote Sensing Validation

    NASA Astrophysics Data System (ADS)

    Adler, G. A.; Brock, C. A.; Dube, W. P.; Erdesz, F.; Gordon, T.; Law, D. C.; Manfred, K.; Mason, B. J.; McLaughlin, R. J.; Richardson, M.; Wagner, N. L.; Washenfelder, R. A.; Murphy, D. M.

    2016-12-01

    Aerosols and their effect on the radiative properties of clouds contribute one of the largest sources of uncertainty to the Earth's energy budget. Many current global assessments, of atmospheric aerosol radiative forcing rely heavily on remote sensing observation; therefore, in situ aircraft and ground-based measurements are essential for validation of remote sensing measurements. Cavity ringdown spectrometers (CRD) measure aerosol extinction and are commonly used to validate remote sensing observations. These instruments have been deployed on aircraft based platforms over the years thus providing the opportunity to measure these properties over large areas in various conditions. However, deployment of the CRD on an aircraft platform has drawbacks. Typically, aircraft based CRDs draw sampled aerosol into a cabin based instrument through long lengths of tubing. This limits the ability of the instrument to measure: 1) Course mode aerosols (e.g. dust) 2) Aerosols at high relative humidity (above 90%) Here we describe the design of a novel aircraft based open path CRD. The open path CRD is intended to be mounted external to the cabin and has no sample tubing for aerosol delivery, thus measuring optical properties of all aerosol at the ambient conditions. However, the design of an open path CRD for operation on a wing-mounted aircraft platform has certain design complexities. The instrument's special design features include 2 CRD channels, 2 airfoils around the open Path CRD and a configuration which could be easily aligned and rigid at the same time. This novel implementation of cavity ringdown spectroscopy will provide a better assessment of the accuracy of remote sensing satellite measurements

  11. Uniform competency-based local feature extraction for remote sensing images

    NASA Astrophysics Data System (ADS)

    Sedaghat, Amin; Mohammadi, Nazila

    2018-01-01

    Local feature detectors are widely used in many photogrammetry and remote sensing applications. The quantity and distribution of the local features play a critical role in the quality of the image matching process, particularly for multi-sensor high resolution remote sensing image registration. However, conventional local feature detectors cannot extract desirable matched features either in terms of the number of correct matches or the spatial and scale distribution in multi-sensor remote sensing images. To address this problem, this paper proposes a novel method for uniform and robust local feature extraction for remote sensing images, which is based on a novel competency criterion and scale and location distribution constraints. The proposed method, called uniform competency (UC) local feature extraction, can be easily applied to any local feature detector for various kinds of applications. The proposed competency criterion is based on a weighted ranking process using three quality measures, including robustness, spatial saliency and scale parameters, which is performed in a multi-layer gridding schema. For evaluation, five state-of-the-art local feature detector approaches, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), scale-invariant feature operator (SFOP), maximally stable extremal region (MSER) and hessian-affine, are used. The proposed UC-based feature extraction algorithms were successfully applied to match various synthetic and real satellite image pairs, and the results demonstrate its capability to increase matching performance and to improve the spatial distribution. The code to carry out the UC feature extraction is available from href="https://www.researchgate.net/publication/317956777_UC-Feature_Extraction.

  12. Remote Sensing Information Science Research

    NASA Technical Reports Server (NTRS)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  13. Specific sensors for special roles in oil spill remote sensing

    NASA Astrophysics Data System (ADS)

    Brown, Carl E.; Fingas, Mervin F.

    1997-01-01

    Remote sensing is becoming an increasingly important tool for the effective direction of oil spill countermeasures. Cleanup personnel have recognized that remote sensing can increase spill cleanup efficiency. The general public expects that the government and/or the spiller know the location and the extent of the contamination. The Emergencies Science Division (ESD) of Environment Canada, is responsible for remote sensing during oil spill emergencies along Canada's three coastlines, extensive inland waterways, as well as over the entire land mass. In addition to providing operational remote sensing, ESD conducts research into the development of airborne oil spill remote sensors, including the Scanning Laser Environmental Airborne Fluorosensor (SLEAF) and the Laser Ultrasonic Remote SEnsing of Oil Thickness (LURSOT) sensor. It has long been recognized that there is not one sensor or 'magic bullet' which is capable of detecting oil and related petroleum products in all environments and spill scenarios. There are sensors which possess a wide filed-of-view and can therefore be used to map the overall extent of the spill. These sensors, however lack the specificity required to positively identify oil and related products. This is even more of a problem along complicated beach and shoreline environments where several substrates are present. The specific laser- based sensors under development by Environment Canada are designed to respond to special roles in oil spill response. In particular, the SLEAF is being developed to unambiguously detect and map oil and related petroleum products in complicated marine and shoreline environments where other non-specific sensors experience difficulty. The role of the SLEAF would be to confirm or reject suspected oil contamination sites that have been targeted by the non- specific sensors. This confirmation will release response crews from the time consuming task of physically inspecting each site, and direct crews to sites that require remediation. The LURSOT sensor will provide an absolute measurement of oil thickness form an airborne platform. There are presently no sensors available, either airborne or in the laboratory which can provide an absolute measurement of oil thickness. This information is necessary for the effective direction of spill countermeasures such as dispersant application and in-situ burning. This paper will describe the development of laser-based airborne oil spill remote sensing instrumentation at Environment Canada and identify the anticipated benefits of the use of this technology to the oil spill response community.

  14. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Zurita-Milla, R.; de Wit, A. J. W.; Brazile, J.; Singh, R.; Schaepman, M. E.

    2007-05-01

    During the last 50 years, the management of agroecosystems has been undergoing major changes to meet the growing demand for food, timber, fibre and fuel. As a result of this intensified use, the ecological status of many agroecosystems has been severely deteriorated. Modeling the behavior of agroecosystems is, therefore, of great help since it allows the definition of management strategies that maximize (crop) production while minimizing the environmental impacts. Remote sensing can support such modeling by offering information on the spatial and temporal variation of important canopy state variables which would be very difficult to obtain otherwise. In this paper, we present an overview of different methods that can be used to derive biophysical and biochemical canopy state variables from optical remote sensing data in the VNIR-SWIR regions. The overview is based on an extensive literature review where both statistical-empirical and physically based methods are discussed. Subsequently, the prevailing techniques of assimilating remote sensing data into agroecosystem models are outlined. The increasing complexity of data assimilation methods and of models describing agroecosystem functioning has significantly increased computational demands. For this reason, we include a short section on the potential of parallel processing to deal with the complex and computationally intensive algorithms described in the preceding sections. The studied literature reveals that many valuable techniques have been developed both for the retrieval of canopy state variables from reflective remote sensing data as for assimilating the retrieved variables in agroecosystem models. However, for agroecosystem modeling and remote sensing data assimilation to be commonly employed on a global operational basis, emphasis will have to be put on bridging the mismatch between data availability and accuracy on one hand, and model and user requirements on the other. This could be achieved by integrating imagery with different spatial, temporal, spectral, and angular resolutions, and the fusion of optical data with data of different origin, such as LIDAR and radar/microwave.

  15. Remote sensing supported surveillance and characterization of tailings behavior at a gold mine site, Finland.

    NASA Astrophysics Data System (ADS)

    Rauhala, Anssi; Tuomela, Anne; Rossi, Pekka M.; Davids, Corine

    2017-04-01

    The management of vast amounts of tailings produced is one of the key issues in mining operations. The effective and economic disposal of the waste requires knowledge concerning both basic physical properties of the tailings as well as more complex aspects such as consolidation behavior. The behavior of tailings in itself is a very complex issue that can be affected by flocculation, sedimentation, consolidation, segregation, deposition, freeze-thaw, and desiccation phenomena. The utilization of remote sensing in an impoundment-scale monitoring of tailings could benefit the management of tailings, and improve our knowledge on tailings behavior. In order to gain better knowledge of tailings behavior in cold climate, we have utilized both modern remote sensing techniques and more traditional in situ and laboratory measurements in characterizing thickened gold tailings behavior at a Finnish gold mine site, where the production has been halted due to low gold prices. The remote sensing measurements consisted of elevation datasets collected from unmanned aerial vehicles during summers 2015 and 2016, and a further campaign is planned for the summer 2017. The ongoing traditional measurements include for example particle-size distribution, frost heave, frost depth, water retention, temperature profile, and rheological measurements. Initial results from the remote sensing indicated larger than expected settlements on parts of the tailings impoundment, and also highlighted some of the complexities related to data processing. The interpretation of the results and characterization of the behavior is in this case complicated by possible freeze-thaw effects and potential settlement of the impoundment bottom structure consisting of natural peat. Experiments with remote sensing and unmanned aerial vehicles indicate that they could offer potential benefits in frequent mine site monitoring, but there is a need towards more robust and streamlined data acquisition and processing. The gathered data and obtained results form the basis for further modelling efforts which aim at better management of tailings storage facilities.

  16. The Use of Remote Sensing Satellites for Verification in International Law

    NASA Astrophysics Data System (ADS)

    Hettling, J. K.

    The contribution is a very sensitive topic which is currently about to gain significance and importance in the international community. It implies questions of international law as well as the contemplation of new developments and decisions in international politics. The paper will begin with the meaning and current status of verification in international law as well as the legal basis of satellite remote sensing in international treaties and resolutions. For the verification part, this implies giving a definition of verification and naming its fields of application and the different means of verification. For the remote sensing part, it involves the identification of relevant provisions in the Outer Space Treaty and the United Nations General Assembly Principles on Remote Sensing. Furthermore it shall be looked at practical examples: in how far have remote sensing satellites been used to verify international obligations? Are there treaties which would considerably profit from the use of remote sensing satellites? In this respect, there are various examples which can be contemplated, such as the ABM Treaty (even though out of force now), the SALT and START Agreements, the Chemical Weapons Convention and the Conventional Test Ban Treaty. It will be mentioned also that NGOs have started to verify international conventions, e.g. Landmine Monitor is verifying the Mine-Ban Convention. Apart from verifying arms control and disarmament treaties, satellites can also strengthen the negotiation of peace agreements (such as the Dayton Peace Talks) and the prevention of international conflicts from arising. Verification has played an increasingly prominent role in high-profile UN operations. Verification and monitoring can be applied to the whole range of elements that constitute a peace implementation process, ranging from the military aspects through electoral monitoring and human rights monitoring, from negotiating an accord to finally monitoring it. Last but not least the problem of enforcing international obligations needs to be addressed, especially the dependence of international law on the will of political leaders and their respective national interests.

  17. Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)

    NASA Astrophysics Data System (ADS)

    Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.

    2016-04-01

    Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project investigates the complex landscape dynamics between geological and ecological processes. This is done through cross-correlation of mapping results and implementation of modelling techniques that simulate geological and ecological processes in order to extrapolate the landscape evolution

  18. Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Lin, S.; Li, J.; Liu, Q.

    2018-04-01

    Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  19. System and method for cancelling the effects of stray magnetic fields from the output of a variable reluctance sensor

    DOEpatents

    Chen, Chingchi; Degner, Michael W.

    2002-11-19

    A sensor system for sensing a rotation of a sensing wheel is disclosed. The sensor system has a sensing coil in juxtaposition with the sensing wheel. Moreover, the sensing coil has a sensing coil output signal indicative of the rotational speed of the sensing wheel. Further, a cancellation coil is located remotely from the sensing coil and connected in series therewith. Additionally, the cancellation coil has a cancellation coil output signal indicative of an environmental disturbance which is effecting the sensing coil output signal. The cancellation coil output signal operates to cancel the effects of the environmental disturbance on the sensing coil output signal.

  20. Aerokats and Rover

    NASA Astrophysics Data System (ADS)

    Bland, G.; Miles, T.; Nagchaudhuri, A.; Henry, A.; Coronado, P.; Smith, S.; Bydlowski, D.; Gaines, J.; Hartman, C.

    2015-12-01

    Two novel tools are being developed for team-based environmental and science observations suitable for use in Middle School through Undergraduate settings. Partnerships with NASA's Goddard Space Flight Center are critical for this work, and the concepts and practices are aimed at providing affordable and easy-to-field hardware to the classroom. The Advanced Earth Research Observation Kites and Atmospheric and Terrestrial Sensors (AEROKATS) system brings affordable and easy-to-field remote sensing and in-situ measurements within reach for local-scale Earth observations and data gathering. Using commercial kites, a wide variety of sensors, and a new NASA technology, AEROKATS offers a quick-to-learn method to gather airborne remote sensing and in-situ data for classroom analysis. The Remotely Operated Vehicle for Education and Research (ROVER) project introduces team building for mission operations and research, using modern technologies for exploring aquatic environments. ROVER projects use hobby-type radio control hardware and common in-water instrumentation, to highlight the numerous roles and responsibilities needed in real-world research missions, such as technology, operations, and science disciplines. NASA GSFC's partnerships have enabled the fielding of several AEROKATS and ROVER prototypes, and results suggest application of these methods is feasible and engaging.

  1. PROCEEDINGS OF THE FOURTH SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT; 12, 13, 14 APRIL 1966.

    DTIC Science & Technology

    The symposium was conducted as part of a continuing program investigating the field of remote sensing , its potential in scientific research and...information on all aspects of remote sensing , with special emphasis on such topics as needs for remotely sensed data, data management, and the special... remote sensing programs, data acquisition, data analysis and application, and equipment design, were presented. (Author)

  2. A mission-oriented orbit design method of remote sensing satellite for region monitoring mission based on evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Zhang, Jing; Yao, Huang

    2015-12-01

    Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.

  3. Pan Sharpening Quality Investigation of Turkish In-Operation Remote Sensing Satellites: Applications with Rasat and GÖKTÜRK-2 Images

    NASA Astrophysics Data System (ADS)

    Ozendi, Mustafa; Topan, Hüseyin; Cam, Ali; Bayık, Çağlar

    2016-10-01

    Recently two optical remote sensing satellites, RASAT and GÖKTÜRK-2, launched successfully by the Republic of Turkey. RASAT has 7.5 m panchromatic, and 15 m visible bands whereas GÖKTÜRK-2 has 2.5 m panchromatic and 5 m VNIR (Visible and Near Infrared) bands. These bands with various resolutions can be fused by pan-sharpening methods which is an important application area of optical remote sensing imagery. So that, the high geometric resolution of panchromatic band and the high spectral resolution of VNIR bands can be merged. In the literature there are many pan-sharpening methods. However, there is not a standard framework for quality investigation of pan-sharpened imagery. The aim of this study is to investigate pan-sharpening performance of RASAT and GÖKTÜRK-2 images. For this purpose, pan-sharpened images are generated using most popular pan-sharpening methods IHS, Brovey and PCA at first. This procedure is followed by quantitative evaluation of pan-sharpened images using Correlation Coefficient (CC), Root Mean Square Error (RMSE), Relative Average Spectral Error (RASE), Spectral Angle Mapper (SAM) and Erreur Relative Globale Adimensionnelle de Synthése (ERGAS) metrics. For generation of pan-sharpened images and computation of metrics SharpQ tool is used which is developed with MATLAB computing language. According to metrics, PCA derived pan-sharpened image is the most similar one to multispectral image for RASAT, and Brovey derived pan-sharpened image is the most similar one to multispectral image for GÖKTÜRK-2. Finally, pan-sharpened images are evaluated qualitatively in terms of object availability and completeness for various land covers (such as urban, forest and flat areas) by a group of operators who are experienced in remote sensing imagery.

  4. UniScan technology for innovative laboratory at a university for acquisition data from space in real-time

    NASA Astrophysics Data System (ADS)

    Gershenzon, V.; Gershenzon, O.; Sergeeva, M.; Ippolitov, V.; Targulyan, O.

    2012-04-01

    Keywords: Remote Sensing, UniScan ground station, Education, Monitoring. Remote Sensing Centers allowing real-time imagery acquisition from Earth observing satellites within the structure of Universities provides proper environment for innovative education. It delivers the efficient training for scientific and academic and teaching personnel, secure the role of the young professionals in science, education and hi-tech, and maintain the continuity of generations in science and education. Article is based on experience for creation such centers in more than 20 higher education institutions in Russia, Kazakhstan, and Spain on the base of UniScan ground station by R&D Center ScanEx. These stations serve as the basis for Earth monitoring from space providing the training and advanced training to produce the specialists having the state-of-the-art knowledge in Earth Remote Sensing and GIS, as well as the land-use monitoring and geo-data service for the economic operators in such diverse areas as the nature resource management, agriculture, land property management, disasters monitoring, etc. Currently our proposal of UniScan for universities all over the world allows to receive low resolution free of charge MODIS data from Terra and Aqua satellites, VIIRS from the NPP mission, and also high resolution optical images from EROS A and radar images from Radarsat-1 satellites, including the telemetry for the first year of operation, within the footprint of up to 2,500 kilometers in radius. Creation remote sensing centers at universities will lead to a new quality level for education and scientific studies and will enable to make education system in such innovation institutions open to modern research work and economy.

  5. Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in northern Minnesota

    USGS Publications Warehouse

    Corcoran, Jennifer M.; Knight, Joseph F.; Gallant, Alisa L.

    2013-01-01

    Wetland mapping at the landscape scale using remotely sensed data requires both affordable data and an efficient accurate classification method. Random forest classification offers several advantages over traditional land cover classification techniques, including a bootstrapping technique to generate robust estimations of outliers in the training data, as well as the capability of measuring classification confidence. Though the random forest classifier can generate complex decision trees with a multitude of input data and still not run a high risk of over fitting, there is a great need to reduce computational and operational costs by including only key input data sets without sacrificing a significant level of accuracy. Our main questions for this study site in Northern Minnesota were: (1) how does classification accuracy and confidence of mapping wetlands compare using different remote sensing platforms and sets of input data; (2) what are the key input variables for accurate differentiation of upland, water, and wetlands, including wetland type; and (3) which datasets and seasonal imagery yield the best accuracy for wetland classification. Our results show the key input variables include terrain (elevation and curvature) and soils descriptors (hydric), along with an assortment of remotely sensed data collected in the spring (satellite visible, near infrared, and thermal bands; satellite normalized vegetation index and Tasseled Cap greenness and wetness; and horizontal-horizontal (HH) and horizontal-vertical (HV) polarization using L-band satellite radar). We undertook this exploratory analysis to inform decisions by natural resource managers charged with monitoring wetland ecosystems and to aid in designing a system for consistent operational mapping of wetlands across landscapes similar to those found in Northern Minnesota.

  6. Remote sensing validation through SOOP technology: implementation of Spectra system

    NASA Astrophysics Data System (ADS)

    Piermattei, Viviana; Madonia, Alice; Bonamano, Simone; Consalvi, Natalizia; Caligiore, Aurelio; Falcone, Daniela; Puri, Pio; Sarti, Fabio; Spaccavento, Giovanni; Lucarini, Diego; Pacci, Giacomo; Amitrano, Luigi; Iacullo, Salvatore; D'Andrea, Salvatore; Marcelli, Marco

    2017-04-01

    The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of marine research. The availability of low-cost technologies allows the realization of extended observatory networks for the study of marine phenomena through an integrated approach merging observations, remote sensing and operational oceanography. Marine services and practical applications critically depends on the availability of large amount of data collected with sufficiently dense spatial and temporal sampling. This issue directly influences the robustness both of ocean forecasting models and remote sensing observations through data assimilation and validation processes, particularly in the biological domain. For this reason it is necessary the development of cheap, small and integrated smart sensors, which could be functional both for satellite data validation and forecasting models data assimilation as well as to support early warning systems for environmental pollution control and prevention. This is particularly true in coastal areas, which are subjected to multiple anthropic pressures. Moreover, coastal waters can be classified like case 2 waters, where the optical properties of inorganic suspended matter and chromophoric dissolved organic matter must be considered and separated by the chlorophyll a contribution. Due to the high costs of mooring systems, research vessels, measure platforms and instrumentation a big effort was dedicated to the design, development and realization of a new low cost mini-FerryBox system: Spectra. Thanks to the modularity and user-friendly employment of the system, Spectra allows to acquire continuous in situ measures of temperature, conductivity, turbidity, chlorophyll a and chromophoric dissolved organic matter (CDOM) fluorescences from voluntary vessels, even by non specialized operators (Marcelli et al., 2014; 2016). This work shows the preliminary application of this technology to remote sensing data validation.

  7. Radar and optical remote sensing in offshore domain to detect, characterize, and quantify ocean surface oil slicks

    NASA Astrophysics Data System (ADS)

    Angelliaume, S.; Ceamanos, X.; Viallefont-Robinet, F.; Baqué, R.; Déliot, Ph.; Miegebielle, V.

    2017-10-01

    Radar and optical sensors are operationally used by authorities or petroleum companies for detecting and characterizing maritime pollution. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as the oil real fraction, which is critical for both exploration purposes and efficient cleanup operations. Today state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI, the airborne system developed by ONERA, during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this data set lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the electromagnetic spectrum. Specific processing techniques have been developed in order to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows to estimate slick surface properties such as the spatial abundance of oil and the relative concentration of hydrocarbons on the sea surface.

  8. Scale in Remote Sensing and GIS: An Advancement in Methods Towards a Science of Scale

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    1998-01-01

    The term "scale", both in space and time, is central to remote sensing and geographic information systems (GIS). The emergence and widespread use of GIS technologies, including remote sensing, has generated significant interest in addressing scale as a generic topic, and in the development and implementation of techniques for dealing explicitly with the vicissitudes of scale as a multidisciplinary issue. As science becomes more complex and utilizes databases that are capable of performing complex space-time data analyses, it becomes paramount that we develop the tools and techniques needed to operate at multiple scales, to work with data whose scales are not necessarily ideal, and to produce results that can be aggregated or disaggregated in ways that suit the decision-making process. Contemporary science is constantly coping with compromises, and the data available for a particular study rarely fit perfectly with the scales at which the processes being investigated operate, or the scales that policy-makers require to make sound, rational decisions. This presentation discusses some of the problems associated with scale as related to remote sensing and GIS, and describes some of the questions that need to be addressed in approaching the development of a multidisciplinary "science of scale". Techniques for dealing with multiple scaled data that have been developed or explored recently are described as a means for recognizing scale as a generic issue, along with associated theory and tools that can be of simultaneous value to a large number of disciplines. These can be used to seek answers to a host of interrelated questions in the interest of providing a formal structure for the management and manipulation of scale and its universality as a key concept from a multidisciplinary perspective.

  9. Scale in Remote Sensing and GIS: An Advancement in Methods Towards a Science of Scale

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.

    1998-01-01

    The term "scale", both in space and time, is central to remote sensing and Geographic Information Systems (GIS). The emergence and widespread use of GIS technologies, including remote sensing, has generated significant interest in addressing scale as a generic topic, and in the development and implementation of techniques for dealing explicitly with the vicissitudes of scale as a multidisciplinary issue. As science becomes more complex and utilizes databases that are capable of performing complex space-time data analyses, it becomes paramount that we develop the tools and techniques needed to operate at multiple scales, to work with data whose scales are not necessarily ideal, and to produce results that can be aggregated or disaggregated ways that suit the decision-making process. Contemporary science is constantly coping with compromises, and the data available for a particular study rarely fit perfectly with the scales at which the processes being investigated operate, or the scales that policy-makers require to make sound, rational decisions. This presentation discusses some of the problems associated with scale as related to remote sensing and GIS, and describes some of the questions that need to be addressed in approaching the development of a multidisciplinary "science of scale". Techniques for dealing with multiple scaled data that have been developed or explored recently are described as a means for recognizing scale as a generic issue, along with associated theory and tools that can be of simultaneous value to a large number of disciplines. These can be used to seek answers to a host of interrelated questions in the interest of providing a formal structure for the management and manipulation of scale and its universality as a key concept from a multidisciplinary perspective.

  10. Taking advantage of inclination variation in resonant remote-sensing satellite orbits

    NASA Astrophysics Data System (ADS)

    Gopinath, N. S.; Ravindrababu, T.; Rao, S. V.; Daniel, D. A.; Goel, P. S.

    2004-08-01

    The inclination of remote-sensing satellites, which are generally placed in sun-synchronous orbits, varies as a function of the nominal equatorial crossing local mean solar time selected for a given mission. The Indian Remote-Sensing satellites will have an inclination reduction of about 0.034° per year and for most of the satellites, the local time chosen was around 10:30 hours at descending node. In practice, the initial inclination is biased appropriately so that the expensive out-of-plane maneuvers could be taken up after few years of mission operations, depending on the deviations permitted in the local time for a given mission. However, the scenario differs when the mission objectives require an almost exact repeat orbit of 14 or 15 per day. In such a situation, the satellite orbit, which passes through a 14th or 15th order resonance, undergoes a nearly secular increase in orbit inclination. This paper presents a detailed analysis carried out for such an orbit, based on Cowell's approach. Long-term predictions have been carried out by considering all major forces that perturbs the satellite orbit. Observed behavior of orbit, based on the daily definitive orbit determination is also presented. The variation in inclination and the cause is clearly brought out. Further, it is demonstrated that the selection of longitude for nominal ground track pattern has an impact on the inclination variation. A proposal is made to take advantage of such expected inclination variation so that initial inclination bias can be chosen appropriately. Ground track longitude can be chosen to take advantage, subject to the mission coverage requirements. The paper contains the results of an exhaustive analysis of the actually observed orbit resonance. It is felt that the work has both theoretical and operational importance for remote-sensing missions.

  11. Remote sensing and image interpretation

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)

    1979-01-01

    A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

  12. Remote sensing of snow and ice.

    USGS Publications Warehouse

    Meier, M.F.

    1980-01-01

    Active and passive sensors operating in the visible, near infrared, thermal infrared, and microwave wavelengths are described in regard to general applications and in regard to specific USA or USSR satellites. -from Author

  13. 17. Photocopy of photograph. VIEW OF WORKERS IN EAST OPERATING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph. VIEW OF WORKERS IN EAST OPERATING GALLERY USING MANIPULATOR ARMS AT STATION E-108. Photographer unknown, ca. 1965, original photograph and negative on file at the Remote Sensing Laboratory, Department of Energy, Nevada Operations Office. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV

  14. IIth AMS Conference on Satellite Meteorology and Oceanography.

    NASA Astrophysics Data System (ADS)

    Velden, Christopher; Digirolamo, Larry; Glackin, Mary; Hawkins, Jeffrey; Jedlovec, Gary; Lee, Thomas; Petty, Grant; Plante, Robert; Reale, Anthony; Zapotocny, John

    2002-11-01

    The American Meteorological Society (AMS) held its 11th Conference on Satellite Meteorology and Oceanography at the Monona Terrace Convention Center in Madison, Wisconsin, during 15-18 October 2001. The purpose of the conference, typically held every 18 months, is to promote a forum for AMS membership, international scientists, and student members to present and discuss the latest advances in satellite remote sensing for meteorological and oceanographical applications. This year, surrounded by inspirational designs by famed architect Frank Lloyd Wright, the meeting focused on several broad topics related to remote sensing from space, including environmental applications of land and oceanic remote sensing, climatology and long-term satellite data studies, operational applications, radiances and retrievals, and new technology and methods. A vision of an increasing convergence of satellite systems emerged that included operational and research satellite programs and interdisciplinary user groups.The conference also hosted NASA's Electronic Theater, which was presented to groups of middle and high school students totaling over 5500. It was truly a successful public outreach event. The conference banquet was held on the final evening, where a short tribute to satellite pioneer Verner Suomi was given by Joanne Simpson. Suomi was responsible for establishing the Space Science and Engineering Center at the University of Wisconsin in Madison.

  15. Global Operational Remotely Sensed Evapotranspiration System for Water Resources Management: Case Study for the State of New Mexico

    NASA Astrophysics Data System (ADS)

    Halverson, G. H.; Fisher, J.; Magnuson, M.; John, L.

    2017-12-01

    An operational system to produce and disseminate remotely sensed evapotranspiration using the PT-JPL model and support its analysis and use in water resources decision making is being integrated into the New Mexico state government. A partnership between the NASA Western Water Applications Office (WWAO), the Jet Propulsion Laboratory (JPL), and the New Mexico Office of the State Engineer (NMOSE) has enabled collaboration with a variety of state agencies to inform decision making processes for agriculture, rangeland, and forest management. This system improves drought understanding and mobilization, litigation support, and economic, municipal, and ground-water planning through interactive mapping of daily rates of evapotranspiration at 1 km spatial resolution with near real-time latency. This is facilitated by daily remote sensing acquisitions of land-surface temperature and near-surface air temperature and humidity from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite as well as the short-term composites of Normalized Difference Vegetation Index (NDVI) and albedo provided by MODIS. Incorporating evapotranspiration data into agricultural water management better characterizes imbalances between water requirements and supplies. Monitoring evapotranspiration over rangeland areas improves remediation and prevention of aridification. Monitoring forest evapotranspiration improves wildlife management and response to wildfire risk. Continued implementation of this decision support system should enhance water and food security.

  16. Education in Environmental Remote Sensing: Potentials and Problems.

    ERIC Educational Resources Information Center

    Kiefer, Ralph W.; Lillesand, Thomas M.

    1983-01-01

    Discusses remote sensing principles and applications and the status and needs of remote sensing education in the United States. A summary of the fundamental policy issues that will determine remote sensing's future role in environmental and resource managements is included. (Author/BC)

  17. THE EPA REMOTE SENSING ARCHIVE

    EPA Science Inventory

    What would you do if you were faced with organizing 30 years of remote sensing projects that had been haphazardly stored at two separate locations for years then combined? The EPA Remote Sensing Archive, currently located in Las Vegas, Nevada. contains the remote sensing data and...

  18. Intelligent Systems: Terrestrial Observation and Prediction Using Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2005-01-01

    NASA has made science and technology investments to better utilize its large space-borne remote sensing data holdings of the Earth. With the launch of Terra, NASA created a data-rich environment where the challenge is to fully utilize the data collected from EOS however, despite unprecedented amounts of observed data, there is a need for increasing the frequency, resolution, and diversity of observations. Current terrestrial models that use remote sensing data were constructed in a relatively data and compute limited era and do not take full advantage of on-line learning methods and assimilation techniques that can exploit these data. NASA has invested in visualization, data mining and knowledge discovery methods which have facilitated data exploitation, but these methods are insufficient for improving Earth science models that have extensive background knowledge nor do these methods refine understanding of complex processes. Investing in interdisciplinary teams that include computational scientists can lead to new models and systems for online operation and analysis of data that can autonomously improve in prediction skill over time.

  19. Resolution verification targets for airborne and spaceborne imaging systems at the Stennis Space Center

    NASA Astrophysics Data System (ADS)

    McKellip, Rodney; Yuan, Ding; Graham, William; Holland, Donald E.; Stone, David; Walser, William E.; Mao, Chengye

    1997-06-01

    The number of available spaceborne and airborne systems will dramatically increase over the next few years. A common systematic approach toward verification of these systems will become important for comparing the systems' operational performance. The Commercial Remote Sensing Program at the John C. Stennis Space Center (SSC) in Mississippi has developed design requirements for a remote sensing verification target range to provide a means to evaluate spatial, spectral, and radiometric performance of optical digital remote sensing systems. The verification target range consists of spatial, spectral, and radiometric targets painted on a 150- by 150-meter concrete pad located at SSC. The design criteria for this target range are based upon work over a smaller, prototypical target range at SSC during 1996. This paper outlines the purpose and design of the verification target range based upon an understanding of the systems to be evaluated as well as data analysis results from the prototypical target range.

  20. Historical record of Landsat global coverage

    USGS Publications Warehouse

    Goward, Samuel; Arvidson, Terry; Williams, Darrel; Faundeen, John; Irons, James; Franks, Shannon

    2006-01-01

    The long-term, 34+ year record of global Landsat remote sensing data is a critical resource to study the Earth system and human impacts on this system. The National Satellite Land Remote Sensing Data Archive (NSLRSDA) is charged by public law to: “maintain a permanent, comprehensive Government archive of global Landsat and other land remote sensing data for long-term monitoring and study of the changing global environment” (U.S. Congress, 1992). The advisory committee for NSLRSDA requested a detailed analysis of observation coverage within the U.S. Landsat holdings, as well as that acquired and held by International Cooperator (IC) stations. Our analyses, to date, have found gaps of varying magnitude in U.S. holdings of Landsat global coverage data, which appear to reflect technical or administrative variations in mission operations. In many cases it may be possible to partially fill these gaps in U.S. holdings through observations that were acquired and are now being held at International Cooperator stations.

  1. Forest Disturbance Analysis with LANDSAT-8 Oli Data Related to a Parametric Wind Field: a Case Study for Typhoon Rammasun (201409)

    NASA Astrophysics Data System (ADS)

    Tan, C.; Fang, W.

    2018-04-01

    Forest disturbance induced by tropical cyclone often has significant and profound effects on the structure and function of forest ecosystem. Detection and analysis of post-disaster forest disturbance based on remote sensing technology has been widely applied. At present, it is necessary to conduct further quantitative analysis of the magnitude of forest disturbance with the intensity of typhoon. In this study, taking the case of super typhoon Rammasun (201409), we analysed the sensitivity of four common used remote sensing indices and explored the relationship between remote sensing index and corresponding wind speeds based on pre-and post- Landsat-8 OLI (Operational Land Imager) images and a parameterized wind field model. The results proved that NBR is the most sensitive index for the detection of forest disturbance induced by Typhoon Rammasun and the variation of NBR has a significant linear dependence relation with the simulated 3-second gust wind speed.

  2. NASA Earth Remote Sensing Programs: An Overview with Special Emphasis on the NASA/JAXA Led Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation gives an overview of NASA's operations monitoring the earth from space. It includes information on NASA's administrative divisions and key operating earth science missions with specific information on the Landsat satellites, Seastar spacecraft, and the TRMM satellite.

  3. Developing a Dynamic SPARROW Water Quality Decision Support System Using NASA Remotely-Sensed Products

    NASA Astrophysics Data System (ADS)

    Al-Hamdan, M. Z.; Smith, R. A.; Hoos, A.; Schwarz, G. E.; Alexander, R. B.; Crosson, W. L.; Srikishen, J.; Estes, M., Jr.; Cruise, J.; Al-Hamdan, A.; Ellenburg, W. L., II; Flores, A.; Sanford, W. E.; Zell, W.; Reitz, M.; Miller, M. P.; Journey, C. A.; Befus, K. M.; Swann, R.; Herder, T.; Sherwood, E.; Leverone, J.; Shelton, M.; Smith, E. T.; Anastasiou, C. J.; Seachrist, J.; Hughes, A.; Graves, D.

    2017-12-01

    The USGS Spatially Referenced Regression on Watershed Attributes (SPARROW) surface water quality modeling system has been widely used for long term, steady state water quality analysis. However, users have increasingly requested a dynamic version of SPARROW that can provide seasonal estimates of nutrients and suspended sediment to receiving waters. The goal of this NASA-funded project is to develop a dynamic decision support system to enhance the southeast SPARROW water quality model and finer-scale dynamic models for selected coastal watersheds through the use of remotely-sensed data and other NASA Land Information System (LIS) products. The spatial and temporal scale of satellite remote sensing products and LIS modeling data make these sources ideal for the purposes of development and operation of the dynamic SPARROW model. Remote sensing products including MODIS vegetation indices, SMAP surface soil moisture, and OMI atmospheric chemistry along with LIS-derived evapotranspiration (ET) and soil temperature and moisture products will be included in model development and operation. MODIS data will also be used to map annual land cover/land use in the study areas and in conjunction with Landsat and Sentinel to identify disturbed areas that might be sources of sediment and increased phosphorus loading through exposure of the bare soil. These data and others constitute the independent variables in a regression analysis whose dependent variables are the water quality constituents total nitrogen, total phosphorus, and suspended sediment. Remotely-sensed variables such as vegetation indices and ET can be proxies for nutrient uptake by vegetation; MODIS Leaf Area Index can indicate sources of phosphorus from vegetation; soil moisture and temperature are known to control rates of denitrification; and bare soil areas serve as sources of enhanced nutrient and sediment production. The enhanced SPARROW dynamic models will provide improved tools for end users to manage water quality in near real time and for the formulation of future scenarios to inform strategic planning. Time-varying SPARROW outputs will aid water managers in decision making regarding allocation of resources in protecting aquatic habitats, planning for harmful algal blooms, and restoration of degraded habitats, stream segments, or lakes.

  4. Application of an imputation method for geospatial inventory of forest structural attributes across multiple spatial scales in the Lake States, U.S.A

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.

    Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.

  5. Modular design of electrical power subsystem for a remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Kosari, Ehsan; Ghazanfarinia, Sajjad; Hosseingholi, Mahboobeh; Haghshenas, Javad

    2017-09-01

    Power Supply is one of the most important subjects in Remote Sensing satellite. Having an appropriate and adequate power resources, A Remote Sensing satellite may utilize more complex Payloads and also make them more operable in orbit and mission timeline. This paper is deals with a design of electrical power supply subsystem (EPS) of a hypothetical satellite with remote sensing mission in Low Earth Orbits, without any restriction on the type and number of Payloads and only assuming a constraint on the total power consumption of them. EPS design is in a way that can supply the platform consumption to support Mission and Payload(s) requirements beside the power consumption of the payload(s). The design is also modular, as it can be used not only for the hypothetical system, but also for the other systems with similar architecture and even more needs on power and differences in some specifications. Therefore, a modularity scope is assumed in design of this subsystem, in order to support the satellite in the circular orbits with altitude of 500 to 700 km and inclination of 98 degrees, a sun-synchronous orbit, where one can say the design is applicable to a large range of remote sensing satellites. Design process will be started by high level and system requirements analysis, continued by choosing the best approach for design and implementation based on system specification and mission. After EPS sizing, the specifications of elements are defined to get the performance needed during operation phases; the blocks and sub-blocks are introduced and details of their design and performance analysis are presented; and the modularity is verified using calculations for the confined area based on design parameters and evaluated by STK software analysis results. All of the process is coded in MATLAB software and comprehensive graphs are generated to demonstrate the capabilities and performance. The code and graphs are developed in such a way to completely review the design procedure and system efficiency in worst case of power consumption scenario at the beginning and end of satellite life

  6. A practical CO2 flux remote sensing technique

    NASA Astrophysics Data System (ADS)

    Queisser, Manuel; Burton, Mike

    2017-04-01

    An accurate quantification of CO2 flux from both natural and anthropogenic sources is of great interest in various areas of the Earth, environmental and atmospheric sciences. As emitted excess CO2 quickly dilutes into the 400 ppm ambient CO2 concentration and degassing often occurs diffusively, measuring CO2 fluxes is challenging. Therefore, fluxes are usually derived from grids of in-situ measurements, which are labour intensive measurements. Other than a safe measurement distance, remote sensing offers quick, spatially integrated and thus a more thorough measurement of gas fluxes. Active remote sensing combines these merits with operation independent of sunlight or clear sky conditions. Due to their weight and size, active remote sensing platforms for CO2, such as LIDAR, cannot easily be applied in the field or transported overseas. Moreover, their complexity requires a rather lengthy setup procedure to be undertaken by skilled personal. To meet the need for a rugged, practical CO2 remote sensing technique to scan volcanic plumes, we have developed the CO2 LIDAR. It measures 1-D column densities of CO2 with sufficient sensitivity to reveal the contribution of magmatic CO2. The CO2 LIDAR has been mounted inside a small aircraft and used to measure atmospheric column CO2 concentrations between the aircraft and the ground. It was further employed on the ground, measuring CO2 emissions from mud volcanism. During the measurement campaign the CO2 LIDAR demonstrated reliability, portability, quick set-up time (10 to 15 min) and platform independence. This new technique opens the possibility of rapid, comprehensive surveys of point source, open-vent CO2 emissions, as well as emissions from more diffuse sources such as lakes and fumarole fields. Currently, within the proof-of-concept ERC project CarbSens, a further reduction in size, weight and operational complexity is underway with the goal to commercialize the platform. Areas of potential applications include fugitive CO2 detection at carbon capture and storage sites, volcano monitoring and bottom-up quantification of CO2 fluxes, such as from urban areas or natural sources.

  7. Experimental philosophy leading to a small scale digital data base of the conterminous United States for designing experiments with remotely sensed data

    NASA Technical Reports Server (NTRS)

    Labovitz, M. L.; Masuoka, E. J.; Broderick, P. W.; Garman, T. R.; Ludwig, R. W.; Beltran, G. N.; Heyman, P. J.; Hooker, L. K.

    1983-01-01

    Research using satellite remotely sensed data, even within any single scientific discipline, often lacked a unifying principle or strategy with which to plan or integrate studies conducted over an area so large that exhaustive examination is infeasible, e.g., the U.S.A. However, such a series of studies would seem to be at the heart of what makes satellite remote sensing unique, that is the ability to select for study from among remotely sensed data sets distributed widely over the U.S., over time, where the resources do not exist to examine all of them. Using this philosophical underpinning and the concept of a unifying principle, an operational procedure for developing a sampling strategy and formal testable hypotheses was constructed. The procedure is applicable across disciplines, when the investigator restates the research question in symbolic form, i.e., quantifies it. The procedure is set within the statistical framework of general linear models. The dependent variable is any arbitrary function of remotely sensed data and the independent variables are values or levels of factors which represent regional climatic conditions and/or properties of the Earth's surface. These factors are operationally defined as maps from the U.S. National Atlas (U.S.G.S., 1970). Eighty-five maps from the National Atlas, representing climatic and surface attributes, were automated by point counting at an effective resolution of one observation every 17.6 km (11 miles) yielding 22,505 observations per map. The maps were registered to one another in a two step procedure producing a coarse, then fine scale registration. After registration, the maps were iteratively checked for errors using manual and automated procedures. The error free maps were annotated with identification and legend information and then stored as card images, one map to a file. A sampling design will be accomplished through a regionalization analysis of the National Atlas data base (presently being conducted). From this analysis a map of homogeneous regions of the U.S.A. will be created and samples (LANDSAT scenes) assigned by region.

  8. Research on remote sensing image pixel attribute data acquisition method in AutoCAD

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyang; Sun, Guangtong; Liu, Jun; Liu, Hui

    2013-07-01

    The remote sensing image has been widely used in AutoCAD, but AutoCAD lack of the function of remote sensing image processing. In the paper, ObjectARX was used for the secondary development tool, combined with the Image Engine SDK to realize remote sensing image pixel attribute data acquisition in AutoCAD, which provides critical technical support for AutoCAD environment remote sensing image processing algorithms.

  9. Bibliography of Remote Sensing Techniques Used in Wetland Research.

    DTIC Science & Technology

    1993-01-01

    remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.... Change detection, Wetland assessment, Remote sensing ,

  10. The Evolution of Operational Satellite Based Remote Sensing in Support of Weather Analysis, Nowcasting, and Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Hughes, B. K.

    2010-12-01

    The mission of the National Oceanic and Atmospheric Administration (NOAA) National Environmental Data Information Service (NESDIS) is to provide timely access to global environmental data from satellites and other sources to promote, protect, and enhance America’s economy, security, environment, and quality of life. To fulfill its responsibilities, NESDIS acquires and manages America’s operational environmental satellites, operates the NOAA National Data Centers, provides data and information services including Earth system monitoring, performs official assessments of the environment, and conducts related research. The Nation’s fleet of operational environmental satellites has proven to be very critical in the detection, analysis, and forecast of natural or man-made phenomena. These assets have provided for the protection of people and property while safeguarding the Nation’s commerce and enabling safe and effective military operations. This presentation will take the audience through the evolution of operational satellite based remote sensing in support of weather forecasting, nowcasting, warning operations, hazard detection and mitigation. From the very first experiments involving radiation budget to today’s fleet of Geostationary and Polar Orbiting satellites to tomorrow’s constellation of high resolution imagers and hyperspectral sounders, environmental satellites sustain key observations for current and future generations.

  11. Kite Aerial Photography as a Tool for Remote Sensing

    ERIC Educational Resources Information Center

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  12. ARM Radar Contoured Frequency by Altitude Diagram (CFAD) Data Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuying

    2017-03-10

    To compare with ARM cloud radar simulator outputs, observational reflectivity-height joint histograms, i.e., CFADs, are constructed from the operational ARM Active Remote Sensing of CLouds (ARSCL) Value-Added Product.

  13. The United States space observation policy

    NASA Technical Reports Server (NTRS)

    Chevrel, M.

    1980-01-01

    The steps pursued since 1978 to establish an operational civil space remote sensing system are outlined. The role of the National Oceanographic and Atmospheric Agency is defined, and the problems still remaining are discussed.

  14. Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations

    USDA-ARS?s Scientific Manuscript database

    Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...

  15. Reflections on Earth--Remote-Sensing Research from Your Classroom.

    ERIC Educational Resources Information Center

    Campbell, Bruce A.

    2001-01-01

    Points out the uses of remote sensing in different areas, and introduces the program "Reflections on Earth" which provides access to basic and instructional information on remote sensing to students and teachers. Introduces students to concepts related to remote sensing and measuring distances. (YDS)

  16. Remote-Sensing Practice and Potential

    DTIC Science & Technology

    1974-05-01

    Six essential processes that must be accomplished if use of a remote - sensing system is to result in useful information are defined as problem...to be useful in remote - sensing projects are described. An overview of the current state-of-the-art of remote sensing is presented.

  17. History and future of remote sensing technology and education

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1980-01-01

    A historical overview of the discovery and development of photography, related sciences, and remote sensing technology is presented. The role of education to date in the development of remote sensing is discussed. The probable future and potential of remote sensing and training is described.

  18. Zombie algorithms: a timesaving remote sensing systems engineering tool

    NASA Astrophysics Data System (ADS)

    Ardanuy, Philip E.; Powell, Dylan C.; Marley, Stephen

    2008-08-01

    In modern horror fiction, zombies are generally undead corpses brought back from the dead by supernatural or scientific means, and are rarely under anyone's direct control. They typically have very limited intelligence, and hunger for the flesh of the living [1]. Typical spectroradiometric or hyperspectral instruments providess calibrated radiances for a number of remote sensing algorithms. The algorithms typically must meet specified latency and availability requirements while yielding products at the required quality. These systems, whether research, operational, or a hybrid, are typically cost constrained. Complexity of the algorithms can be high, and may evolve and mature over time as sensor characterization changes, product validation occurs, and areas of scientific basis improvement are identified and completed. This suggests the need for a systems engineering process for algorithm maintenance that is agile, cost efficient, repeatable, and predictable. Experience on remote sensing science data systems suggests the benefits of "plug-n-play" concepts of operation. The concept, while intuitively simple, can be challenging to implement in practice. The use of zombie algorithms-empty shells that outwardly resemble the form, fit, and function of a "complete" algorithm without the implemented theoretical basis-provides the ground systems advantages equivalent to those obtained by integrating sensor engineering models onto the spacecraft bus. Combined with a mature, repeatable process for incorporating the theoretical basis, or scientific core, into the "head" of the zombie algorithm, along with associated scripting and registration, provides an easy "on ramp" for the rapid and low-risk integration of scientific applications into operational systems.

  19. Estimating time available for sensor fusion exception handling

    NASA Astrophysics Data System (ADS)

    Murphy, Robin R.; Rogers, Erika

    1995-09-01

    In previous work, we have developed a generate, test, and debug methodology for detecting, classifying, and responding to sensing failures in autonomous and semi-autonomous mobile robots. An important issue has arisen from these efforts: how much time is there available to classify the cause of the failure and determine an alternative sensing strategy before the robot mission must be terminated? In this paper, we consider the impact of time for teleoperation applications where a remote robot attempts to autonomously maintain sensing in the presence of failures yet has the option to contact the local for further assistance. Time limits are determined by using evidential reasoning with a novel generalization of Dempster-Shafer theory. Generalized Dempster-Shafer theory is used to estimate the time remaining until the robot behavior must be suspended because of uncertainty; this becomes the time limit on autonomous exception handling at the remote. If the remote cannot complete exception handling in this time or needs assistance, responsibility is passed to the local, while the remote assumes a `safe' state. An intelligent assistant then facilitates human intervention, either directing the remote without human assistance or coordinating data collection and presentation to the operator within time limits imposed by the mission. The impact of time on exception handling activities is demonstrated using video camera sensor data.

  20. Ten ways remote sensing can contribute to conservation

    USGS Publications Warehouse

    Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2014-01-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?

  1. Ten ways remote sensing can contribute to conservation.

    PubMed

    Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2015-04-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions? © 2014 Society for Conservation Biology.

  2. SCI 236 AGARDograph. Part Two; National Aeronautics and Space Administration Armstrong Flight Research Center Annex

    NASA Technical Reports Server (NTRS)

    Neal, Bradford A.; Stoliker, Patrick C.

    2018-01-01

    NASA AFRC is a United States government entity that conducts the integration and operation of new and unproven technologies into proven flight vehicles as well as the flight test of one-of-a-kind experimental aircraft. AFRC also maintains and operates several platform aircraft that allow the integration of a wide range of sensors to conduct airborne remote sensing, science observations and airborne infrared astronomy. To support these types of operations AFRC has the organization, facilities and tools to support the experimental flight test of unique vehicles and conduct airborne sensing/observing.

  3. Role of remote sensing in documenting living resources

    NASA Technical Reports Server (NTRS)

    Wagner, P. E.; Anderson, R. R.; Brun, B.; Eisenberg, M.; Genys, J. B.; Lear, D. W., Jr.; Miller, M. H.

    1978-01-01

    Specific cases of known or potentially useful applications of remote sensing in assessing biological resources are discussed. It is concluded that the more usable remote sensing techniques relate to the measurement of population fluctuations in aquatic systems. Sensing of the flora and the fauna of the Bay is considered with emphasis on direct sensing of aquatic plant populations and of water quality. Recommendations for remote sensing projects are given.

  4. Commercial future: making remote sensing a media event

    NASA Astrophysics Data System (ADS)

    Lurie, Ian

    1999-12-01

    The rapid growth of commercial remote sensing has made high quality digital sensing data widely available -- now, remote sensing must become and remain a strong, commercially viable industry. However, this new industry cannot survive without an educated consumer base. To access markets, remote sensing providers must make their product more accessible, both literally and figuratively: Potential customers must be able to find the data they require, when they require it, and they must understand the utility of the information available to them. The Internet and the World Wide Web offer the perfect medium to educate potential customers and to sell remote sensing data to those customers. A well-designed web presence can provide both an information center and a market place for companies offering their data for sale. A very high potential web-based market for remote sensing lies in media. News agencies, web sites, and a host of other visual media services can use remote sensing data to provide current, relevant information regarding news around the world. This paper will provide a model for promotion and sale of remote sensing data via the Internet.

  5. 77 FR 39220 - Advisory Committee on Commercial Remote Sensing (ACCRES); Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Commercial Remote Sensing (ACCRES); Charter Renewal AGENCY: National Oceanic and Atmospheric Administration... Committee on Commercial Remote Sensing (ACCRES) was renewed on March 14, 2012. SUPPLEMENTARY INFORMATION: In... Commercial Remote Sensing (ACCRES) is in the public interest in connection with the performance of duties...

  6. 76 FR 66042 - Advisory Committee on Commercial Remote Sensing (ACCRES); Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... Commercial Remote Sensing (ACCRES); Request for Nominations ACTION: Notice requesting nominations for the Advisory Committee on Commercial Remote Sensing (ACCRES). SUMMARY: The Advisory Committee on Commercial Remote Sensing (ACCRES) was established to advise the Secretary of Commerce, through the Under Secretary...

  7. An introduction to quantitative remote sensing. [data processing

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Russell, J.

    1974-01-01

    The quantitative approach to remote sensing is discussed along with the analysis of remote sensing data. Emphasis is placed on the application of pattern recognition in numerically oriented remote sensing systems. A common background and orientation for users of the LARS computer software system is provided.

  8. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    PubMed Central

    Wang, Kai; Franklin, Steven E.; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS). PMID:22163432

  9. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists.

    PubMed

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).

  10. Remote Sensing and Reflectance Profiling in Entomology.

    PubMed

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  11. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  12. Introductory comments on the USGS geographic applications program

    NASA Technical Reports Server (NTRS)

    Gerlach, A. C.

    1970-01-01

    The third phase of remote sensing technologies and potentials applied to the operations of the U.S. Geological Survey is introduced. Remote sensing data with multidisciplinary spatial data from traditional sources is combined with geographic theory and techniques of environmental modeling. These combined imputs are subject to four sequential activities that involve: (1) thermatic mapping of land use and environmental factors; (2) the dynamics of change detection; (3) environmental surveillance to identify sudden changes and general trends; and (4) preparation of statistical model and analytical reports. Geography program functions, products, clients, and goals are presented in graphical form, along with aircraft photo missions, geography test sites, and FY-70.

  13. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  14. Emerging solid-state laser technology by lidar/DIAL remote sensing

    NASA Technical Reports Server (NTRS)

    Killinger, Dennis

    1992-01-01

    Significant progress has been made in recent years in the development of new, solid-state laser sources. This talk will present an overview of some of the new developments in solid-state lasers, and their application toward lidar/DIAL measurements of the atmosphere. Newly emerging lasers such as Ho:YAG, Tm:YAG, OPO, and Ti:Sapphire will be covered, along with the spectroscopic parameters required for differential operational modes of atmospheric remote sensing including Doppler-Windshear lidar, Tunable laser detection of water/CO2, and broad linewidth OPO's for open path detection of pollutant hydrocarbon gases. Additional considerations of emerging laser technology for lidar/DIAL will also be covered.

  15. Fixed-focus camera objective for small remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Topaz, Jeremy M.; Braun, Ofer; Freiman, Dov

    1993-09-01

    An athermalized objective has been designed for a compact, lightweight push-broom camera which is under development at El-Op Ltd. for use in small remote-sensing satellites. The high performance objective has a fixed focus setting, but maintains focus passively over the full range of temperatures encountered in small satellites. The lens is an F/5.0, 320 mm focal length Tessar type, operating over the range 0.5 - 0.9 micrometers . It has a 16 degree(s) field of view and accommodates various state-of-the-art silicon detector arrays. The design and performance of the objective is described in this paper.

  16. Remote sensing applications to resource problems in South Dakota

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Best, R. G.; Dalsted, K. J.; Devries, M. E.; Eidenshink, J. C.; Fowler, R.; Heilman, J.; Schmer, F. A.

    1980-01-01

    Cooperative projects between RSI and numerous South Dakota agencies have provided a means of incorporating remote sensing techniques into operational programs. Eight projects discussed in detail are: (1) detection of high moisture zones near interstate 90; (2) thermal infrared census of Canada geese in South Dakota; (3) dutch elm disease detection in urban environment; (4) a feasibility study for monitoring effective precipitation in South Dakota using TIROS-N; (5) open and abandoned dump sites in Spink county; (6) the influence of soil reflectance on LANDSAT signatures of crops; (7) A model implementation program for Lake Herman watershed; and (8) the Six-Mile Creek investigation follow-on.

  17. A report on the use of thermal scanner data in an operational program for monitoring apparent rooftop temperatures

    NASA Technical Reports Server (NTRS)

    Bjorklund, J.; Schmer, F. A.; Isakson, R. E.

    1975-01-01

    CENGAS, a division of Central Telephone and Utilities Corporation in cooperation with the Remote Sensing Institute, South Dakota State University, is using airborne thermal scanner data to monitor relative rooftop temperatures. Four Nebraska communities and one South Dakota community were surveyed by the Remote Sensing Institute for CENGAS. Thermal scanner data were converted to a film format and the resultant imagery has been successfully employed by CENGAS. The program places emphasis on heat losses resulting from inadequate home insulation, offers CENGAS customers the opportunity to observe a thermogram of their rooftop, and assists homeowners in evaluating insulation needs.

  18. Remote sensing of environmental impact of land use activities

    NASA Technical Reports Server (NTRS)

    Paul, C. K.

    1977-01-01

    The capability to monitor land cover, associated in the past with aerial film cameras and radar systems, was discussed in regard to aircraft and spacecraft multispectral scanning sensors. A proposed thematic mapper with greater spectral and spatial resolutions for the fourth LANDSAT is expected to usher in new environmental monitoring capability. In addition, continuing improvements in image classification by supervised and unsupervised computer techniques are being operationally verified for discriminating environmental impacts of human activities on the land. The benefits of employing remote sensing for this discrimination was shown to far outweigh the incremental costs of converting to an aircraft-satellite multistage system.

  19. Remote sensing operations (multispectral scanner and photographic) in the New York Bight, 22 September 1975

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Hall, J. B., Jr.

    1977-01-01

    Ocean dumping of waste materials is a significant environmental concern in the New York Bight. One of these waste materials, sewage sludge, was monitored in an experiment conducted in the New York Bight on September 22, 1975. Remote sensing over controlled sewage sludge dumping included an 11-band multispectral scanner, fiver multispectral cameras and one mapping camera. Concurrent in situ water samples were taken and acoustical measurements were made of the sewage sludge plumes. Data were obtained for sewage sludge plumes resulting from line (moving barge) and spot (stationary barge) dumps. Multiple aircraft overpasses were made to evaluate temporal effects on the plume signature.

  20. Downhole steam quality measurement

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  1. Program on Earth Observation Data Management Systems (EODMS), appendixes

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Gohagan, J. K.; Hill, C. T.; Morgan, R. P.; Bay, S. M.; Foutch, T. K.; Hays, T. R.; Ballard, R. J.; Makin, K. P.; Power, M. A.

    1976-01-01

    The needs of state, regional, and local agencies involved in natural resources management in Illinois, Iowa, Minnesota, Missouri, and Wisconsin are investigated to determine the design of satellite remotely sensed derivable information products. It is concluded that an operational Earth Observation Data Management System (EODMS) will be most beneficial if it provides a full range of services - from raw data acquisition to interpretation and dissemination of final information products. Included is a cost and performance analysis of alternative processing centers, and an assessment of the impacts of policy, regulation, and government structure on implementing large scale use of remote sensing technology in this community of users.

  2. Oil pollution signatures by remote sensing.

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.; Mclean, J. T.

    1972-01-01

    Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.

  3. Book Review

    NASA Astrophysics Data System (ADS)

    Clevers, J. G. P. W.

    2015-02-01

    About thirty years after the previous advanced textbook on Microwave Remote Sensing by Ulaby, Moore and Fung has been published as three separate volumes, now an up-to-date new textbook has been published. The 1000-page book covers theoretical models, system design and operation, and geoscientific applications of active and passive microwave remote sensing systems. It is designed as a textbook at the postgraduate level, as well as a reference for the practicing professional. The book is caught by a thorough introduction into the physics and mathematics of electrical engineering applied to microwave radiation. Here on overview of its chapters with a short description of its focus will be given.

  4. Solid-State, High Energy 2-Micron Laser Development for Space-Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2010-01-01

    Lidar (light detection and ranging) remote sensing enjoys the advantages of excellent vertical and horizontal resolution; pointing capability; a signal source independent from natural light; and control and knowledge of transmitted wavelength, pulse shape, and polarization and received polarization. Lidar in space is an emerging technology now being developing to fit applications where passive sensors cannot meet current measurement requirements. Technical requirements for space lidar are more demanding than for ground-based or airborne systems. Perhaps the most distinguishing characteristics of space lidars are the environmental requirements. Space lidar systems must be specially designed to survive the mechanical vibration loads of launch and operate in the vacuum of space where exposure to ionizing radiation limits the electronic components available. Finally, space lidars must be designed to be highly reliable because they must operate without the need for repair or adjustment. Lifetime requirements tend to be important drivers of the overall system design. The maturity of the required technologies is a key to the development of any space lidar system. NASA entered a new era in the 1990 s with the approval of several space-based remote sensing missions employing laser radar (lidar) techniques. Following the steps of passive remote sensing and then active radar remote sensing, lidar sensors were a logical next step, providing independence from natural light sources, and better spatial resolution and smaller sensor size than radar sensors. The shorter electromagnetic wavelengths of laser light also allowed signal reflectance from air molecules and aerosol particles. The smaller receiver apertures allowed the concept of scanning the sensor field of view. However, technical problems with several space-based lidar missions during that decade led to concern at NASA about the risk of lidar missions. An external panel was convened to make recommendations to NASA. Their report in 2000 strongly advocated that NASA maintain in-house laser and lidar capability, and that NASA should work to lower the technology risk for all future lidar missions. A multi-Center NASA team formulated an integrated NASA strategy to provide the technology and maturity of systems necessary to make Lidar/Laser systems viable for space-based study and monitoring of the Earth's atmosphere. In 2002 the NASA Earth Science Enterprise (ESE) and Office of Aerospace Technology (OAT) created the Laser Risk Reduction Program (LRRP) and directed NASA Langley Research Center (LaRC) and Goddard Space Flight Center to carry out synergistic and complementary research towards solid-state lasers/lidars developments for space-based remote sensing applications.

  5. On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhou, Lu; Xu, Shiming; Liu, Jiping; Wang, Bin

    2018-03-01

    The accurate knowledge of sea ice parameters, including sea ice thickness and snow depth over the sea ice cover, is key to both climate studies and data assimilation in operational forecasts. Large-scale active and passive remote sensing is the basis for the estimation of these parameters. In traditional altimetry or the retrieval of snow depth with passive microwave remote sensing, although the sea ice thickness and the snow depth are closely related, the retrieval of one parameter is usually carried out under assumptions over the other. For example, climatological snow depth data or as derived from reanalyses contain large or unconstrained uncertainty, which result in large uncertainty in the derived sea ice thickness and volume. In this study, we explore the potential of combined retrieval of both sea ice thickness and snow depth using the concurrent active altimetry and passive microwave remote sensing of the sea ice cover. Specifically, laser altimetry and L-band passive remote sensing data are combined using two forward models: the L-band radiation model and the isostatic relationship based on buoyancy model. Since the laser altimetry usually features much higher spatial resolution than L-band data from the Soil Moisture Ocean Salinity (SMOS) satellite, there is potentially covariability between the observed snow freeboard by altimetry and the retrieval target of snow depth on the spatial scale of altimetry samples. Statistically significant correlation is discovered based on high-resolution observations from Operation IceBridge (OIB), and with a nonlinear fitting the covariability is incorporated in the retrieval algorithm. By using fitting parameters derived from large-scale surveys, the retrievability is greatly improved compared with the retrieval that assumes flat snow cover (i.e., no covariability). Verifications with OIB data show good match between the observed and the retrieved parameters, including both sea ice thickness and snow depth. With detailed analysis, we show that the error of the retrieval mainly arises from the difference between the modeled and the observed (SMOS) L-band brightness temperature (TB). The narrow swath and the limited coverage of the sea ice cover by altimetry is the potential source of error associated with the modeling of L-band TB and retrieval. The proposed retrieval methodology can be applied to the basin-scale retrieval of sea ice thickness and snow depth, using concurrent passive remote sensing and active laser altimetry based on satellites such as ICESat-2 and WCOM.

  6. Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe

    2016-04-01

    To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all around the world, while new camera systems are being planned such as LiDAR and a full frame hyperspectral camera. In the presentation we will give an overview of our activities, ranging from erosion studies, decision support for precision agriculture, determining leaf biochemistry and canopy structure in tropical forests to the mapping of coastal zones.

  7. Remote Sensing in Geography in the New Millennium: Prospects, Challenges, and Opportunities

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Jensen, John R.; Morain, Stanley A.; Walsh, Stephen J.; Ridd, Merrill K.

    1999-01-01

    Remote sensing science contributes greatly to our understanding of the Earth's ecosystems and cultural landscapes. Almost all the natural and social sciences, including geography, rely heavily on remote sensing to provide quantitative, and indispensable spatial information. Many geographers have made significant contributions to remote sensing science since the 1970s, including the specification of advanced remote sensing systems, improvements in analog and digital image analysis, biophysical modeling, and terrain analysis. In fact, the Remote Sensing Specialty Group (RSSG) is one of the largest specialty groups within the AAG with over 500 members. Remote sensing in concert with a geographic information systems, offers much value to geography as both an incisive spatial-analytical tool and as a scholarly pursuit that adds to the body of geographic knowledge on the whole. The "power" of remote sensing as a research endeavor in geography lies in its capabilities for obtaining synoptic, near-real time data at many spatial and temporal scales, and in many regions of the electromagnetic spectrum - from microwave, to RADAR, to visible, and reflective and thermal infrared. In turn, these data present a vast compendium of information for assessing Earth attributes and characte6stics that are at the very core of geography. Here we revisit how remote sensing has become a fundamental and important tool for geographical research, and how with the advent of new and improved sensing systems to be launched in the near future, remote sensing will further advance geographical analysis in the approaching New Millennium.

  8. Agricultural Production Monitoring in the Sahel Using Remote Sensing: Present Possibilities and Research Needs

    DTIC Science & Technology

    1993-01-01

    during the agricultural season. Satellite remote sensing can contribute significantly to such a system by collecting information on crops and on...well as techniques to derive biophysical variables from remotely-sensed data. Finally, the integration of these remote - sensing techniques with crop

  9. Scalability Issues for Remote Sensing Infrastructure: A Case Study

    PubMed Central

    Liu, Yang; Picard, Sean; Williamson, Carey

    2017-01-01

    For the past decade, a team of University of Calgary researchers has operated a large “sensor Web” to collect, analyze, and share scientific data from remote measurement instruments across northern Canada. This sensor Web receives real-time data streams from over a thousand Internet-connected sensors, with a particular emphasis on environmental data (e.g., space weather, auroral phenomena, atmospheric imaging). Through research collaborations, we had the opportunity to evaluate the performance and scalability of their remote sensing infrastructure. This article reports the lessons learned from our study, which considered both data collection and data dissemination aspects of their system. On the data collection front, we used benchmarking techniques to identify and fix a performance bottleneck in the system’s memory management for TCP data streams, while also improving system efficiency on multi-core architectures. On the data dissemination front, we used passive and active network traffic measurements to identify and reduce excessive network traffic from the Web robots and JavaScript techniques used for data sharing. While our results are from one specific sensor Web system, the lessons learned may apply to other scientific Web sites with remote sensing infrastructure. PMID:28468262

  10. Mineralogy and Astrobiology Detection Using Laser Remote Sensing Instrument

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Bradley, Arthur T.; Sharma, Shiv K.; Misra, Anupam K.; Lucey, Paul G.; Mckay, Chistopher P.; Ismail, Syed; Sandford, Stephen P.

    2015-01-01

    A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters. OCIS codes: (120.0280) Remote sensing and sensors; (130.0250) Optoelectronics; (280.3640) Lidar; (300.2530) Fluorescence, laser-induced; (300.6450) Spectroscopy, Raman; (300.6365) Spectroscopy, laser induced breakdown

  11. Method of determining forest production from remotely sensed forest parameters

    DOEpatents

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  12. Removal of Surface-Reflected Light for the Measurement of Remote-Sensing Reflectance from an Above-Surface Platform

    DTIC Science & Technology

    2010-12-01

    remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear

  13. Removal of Surface-Reflected Light for the Measurement of Remote-Sensing Reflectance from an Above-Surface Platform

    DTIC Science & Technology

    2010-12-06

    remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear

  14. Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites

    NASA Astrophysics Data System (ADS)

    Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.

    2015-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.

  15. Hydrology with unmanned aerial vehicles (UAVs)

    USDA-ARS?s Scientific Manuscript database

    Hydrologic remote sensing currently depends on expensive and infrequent aircraft observations for validation of operational satellite products, typically conducted during field campaigns that also include ground-based measurements. With the advent of new, hydrologically-relevant satellite missions, ...

  16. Inputs requested from earth resources remote sensing data users regarding LANDSAT-C mission requirements and data needs

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Inputs from prospective LANDSAT-C data users are requested to aid NASA in defining LANDSAT-C mission and data requirements and in making decisions regarding the scheduling of satellite operations and ground data processing operations. Design specifications, multispectral band scanner performance characteristics, satellite schedule operations, and types of available data products are briefly described.

  17. Integrated solution for the complete remote sensing process - Earth Observation Mission Control Centre (EOMC2)

    NASA Astrophysics Data System (ADS)

    Czapski, Paweł

    2016-07-01

    We are going to show the latest achievements of the Remote Sensing Division of the Institute of Aviation in the area of remote sensing, i.e. the project of the integrated solution for the whole remote sensing process ranging from acquiring to providing the end user with required information. Currently, these tasks are partially performed by several centers in Poland, however there is no leader providing an integrated solution. Motivated by this fact, the Earth Observation Mission Control Centre (EOMC2) was established in the Remote Sensing Division of the Institute of Aviation that will provide such a comprehensive approach. Establishing of EOMC2 can be compared with creating Data Center Aerial and Satellite Data Centre (OPOLIS) in the Institute of Geodesy and Cartography in the mid-70s in Poland. OPOLIS was responsible for broadly defined data processing, it was a breakthrough innovation that initiated the use of aerial image analysis in Poland. Operation center is a part of the project that will be created, which in comparison with the competitors will provide better solutions, i.e.: • Centralization of the acquiring, processing, publishing and archiving of data, • Implementing elements of the INSPIRE directive recommendations on spatial data management, • Providing the end-user with information in the near real-time, • Ability of supplying the system with images of various origin (aerial, satellite, e.g. EUMETCast, Sentinel, Landsat) and diversity of telemetry data, data aggregation and using the same algorithms to images obtained from different sources, • System reconfiguration and batch processing of large data sets at any time, • A wide range of potential applications: precision agriculture, environmental protection, crisis management and national security, aerial, small satellite and sounding rocket missions monitoring.

  18. Implications of sampling design and sample size for national carbon accounting systems.

    PubMed

    Köhl, Michael; Lister, Andrew; Scott, Charles T; Baldauf, Thomas; Plugge, Daniel

    2011-11-08

    Countries willing to adopt a REDD regime need to establish a national Measurement, Reporting and Verification (MRV) system that provides information on forest carbon stocks and carbon stock changes. Due to the extensive areas covered by forests the information is generally obtained by sample based surveys. Most operational sampling approaches utilize a combination of earth-observation data and in-situ field assessments as data sources. We compared the cost-efficiency of four different sampling design alternatives (simple random sampling, regression estimators, stratified sampling, 2-phase sampling with regression estimators) that have been proposed in the scope of REDD. Three of the design alternatives provide for a combination of in-situ and earth-observation data. Under different settings of remote sensing coverage, cost per field plot, cost of remote sensing imagery, correlation between attributes quantified in remote sensing and field data, as well as population variability and the percent standard error over total survey cost was calculated. The cost-efficiency of forest carbon stock assessments is driven by the sampling design chosen. Our results indicate that the cost of remote sensing imagery is decisive for the cost-efficiency of a sampling design. The variability of the sample population impairs cost-efficiency, but does not reverse the pattern of cost-efficiency of the individual design alternatives. Our results clearly indicate that it is important to consider cost-efficiency in the development of forest carbon stock assessments and the selection of remote sensing techniques. The development of MRV-systems for REDD need to be based on a sound optimization process that compares different data sources and sampling designs with respect to their cost-efficiency. This helps to reduce the uncertainties related with the quantification of carbon stocks and to increase the financial benefits from adopting a REDD regime.

  19. Reconstruction of time-varying tidal flat topography using optical remote sensing imageries

    NASA Astrophysics Data System (ADS)

    Tseng, Kuo-Hsin; Kuo, Chung-Yen; Lin, Tang-Huang; Huang, Zhi-Cheng; Lin, Yu-Ching; Liao, Wen-Hung; Chen, Chi-Farn

    2017-09-01

    Tidal flats (TFs) occupy approximately 7% of the total coastal shelf areas worldwide. However, TFs are unavailable in most global digital elevation models (DEMs) due to water-impermeable nature of existing remote sensing approaches (e.g., radar used for WorldDEM™ and Shuttle Radar Topography Mission DEM and optical stereo-pairs used for ASTER Global Digital Elevation Map Version 2). However, this problem can be circumvented using remote sensing imageries to observe land exposure at different tidal heights during each revisit. This work exploits Landsat-4/-5/-7/-8 Thematic Mapper (TM)/Enhanced TM Plus/Operational Land Imager imageries to reconstruct topography of a TF, namely, Hsiang-Shan Wetland in Taiwan, to unveil its formation and temporal changes since the 1980s. We first classify water areas by applying modified normalized difference water index to each Landsat image and normalize chances of water exposure to create an inundation probability map. This map is then scaled by tidal amplitudes extracted from DTU10 tide model to convert the probabilities into actual elevations. After building DEM at intertidal zone, a water level-area curve is established, and accuracy of DEM is validated by sea level (SL) at the timing of each Landsat snapshot. A 22-year (1992-2013) dataset composed of 227 Landsat scenes are analyzed and compared with tide gauge data. Root-mean-square differences of SL reaches 48 cm with a correlation coefficient of 0.93, indicating that the present technique is useful for constructing accurate coastal DEMs, and that products can be utilized for estimating instant SL. This study shows the possibility of exploring evolution of intertidal zones using an archive of optical remote sensing imageries. The technique developed in the present study potentially helps in quantifying SL from the start of optical remote sensing era.

  20. Remote Sensing Image Classification Applied to the First National Geographical Information Census of China

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Wen, Zongyong; Zhu, Zhaorong; Xia, Qiang; Shun, Lan

    2016-06-01

    Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN) to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC) and Maximum Likelihood Classification Method (MLC) in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.

  1. Remote sensing for restoration ecology: Application for restoring degraded, damaged, transformed, or destroyed ecosystems.

    PubMed

    Reif, Molly K; Theel, Heather J

    2017-07-01

    Restoration monitoring is generally perceived as costly and time consuming, given the assumptions of successfully restoring ecological functions and services of a particular ecosystem or habitat. Opportunities exist for remote sensing to bolster the restoration science associated with a wide variety of injured resources, including resources affected by fire, hydropower operations, chemical releases, and oil spills, among others. In the last decade, the role of remote sensing to support restoration monitoring has increased, in part due to the advent of high-resolution satellite sensors as well as other sensor technology, such as lidar. Restoration practitioners in federal agencies require monitoring standards to assess restoration performance of injured resources. This review attempts to address a technical need and provides an introductory overview of spatial data and restoration metric considerations, as well as an in-depth review of optical (e.g., spaceborne, airborne, unmanned aerial vehicles) and active (e.g., radar, lidar) sensors and examples of restoration metrics that can be measured with remotely sensed data (e.g., land cover, species or habitat type, change detection, quality, degradation, diversity, and pressures or threats). To that end, the present article helps restoration practitioners assemble information not only about essential restoration metrics but also about the evolving technological approaches that can be used to best assess them. Given the need for monitoring standards to assess restoration success of injured resources, a universal monitoring framework should include a range of remote sensing options with which to measure common restoration metrics. Integr Environ Assess Manag 2017;13:614-630. Published 2016. This article is a US Government work and is in the public domain in the USA. Published 2016. This article is a US Government work and is in the public domain in the USA.

  2. Remote sensing and eLearning 2.0 for school education

    NASA Astrophysics Data System (ADS)

    Voss, Kerstin; Goetzke, Roland; Hodam, Henryk

    2010-10-01

    The "Remote Sensing in Schools" project aims at improving the integration of "Satellite remote sensing" into school teaching. Therefore, it is the project's overall objective to teach students in primary and secondary schools the basics and fields of application of remote sensing. Existing results show that many teachers are interested in remote sensing and at same time motivated to integrate it into their teaching. Despite the good intention, in the end, the implementation often fails due to the complexity and poor set-up of the information provided. Therefore, a comprehensive and well-structured learning platform on the topic of remote sensing is developed. The platform shall allow a structured introduction to the topic.

  3. Remote sensing programs and courses in engineering and water resources

    NASA Technical Reports Server (NTRS)

    Kiefer, R. W.

    1981-01-01

    The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.

  4. Remote sensing research in geographic education: An alternative view

    NASA Technical Reports Server (NTRS)

    Wilson, H.; Cary, T. K.; Goward, S. N.

    1981-01-01

    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  5. Research on assessment and improvement method of remote sensing image reconstruction

    NASA Astrophysics Data System (ADS)

    Sun, Li; Hua, Nian; Yu, Yanbo; Zhao, Zhanping

    2018-01-01

    Remote sensing image quality assessment and improvement is an important part of image processing. Generally, the use of compressive sampling theory in remote sensing imaging system can compress images while sampling which can improve efficiency. A method of two-dimensional principal component analysis (2DPCA) is proposed to reconstruct the remote sensing image to improve the quality of the compressed image in this paper, which contain the useful information of image and can restrain the noise. Then, remote sensing image quality influence factors are analyzed, and the evaluation parameters for quantitative evaluation are introduced. On this basis, the quality of the reconstructed images is evaluated and the different factors influence on the reconstruction is analyzed, providing meaningful referential data for enhancing the quality of remote sensing images. The experiment results show that evaluation results fit human visual feature, and the method proposed have good application value in the field of remote sensing image processing.

  6. Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...

  7. Application of the remote-sensing communication model to a time-sensitive wildfire remote-sensing system

    Treesearch

    Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan

    2016-01-01

    Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...

  8. Advancement of China’s Visible Light Remote Sensing Technology In Aerospace,

    DTIC Science & Technology

    1996-03-19

    Aerospace visible light film systems were among the earliest space remote sensing systems to be developed in China. They have been applied very well...makes China the third nation in the world to master space remote sensing technology, it also puts recoverable remote sensing satellites among the first

  9. Polarimetric passive remote sensing of periodic surfaces

    NASA Technical Reports Server (NTRS)

    Veysoglu, Murat E.; Yueh, H. A.; Shin, R. T.; Kong, J. A.

    1991-01-01

    The concept of polarimetry in active remote sensing is extended to passive remote sensing. The potential use of the third and fourth Stokes parameters U and V, which play an important role in polarimetric active remote sensing, is demonstrated for passive remote sensing. It is shown that, by the use of the reciprocity principle, the polarimetric parameters of passive remote sensing can be obtained through the solution of the associated direct scattering problem. These ideas are applied to study polarimetric passive remote sensing of periodic surfaces. The solution of the direct scattering problem is obtained by an integral equation formulation which involves evaluation of periodic Green's functions and normal derivative of those on the surface. Rapid evaluation of the slowly convergent series associated with these functions is observed to be critical for the feasibility of the method. New formulas, which are rapidly convergent, are derived for the calculation of these series. The study has shown that the brightness temperature of the Stokes parameter U can be significant in passive remote sensing. Values as high as 50 K are observed for certain configurations.

  10. From planets to crops and back: Remote sensing makes sense

    NASA Astrophysics Data System (ADS)

    Mustard, John F.

    2017-04-01

    Remotely sensed data and the instruments that acquire them are core parts of Earth and planetary observation systems. They are used to quantify the Earth's interconnected systems, and remote sensing is the only way to get a daily, or more frequent, snapshot of the status of the Earth. It really is the Earth's stethoscope. In a similar manner remote sensing is the rock hammer of the planetary scientist and the only way comprehensive data sets can be acquired. To risk offending many remotely sensed data acquired across the electromagnetic spectrum, it is the tricorder to explore known and unknown planets. Arriving where we are today in the use of remotely sensed data in the solar system has been a continually evolving synergy between Earth observation, planetary exploration, and fundamental laboratory work.

  11. Remote sensing of on-road vehicle emissions: Mechanism, applications and a case study from Hong Kong

    NASA Astrophysics Data System (ADS)

    Huang, Yuhan; Organ, Bruce; Zhou, John L.; Surawski, Nic C.; Hong, Guang; Chan, Edward F. C.; Yam, Yat Shing

    2018-06-01

    Vehicle emissions are a major contributor to air pollution in cities and have serious health impacts to their inhabitants. On-road remote sensing is an effective and economic tool to monitor and control vehicle emissions. In this review, the mechanism, accuracy, advantages and limitations of remote sensing were introduced. Then the applications and major findings of remote sensing were critically reviewed. It was revealed that the emission distribution of on-road vehicles was highly skewed so that the dirtiest 10% vehicles accounted for over half of the total fleet emissions. Such findings highlighted the importance and effectiveness of using remote sensing for in situ identification of high-emitting vehicles for further inspection and maintenance programs. However, the accuracy and number of vehicles affected by screening programs were greatly dependent on the screening criteria. Remote sensing studies showed that the emissions of gasoline and diesel vehicles were significantly reduced in recent years, with the exception of NOx emissions of diesel vehicles in spite of greatly tightened automotive emission regulations. Thirdly, the experience and issues of using remote sensing for identifying high-emitting vehicles in Hong Kong (where remote sensing is a legislative instrument for enforcement purposes) were reported. That was followed by the first time ever identification and discussion of the issue of frequent false detection of diesel high-emitters using remote sensing. Finally, the challenges and future research directions of on-road remote sensing were elaborated.

  12. Remote sensing of natural resources: Quarterly literature review

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A quarterly review of technical literature concerning remote sensing techniques is presented. The format contains indexed and abstracted materials with emphasis on data gathering techniques performed or obtained remotely from space, aircraft, or ground-based stations. Remote sensor applications including the remote sensing of natural resources are presented.

  13. The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera

    PubMed Central

    Leeuw, Thomas; Boss, Emmanuel

    2018-01-01

    HydroColor is a mobile application that utilizes a smartphone’s camera and auxiliary sensors to measure the remote sensing reflectance of natural water bodies. HydroColor uses the smartphone’s digital camera as a three-band radiometer. Users are directed by the application to collect a series of three images. These images are used to calculate the remote sensing reflectance in the red, green, and blue broad wavelength bands. As with satellite measurements, the reflectance can be inverted to estimate the concentration of absorbing and scattering substances in the water, which are predominately composed of suspended sediment, chlorophyll, and dissolved organic matter. This publication describes the measurement method and investigates the precision of HydroColor’s reflectance and turbidity estimates compared to commercial instruments. It is shown that HydroColor can measure the remote sensing reflectance to within 26% of a precision radiometer and turbidity within 24% of a portable turbidimeter. HydroColor distinguishes itself from other water quality camera methods in that its operation is based on radiometric measurements instead of image color. HydroColor is one of the few mobile applications to use a smartphone as a completely objective sensor, as opposed to subjective user observations or color matching using the human eye. This makes HydroColor a powerful tool for crowdsourcing of aquatic optical data. PMID:29337917

  14. Evaluating ESA CCI soil moisture in East Africa.

    PubMed

    McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R; Wang, Shugong; Peters-Lidard, Christa D; Verdin, James P

    2016-06-01

    To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASA's Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R>0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.

  15. Designing Zoning of Remote Sensing Drones for Urban Applications: a Review

    NASA Astrophysics Data System (ADS)

    Norzailawati, M. N.; Alias, A.; Akma, R. S.

    2016-06-01

    This paper discusses on-going research related to zoning regulation for the remote sensing drone in the urban applications. Timestamped maps are presented here follow a citation-based approach, where significant information is retrieved from the scientific literature. The emergence of drones in domestic air raises lots understandable issues on privacy, security and uncontrolled pervasive surveillance that require a careful and alternative solution. The effective solution is to adopt a privacy and property rights approach that create a drone zoning and clear drone legislatures. In providing a differential trend to other reviews, this paper is not limited to drones zoning and regulations, but also, discuss on trend remote sensing drones specification in designing a drone zones. Remote sensing drone will specific according to their features and performances; size and endurance, maximum airspeed and altitude level and particular references are made to the drones range. The implementation of laws zoning could lie with the urban planners whereby, a zoning for drone could become a new tactic used to specify areas, where drones could be used, will provide remedies for the harm that arise from drones, and act as a different against irresponsible behaviour. Finally, underlines the need for next regulations on guidelines and standards which can be used as a guidance for urban decision makers to control the drones' operating, thus ensuring a quality and sustainability of resilience cities simultaneously encouraging the revolution of technology.

  16. The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera.

    PubMed

    Leeuw, Thomas; Boss, Emmanuel

    2018-01-16

    HydroColor is a mobile application that utilizes a smartphone's camera and auxiliary sensors to measure the remote sensing reflectance of natural water bodies. HydroColor uses the smartphone's digital camera as a three-band radiometer. Users are directed by the application to collect a series of three images. These images are used to calculate the remote sensing reflectance in the red, green, and blue broad wavelength bands. As with satellite measurements, the reflectance can be inverted to estimate the concentration of absorbing and scattering substances in the water, which are predominately composed of suspended sediment, chlorophyll, and dissolved organic matter. This publication describes the measurement method and investigates the precision of HydroColor's reflectance and turbidity estimates compared to commercial instruments. It is shown that HydroColor can measure the remote sensing reflectance to within 26% of a precision radiometer and turbidity within 24% of a portable turbidimeter. HydroColor distinguishes itself from other water quality camera methods in that its operation is based on radiometric measurements instead of image color. HydroColor is one of the few mobile applications to use a smartphone as a completely objective sensor, as opposed to subjective user observations or color matching using the human eye. This makes HydroColor a powerful tool for crowdsourcing of aquatic optical data.

  17. High Performance Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek; Kaewpijit, Sinthop

    1998-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operational. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, aimed at concentrating the vital information and discarding redundant data. One such transformation, which is widely used in remote sensing, is the Principal Components Analysis (PCA). This report summarizes our progress on the development of a parallel PCA and its implementation on two Beowulf cluster configuration; one with fast Ethernet switch and the other with a Myrinet interconnection. Details of the implementation and performance results, for typical sets of multispectral and hyperspectral NASA remote sensing data, are presented and analyzed based on the algorithm requirements and the underlying machine configuration. It will be shown that the PCA application is quite challenging and hard to scale on Ethernet-based clusters. However, the measurements also show that a high- performance interconnection network, such as Myrinet, better matches the high communication demand of PCA and can lead to a more efficient PCA execution.

  18. Spaceborne Microwave Instrument for High Resolution Remote Sensing of the Earth's Surface Using a Large-Aperture Mesh Antenna

    NASA Technical Reports Server (NTRS)

    Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.

    2001-01-01

    This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.

  19. Abstract on the Effective validation of both new and existing methods for the observation and forecasting of volcanic emissions

    NASA Astrophysics Data System (ADS)

    Sathnur, Ashwini

    2017-04-01

    Validation of the Existing products of the Remote Sensing instruments Review Comment Number 1 Ground - based instruments and space - based instruments are available for remote sensing of the Volcanic eruptions. Review Comment Number 2 The sunlight spectrum appears over the volcanic geographic area. This sunlight is reflected with the image of the volcano geographic area, to the satellite. The satellite captures this emitted spectrum of the image and further calculates the occurrences of the volcanic eruption. Review Comment Number 3 This computation system derives the presence and detection of sulphur dioxide and Volcanic Ash in the emitted spectrum. The temperature of the volcanic region is also measured. If these inputs derive the possibility of occurrence of an eruption, then the data is manually captured by the system for further usage and hazard mitigation. Review Comment Number 4 The instrument is particularly important in capturing the volcanogenic signal. This capturing operation should be carried out during the appropriate time of the day. This is carried out ideally at the time of the day when the reflected image spectra is best available. Capturing the data is not advisable to be performed at the night time, as the sunlight spectra is at its minimum. This would lead to erroneous data interpretation, as there is no sunlight for reflection of the volcanic region. Thus leading to the least capture of the emitted light spectra. Review Comment Number 5 An ideal area coverage of the spectrometer is mandatory. This is basically for the purpose of capturing the right area of data, in order to precisely derive the occurrence of a volcanic eruption. The larger the spatial resolution, there would be a higher capture of the geographic region, and this would lead to a lesser precise data capture. This would lead to missing details in the data capture. Review Comment Number 6 Ideal qualities for the remote sensing instrument are mentioned below:- Minimum "false" positives. Cost - free data made available. Minimum band - width problem. Rapid communication system. Validation and Requirements of the New products of the Remote Sensing instruments The qualities of the existing products would be present in the new products also. Along with these qualities, newly devised additional qualities are also required in order to build an advanced remote sensing instrument. The new additional requirements are mentioned below:- Review Comment Number 1 Enlarging the spatial resolution so that the volcanic plumes erupting from the early volcanic eruption is captured by the remote sensing instrument. This spatial resolution data capture would involve better video and camera facilities on the remote sensing instrument. Review Comment Number 2 Capturing the traces of carbon, carbonic acid and water vapour, along with the existing product's capture of sulphur dioxide and volcanic Ash. Review Comment Number 3 Creating an additional module in the instrument to derive the functionality of forecasting a volcanic eruption. This new forecast model should be able to predict the occurrences of volcanic eruption several months in advance. This is basically to create mechanisms for providing early solutions to the problems of mitigation of volcanic hazards. Review Comment Number 4 Creating additional features in the remote sensing instrument to enable the automatic transfer of forecasted eruptions of volcanoes, to the disaster relief operations team. This transfer of information is to be performed automatically, without any request raised from the relief operations team, for the predicted forecast information. This is for the purpose of receiving the information at the right - time, thus eliminating any possibility of occurrences of errors during hazard management.

  20. Time Series Remote Sensing in Monitoring the Spatio-Temporal Dynamics of Plant Invasions: A Study of Invasive Saltcedar (Tamarix Spp.)

    NASA Astrophysics Data System (ADS)

    Diao, Chunyuan

    In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.

  1. Real-Time Integrity Monitoring of Stored Geo-Spatial Data Using Forward-Looking Remote Sensing Technology

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Harrah, Steven D.; deHaag, Maarten Uijt

    2002-01-01

    Terrain Awareness and Warning Systems (TAWS) and Synthetic Vision Systems (SVS) provide pilots with displays of stored geo-spatial data (e.g. terrain, obstacles, and/or features). As comprehensive validation is impractical, these databases typically have no quantifiable level of integrity. This lack of a quantifiable integrity level is one of the constraints that has limited certification and operational approval of TAWS/SVS to "advisory-only" systems for civil aviation. Previous work demonstrated the feasibility of using a real-time monitor to bound database integrity by using downward-looking remote sensing technology (i.e. radar altimeters). This paper describes an extension of the integrity monitor concept to include a forward-looking sensor to cover additional classes of terrain database faults and to reduce the exposure time associated with integrity threats. An operational concept is presented that combines established feature extraction techniques with a statistical assessment of similarity measures between the sensed and stored features using principles from classical detection theory. Finally, an implementation is presented that uses existing commercial-off-the-shelf weather radar sensor technology.

  2. Integrating SAR and derived products into operational volcano monitoring and decision support systems

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; McAlpin, D. B.; Gong, W.; Ajadi, O.; Arko, S.; Webley, P. W.; Dehn, J.

    2015-02-01

    Remote sensing plays a critical role in operational volcano monitoring due to the often remote locations of volcanic systems and the large spatial extent of potential eruption pre-cursor signals. Despite the all-weather capabilities of radar remote sensing and its high performance in monitoring of change, the contribution of radar data to operational monitoring activities has been limited in the past. This is largely due to: (1) the high costs associated with radar data; (2) traditionally slow data processing and delivery procedures; and (3) the limited temporal sampling provided by spaceborne radars. With this paper, we present new data processing and data integration techniques that mitigate some of these limitations and allow for a meaningful integration of radar data into operational volcano monitoring decision support systems. Specifically, we present fast data access procedures as well as new approaches to multi-track processing that improve near real-time data access and temporal sampling of volcanic systems with SAR data. We introduce phase-based (coherent) and amplitude-based (incoherent) change detection procedures that are able to extract dense time series of hazard information from these data. For a demonstration, we present an integration of our processing system with an operational volcano monitoring system that was developed for use by the Alaska Volcano Observatory (AVO). Through an application to a historic eruption, we show that the integration of SAR into systems such as AVO can significantly improve the ability of operational systems to detect eruptive precursors. Therefore, the developed technology is expected to improve operational hazard detection, alerting, and management capabilities.

  3. Forest mensuration with remote sensing: A retrospective and a vision for the future

    Treesearch

    Randolph H. Wynne

    2004-01-01

    Remote sensing, while occasionally oversold, has clear potential to reduce the overall cost of traditional forest inventories. Perhaps most important, some of the information needed for more intensive, rather than extensive, forest management is available from remote sensing. These new information needs may justify increased use and the increased cost of remote sensing...

  4. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  5. Remote Sensing: Analyzing Satellite Images to Create Higher Order Thinking Skills.

    ERIC Educational Resources Information Center

    Marks, Steven K.; And Others

    1996-01-01

    Presents a unit that uses remote-sensing images from satellites and other spacecraft to provide new perspectives of the earth and generate greater global awareness. Relates the levels of Bloom's hierarchy to different aspects of the remote sensing unit to confirm that the concepts and principles of remote sensing and related images belong in…

  6. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  7. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  8. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  9. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  10. Annotated bibliography of remote sensing methods for monitoring desertification

    USGS Publications Warehouse

    Walker, A.S.; Robinove, Charles J.

    1981-01-01

    Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.

  11. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.

    1976-01-01

    The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.

  12. Communicating remote sensing concepts in an interdisciplinary environment

    NASA Technical Reports Server (NTRS)

    Chung, R.

    1981-01-01

    Although remote sensing is currently multidisciplinary in its applications, many of its terms come from the engineering sciences, particularly from the field of pattern recognition. Scholars from fields such as the social sciences, botany, and biology, may experience initial difficulty with remote sensing terminology, even though parallel concepts exist in their own fields. Some parallel concepts and terminologies from nonengineering fields, which might enhance the understanding of remote sensing concepts in an interdisciplinary situation are identified. Feedbacks which this analogue strategy might have on remote sensing itself are explored.

  13. Humidity Measurements: A Psychrometer Suitable for On-Line Data Acquisition.

    ERIC Educational Resources Information Center

    Caporaloni, Marina; Ambrosini, Roberto

    1992-01-01

    Explains the typical design, operation, and calibration of a traditional psychrometer. Presents the method utilized for this class project with design considerations, calibration techniques, remote data sensing schematic, and specifics of the implementation process. (JJK)

  14. PITCON 2002: New Product Forum

    NASA Technical Reports Server (NTRS)

    Bailey, John

    2002-01-01

    The Radiant Temperature Nulling Radiometer and the Polarization Enhanced Thermal Radiometer, which can measure water body temperatures, are potentially useful for the calibration of remote sensing instruments. The design and operation of both instruments are described in this viewgraph presentation.

  15. Monitoring highway assets using remote sensing technology : research spotlight.

    DOT National Transportation Integrated Search

    2014-04-01

    Collecting inventory data about roadway assets is a critical part of : MDOTs asset management efforts, which help the department operate, : maintain and upgrade these assets cost-effectively. Federal law requires : that states develop a risk-based...

  16. Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Seals, R. K.

    1974-01-01

    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.

  17. A low-cost, portable optical sensing system with wireless communication compatible of real-time and remote detection of dissolved ammonia

    NASA Astrophysics Data System (ADS)

    Deng, Shijie; Doherty, William; McAuliffe, Michael AP; Salaj-Kosla, Urszula; Lewis, Liam; Huyet, Guillaume

    2016-06-01

    A low-cost and portable optical chemical sensor based ammonia sensing system that is capable of detecting dissolved ammonia up to 5 ppm is presented. In the system, an optical chemical sensor is designed and fabricated for sensing dissolved ammonia concentrations. The sensor uses eosin as the fluorescence dye which is immobilized on the glass substrate by a gas-permeable protection layer. A compact module is developed to hold the optical components, and a battery powered micro-controller system is designed to read out and process the data measured. The system operates without the requirement of laboratory instruments that makes it cost effective and highly portable. Moreover, the calculated results in the system can be transmitted to a PC wirelessly, which allows the remote and real-time monitoring of dissolved ammonia.

  18. Bringing the Coastal Zone into Finer Focus

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Hooker, S. B.; Kudela, R. M.; Morrow, J. H.; Torres-Perez, J. L.; Palacios, S. L.; Negrey, K.; Dungan, J. L.

    2015-12-01

    Measurements over extents from submeter to 10s of meters are critical science requirements for the design and integration of remote sensing instruments for coastal zone research. Various coastal ocean phenomena operate at different scales (e.g. meters to kilometers). For example, river plumes and algal blooms have typical extents of 10s of meters and therefore can be resolved with satellite data, however, shallow benthic ecosystem (e.g., coral, seagrass, and kelp) biodiversity and change are best studied at resolutions of submeter to meter, below the pixel size of typical satellite products. The delineation of natural phenomena do not fit nicely into gridded pixels and the coastal zone is complicated by mixed pixels at the land-sea interface with a range of bio-optical signals from terrestrial and water components. In many standard satellite products, these coastal mixed pixels are masked out because they confound algorithms for the ocean color parameter suite. In order to obtain data at the land/sea interface, finer spatial resolution satellite data can be achieved yet spectral resolution is sacrificed. This remote sensing resolution challenge thwarts the advancement of research in the coastal zone. Further, remote sensing of benthic ecosystems and shallow sub-surface phenomena are challenged by the requirements to sense through the sea surface and through a water column with varying light conditions from the open ocean to the water's edge. For coastal waters, >80% of the remote sensing signal is scattered/absorbed due to the atmospheric constituents, sun glint from the sea surface, and water column components. In addition to in-water measurements from various platforms (e.g., ship, glider, mooring, and divers), low altitude aircraft outfitted with high quality bio-optical radiometer sensors and targeted channels matched with in-water sensors and higher altitude platform sensors for ocean color products, bridge the sea-truth measurements to the pixels acquired from satellite and high altitude platforms. We highlight a novel NASA airborne calibration, validation, and research capability for addressing the coastal remote sensing resolution challenge.

  19. The application of remote sensing techniques to the study of ophiolites

    NASA Astrophysics Data System (ADS)

    Khan, Shuhab D.; Mahmood, Khalid

    2008-08-01

    Satellite remote sensing methods are a powerful tool for detailed geologic analysis, especially in inaccessible regions of the earth's surface. Short-wave infrared (SWIR) bands are shown to provide spectral information bearing on the lithologic, structural, and geochemical character of rock bodies such as ophiolites, allowing for a more comprehensive assessment of the lithologies present, their stratigraphic relationships, and geochemical character. Most remote sensing data are widely available for little or no cost, along with user-friendly software for non-specialists. In this paper we review common remote sensing systems and methods that allow for the discrimination of solid rock (lithologic) components of ophiolite complexes and their structural relationships. Ophiolites are enigmatic rock bodies which associated with most, if not all, plate collision sutures. Ophiolites are ideal for remote sensing given their widely recognized diversity of lithologic types and structural relationships. Accordingly, as a basis for demonstrating the utility of remote sensing techniques, we briefly review typical ophiolites in the Tethyan tectonic belt. As a case study, we apply integrated remote sensing studies of a well-studied example, the Muslim Bagh ophiolite, located in Balochistan, western Pakistan. On this basis, we attempt to demonstrate how remote sensing data can validate and reconcile existing information obtained from field studies. The lithologic and geochemical diversity of Muslim Bagh are representative of Tethyan ophiolites. Despite it's remote location it has been extensively mapped and characterized by structural and geochemical studies, and is virtually free of vegetative cover. Moreover, integrating the remote sensing data with 'ground truth' information thus offers the potential of an improved template for interpreting remote sensing data sets of other ophiolites for which little or no field information is available.

  20. Applications of the SWOT Mission to Reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Hossain, F.

    2017-12-01

    The forthcoming Surface Water and Ocean Topography (SWOT) mission has the potential to significantly improve our ability to observe artificial reservoirs globally from a remote sensing perspective. By providing simultaneous estimates of reservoir water surface extent and elevation with near global coverage, reservoir storage changes can be estimated. Knowing how reservoir storage changes over time is critical for understanding reservoir impacts on river systems. In data limited regions, remote sensing is often the only viable method of retrieving such information about reservoir operations. When SWOT launches in 2021, it will join an array of satellite sensors with long histories of reservoir observation and monitoring capabilities. There are many potential synergies in the complimentary use of future SWOT observations with observations from current satellite sensors. The work presented here explores the potential benefits of utilizing SWOT observations over 20 reservoirs in the Mekong River Basin. The SWOT hydrologic simulator, developed by NASA Jet Propulsion Laboratory, is used to generate realistic SWOT observations, which are then inserted into a previously established remote sensing modeling framework of the 20 Mekong Basin reservoirs. This framework currently combines data from Landsat missions, Jason radar altimeters, and the Shuttle Radar and Topography Mission (SRTM), to provide monthly estimates of reservoir storage change. The incorporation of SWOT derived reservoir surface area and elevation into the model is explored in an effort to improve both accuracy and temporal resolution of observed reservoir operations.

  1. Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data

    PubMed Central

    Huang, Jingfeng; Wei, Chen; Zhang, Yao; Blackburn, George Alan; Wang, Xiuzhen; Wei, Chuanwen; Wang, Jing

    2015-01-01

    Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); carotenoids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge (700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a. PMID:26356842

  2. Remote Sensing and Remote Control Activities in Europe and America: Part 2--Remote Sensing Ground Stations in Europe,

    DTIC Science & Technology

    1996-04-08

    Development tasks and products of remote sensing ground stations in Europe are represented by the In-Sec Corporation and the Schlumberger Industries Corporation. The article presents the main products of these two corporations.

  3. [Estimation of desert vegetation coverage based on multi-source remote sensing data].

    PubMed

    Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui

    2012-12-01

    Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.

  4. Grid workflow validation using ontology-based tacit knowledge: A case study for quantitative remote sensing applications

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi

    2017-01-01

    Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.

  5. Making sense of Arctic maritime traffic using the Polar Operational Limits Assessment Risk Indexing System (POLARIS)

    NASA Astrophysics Data System (ADS)

    Stoddard, M. A.; Etienne, L.; Fournier, M.; Pelot, R.; Beveridge, L.

    2016-04-01

    Maritime traffic volume in the Arctic is growing for several reasons: climate change is resulting in less ice in extent, duration, and thickness; economic drivers are inducing growth in resource extraction traffic, community size (affecting resupply) and adventure tourism. This dynamic situation, coupled with harsh weather, variable operating conditions, remoteness, and lack of straightforward emergency response options, demand robust risk management processes. The requirements for risk management for polar ship operations are specified in the new International Maritime Organization (IMO) International Code for Ships Operating in Polar Waters (Polar Code). The goal of the Polar Code is to provide for safe ship operations and protection of the polar environment by addressing the risk present in polar waters. Risk management is supported by evidence-based models, including threat identification (types and frequency of hazards), exposure levels, and receptor characterization. Most of the information used to perform risk management in polar waters is attained in-situ, but increasingly is being augmented with open-access remote sensing information. In this paper we focus on the use of open-access historical ice charts as an integral part of northern navigation, especially for route planning and evaluation.

  6. An Approach of Registration between Remote Sensing Image and Electronic Chart Based on Coastal Line

    NASA Astrophysics Data System (ADS)

    Li, Ying; Yu, Shuiming; Li, Chuanlong

    Remote sensing plays an important role marine oil spill emergency. In order to implement a timely and effective countermeasure, it is important to provide exact position of oil spills. Therefore it is necessary to match remote sensing image and electronic chart properly. Variance ordinarily exists between oil spill image and electronic chart, although geometric correction is applied to remote sensing image. It is difficult to find the steady control points on sea to make exact rectification of remote sensing image. An improved relaxation algorithm was developed for finding the control points along the coastline since oil spills occurs generally near the coast. A conversion function is created with the least square, and remote sensing image can be registered with the vector map based on this function. SAR image was used as the remote sensing data and shape format map as the electronic chart data. The results show that this approach can guarantee the precision of the registration, which is essential for oil spill monitoring.

  7. The U.S. Geological Survey land remote sensing program

    USGS Publications Warehouse

    Saunders, T.; Feuquay, J.; Kelmelis, J.A.

    2003-01-01

    The U.S. Geological Survey has been a provider of remotely sensed information for decades. As the availability and use of satellite data has grown, USGS has placed increasing emphasis on expanding the knowledge about the science of remote sensing and on making remotely sensed data more accessible. USGS encourages widespread availability and distribution of these data and through its programs, encourages and enables a variety of research activities and the development of useful applications of the data. The science of remote sensing has great potential for assisting in the monitoring and assessment of the impacts of natural disasters, management and analysis of environmental, biological, energy, and mineral investigations, and supporting informed public policy decisions. By establishing the Land Remote Sensing Program (LRS) as a major unit of the USGS Geography Program, USGS has taken the next step to further increase support for the accessibility, understanding, and use of remotely sensed data. This article describes the LRS Program, its mission and objectives, and how the program has been structured to accomplish its goals.

  8. Examples of current radar technology and applications, chapter 5, part B

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Basic principles and tradeoff considerations for SLAR are summarized. There are two fundamental types of SLAR sensors available to the remote sensing user: real aperture and synthetic aperture. The primary difference between the two types is that a synthetic aperture system is capable of significant improvements in target resolution but requires equally significant added complexity and cost. The advantages of real aperture SLAR include long range coverage, all-weather operation, in-flight processing and image viewing, and lower cost. The fundamental limitation of the real aperture approach is target resolution. Synthetic aperture processing is the most practical approach for remote sensing problems that require resolution higher than 30 to 40 m.

  9. Application of Remote Sensing Techniques for Appraising Changes in Wildlife Habitat

    NASA Technical Reports Server (NTRS)

    Nelson, H. K.; Klett, A. T.; Johnston, J. E.

    1971-01-01

    An attempt was made to investigate the potential of airborne, multispectral, line scanner data acquisition and computer-implemented automatic recognition techniques for providing useful information about waterfowl breeding habitat in North Dakota. The spectral characteristics of the components of a landscape containing waterfowl habitat can be detected with airborne scanners. By analyzing these spectral characteristics it is possible to identify and map the landscape components through analog and digital processing methods. At the present stage of development multispectral remote sensing techniques are not ready for operational application to surveys of migratory bird habitat and other such resources. Further developments are needed to: (1) increase accuracy; (2) decrease retrieval and processing time; and (3) reduce costs.

  10. Near Real Time Applications for Maritime Situational Awareness

    NASA Astrophysics Data System (ADS)

    Schwarz, E.; Krause, D.; Berg, M.; Daedelow, H.; Maass, H.

    2015-04-01

    Applications to derive maritime value added products like oil spill and ship detection based on remote sensing SAR image data are being developed and integrated at the Ground Station Neustrelitz, part of the German Remote Sensing Data Center. Products of meteo-marine parameters like wind and wave will complement the product portfolio. Research and development aim at the implementation of highly automated services for operational use. SAR images are being used because of the possibility to provide maritime products with high spatial resolution over wide swaths and under all weather conditions. In combination with other information like Automatic Identification System (AIS) data fusion products are available to support the Maritime Situational Awareness.

  11. Broadening the Earthscan Industry

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Law Environmental, Inc. is a professional engineering and Earth sciences consulting firm. When a client, who operates an electricity generating plant required assistance in evaluating the effects of a heated water discharge on aquatic life, Law proposed a Visiting Investigator Program (VIP) to Stennis Space Center (SSC). The VIP is directed toward small companies who could use remote sensing profitably, but do not have the money to explore new technologies. SSC provided remote sensing data to Law enabling it to produce images of the thermal "plume," the water area affected by the discharge. After comparisons of plant and animal life with similar life in an unaffected control area, Law concluded that the discharge effect was not significant.

  12. A procedure for automated land use mapping using remotely sensed multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Whitley, S. L.

    1975-01-01

    A system of processing remotely sensed multispectral scanner data by computer programs to produce color-coded land use maps for large areas is described. The procedure is explained, the software and the hardware are described, and an analogous example of the procedure is presented. Detailed descriptions of the multispectral scanners currently in use are provided together with a summary of the background of current land use mapping techniques. The data analysis system used in the procedure and the pattern recognition software used are functionally described. Current efforts by the NASA Earth Resources Laboratory to evaluate operationally a less complex and less costly system are discussed in a separate section.

  13. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  14. Online catalog access and distribution of remotely sensed information

    NASA Astrophysics Data System (ADS)

    Lutton, Stephen M.

    1997-09-01

    Remote sensing is providing voluminous data and value added information products. Electronic sensors, communication electronics, computer software, hardware, and network communications technology have matured to the point where a distributed infrastructure for remotely sensed information is a reality. The amount of remotely sensed data and information is making distributed infrastructure almost a necessity. This infrastructure provides data collection, archiving, cataloging, browsing, processing, and viewing for applications from scientific research to economic, legal, and national security decision making. The remote sensing field is entering a new exciting stage of commercial growth and expansion into the mainstream of government and business decision making. This paper overviews this new distributed infrastructure and then focuses on describing a software system for on-line catalog access and distribution of remotely sensed information.

  15. Water survey of Canada: Application for use of ERTS-A for retransmission of water resources data

    NASA Technical Reports Server (NTRS)

    Halliday, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Nine sites in isolated regions in Canada have been selected for installation of ERTS data collection platforms. Seven platforms were installed in 1972, one of which did not operate. The six operating platforms transmitted over 7000 water level readings from stream gauging stations. This data is available on a near real time basis through the Canada Center for Remote Sensing and is used for river flow forecasting. The practicability of using satellite retransmission as a means of obtaining data from remote areas has been demonstrated.

  16. Remote Sensing and the Environment.

    ERIC Educational Resources Information Center

    Osmers, Karl

    1991-01-01

    Suggests using remote sensing technology to help students make sense of the natural world. Explains that satellite information allows observation of environmental changes over time. Identifies possible student projects based on remotely sensed data. Recommends obtaining the assistance of experts and seeking funding through effective project…

  17. Realizing parameterless automatic classification of remote sensing imagery using ontology engineering and cyberinfrastructure techniques

    NASA Astrophysics Data System (ADS)

    Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng

    2016-09-01

    It was an untouchable dream for remote sensing experts to realize total automatic image classification without inputting any parameter values. Experts usually spend hours and hours on tuning the input parameters of classification algorithms in order to obtain the best results. With the rapid development of knowledge engineering and cyberinfrastructure, a lot of data processing and knowledge reasoning capabilities become online accessible, shareable and interoperable. Based on these recent improvements, this paper presents an idea of parameterless automatic classification which only requires an image and automatically outputs a labeled vector. No parameters and operations are needed from endpoint consumers. An approach is proposed to realize the idea. It adopts an ontology database to store the experiences of tuning values for classifiers. A sample database is used to record training samples of image segments. Geoprocessing Web services are used as functionality blocks to finish basic classification steps. Workflow technology is involved to turn the overall image classification into a total automatic process. A Web-based prototypical system named PACS (Parameterless Automatic Classification System) is implemented. A number of images are fed into the system for evaluation purposes. The results show that the approach could automatically classify remote sensing images and have a fairly good average accuracy. It is indicated that the classified results will be more accurate if the two databases have higher quality. Once the experiences and samples in the databases are accumulated as many as an expert has, the approach should be able to get the results with similar quality to that a human expert can get. Since the approach is total automatic and parameterless, it can not only relieve remote sensing workers from the heavy and time-consuming parameter tuning work, but also significantly shorten the waiting time for consumers and facilitate them to engage in image classification activities. Currently, the approach is used only on high resolution optical three-band remote sensing imagery. The feasibility using the approach on other kinds of remote sensing images or involving additional bands in classification will be studied in future.

  18. Advancing innovative high-speed remote-sensing highway infrastructure assessment using emerging technologies : technical report.

    DOT National Transportation Integrated Search

    2017-02-01

    Asset management is a strategic approach to the optimal allocation of resources for the management, operation, maintenance, and preservation of transportation infrastructure. Asset management combines engineering and economic principles with sound bu...

  19. Digital correlation of DDRS data

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    The reduction of digital SAR (synthetic aperture radar) data to radar images for use in remote sensing applications was investigated. The critical software operations are discussed in detail, and suggestions and recommendations are made for improving the algorithms currently being used.

  20. Use of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Powell, N. L.; Newhouse, M. E.

    1974-01-01

    Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated.

Top