Sample records for remote sensing optical

  1. A light and faster regional convolutional neural network for object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan

    2018-07-01

    Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.

  2. Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems

    NASA Astrophysics Data System (ADS)

    Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang

    2016-09-01

    Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.

  3. Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications

    DTIC Science & Technology

    2016-10-22

    for commercial, academic, and military purposes delivering microwaves through fibers to remote areas for wireless sensing , imaging, and detection...academic, and military purposes, which use optical carriers to deliver microwave signals to remote areas for wireless sensing , imaging, and...and military purposes, which use optical carriers to deliver microwave signals to remote areas for wireless sensing , imaging, and detection

  4. Optical Fiber Networks for Remote Fiber Optic Sensors

    PubMed Central

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011

  5. Bridging the Scales from Field to Region with Practical Tools to Couple Time- and Space-Synchronized Data from Flux Towers and Networks with Proximal and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.

    2017-12-01

    Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this approach can be utilized for matching remote sensing and tower data to aid in ground truthing, improve scientific interactions, and promote joint grant writing and other forms of collaboration between the flux and remote sensing communities.

  6. Optical registration of spaceborne low light remote sensing camera

    NASA Astrophysics Data System (ADS)

    Li, Chong-yang; Hao, Yan-hui; Xu, Peng-mei; Wang, Dong-jie; Ma, Li-na; Zhao, Ying-long

    2018-02-01

    For the high precision requirement of spaceborne low light remote sensing camera optical registration, optical registration of dual channel for CCD and EMCCD is achieved by the high magnification optical registration system. System integration optical registration and accuracy of optical registration scheme for spaceborne low light remote sensing camera with short focal depth and wide field of view is proposed in this paper. It also includes analysis of parallel misalignment of CCD and accuracy of optical registration. Actual registration results show that imaging clearly, MTF and accuracy of optical registration meet requirements, it provide important guarantee to get high quality image data in orbit.

  7. Radar Remote Sensing of Waves and Currents in the Nearshore Zone

    DTIC Science & Technology

    2006-01-01

    and application of novel microwave, acoustic, and optical remote sensing techniques. The objectives of this effort are to determine the extent to which...Doppler radar techniques are useful for nearshore remote sensing applications. Of particular interest are estimates of surf zone location and extent...surface currents, waves, and bathymetry. To date, optical (video) techniques have been the primary remote sensing technology used for these applications. A key advantage of the radar is its all weather day-night operability.

  8. Hyperspectral Remote Sensing of the Coastal Ocean: Adaptive Sampling and Forecasting of In situ Optical Properties

    DTIC Science & Technology

    2002-09-30

    integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to develop hyperspectral remote sensing techniques in optically complex nearshore coastal waters.

  9. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  10. Literature relevant to remote sensing of water quality

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  11. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    USDA-ARS?s Scientific Manuscript database

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  12. Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.

    PubMed

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-11-07

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  13. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  14. Optical remote measurement of toxic gases

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Kagann, R. H.; McClenny, W. A.

    1992-01-01

    Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.

  15. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review

    PubMed Central

    Zhang, Dianjun; Zhou, Guoqing

    2016-01-01

    As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research. PMID:27548168

  16. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review.

    PubMed

    Zhang, Dianjun; Zhou, Guoqing

    2016-08-17

    As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research.

  17. Optical Remote Sensing Algorithm Validation using High-Frequency Underway Biogeochemical Measurements in Three Large Global River Systems

    NASA Astrophysics Data System (ADS)

    Kuhn, C.; Richey, J. E.; Striegl, R. G.; Ward, N.; Sawakuchi, H. O.; Crawford, J.; Loken, L. C.; Stadler, P.; Dornblaser, M.; Butman, D. E.

    2017-12-01

    More than 93% of the world's river-water volume occurs in basins impacted by large dams and about 43% of river water discharge is impacted by flow regulation. Human land use also alters nutrient and carbon cycling and the emission of carbon dioxide from inland reservoirs. Increased water residence times and warmer temperatures in reservoirs fundamentally alter the physical settings for biogeochemical processing in large rivers, yet river biogeochemistry for many large systems remains undersampled. Satellite remote sensing holds promise as a methodology for responsive regional and global water resources management. Decades of ocean optics research has laid the foundation for the use of remote sensing reflectance in optical wavelengths (400 - 700 nm) to produce satellite-derived, near-surface estimates of phytoplankton chlorophyll concentration. Significant improvements between successive generations of ocean color sensors have enabled the scientific community to document changes in global ocean productivity (NPP) and estimate ocean biomass with increasing accuracy. Despite large advances in ocean optics, application of optical methods to inland waters has been limited to date due to their optical complexity and small spatial scale. To test this frontier, we present a study evaluating the accuracy and suitability of empirical inversion approaches for estimating chlorophyll-a, turbidity and temperature for the Amazon, Columbia and Mississippi rivers using satellite remote sensing. We demonstrate how riverine biogeochemical measurements collected at high frequencies from underway vessels can be used as in situ matchups to evaluate remotely-sensed, near-surface temperature, turbidity, chlorophyll-a derived from the Landsat 8 (NASA) and Sentinel 2 (ESA) satellites. We investigate the use of remote sensing water reflectance to infer trophic status as well as tributary influences on the optical characteristics of the Amazon, Mississippi and Columbia rivers.

  18. INTERCOMPARISON OF OPTICAL REMOTE SENSING SYSTEMS FOR ROADSIDE MEASUREMENTS

    EPA Science Inventory

    The presentation describes results of an intercomparison of three optical remote sensing systems for measurements of nitric oxide emitted from passenger cars and light-duty trucks. The intercomparison included a standards comparison to establish comparability of standards, follo...

  19. OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING

    EPA Science Inventory

    The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...

  20. Optical vs. electronic enhancement of remote sensing imagery

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.; Katibah, E. F.

    1976-01-01

    Basic aspects of remote sensing are considered and a description is provided of the methods which are employed in connection with the optical or electronic enhancement of remote sensing imagery. The advantages and limitations of various image enhancement methods and techniques are evaluated. It is pointed out that optical enhancement methods and techniques are currently superior to electronic ones with respect to spatial resolution and equipment cost considerations. Advantages of electronic procedures, on the other hand, are related to a greater flexibility regarding the presentation of the information as an aid for the interpretation by the image analyst.

  1. Research on optimal path planning algorithm of task-oriented optical remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Xu, Shengli; Liu, Fengjing; Yuan, Jingpeng

    2015-08-01

    GEO task-oriented optical remote sensing satellite, is very suitable for long-term continuous monitoring and quick access to imaging. With the development of high resolution optical payload technology and satellite attitude control technology, GEO optical remote sensing satellites will become an important developing trend for aerospace remote sensing satellite in the near future. In the paper, we focused on GEO optical remote sensing satellite plane array stare imaging characteristics and real-time leading mission of earth observation mode, targeted on satisfying needs of the user with the minimum cost of maneuver, and put forward the optimal path planning algorithm centered on transformation from geographic coordinate space to Field of plane, and finally reduced the burden of the control system. In this algorithm, bounded irregular closed area on the ground would be transformed based on coordinate transformation relations in to the reference plane for field of the satellite payload, and then using the branch and bound method to search for feasible solutions, cutting off the non-feasible solution in the solution space based on pruning strategy; and finally trimming some suboptimal feasible solutions based on the optimization index until a feasible solution for the global optimum. Simulation and visualization presentation software testing results verified the feasibility and effectiveness of the strategy.

  2. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    NASA Astrophysics Data System (ADS)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  3. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives

    PubMed Central

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-01-01

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges. PMID:25386759

  4. Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)

    NASA Technical Reports Server (NTRS)

    Guild, Liane

    2016-01-01

    Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.

  5. EVALUATION OF FUGITIVE EMISSIONS USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY

    EPA Science Inventory

    EPA has developed and evaluated a method for characterizing fugitive emissions from large area sources. The method, known as radial plume mapping (RPM) uses multiple-beam, scanning, optical remote sensing (ORS) instrumentation such as open-path Fourier transform infrared spectro...

  6. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters.

    PubMed

    Albert, A; Mobley, C

    2003-11-03

    Subsurface remote sensing signals, represented by the irradiance re fl ectance and the remote sensing re fl ectance, were investigated. The present study is based on simulations with the radiative transfer program Hydrolight using optical properties of Lake Constance (German: Bodensee) based on in-situ measurements of the water constituents and the bottom characteristics. Analytical equations are derived for the irradiance re fl ectance and remote sensing re fl ectance for deep and shallow water applications. The input of the parameterization are the inherent optical properties of the water - absorption a(lambda) and backscattering bb(lambda). Additionally, the solar zenith angle thetas, the viewing angle thetav , and the surface wind speed u are considered. For shallow water applications the bottom albedo RB and the bottom depth zB are included into the parameterizations. The result is a complete set of analytical equations for the remote sensing signals R and Rrs in deep and shallow waters with an accuracy better than 4%. In addition, parameterizations of apparent optical properties were derived for the upward and downward diffuse attenuation coefficients Ku and Kd.

  7. RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...

  8. Remote optical stethoscope and optomyography sensing device

    NASA Astrophysics Data System (ADS)

    Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev

    2017-02-01

    In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.

  9. SIMULATION STUDY FOR GASEOUS FLUXES FROM AN AREA SOURCE USING COMPUTED TOMOGRAPHY AND OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper presents a new approach to quantifying emissions from fugitive gaseous air pollution sources. Computed tomography (CT) and path-integrated optical remote sensing (PI-ORS) concentration data are combined in a new field beam geometry. Path-integrated concentrations are ...

  10. EVALUATION OF A FORMER LANDFILL SITE IN FORT COLLINS, COLORADO USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY

    EPA Science Inventory

    This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPA′s Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...

  11. LWIR Microgrid Polarimeter for Remote Sensing Studies

    DTIC Science & Technology

    2010-02-28

    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  12. Investigation of fugitive emissions from petrochemical transport barges using optical remote sensing

    EPA Science Inventory

    Recent airborne remote sensing survey data acquired with passive gas imaging equipment (PGIE), in this case infrared cameras, have shown potentially significant fugitive volatile organic carbon (VOC) emissions from petrochemical transport barges. The experiment found remote sens...

  13. Monitoring of "all-weather" evapotranspiration using optical and passive microwave remote sensing imagery over the River Source Region in Southwest China

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Liu, S.

    2017-12-01

    Accurate estimation of surface evapotranspiration (ET) with high quality is one of the biggest obstacles for routine applications of remote sensing in eco-hydrological studies and water resource management at basin scale. However, many aspects urgently need to deeply research, such as the applicability of the ET models, the parameterization schemes optimization at the regional scale, the temporal upscaling, the selecting and developing of the spatiotemporal data fusion method and ground-based validation over heterogeneous land surfaces. This project is based on the theoretically robust surface energy balance system (SEBS) model, which the model mechanism need further investigation, including the applicability and the influencing factors, such as local environment, and heterogeneity of the landscape, for improving estimation accuracy. Due to technical and budget limitations, so far, optical remote sensing data is missing due to frequent cloud contamination and other poor atmospheric conditions in Southwest China. Here, a multi-source remote sensing data fusion method (ESTARFM: Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) method will be proposed through blending multi-source remote sensing data acquired by optical, and passive microwave remote sensors on board polar satellite platforms. The accurate "all-weather" ET estimation will be carried out for daily ET of the River Source Region in Southwest China, and then the remotely sensed ET results are overlapped with the footprint-weighted images of EC (eddy correlation) for ground-based validation.

  14. OPUS: A Comprehensive Search Tool for Remote Sensing Observations of the Outer Planets. Now with Enhanced Geometric Metadata for Cassini and New Horizons Optical Remote Sensing Instruments.

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Showalter, M. R.; Ballard, L.; Tiscareno, M.; French, R. S.; Olson, D.

    2017-06-01

    The PDS RMS Node hosts OPUS - an accurate, comprehensive search tool for spacecraft remote sensing observations. OPUS supports Cassini: CIRS, ISS, UVIS, VIMS; New Horizons: LORRI, MVIC; Galileo SSI; Voyager ISS; and Hubble: ACS, STIS, WFC3, WFPC2.

  15. A high throughput geocomputing system for remote sensing quantitative retrieval and a case study

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting

    2011-12-01

    The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.

  16. Hyperspectral Remote Sensing of the Coastal Ocean: Adaptive Sampling and Forecasting of In situ Optical Properties

    DTIC Science & Technology

    2003-09-30

    We are developing an integrated rapid environmental assessment capability that will be used to feed an ocean nowcast/forecast system. The goal is to develop a capacity for predicting the dynamics in inherent optical properties in coastal waters. This is being accomplished by developing an integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to calibrate hyperspectral remote sensing sensors in optically complex nearshore coastal waters.

  17. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  18. EVALUATION OF FUGITIVE EMISSIONS AT A FORMER LANDFILL SITE IN COLORADO SPRINGS, COLORADO, USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY

    EPA Science Inventory

    This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPAs Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...

  19. Wide-area remote-sensing system of pollution and gas dispersal by near-infrared absorption based on low-loss optical fiber network

    NASA Technical Reports Server (NTRS)

    Inaba, H.

    1986-01-01

    An all optical remote sensing system utilizing long distance, ultralow loss optical fiber networks is studied and discussed for near infrared absorption measurements of combustible and/or explosive gases such as CH4 and C3H8 in our environment, including experimental results achieved in a diameter more than 20 km. The use of a near infrared wavelength range is emphasized.

  20. Spatial and Temporal Resolutions Pixel Level Performance Analysis of the Onboard Remote Sensing Electro-Optical Systems

    NASA Astrophysics Data System (ADS)

    El-Sheikh, H. M.; Yakushenkov, Y. G.

    2014-08-01

    Formulas for determination of the interconnection between the spatial resolution from perspective distortions and the temporal resolution of the onboard electro-optical system for remote sensing application for a variety of scene viewing modes is offered. These dependences can be compared with the user's requirements, upon the permission values of the design parameters of the modern main units of the electro-optical system is discussed.

  1. Reliable clarity automatic-evaluation method for optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen

    2015-10-01

    Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.

  2. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    NASA Astrophysics Data System (ADS)

    Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.

    2012-12-01

    DARLA is 5-year collaborative project that couples state-of-the-art remote sensing and in situ measurements with advanced data assimilation (DA) modeling to (a) evaluate and improve remote sensing retrieval algorithms for environmental parameters, (b) determine the extent to which remote sensing data can be used in place of in situ data in models, and (c) infer bathymetry for littoral environments by combining remotely-sensed parameters and data assimilation models. The project uses microwave, electro-optical, and infrared techniques to characterize the littoral ocean with a focus on wave and current parameters required for DA modeling. In conjunction with the RIVET (River and Inlets) Project, extensive in situ measurements provide ground truth for both the remote sensing retrieval algorithms and the DA modeling. Our goal is to use remote sensing to constrain data assimilation models of wave and circulation dynamics in a tidal inlet and surrounding beaches. We seek to improve environmental parameter estimation via remote sensing fusion, determine the success of using remote sensing data to drive DA models, and produce a dynamically consistent representation of the wave, circulation, and bathymetry fields in complex environments. The objectives are to test the following three hypotheses: 1. Environmental parameter estimation using remote sensing techniques can be significantly improved by fusion of multiple sensor products. 2. Data assimilation models can be adequately constrained (i.e., forced or guided) with environmental parameters derived from remote sensing measurements. 3. Bathymetry on open beaches, river mouths, and at tidal inlets can be inferred from a combination of remotely-sensed parameters and data assimilation models. Our approach is to conduct a series of field experiments combining remote sensing and in situ measurements to investigate signature physics and to gather data for developing and testing DA models. A preliminary experiment conducted at the Field Research Facility at Duck, NC in September 2010 focused on assimilation of tower-based electo-optical, infrared, and radar measurements in predictions of longshore currents. Here we provide an overview of our contribution to the RIVET I experiment at New River Inlet, NC in May 2012. During the course of the 3-week measurement period, continuous tower-based remote sensing measurements were made using electro-optical, infrared, and radar techniques covering the nearshore zone and the inlet mouth. A total of 50 hours of airborne measurements were made using high-resolution infrared imagers and a customized along track interferometric synthetic aperture radar (ATI SAR). The airborne IR imagery provides kilometer-scale mapping of frontal features that evolve as the inlet flow interacts with the oceanic wave and current fields. The ATI SAR provides maps of the two-dimensional surface currents. Near-surface measurements of turbulent velocities and surface waves using SWIFT drifters, designed to measures near-surface properties relevant to remote sensing, complimented the extensive in situ measurements by RIVET investigators.

  3. Optical sampling of the flux tower footprint

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.

    2015-03-01

    The purpose of this review is to address the reasons and methods for conducting optical remote sensing within the flux tower footprint. Fundamental principles and conclusions gleaned from over two decades of proximal remote sensing at flux tower sites are reviewed. An organizing framework is the light-use efficiency (LUE) model, both because it is widely used, and because it provides a useful theoretical construct for integrating optical remote sensing with flux measurements. Multiple ways of driving this model, ranging from meteorological measurements to remote sensing, have emerged in recent years, making it a convenient conceptual framework for comparative experimental studies. New interpretations of established optical sampling methods, including the Photochemical Reflectance Index (PRI) and Solar-Induced Fluorescence (SIF), are discussed within the context of the LUE model. Multi-scale analysis across temporal and spatial axes is a central theme, because such scaling can provide links between ecophysiological mechanisms detectable at the level of individual organisms and broad patterns emerging at larger scales, enabling evaluation of emergent properties and extrapolation to the flux footprint and beyond. Proper analysis of sampling scale requires an awareness of sampling context that is often essential to the proper interpretation of optical signals. Additionally, the concept of optical types, vegetation exhibiting contrasting optical behavior in time and space, is explored as a way to frame our understanding of the controls on surface-atmosphere fluxes. Complementary NDVI and PRI patterns across ecosystems are offered as an example of this hypothesis, with the LUE model and light-response curve providing an integrating framework. We conclude that experimental approaches allowing systematic exploration of plant optical behavior in the context of the flux tower network provides a unique way to improve our understanding of environmental constraints and ecophysiological function. In addition to an enhanced mechanistic understanding of ecosystem processes, this integration of remote sensing with flux measurements offers many rich opportunities for upscaling, satellite validation, and informing practical management objectives ranging form assessing ecosystem health and productivity to quantifying biospheric carbon sequestration.

  4. The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Remer, Lorraine

    1999-01-01

    Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.

  5. Where size does matter: foldable telescope design for microsat application

    NASA Astrophysics Data System (ADS)

    Segert, Tom; Danziger, Björn; Lieder, Matthias

    2017-11-01

    The DOBSON SPACE TELESCOPE Project (DST) at the Technical University of Berlin (TUB) believes that micro satellites can be a challenging competitor in the high resolution remote sensing market. Using a micro satellite as basis for a remote sensing platform will dramatically reduce the cost for the end users thereby initiating the predicted remote sensing boom. The Challenging task is that an optic required for a GSD smaller than 1m is much bigger than the given room for secondary payload. In order to break the volume limits of hitchhiker payloads the DST team develops an optical telescope with deployable structures. The core piece of DST is a 20 inch modified Cassegrain optic. Stored during ascend the instrument fits in a box measuring 60 x 60 x 30cm (including telescope and optical plane assembly). After the satellite was released into free space the telescope unfolds and collimates automatically.

  6. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  7. Chemical Remote Sensing ’Proof of Concept’,

    DTIC Science & Technology

    1981-03-31

    A122 579 CHEMICAL REMOTE SENSING ;PROOF OF CONCEPT’(U) UTAH 1/I \\ STATE UNIV LOGAN ELECTRO-DYNAMICS LAB BARTSCHI ET AL. 31 MAR 81 SCIENTIFC-8...STANDARDS -I963-A AFGL-TR-81-021 2 CHEMICAL REMOTE SENSING "Proof of Concept" B.Y. Bartschi F. P. DelGreco M. Ahmadjian Electro-Dynamics Laboratories...Applications of remote sensing 2 2.2 Program Development 4 -O 3.1 Optical Layout 6 3.2 Block Diagram of Sensor System 7 3.3 Sensor Facility 10 3.4

  8. Sensing our Environment: Remote sensing in a physics classroom

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora. The teams then processed their data and presented it to their foreign partners for evaluation in a video conference call. Alongside exciting insights about their respective environments and living conditions, the young scientists had daily access to live satellite sensors and remote sensing through the DLR_School_Lab in Germany and the Earth and Planetary Image Facility in Israel. This paper provides an overview regarding the project, the techniques used and the evaluation results following a pre-past-questionnaire design, and above all demonstrates the use of remote sensing as an application for physics teaching in a significant learning environment.

  9. Remote sensing tools to study ocean biogeochemistry: state of the art

    NASA Technical Reports Server (NTRS)

    Carr, M. E.

    2001-01-01

    Remote sensing of the world ocean presently provides measurements of sea-surface temperature, sea surface height, wind speed and direction, and ocean color, from which chlorophyll concentration and aerosol optical thickness are obtained.

  10. Remote Sensing Applications to Water Quality Management in Florida

    EPA Science Inventory

    Increasingly, optical datasets from estuarine and coastal systems are becoming available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data ...

  11. Vegetation structure from quantitative fusion of hyperspectral optical and radar interferometric remote sensing

    NASA Technical Reports Server (NTRS)

    Asner, G. P.; Treuhaft, R. N.; Law, B. E.

    2000-01-01

    One of today's principle objecdtives of remote sensing is carbon accounting in the world's forests via biomass monitoring. Determining carbon sequestration by forest ecosystems requires understanding the carbon budgets of these ecosystems.

  12. Hyperspectral absorption and backscattering coefficients of bulk water retrieved from a combination of remote-sensing reflectance and attenuation coefficient.

    PubMed

    Lin, Junfang; Lee, Zhongping; Ondrusek, Michael; Liu, Xiaohan

    2018-01-22

    Absorption (a) and backscattering (bb) coefficients play a key role in determining the light field; they also serve as the link between remote sensing and concentrations of optically active water constituents. Here we present an updated scheme to derive hyperspectral a and bb with hyperspectral remote-sensing reflectance (Rrs) and diffuse attenuation coefficient (Kd) as the inputs. Results show that the system works very well from clear open oceans to highly turbid inland waters, with an overall difference less than 25% between these retrievals and those from instrument measurements. This updated scheme advocates the measurement and generation of hyperspectral a and bb from hyperspectral Rrs and Kd, as an independent data source for cross-evaluation of in situ measurements of a and bb and for the development and/or evaluation of remote sensing algorithms for such optical properties.

  13. Geotechnical applications of remote sensing and remote data transmission; Proceedings of the Symposium, Cocoa Beach, FL, Jan. 31-Feb. 1, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.I.; Pettersson, C.B.

    1988-01-01

    Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis ofmore » surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.« less

  14. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.

    PubMed

    Simis, Stefan G H; Ylöstalo, Pasi; Kallio, Kari Y; Spilling, Kristian; Kutser, Tiit

    2017-01-01

    Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are provided as supplementary data.

  15. A new method of inshore ship detection in high-resolution optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Hu, Qifeng; Du, Yaling; Jiang, Yunqiu; Ming, Delie

    2015-10-01

    Ship as an important military target and water transportation, of which the detection has great significance. In the military field, the automatic detection of ships can be used to monitor ship dynamic in the harbor and maritime of enemy, and then analyze the enemy naval power. In civilian field, the automatic detection of ships can be used in monitoring transportation of harbor and illegal behaviors such as illegal fishing, smuggling and pirates, etc. In recent years, research of ship detection is mainly concentrated in three categories: forward-looking infrared images, downward-looking SAR image, and optical remote sensing images with sea background. Little research has been done into ship detection of optical remote sensing images with harbor background, as the gray-scale and texture features of ships are similar to the coast in high-resolution optical remote sensing images. In this paper, we put forward an effective harbor ship target detection method. First of all, in order to overcome the shortage of the traditional difference method in obtaining histogram valley as the segmentation threshold, we propose an iterative histogram valley segmentation method which separates the harbor and ships from the water quite well. Secondly, as landing ships in optical remote sensing images usually lead to discontinuous harbor edges, we use Hough Transform method to extract harbor edges. First, lines are detected by Hough Transform. Then, lines that have similar slope are connected into a new line, thus we access continuous harbor edges. Secondary segmentation on the result of the land-and-sea separation, we eventually get the ships. At last, we calculate the aspect ratio of the ROIs, thereby remove those targets which are not ship. The experiment results show that our method has good robustness and can tolerate a certain degree of noise and occlusion.

  16. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    NASA Technical Reports Server (NTRS)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and aquatic organics.

  17. Possibility of Cloudless Optical Remote Sensing Images Acquisition Study by Using Meteorological Satellite Observations

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Lei, B.; Hu, Y.; Liu, K.; Gan, Y.

    2018-04-01

    Optical remote sensing images have been widely used in feature interpretation and geo-information extraction. All the fundamental applications of optical remote sensing, are greatly influenced by cloud coverage. Generally, the availability of cloudless images depends on the meteorological conditions for a given area. In this study, the cloud total amount (CTA) products of the Fengyun (FY) satellite were introduced to explore the meteorological changes in a year over China. The cloud information of CTA products were tested by using ZY-3 satellite images firstly. CTA products from 2006 to 2017 were used to get relatively reliable results. The window period of cloudless images acquisition for different areas in China was then determined. This research provides a feasible way to get the cloudless images acquisition window by using meteorological observations.

  18. Remote sensing; Proceedings of the Meeting, Orlando, FL, Apr. 3, 4, 1986

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T. (Editor)

    1986-01-01

    Advances in optical technology for remote sensing are discussed in reviews and reports of recent experimental investigations. Topics examined include industrial applications, laser diagnostics for combustion research, laser remote sensing for ranging and altimetry, and imaging systems for terrestrial remote sensing from space. Consideration is given to LIF in forensic diagnostics, time-resolved laser-induced-breakdown spectrometry for rapid analysis of alloys, CARS in practical combustion environments, airborne inertial surveying using laser tracking and profiling techniques, earth-resources instrumentation for the EOS polar platform of the Space Station, and the SAR for EOS.

  19. The International Geoscience and Remote Sensing Symposium (IGARSS) 84. Remote Sensing: from Research Towards Operational Use, Volume 2

    NASA Technical Reports Server (NTRS)

    Guyenne, T. D. (Editor); Hunt, James J. (Editor)

    1984-01-01

    Synthetic aperature radar; systems components; data collection; data evaluation; optical sensor data; air pollution; water pollution; land and sea observation; active sensors (ir and w); and ers-1 are discussed.

  20. Estimates of Leaf Relative Water Content from Optical Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Dahlgren, R. P.; Vanderbilt, V. C.; Daughtry, C. S. T.

    2017-12-01

    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Existing approaches to remotely sensing canopy water status, such as the Crop Water Stress Index (CWSI) and the Equivalent Water Thickness (EWT), have limitations. The CWSI, based upon remotely sensing canopy radiant temperature in the thermal infrared spectral region, does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWT is based upon the physics of water-light interaction in the 900-2000nm spectral region, not plant physiology. Our goal, development of a remote sensing technique for estimating plant water status based upon measurements in the VIS/NIR spectral region, would potentially provide remote sensing access to plant dehydration physiology - to the cellular photochemistry and structural changes associated with water deficits in leaves. In this research, we used optical, crossed polarization filters to measure the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, for 78 corn (Zea mays) and soybean (Glycine max) leaves having relative water contents (RWC) between 0.60 and 0.98. Our results show that as RWC decreases R increases while T decreases. Our results tie R and T changes in the VIS/NIR to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future.

  1. Effective application of optical sensing technology for sustainable liquid level sensing and rainfall measurement

    NASA Astrophysics Data System (ADS)

    Afzal, Muhammad Hassan Bin

    2015-05-01

    Rainfall measurement is performed on regular basis to facilitate effectively the weather stations and local inhabitants. Different types of rain gauges are available with different measuring principle for rainfall measurement. In this research work, a novel optical rain sensor is designed, which precisely calculate the rainfall level according to rainfall intensity. This proposed optical rain sensor model introduced in this paper, which is basically designed for remote sensing of rainfall and it designated as R-ORMS (Remote Optical Rainfall Measurement sensor). This sensor is combination of some improved method of tipping bucket rain gauge and most of the optical hydreon rain sensor's principle. This optical sensor can detect the starting time and ending time of rain, rain intensity and rainfall level. An infrared beam from Light Emitting Diode (LED) through powerful convex lens can accurately determines the diameter of each rain drops by total internal reflection principle. Calculations of these accumulative results determine the rain intensity and rainfall level. Accurate rainfall level is determined by internal optical LED based sensor which is embedded in bucket wall. This internal sensor is also following the total internal reflection (TIR) principle and the Fresnel's law. This is an entirely novel design of optical sensing principle based rain sensor and also suitable for remote sensing rainfall level. The performance of this proposed sensor has been comprehensively compared with other sensors with similar attributes and it showed better and sustainable result. Future related works have been proposed at the end of this paper, to provide improved and enhanced performance of proposed novel rain sensor.

  2. Reviews and Syntheses: optical sampling of the flux tower footprint

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.

    2015-07-01

    The purpose of this review is to address the reasons and methods for conducting optical remote sensing within the flux tower footprint. Fundamental principles and conclusions gleaned from over 2 decades of proximal remote sensing at flux tower sites are reviewed. The organizing framework used here is the light-use efficiency (LUE) model, both because it is widely used, and because it provides a useful theoretical construct for integrating optical remote sensing with flux measurements. Multiple ways of driving this model, ranging from meteorological measurements to remote sensing, have emerged in recent years, making it a convenient conceptual framework for comparative experimental studies. New interpretations of established optical sampling methods, including the photochemical reflectance index (PRI) and solar-induced chlorophyll fluorescence (SIF), are discussed within the context of the LUE model. Multi-scale analysis across temporal and spatial axes is a central theme because such scaling can provide links between ecophysiological mechanisms detectable at the level of individual organisms and broad patterns emerging at larger scales, enabling evaluation of emergent properties and extrapolation to the flux footprint and beyond. Proper analysis of the sampling scale requires an awareness of sampling context that is often essential to the proper interpretation of optical signals. Additionally, the concept of optical types, vegetation exhibiting contrasting optical behavior in time and space, is explored as a way to frame our understanding of the controls on surface-atmosphere fluxes. Complementary normalized difference vegetation index (NDVI) and PRI patterns across ecosystems are offered as an example of this hypothesis, with the LUE model and light-response curve providing an integrating framework. I conclude that experimental approaches allowing systematic exploration of plant optical behavior in the context of the flux tower network provides a unique way to improve our understanding of environmental constraints and ecophysiological function. In addition to an enhanced mechanistic understanding of ecosystem processes, this integration of remote sensing with flux measurements offers many rich opportunities for upscaling, satellite validation, and informing practical management objectives ranging from assessing ecosystem health and productivity to quantifying biospheric carbon sequestration.

  3. A stereo remote sensing feature selection method based on artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Yan, Yiming; Liu, Pigang; Zhang, Ye; Su, Nan; Tian, Shu; Gao, Fengjiao; Shen, Yi

    2014-05-01

    To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.

  4. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery

    PubMed Central

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang

    2018-01-01

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  5. Remote sensing of plant functional types.

    PubMed

    Ustin, Susan L; Gamon, John A

    2010-06-01

    Conceptually, plant functional types represent a classification scheme between species and broad vegetation types. Historically, these were based on physiological, structural and/or phenological properties, whereas recently, they have reflected plant responses to resources or environmental conditions. Often, an underlying assumption, based on an economic analogy, is that the functional role of vegetation can be identified by linked sets of morphological and physiological traits constrained by resources, based on the hypothesis of functional convergence. Using these concepts, ecologists have defined a variety of functional traits that are often context dependent, and the diversity of proposed traits demonstrates the lack of agreement on universal categories. Historically, remotely sensed data have been interpreted in ways that parallel these observations, often focused on the categorization of vegetation into discrete types, often dependent on the sampling scale. At the same time, current thinking in both ecology and remote sensing has moved towards viewing vegetation as a continuum rather than as discrete classes. The capabilities of new remote sensing instruments have led us to propose a new concept of optically distinguishable functional types ('optical types') as a unique way to address the scale dependence of this problem. This would ensure more direct relationships between ecological information and remote sensing observations.

  6. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

    PubMed

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang

    2018-04-25

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  7. NASA Laser Remote Sensing Technology Needs for Earth Science in the Next Decade and Beyond

    NASA Technical Reports Server (NTRS)

    Trait, David M.; Neff, Jon M.; Valinia, Azita

    2007-01-01

    In late 2005 the NASA Earth Science Technology Office convened a working group to review decadal-term technology needs for Earth science active optical remote sensing objectives. The outcome from this effort is intended to guide future NASA investments in laser remote sensing technologies. This paper summarizes the working group findings and places them in context with the conclusions of the National Research Council assessment of Earth science needs, completed in 2007.

  8. Remote Sensing Applied to Geology (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the use of remote sensing in geological resource exploration. Technologies discussed include thermal, optical, photographic, and electronic imaging using ground-based, aerial, and satellite-borne devices. Analog and digital techniques to locate, classify, and assess geophysical features, structures, and resources are also covered. Application of remote sensing to petroleum and minerals exploration is treated in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.)

  9. [A review on polarization information in the remote sensing detection].

    PubMed

    Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao

    2010-04-01

    Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.

  10. Target-in-the-loop remote sensing of laser beam and atmospheric turbulence characteristics.

    PubMed

    Vorontsov, Mikhail A; Lachinova, Svetlana L; Majumdar, Arun K

    2016-07-01

    A new target-in-the-loop (TIL) atmospheric sensing concept for in situ remote measurements of major laser beam characteristics and atmospheric turbulence parameters is proposed and analyzed numerically. The technique is based on utilization of an integral relationship between complex amplitudes of the counterpropagating optical waves known as overlapping integral or interference metric, whose value is preserved along the propagation path. It is shown that the interference metric can be directly measured using the proposed TIL sensing system composed of a single-mode fiber-based optical transceiver and a remotely located retro-target. The measured signal allows retrieval of key beam and atmospheric turbulence characteristics including scintillation index and the path-integrated refractive index structure parameter.

  11. Research of BRDF effects on remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Nina, Peng; Kun, Wang; Tao, Li; Yang, Pan

    2011-08-01

    The gray distribution and contrast of the optical satellite remote sensing imagery in the same kind of ground surface acquired by sensor is quite different, it depends not only on the satellite's observation and the sun incidence orientation but also the structural and optical properties of the surface. Therefore, the objectives of this research are to analyze the different BRDF characters of soil, vegetation, water and urban surface and also their BRDF effects on the quality of satellite image through 6S radiative transfer model. Furthermore, the causation of CCD blooming and spilling by ground reflectance is discussed by using QUICKBIRD image data and the corresponding ground image data. The general conclusion of BRDF effects on remote sensing imagery is proposed.

  12. Determining seagrass abundance in southern New England waters using high resolution remotely sensed imagery

    EPA Science Inventory

    Advances in understanding the optics of shallow water environments, submerged vegetation canopies and seagrass physiology, combined with improved spatial resolution of remote sensing platforms, now enable eelgrass ecosystems to be monitored at a variety of time scales from earth-...

  13. Remote sensing reflectance simulation of coastal optical complex water in the East China Sea

    NASA Astrophysics Data System (ADS)

    He, Shuo; Lou, Xiulin; Zhang, Huaguo; Zheng, Gang

    2018-02-01

    In this work, remote sensing reflectance (Rrs) spectra of the Zhejiang coastal water in the East China Sea (ECS) were simulated by using the Hydrolight software with field data as input parameters. The seawater along the Zhejiang coast is typical Case II water with complex optical properties. A field observation was conducted in the Zhejiang coastal region in late May of 2016, and the concentration of ocean color constituents (pigment, SPM and CDOM), IOPs (absorption and backscattering coefficients) and Rrs were measured at 24 stations of 3 sections covering the turbid to clear inshore coastal waters. Referring to these ocean color field data, an ocean color model suitable for the Zhejiang coastal water was setup and applied in the Hydrolight. A set of 11 remote sensing reflectance spectra above water surface were modeled and calculated. Then, the simulated spectra were compared with the filed measurements. Finally, the spectral shape and characteristics of the remote sensing reflectance spectra were analyzed and discussed.

  14. Forest Attributes from Radar Interferometric Structure and its Fusion with Optical Remote Sensing

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Asner, Gregory P.

    2004-01-01

    The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest designs for future spaceborne strategies for measuring global vegetation structure.

  15. OPEN PATH OPTICAL SENSING OF PARTICULATE MATTER

    EPA Science Inventory

    The paper discusses the concepts behind recent developments in optical remote sensing (ORS) and the results from experiments. Airborne fugitive and fine particulate matter (PM) from various sources contribute to exceedances of state and federal PM and visibility standards. Recent...

  16. Comparison of stimulated and spontaneous laser-radar methods for the remote sensing of ocean physical properties

    NASA Astrophysics Data System (ADS)

    Leonard, Donald A.; Sweeney, Harold E.

    1990-09-01

    The physical properties of ocean water, in the top few ten meters, are of great interest in the scientific, engineering, and general oceanographic communities. Subsurface profiles of temperature, salinity, and sound speed measured by laser radar in real time on a synoptic basis over a wide area from an airborne platform would provide valuable information complementary to the data that is now readily available. The laser-radar technique specifically applicable to ocean sensing uses spectroscopic analysis of the inelastic backscattered optical signal. Two methods have received considerable attention for remote sensing and both have been demonstrated in field experiments. These are spontaneous Raman1 and spontaneous Brillouin2 scattering. A discussion of these two processes and a comparison of their properties that are useful for remote sensing was presented3 at SPIE Ocean Optics IX. This paper compares ocean remote sensing using stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) processes with better known spontaneous methods. The results of laboratory measurements of temperature using SBS and some preliminary results of SRS are presented with extensions to performance estimates of potential field systems.

  17. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. II - Marine stratocumulus observations

    NASA Technical Reports Server (NTRS)

    Nakajima, Teruyuki; King, Michael D.; Spinhirne, James D.; Radke, Lawrence F.

    1991-01-01

    A multispectral scanning radiometer has been used to obtain measurements of the reflection function of marine stratocumulus clouds at 0.75 micron and at 1.65 and 2.16 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE, conducted off the coast of southern California during July 1987. Multispectral images of the reflection function were used to derive the optical thickness and the effective particle radius of stratiform cloud layers on four days. In addition to the radiation measurements, in situ microphysical measurements were obtained from an aircraft. In this paper, the remote sensing results are compared with in situ observations, which show a good spatial correlation for both optical thickness and effective radius. These comparisons further show systematic differences between remote sensing and in situ values, with a tendency for remote sensing to overestimate the effective radius by about 2-3 microns, independent of particle radius. The optical thickness, in contrast, is somewhat overestimated for small optical thicknesses and underestimated for large optical thicknesses. An introduction of enhanced gaseous absorption at a wavelength of 2.16 microns successfully explains some of these observed discrepancies.

  18. Mapping CDOM Concentration in Waters Influenced by the Mississippi River Plume

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; DelCastillo, Carlos E.; Powell, Rodney T.; DSa, Eurico; Spiering, Bruce

    2002-01-01

    Colored dissolved organic matter (CDOM) is often an important component of the organic carbon pool in river-dominated coastal margins. CDOM directly influences remote sensing applications through its strong absorption in the UV and blue regions of the spectrum. This effect can complicate the use of chlorophyll a retrieval algorithms and phytoplankton production models that are based on remotely sensed ocean color. As freshwater input is the principle source of CDOM in coastal margins, CDOM distribution can often be described by conservative mixing with open ocean waters and may serve as an optical tracer of riverine water. Hence, there is considerable interest in the ability to accurately measure and map CDOM concentrations as well as understand the processes that govern the optical properties and distribution of CDOM in coastal environments. We are examining CDOM dynamics in the waters influenced by the Mississippi River plume. Our program incorporates discrete samples, flow-through measurements, and remote sensing. CDOM absorption spectra of discrete samples are measured at sea using a portable, multiple pathlength waveguide system. A SAFire multi-spectral fluorescence meter provides spectral characterization of CDOM (fluorescence and absorption) using a ship flow-through system for continuous surface mapping. In situ reflectance spectra are obtained by a hand held spectroradiometer. Remotely sensed images are obtained from the SeaWiFS and CRIS (Coastal Research Imaging Spectrometer) instruments. We describe here the instruments used, sampling protocols employed, and the relationships derived between in situ measurements and remotely sensed data for this optically complex environment.

  19. Remote Sensing of Aerosol and their Radiative Forcing of Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine A.

    1999-01-01

    Remote sensing of aerosol and aerosol radiative forcing of climate is going through a major transformation. The launch in next few years of new satellites designed specifically for remote sensing of aerosol is expected to further revolutionized aerosol measurements: until five years ago satellites were not designed for remote sensing of aerosol. Aerosol optical thickness was derived as a by product, only over the oceans using one AVHRR channel with errors of approx. 50%. However it already revealed a very important first global picture of the distribution and sources of aerosol. In the last 5 years we saw the introduction of polarization and multi-view observations (POLDER and ATSR) for satellite remote sensing of aerosol over land and ocean. Better products are derived from AVHRR using its two channels. The new TOMS aerosol index shows the location and transport of aerosol over land and ocean. Now we anticipate the launch of EOS-Terra with MODIS, MISR and CERES on board for multi-view, multi-spectral remote sensing of aerosol and its radiative forcing. This will allow application of new techniques, e.g. using a wide spectral range (0.55-2.2 microns) to derive precise optical thickness, particle size and mass loading. Aerosol is transparent in the 2.2 microns channel, therefore this channel can be used to detect surface features that in turn are used to derive the aerosol optical thickness in the visible part of the spectrum. New techniques are developed to derive the aerosol single scattering albedo, a measure of absorption of sunlight, and techniques to derive directly the aerosol forcing at the top of the atmosphere. In the last 5 years a global network of sun/sky radiometers was formed, designed to communicate in real time the spectral optical thickness from 50-80 locations every day, every 15 minutes. The sky angular and spectral information is also measured and used to retrieve the aerosol size distribution, refractive index, single scattering albedo and the spectral flux reaching the surface. Effort to introduce remote sensing from lidars will literally additional dimension to aerosol remote sensing. The vertical dimension is a critical link between the global satellite observations and modeling of aerosol transport. Lidars are also critical to study aerosol impact on cloud microphysics and reflectance. Both lidar ground networks and satellite systems are in development. This new capability is expected to put remote sensing in the forefront of aerosol and climate studies. Together with field experiments, chemical analysis and chemical transport models we anticipate, in the next decade, to be able to resolve some of the outstanding questions regarding the role of aerosol in climate, in atmospheric chemistry and its influence on human health and life on this planet.

  20. Remote sensing science for the Nineties; Proceedings of IGARSS '90 - 10th Annual International Geoscience and Remote Sensing Symposium, University of Maryland, College Park, May 20-24, 1990. Vols. 1, 2, & 3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.

  1. Reconstruction of time-varying tidal flat topography using optical remote sensing imageries

    NASA Astrophysics Data System (ADS)

    Tseng, Kuo-Hsin; Kuo, Chung-Yen; Lin, Tang-Huang; Huang, Zhi-Cheng; Lin, Yu-Ching; Liao, Wen-Hung; Chen, Chi-Farn

    2017-09-01

    Tidal flats (TFs) occupy approximately 7% of the total coastal shelf areas worldwide. However, TFs are unavailable in most global digital elevation models (DEMs) due to water-impermeable nature of existing remote sensing approaches (e.g., radar used for WorldDEM™ and Shuttle Radar Topography Mission DEM and optical stereo-pairs used for ASTER Global Digital Elevation Map Version 2). However, this problem can be circumvented using remote sensing imageries to observe land exposure at different tidal heights during each revisit. This work exploits Landsat-4/-5/-7/-8 Thematic Mapper (TM)/Enhanced TM Plus/Operational Land Imager imageries to reconstruct topography of a TF, namely, Hsiang-Shan Wetland in Taiwan, to unveil its formation and temporal changes since the 1980s. We first classify water areas by applying modified normalized difference water index to each Landsat image and normalize chances of water exposure to create an inundation probability map. This map is then scaled by tidal amplitudes extracted from DTU10 tide model to convert the probabilities into actual elevations. After building DEM at intertidal zone, a water level-area curve is established, and accuracy of DEM is validated by sea level (SL) at the timing of each Landsat snapshot. A 22-year (1992-2013) dataset composed of 227 Landsat scenes are analyzed and compared with tide gauge data. Root-mean-square differences of SL reaches 48 cm with a correlation coefficient of 0.93, indicating that the present technique is useful for constructing accurate coastal DEMs, and that products can be utilized for estimating instant SL. This study shows the possibility of exploring evolution of intertidal zones using an archive of optical remote sensing imageries. The technique developed in the present study potentially helps in quantifying SL from the start of optical remote sensing era.

  2. Mini-lidar sensor for the remote stand-off sensing of chemical/biological substances and method for sensing same

    DOEpatents

    Ray, Mark D.; Sedlacek, Arthur J.

    2003-08-19

    A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.

  3. Optical Constituents Along a River Mouth and Inlet: Variability and Signature in Remotely Sensed Reflectance, and: Optical Constituents at the Mouth of the Columbia River: Variability and Signature in Remotely Sensed Reflectance

    DTIC Science & Technology

    2013-09-30

    Vision Floc Camera (MVFC), a Sequoia Scientific LISST 100x Type B, an RBR CTD, and two pressure-actuated Niskin bottles. The Niskin bottles were...Eco bb2fl, that measures 3 backscattering at 532 and 650 nm and CDOM fluorescence, a WetLabs WetStar CDOM fluorometer, a Sequoia Scientific flow

  4. A new simple concept for ocean colour remote sensing using parallel polarisation radiance

    PubMed Central

    He, Xianqiang; Pan, Delu; Bai, Yan; Wang, Difeng; Hao, Zengzhou

    2014-01-01

    Ocean colour remote sensing has supported research on subjects ranging from marine ecosystems to climate change for almost 35 years. However, as the framework for ocean colour remote sensing is based on the radiation intensity at the top-of-atmosphere (TOA), the polarisation of the radiation, which contains additional information on atmospheric and water optical properties, has largely been neglected. In this study, we propose a new simple concept to ocean colour remote sensing that uses parallel polarisation radiance (PPR) instead of the traditional radiation intensity. We use vector radiative transfer simulation and polarimetric satellite sensing data to demonstrate that using PPR has two significant advantages in that it effectively diminishes the sun glint contamination and enhances the ocean colour signal at the TOA. This concept may open new doors for ocean colour remote sensing. We suggest that the next generation of ocean colour sensors should measure PPR to enhance observational capability. PMID:24434904

  5. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, andmore » background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.« less

  6. Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review

    PubMed Central

    Mosleh, Mostafa K.; Hassan, Quazi K.; Chowdhury, Ehsan H.

    2015-01-01

    Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ∼19% of the global dietary energy in recent times and its annual average consumption per capita was ∼65 kg during 2010–2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield were empirical in nature, so thus it would require further calibration and validation prior to implement over other geographical locations. PMID:25569753

  7. Application of remote sensors in mapping rice area and forecasting its production: a review.

    PubMed

    Mosleh, Mostafa K; Hassan, Quazi K; Chowdhury, Ehsan H

    2015-01-05

    Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ~19% of the global dietary energy in recent times and its annual average consumption per capita was ~65 kg during 2010-2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield were empirical in nature, so thus it would require further calibration and validation prior to implement over other geographical locations.

  8. Science, technology, and application of THz air photonics

    NASA Astrophysics Data System (ADS)

    Lu, X. F.; Clough, B.; Ho, I.-C.; Kaur, G.; Liu, J.; Karpowicz, N.; Dai, J. M.; Zhang, X.-C.

    2010-11-01

    The significant scientific and technological potential of terahertz (THz) wave sensing and imaging has been attracted considerable attention within many fields of research. However, the development of remote, broadband THz wave sensing technology is lagging behind the compelling needs that exist in the areas of astronomy, global environmental monitoring, and homeland security. This is due to the challenge posed by high absorption of ambient moisture in the THz range. Although various time-domain THz detection techniques have recently been demonstrated, the requirement for an on-site bias or forward collection of the optical signal inevitably prohibits their applications for remote sensing. The objective of this paper is to report updated THz air-plasma technology to meet this great challenge of remote sensing. A focused optical pulse (mJ pulse energy and femtosecond pulse duration) in gas creates a plasma, which can serve to generate intense, broadband, and directional THz waves in the far field.

  9. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea

    PubMed Central

    Ylöstalo, Pasi; Kallio, Kari Y.; Spilling, Kristian; Kutser, Tiit

    2017-01-01

    Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0–3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are provided as supplementary data. PMID:28384157

  10. [Application of optical flow dynamic texture in land use/cover change detection].

    PubMed

    Yan, Li; Gong, Yi-Long; Zhang, Yi; Duan, Wei

    2014-11-01

    In the present study, a novel change detection approach for high resolution remote sensing images is proposed based on the optical flow dynamic texture (OFDT), which could achieve the land use & land cover change information automatically with a dynamic description of ground-object changes. This paper describes the ground-object gradual change process from the principle using optical flow theory, which breaks the ground-object sudden change hypothesis in remote sensing change detection methods in the past. As the steps of this method are simple, it could be integrated in the systems and software such as Land Resource Management and Urban Planning software that needs to find ground-object changes. This method takes into account the temporal dimension feature between remote sensing images, which provides a richer set of information for remote sensing change detection, thereby improving the status that most of the change detection methods are mainly dependent on the spatial dimension information. In this article, optical flow dynamic texture is the basic reflection of changes, and it is used in high resolution remote sensing image support vector machine post-classification change detection, combined with spectral information. The texture in the temporal dimension which is considered in this article has a smaller amount of data than most of the textures in the spatial dimensions. The highly automated texture computing has only one parameter to set, which could relax the onerous manual evaluation present status. The effectiveness of the proposed approach is evaluated with the 2011 and 2012 QuickBird datasets covering Duerbert Mongolian Autonomous County of Daqing City, China. Then, the effects of different optical flow smooth coefficient and the impact on the description of the ground-object changes in the method are deeply analyzed: The experiment result is satisfactory, with an 87.29% overall accuracy and an 0.850 7 Kappa index, and the method achieves better performance than the post-classification change detection methods using spectral information only.

  11. Measurement of Oil and Natural Gas Well Pad Enclosed Combustor Emissions Using Optical Remote Sensing Technologies

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD) and EPA Region 8 are collaborating under the EPA’s Regional Applied Research Effort (RARE) program to evaluate ground-based remote sensing technologies that could be used to characterize emis...

  12. ESTIMATION OF INHERENT OPTICAL PROPERTIES AND WATER CONSTITUENT CONCENTRATIONS FROM THE REMOTE-SENSING REFLECTANCE SPECTRA IN THE ALBEMARLE-PAMLICO ESTUARY, USA

    EPA Science Inventory

    The decomposition of remote sensing reflectance (RSR) spectra into absorption, scattering and backscattering coefficients, and scattering phase function is an important issue for estimating water quality (WQ) components. For Case 1 waters RSR decomposition can be easily accompli...

  13. Development of a portable remote sensing system for measurement of diesel emissions from passing diesel trucks.

    DOT National Transportation Integrated Search

    2011-04-08

    A wireless remote-sensing system has been developed for measurement of NOx and particulate matters (PM) emissions from passing diesel trucks. The NOx measurement system has a UV light source with quartz fiber optics that focused the light source into...

  14. An Automated Approach to Extracting River Bank Locations from Aerial Imagery Using Image Texture

    DTIC Science & Technology

    2015-11-04

    is more likely to be encountered in high latitudes. The technique recognizes areas of urban or rural built environments, such as mowed fields...optical remote sensing of river channel morphology and in-stream habitat : physical basis and feasability. Remote Sensing of the Environment 93: 493

  15. A low-cost, portable optical sensing system with wireless communication compatible of real-time and remote detection of dissolved ammonia

    NASA Astrophysics Data System (ADS)

    Deng, Shijie; Doherty, William; McAuliffe, Michael AP; Salaj-Kosla, Urszula; Lewis, Liam; Huyet, Guillaume

    2016-06-01

    A low-cost and portable optical chemical sensor based ammonia sensing system that is capable of detecting dissolved ammonia up to 5 ppm is presented. In the system, an optical chemical sensor is designed and fabricated for sensing dissolved ammonia concentrations. The sensor uses eosin as the fluorescence dye which is immobilized on the glass substrate by a gas-permeable protection layer. A compact module is developed to hold the optical components, and a battery powered micro-controller system is designed to read out and process the data measured. The system operates without the requirement of laboratory instruments that makes it cost effective and highly portable. Moreover, the calculated results in the system can be transmitted to a PC wirelessly, which allows the remote and real-time monitoring of dissolved ammonia.

  16. Remote sensing of atmospheric chemistry; Proceedings of the Meeting, Orlando, FL, Apr. 1-3, 1991

    NASA Technical Reports Server (NTRS)

    Mcelroy, James L. (Editor); Mcneal, Robert J. (Editor)

    1991-01-01

    The present volume on remote sensing of atmospheric chemistry discusses special remote sensing space observations and field experiments to study chemical change in the atmosphere, network monitoring for detection of stratospheric chemical change, stratospheric chemistry studies, and the combining of model, in situ, and remote sensing in atmospheric chemistry. Attention is given to the measurement of tropospheric carbon monoxide using gas filter radiometers, long-path differential absorption measurements of tropospheric molecules, air quality monitoring with the differential optical absorption spectrometer, and a characterization of tropospheric methane through space-based remote sensing. Topics addressed include microwave limb sounder experiments for UARS and EOS, an overview of the spectroscopy of the atmosphere using an FIR emission experiment, the detection of stratospheric ozone trends by ground-based microwave observations, and a FIR Fabry-Perot spectrometer for OH measurements.

  17. Remote sensing with intense filaments enhanced by adaptive optics

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Kamali, Y.; Châteauneuf, M.; Tremblay, G.; Théberge, F.; Dubois, J.; Roy, G.; Chin, S. L.

    2009-11-01

    A method involving a closed loop adaptive optic system is investigated as a tool to significantly enhance the collected optical emissions, for remote sensing applications involving ultrafast laser filamentation. The technique combines beam expansion and geometrical focusing, assisted by an adaptive optics system to correct the wavefront aberrations. Targets, such as a gaseous mixture of air and hydrocarbons, solid lead and airborne clouds of contaminated aqueous aerosols, were remotely probed with filaments generated at distances up to 118 m after the focusing beam expander. The integrated backscattered signals collected by the detection system (15-28 m from the filaments) were increased up to a factor of 7, for atmospheric N2 and solid lead, when the wavefronts were corrected by the adaptive optic system. Moreover, an extrapolation based on a simplified version of the LIDAR equation showed that the adaptive optic system improved the detection distance for N2 molecular fluorescence, from 45 m for uncorrected wavefronts to 125 m for corrected.

  18. Mirrors design, analysis and manufacturing of the 550mm Korsch telescope experimental model

    NASA Astrophysics Data System (ADS)

    Huang, Po-Hsuan; Huang, Yi-Kai; Ling, Jer

    2017-08-01

    In 2015, NSPO (National Space Organization) began to develop the sub-meter resolution optical remote sensing instrument of the next generation optical remote sensing satellite which follow-on to FORMOSAT-5. Upgraded from the Ritchey-Chrétien Cassegrain telescope optical system of FORMOSAT-5, the experimental optical system of the advanced optical remote sensing instrument was enhanced to an off-axis Korsch telescope optical system which consists of five mirrors. It contains: (1) M1: 550mm diameter aperture primary mirror, (2) M2: secondary mirror, (3) M3: off-axis tertiary mirror, (4) FM1 and FM2: two folding flat mirrors, for purpose of limiting the overall volume, reducing the mass, and providing a long focal length and excellent optical performance. By the end of 2015, we implemented several important techniques including optical system design, opto-mechanical design, FEM and multi-physics analysis and optimization system in order to do a preliminary study and begin to develop and design these large-size lightweight aspheric mirrors and flat mirrors. The lightweight mirror design and opto-mechanical interface design were completed in August 2016. We then manufactured and polished these experimental model mirrors in Taiwan; all five mirrors ware completed as spherical surfaces by the end of 2016. Aspheric figuring, assembling tests and optical alignment verification of these mirrors will be done with a Korsch telescope experimental structure model in 2018.

  19. Target detection method by airborne and spaceborne images fusion based on past images

    NASA Astrophysics Data System (ADS)

    Chen, Shanjing; Kang, Qing; Wang, Zhenggang; Shen, ZhiQiang; Pu, Huan; Han, Hao; Gu, Zhongzheng

    2017-11-01

    To solve the problem that remote sensing target detection method has low utilization rate of past remote sensing data on target area, and can not recognize camouflage target accurately, a target detection method by airborne and spaceborne images fusion based on past images is proposed in this paper. The target area's past of space remote sensing image is taken as background. The airborne and spaceborne remote sensing data is fused and target feature is extracted by the means of airborne and spaceborne images registration, target change feature extraction, background noise suppression and artificial target feature extraction based on real-time aerial optical remote sensing image. Finally, the support vector machine is used to detect and recognize the target on feature fusion data. The experimental results have established that the proposed method combines the target area change feature of airborne and spaceborne remote sensing images with target detection algorithm, and obtains fine detection and recognition effect on camouflage and non-camouflage targets.

  20. The quantitative control and matching of an optical false color composite imaging system

    NASA Astrophysics Data System (ADS)

    Zhou, Chengxian; Dai, Zixin; Pan, Xizhe; Li, Yinxi

    1993-10-01

    Design of an imaging system for optical false color composite (OFCC) capable of high-precision density-exposure time control and color balance is presented. The system provides high quality FCC image data that can be analyzed using a quantitative calculation method. The quality requirement to each part of the image generation system is defined, and the distribution of satellite remote sensing image information is analyzed. The proposed technology makes it possible to present the remote sensing image data more effectively and accurately.

  1. Aerospace remote sensing of the coastal zone for water quality and biotic productivity applications

    NASA Technical Reports Server (NTRS)

    Pritchard, E. B.; Harriss, R. C.

    1981-01-01

    Remote sensing can provide the wide area synoptic coverage of surface waters which is required for studies of such phenomena as river plume mixing, phytoplankton dynamics, and pollutant transport and fate, but which is not obtainable by conventional oceanographic techniques. The application of several remote sensors (aircraftborne and spacecraftborne multispectral scanners, passive microwave radiometers, and active laser systems) to coastal zone research is discussed. Current measurement capabilities (particulates, chlorophyll a, temperature, salinity, ocean dumped materials, other pollutants, and surface winds and roughness) are defined and the results of recent remote sensing experiments conducted in the North Atlantic coastal zone are presented. The future development of remote sensing must rely on an integrated laboratory research program in optical physics. Recent results indicate the potential for separation of particulates into subsets by remote sensors.

  2. Cloud Optical Depth Measured with Ground-Based, Uncooled Infrared Imagers

    NASA Technical Reports Server (NTRS)

    Shaw, Joseph A.; Nugent, Paul W.; Pust, Nathan J.; Redman, Brian J.; Piazzolla, Sabino

    2012-01-01

    Recent advances in uncooled, low-cost, long-wave infrared imagers provide excellent opportunities for remotely deployed ground-based remote sensing systems. However, the use of these imagers in demanding atmospheric sensing applications requires that careful attention be paid to characterizing and calibrating the system. We have developed and are using several versions of the ground-based "Infrared Cloud Imager (ICI)" instrument to measure spatial and temporal statistics of clouds and cloud optical depth or attenuation for both climate research and Earth-space optical communications path characterization. In this paper we summarize the ICI instruments and calibration methodology, then show ICI-derived cloud optical depths that are validated using a dual-polarization cloud lidar system for thin clouds (optical depth of approximately 4 or less).

  3. Simulating optoelectronic systems for remote sensing with SENSOR

    NASA Astrophysics Data System (ADS)

    Boerner, Anko

    2003-04-01

    The consistent end-to-end simulation of airborne and spaceborne remote sensing systems is an important task and sometimes the only way for the adaptation and optimization of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software ENvironment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. It allows the simulation of a wide range of optoelectronic systems for remote sensing. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. Part three consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimization requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and examples of its use are given. The verification of SENSOR is demonstrated.

  4. Optical properties of volcanic ash: improving remote sensing observations.

    NASA Astrophysics Data System (ADS)

    Whelley, Patrick; Colarco, Peter; Aquila, Valentina; Krotkov, Nickolay; Bleacher, Jake; Garry, Brent; Young, Kelsey; Rocha Lima, Adriana; Martins, Vanderlei; Carn, Simon

    2016-04-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation.

  5. Radar and optical remote sensing in offshore domain to detect, characterize, and quantify ocean surface oil slicks

    NASA Astrophysics Data System (ADS)

    Angelliaume, S.; Ceamanos, X.; Viallefont-Robinet, F.; Baqué, R.; Déliot, Ph.; Miegebielle, V.

    2017-10-01

    Radar and optical sensors are operationally used by authorities or petroleum companies for detecting and characterizing maritime pollution. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as the oil real fraction, which is critical for both exploration purposes and efficient cleanup operations. Today state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI, the airborne system developed by ONERA, during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this data set lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the electromagnetic spectrum. Specific processing techniques have been developed in order to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows to estimate slick surface properties such as the spatial abundance of oil and the relative concentration of hydrocarbons on the sea surface.

  6. Combining optical remote sensing, agricultural statistics and field observations for culture recognition over a peri-urban region

    NASA Astrophysics Data System (ADS)

    Delbart, Nicolas; Emmanuelle, Vaudour; Fabienne, Maignan; Catherine, Ottlé; Jean-Marc, Gilliot

    2017-04-01

    This study explores the potential of multi-temporal optical remote sensing, with high revisit frequency, to derive missing information on agricultural calendar and crop types over the agricultural lands in the Versailles plain in the western Paris suburbs. This study comes besides past and ongoing studies on the use of radar and high spatial resolution optical remote sensing to monitor agricultural practices in this study area (e.g. Vaudour et al. 2014). Agricultural statistics, such as the Land Parcel Identification System (LPIS) for France, permit to know the nature of annual crops for each digitized declared field of this land parcel registry. However, within each declared field several cropped plots and a diversity of practices may exist, being marked by agricultural rotations which vary both spatially and temporally within it and differ from one year to the other. Even though the new LPIS to be released in 2016 is expected to describe individual plots within declared fields, its attributes may not enable to discriminate between winter and spring crops. Here we evaluate the potential of high observation frequency remote sensing to differentiate seasonal crops based essentially on the seasonality of the spectral properties. In particular, we use the Landsat data to spatially disaggregate the LPIS statistical data, on the basis of the analysis of the remote sensing spectral seasonality measured on a number of selected ground-observed fields. This work is carried out in the framework of the CNES TOSCA-PLEIADES-CO of the French Space Agency.

  7. Determination of Winter Wheat Phenology in Bavaria- A Contribution to Regional Crop Health Monitoring from Space

    NASA Astrophysics Data System (ADS)

    Bruggemann, Lena; Bach, Heike; Ruf, Tobias; Appel, Florian; Migdall, Silke; Hank, Tobias; Mauser, Wolfram; Eiblmeier, Peter

    2016-08-01

    The central topic of this study is the monitoring of winter wheat phenology and the detection of anthesis (flowering) using remotely sensed data as well as crop growth modeling. It is not possible to directly observe the flowering of wheat with optical satellite sensors. Thus, an approach that combines crop growth modeling with remote sensing data covering optical and microwave spectral ranges was developed. This was done in three steps: The hydro-agroecological land surface model PROMET was first run in a stand-alone version for selected sites distributed throughout Bavaria using only static input parameters (e.g. soil map) and current meteorological data as driving factors. Thus, multitemporal information from optical remote sensing data was assimilated into the model runs in a second step to improve the accuracy of the results. Finally, the use of radar data for anthesis detection in winter wheat was tested using Sentinel-1 data of 2015 in dual polarization mode (VV+VH).

  8. Cybernetic group method of data handling (GMDH) statistical learning for hyperspectral remote sensing inverse problems in coastal ocean optics

    NASA Astrophysics Data System (ADS)

    Filippi, Anthony Matthew

    For complex systems, sufficient a priori knowledge is often lacking about the mathematical or empirical relationship between cause and effect or between inputs and outputs of a given system. Automated machine learning may offer a useful solution in such cases. Coastal marine optical environments represent such a case, as the optical remote sensing inverse problem remains largely unsolved. A self-organizing, cybernetic mathematical modeling approach known as the group method of data handling (GMDH), a type of statistical learning network (SLN), was used to generate explicit spectral inversion models for optically shallow coastal waters. Optically shallow water light fields represent a particularly difficult challenge in oceanographic remote sensing. Several algorithm-input data treatment combinations were utilized in multiple experiments to automatically generate inverse solutions for various inherent optical property (IOP), bottom optical property (BOP), constituent concentration, and bottom depth estimations. The objective was to identify the optimal remote-sensing reflectance Rrs(lambda) inversion algorithm. The GMDH also has the potential of inductive discovery of physical hydro-optical laws. Simulated data were used to develop generalized, quasi-universal relationships. The Hydrolight numerical forward model, based on radiative transfer theory, was used to compute simulated above-water remote-sensing reflectance Rrs(lambda) psuedodata, matching the spectral channels and resolution of the experimental Naval Research Laboratory Ocean PHILLS (Portable Hyperspectral Imager for Low-Light Spectroscopy) sensor. The input-output pairs were for GMDH and artificial neural network (ANN) model development, the latter of which was used as a baseline, or control, algorithm. Both types of models were applied to in situ and aircraft data. Also, in situ spectroradiometer-derived Rrs(lambda) were used as input to an optimization-based inversion procedure. Target variables included bottom depth z b, chlorophyll a concentration [chl- a], spectral bottom irradiance reflectance Rb(lambda), and spectral total absorption a(lambda) and spectral total backscattering bb(lambda) coefficients. When applying the cybernetic and neural models to in situ HyperTSRB-derived Rrs, the difference in the means of the absolute error of the inversion estimates for zb was significant (alpha = 0.05). GMDH yielded significantly better zb than the ANN. The ANN model posted a mean absolute error (MAE) of 0.62214 m, compared with 0.55161 m for GMDH.

  9. Comparision of Bathymetry and Bottom Characteristics From Hyperspectral Remote Sensing Data and Shipborne Acoustic Measurements

    NASA Astrophysics Data System (ADS)

    McIntyre, M. L.; Naar, D. F.; Carder, K. L.; Howd, P. A.; Lewis, J. M.; Donahue, B. T.; Chen, F. R.

    2002-12-01

    There is growing interest in applying optical remote sensing techniques to shallow-water geological applications such as bathymetry and bottom characterization. Model inversions of hyperspectral remote-sensing reflectance imagery can provide estimates of bottom albedo and depth. This research was conducted in support of the HyCODE (Hyperspectral Coupled Ocean Dynamics Experiment) project in order to test optical sensor performance and the use of a hyperspectral remote-sensing reflectance algorithm for shallow waters in estimating bottom depths and reflectance. The objective of this project was to compare optically derived products of bottom depths and reflectance to shipborne acoustic measurements of bathymetry and backscatter. A set of three high-resolution, multibeam surveys within an 18 km by 1.5 km shore-perpendicular transect 5 km offshore of Sarasota, Florida were collected at water depths ranging from 8 m to 16 m. These products are compared to bottom depths derived from aircraft remote-sensing data collected with the AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) instrument data by means of a semi-analytical remote sensing reflectance model. The pixel size of the multibeam bathymetry and AVIRIS data are 0.25 m and 10 m, respectively. When viewed at full resolution, the multibeam bathymetry data show small-scale sedimentary bedforms (wavelength ~10m, amplitude ~1m) that are not observed in the lower resolution hyperspectral bathymetry. However, model-derived bottom depths agree well with a smoothed version of the multibeam bathymetry. Depths derived from shipborne hyperspectral measurements were accurate within 13%. In areas where diver observations confirmed biological growth and bioturbation, derived bottom depths were less accurate. Acoustic backscatter corresponds well with the aircraft hyperspectral imagery and in situ measurements of bottom reflectance. Acoustic backscatter was used to define the distribution of different bottom types. Acoustic backscatter imagery corresponds well with the AVIRIS data in the middle to outer study area, implying a close correspondence between seafloor character and optical reflectance. AVIRIS data in the inner study area show poorer correspondence with the acoustic facies, indicating greater water column effects (turbidity). Acoustic backscatter as a proxy for bottom albedo, in conjunction with multibeam bathymetry data, will allow for more precise modeling of the optical signal in coastal environments.

  10. Coastal and Estuarine Waters: Light Behavior. Coastal and Estuarine Waters: Optical Sensors and Remote Sensing.

    EPA Science Inventory

    This article summarizes the use of remote sensing techniques and technology to monitor coastal and estuarine waters. These waters are rich in mineral particles stirred up from the seabed by tides and waves and dissolved organic matter transported by rivers. The majority of the li...

  11. Needs Assessment for the Use of NASA Remote Sensing Data in the Development and Implementation of Estuarine and Coastal Water Quality Standards

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce; Underwood, Lauren; Ellis, Chris; Lehrter, John; Hagy, Jim; Schaeffer, Blake

    2010-01-01

    The goals of the project are to provide information from satellite remote sensing to support numeric nutrient criteria development and to determine data processing methods and data quality requirements to support nutrient criteria development and implementation. The approach is to identify water quality indicators that are used by decision makers to assess water quality and that are related to optical properties of the water; to develop remotely sensed data products based on algorithms relating remote sensing imagery to field-based observations of indicator values; to develop methods to assess estuarine water quality, including trends, spatial and temporal variability, and seasonality; and to develop tools to assist in the development and implementation of estuarine and coastal nutrient criteria. Additional slides present process, criteria development, typical data sources and analyses for criteria process, the power of remote sensing data for the process, examples from Pensacola Bay, spatial and temporal variability, pixel matchups, remote sensing validation, remote sensing in coastal waters, requirements for remotely sensed data products, and needs assessment. An additional presentation examines group engagement and information collection. Topics include needs assessment purpose and objectives, understanding water quality decision making, determining information requirements, and next steps.

  12. A modified approach combining FNEA and watershed algorithms for segmenting remotely-sensed optical images

    NASA Astrophysics Data System (ADS)

    Liu, Likun

    2018-01-01

    In the field of remote sensing image processing, remote sensing image segmentation is a preliminary step for later analysis of remote sensing image processing and semi-auto human interpretation, fully-automatic machine recognition and learning. Since 2000, a technique of object-oriented remote sensing image processing method and its basic thought prevails. The core of the approach is Fractal Net Evolution Approach (FNEA) multi-scale segmentation algorithm. The paper is intent on the research and improvement of the algorithm, which analyzes present segmentation algorithms and selects optimum watershed algorithm as an initialization. Meanwhile, the algorithm is modified by modifying an area parameter, and then combining area parameter with a heterogeneous parameter further. After that, several experiments is carried on to prove the modified FNEA algorithm, compared with traditional pixel-based method (FCM algorithm based on neighborhood information) and combination of FNEA and watershed, has a better segmentation result.

  13. Applying narrowband remote-sensing reflectance models to wideband data.

    PubMed

    Lee, Zhongping

    2009-06-10

    Remote sensing of coastal and inland waters requires sensors to have a high spatial resolution to cover the spatial variation of biogeochemical properties in fine scales. High spatial-resolution sensors, however, are usually equipped with spectral bands that are wide in bandwidth (50 nm or wider). In this study, based on numerical simulations of hyperspectral remote-sensing reflectance of optically-deep waters, and using Landsat band specifics as an example, the impact of a wide spectral channel on remote sensing is analyzed. It is found that simple adoption of a narrowband model may result in >20% underestimation in calculated remote-sensing reflectance, and inversely may result in >20% overestimation in inverted absorption coefficients even under perfect conditions, although smaller (approximately 5%) uncertainties are found for higher absorbing waters. These results provide a cautious note, but also a justification for turbid coastal waters, on applying narrowband models to wideband data.

  14. Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)

    NASA Technical Reports Server (NTRS)

    Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke

    2004-01-01

    The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.

  15. [Research on symmetrical optical waveguide based surface plasmon resonance sensing with spectral interrogation].

    PubMed

    Zhang, Yi-long; Liu, Le; Guo, Jun; Zhang, Peng-fei; Guo, Ji-hua; Ma, Hui; He, Yong-hong

    2015-02-01

    Surface plasmon resonance (SPR) sensors with spectral interrogation can adopt fiber to transmit light signals, thus leaving the sensing part separated, which is very convenient for miniaturization, remote-sensing and on-site analysis. Symmetrical optical waveguide (SOW) SPR has the same refractive index of the-two buffer media layers adjacent to the metal film, resulting in longer propagation distance, deeper penetration depth and better performance compared to conventional SPR In the present paper, we developed a symmetrical optical, waveguide (SOW) SPR sensor with wavelength interrogation. In the system, MgF2-Au-MgF2 film was used as SOW module for glucose sensing, and a fiber based light source and detection was used in the spectral interrogation. In the experiment, a refractive index resolution of 2.8 x 10(-7) RIU in fluid protocol was acquired. This technique provides advantages of high resolution and could have potential use in compact design, on-site analysis and remote sensing.

  16. Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000 °C Environment.

    PubMed

    Yu, Fengming; Okabe, Yoji

    2017-12-14

    Recently, the authors have proposed a remote acoustic emission (AE) measurement configuration using a sensitive fiber-optic Bragg grating (FBG) sensor. In the configuration, the FBG sensor was remotely bonded on a plate, and an optical fiber was used as the waveguide to propagate AE waves from the adhesive point to the sensor. The previous work (Yu et al., Smart Materials and Structures 25 (10), 105,033 (2016)) has clarified the sensing principle behind the special remote measurement system that enables accurate remote sensing of AE signals. Since the silica-glass optical fibers have a high heat-resistance exceeding 1000 °C, this work presents a preliminary high-temperature AE detection method by using the optical fiber-based ultrasonic waveguide to propagate the AE from a high-temperature environment to a room-temperature environment, in which the FBG sensor could function as the receiver of the guided wave. As a result, the novel measurement configuration successfully achieved highly sensitive and stable AE detection in an alumina plate at elevated temperatures in the 100 °C to 1000 °C range. Due to its good performance, this detection method will be potentially useful for the non-destructive testing that can be performed in high-temperature environments to evaluate the microscopic damage in heat-resistant materials.

  17. A micro-vibration generated method for testing the imaging quality on ground of space remote sensing

    NASA Astrophysics Data System (ADS)

    Gu, Yingying; Wang, Li; Wu, Qingwen

    2018-03-01

    In this paper, a novel method is proposed, which can simulate satellite platform micro-vibration and test the impact of satellite micro-vibration on imaging quality of space optical remote sensor on ground. The method can generate micro-vibration of satellite platform in orbit from vibrational degrees of freedom, spectrum, magnitude, and coupling path. Experiment results show that the relative error of acceleration control is within 7%, in frequencies from 7Hz to 40Hz. Utilizing this method, the system level test about the micro-vibration impact on imaging quality of space optical remote sensor can be realized. This method will have an important applications in testing micro-vibration tolerance margin of optical remote sensor, verifying vibration isolation and suppression performance of optical remote sensor, exploring the principle of micro-vibration impact on imaging quality of optical remote sensor.

  18. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Quick, William H. (Inventor); August, Rudolf R. (Inventor); James, Kenneth A. (Inventor); Strahan, Jr., Virgil H. (Inventor); Nichols, Donald K. (Inventor)

    1980-01-01

    An inexpensive, lightweight fiber optic micro-sensor that is suitable for applications which may require remote temperature sensing. The disclosed temperature sensor includes a phosphor material that, after receiving incident light stimulation, is adapted to emit phosphorescent radiation output signals, the amplitude decay rate and wavelength of which are functions of the sensed temperature.

  19. Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites

    NASA Astrophysics Data System (ADS)

    Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.

    2015-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.

  20. Impact of NO2 horizontal heterogeneity on tropospheric NO2 vertical columns retrieved from satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements

    NASA Astrophysics Data System (ADS)

    Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.

    2013-01-01

    Tropospheric NO2 vertical column densities were retrieved for the first time in Toronto, Canada using three methods of differing spatial scales. Remotely-sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities derived using a pair of chemiluminescence monitors situated 0.01 and 0.5 km above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson R ranging from 0.68 to 0.79), but the in situ vertical column densities were 27% to 55% greater than the remotely-sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely-sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely-sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each of the methods.

  1. Hyperspectral remote sensing of coral reefs: Deriving bathymetry, aquatic optical properties and a benthic spectral unmixing classification using AVIRIS data in the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Goodman, James Ansell

    My research focuses on the development and application of hyperspectral remote sensing as a valuable component in the assessment and management of coral ecosystems. Remote sensing provides an important quantitative ability to investigate the spatial dynamics of coral health and evaluate the impacts of local, regional and global change on this important natural resource. Furthermore, advances in detector capabilities and analysis methods, particularly with respect to hyperspectral remote sensing, are also increasing the accuracy and level of effectiveness of the resulting data products. Using imagery of Kaneohe Bay and French Frigate Shoals in the Hawaiian Islands, acquired in 2000 by NASA's Airborne Visible InfraRed Imaging Spectrometer (AVIRIS), I developed, applied and evaluated algorithms for analyzing coral reefs using hyperspectral remote sensing data. Research included developing methods for acquiring in situ underwater reflectance, collecting spectral measurements of the dominant bottom components in Kaneohe Bay, applying atmospheric correction and sunglint removal algorithms, employing a semianalytical optimization model to derive bathymetry and aquatic optical properties, and developing a linear unmixing approach for deriving bottom composition. Additionally, algorithm development focused on using fundamental scientific principles to facilitate the portability of methods to diverse geographic locations and across variable environmental conditions. Assessments of this methodology compared favorably with available field measurements and habitat information, and the overall analysis demonstrated the capacity to derive information on water properties, bathymetry and habitat composition. Thus, results illustrated a successful approach for extracting environmental information and habitat composition from a coral reef environment using hyperspectral remote sensing.

  2. Remote Sensing Applications to Water Quality Management in Florida

    NASA Astrophysics Data System (ADS)

    Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.

    2013-12-01

    Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria

  3. Contribution of Phycoerythrin-Containing Phytoplankton to Remotely Sensed Signals in the Ocean

    NASA Technical Reports Server (NTRS)

    Vernet, Maria; Iturriaga, Rodolfo

    1997-01-01

    The purpose of this project was to evaluate the importance of phycoerythrin-containing phytoplankton, in particular coccoid cyanobacteria, to remote sensing. We proposed to estimate cyanobacteria abundance and pigmentation and their relationship to water-column optics. We have estimated the contribution of cyanobacteria to scattering and backscattering in both open ocean (Sargasso Sea) and coastal waters (western coast of North Atlantic and the California Current). Sampling and data processing is performed. Relationship between water column optics and phycoerythrin concentration and algorithms development are being carried out.

  4. Remote sensing of water quality and contaminants in the California Bay-Delta

    NASA Astrophysics Data System (ADS)

    Fichot, C. G.; Downing, B. D.; Windham-Myers, L.; Marvin-DiPasquale, M. C.; Bergamaschi, B. A.; Thompson, D. R.; Gierach, M. M.

    2014-12-01

    The California Bay-Delta is a highly altered ecosystem largely reclaimed from wetlands for agriculture, and millions of acres of farmland and Californians rely on the Bay-Delta for their water supply. The Bay-Delta also harbors important habitats for many organisms, including commercial and endangered species. Recently, the Delta Stewardship Council developed a two component mission (coequal goals) to 1) provide a more reliable water supply for California while 2) protecting, restoring, and enhancing the Bay-Delta ecosystem. Dissolved organic carbon, turbidity, and contaminants such as methylmercury represent important water quality issues for water management and in the context of wetland restoration in the Bay-Delta, and can threaten the achievement of the coequal goals. Here, we use field measurements of optical properties, chemical analyses, and remotely sensed data acquired with the airborne Portable Remote Imaging SpectroMeter (PRISM ; http://prism.jpl.nasa.gov/index.html) to demonstrate these water quality parameters and the study of their dynamics in the Bay-Delta are amenable to remote sensing. PRISM provides high signal-to-noise, high spatial resolution (~2 m), hyperspectral measurements of remote-sensing reflectance in the 350-1050 nm range, and therefore has the adequate resolutions for water quality monitoring in inland, optically complex waters. Remote sensing of water quality will represent a valuable complement to existing in situ water quality monitoring programs in this region and will help with decision-making to achieve the co-equal goals.

  5. A tunable mid-infrared laser source for remote sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1991-01-01

    Many remote sensing needs can be effectively addressed with a tunable laser source in the mid infrared. One potential laser source is an optical parametric oscillator and amplifier system pumped by a near infrared solid state laser. Advantages of such a system and progress made at NASA Langley Research Center to date on such a system are described.

  6. THE USE OF HYPERSPECTRAL REMOTE SENSING FOR THE DEVELOPMENT OF OPTICAL WATER QUALITY INDICATORS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    Hyperspectral remote sensing for the assessment of inland water quality can be used in enhancing the capabilities of resource managers to monitor water bodies in a timely and cost-effective manner. The key factor in assessing the accuracy of water quality assessments based on re...

  7. Lidar remote sensing of above-ground biomass in three biomes.

    Treesearch

    Michael A. Lefsky; Warren B. Cohen; David J. Harding; Geoffrey G. Parkers; Steven A. Acker; S. Thomas Gower

    2002-01-01

    Estimation of the amount of carbon stored in forests is a key challenge for understanding the global carbon cycle, one which remote sensing is expected to help address. However, estimation of carbon storage in moderate to high biomass forests is difficult for conventional optical and radar sensors. Lidar (light detection and ranging) instruments measure the vertical...

  8. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors

    PubMed Central

    Zheng, Guang; Moskal, L. Monika

    2009-01-01

    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels. PMID:22574042

  9. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.

    PubMed

    Zheng, Guang; Moskal, L Monika

    2009-01-01

    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels.

  10. Two Optical Atmospheric Remote Sensing Techniques and AN Associated Analytic Solution to a Class of Integral Equations

    NASA Astrophysics Data System (ADS)

    Manning, Robert Michael

    This work concerns itself with the analysis of two optical remote sensing methods to be used to obtain parameters of the turbulent atmosphere pertinent to stochastic electromagnetic wave propagation studies, and the well -posed solution to a class of integral equations that are central to the development of these remote sensing methods. A remote sensing technique is theoretically developed whereby the temporal frequency spectrum of the scintillations of a stellar source or a point source within the atmosphere, observed through a variable radius aperture, is related to the space-time spectrum of atmospheric scintillation. The key to this spectral remote sensing method is the spatial filtering performed by a finite aperture. The entire method is developed without resorting to a priori information such as results from stochastic wave propagation theory. Once the space-time spectrum of the scintillations is obtained, an application of known results of atmospheric wave propagation theory and simple geometric considerations are shown to yield such important information such as the spectrum of atmospheric turbulence, the cross-wind velocity, and the path profile of the atmospheric refractive index structure parameter. A method is also developed to independently verify the Taylor frozen flow hypothesis. The success of the spectral remote sensing method relies on the solution to a Fredholm integral equation of the first kind. An entire class of such equations, that are peculiar to inverse diffraction problems, is studied and a well-posed solution (in the sense of Hadamard) is obtained and probed. Conditions of applicability are derived and shown not to limit the useful operating range of the spectral remote sensing method. The general integral equation solution obtained is then applied to another remote sensing problem having to do with the characterization of the particle size distribution to atmospheric aerosols and hydrometeors. By measuring the diffraction pattern in the focal plane of a lens created by the passage of a laser beam through a distribution of particles, it is shown that the particle-size distribution of the particles can be obtained. An intermediate result of the analysis also gives the total volume concentration of the particles.

  11. Atmospheric Effect on Remote Sensing of the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J. (Principal Investigator)

    1985-01-01

    Radiative transfer theory (RT) for an atmosphere with a nonuniform surface is the basis for understanding and correcting for the atmospheric effect on remote sensing of surface properties. In the present work the theory is generalized and tested successfully against laboratory and field measurements. There is still a need to generalize the RT approximation for off-nadir directions and to take into account anisotropic reflectance at the surface. The reflectance at the surface. The adjacency effect results in a significant modification of spectral signatures of the surface, and therefore results in modification of classifications, of separability of field classes, and of spatial resolution. For example, the 30 m resolution of the Thematic Mapper is reduced to 100 m by a hazy atmosphere. The adjacency effect depends on several optical parameters of aerosols: optical thickness, depth of aerosol layer, scattering phase function, and absorption. Remote sensing in general depends on these parameter, not just adjacency effects, but they are not known well enough for making accurate atmospheric corrections. It is important to establish methods for estimating these parameters in order to develop correction methods for atmospheric effects. Such estimations can be based on climatological data, which are not available yet, correlations between the optical parameters and meteorological data, and the same satellite measurements of radiances that are used for estimating surface properties. Knowledge about the atmospheric parameters important for remote sensing is being enlarged with current measurements of them.

  12. Optical remote sensing and correlation of office equipment functional state and stress levels via power quality disturbances inefficiencies

    NASA Astrophysics Data System (ADS)

    Sternberg, Oren; Bednarski, Valerie R.; Perez, Israel; Wheeland, Sara; Rockway, John D.

    2016-09-01

    Non-invasive optical techniques pertaining to the remote sensing of power quality disturbances (PQD) are part of an emerging technology field typically dominated by radio frequency (RF) and invasive-based techniques. Algorithms and methods to analyze and address PQD such as probabilistic neural networks and fully informed particle swarms have been explored in industry and academia. Such methods are tuned to work with RF equipment and electronics in existing power grids. As both commercial and defense assets are heavily power-dependent, understanding electrical transients and failure events using non-invasive detection techniques is crucial. In this paper we correlate power quality empirical models to the observed optical response. We also empirically demonstrate a first-order approach to map household, office and commercial equipment PQD to user functions and stress levels. We employ a physics-based image and signal processing approach, which demonstrates measured non-invasive (remote sensing) techniques to detect and map the base frequency associated with the power source to the various PQD on a calibrated source.

  13. [Retrieval of crown closure of moso bamboo forest using unmanned aerial vehicle (UAV) remotely sensed imagery based on geometric-optical model].

    PubMed

    Wang, Cong; Du, Hua-qiang; Zhou, Guo-mo; Xu, Xiao-jun; Sun, Shao-bo; Gao, Guo-long

    2015-05-01

    This research focused on the application of remotely sensed imagery from unmanned aerial vehicle (UAV) with high spatial resolution for the estimation of crown closure of moso bamboo forest based on the geometric-optical model, and analyzed the influence of unconstrained and fully constrained linear spectral mixture analysis (SMA) on the accuracy of the estimated results. The results demonstrated that the combination of UAV remotely sensed imagery and geometric-optical model could, to some degrees, achieve the estimation of crown closure. However, the different SMA methods led to significant differentiation in the estimation accuracy. Compared with unconstrained SMA, the fully constrained linear SMA method resulted in higher accuracy of the estimated values, with the coefficient of determination (R2) of 0.63 at 0.01 level, against the measured values acquired during the field survey. Root mean square error (RMSE) of approximate 0.04 was low, indicating that the usage of fully constrained linear SMA could bring about better results in crown closure estimation, which was closer to the actual condition in moso bamboo forest.

  14. Optical Remote Sensing Measurements of Air Pollution in Mexico City During MCMA- 2006

    NASA Astrophysics Data System (ADS)

    Galle, B.; Mellqvist, J.; Johansson, M.; Rivera, C.; Samuelsson, J.; Zhang, Y.

    2007-05-01

    During March 2006 the Optical Remote sensing group at Chalmers University of Technology participated in the MCMA-2006 field campaign in Mexico City, performing measurements of air pollution using a set of different optical remote sensing instruments. This poster gives an overview of the techniques applied and results obtained. The techniques applied were: Solar Occultation FTIR and UV spectroscopy from fixed locations throughout the MCMA area, yielding total columns of CO, CH2O, SO2 and NO2. Long Path FTIR measurements from site T0 located in the north part of central Mexico City. With this instrument line-averaged concentration measurements of CO and CO2 was obtained in parallel with DOAS measurements performed by other partners. MAX-DOAS measurements from site T0, yielding total column and spatial distributions of SO2 and NO2. Mobile DOAS scattered Sunlight measurements of total columns of SO2 and NO2 in and around the MCMA area. Mobile and stationary DOAS measurements in the vicinity of Tula and Popocatépetl in order to quantify emissions from industry and volcano.

  15. Book Review

    NASA Astrophysics Data System (ADS)

    Clevers, Jan G. P. W.

    2018-05-01

    This book provides a comprehensive and timely overview on all aspects of hyperspectral remote sensing combined with various applications. As such, it is an excellent book of reference for both students and professionals active in the field of optical remote sensing. It deals with all aspects of retrieving quantitative information on biophysical properties of the Earth's surface, the data corrections needed and the range of analysis approaches available.

  16. A study to identify research issues in the area of electromagnetic measurements and signal handling of remotely sensed data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research issues in the area of electromagnetic measurements and signal handling of remotely sensed data are identified. The following seven issues are discussed; platform/sensor system position and velocity, platform/sensor attitudes and attitude rates, optics and antennas, detectors and associated electronics, sensor calibration, signal handling, and system design.

  17. Flood warnings, flood disaster assessments, and flood hazard reduction: the roles of orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Brakenridge, G. R.; Anderson, E.; Nghiem, S. V.; Caquard, S.; Shabaneh, T. B.

    2003-01-01

    Orbital remote sensing of the Earth is now poised to make three fundamental contributions towards reducing the detrimental effects of extreme floods. Effective Flood warning requires frequent radar observation of the Earth's surface through cloud cover. In contrast, both optical and radar wavelengths will increasingly be used for disaster assessment and hazard reduction.

  18. Construction of Green Tide Monitoring System and Research on its Key Techniques

    NASA Astrophysics Data System (ADS)

    Xing, B.; Li, J.; Zhu, H.; Wei, P.; Zhao, Y.

    2018-04-01

    As a kind of marine natural disaster, Green Tide has been appearing every year along the Qingdao Coast, bringing great loss to this region, since the large-scale bloom in 2008. Therefore, it is of great value to obtain the real time dynamic information about green tide distribution. In this study, methods of optical remote sensing and microwave remote sensing are employed in Green Tide Monitoring Research. A specific remote sensing data processing flow and a green tide information extraction algorithm are designed, according to the optical and microwave data of different characteristics. In the aspect of green tide spatial distribution information extraction, an automatic extraction algorithm of green tide distribution boundaries is designed based on the principle of mathematical morphology dilation/erosion. And key issues in information extraction, including the division of green tide regions, the obtaining of basic distributions, the limitation of distribution boundary, and the elimination of islands, have been solved. The automatic generation of green tide distribution boundaries from the results of remote sensing information extraction is realized. Finally, a green tide monitoring system is built based on IDL/GIS secondary development in the integrated environment of RS and GIS, achieving the integration of RS monitoring and information extraction.

  19. The family of micro sensors for remote control the pollution in liquids and gases

    NASA Astrophysics Data System (ADS)

    Tulaikova, Tamara; Kocharyun, Gevorg; Rogerson, Graham; Burmistrova, Ludmyla; Sychugov, Vladimir; Dorojkin, Peter

    2005-10-01

    There are the results for the 3 groups of fiber-optical sensors. First is the fiber-optical sensor with changed sensitive heads on the base on porous polymer with clamped activated dye. Vibration method for fiber-optical sensors provides more convenient output measurements of resonant frequency changes, in comparison with the first device. The self-focusing of the living sells into optical wave-guides in laser road in water will be considered as a new touch method for environment remote sensing.

  20. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.

  1. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing.

    PubMed

    Hakkenberg, C R; Peet, R K; Urban, D L; Song, C

    2018-01-01

    In light of the need to operationalize the mapping of forest composition at landscape scales, this study uses multi-scale nested vegetation sampling in conjunction with LiDAR-hyperspectral remotely sensed data from the G-LiHT airborne sensor to map vascular plant compositional turnover in a compositionally and structurally complex North Carolina Piedmont forest. Reflecting a shift in emphasis from remotely sensing individual crowns to detecting aggregate optical-structural properties of forest stands, predictive maps reflect the composition of entire vascular plant communities, inclusive of those species smaller than the resolution of the remotely sensed imagery, intertwined with proximate taxa, or otherwise obscured from optical sensors by dense upper canopies. Stand-scale vascular plant composition is modeled as community continua: where discrete community-unit classes at different compositional resolutions provide interpretable context for continuous gradient maps that depict n-dimensional compositional complexity as a single, consistent RGB color combination. In total, derived remotely sensed predictors explain 71%, 54%, and 48% of the variation in the first three components of vascular plant composition, respectively. Among all remotely sensed environmental gradients, topography derived from LiDAR ground returns, forest structure estimated from LiDAR all returns, and morphological-biochemical traits determined from hyperspectral imagery each significantly correspond to the three primary axes of floristic composition in the study site. Results confirm the complementarity of LiDAR and hyperspectral sensors for modeling the environmental gradients constraining landscape turnover in vascular plant composition and hold promise for predictive mapping applications spanning local land management to global ecosystem modeling. © 2017 by the Ecological Society of America.

  2. Obituary: Walter G. Egan, 1923-2003

    NASA Astrophysics Data System (ADS)

    Hilgeman, Theodore

    2009-01-01

    Walter G. Egan, a scientist and engineer with a professional life spanning well over half a century, died on 3 November 2003. Born to Caroline and George Egan on 12 October 1923 in New York City, Egan studied Electrical Engineering at the City College of New York from 1941 until 1943 when he was called to active duty in World War II, switching from enlisted reserve status. During the war, he served honorably in both the Signal Corps and the Medical Corps. Following his discharge in 1946, he resumed his college studies, obtaining a BEE in 1949 from City College of New York, an MA in Physics in 1951 from Columbia University, and a PhD in Solid State Physics in 1960 from the Polytechnic Institute of Brooklyn. Egan's PhD thesis was "Ferromagnetic Resonance in thin Nickel Films," performed under advisor H. Juretschke. Egan's professional career covered both industry and academia. In the summer of 1942, he worked for the Bruce Engineering Company. From 1957 to 1963, he worked for Ford Instrument Company, a Division of Sperry Rand Corporation, successively as an Engineering Project Supervisor, Assistant Director of Research, and Executive Assistant to the Director of Research. From 1964 to 1986 Egan worked as a Staff Scientist at the Grumman Corporation Corporate Research Center where his pioneering work consisted of research and development of remote sensing equipment and techniques for the remote sensing of terrestrial and space targets and backgrounds. I came to know and work with him during his tenure at the Grumman Corporation, where we co-authored many papers and a book. His insight into remote sensing engineering and research, shared willingly with younger colleagues, was a major stimulus to my future research in this field. Egan instilled a sense of discipline in publication, so our work could be shared with others in a timely way. This drive to share his knowledge with others also made him an excellent teacher. Subsequently, he held the position of Research Associate at the Mohonk Preserve, New Paltz, New York; Professor of Physics at York College, City University of New York; Research Professor of Physics at Polytechnic University, Brooklyn New York; and Professor of Earth Sciences at Adelphi University, Garden City, New York. Research was the focus of his professional life. At various points in his career Egan was a member of Tau Beta Pi, Sigma Xi, Eta Kappa Nu, Sigma Pi Sigma, the American Radio Relay League, the Research Society of America, the American Physical Society, the American Astronomical Society, the Institute of Electrical and Electronic Engineers, the American Geophysical Union, the Optical Society of America, the American Meteorological Society, the Institute for Aerosol Research, and the Society of Photo-optical Instrumentation Engineers. A long and distinguished professional career was accompanied by more than two-hundred published works in the fields of Planetary Astronomy, Geophysics, Atmospheric Physics, Soils Physics, Materials Properties, Photometry, Polarization, Remote Sensing, Aerosols, Oceanography, and Optics. We co-wrote the book Optical Properties of Inhomogeneous Materials (Academic Press) in 1979. This was followed by Egan's two books on remote sensing: Photometry and Polarization in Remote Sensing (Elsevier) in 1985 and Optical Remote Sensing, Science and Technology (Marcel Dekker) in 2004. These books have become classical references in today's remote sensing courses. He brought clarity to this burgeoning field of research at a time when it was just developing. Egan is survived by his wife, Joan K. Egan. He also leaves behind many younger colleagues, myself included, who considered him both a mentor and a friend.

  3. Remote sensing of selective logging in Amazonia Assessing limitations based on detailed field observations, Landsat ETM+, and textural analysis.

    Treesearch

    Gregory P. Asner; Michael Keller; Rodrigo Pereira; Johan C. Zweede

    2002-01-01

    We combined a detailed field study of forest canopy damage with calibrated Landsat 7 Enhanced Thematic Mapper Plus (ETM+) reflectance data and texture analysis to assess the sensitivity of basic broadband optical remote sensing to selective logging in Amazonia. Our field study encompassed measurements of ground damage and canopy gap fractions along a chronosequence of...

  4. Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing

    PubMed Central

    Seidel, Felix; Schläpfer, Daniel; Nieke, Jens; Itten, Klaus I.

    2008-01-01

    This study explores performance requirements for the retrieval of the atmospheric aerosol optical depth (AOD) by airborne optical remote sensing instruments. Independent of any retrieval techniques, the calculated AOD retrieval requirements are compared with the expected performance parameters of the upcoming hyperspectral sensor APEX at the reference wavelength of 550nm. The AOD accuracy requirements are defined to be capable of resolving transmittance differences of 0.01 to 0.04 according to the demands of atmospheric corrections for remote sensing applications. For the purposes of this analysis, the signal at the sensor level is simulated by radiation transfer equations. The resulting radiances are translated into the AOD retrieval sensitivity (Δτλaer) and compared to the available measuring sensitivity of the sensor (NEΔLλsensor). This is done for multiple signal-to-noise ratios (SNR) and surface reflectance values. It is shown that an SNR of 100 is adequate for AOD retrieval at 550nm under typical remote sensing conditions and a surface reflectance of 10% or less. Such dark surfaces require the lowest SNR values and therefore offer the best sensitivity for measuring AOD. Brighter surfaces with up to 30% reflectance require an SNR of around 300. It is shown that AOD retrieval for targets above 50% surface reflectance is more problematic with the current sensor performance as it may require an SNR larger than 1000. In general, feasibility is proven for the analyzed cases under simulated conditions. PMID:27879801

  5. Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing.

    PubMed

    Seidel, Felix; Schläpfer, Daniel; Nieke, Jens; Itten, Klaus I

    2008-03-18

    This study explores performance requirements for the retrieval of the atmospheric aerosol optical depth (AOD) by airborne optical remote sensing instruments. Independent of any retrieval techniques, the calculated AOD retrieval requirements are compared with the expected performance parameters of the upcoming hyperspectral sensor APEX at the reference wavelength of 550nm. The AOD accuracy requirements are defined to be capable of resolving transmittance differences of 0.01 to 0.04 according to the demands of atmospheric corrections for remote sensing applications. For the purposes of this analysis, the signal at the sensor level is simulated by radiation transfer equations. The resulting radiances are translated into the AOD retrieval sensitivity (Δτ λ aer ) and compared to the available measuring sensitivity of the sensor (NE ΔL λ sensor ). This is done for multiple signal-to-noise ratios (SNR) and surface reflectance values. It is shown that an SNR of 100 is adequate for AOD retrieval at 550nm under typical remote sensing conditions and a surface reflectance of 10% or less. Such dark surfaces require the lowest SNR values and therefore offer the best sensitivity for measuring AOD. Brighter surfaces with up to 30% reflectance require an SNR of around 300. It is shown that AOD retrieval for targets above 50% surface reflectance is more problematic with the current sensor performance as it may require an SNR larger than 1000. In general, feasibility is proven for the analyzed cases under simulated conditions.

  6. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path

    PubMed Central

    Bergeron, Hugo; Sinclair, Laura C.; Swann, William C.; Nelson, Craig W.; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R.; Coddington, Ian; Newbury, Nathan R.

    2018-01-01

    The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10−14 at one second and below 10−17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems. PMID:29607352

  7. Ultra low-cost, portable smartphone optosensors for mobile point-of-care diagnostics

    NASA Astrophysics Data System (ADS)

    Wang, Li-Ju; Chang, Yu-Chung; Sun, Rongrong; Li, Lei

    2018-02-01

    Smartphone optosensors with integrated optical components make mobile point-of-care (MPoC) diagnostics be done near patients' side. It'll especially have a significant impact on healthcare delivery in rural or remote areas. Current FDA-approved PoC devices achieving clinical level are still at high cost and not affordable in rural hospitals. We present a series of ultra low-cost smartphone optical sensing devices for mobile point-of-care diagnosis. Aiming different targeting analytes and sensing mechanisms, we developed custom required optical components for each smartphone optosensros. These optical devices include spectrum readers, colorimetric readers for microplate, lateral flow device readers, and chemiluminescence readers. By integrating our unique designed optical components into smartphone optosening platform, the anlaytes can be precisely detected. Clinical testing results show the clinical usability of our smartphone optosensors. Ultra low-cost portable smartphone optosensors are affordable for rural/remote doctors.

  8. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path.

    PubMed

    Bergeron, Hugo; Sinclair, Laura C; Swann, William C; Nelson, Craig W; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Newbury, Nathan R

    2016-04-01

    The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10 -14 at one second and below 10 -17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.

  9. Recent Progresses of Microwave Marine Remote Sensing

    NASA Astrophysics Data System (ADS)

    Yang, Jingsong; Ren, Lin; Zheng, Gang; Wang, He; He, Shuangyan; Wang, Juan; Li, Xiaohui

    2016-08-01

    It is presented in this paper the recent progresses of Dragon 3 Program (ID. 10412) in the field of microwave marine remote sensing including (1) ocean surface wind fields from full polarization synthetic aperture radars (SAR), (2) joint retrieval of directional ocean wave spectra from SAR and wave spectrometer, (3) error analysis on ENVISAT ASAR wave mode significant wave height (SWH) retrievals using triple collocation model, (4) typhoon observation from SAR and optical sensors, (5) ocean internal wave observation from SAR and optical sensors, (6) ocean eddy observation from SAR and optical sensors, (7) retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer, (8) calibration of SWH from HY-2A satellite altimeter.

  10. Coastal water optical properties from four Southeast Asian coastal environments ranging from relatively pristine to heavily impacted

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Boyd, T. J.; Anastasiou, C. J.; Thao, P. T. P.; Reid, J. S.

    2016-02-01

    Optical measurements (absorbance, EEM fluorescence, remote sensing reflectance) and concurrently-collected sensor-based data (CDOM, chlorophyll-a, salinity, turbidity, and temperature) were used to link optical properties to water mass characteristics. Data and samples were collected during four field events in the Philippines (SEP2011, SEP2012 - transects from Manila to Palawan Island), Thailand (MAR2012 - Pattaya Beach area) and Vietnam (MAR2012 - Nha Trang and Ha Long Bay). EEM fluorescence spectra from each site were modeled using PARAFAC to identify representative fluorophores. Remote sensing reflectance was modeled using PCA, determining spectral loadings showing variation in samples from each site. These synthesized model data and sensor-based measurements were collated and ordinated using PCA to determine if optical properties could be linked to water quality and biogeochemical measures. PCA models at each site showed stations nearest to the coastline falling near or outside 95% confidence regions. Initial results indicate protein-like fluorophores were found in lower salinity waters and more heavily-impacted regions (Manila Bay - Philippines, Nha Trang River - Vietnam, Bang Pakong River - Thailand). Spectral slope and an component loading from remote sensing reflectance appeared to co-vary with sensor-derived CDOM fluorescence. Results from intra- and inter-site comparisons and linkages to biogeochemical parameters will be presented.

  11. Rice Crop Monitoring Using Microwave and Optical Remotely Sensed Image Data

    NASA Astrophysics Data System (ADS)

    Suga, Y.; Konishi, T.; Takeuchi, S.; Kitano, Y.; Ito, S.

    Hiroshima Institute of Technology HIT is operating the direct down-links of microwave and optical satellite data in Japan This study focuses on the validation for rice crop monitoring using microwave and optical remotely sensed image data acquired by satellites referring to ground truth data such as height of crop ratio of crop vegetation cover and leaf area index in the test sites of Japan ENVISAT-1 ASAR data has a capability to capture regularly and to monitor during the rice growing cycle by alternating cross polarization mode images However ASAR data is influenced by several parameters such as landcover structure direction and alignment of rice crop fields in the test sites In this study the validation was carried out combined with microwave and optical satellite image data and ground truth data regarding rice crop fields to investigate the above parameters Multi-temporal multi-direction descending and ascending and multi-angle ASAR alternating cross polarization mode images were used to investigate rice crop growing cycle LANDSAT data were used to detect landcover structure direction and alignment of rice crop fields corresponding to the backscatter of ASAR As the result of this study it was indicated that rice crop growth can be precisely monitored using multiple remotely sensed data and ground truth data considering with spatial spectral temporal and radiometric resolutions

  12. The progress of sub-pixel imaging methods

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Wen, Desheng

    2014-02-01

    This paper reviews the Sub-pixel imaging technology principles, characteristics, the current development status at home and abroad and the latest research developments. As Sub-pixel imaging technology has achieved the advantages of high resolution of optical remote sensor, flexible working ways and being miniaturized with no moving parts. The imaging system is suitable for the application of space remote sensor. Its application prospect is very extensive. It is quite possible to be the research development direction of future space optical remote sensing technology.

  13. Progress in remote sensing of global land surface heat fluxes and evaporations with a turbulent heat exchange parameterization method

    NASA Astrophysics Data System (ADS)

    Chen, Xuelong; Su, Bob

    2017-04-01

    Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-air heat and water exchange fluxes. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and heat roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface fluxes applicable for GCM model verification or comparison. A flux network data library (more 200 flux towers) was collected to verify the designed method. Important progress in remote sensing of global land flux and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.

  14. Exploration of Data Fusion between Polarimetric Radar and Multispectral Image Data

    DTIC Science & Technology

    2012-09-01

    target decomposition theorems in radar polarimetry . Transactions on Geoscience and Remote Sensing, 34(2), 498–518. Cloude, S. R. (1985). Target...Proceedings of the Journees Internationales De La Polarimetrie Radar (JIPR ‘90), Nantes, France. Huynen, J. R. (1965). Measurement of theTarget scattering...J. A. (2006). Review of passive imaging polarimetry for remote sensing applications. Applied Optics, 45(22), 5453–5469. Vanzyl, J., Zebker, H

  15. Remote sensing of atmospheric particulates: Technological innovation and physical limitations in applications to short-range weather prediction

    NASA Technical Reports Server (NTRS)

    Curran, R. J.; Kropfil, R.; Hallett, J.

    1984-01-01

    Techniques for remote sensing of particles, from cloud droplet to hailstone size, using optical and microwave frequencies are reviewed. The inherent variability of atmospheric particulates is examined to delineate conditions when the signal can give information to be effectively utilized in a forecasting context. The physical limitations resulting from the phase, size, orientation and concentration variability of the particulates are assessed.

  16. Photography and imagery: a clarification of terms

    USGS Publications Warehouse

    Robinove, Charles J.

    1963-01-01

    The increased use of pictorial displays of data in the fields of photogrammetry and photo interpretation has led to some confusion of terms, not so much b photogrammetrists as bu users and interpreters of pictorial data. The terms "remote sensing" and "remote sensing of environment" are being used as general terms to describe "the measurement of some property of an object without having the measuring device physically in contact with the object" (Parker, 1962).Measurements of size and shape by photogrammetric and optical means are common examples of remote sensing and therefore require no elaboration. Other techniques of remote sensing of electromagnetic radiation in and beyond the limits of the visible spectrum require some explanation and differentiation from the techniques used in the visible spectrum.The following definitions of "photography" and "imagery" are proposed to clarify these two terms in hope that this will lead to more precise understanding and explanation of the processes.

  17. Quantification of Glacier Depletion in the Central Tibetan Plateau by Using Integrated Satellite Remote Sensing and Gravimetry

    NASA Astrophysics Data System (ADS)

    Tseng, K.-H.; Liu, K. T.; Shum, C. K.; Jia, Y.; Shang, K.; Dai, C.

    2016-06-01

    Glaciers over the Tibetan Plateau have experienced accelerated depletion in the last few decades due primarily to the global warming. The freshwater drained into brackish lakes is also observed by optical remote sensing and altimetry satellites. However, the actual water storage change is difficult to be quantified since the altimetry or remote sensing only provide data in limited dimensions. The altimetry data give an elevation change of surface while the remote sensing images provide an extent variation in horizontal plane. Hence a data set used to describe the volume change is needed to measure the exact mass transition in a time span. In this study, we utilize GRACE gravimetry mission to quantify the total column mass change in the central Tibetan Plateau, especially focused on the lakes near Tanggula Mountains. By removing these factors, the freshwater storage change of glacier system at study area can be potentially isolated.

  18. HPT: A High Spatial Resolution Multispectral Sensor for Microsatellite Remote Sensing

    PubMed Central

    Takahashi, Yukihiro; Sakamoto, Yuji; Kuwahara, Toshinori

    2018-01-01

    Although nano/microsatellites have great potential as remote sensing platforms, the spatial and spectral resolutions of an optical payload instrument are limited. In this study, a high spatial resolution multispectral sensor, the High-Precision Telescope (HPT), was developed for the RISING-2 microsatellite. The HPT has four image sensors: three in the visible region of the spectrum used for the composition of true color images, and a fourth in the near-infrared region, which employs liquid crystal tunable filter (LCTF) technology for wavelength scanning. Band-to-band image registration methods have also been developed for the HPT and implemented in the image processing procedure. The processed images were compared with other satellite images, and proven to be useful in various remote sensing applications. Thus, LCTF technology can be considered an innovative tool that is suitable for future multi/hyperspectral remote sensing by nano/microsatellites. PMID:29463022

  19. Geometric correction of synchronous scanned Operational Modular Imaging Spectrometer II hyperspectral remote sensing images using spatial positioning data of an inertial navigation system

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaohu; Neubauer, Franz; Zhao, Dong; Xu, Shichao

    2015-01-01

    The high-precision geometric correction of airborne hyperspectral remote sensing image processing was a hard nut to crack, and conventional methods of remote sensing image processing by selecting ground control points to correct the images are not suitable in the correction process of airborne hyperspectral image. The optical scanning system of an inertial measurement unit combined with differential global positioning system (IMU/DGPS) is introduced to correct the synchronous scanned Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing images. Posture parameters, which were synchronized with the OMIS II, were first obtained from the IMU/DGPS. Second, coordinate conversion and flight attitude parameters' calculations were conducted. Third, according to the imaging principle of OMIS II, mathematical correction was applied and the corrected image pixels were resampled. Then, better image processing results were achieved.

  20. [Biooptical properties of marine phytoplankton as they apply to satellite remote sensing

    NASA Technical Reports Server (NTRS)

    Yentsch, Charles S.

    1992-01-01

    This final report covers research performed over a period of 10 years from 1982 to 1992. During this time, Grant #NAGW410 was funded under three titles through a series of Supplements. The original proposal was entitled 'Photoecology, optical properties and remote sensing of warm core rings'; the second and major portion was entitled 'Continuation of studies of biooptical properties of phytoplankton and the study of mesoscale and submesoscale features using fluorescence and colorimetry'; with the final portion named 'Studies of biooptical properties of phytoplankton, with reference to identification of spectral types associated with meso- and submesoscale features in the ocean'. The focus of these projects was to try to expand our knowledge of the biooptical properties of marine phytoplankton as they apply to satellite remote sensing. We used a variety of techniques, new and old, to better measure these optical properties at appropriate scales, in some cases at the level of individual cells. We also exploited the specialized oceanic conditions that occur within certain regions and features of the ocean around the world in order to explain the tremendous variability one sees in a single remote sensing image. This document strives to provide as complete a summary as possible for this large body of work, including the pertinent publications supported by this funding.

  1. Removing sun glint from optical remote sensing images of shallow rivers

    USGS Publications Warehouse

    Overstreet, Brandon T.; Legleiter, Carl

    2017-01-01

    Sun glint is the specular reflection of light from the water surface, which often causes unusually bright pixel values that can dominate fluvial remote sensing imagery and obscure the water-leaving radiance signal of interest for mapping bathymetry, bottom type, or water column optical characteristics. Although sun glint is ubiquitous in fluvial remote sensing imagery, river-specific methods for removing sun glint are not yet available. We show that existing sun glint-removal methods developed for multispectral images of marine shallow water environments over-correct shallow portions of fluvial remote sensing imagery resulting in regions of unreliable data along channel margins. We build on existing marine glint-removal methods to develop a river-specific technique that removes sun glint from shallow areas of the channel without overcorrection by accounting for non-negligible water-leaving near-infrared radiance. This new sun glint-removal method can improve the accuracy of spectrally-based depth retrieval in cases where sun glint dominates the at-sensor radiance. For an example image of the gravel-bed Snake River, Wyoming, USA, observed-vs.-predicted R2 values for depth retrieval improved from 0.66 to 0.76 following sun glint removal. The methodology presented here is straightforward to implement and could be incorporated into image processing workflows for multispectral images that include a near-infrared band.

  2. Remote sensing of atmospheric aerosol and ocean color for the COMS/GOCI

    NASA Astrophysics Data System (ADS)

    Lee, Kwon-Ho; Kim, Young J.; Kim, Gwan C.; Wong, Man S.; Ahn, Yu H.

    2010-10-01

    The Geostationary Ocean Color Imager (GOCI) on board the Communication Ocean Meteorological Satellite (COMS) requires accurate atmospheric correction for the purpose of qualified ocean remote sensing. Since its eight bands are affected by atmospheric constituents such as gases, molecules and atmospheric aerosols, understanding of aerosolradiation interactions is needed. Aerosol optical properties based on sun-photometer measurements are used to analysis aerosol optical thickness (AOT) under various aerosol type and loadings. It is found that the choice of aerosol type makes little different in AOT retrieval for AOT<0.2. These results will be useful for aerosol retrieval of COMS/GOCI data processing.

  3. A review of progress in identifying and characterizing biocrusts using proximal and remote sensing

    NASA Astrophysics Data System (ADS)

    Rozenstein, Offer; Adamowski, Jan

    2017-05-01

    Biocrusts are critical components of desert ecosystems, significantly modifying the surfaces they occupy. The mixture of biological components and soil particles that form the crust, in conjunction with moisture, determines the biocrusts' spectral signatures. Proximal and remote sensing in complementary spectral regions, namely the reflective region, and the thermal region, have been used to study biocrusts in a non-destructive manner, in the laboratory, in the field, and from space. The objectives of this review paper are to present the spectral characteristics of biocrusts across the optical domain, and to discuss significant developments in the application of proximal and remote sensing for biocrust studies in the last few years. The motivation for using proximal and remote sensing in biocrust studies is discussed. Next, the application of reflectance spectroscopy to the study of biocrusts is presented followed by a review of the emergence of high spectral resolution thermal remote sensing, which facilitates the application of thermal spectroscopy for biocrust studies. Four specific topics at the forefront of proximal and remote sensing of biocrusts are discussed: (1) The use of remote sensing in determining the role of biocrusts in global biogeochemical cycles; (2) Monitoring the inceptive establishment of biocrusts; (3) Identifying and characterizing biocrusts using Longwave infrared spectroscopy; and (4) Diurnal emissivity dynamics of biocrusts in a sand dune environment. The paper concludes by identifying innovative technologies such as low altitude and high resolution imagery that are increasingly used in remote sensing science, and are expected to be used in future biocrusts studies.

  4. Navigation and Remote Sensing Payloads and Methods of the Sarvant Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Molina, P.; Fortuny, P.; Colomina, I.; Remy, M.; Macedo, K. A. C.; Zúnigo, Y. R. C.; Vaz, E.; Luebeck, D.; Moreira, J.; Blázquez, M.

    2013-08-01

    In a large number of scenarios and missions, the technical, operational and economical advantages of UAS-based photogrammetry and remote sensing over traditional airborne and satellite platforms are apparent. Airborne Synthetic Aperture Radar (SAR) or combined optical/SAR operation in remote areas might be a case of a typical "dull, dirty, dangerous" mission suitable for unmanned operation - in harsh environments such as for example rain forest areas in Brazil, topographic mapping of small to medium sparsely inhabited remote areas with UAS-based photogrammetry and remote sensing seems to be a reasonable paradigm. An example of such a system is the SARVANT platform, a fixed-wing aerial vehicle with a six-meter wingspan and a maximumtake- of-weight of 140 kilograms, able to carry a fifty-kilogram payload. SARVANT includes a multi-band (X and P) interferometric SAR payload, as the P-band enables the topographic mapping of densely tree-covered areas, providing terrain profile information. Moreover, the combination of X- and P-band measurements can be used to extract biomass estimations. Finally, long-term plan entails to incorporate surveying capabilities also at optical bands and deliver real-time imagery to a control station. This paper focuses on the remote-sensing concept in SARVANT, composed by the aforementioned SAR sensor and envisioning a double optical camera configuration to cover the visible and the near-infrared spectrum. The flexibility on the optical payload election, ranging from professional, medium-format cameras to mass-market, small-format cameras, is discussed as a driver in the SARVANT development. The paper also focuses on the navigation and orientation payloads, including the sensors (IMU and GNSS), the measurement acquisition system and the proposed navigation and orientation methods. The latter includes the Fast AT procedure, which performs close to traditional Integrated Sensor Orientation (ISO) and better than Direct Sensor Orientation (DiSO), and features the advantage of not requiring the massive image processing load for the generation of tie points, although it does require some Ground Control Points (GCPs). This technique is further supported by the availability of a high quality INS/GNSS trajectory, motivated by single-pass and repeat-pass SAR interferometry requirements.

  5. A Self-Referenced Optical Intensity Sensor Network Using POFBGs for Biomedical Applications

    PubMed Central

    Moraleda, Alberto Tapetado; Montero, David Sánchez; Webb, David J.; García, Carmen Vázquez

    2014-01-01

    This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown. PMID:25615736

  6. A self-referenced optical intensity sensor network using POFBGs for biomedical applications.

    PubMed

    Tapetado Moraleda, Alberto; Sánchez Montero, David; Webb, David J; Vázquez García, Carmen

    2014-12-12

    This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.

  7. Criteria for the optimal selection of remote sensing optical images to map event landslides

    NASA Astrophysics Data System (ADS)

    Fiorucci, Federica; Giordan, Daniele; Santangelo, Michele; Dutto, Furio; Rossi, Mauro; Guzzetti, Fausto

    2018-01-01

    Landslides leave discernible signs on the land surface, most of which can be captured in remote sensing images. Trained geomorphologists analyse remote sensing images and map landslides through heuristic interpretation of photographic and morphological characteristics. Despite a wide use of remote sensing images for landslide mapping, no attempt to evaluate how the image characteristics influence landslide identification and mapping exists. This paper presents an experiment to determine the effects of optical image characteristics, such as spatial resolution, spectral content and image type (monoscopic or stereoscopic), on landslide mapping. We considered eight maps of the same landslide in central Italy: (i) six maps obtained through expert heuristic visual interpretation of remote sensing images, (ii) one map through a reconnaissance field survey, and (iii) one map obtained through a real-time kinematic (RTK) differential global positioning system (dGPS) survey, which served as a benchmark. The eight maps were compared pairwise and to a benchmark. The mismatch between each map pair was quantified by the error index, E. Results show that the map closest to the benchmark delineation of the landslide was obtained using the higher resolution image, where the landslide signature was primarily photographical (in the landslide source and transport area). Conversely, where the landslide signature was mainly morphological (in the landslide deposit) the best mapping result was obtained using the stereoscopic images. Albeit conducted on a single landslide, the experiment results are general, and provide useful information to decide on the optimal imagery for the production of event, seasonal and multi-temporal landslide inventory maps.

  8. Fiber-optic Fourier transform infrared spectroscopy for remote label-free sensing of medical device surface contamination.

    PubMed

    Hassan, Moinuddin; Tan, Xin; Welle, Elissa; Ilev, Ilko

    2013-05-01

    As a potential major source of biochemical contamination, medical device surfaces are of critical safety concerns in the clinical practice and public health. The development of innovative sensing methods for accurate and real-time detection of medical device surface contamination is essential to protect patients from high risk infection. In this paper, we demonstrate an alternative fiber-optic Fourier Transform Infrared (FTIR) spectroscopy based sensing approach for remote, non-contact, and label-free detection of biochemical contaminants in the mid-infrared (mid-IR) region. The sensing probe is designed using mid-IR hollow fibers and FTIR measurements are carried out in reflection mode. Bovine Serum Albumin (BSA) and bacterial endotoxin of different concentrations under thoroughly dry condition are used to evaluate the detection sensitivity. The devised system can identify ≤0.0025% (≤4 × 10(11) molecules) BSA and 0.5% (0.5 EU/ml) endotoxin concentration. The developed sensing approach may be applied to detect various pathogens that pose public health threats.

  9. Fiber-optic Fourier transform infrared spectroscopy for remote label-free sensing of medical device surface contamination

    NASA Astrophysics Data System (ADS)

    Hassan, Moinuddin; Tan, Xin; Welle, Elissa; Ilev, Ilko

    2013-05-01

    As a potential major source of biochemical contamination, medical device surfaces are of critical safety concerns in the clinical practice and public health. The development of innovative sensing methods for accurate and real-time detection of medical device surface contamination is essential to protect patients from high risk infection. In this paper, we demonstrate an alternative fiber-optic Fourier Transform Infrared (FTIR) spectroscopy based sensing approach for remote, non-contact, and label-free detection of biochemical contaminants in the mid-infrared (mid-IR) region. The sensing probe is designed using mid-IR hollow fibers and FTIR measurements are carried out in reflection mode. Bovine Serum Albumin (BSA) and bacterial endotoxin of different concentrations under thoroughly dry condition are used to evaluate the detection sensitivity. The devised system can identify ≤0.0025% (≤4 × 1011 molecules) BSA and 0.5% (0.5 EU/ml) endotoxin concentration. The developed sensing approach may be applied to detect various pathogens that pose public health threats.

  10. Classification of Active Microwave and Passive Optical Data Based on Bayesian Theory and Mrf

    NASA Astrophysics Data System (ADS)

    Yu, F.; Li, H. T.; Han, Y. S.; Gu, H. Y.

    2012-08-01

    A classifier based on Bayesian theory and Markov random field (MRF) is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.

  11. Remote sensing systems – Platforms and sensors: Aerial, satellites, UAVs, optical, radar, and LiDAR: Chapter 1

    USGS Publications Warehouse

    Panda, Sudhanshu S.; Rao, Mahesh N.; Thenkabail, Prasad S.; Fitzerald, James E.

    2015-01-01

    The American Society of Photogrammetry and Remote Sensing defined remote sensing as the measurement or acquisition of information of some property of an object or phenomenon, by a recording device that is not in physical or intimate contact with the object or phenomenon under study (Colwell et al., 1983). Environmental Systems Research Institute (ESRI) in its geographic information system (GIS) dictionary defines remote sensing as “collecting and interpreting information about the environment and the surface of the earth from a distance, primarily by sensing radiation that is naturally emitted or reflected by the earth’s surface or from the atmosphere, or by sending signals transmitted from a device and reflected back to it (ESRI, 2014).” The usual source of passive remote sensing data is the measurement of reflected or transmitted electromagnetic radiation (EMR) from the sun across the electromagnetic spectrum (EMS); this can also include acoustic or sound energy, gravity, or the magnetic field from or of the objects under consideration. In this context, the simple act of reading this text is considered remote sensing. In this case, the eye acts as a sensor and senses the light reflected from the object to obtain information about the object. It is the same technology used by a handheld camera to take a photograph of a person or a distant scenic view. Active remote sensing, however, involves sending a pulse of energy and then measuring the returned energy through a sensor (e.g., Radio Detection and Ranging [RADAR], Light Detection and Ranging [LiDAR]). Thermal sensors measure emitted energy by different objects. Thus, in general, passive remote sensing involves the measurement of solar energy reflected from the Earth’s surface, while active remote sensing involves synthetic (man-made) energy pulsed at the environment and the return signals are measured and recorded.

  12. Expanding understanding of optical variability in Lake Superior with a 4-year dataset

    NASA Astrophysics Data System (ADS)

    Mouw, Colleen B.; Ciochetto, Audrey B.; Grunert, Brice; Yu, Angela

    2017-07-01

    Lake Superior is one of the largest freshwater lakes on our planet, but few optical observations have been made to allow for the development and validation of visible spectral satellite remote sensing products. The dataset described here focuses on coincidently observing inherent and apparent optical properties along with biogeochemical parameters. Specifically, we observe remote sensing reflectance, absorption, scattering, backscattering, attenuation, chlorophyll concentration, and suspended particulate matter over the ice-free months of 2013-2016. The dataset substantially increases the optical knowledge of the lake. In addition to visible spectral satellite algorithm development, the dataset is valuable for characterizing the variable light field, particle, phytoplankton, and colored dissolved organic matter distributions, and helpful in food web and carbon cycle investigations. The compiled data can be freely accessed at https://seabass.gsfc.nasa.gov/archive/URI/Mouw/LakeSuperior/.

  13. Optimization study on the primary mirror lightweighting of a remote sensing instrument

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; Huang, Bo-Kai; You, Zhen-Ting; Chen, Yi-Cheng; Huang, Ting-Ming

    2015-07-01

    Remote sensing instrument (RSI) is used to take images for ground surface observation, which will be exposed to high vacuum, high temperature difference, gravity, 15 g-force and random vibration conditions and other harsh environments during operation. While designing a RSI optical system, not only the optical quality but also the strength of mechanical structure we should be considered. As a result, an optimization method is adopted to solve this engineering problem. In the study, a ZERODUR® mirror with a diameter of 466 mm has been chosen as the model and the optimization has been executed by combining the computer-aided design, finite element analysis, and parameter optimization software. The optimization is aimed to obtain the most lightweight mirror with maintaining structural rigidity and good optical quality. Finally, the optimum optical mirror with a lightweight ratio of 0.55 is attained successfully.

  14. The relative importance of aerosol scattering and absorption in remote sensing

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J.

    1983-01-01

    The relative importance of aerosol optical thickness and absorption is illustrated through computing radiances for radiative transfer models. The radiance of sunlight reflected from models of the earth-atmosphere system is computed as a function of the aerosol optical thickness and its albedo of single scattering; it is noted that the albedo varies from 0.6 in urban environment to nearly 1 in areas with low graphitic carbon content. The calculations are applied to the example of satellite measurements of biomass. It is found that when surface classifications are made by means of clustering techniques the presence of gradients in the aerosol optical properties results in the dispersion of points in the plot correlating radiances viewed in two different directions. Finally, though such a remote sensing parameter as contrast is weakly affected by aerosol absorption, it is highly dependent on its optical thickness.

  15. Optical alignment of high resolution Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  16. Space-Based Remote Sensing of Atmospheric Aerosols: The Multi-Angle Spectro-Polarimetric Frontier

    NASA Technical Reports Server (NTRS)

    Kokhanovsky, A. A.; Davis, A. B.; Cairns, B.; Dubovik, O.; Hasekamp, O. P.; Sano, I.; Mukai, S.; Rozanov, V. V.; Litvinov, P.; Lapyonok, T.; hide

    2015-01-01

    The review of optical instrumentation, forward modeling, and inverse problem solution for the polarimetric aerosol remote sensing from space is presented. The special emphasis is given to the description of current airborne and satellite imaging polarimeters and also to modern satellite aerosol retrieval algorithms based on the measurements of the Stokes vector of reflected solar light as detected on a satellite. Various underlying surface reflectance models are discussed and evaluated.

  17. Remote sensing of methane emissions by combining optical similitude absorption spectroscopy (OSAS) and lidar

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Sivignon, Jean-François; Miffre, Alain; Rairoux, Patrick

    2018-04-01

    Monitoring the emission of gases is difficult to achieve in industrial sites and in environments presenting poor infrastructures. Hence, robust methodologies should be developed and coupled to Lidar technology to allow remote sensing of gas emission. OSAS is a new methodology to evaluate gas concentration emission from spectrally integrated differential absorption measurements. Proof of concept of OSAS-Lidar for CH4 emission monitoring is here presented.

  18. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  19. A Miniature Fiber-Optic Sensor for High-Resolution and High-Speed Temperature Sensing in Ocean Environment

    DTIC Science & Technology

    2015-11-05

    the SMF is superior when it comes to remote sensing in far and deep ocean. As an initial test , the real-time temperature structure within the water...4 ℃. The high resolution guarantees the visualization of subtle variation in the local water. To test the response time of the proposed sensor, the... Honey , "Optical trubulence in the sea," in Underwater Photo-optical Instrumentation Applications SPIE, 49-55 (1972). [6] J. D. Nash, D. R. Caldwell, M

  20. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Zurita-Milla, R.; de Wit, A. J. W.; Brazile, J.; Singh, R.; Schaepman, M. E.

    2007-05-01

    During the last 50 years, the management of agroecosystems has been undergoing major changes to meet the growing demand for food, timber, fibre and fuel. As a result of this intensified use, the ecological status of many agroecosystems has been severely deteriorated. Modeling the behavior of agroecosystems is, therefore, of great help since it allows the definition of management strategies that maximize (crop) production while minimizing the environmental impacts. Remote sensing can support such modeling by offering information on the spatial and temporal variation of important canopy state variables which would be very difficult to obtain otherwise. In this paper, we present an overview of different methods that can be used to derive biophysical and biochemical canopy state variables from optical remote sensing data in the VNIR-SWIR regions. The overview is based on an extensive literature review where both statistical-empirical and physically based methods are discussed. Subsequently, the prevailing techniques of assimilating remote sensing data into agroecosystem models are outlined. The increasing complexity of data assimilation methods and of models describing agroecosystem functioning has significantly increased computational demands. For this reason, we include a short section on the potential of parallel processing to deal with the complex and computationally intensive algorithms described in the preceding sections. The studied literature reveals that many valuable techniques have been developed both for the retrieval of canopy state variables from reflective remote sensing data as for assimilating the retrieved variables in agroecosystem models. However, for agroecosystem modeling and remote sensing data assimilation to be commonly employed on a global operational basis, emphasis will have to be put on bridging the mismatch between data availability and accuracy on one hand, and model and user requirements on the other. This could be achieved by integrating imagery with different spatial, temporal, spectral, and angular resolutions, and the fusion of optical data with data of different origin, such as LIDAR and radar/microwave.

  1. Estimation CODMN in Guangzhou Section of Pearl River Based on GF-1 Images

    NASA Astrophysics Data System (ADS)

    Feng, Y. B.; He, Y. Q.; Fu, Q. H.; Liu, C. Q.; Pan, H. Z.; Yin, B.

    2018-04-01

    Due to the way that remote sensing works, it has natural advantage to detect optical constituents in waters. And many kinds of inversion models were constructed based on the three main optical constituents, namely chlorophyll-a (Chl-a), suspended particulate matter (SPM), colored dissolved organic matter (CDOM). Except Chl-a used as an indicator of eutrophication, however, the public generally cares less about other two parameters and is more familiar with Grade I V scheme for utilization and protection purposes. Notice the three main optical constituents are also organic-related to some extent. It offers a possible way to estimate CODMn via remote sensing. According to field measurement conducted along the Guangzhou section of Pearl River (GPR for short), the spatial variation of CODMn in GPR shows some kinds of geographical feature, so does the correlation between CODMn and water color constituents. It indicated the complicated contribution of CODMn in GPR or some other urban rivers. Based on the band setting of GF-1 satellite, two kinds of inversion model of CODMn in GPR were finally constructed. One directly achieved CODMn from regression models of which predictors were different band combinations in different channels of GPR. To make the study more practical, the other one first provided empirical models of the three optical constituents, and then estimated CODMn of GPR based on its relationship with optical constituents. After all, Chl-a, SPM and CDOM could be distinguished optically, and remote sensing models of these three constituents in other studies may also be available.

  2. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  3. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865

  4. Flexible corner cube retroreflector array for temperature and strain sensing† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13284k

    PubMed Central

    Khalid, Muhammad Waqas; Ahmed, Rajib; Yetisen, Ali K.

    2018-01-01

    Optical sensors for detecting temperature and strain play a crucial role in the analysis of environmental conditions and real-time remote sensing. However, the development of a single optical device that can sense temperature and strain simultaneously remains a challenge. Here, a flexible corner cube retroreflector (CCR) array based on passive dual optical sensing (temperature and strain) is demonstrated. A mechanical embossing process was utilised to replicate a three-dimensional (3D) CCR array in a soft flexible polymer film. The fabricated flexible CCR array samples were experimentally characterised through reflection measurements followed by computational modelling. As fabricated samples were illuminated with a monochromatic laser beam (635, 532, and 450 nm), a triangular shape reflection was obtained at the far-field. The fabricated flexible CCR array samples tuned retroreflected light based on external stimuli (temperature and strain as an applied force). For strain and temperature sensing, an applied force and temperature, in the form of weight suspension, and heat flow was applied to alter the replicated CCR surface structure, which in turn changed its optical response. Directional reflection from the heated flexible CCR array surface was also measured with tilt angle variation (max. up to 10°). Soft polymer CCRs may have potential in remote sensing applications, including measuring the temperature in space and in nuclear power stations. PMID:29568510

  5. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  6. Using leaf optical properties to detect ozone effects on foliar biochemistry

    USDA-ARS?s Scientific Manuscript database

    Efficient methods for accurate and meaningful high-throughput plant phenotyping are limiting the development and breeding of stress-tolerant crops. A number of emerging techniques, specifically remote sensing methods, have been identified as promising tools for plant phenotyping. These remote-sensin...

  7. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.

    1979-01-01

    The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.

  8. The Research on the Spectral Characteristics of Sea Fog Based on Caliop and Modis Data

    NASA Astrophysics Data System (ADS)

    Wan, J.; Su, J.; Liu, S.; Sheng, H.

    2018-04-01

    In view of that difficulty of distinguish between sea fog and low cloud by optical remote sensing mean, the research on spectral characteristics of sea fog is focused and carried out. The satellite laser radar CALIOP data and the high spectral MODIS data were obtained from May to December 2017, and the scattering coefficient and the vertical height information were extracted from the atmospheric attenuation of the lower star to extract the sea fog sample points, and the spectral response curve based on MODIS was formed to analyse the spectral response characteristics of the sea fog, thus providing a theoretical basis for the monitoring of sea fog with optical remote sensing image.

  9. Assessing diversity of prairie plants using remote sensing

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Biodiversity loss endangers ecosystem services and is considered as a global change that may generate unacceptable environmental consequences for the Earth system. Global biodiversity observations are needed to provide a better understanding of biodiversity - ecosystem services relationships and to provide a stronger foundation for conserving the Earth's biodiversity. While remote sensing metrics have been applied to estimate α biodiversity directly through optical diversity, a better understanding of the mechanisms behind the optical diversity-biodiversity relationship is needed. We designed a series of experiments at Cedar Creek Ecosystem Science Reserve, MN, to investigate the scale dependence of optical diversity and explore how species richness, evenness, and composition affect optical diversity. We collected hyperspectral reflectance of 16 prairie species using both a full-range field spectrometer fitted with a leaf clip, and an imaging spectrometer carried by a tram system to simulate plot-level images with different species richness, evenness, and composition. Two indicators of spectral diversity were explored: the coefficient of variation (CV) of spectral reflectance in space, and spectral classification using a Partial Least Squares Discriminant Analysis (PLS-DA). Our results showed that sampling methods (leaf clip-derived data vs. image-derived data) affected the optical diversity estimation. Both optical diversity indices were affected by species richness and evenness (P<0.001 for each case). At fine spatial scales, species composition also had a substantial influence on optical diversity. CV was sensitive to the background soil influence, but the spectral classification method was insensitive to background. These results provide a critical foundation for assessing biodiversity using imaging spectrometry and these findings can be used to guide regional studies of biodiversity estimation using high spatial and spectral resolution remote sensing.

  10. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems

    USGS Publications Warehouse

    Stow, Douglas A.; Hope, Allen; McGuire, David; Verbyla, David; Gamon, John A.; Huemmrich, Fred; Houston, Stan; Racine, Charles H.; Sturm, Matthew; Tape, Ken D.; Hinzman, Larry D.; Yoshikawa, Kenji; Tweedie, Craig E.; Noyle, Brian; Silapaswan, Cherie; Douglas, David C.; Griffith, Brad; Jia, Gensuo; Howard E. Epstein,; Walker, Donald A.; Daeschner, Scott; Petersen, Aaron; Zhou, Liming; Myneni, Ranga B.

    2004-01-01

    The objective of this paper is to review research conducted over the past decade on the application of multi-temporal remote sensing for monitoring changes of Arctic tundra lands. Emphasis is placed on results from the National Science Foundation Land–Air–Ice Interactions (LAII) program and on optical remote sensing techniques. Case studies demonstrate that ground-level sensors on stationary or moving track platforms and wide-swath imaging sensors on polar orbiting satellites are particularly useful for capturing optical remote sensing data at sufficient frequency to study tundra vegetation dynamics and changes for the cloud prone Arctic. Less frequent imaging with high spatial resolution instruments on aircraft and lower orbiting satellites enable more detailed analyses of land cover change and calibration/validation of coarser resolution observations.The strongest signals of ecosystem change detected thus far appear to correspond to expansion of tundra shrubs and changes in the amount and extent of thaw lakes and ponds. Changes in shrub cover and extent have been documented by modern repeat imaging that matches archived historical aerial photography. NOAA Advanced Very High Resolution Radiometer (AVHRR) time series provide a 20-year record for determining changes in greenness that relates to photosynthetic activity, net primary production, and growing season length. The strong contrast between land materials and surface waters enables changes in lake and pond extent to be readily measured and monitored.

  11. Land use/cover classification in the Brazilian Amazon using satellite images.

    PubMed

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei João Siqueira

    2012-09-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

  12. SENSOR: a tool for the simulation of hyperspectral remote sensing systems

    NASA Astrophysics Data System (ADS)

    Börner, Anko; Wiest, Lorenz; Keller, Peter; Reulke, Ralf; Richter, Rolf; Schaepman, Michael; Schläpfer, Daniel

    The consistent end-to-end simulation of airborne and spaceborne earth remote sensing systems is an important task, and sometimes the only way for the adaptation and optimisation of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software Environment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray-tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. The third part consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimisation requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and first examples of its use are given. The verification of SENSOR is demonstrated. This work is closely related to the Airborne PRISM Experiment (APEX), an airborne imaging spectrometer funded by the European Space Agency.

  13. Land use/cover classification in the Brazilian Amazon using satellite images

    PubMed Central

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant’Anna, Sidnei João Siqueira

    2013-01-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. PMID:24353353

  14. Research on visible and near infrared spectral-polarimetric properties of soil polluted by crude oil

    NASA Astrophysics Data System (ADS)

    Shen, Hui-yan; Zhou, Pu-cheng; Pan, Bang-long

    2017-10-01

    Hydrocarbon contaminated soil can impose detrimental effects on forest health and quality of agricultural products. To manage such consequences, oil leak indicators should be detected quickly by monitoring systems. Remote sensing is one of the most suitable techniques for monitoring systems, especially for areas which are uninhabitable and difficulty to access. The most available physical quantities in optical remote sensing domain are the intensity and spectral information obtained by visible or infrared sensors. However, besides the intensity and wavelength, polarization is another primary physical quantity associated with an optical field. During the course of reflecting light-wave, the surface of soil polluted by crude oil will cause polarimetric properties which are related to the nature of itself. Thus, detection of the spectralpolarimetric properties for soil polluted by crude oil has become a new remote sensing monitoring method. In this paper, the multi-angle spectral-polarimetric instrument was used to obtain multi-angle visible and near infrared spectralpolarimetric characteristic data of soil polluted by crude oil. And then, the change rule between polarimetric properties with different affecting factors, such as viewing zenith angle, incidence zenith angle of the light source, relative azimuth angle, waveband of the detector as well as different grain size of soil were discussed, so as to provide a scientific basis for the research on polarization remote sensing for soil polluted by crude oil.

  15. Laser long-range remote-sensing program experimental results

    NASA Astrophysics Data System (ADS)

    Highland, Ronald G.; Shilko, Michael L.; Fox, Marsha J.; Gonglewski, John D.; Czyzak, Stanley R.; Dowling, James A.; Kelly, Brian; Pierrottet, Diego F.; Ruffatto, Donald; Loando, Sharon; Matsuura, Chris; Senft, Daniel C.; Finkner, Lyle; Rae, Joe; Gallegos, Joe

    1995-12-01

    A laser long range remote sensing (LRS) program is being conducted by the United States Air Force Phillips Laboratory (AF/PL). As part of this program, AF/PL is testing the feasibility of developing a long path CO(subscript 2) laser-based DIAL system for remote sensing. In support of this program, the AF/PL has recently completed an experimental series using a 21 km slant- range path (3.05 km ASL transceiver height to 0.067 km ASL target height) at its Phillips Laboratory Air Force Maui Optical Station (AMOS) facility located on Maui, Hawaii. The dial system uses a 3-joule, (superscript 13)C isotope laser coupled into a 0.6 m diameter telescope. The atmospheric optical characterization incorporates information from an infrared scintillometer co-aligned to the laser path, atmospheric profiles from weather balloons launched from the target site, and meteorological data from ground stations at AMOS and the target site. In this paper, we report a description of the experiment configuration, a summary of the results, a summary of the atmospheric conditions and their implications to the LRS program. The capability of such a system for long-range, low-angle, slant-path remote sensing is discussed. System performance issues relating to both coherent and incoherent detection methods, atmospheric limitations, as well as, the development of advanced models to predict performance of long range scenarios are presented.

  16. Novel Technique and Technologies for Active Optical Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  17. Optical Remote Sensing of Electric Fields Above Thunderstorms

    NASA Astrophysics Data System (ADS)

    Burns, B. M.; Carlson, B. E.; Lauben, D.; Cohen, M.; Smith, D.; Inan, U. S.

    2010-12-01

    Measurement of thunderstorm electric fields typically require balloon-borne measurements in the region of interest. Such measurements are cumbersome and provide limited information at a single point. Remote sensing of electric fields by Kerr-effect induced optical polarization changes of background skylight circumvents many of these difficulties and can in principle provide a high-speed movie of electric field behavior. Above-thundercloud 100 kV/m quasi-static electric fields are predicted to produce polarization changes at above the part in one million level that should be detectable at a ground instrument featuring 1 cm2sr geometric factor and 1 kHz bandwidth (though more sensitivity is nonetheless desired). Currently available optical and electronic components may meet these requirements. We review the principles of this measurement and discuss the current status of a field-ready prototype instrument currently in construction.

  18. Equivalent Sensor Radiance Generation and Remote Sensing from Model Parameters. Part 1; Equivalent Sensor Radiance Formulation

    NASA Technical Reports Server (NTRS)

    Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.

    2013-01-01

    In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.

  19. Multi-sensor Cloud Retrieval Simulator and Remote Sensing from Model Parameters . Pt. 1; Synthetic Sensor Radiance Formulation; [Synthetic Sensor Radiance Formulation

    NASA Technical Reports Server (NTRS)

    Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.

    2013-01-01

    In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.

  20. High efficient optical remote sensing images acquisition for nano-satellite: reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Feng; Xin, Lei; Fu, Jie; Huang, Puming

    2017-10-01

    Large amount of data is one of the most obvious features in satellite based remote sensing systems, which is also a burden for data processing and transmission. The theory of compressive sensing(CS) has been proposed for almost a decade, and massive experiments show that CS has favorable performance in data compression and recovery, so we apply CS theory to remote sensing images acquisition. In CS, the construction of classical sensing matrix for all sparse signals has to satisfy the Restricted Isometry Property (RIP) strictly, which limits applying CS in practical in image compression. While for remote sensing images, we know some inherent characteristics such as non-negative, smoothness and etc.. Therefore, the goal of this paper is to present a novel measurement matrix that breaks RIP. The new sensing matrix consists of two parts: the standard Nyquist sampling matrix for thumbnails and the conventional CS sampling matrix. Since most of sun-synchronous based satellites fly around the earth 90 minutes and the revisit cycle is also short, lots of previously captured remote sensing images of the same place are available in advance. This drives us to reconstruct remote sensing images through a deep learning approach with those measurements from the new framework. Therefore, we propose a novel deep convolutional neural network (CNN) architecture which takes in undersampsing measurements as input and outputs an intermediate reconstruction image. It is well known that the training procedure to the network costs long time, luckily, the training step can be done only once, which makes the approach attractive for a host of sparse recovery problems.

  1. Upwelling-Induced Primary Productivity in Coastal Waters of the Black Sea: Impact on Algorithms for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Goldman, Joel C.; Brink, Kenneth K.; Gawarkiewicz, Glen; Sosik, Heidi M.

    1997-01-01

    This research program was a collaborative effort to investigate the impact of rapid changes in the water column during coastal upwelling, on biological and optical properties. These properties are important for constructing region or event-specific algorithms for remote sensing of pigment concentration and primary productivity and for comparing these algorithms with those used for the development of large scale maps from ocean color. We successfully achieved the primary objective of this research project which was to study in situ the dynamics of rapid spatial and temporal changes in properties of the water column during, coastal upwelling off the Crimean Coast in the Black Sea. The work was a collaborative effort between a group of biological and physical oceanographers from the Woods Hole Oceanographic Institution and from two oceanographic research institutions in the Crimea, Ukraine, located near the study site, the Marine Hydrophysical Institute (MHI) and the Institute of Biology of the Southern Seas (IBSS). The site was an ideal experimental model, both from a technical and economic standpoint, because of the predictable summer upwelling that occurs in the region and because of the availability of both a ship on call and laboratory and remote sensing facilities at the nearby marine institutes. We used a combination of shipboard measurements and remote sensing to investigate the physical evolution of rapid upwelling events and their impact on photoplankton and water column optical properties. The field work involved a two day cruise for mooring, deployment and a three day baseline survey cruise, followed by an eleven day primary cruise during, a summer upwelling event (anticipated by monitoring local winds and tracked by remote sensing imaging). An MHI ship was outfitted and used for these purposes.

  2. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges.

    PubMed

    Porcar-Castell, Albert; Tyystjärvi, Esa; Atherton, Jon; van der Tol, Christiaan; Flexas, Jaume; Pfündel, Erhard E; Moreno, Jose; Frankenberg, Christian; Berry, Joseph A

    2014-08-01

    Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers.

    PubMed

    Wong, Christopher Y S; Gamon, John A

    2015-04-01

    In evergreens, the seasonal down-regulation and reactivation of photosynthesis is largely invisible and difficult to assess with remote sensing. This invisible phenology may be changing as a result of climate change. To better understand the mechanism and timing of these hidden physiological transitions, we explored several assays and optical indicators of spring photosynthetic activation in conifers exposed to a boreal climate. The photochemical reflectance index (PRI), chlorophyll fluorescence, and leaf pigments for evergreen conifer seedlings were monitored over 1 yr of a boreal climate with the addition of gas exchange during the spring. PRI, electron transport rate, pigment levels, light-use efficiency and photosynthesis all exhibited striking seasonal changes, with varying kinetics and strengths of correlation, which were used to evaluate the mechanisms and timing of spring activation. PRI and pigment pools were closely timed with photosynthetic reactivation measured by gas exchange. The PRI provided a clear optical indicator of spring photosynthetic activation that was detectable at leaf and stand scales in conifers. We propose that PRI might provide a useful metric of effective growing season length amenable to remote sensing and could improve remote-sensing-driven models of carbon uptake in evergreen ecosystems. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. A random optimization approach for inherent optic properties of nearshore waters

    NASA Astrophysics Data System (ADS)

    Zhou, Aijun; Hao, Yongshuai; Xu, Kuo; Zhou, Heng

    2016-10-01

    Traditional method of water quality sampling is time-consuming and highly cost. It can not meet the needs of social development. Hyperspectral remote sensing technology has well time resolution, spatial coverage and more general segment information on spectrum. It has a good potential in water quality supervision. Via the method of semi-analytical, remote sensing information can be related with the water quality. The inherent optical properties are used to quantify the water quality, and an optical model inside the water is established to analysis the features of water. By stochastic optimization algorithm Threshold Acceptance, a global optimization of the unknown model parameters can be determined to obtain the distribution of chlorophyll, organic solution and suspended particles in water. Via the improvement of the optimization algorithm in the search step, the processing time will be obviously reduced, and it will create more opportunity for the increasing the number of parameter. For the innovation definition of the optimization steps and standard, the whole inversion process become more targeted, thus improving the accuracy of inversion. According to the application result for simulated data given by IOCCG and field date provided by NASA, the approach model get continuous improvement and enhancement. Finally, a low-cost, effective retrieval model of water quality from hyper-spectral remote sensing can be achieved.

  5. Improvement of scattering correction for in situ coastal and inland water absorption measurement using exponential fitting approach

    NASA Astrophysics Data System (ADS)

    Ye, Huping; Li, Junsheng; Zhu, Jianhua; Shen, Qian; Li, Tongji; Zhang, Fangfang; Yue, Huanyin; Zhang, Bing; Liao, Xiaohan

    2017-10-01

    The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values in situ using the nine-wavelength absorption and attenuation meter AC9. Establishing the correction always fails in Case 2 water when the correction assumes zero absorption in the near-infrared (NIR) region and underestimates the absorption coefficient in the red region, which affect processes such as semi-analytical remote sensing inversion. In this study, the scattering contribution was evaluated by an exponential fitting approach using AC9 measurements at seven wavelengths (412, 440, 488, 510, 532, 555, and 715 nm) and by applying scattering correction. The correction was applied to representative in situ data of moderately turbid coastal water, highly turbid coastal water, eutrophic inland water, and turbid inland water. The results suggest that the absorption levels in the red and NIR regions are significantly higher than those obtained using standard scattering error correction procedures. Knowledge of the deviation between this method and the commonly used scattering correction methods will facilitate the evaluation of the effect on satellite remote sensing of water constituents and general optical research using different scattering-correction methods.

  6. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  7. Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing.

    PubMed

    Wan, Lei; Chandrahalim, Hengky; Zhou, Jian; Li, Zhaohui; Chen, Cong; Cho, Sangha; Zhang, Hui; Mei, Ting; Tian, Huiping; Oki, Yuji; Nishimura, Naoya; Fan, Xudong; Guo, L Jay

    2018-03-05

    We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10 -4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.

  8. Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics.

    PubMed

    Goddijn-Murphy, Lonneke; Peters, Steef; van Sebille, Erik; James, Neil A; Gibb, Stuart

    2018-01-01

    There is growing global concern over the chemical, biological and ecological impact of plastics in the ocean. Remote sensing has the potential to provide long-term, global monitoring but for marine plastics it is still in its early stages. Some progress has been made in hyperspectral remote sensing of marine macroplastics in the visible (VIS) to short wave infrared (SWIR) spectrum. We present a reflectance model of sunlight interacting with a sea surface littered with macro plastics, based on geometrical optics and the spectral signatures of plastic and seawater. This is a first step towards the development of a remote sensing algorithm for marine plastic using light reflectance measurements in air. Our model takes the colour, transparency, reflectivity and shape of plastic litter into account. This concept model can aid the design of laboratory, field and Earth observation measurements in the VIS-SWIR spectrum and explain the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Deriving Leaf Area Index (LAI) from multiple lidar remote sensing systems

    NASA Astrophysics Data System (ADS)

    Tang, H.; Dubayah, R.; Zhao, F.

    2012-12-01

    LAI is an important biophysical variable linking biogeochemical cycles of earth systems. Observations with passive optical remote sensing are plagued by saturation and results from different passive and active sensors are often inconsistent. Recently lidar remote sensing has been applied to derive vertical canopy structure including LAI and its vertical profile. In this research we compare LAI retrievals from three different types of lidar sensors. The study areas include the La Selva Biological Station in Costa Rica and Sierra Nevada Forest in California. We first obtain independent LAI estimates from different lidar systems including airborne lidar (LVIS), spaceborne lidar (GLAS) and ground lidar (Echidna). LAI retrievals are then evaluated between sensors as a function of scale, land cover type and sensor characteristics. We also assess the accuracy of these LAI products against ground measurements. By providing a link between ground observations, ground lidar, aircraft and space-based lidar we hope to demonstrate a path for deriving more accurate estimates of LAI on a global basis, and to provide a more robust means of validating passive optical estimates of this important variable.

  10. A telescopic cinema sound camera for observing high altitude aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2014-09-01

    Rockets and other high altitude aerospace vehicles produce interesting visual and aural phenomena that can be remotely observed from long distances. This paper describes a compact, passive and covert remote sensing system that can produce high resolution sound movies at >100 km viewing distances. The telescopic high resolution camera is capable of resolving and quantifying space launch vehicle dynamics including plume formation, staging events and payload fairing jettison. Flight vehicles produce sounds and vibrations that modulate the local electromagnetic environment. These audio frequency modulations can be remotely sensed by passive optical and radio wave detectors. Acousto-optic sensing methods were primarily used but an experimental radioacoustic sensor using passive micro-Doppler radar techniques was also tested. The synchronized combination of high resolution flight vehicle imagery with the associated vehicle sounds produces a cinema like experience that that is useful in both an aerospace engineering and a Hollywood film production context. Examples of visual, aural and radar observations of the first SpaceX Falcon 9 v1.1 rocket launch are shown and discussed.

  11. Modular separation-based fiber-optic sensors for remote in situ monitoring.

    PubMed

    Dickens, J; Sepaniak, M

    2000-02-01

    A modular separation-based fiber-optic sensor (SBFOS) with an integrated electronically controlled injection device is described for potential use in remote environmental monitoring. An SBFOS is a chemical monitor that integrates the separation selectivity and versatility afforded by capillary electrophoresis with the remote and high sensitivity capabilities of fiber-optic-based laser-induced fluorescence sensing. The detection module of the SBFOS accommodates all essential sensing components for dual-optical fiber, on-capillary fluorescence detection. An injection module, similar to injection platforms on micro-analysis chips, is also integrated to the SBFOS. The injection module allows for electronically controlled injection of the sample onto the separation capillary. The design and operational characteristics of the modular SBFOS are discussed in this paper. A micellar electrokinetic capillary chromatography mode of separation is employed to evaluate the potential of the sensor for in situ monitoring of neutral toxins (aflatoxins). The analytical figures of merit for the modular SBFOS include analysis times of between 5 and 10 min, separation efficiencies of approximately 10(4) theoretical plates, detection limits for aflatoxins in the mid-to-low nanomolar range, and controllable operation that results in sensor performance that is largely immune to sample matrix effects.

  12. The Oasis impact structure, Libya: geological characteristics from ALOS PALSAR-2 data interpretation

    NASA Astrophysics Data System (ADS)

    van Gasselt, Stephan; Kim, Jung Rack; Choi, Yun-Soo; Kim, Jaemyeong

    2017-02-01

    Optical and infrared remote sensing may provide first-order clues for the identification of potential impact structures on the Earth. Despite the free availability of at least optical image data at highest resolution, research has shown that remote sensing analysis always remains inconclusive and extensive groundwork is needed for the confirmation of the impact origin of such structures. Commonly, optical image data and digital terrain models have been employed mainly for such remote sensing studies of impact structures. With the advent of imaging radar data, a few excursions have been made to also employ radar datasets. Despite its long use, capabilities of imaging radar for studying surface and subsurface structures have not been exploited quantitatively when applied for the identification and description of such features due to the inherent complexity of backscatter processes. In this work, we make use of higher-level derived radar datasets in order to gain clearer qualitative insights that help to describe and identify potential impact structures. We make use of high-resolution data products from the ALOS PALSAR-1 and ALOS PALSAR-2 L-band sensors to describe the heavily eroded Oasis impact structure located in the Libyan Desert. While amplitude radar data with single polarization have usually been utilized to accompany the suite of remote sensing datasets when interpreting impact structures in the past, we conclude that the integration of amplitude data with HH/HV/HH-HV polarization modes in standard and, in particular, in Ultra-Fine mode, as well as entropy-alpha decomposition data, significantly helps to identify and discriminate surface units based on their consolidation. Based on the overarching structural pattern, we determined the diameter of the eroded Oasis structure at 15.6 ± 0.5 km.

  13. Combined Analysis of SENTINEL-1 and Rapideye Data for Improved Crop Type Classification: AN Early Season Approach for Rapeseed and Cereals

    NASA Astrophysics Data System (ADS)

    Lussem, U.; Hütt, C.; Waldhoff, G.

    2016-06-01

    Timely availability of crop acreage estimation is crucial for maintaining economic and ecological sustainability or modelling purposes. Remote sensing data has proven to be a reliable source for crop mapping and acreage estimation on parcel-level. However, when relying on a single source of remote sensing data, e.g. multispectral sensors like RapidEye or Landsat, several obstacles can hamper the desired outcome, for example cloud cover or haze. Another limitation may be a similarity in optical reflectance patterns of crops, especially in an early season approach by the end of March, early April. Usually, a reliable crop type map for winter-crops (winter wheat/rye, winter barley and rapeseed) in Central Europe can be obtained by using optical remote sensing data from late April to early May, given a full coverage of the study area and cloudless conditions. These prerequisites can often not be met. By integrating dual-polarimetric SAR-sensors with high temporal and spatial resolution, these limitations can be overcome. SAR-sensors are not influenced by clouds or haze and provide an additional source of information due to the signal-interaction with plant-architecture. The overall goal of this study is to investigate the contribution of Sentinel-1 SAR-data to regional crop type mapping for an early season map of disaggregated winter-crops for a subset of the Rur-Catchment in North Rhine-Westphalia (Germany). For this reason, RapidEye data and Sentinel-1 data are combined and the performance of Support Vector Machine and Maximum Likelihood classifiers are compared. Our results show that a combination of Sentinel-1 and RapidEye is a promising approach for most crops, but consideration of phenology for data selection can improve results. Thus the combination of optical and radar remote sensing data indicates advances for crop-type classification, especially when optical data availability is limited.

  14. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea.

    PubMed

    Angelliaume, Sébastien; Ceamanos, Xavier; Viallefont-Robinet, Françoise; Baqué, Rémi; Déliot, Philippe; Miegebielle, Véronique

    2017-08-02

    Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur), the airborne system developed by ONERA (the French Aerospace Lab), during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on the sea surface.

  15. Ecophysiological Remote Sensing of Leaf-Canopy Photosynthetic Characteristics in a Cool-Temperate Deciduous Forest in Japan

    NASA Astrophysics Data System (ADS)

    Noda, H. M.; Muraoka, H.

    2014-12-01

    Satellite remote sensing of structure and function of canopy is crucial to detect temporal and spatial distributions of forest ecosystems dynamics in changing environments. The spectral reflectance of the canopy is determined by optical properties (spectral reflectance and transmittance) of single leaves and their spatial arrangements in the canopy. The optical properties of leaves reflect their pigments contents and anatomical structures. Thus detailed information and understandings of the consequence between ecophysiological traits and optical properties from single leaf to canopy level are essential for remote sensing of canopy ecophysiology. To develop the ecophysiological remote sensing of forest canopy, we have been promoting multiple and cross-scale measurements in "Takayama site" belonging to AsiaFlux and JaLTER networks, located in a cool-temperate deciduous broadleaf forest on a mountainous landscape in Japan. In this forest, in situ measurement of canopy spectral reflectance has been conducted continuously by a spectroradiometer as part of the "Phenological Eyes Network (PEN)" since 2004. To analyze the canopy spectral reflectance from leaf ecophysiological viewpoints, leaf mass per area, nitrogen content, chlorophyll contents, photosynthetic capacities and the optical properties have been measured for dominant canopy tree species Quercus crispla and Betula ermanii throughout the seasons for multiple years.Photosynthetic capacity was largely correlated with chlorophyll contents throughout the growing season in both Q. crispla and B. ermanii. In these leaves, the reflectance at "red edge" (710 nm) changed by corresponding to the changes of chlorophyll contents throughout the seasons. Our canopy-level examination showed that vegetation indices obtained by red edge reflectance have linear relationship with leaf chlorophyll contents and photosynthetic capacity. Finally we apply this knowledge to the Rapid Eye satellite imagery around Takayama site to scale-up the leaf-level findings to canopy and landscape levels on a mountainous landscape.

  16. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea

    PubMed Central

    Angelliaume, Sébastien; Ceamanos, Xavier; Viallefont-Robinet, Françoise; Baqué, Rémi; Déliot, Philippe

    2017-01-01

    Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur), the airborne system developed by ONERA (the French Aerospace Lab), during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on the sea surface. PMID:28767059

  17. A review of ultra-short pulse lasers for military remote sensing and rangefinding

    NASA Astrophysics Data System (ADS)

    Lamb, Robert A.

    2009-09-01

    Advances in ultra-short pulse laser technology have resulted in commercially available laser systems capable of generating high peak powers >1GW in tabletop systems. This opens the prospect of generating very wide spectral emissions with a combination of non-linear optical effects in photonic crystal fibres to produce supercontinuua in systems that are readily accessible to military applications. However, military remote sensing rarely requires bandwidths spanning two octaves and it is clear that efficient systems require controlled spectral emission in relevant bands. Furthermore, the limited spectral responsivity of focal plane arrays may impose further restriction on the usable spectrum. A recent innovation which temporally encodes a spectrum using group velocity dispersion allows detection with a photodiode, opening the prospect for high speed hyperspectral sensing and imaging. At the opposite end of the power spectrum, ultra-low power remote sensing using time-correlated single photon counting (SPC) has reduced the laser power requirement and demonstrated remote sensing over 5km during daylight with repetition rates of ~10MHz with ps pulses. Recent research has addressed uncorrelated SPC and waveform transmission to increase data rates for absolute rangefinding whilst avoiding range aliasing. This achievement opens the prospect of combining SPC with high repetition rate temporal encoding of supercontinuua to realise practical hyperspectral remote sensing lidar. The talk will present an overview of these technologies and present a concept which combines them into a single system for high-speed hyperspectral imaging and remote sensing.

  18. Potential of remote sensing of cirrus optical thickness by airborne spectral radiance measurements at different sideward viewing angles

    NASA Astrophysics Data System (ADS)

    Wolf, Kevin; Ehrlich, André; Hüneke, Tilman; Pfeilsticker, Klaus; Werner, Frank; Wirth, Martin; Wendisch, Manfred

    2017-03-01

    Spectral radiance measurements collected in nadir and sideward viewing directions by two airborne passive solar remote sensing instruments, the Spectral Modular Airborne Radiation measurement sysTem (SMART) and the Differential Optical Absorption Spectrometer (mini-DOAS), are used to compare the remote sensing results of cirrus optical thickness τ. The comparison is based on a sensitivity study using radiative transfer simulations (RTS) and on data obtained during three airborne field campaigns: the North Atlantic Rainfall VALidation (NARVAL) mission, the Mid-Latitude Cirrus Experiment (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems (ACRIDICON) campaign. Radiative transfer simulations are used to quantify the sensitivity of measured upward radiance I with respect to τ, ice crystal effective radius reff, viewing angle of the sensor θV, spectral surface albedo α, and ice crystal shape. From the calculations it is concluded that sideward viewing measurements are generally better suited than radiance data from the nadir direction to retrieve τ of optically thin cirrus, especially at wavelengths larger than λ = 900 nm. Using sideward instead of nadir-directed spectral radiance measurements significantly improves the sensitivity and accuracy in retrieving τ, in particular for optically thin cirrus of τ ≤ 2. The comparison of retrievals of τ based on nadir and sideward viewing radiance measurements from SMART, mini-DOAS and independent estimates of τ from an additional active remote sensing instrument, the Water Vapor Lidar Experiment in Space (WALES), shows general agreement within the range of measurement uncertainties. For the selected example a mean τ of 0.54 ± 0.2 is derived from SMART, and 0.49 ± 0.2 by mini-DOAS nadir channels, while WALES obtained a mean value of τ = 0.32 ± 0.02 at 532 nm wavelength, respectively. The mean of τ derived from the sideward viewing mini-DOAS channels is 0.26 ± 0.2. For the few simultaneous measurements, the mini-DOAS sideward channel measurements systematically underestimate (-17.6 %) the nadir observations from SMART and mini-DOAS. The agreement between mini-DOAS sideward viewing channels and WALES is better, showing the advantage of using sideward viewing measurements for cloud remote sensing for τ ≤ 1. Therefore, we suggest sideward viewing measurements for retrievals of τ of thin cirrus because of the significantly enhanced capability of sideward viewing compared to nadir measurements.

  19. Laser remote sensing of backscattered light from a target sample

    DOEpatents

    Sweatt, William C [Albuquerque, NM; Williams, John D [Albuquerque, NM

    2008-02-26

    A laser remote sensing apparatus comprises a laser to provide collimated excitation light at a wavelength; a sensing optic, comprising at least one optical element having a front receiving surface to focus the received excitation light onto a back surface comprising a target sample and wherein the target sample emits a return light signal that is recollimated by the front receiving surface; a telescope for collecting the recollimated return light signal from the sensing optic; and a detector for detecting and spectrally resolving the return light signal. The back surface further can comprise a substrate that absorbs the target sample from an environment. For example the substrate can be a SERS substrate comprising a roughened metal surface. The return light signal can be a surface-enhanced Raman signal or laser-induced fluorescence signal. For fluorescence applications, the return signal can be enhanced by about 10.sup.5, solely due to recollimation of the fluorescence return signal. For SERS applications, the return signal can be enhanced by 10.sup.9 or more, due both to recollimation and to structuring of the SERS substrate so that the incident laser and Raman scattered fields are in resonance with the surface plasmons of the SERS substrate.

  20. Magnetic Anomaly Detection by Remote Means

    DTIC Science & Technology

    2016-09-21

    REFERENCES 1. W. Happer, "Laser Remote Sensing of Magnetic Fields in the Atmosphere by Two-Photon Optical Pumping of Xe 129,” , NADC Report N62269-78-M...by Remote Means 5b. GRANT NUMBER NOOO 14-13-1-0282 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Miles , Richard and Dogariu...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Research on the possibility of detecting magnetic anomalies remotely using laser excitation of a

  1. The optical properties of absorbing aerosols with fractal soot aggregates: Implications for aerosol remote sensing

    NASA Astrophysics Data System (ADS)

    Cheng, Tianhai; Gu, Xingfa; Wu, Yu; Chen, Hao; Yu, Tao

    2013-08-01

    Applying sphere aerosol models to replace the absorbing fine-sized dominated aerosols can potentially result in significant errors in the climate models and aerosol remote sensing retrieval. In this paper, the optical properties of absorbing fine-sized dominated aerosol were modeled, which are taking into account the fresh emitted soot particles (agglomerates of primary spherules), aged soot particles (semi-externally mixed with other weakly absorbing aerosols), and coarse aerosol particles (dust particles). The optical properties of the individual fresh and aged soot aggregates are calculated using the superposition T-matrix method. In order to quantify the morphology effect of absorbing aerosol models on the aerosol remote sensing retrieval, the ensemble averaged optical properties of absorbing fine-sized dominated aerosols are calculated based on the size distribution of fine aerosols (fresh and aged soot) and coarse aerosols. The corresponding optical properties of sphere absorbing aerosol models using Lorenz-Mie solutions were presented for comparison. The comparison study demonstrates that the sphere absorbing aerosol models underestimate the absorption ability of the fine-sized dominated aerosol particles. The morphology effect of absorbing fine-sized dominated aerosols on the TOA radiances and polarized radiances is also investigated. It is found that the sphere aerosol models overestimate the TOA reflectance and polarized reflectance by approximately a factor of 3 at wavelength of 0.865 μm. In other words, the fine-sized dominated aerosol models can cause large errors in the retrieved aerosol properties if satellite reflectance measurements are analyzed using the conventional Mie theory for spherical particles.

  2. A review of visible, near-IR, and mid-IR transitions in rare-earth doped glass waveguides for remote sensing and LIDAR

    NASA Astrophysics Data System (ADS)

    Jha, Animesh

    2006-12-01

    In the review article we explain the recent investigations on rare-earth doped glass and optical fibres for designing lasers which may be suitable for remote sensing and LIDAR applications. The paper explains the importance of engineering efficient lasing transitions in visible (480-650 nm) for generating UV lasers via one-stage harmonic generation. Besides visible transitions, we also demonstrate the transitions in near- and mid-IR via near-IR pumping scheme.

  3. Retroreflective systems for remote readout

    DOEpatents

    Deason, V.A.; Colwell, F.S.; Ricks, K.L.

    1998-10-13

    A sensing device is described for sensing an environmental factor. The device includes a retroreflective layer disposed in a parallel, facing relationship with a sensing layer. The sensing layer has an initial optical absorption capacity for (1) sensing a presence of an environmental factor, (2) experiencing a change in optical absorption capacity responsive to said environmental factor, and (3) transmitting and attenuating light. A first portion of the sensing layer is sealed off from exposure to the environment while a second portion remains exposed to the environment such that, when the environmental factor is present, the first portion of the sensing layer is prevented from experiencing a change in optical absorption capacity responsive to said environmental factor. Well-collimated light beams are passed through the sensing layer and are reflected back from the retroreflective layer for processing. When the environmental factor is present, the beams which pass through the second portion are attenuated responsive to an increase in optical absorption capacity and are compared with the non-attenuated beams passing through the first portion to calculate the presence and quantity of the environmental factor. 7 figs.

  4. Retroreflective systems for remote readout

    DOEpatents

    Deason, Vance A.; Colwell, Frederick S.; Ricks, Kirk L.

    1998-01-01

    A sensing device for sensing an environmental factor. The device includes a retroreflective layer disposed in a parallel, facing relationship with a sensing layer. The sensing layer has an initial optical absorption capacity for (i) sensing a presence of an environmental factor, (ii) experiencing a change in optical absorption capacity responsive to said environmental factor, and (iii) transmitting and attenuating light. A first portion of the sensing layer is sealed off from exposure to the environment while a second portion remains exposed to the environment such that, when the environmental factor is present, the first portion of the sensing layer is prevented from experiencing a change in optical absorption capacity responsive to said environmental factor. Well-collimated light beams are passed through the sensing layer and are reflected back from the retroreflective layer for processing. When the environmental factor is present, the beams which pass through the second portion are attenuated responsive to an increase in optical absorption capacity and are compared with the non-attenuated beams passing through the first portion to calculate the presence and quantity of the environmental factor.

  5. Passive optical remote sensing of Congo River bathymetry using Landsat

    NASA Astrophysics Data System (ADS)

    Ache Rocha Lopes, V.; Trigg, M. A.; O'Loughlin, F.; Laraque, A.

    2014-12-01

    While there have been notable advances in deriving river characteristics such as width, using satellite remote sensing datasets, deriving river bathymetry remains a significant challenge. Bathymetry is fundamental to hydrodynamic modelling of river systems and being able to estimate this parameter remotely would be of great benefit, especially when attempting to model hard to access areas where the collection of field data is difficult. One such region is the Congo Basin, where due to past political instability and large scale there are few studies that characterise river bathymetry. In this study we test whether it is possible to use passive optical remote sensing to estimate the depth of the Congo River using Landsat 8 imagery in the region around Malebo Pool, located just upstream of the Kinshasa gauging station. Methods of estimating bathymetry using remotely sensed datasets have been used extensively for coastal regions and now more recently have been demonstrated as feasible for optically shallow rivers. Previous river bathymetry studies have focused on shallow rivers and have generally used aerial imagery with a finer spatial resolution than Landsat. While the Congo River has relatively low suspended sediment concentration values the application of passive bathymetry estimation to a river of this scale has not been attempted before. Three different analysis methods are tested in this study: 1) a single band algorithm; 2) a log ratio method; and 3) a linear transform method. All three methods require depth data for calibration and in this study area bathymetry measurements are available for three cross-sections resulting in approximately 300 in-situ measurements of depth, which are used in the calibration and validation. The performance of each method is assessed, allowing the feasibility of passive depth measurement in the Congo River to be determined. Considering the scarcity of in-situ bathymetry measurements on the Congo River, even an approximate estimate of depths from these methods will be of considerable value in its hydraulic characterisation.

  6. Hydraulic description of a flood event with optical remote sensors: a constructive constraint on modelling uncertainties

    NASA Astrophysics Data System (ADS)

    Battiston, Stéphanie; Allenbach, Bernard

    2010-05-01

    The exceptional characteristics of the December 2003 Rhône flood event (particularly high water flows, extent of the affected area, important damages especially in the region of Arles) make it be considered as a reference flood episode of this French river and a very well-known event. During the crisis, the International Charter "Space and Major Disasters" was triggered by the French Civil Protection for the rapid mapping of the flooding using Earth Observation imagery in order to facilitate crisis operations. As a result, more than 60 satellite images covering the flood were acquired over a 10 days period following the peak flow. Using the opportunity provided by this incomparable data coverage, the French Ministry of the Environment ordered a study on the evaluation of remote sensing's potential benefits for flood management. One of the questions asked by the risk managers was: what type of flood information can be provided by the different remote sensing platforms? Elements of response were delivered mainly in the form of a comprehensive compilation of maps and illustrations, displaying the main hydraulic elements (static ones as well as dynamic ones), initially listed and requested by hydrologists (more precisely, by a regional engineering society specialised in hydraulics and hydrology and in charge of a field campaign during the event), observed on different optical images of the flood event having affected the plain between Tarascon (upstream) and Arles (downstream). It is seen that a careful mapping of all flood traces visible on remote sensing event imagery - apparent water, moisture traces, breaches, overflows, stream directions, impermeable boundaries … - delivers a valuable vision of the flood's occurrence combining accuracy and comprehensiveness. In fact, optical imagery offers a detailed vision of the event : moisture traces complete flood traces extent; the observation of draw-off directions through waterproof barriers reveals hydraulic compartments; high resolution optical imagery allow the exhaustive inventory of breaches and overflows; turbidity variations and draw-off give information on stream directions. These facts are of primary interest to help in deriving a firm understanding of the flooding processes, but also comprise a powerful source for the necessary parameterization and/or calibration of hydraulic models. Thus the accuracy of flood extents derived from remote sensing data could, on the one hand, be valuable inputs to historical flood info-bases within overall risk-linked databases, and on the other hand, test the validity of hydrological modelling, while helping to lift equifinality uncertainties. These first investigations highlight that space imagery of events constitutes an unrivalled tool for flood disaster observation. This 2D record is complementary to all field measurements and the integration of "space derived flood products" is valuable for all stages of risk management. This potential of EO optical sensors for flood monitoring is also confirmed in a detailed analysis making a qualitative and quantitative evaluation of the results, confronting ten optical and radar remote sensing platforms with field observations.

  7. Bio-Optical Properties of the Arabian Sea as Determined by In Situ and Sea WiFS Data

    NASA Technical Reports Server (NTRS)

    Trees, Charles C.

    1997-01-01

    The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. JGOFS Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces," within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable. The specific technical objectives were: (1) To characterize the vertical distribution of the inherent and apparent optical properties by measuring downwelling and upwelling irradiances, upwelling radiances, scalar irradiance of PAR, and beam transmissions at each station - from these data, spectral diffuse attenuation coefficients, irradiance reflectances, remote sensing reflectances, surface-leaving radiances and beam attenuation coefficients were determined; (2) To characterize the spectral absorption of total particulate, detrital, and dissolved organic material at each station from discrete water samples; (3) To describe the vertical distribution of photoadaptive properties in the water column by measuring profiles of stimulated (SF) and natural (NF) fluorescence and examining relationships between SF and NF as a function of diffuse optical depth, pigment biomass and primary productivity; and (4) To establish locally derived, in-water algorithms relating remote sensing reflectance spectra to diffuse attenuation coefficients, phytoplankton pigment concentrations and primary productivity, through intercomparisons with in situ measurements, for application to SeaWiFS data.

  8. Research activity of the greenhouse gas measurements using optical remote sensing in Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Asai, K.

    2009-12-01

    Japan might be one of the most active countries dedicating themselves to studying the greenhouse gas (GHG) measurements using optical remote sensing not only on the ground but also from space. There are two reasons; one of them ascends to the Kyoto Protocol, agreed in December 1997 in Kyoto, an ancient city of Japan until 19th centuries, was designed to address the international response to serious climate change due to greenhouse gases. The other reason is due to a revision of the Basic Environment Law of Japan in order to meet the Kyoto Protocol in 1998. The State makes efforts to ensure international collaboration so as to effectively promote the monitoring, observation and measurement of the environmental situation with regard to global warming. Main activities are listed in a Table1. They are divided into two categories, i.e. the Greenhouse gases Observing SATellite (GOSAT), launched on Jan.23, 2009 and active remote sensing using lidar technology. In case of GOSAT, an initial analysis of carbon dioxide and methane concentrations was obtained for clear-sky scenes over land. In the future, after further calibration and validation of the data, observation data and corresponding analyzed products will be made available. On the other hand, studies of the laser remote sensing for measuring GHG have been actively carrying out to achieve reliable data with a higher accuracy at wavelengths of 1.6micron meter (Tokyo Metropolitan University, JAXA, Mitsubishi Electric Co.) and 2 micron meter (National Institute of Information and Communications Technology). As well-known, one of the most interests regarding atmospheric CO2 measurements is that carbon dioxide molecule measured are due to anthropological emission from fossil fuel burning or due to natural one from forest fires etc. We proposed a newly advanced CO2/CO DIAL using a hybrid of pulsed Tm,Ho:YLF and pulsed OPO pumped by it for better understanding them. Now, our effort is directed to find out the most suitable wavelength pairs to be selected.Activities of optical remote sensing for GHG in Japan

  9. Leaf Relative Water Content Estimated from Leaf Reflectance and Transmittance

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. In the research we report here, we used optical polarization techniques to monitor the light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both change nonlinearly. The result show that the nonlinearities cancel in the ratio R/T, which appears linearly related to RWC for RWC less than 90%. The results suggest that potentially leaf water status and perhaps even canopy water status could be monitored starting from leaf and canopy optical measurements.

  10. An Optical Model for Estimating the Underwater Light Field from Remote Sensing

    NASA Technical Reports Server (NTRS)

    Liu, Cheng-Chien; Miller, Richard L.

    2002-01-01

    A model of the wavelength-integrated scalar irradiance for a vertically homogeneous water column is developed. It runs twenty thousand times faster than simulations obtained using full Hydrolight code and limits the percentage error to less than 3.7%. Both the distribution of incident sky radiance and a wind-roughened surface are integrated in the model. Our model removes common limitations of earlier models and can be applied to waters with any composition of the inherent optical properties. Implementation of this new model, as well as the ancillary information required for processing global-scale satellite data, is discussed. This new model is fast, accurate, and flexible and therefore provides important information of the underwater light field from remote sensing.

  11. Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies

    NASA Technical Reports Server (NTRS)

    Myneni, R. B.; Ganapol, B. D.; Asrar, G.

    1992-01-01

    The problem of remote sensing the canopy photosynthetic and stomatal conductance efficiencies is investigated with the aid of one- and three-dimensional radiative transfer methods coupled to a semi-empirical mechanistic model of leaf photosynthesis and stomatal conductance. Desertlike vegetation is modeled as clumps of leaves randomly distributed on a bright dry soil with partial ground cover. Normalized difference vegetation index (NDVI), canopy photosynthetic (Ep), and stomatal efficiencies (Es) are calculated for various geometrical, optical, and illumination conditions. The contribution of various radiative fluxes to estimates of Ep is evaluated and the magnitude of errors in bulk canopy formulation of problem parameters are quantified. The nature and sensitivity of the relationship between Ep and Es to NDVI is investigated, and an algorithm is proposed for use in operational remote sensing.

  12. Efficient Tm:Fiber Pumped Solid-State Ho:YLF 2-micrometer Laser for Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta

    2012-01-01

    An efficient 19 W, TEM(sub 00) mode, Ho:YLF laser pumped by continuous wave Tm:fiber laser has been demonstrated at the room temperature. The slope efficiency and optical-to-optical efficiency are 65% and 55%, respectively.

  13. Bio-optical water quality dynamics observed from MERIS in Pensacola Bay, Florida

    EPA Science Inventory

    Observed bio-optical water quality data collected from 2009 to 2011 in Pensacola Bay, Florida were used to develop empirical remote sensing retrieval algorithms for chlorophyll a (Chla), colored dissolved organic matter (CDOM), and suspended particulate matter (SPM). Time-series ...

  14. 3D Radiative Aspects of the Increased Aerosol Optical Depth Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wen, Guoyong; Remer, Lorraine; Cahalan, Robert; Coakley, Jim

    2007-01-01

    To characterize aerosol-cloud interactions it is important to correctly retrieve aerosol optical depth in the vicinity of clouds. It is well reported in the literature that aerosol optical depth increases with cloud cover. Part of the increase comes from real physics as humidification; another part, however, comes from 3D cloud effects in the remote sensing retrievals. In many cases it is hard to say whether the retrieved increased values of aerosol optical depth are remote sensing artifacts or real. In the presentation, we will discuss how the 3D cloud affects can be mitigated. We will demonstrate a simple model that can assess the enhanced illumination of cloud-free columns in the vicinity of clouds. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from the enhanced Rayleigh scattering due to presence of surrounding clouds. A stochastic cloud model of broken cloudiness is used to simulate the upward flux.

  15. Hyperspectral remote sensing of the responses of vegetation ecosystems to physical and biological changes of the environment

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Krezhov, Kiril; Maneva, Svetla; Moskova, Irina; Petrov, Nikolay

    2016-07-01

    Hyperspectral remote sensing technique, based on reflectance measurements acquired in a high number of contiguous spectral bands in the visible and near infrared spectral ranges, was used to detect the influence of some environmental changes to vegetation ecosystems. Adverse physical and biological conditions give rise to morphological, physiological, and biochemical changes in the plants that affect the manner in which they interact with the light. All green vegetation species have unique spectral features, mainly because of the chlorophyll and carotenoid, and other pigments, and water content. Because spectral reflectance is a function of the illumination conditions, tissue optical properties and biochemical content of the plants it may be used to collect information on several important biophysical parameters such as color and the spectral signature of features, vegetation chlorophyll absorption characteristics, vegetation moisture content, etc. Remotely sensed data collected by means of a portable fiber-optics spectrometer in the spectral range 350-1100 nm were used to extract information on the influence of some environmental changes. Stress factors such as enhanced UV-radiation, salinity, viral infections, were applied to some young plants species (potato, tomato, plums). The test data were subjected to different digital image processing techniques. This included statistical (Student's t-criterion), first derivative and cluster analyses and some vegetation indices. Statistical analyses were carried out in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (680-720 nm) and near infrared (720-780 nm). The strong relationship, which was found between the results from the remote sensing technique and some biochemical and serological analyses (stress markers, DAS-ELISA), indicates the importance of hyperspectral reflectance data for conducting, easily and without damage, rapid assessments of plant biophysical variables. Emphasis is put on current capability and future potential of remote sensing for assessment of the plant health and on the optimum spectral regions and vegetation indices for sensing these biophysical variables.

  16. Bringing the Coastal Zone into Finer Focus

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Hooker, S. B.; Kudela, R. M.; Morrow, J. H.; Torres-Perez, J. L.; Palacios, S. L.; Negrey, K.; Dungan, J. L.

    2015-12-01

    Measurements over extents from submeter to 10s of meters are critical science requirements for the design and integration of remote sensing instruments for coastal zone research. Various coastal ocean phenomena operate at different scales (e.g. meters to kilometers). For example, river plumes and algal blooms have typical extents of 10s of meters and therefore can be resolved with satellite data, however, shallow benthic ecosystem (e.g., coral, seagrass, and kelp) biodiversity and change are best studied at resolutions of submeter to meter, below the pixel size of typical satellite products. The delineation of natural phenomena do not fit nicely into gridded pixels and the coastal zone is complicated by mixed pixels at the land-sea interface with a range of bio-optical signals from terrestrial and water components. In many standard satellite products, these coastal mixed pixels are masked out because they confound algorithms for the ocean color parameter suite. In order to obtain data at the land/sea interface, finer spatial resolution satellite data can be achieved yet spectral resolution is sacrificed. This remote sensing resolution challenge thwarts the advancement of research in the coastal zone. Further, remote sensing of benthic ecosystems and shallow sub-surface phenomena are challenged by the requirements to sense through the sea surface and through a water column with varying light conditions from the open ocean to the water's edge. For coastal waters, >80% of the remote sensing signal is scattered/absorbed due to the atmospheric constituents, sun glint from the sea surface, and water column components. In addition to in-water measurements from various platforms (e.g., ship, glider, mooring, and divers), low altitude aircraft outfitted with high quality bio-optical radiometer sensors and targeted channels matched with in-water sensors and higher altitude platform sensors for ocean color products, bridge the sea-truth measurements to the pixels acquired from satellite and high altitude platforms. We highlight a novel NASA airborne calibration, validation, and research capability for addressing the coastal remote sensing resolution challenge.

  17. On the Accuracy of Double Scattering Approximation for Atmospheric Polarization Computations

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Marshak, Alexander L.

    2011-01-01

    Interpretation of multi-angle spectro-polarimetric data in remote sensing of atmospheric aerosols require fast and accurate methods of solving the vector radiative transfer equation (VRTE). The single and double scattering approximations could provide an analytical framework for the inversion algorithms and are relatively fast, however accuracy assessments of these approximations for the aerosol atmospheres in the atmospheric window channels have been missing. This paper provides such analysis for a vertically homogeneous aerosol atmosphere with weak and strong asymmetry of scattering. In both cases, the double scattering approximation gives a high accuracy result (relative error approximately 0.2%) only for the low optical path - 10(sup -2) As the error rapidly grows with optical thickness, a full VRTE solution is required for the practical remote sensing analysis. It is shown that the scattering anisotropy is not important at low optical thicknesses neither for reflected nor for transmitted polarization components of radiation.

  18. Bottom depth and type for shallow waters: Hyperspectral observations from a blimp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, ZhongPing; Carder, K.; Steward, R.

    1997-08-01

    In a study of a blimp transect over Tampa Bay (Florida), hyperspectral upwelling radiance over the sand and seagrass bottoms was measured. These measurements were converted to hyperspectral remote-sensing reflectances. Using a shallow-water remote-sensing-reflectance model, in-water optical properties, bottom depths and bottom albedos were derived analytically and simultaneously by an optimization procedure. In the process, curvatures of sand and seagrass albedos were used. Also used was a model of absorption spectrum of phytoplankton pigments. The derived bottom depths were compared with bathymetry charts and found to agree well. This study suggests that a low-flying blimp is a useful platform formore » the study and mapping of coastal water environments. The optical model as well as the data-reduction procedure used are practical for the retrieval of shallow water optical properties.« less

  19. Remote sensing measurements of atmospheric methane at 2.3 microns with a nonmechanical GFCR

    NASA Technical Reports Server (NTRS)

    Wang, Liang-guo; Sachse, Glen; Wallio, Andrew; LeBel, Peter; Vay, Stephanie

    1995-01-01

    Gas filter correlation radiometer (GFCR) is a passive remote sensing technique used in a variety of atmospheric measurements. In recent years, a nonmechanical optical switching GFCR has been invented and developed at NASA Langley Research Center. The use of a polarization modulator, in conjunction with a polarization beamsplitter, enables rapid optical switching without mechanically moving parts. In comparison with the conventional GFCR, which involves mechanical chopping or switching between two optical paths, the nonmechanical GFCR possesses some very attractive advantages such as fast sampling rate, high reliability, low weight, and long operational life time. In a recent study, we have developed a new GFCR configuration and have fabricated a compact, nonmechanical breadboard instrument. Using this instrument, we have carried out atmospheric methane measurements in the 2.3 micron region. Measurement results are compared with theoretical predictions using the HITRAN database.

  20. Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS)

    NASA Technical Reports Server (NTRS)

    Guerra, David V.; Schwemmer, Geary K.; Wooten, Albert D., Jr.; Chaudhuri, Sandipan S.; Wilkerson, Thomas D.

    1995-01-01

    A ground-based atmospheric lidar system that utilizes a Holographic Optical Telescope and Scanner has been developed and successfully operated to obtain atmospheric backscatter profiles. The Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing is built around a volume phase reflection Holographic Optical Element. This single optical element both directs and collimates the outgoing laser beam as well as collects, focuses, and filters the atmospheric laser backscatter, while offering significant weight savings over existing telescope mirror technology. Conical scanning is accomplished as the HOE rotates on a turntable sweeping the 1.2 mrad field of view around a 42deg cone. During this technology demonstration, atmospheric aerosol and cloud return signals have been received in both stationary and scanning modes. The success of this program has led to the further development of this technology for integration into airborne and eventually satellite earth observing scanning lidar telescopes.

  1. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    NASA Astrophysics Data System (ADS)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However, doing so requires overcoming significant limitations typically including much lower sample rates, reduced sensitivity and dynamic range, more expensive video hardware, and the need for sophisticated video processing. The ATCOM real time image processing software environment provides many of the needed capabilities for researching video-acoustic signal extraction. ATCOM currently is a powerful tool for the visual enhancement of atmospheric turbulence distorted telescopic views. In order to explore the potential of acoustic signal recovery from video imagery we modified ATCOM to extract audio waveforms from the same telescopic video sources. In this paper, we demonstrate and compare both readout techniques for several aerospace test scenarios to better show where each has advantages.

  2. Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Jupp, David L. B.

    1990-01-01

    Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.

  3. Three optical methods for remotely measuring aerosol size distributions.

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Herman, B. M.

    1971-01-01

    Three optical probing methods for remotely measuring atmospheric aerosol size distributions are discussed and contrasted. The particular detection methods which are considered make use of monostatic lidar (laser radar), bistatic lidar, and solar radiometer sensing techniques. The theory of each of these measurement techniques is discussed briefly, and the necessary constraints which must be applied to obtain aerosol size distribution information from such measurements are pointed out. Theoretical and/or experimental results are also presented which demonstrate the utility of the three proposed probing methods.

  4. Multi Source Remote Sensing for Monitoring Light-Absorbing Impurities on Snow and Ice in the European Alps

    NASA Astrophysics Data System (ADS)

    Colombo, R.; Baccolo, G.; Garzonio, R.; Massabò, D.; Julitta, T.; Rossini, M.; Ferrero, L.; Delmonte, B.; Maggi, V.; Mattavelli, M.; Panigada, C.; Cogliati, S.; Cremonese, E.; Di Mauro, B.

    2016-12-01

    The European Alps are located close to one of the most industrialized areas of the planet and they are 3.000 km from the largest desert of the Earth. Light-absorbing impurities (LAI) emitted from these sources can reach the Alpine chain and deposit on snow covered areas and mountain glaciers. Although several studies show that LAI have important impacts on the optical properties of snow and ice, reducing the albedo and promoting the melt, this impact has been poorly characterized in the Alps. In this contribution, we present the results of a multisource remote sensing approach aimed to study the LAI impact on snow and ice properties in the Alpine area. This process has been observed by means of remote and proximal sensing methods, using satellite (Landsat 8, Hyperion and MODIS data), field spectroscopy (ASD measurements), Automatic Weather Stations, aerial surveys (Unmanned Aerial Vehicle), radiative transfer modeling (SNICAR and TARTES) and laboratory analysis (hyperspectral imaging system). Furthermore, particle size (Coulter Counter), geochemical (Instrumental Neutron Activation Analysis, INAA) and optical (Multi-Wavelength Absorbance Analyzer, MWAA) analyses have been applied to determine the nature and radiative properties of particulate material deposited on snow and ice or aggregated into cryoconite holes. Our results demonstrate that LAI can be monitored from remote sensing at different scale. LAI showed to have a strong impact on the Alpine cryosphere, paving the way for the assessment of their role in melting processes.

  5. Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long-term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VISNIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VISNIR R and T to leaf physiological changes linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf and perhaps of a plant canopy might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.

  6. Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations

    PubMed Central

    Glantz, Paul; Bourassa, Adam; Herber, Andreas; Iversen, Trond; Karlsson, Johannes; Kirkevåg, Alf; Maturilli, Marion; Seland, Øyvind; Stebel, Kerstin; Struthers, Hamish; Tesche, Matthias; Thomason, Larry

    2014-01-01

    In this study Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to Sun photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval over ocean (ΔAOT = ±0.03 ± 0.05 · AOT). The results from the remote sensing have been used to examine the accuracy in estimates of aerosol optical properties in the Arctic, generated by global climate models and from in situ measurements at the Zeppelin station, Svalbard. AOT simulated with the Norwegian Earth System Model/Community Atmosphere Model version 4 Oslo global climate model does not reproduce the observed seasonal variability of the Arctic aerosol. The model overestimates clear-sky AOT by nearly a factor of 2 for the background summer season, while tending to underestimate the values in the spring season. Furthermore, large differences in all-sky AOT of up to 1 order of magnitude are found for the Coupled Model Intercomparison Project phase 5 model ensemble for the spring and summer seasons. Large differences between satellite/ground-based remote sensing of AOT and AOT estimated from dry and humidified scattering coefficients are found for the subarctic marine boundary layer in summer. Key Points Remote sensing of AOT is very useful in validation of climate models PMID:25821664

  7. Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements.

    NASA Astrophysics Data System (ADS)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Dahlgren, R. P.

    2016-12-01

    Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VIS/NIR R and T to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.

  8. 3D MOEMS-based optical micro-bench platform for the miniaturization of sensing devices

    NASA Astrophysics Data System (ADS)

    Garcia-Blanco, Sonia; Caron, Jean-Sol; Leclair, Sébastien; Topart, Patrice A.; Jerominek, Hubert

    2008-02-01

    As we enter into the 21st century, the need for miniaturized portable diagnostic devices is increasing continuously. Portable devices find important applications for point-of-care diagnostics, patient self-monitoring and in remote areas, such as unpopulated regions where the cost of large laboratory facilities is not justifiable, underdeveloped countries and other remote locations such as space missions. The advantage of miniaturized sensing optical systems includes not only the reduced weight and size but also reduced cost, decreased time to results and robustness (e.g. no need for frequent re-alignments). Recent advances in micro-fabrication and assembly technologies have enabled important developments in the field of miniaturized sensing systems. INO has developed a technology platform for the three dimensional integration of MOEMS on an optical microbench. Building blocks of the platform include microlenses, micromirrors, dichroic beamsplitters, filters and optical fibers, which can be positioned using passive alignment structures to build the desired miniaturised system. The technology involves standard microfabrication, thick resist UV-lithography, thick metal electroplating, soldering, replication in sol-gel materials and flip-chip bonding processes. The technology is compatible with wafer-to-wafer bonding. A placement accuracy of +/- 5 μm has been demonstrated thanks to the integration of alignment marks co registered with other optical elements fabricated on different wafers. In this paper, the building blocks of the technology will be detailed. The design and fabrication of a 5x5 channels light processing unit including optical fibers, mirrors and collimating microlenses will be described. Application of the technology to various kinds of sensing devices will be discussed.

  9. Testing of Cerex Open-Path Ultraviolet Differential Optical Absorption Spectroscopy Systems for Fenceline Monitoring Applications

    EPA Science Inventory

    Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...

  10. Testing of Cerex Open-Path Ultraviolet Differential Optical Absorption Spectroscopy System for Fenceline Monitoring Applications

    EPA Science Inventory

    Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...

  11. A new multi-angle remote sensing framework for scaling vegetation properties from tower-based spectro-radiometers to next generation "CubeSat"-satellites.

    NASA Astrophysics Data System (ADS)

    Hilker, T.; Hall, F. G.; Dyrud, L. P.; Slagowski, S.

    2014-12-01

    Frequent earth observations are essential for assessing the risks involved with global climate change, its feedbacks on carbon, energy and water cycling and consequences for live on earth. Often, satellite-remote sensing is the only practical way to provide such observations at comprehensive spatial scales, but relationships between land surface parameters and remotely sensed observations are mostly empirical and cannot easily be scaled across larger areas or over longer time intervals. For instance, optically based methods frequently depend on extraneous effects that are unrelated to the surface property of interest, including the sun-server geometry or background reflectance. As an alternative to traditional, mono-angle techniques, multi-angle remote sensing can help overcome some of these limitations by allowing vegetation properties to be derived from comprehensive reflectance models that describe changes in surface parameters based on physical principles and radiative transfer theory. Recent results have shown in theoretical and experimental research that multi-angle techniques can be used to infer and scale the photosynthetic rate of vegetation, its biochemical and structural composition robustly from remote sensing. Multi-angle remote sensing could therefore revolutionize estimates of the terrestrial carbon uptake as scaling of primary productivity may provide a quantum leap in understanding the spatial and temporal complexity of terrestrial earth science. Here, we introduce a framework of next generation tower-based instruments to a novel and unique constellation of nano-satellites (Figure 1) that will allow us to systematically scale vegetation parameters from stand to global levels. We provide technical insights, scientific rationale and present results. We conclude that future earth observation from multi-angle satellite constellations, supported by tower based remote sensing will open new opportunities for earth system science and earth system modeling.

  12. Comparison of tropospheric NO2 vertical columns in an urban environment using satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements

    NASA Astrophysics Data System (ADS)

    Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.

    2013-10-01

    Tropospheric NO2 vertical column densities have been retrieved and compared for the first time in Toronto, Canada, using three methods of differing spatial scales. Remotely sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities estimated using a pair of chemiluminescence monitors situated 0.01 and 0.5 km a.g.l. (above ground level). The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by an average of 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. The monthly averaged ratio of the NO2 concentration at 0.5 to 0.01 km varied seasonally, and exhibited a negative linear dependence on the monthly average temperature, with Pearson's R = 0.83. During the coldest month, February, this ratio was 0.52 ± 0.04, while during the warmest month, July, this ratio was 0.34 ± 0.04, illustrating that NO2 is not well mixed within 0.5 km above ground level. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson's R value ranging from 0.72 to 0.81), but the in situ vertical column densities were 52 to 58% greater than the remotely sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each measurement technique.

  13. Multi- and hyperspectral remote sensing of tropical marine benthic habitats

    NASA Astrophysics Data System (ADS)

    Mishra, Deepak R.

    Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was consistently more accurate (84%) including finer definition of geomorphological features than the satellite sensors. IKONOS (81%) and QuickBird (81%) sensors showed similar accuracy to AISA, however, such similarity was only reached at the coarse classification levels of 5 and 6 habitats. These results confirm the potential of an effective combination of high spectral and spatial resolution sensor, for accurate benthic habitat mapping.

  14. Relations Between Cloud Condensation Nuclei And Aerosol Optical Properties Relevant to Remote Sensing: Airborne Measurements in Biomass Burning, Pollution and Dust Aerosol Over North America

    NASA Astrophysics Data System (ADS)

    Shinozuka, Y.; Clarke, A.; Howell, S.; Kapustin, V.; McNaughton, C.; Zhou, J.; Decarlo, P.; Jimenez, J.; Roberts, G.; Tomlinson, J.; Collins, D.

    2008-12-01

    Remote sensing of the concentration of cloud condensation nuclei (CCN) would help investigate the indirect effect of tropospheric aerosols on clouds and climate. In order to assess its feasibility, this paper evaluates the spectral-based retrieval technique for aerosol number and seeks one for aerosol solubility, using in-situ aircraft measurements of aerosol size distribution, chemical composition, hygroscopicity, CCN activity and optical properties. Our statistical analysis reveals that the CCN concentration over Mexico can be optically determined to a relative error of <20%, smaller than that for the mainland US and the surrounding oceans (~a factor of 2). Mexico's advantage is four-fold. Firstly, many particles originating from the lightly regulated industrial combustion and biomass burning are large enough to significantly affect light extinction, elevating the correlation between extinction and CCN number in absence of substantial dust. Secondly, the generally low ambient humidity near the major aerosol sources limits the error in the estimated response of particle extinction to humidity changes. Thirdly, because many CCN contain black carbon, light absorption also provides a measure of the CCN concentration. Fourthly, the organic fraction of volatile mass of submicron particles (OMF) is anti-correlated with the wavelength dependence of extinction due to preferential anion uptake by coarse dust, which provides a potential tool for remote-sensing OMF and the particle solubility.

  15. Validation of Cloud Optical Parameters from Passive Remote Sensing in the Arctic by using the Aircraft Measurements

    NASA Astrophysics Data System (ADS)

    Chen, H.; Schmidt, S.; Coddington, O.; Wind, G.; Bucholtz, A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2017-12-01

    Cloud Optical Parameters (COPs: e.g., cloud optical thickness and cloud effective radius) and surface albedo are the most important inputs for determining the Cloud Radiative Effect (CRE) at the surface. In the Arctic, the COPs derived from passive remote sensing such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) are difficult to obtain with adequate accuracy owing mainly to insufficient knowledge about the snow/ice surface, but also because of the low solar zenith angle. This study aims to validate COPs derived from passive remote sensing in the Arctic by using aircraft measurements collected during two field campaigns based in Fairbanks, Alaska. During both experiments, ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARISE (Arctic Radiation-IceBridge Sea and Ice Experiment), the Solar Spectral Flux Radiometer (SSFR) measured upwelling and downwelling shortwave spectral irradiances, which can be used to derive surface and cloud albedo, as well as the irradiance transmitted by clouds. We assess the variability of the Arctic sea ice/snow surfaces albedo through these aircraft measurements and incorporate this variability into cloud retrievals for SSFR. We then compare COPs as derived from SSFR and MODIS for all suitable aircraft underpasses of the satellites. Finally, the sensitivities of the COPs to surface albedo and solar zenith angle are investigated.

  16. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  17. 1984 European Conference on Optics, Optical Systems and Applications, Amsterdam, Netherlands, October 9-12, 1984, Proceedings

    NASA Astrophysics Data System (ADS)

    Boelger, B.; Ferwerda, H. A.

    Various papers on optics, optical systems, and their applications are presented. The general topics addressed include: laser systems, optical and electrooptical materials and devices; novel spectroscopic techniques and applications; inspection, remote sensing, velocimetry, and gauging; optical design and image formation; holography, image processing, and storage; and integrated and fiber optics. Also discussed are: nonlinear optics; nonlinear photorefractive materials; scattering and diffractions applications in materials processing, deposition, and machining; medical and biological applications; and focus on industry.

  18. Solid-state lasers for coherent communication and remote sensing

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1990-01-01

    Laser development, high efficiency, high power second harmonic generation, operation of optical parametric oscillators for wavelength diversity and tunability, and studies in coherent communications are reviewed.

  19. Optical remote sensing of asteroid surfaces from spacecraft

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.

    1978-01-01

    Reflectance spectroscopy and multispectral mapping are the techniques likely to be most useful for determining asteroid surfaces. Several other techniques should be considered for providing complementary information.

  20. Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.

  1. Optical characteristics of the earth's surface and atmosphere from the point of view of the remote sensing of natural resources: Review of the contemporary status of the problem

    NASA Technical Reports Server (NTRS)

    Tarnopolskiy, V. I.

    1978-01-01

    Widely used remote probing methods, and especially the multispectral method, for studying the earth from aerospace platforms necessitate the systematization and accumulation of data on the relationships between remote observations and measured parameters and characteristic properties and conditions of phenomena on the earth's surface. Data were presented on the optical characteristics of natural objects which arise during observations of these objects over a wide spectral interval which encompasses solar radiation reflected by the object as well as the object's inherent thermal radiation. The influence of the earth's atmosphere on remote measurements and several problems in simulation and calculation are discussed.

  2. Model for the Interpretation of Hyperspectral Remote-Sensing Reflectance

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping; Carder, Kendall L.; Hawes, Steve K.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.

    1994-01-01

    Remote-sensing reflectance is easier to interpret for the open ocean than for coastal regions because the optical signals are highly coupled to the phytoplankton (e.g., chlorophyll) concentrations. For estuarine or coastal waters, variable terrigenous colored dissolved organic matter (CDOM), suspended sediments, and bottom reflectance, all factors that do not covary with the pigment concentration, confound data interpretation. In this research, remote-sensing reflectance models are suggested for coastal waters, to which contributions that are due to bottom reflectance, CDOM fluorescence, and water Raman scattering are included. Through the use of two parameters to model the combination of the backscattering coefficient and the Q factor, excellent agreement was achieved between the measured and modeled remote-sensing reflectance for waters from the West Florida Shelf to the Mississippi River plume. These waters cover a range of chlorophyll of 0.2-40 mg/cu m and gelbstoff absorption at 440 nm from 0.02-0.4/m. Data with a spectral resolution of 10 nm or better, which is consistent with that provided by the airborne visible and infrared imaging spectrometer (AVIRIS) and spacecraft spectrometers, were used in the model evaluation.

  3. Best Practice Guidelines for Pre-Launch Characterization and Calibration of Instruments for Passive Optical Remote Sensing1

    PubMed Central

    Datla, R. U.; Rice, J. P.; Lykke, K. R.; Johnson, B. C.; Butler, J. J.; Xiong, X.

    2011-01-01

    The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented. PMID:26989588

  4. Validation of Ocean Color Remote Sensing Reflectance Using Autonomous Floats

    NASA Technical Reports Server (NTRS)

    Gerbi, Gregory P.; Boss, Emanuel; Werdell, P. Jeremy; Proctor, Christopher W.; Haentjens, Nils; Lewis, Marlon R.; Brown, Keith; Sorrentino, Diego; Zaneveld, J. Ronald V.; Barnard, Andrew H.; hide

    2016-01-01

    The use of autonomous proling oats for observational estimates of radiometric quantities in the ocean is explored, and the use of this platform for validation of satellite-based estimates of remote sensing reectance in the ocean is examined. This effort includes comparing quantities estimated from oat and satellite data at nominal wavelengths of 412, 443, 488, and 555 nm, and examining sources and magnitudes of uncertainty in the oat estimates. This study had 65 occurrences of coincident high-quality observations from oats and MODIS Aqua and 15 occurrences of coincident high-quality observations oats and Visible Infrared Imaging Radi-ometer Suite (VIIRS). The oat estimates of remote sensing reectance are similar to the satellite estimates, with disagreement of a few percent in most wavelengths. The variability of the oatsatellite comparisons is similar to the variability of in situsatellite comparisons using a validation dataset from the Marine Optical Buoy (MOBY). This, combined with the agreement of oat-based and satellite-based quantities, suggests that oats are likely a good platform for validation of satellite-based estimates of remote sensing reectance.

  5. Best Practice Guidelines for Pre-Launch Characterization and Calibration of Instruments for Passive Optical Remote Sensing.

    PubMed

    Datla, R U; Rice, J P; Lykke, K R; Johnson, B C; Butler, J J; Xiong, X

    2011-01-01

    The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented.

  6. Introduction and Testing of a Monitoring and Colony-Mapping Method for Waterbird Populations That Uses High-Speed and Ultra-Detailed Aerial Remote Sensing

    PubMed Central

    Bakó, Gábor; Tolnai, Márton; Takács, Ádám

    2014-01-01

    Remote sensing is a method that collects data of the Earth's surface without causing disturbances. Thus, it is worthwhile to use remote sensing methods to survey endangered ecosystems, as the studied species will behave naturally while undisturbed. The latest passive optical remote sensing solutions permit surveys from long distances. State-of-the-art highly sensitive sensor systems allow high spatial resolution image acquisition at high altitudes and at high flying speeds, even in low-visibility conditions. As the aerial imagery captured by an airplane covers the entire study area, all the animals present in that area can be recorded. A population assessment is conducted by visual interpretations of an ortho image map. The basic objective of this study is to determine whether small- and medium-sized bird species are recognizable in the ortho images by using high spatial resolution aerial cameras. The spatial resolution needed for identifying the bird species in the ortho image map was studied. The survey was adjusted to determine the number of birds in a colony at a given time. PMID:25046012

  7. Ocean experiments and remotely sensed images of chemically dispersed oil spills

    NASA Technical Reports Server (NTRS)

    Croswell, W. F.; Fedors, J. C.; Hoge, F. E.; Swift, R. N.; Johnson, J. C.

    1983-01-01

    A series of experiments was performed at sea where the effectiveness of dispersants applied from a helicopter was tested on fresh and weathered crude oils released from a surface research vessel. In conjunction with these experiments, remote sensing measurements using an array of airborne optical and microwave sensors were performed in order to aid in the interpretation of the dispersant effectiveness and to obtain quantitative images of oil on the sea under controlled conditions. Surface oil thickness and volume are inferred from airborne measurements using a dual-channel microwave imaging radiometer, aerial color photography, and an airborne oceanographic lidar. The remotely sensed measurements are compared with point sampled data obtained using a research vessel. The mass balance computations of surface versus subsurface oil volume using remotely sensed and point sampled data are consistent with each other and with the volumes of oil released. Data collected by the several techniques concur in indicating that, for the oils used and under the sea conditions encountered, the dispersant and application method are primarily useful when applied to fresh oil.

  8. Essentials of LIDAR multiangle data processing methodology for smoke polluted atmospheres

    Treesearch

    V. A. Kovalev; A. Petkov; C. Wold; S. Urbanski; W. M. Hao

    2009-01-01

    Mobile scanning lidar is the most appropriate tool for monitoring wildfire smoke-plume dynamics and optical properties. Lidar is the only remote sensing instrument capable of obtaining detailed three-dimensional range-resolved information for smoke distributions and optical properties over ranges of 10+ km at different wavelengths simultaneously.

  9. HYPERSPECTRAL REMOTE SENSING OF WATER QUALITY PARAMETERS FOR LARGE RIVERS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    Optical indicators of water quality have the potential of enhancing the abilities of resource managers to monitor water bodies in a timely and cost-effective manner. However, the degree to which optical indicators are useful may depend on their applicability to data collected fr...

  10. Reducing the uncertainty in the projection of the terrestrial carbon cycle by fusing models with remote sensing data

    NASA Astrophysics Data System (ADS)

    Serbin, S.; Shiklomanov, A. N.; Viskari, T.; Desai, A. R.; Townsend, P. A.; Dietze, M.

    2015-12-01

    Modeling global change requires accurate representation of terrestrial carbon (C), energy and water fluxes. In particular, capturing the properties of vegetation canopies that describe the radiation regime are a key focus for global change research because the properties related to radiation utilization and penetration within plant canopies provide an important constraint on terrestrial ecosystem productivity, as well as the fluxes of water and energy from vegetation to the atmosphere. As such, optical remote sensing observations present an important, and as yet relatively untapped, source of observations that can be used to inform modeling activities. In particular, high-spectral resolution optical data at the leaf and canopy scales offers the potential for an important and direct data constraint on the parameterization and structure of the radiative transfer model (RTM) scheme within ecosystem models across diverse vegetation types, disturbance and management histories. In this presentation we highlight ongoing work to integrate optical remote sensing observations, specifically leaf and imaging spectroscopy (IS) data across a range of forest ecosystems, into complex ecosystem process models within an efficient computational assimilation framework as a means to improve the description of canopy optical properties, vegetation composition, and modeled radiation balance. Our work leverages the Predictive Ecosystem Analyzer (PEcAn; http://www.pecanproject.org/) ecoinformatics toolbox together with a RTM module designed for efficient assimilation of leaf and IS observations to inform vegetation optical properties as well as associated plant traits. Ultimately, an improved understanding of the radiation balance of ecosystems will provide a better constraint on model projections of energy balance, vegetation composition, and carbon pools and fluxes thus allowing for a better diagnosis of the vulnerability of terrestrial ecosystems in response to global change.

  11. Analysis of polarization characteristics of plant canopies using land-based remote sensing measurements for development of ground truth methods

    NASA Astrophysics Data System (ADS)

    Sidko, Aleksandr; Pisman, Tamara; Botvich, Irina; Shevyrnogov, Anatoly

    In order to develop satellite technology for monitoring of terrestrial plant canopies and land-based optical remote sensing techniques, one should employ new approaches to identifying farmlands and determining the plant species composition. The results present a study on polarized characteristics of spectral reflection factor of plant canopies (forests and farm crop canopies) under field conditions, using optical remote sensing techniques. The polarized components of the reflectance factor and the degree of polarization were calculated. Measurements were performed using a spectrophotometer with a polarized light filter attachment. Measurements were done within the spectral range from 400 to 840 nm. The viewing angle was no greater than 200 with respect to the nadir. Measurements of the polarization characteristics of the vegetation on the test ranges were conducted during June-July month when the height of the sun was at its zenith. Different wavelength dependences of the spectral reflection factor polarized component (Rq) and degree of polarization (P) were found both for the coniferous and broadleaf forests (pine and birch) and for farm crops (wheat and corn) and grass canopies. These differences can be used to determine species composition of plant canopies.

  12. Relating remotely sensed optical variability to marine benthic biodiversity.

    PubMed

    Herkül, Kristjan; Kotta, Jonne; Kutser, Tiit; Vahtmäe, Ele

    2013-01-01

    Biodiversity is important in maintaining ecosystem viability, and the availability of adequate biodiversity data is a prerequisite for the sustainable management of natural resources. As such, there is a clear need to map biodiversity at high spatial resolutions across large areas. Airborne and spaceborne optical remote sensing is a potential tool to provide such biodiversity data. The spectral variation hypothesis (SVH) predicts a positive correlation between spectral variability (SV) of a remotely sensed image and biodiversity. The SVH has only been tested on a few terrestrial plant communities. Our study is the first attempt to apply the SVH in the marine environment using hyperspectral imagery recorded by Compact Airborne Spectrographic Imager (CASI). All coverage-based diversity measures of benthic macrophytes and invertebrates showed low but statistically significant positive correlations with SV whereas the relationship between biomass-based diversity measures and SV were weak or lacking. The observed relationships did not vary with spatial scale. SV had the highest independent effect among predictor variables in the statistical models of coverage-derived total benthic species richness and Shannon index. Thus, the relevance of SVH in marine benthic habitats was proved and this forms a prerequisite for the future use of SV in benthic biodiversity assessments.

  13. Surveillance system for air pollutants by combination of the decision support system COMPAS and optical remote sensing systems

    NASA Astrophysics Data System (ADS)

    Flassak, Thomas; de Witt, Helmut; Hahnfeld, Peter; Knaup, Andreas; Kramer, Lothar

    1995-09-01

    COMPAS is a decision support system designed to assist in the assessment of the consequences of accidental releases of toxic and flammable substances. One of the key elements of COMPAS is a feedback algorithm which allows us to calculate the source term with the aid of concentration measurements. Up to now the feedback technique is applied to concentration measurements done with test tubes or conventional point sensors. In this paper the extension of the actual method is presented which is the combination of COMPAS and an optical remote sensing system like the KAYSER-THREDE K300 FTIR system. Active remote sensing methods based on FTIR are, among other applications, ideal for the so-called fence line monitoring of the diffuse emissions and accidental releases from industrial facilities, since from the FTIR spectra averaged concentration levels along the measurement path can be achieved. The line-averaged concentrations are ideally suited as on-line input for COMPAS' feedback technique. Uncertainties in the assessment of the source term related with both shortcomings of the dispersion model itself and also problems of a feedback strategy based on point measurements are reduced.

  14. A perspective of synthetic aperture radar for remote sensing

    NASA Technical Reports Server (NTRS)

    Skolnik, M. I.

    1978-01-01

    The characteristics and capabilities of synthetic aperture radar are discussed so as to identify those features particularly unique to SAR. The SAR and Optical images were compared. The SAR is an example of radar that provides more information about a target than simply its location. It is the spatial resolution and imaging capability of SAR that has made its application of interest, especially from spaceborne platforms. However, for maximum utility to remote sensing, it was proposed that other information be extracted from SAR data, such as the cross section with frequency and polarization.

  15. 1982 International Geoscience and Remote Sensing Symposium, Munich, West Germany, June 1-4, 1982, Digest. Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    Theoretical and experimental data which have defined and/or extended the effectiveness of remote sensing operations are explored, with consideration given to both scientific and commercial activities. The remote sensing of soil moisture, the sea surface, and oil slicks is discussed, as are programs using satellites for studying geodynamics and geodesy, currents and waves, and coastal zones. NASA, Canadian, and Japanese radar and microwave passive and active systems are described, together with algorithms and techniques for image processing and classification. The SAR-580 project is outlined, and attention is devoted to satellite applications in investigations of the structure of the atmosphere, agriculturemore » and land use, and geology. Design and performance features of various optical scanner, radar, and multispectral data processing systems and procedures are detailed.« less

  16. Geometric registration of remotely sensed data with SAMIR

    NASA Astrophysics Data System (ADS)

    Gianinetto, Marco; Barazzetti, Luigi; Dini, Luigi; Fusiello, Andrea; Toldo, Roberto

    2015-06-01

    The commercial market offers several software packages for the registration of remotely sensed data through standard one-to-one image matching. Although very rapid and simple, this strategy does not take into consideration all the interconnections among the images of a multi-temporal data set. This paper presents a new scientific software, called Satellite Automatic Multi-Image Registration (SAMIR), able to extend the traditional registration approach towards multi-image global processing. Tests carried out with high-resolution optical (IKONOS) and high-resolution radar (COSMO-SkyMed) data showed that SAMIR can improve the registration phase with a more rigorous and robust workflow without initial approximations, user's interaction or limitation in spatial/spectral data size. The validation highlighted a sub-pixel accuracy in image co-registration for the considered imaging technologies, including optical and radar imagery.

  17. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation

    PubMed Central

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B. Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth’s land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies’ scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized1. PMID:26601030

  18. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation.

    PubMed

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized.

  19. Bio-optical Measurement in the California Current

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg

    2005-01-01

    We measured the optical and bio-geochemical properties during the autumn 2004 CalCOFI cruise. Calibration of in situ radiometry instruments We maintain NIST-traceable calibration of our PRR-800/8 10 radiometers. SIRREX-linked calibrations for our PRR-800/8 10 have been accomplished by Biospherical Instruments, Inc. (BSI) and SDSU Center for Hydro Optics and Remote Sensing (CHORS) since May 1993.

  20. Long-term agroecosystem research in the Central Mississippi River Basin: hyperspectral remote sensing of reservoir water quality

    USDA-ARS?s Scientific Manuscript database

    In-situ methods for estimating water quality parameters would facilitate efforts in spatial and temporal monitoring, and optical reflectance sensing has shown potential in this regard, particularly for chlorophyll, suspended sediment and turbidity. The objective of this research was to develop and e...

  1. Architecture for fiber-optic sensors and actuators in aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Glomb, W. L., Jr.

    1990-01-01

    This paper describes a design for fiber-optic sensing and control in advanced aircraft Electronic Engine Control (EEC). The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pairs of optical fibers to common electro-optical interfaces. The architecture contains interfaces to seven sensor groups. Nine distinct fiber-optic sensor types were found to provide the sensing functions. Analysis revealed no strong discriminator (except reliability of laser diodes and remote electronics) on which to base a selection of preferred common interface type. A hardware test program is recommended to assess the relative maturity of the technologies and to determine real performance in the engine environment.

  2. Enhanced Damage-Resistant Optics for Spaceflight Laser Systems: Workshop findings and recommendations

    NASA Technical Reports Server (NTRS)

    Schulze, Norman; Cimolino, Marc; Guenther, Arthur; Mcminn, Ted; Rainer, Frank; Schmid, Ansgar; Seitel, Steven C.; Soileau, M. J.; Theon, John S.; Walz, William

    1991-01-01

    NASA has defined a program to address critical laser-induced damage issues peculiar to its remote sensing systems. The Langley Research Center (LaRC), with input from the Goddard Space Flight Center (GSFC), has developed a program plan focusing on the certification of optical materials for spaceflight applications and the development of techniques to determine the reliability of such materials under extended laser exposures. This plan involves cooperative efforts between NASA and optics manufacturers to quantify the performance of optical materials for NASA systems and to ensure NASA's continued application of the highest quality optics possible for enhanced system reliability. A review panel was organized to assess NASA's optical damage concerns and to evaluate the effectiveness of the LaRC proposed program plan. This panel consisted of experts in the areas of laser-induced damage, optical coating manufacture, and the design and development of laser systems for space. The panel was presented information on NASA's current and planned laser remote sensing programs, laser-induced damage problems already encountered in NASA systems, and the proposed program plan to address these issues. Additionally, technical presentations were made on the state of the art in damage mechanisms, optical materials testing, and issues of coating manufacture germane to laser damage.

  3. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  4. NASA's Future Active Remote Sensing Missing for Earth Science

    NASA Technical Reports Server (NTRS)

    Hartley, Jonathan B.

    2000-01-01

    Since the beginning of space remote sensing of the earth, there has been a natural progression widening the range of electromagnetic radiation used to sense the earth, and slowly, steadily increasing the spatial, spectral, and radiometric resolution of the measurements. There has also been a somewhat slower trend toward active measurements across the electromagnetic spectrum, motivated in part by increased resolution, but also by the ability to make new measurements. Active microwave instruments have been used to measure ocean topography, to study the land surface. and to study rainfall from space. Future NASA active microwave missions may add detail to the topographical studies, sense soil moisture, and better characterize the cryosphere. Only recently have active optical instruments been flown in space by NASA; however, there are currently several missions in development which will sense the earth with lasers and many more conceptual active optical missions which address the priorities of NASA's earth science program. Missions are under development to investigate the structure of the terrestrial vegetation canopy, to characterize the earth's ice caps, and to study clouds and aerosols. Future NASA missions may measure tropospheric vector winds and make vastly improved measurements of the chemical components of the earth's atmosphere.

  5. Assessment of the Accuracy of the Conventional Ray-Tracing Technique: Implications in Remote Sensing and Radiative Transfer Involving Ice Clouds.

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Van Diedenhoven, Bastiaan; Iwabuchi, Hironobu

    2014-01-01

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TMþIGOM are considered as a benchmark because the IITM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TMþIGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 micrometers) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical thickness and effective diameter. In the MODIS infrared window bands centered at 8.5, 11, and 12 micrometers biases in the optical thickness and effective diameter are up to 12% and 10%, respectively. The CGOM-based simulation errors in ice cloud radiative forcing calculations are on the order of 10Wm(exp 2).

  6. A novel proposal of GPON-oriented fiber grating sensing data digitalization system for remote sensing network

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Zhu, Zhaohui; Wang, Lu; Bai, Jian

    2016-05-01

    A novel GPON-oriented sensing data digitalization system is proposed to achieve remote monitoring of fiber grating sensing networks utilizing existing optical communication networks in some harsh environments. In which, Quick digitalization of sensing information obtained from the reflected lightwaves by fiber Bragg grating (FBG) sensor is realized, and a novel frame format of sensor signal is designed to suit for public transport so as to facilitate sensor monitoring center to receive and analyze the sensor data. The delay effect, identification method of the sensor data, and various interference factors which influence the sensor data to be correctly received are analyzed. The system simulation is carried out with OptiSystem/Matlab co-simulation approach. The theoretical analysis and simulation results verify the feasibility of the integration of the sensor network and communication network.

  7. Developing Remote Sensing Products for Monitoring and Modeling Great Lakes Coastal Wetland Vulnerability to Climate Change and Land Use

    NASA Astrophysics Data System (ADS)

    Bourgeau-Chavez, L. L.; Miller, M. E.; Battaglia, M.; Banda, E.; Endres, S.; Currie, W. S.; Elgersma, K. J.; French, N. H. F.; Goldberg, D. E.; Hyndman, D. W.

    2014-12-01

    Spread of invasive plant species in the coastal wetlands of the Great Lakes is degrading wetland habitat, decreasing biodiversity, and decreasing ecosystem services. An understanding of the mechanisms of invasion is crucial to gaining control of this growing threat. To better understand the effects of land use and climatic drivers on the vulnerability of coastal zones to invasion, as well as to develop an understanding of the mechanisms of invasion, research is being conducted that integrates field studies, process-based ecosystem and hydrological models, and remote sensing. Spatial data from remote sensing is needed to parameterize the hydrological model and to test the outputs of the linked models. We will present several new remote sensing products that are providing important physiological, biochemical, and landscape information to parameterize and verify models. This includes a novel hybrid radar-optical technique to delineate stands of invasives, as well as natural wetland cover types; using radar to map seasonally inundated areas not hydrologically connected; and developing new algorithms to estimate leaf area index (LAI) using Landsat. A coastal map delineating wetland types including monocultures of the invaders (Typha spp. and Phragmites austrailis) was created using satellite radar (ALOS PALSAR, 20 m resolution) and optical data (Landsat 5, 30 m resolution) fusion from multiple dates in a Random Forests classifier. These maps provide verification of the integrated model showing areas at high risk of invasion. For parameterizing the hydrological model, maps of seasonal wetness are being developed using spring (wet) imagery and differencing that with summer (dry) imagery to detect the seasonally wet areas. Finally, development of LAI remote sensing high resolution algorithms for uplands and wetlands is underway. LAI algorithms for wetlands have not been previously developed due to the difficulty of a water background. These products are being used to improve the hydrological model through higher resolution products and parameterization of variables that have previously been largely unknown.

  8. An assessment of aerosol optical properties from remote-sensing observations and regional chemistry-climate coupled models over Europe

    NASA Astrophysics Data System (ADS)

    Palacios-Peña, Laura; Baró, Rocío; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; María López-Romero, José; Montávez, Juan Pedro; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro

    2018-04-01

    Atmospheric aerosols modify the radiative budget of the Earth due to their optical, microphysical and chemical properties, and are considered one of the most uncertain climate forcing agents. In order to characterise the uncertainties associated with satellite and modelling approaches to represent aerosol optical properties, mainly aerosol optical depth (AOD) and Ångström exponent (AE), their representation by different remote-sensing sensors and regional online coupled chemistry-climate models over Europe are evaluated. This work also characterises whether the inclusion of aerosol-radiation (ARI) or/and aerosol-cloud interactions (ACI) help improve the skills of modelling outputs.Two case studies were selected within the EuMetChem COST Action ES1004 framework when important aerosol episodes in 2010 all over Europe took place: a Russian wildfire episode and a Saharan desert dust outbreak that covered most of the Mediterranean Sea. The model data came from different regional air-quality-climate simulations performed by working group 2 of EuMetChem, which differed according to whether ARI or ACI was included or not. The remote-sensing data came from three different sensors: MODIS, OMI and SeaWIFS. The evaluation used classical statistical metrics to first compare satellite data versus the ground-based instrument network (AERONET) and then to evaluate model versus the observational data (both satellite and ground-based data).Regarding the uncertainty in the satellite representation of AOD, MODIS presented the best agreement with the AERONET observations compared to other satellite AOD observations. The differences found between remote-sensing sensors highlighted the uncertainty in the observations, which have to be taken into account when evaluating models. When modelling results were considered, a common trend for underestimating high AOD levels was observed. For the AE, models tended to underestimate its variability, except when considering a sectional approach in the aerosol representation. The modelling results showed better skills when ARI+ACI interactions were included; hence this improvement in the representation of AOD (above 30 % in the model error) and AE (between 20 and 75 %) is important to provide a better description of aerosol-radiation-cloud interactions in regional climate models.

  9. Microwave remote sensing and radar polarization signatures of natural fields

    NASA Technical Reports Server (NTRS)

    Mo, Tsan

    1989-01-01

    Theoretical models developed for simulation of microwave remote sensing of the Earth surface from airborne/spaceborne sensors are described. Theoretical model calculations were performed and the results were compared with data of field measurements. Data studied included polarimetric images at the frequencies of P band, L band, and C band, acquired with airborne polarimeters over a agricultural field test site. Radar polarization signatures from bare soil surfaces and from tree covered fields were obtained from the data. The models developed in this report include: (1) Small perturbation model of wave scatterings from randomly rough surfaces, (2) Physical optics model, (3) Geometrical optics model, and (4) Electromagnetic wave scattering from dielectric cylinders of finite lengths, which replace the trees and branches in the modeling of tree covered field. Additionally, a three-layer emissivity model for passive sensing of a vegetation covered soil surface is also developed. The effects of surface roughness, soil moisture contents, and tree parameters on the polarization signatures were investigated.

  10. Self-Referenced Fiber Optic System For Remote Methane Detection

    NASA Astrophysics Data System (ADS)

    Zientkiewicz, Jacek K.

    1989-10-01

    The paper discusses a fiber optic multisensor methane detection system matched to topology and environment of the underground mine. The system involves time domain multiplexed (TDM) methane sensors based on selective absorption of source radiation by atomic/molecular species in the gas sensing heads. A two-wavelength ratiometric approach allows simple self-referencing, cancels out errors arising from other contaminants, and improves the measurement contrast. The laboratory system consists of a high radiance LED source, multimode fiber, optical sensing head, optical bandpass filters, and involves synchronous detection with low noise photodiodes and a lock-in amplifier. Detection sensitivity versus spectral resolution of the optical filters has also been investigated and described. The system performance was evaluated and the results are presented.

  11. Assessment of Wildfire Risk in Southern California with Live Fuel Moisture Measurement and Remotely Sensed Vegetation Water Content Proxies

    NASA Astrophysics Data System (ADS)

    Jia, S.; Kim, S. H.; Nghiem, S. V.; Kafatos, M.

    2017-12-01

    Live fuel moisture (LFM) is the water content of live herbaceous plants expressed as a percentage of the oven-dry weight of plant. It is a critical parameter in fire ignition in Mediterranean climate and routinely measured in sites selected by fire agencies across the U.S. Vegetation growing cycle, meteorological metrics, soil type, and topography all contribute to the seasonal and inter-annual variation of LFM, and therefore, the risk of wildfire. The optical remote sensing-based vegetation indices (VIs) have been used to estimate the LFM. Comparing to the VIs, microwave remote sensing products have advantages like less saturation effect in greenness and representing the water content of the vegetation cover. In this study, we established three models to evaluate the predictability of LFM in Southern California using MODIS NDVI, vegetation temperature condition index (VTCI) from downscaled Soil Moisture Active Passive (SMAP) products, and vegetation optical depth (VOD) derived by Land Parameter Retrieval Model. Other ancillary variables, such as topographic factors (aspects and slope) and meteorological metrics (air temperature, precipitation, and relative humidity), are also considered in the models. The model results revealed an improvement of LFM estimation from SMAP products and VOD, despite the uncertainties introduced in the downscaling and parameter retrieval. The estimation of LFM using remote sensing data can provide an assessment of wildfire danger better than current methods using NDVI-based growing seasonal index. Future study will test the VOD estimation from SMAP data using the multi-temporal dual channel algorithm (MT-DCA) and extend the LFM modeling to a regional scale.

  12. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance

    PubMed Central

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2017-01-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), Scdm (units: nm−1), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving Scdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360–500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of Scdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors. PMID:29201583

  13. [Object-oriented segmentation and classification of forest gap based on QuickBird remote sensing image.

    PubMed

    Mao, Xue Gang; Du, Zi Han; Liu, Jia Qian; Chen, Shu Xin; Hou, Ji Yu

    2018-01-01

    Traditional field investigation and artificial interpretation could not satisfy the need of forest gaps extraction at regional scale. High spatial resolution remote sensing image provides the possibility for regional forest gaps extraction. In this study, we used object-oriented classification method to segment and classify forest gaps based on QuickBird high resolution optical remote sensing image in Jiangle National Forestry Farm of Fujian Province. In the process of object-oriented classification, 10 scales (10-100, with a step length of 10) were adopted to segment QuickBird remote sensing image; and the intersection area of reference object (RA or ) and intersection area of segmented object (RA os ) were adopted to evaluate the segmentation result at each scale. For segmentation result at each scale, 16 spectral characteristics and support vector machine classifier (SVM) were further used to classify forest gaps, non-forest gaps and others. The results showed that the optimal segmentation scale was 40 when RA or was equal to RA os . The accuracy difference between the maximum and minimum at different segmentation scales was 22%. At optimal scale, the overall classification accuracy was 88% (Kappa=0.82) based on SVM classifier. Combining high resolution remote sensing image data with object-oriented classification method could replace the traditional field investigation and artificial interpretation method to identify and classify forest gaps at regional scale.

  14. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance.

    PubMed

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), S cdm (units: nm -1 ), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving S cdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of S cdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  15. Radiation hardening commercial off-the-shelf erbium doped fibers by optimal photo-annealing source

    NASA Astrophysics Data System (ADS)

    Peng, Tz-Shiuan; Liu, Ren-Young; Lin, Yen-Chih; Mao, Ming-Hua; Wang, Lon A.

    2017-09-01

    Erbium doped fibers (EDFs) based devices are widely employed in space for optical communication [1], remote sensing [2], and navigation applications, e.g. interferometric fiber optic gyroscope (IFOG). However, the EDF suffers severely radiation induced attenuation (RIA) in radiation environments, e.g. space applications and nuclear reactors [3].

  16. NASA Cold Land Processes Experiment (CLPX 2002/03): Spaceborne remote sensing

    Treesearch

    Robert E. Davis; Thomas H. Painter; Don Cline; Richard Armstrong; Terry Haran; Kyle McDonald; Rick Forster; Kelly Elder

    2008-01-01

    This paper describes satellite data collected as part of the 2002/03 Cold Land Processes Experiment (CLPX). These data include multispectral and hyperspectral optical imaging, and passive and active microwave observations of the test areas. The CLPX multispectral optical data include the Advanced Very High Resolution Radiometer (AVHRR), the Landsat Thematic Mapper/...

  17. NASA Cold Land Processes Experiment (CLPX 2002/03): Airborne remote sensing

    Treesearch

    Don Cline; Simon Yueh; Bruce Chapman; Boba Stankov; Al Gasiewski; Dallas Masters; Kelly Elder; Richard Kelly; Thomas H. Painter; Steve Miller; Steve Katzberg; Larry Mahrt

    2009-01-01

    This paper describes the airborne data collected during the 2002 and 2003 Cold Land Processes Experiment (CLPX). These data include gamma radiation observations, multi- and hyperspectral optical imaging, optical altimetry, and passive and active microwave observations of the test areas. The gamma observations were collected with the NOAA/National Weather Service Gamma...

  18. VERIFICATION OF PORTABLE OPTICAL AND THERMAL IMAGING DEVICES FOR LEAK DETECTION AT PETROLEUM REFINERIES AND CHEMICAL PLANTS

    EPA Science Inventory

    Optical and thermal imaging devices are remote sensing systems that can be used to detect leaking gas compounds such as methane and benzene. Use of these systems can reduce fugitive emission losses through early detection and repair at industrial facilities by providing an effici...

  19. Dual-core optical fiber based strain sensor for remote sensing in hard-to-reach areas

    NASA Astrophysics Data System (ADS)

    MÄ kowska, Anna; Szostkiewicz, Łukasz; Kołakowska, Agnieszka; Budnicki, Dawid; Bieńkowska, Beata; Ostrowski, Łukasz; Murawski, Michał; Napierała, Marek; Mergo, Paweł; Nasiłowski, Tomasz

    2017-10-01

    We present research on optical fiber sensors based on microstructured multi-core fiber. Elaborated sensor can be advantageously used in hard-to-reach areas by taking advantage of the fact, that optical fibers can play both the role of sensing elements and they can realize signal delivery. By using the sensor, it is possible to increase the level of the safety in the explosive endangered areas, e.g. in mine-like objects. As a base for the strain remote sensor we use dual-core fibers. The multi-core fibers possess a characteristic parameter called crosstalk, which is a measure of the amount of signal which can pass to the adjacent core. The strain-sensitive area is made by creating the tapered section, in which the level of crosstalk is changed. Due to this fact, we present broadened conception of fiber optic sensor designing. Strain measurement is realized thanks to the fact, that depending on the strain applied, the power distribution between the cores of dual-core fibers changes. Principle of operation allows realization of measurements both in wavelength and power domain.

  20. Effects of water-emission anisotropy on multispectral remote sensing at thermal wavelengths of ocean temperature and of cirrus clouds

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Susskind, J.; Dalu, G.; Kratz, D.; Goldberg, I. L.

    1992-01-01

    The impact of water-emission anisotropy on remotedly sensed long-wave data has been studied. Water emission is formulated from a calm body for a facile computation of radiative transfer in the atmosphere. The error stemming from the blackbody assumption are calculated for cases of a purely absorbing or a purely scattering atmosphere taking the optical properties of the atmosphere as known. For an absorbing atmosphere, the errors in the sea-surface temperature (SST) are found to be always reduced and be the same whether measurements are made from space or at any level of the atmosphere. The inferred optical thickness tau of an absorbing layer can be in error under the blackbody assumption by a delta tau of 0.01-0.08, while the inferred optical thickness of a scattering layer can be in error by a larger amount, delta tau of 0.03-0.13. It is concluded that the error delta tau depends only weakly on the actual optical thickness and the viewing angle, but is rather sensitive to the wavelength of the measurement.

  1. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors.

    PubMed

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-09-30

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  2. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    DTIC Science & Technology

    2011-09-30

    measurements from the Surf Zone Optics (SZO) experiment in September, 2011. Since optical reflectance saturates for surf zone bubble depths greater than...Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents...pilot experiment at Duck, NC during the Surf Zone Optics DRI Experiment in September, 2010 and participated in planning of the upcoming RIVET DRI

  3. Potential of Sentinel Satellites for Schistosomiasis Monitoring

    NASA Astrophysics Data System (ADS)

    Li, C.-R.; Tang, L.-L.; Niu, H.-B.; Zhou, X.-N.; Liu, Z.-Y.; Ma, L.-L.; Zhou, Y.-S.

    2012-04-01

    Schistosomiasis is a parasitic disease that menaces human health. In terms of impact this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis is the unique intermediate host of Schistosoma, and hence monitoring and controlling of the number of oncomelania is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to oncomelania breeding and reproduction, such as temperature, moisture, vegetation, soil, and rainfall, and can also provide the efficient information to determine the location, area, and spread tendency of oncomelania. Many studies show that the correlation coefficient between oncomelania densities and remote sensing environmental factors depends largely on suitable and high quality remote sensing data used in retrieve environmental factors. Research achievements on retrieving environmental factors (which are related to the living, multiplying and transmission of oncomelania) by multi-source remote data are shown firstly, including: (a) Vegetation information (e.g., Modified Soil-Adjusted Vegetation Index, Normalized Difference Moisture Index, Fractional Vegetation Cover) extracted from optical remote sensing data, such as Landsat TM, HJ-1A/HSI image; (b) Surface temperature retrieval from Thermal Infrared (TIR) and passive-microwave remote sensing data; (c) Water region, soil moisture, forest height retrieval from synthetic aperture radar data, such as Envisat SAR, DLR's ESAR image. Base on which, the requirements of environmental factor accuracy for schistosomiasis monitoring will be analyzed and summarized. Our work on applying remote sensing technique to schistosomiasis monitoring is then presented. The fuzzy information theory is employed to analyze the sensitivity and feasibility relation between oncomelania densities and environmental factors. Then a mechanism model of predicting oncomelania distribution and densities is developed. The new model is validated with field data of Dongting Lake and the dynamic monitoring of schistosomiasis breeding in Dongting Lake region is presented. Finally, emphasis are placed on analyzing the potential of Sentinel satellites for schistosomiasis monitoring. The requirements of optical high resolution data on spectral resolution, spatial resolution, radiometric resolution/accuracy, as well as the requirements of synthetic aperture radar data on operation frequency, spatial resolution, polarization, radiometric accuracy, repeat cycle are presented and then compared with the parameters of Sentinel satellites. The parameters of Sentinel satellites are also compared with those of available remote satellites, such as Envisat, Landsat, whose data are being used for schistosomiasis monitoring. The application potential of Sentinel satellites for the schistosomiasis monitoring will be concluded in the end, which will benefit for the mission operation, model development, etc.

  4. Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm.

    PubMed

    Lee, ZhongPing; Arnone, Robert; Hu, Chuanmin; Werdell, P Jeremy; Lubac, Bertrand

    2010-01-20

    Following the theory of error propagation, we developed analytical functions to illustrate and evaluate the uncertainties of inherent optical properties (IOPs) derived by the quasi-analytical algorithm (QAA). In particular, we evaluated the effects of uncertainties of these optical parameters on the inverted IOPs: the absorption coefficient at the reference wavelength, the extrapolation of particle backscattering coefficient, and the spectral ratios of absorption coefficients of phytoplankton and detritus/gelbstoff, respectively. With a systematically simulated data set (46,200 points), we found that the relative uncertainty of QAA-derived total absorption coefficients in the blue-green wavelengths is generally within +/-10% for oceanic waters. The results of this study not only establish theoretical bases to evaluate and understand the effects of the various variables on IOPs derived from remote-sensing reflectance, but also lay the groundwork to analytically estimate uncertainties of these IOPs for each pixel. These are required and important steps for the generation of quality maps of IOP products derived from satellite ocean color remote sensing.

  5. Design and performance evaluation of the imaging payload for a remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Mojtaba; Abbasi-Moghadam, Dariush

    2012-11-01

    In this paper an analysis method and corresponding analytical tools for design of the experimental imaging payload (IMPL) of a remote sensing satellite (SINA-1) are presented. We begin with top-level customer system performance requirements and constraints and derive the critical system and component parameters, then analyze imaging payload performance until a preliminary design that meets customer requirements. We consider system parameters and components composing the image chain for imaging payload system which includes aperture, focal length, field of view, image plane dimensions, pixel dimensions, detection quantum efficiency, and optical filter requirements. The performance analysis is accomplished by calculating the imaging payload's SNR (signal-to-noise ratio), and imaging resolution. The noise components include photon noise due to signal scene and atmospheric background, cold shield, out-of-band optical filter leakage and electronic noise. System resolution is simulated through cascaded modulation transfer functions (MTFs) and includes effects due to optics, image sampling, and system motion. Calculations results for the SINA-1 satellite are also presented.

  6. Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region

    NASA Astrophysics Data System (ADS)

    Pandithurai, G.; Takamura, T.; Yamaguchi, J.; Miyagi, K.; Takano, T.; Ishizaka, Y.; Dipu, S.; Shimizu, A.

    2009-07-01

    The effect of increased aerosol concentrations on the low-level, non-precipitating, ice-free stratus clouds is examined using a suite of surface-based remote sensing systems. Cloud droplet effective radius and liquid water path are retrieved using cloud radar and microwave radiometer. Collocated measurements of aerosol scattering coefficient, size distribution and cloud condensation nuclei (CCN) concentrations were used to examine the response of cloud droplet size and optical thickness to increased CCN proxies. During the episodic events of increase in aerosol accumulation-mode volume distribution, the decrease in droplet size and increase in cloud optical thickness is observed. The indirect effect estimates are made for both droplet effective radius and cloud optical thickness for different liquid water path ranges and they range 0.02-0.18 and 0.005-0.154, respectively. Data are also categorized into thin and thick clouds based on cloud geometric thickness (Δz) and estimates show IE values are relatively higher for thicker clouds.

  7. Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data

    NASA Technical Reports Server (NTRS)

    Deschamps, P.-Y.; Frouin, R.

    1997-01-01

    The investigation focuses on two key issues in satellite ocean color remote sensing, namely the presence of whitecaps on the sea surface and the validity of the aerosol models selected for the atmospheric correction of SeaWiFS data. Experiments were designed and conducted at the Scripps Institution of Oceanography to measure the optical properties of whitecaps and to study the aerosol optical properties in a typical mid-latitude coastal environment. CIMEL Electronique sunphotometers, now integrated in the AERONET network, were also deployed permanently in Bermuda and in Lanai, calibration/validation sites for SeaWiFS and MODIS. Original results were obtained on the spectral reflectance of whitecaps and on the choice of aerosol models for atmospheric correction schemes and the type of measurements that should be made to verify those schemes. Bio-optical algorithms to remotely sense primary productivity from space were also evaluated, as well as current algorithms to estimate PAR at the earth's surface.

  8. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

    PubMed Central

    Huemmrich, K. Fred; Ensminger, Ingo; Garrity, Steven; Noormets, Asko; Peñuelas, Josep

    2016-01-01

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA’s Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology. PMID:27803333

  9. Remote sensing of snow using bistatic radar reflectometry

    NASA Astrophysics Data System (ADS)

    Komanduru, Abi

    Snow and ice processes are a critical part of the Earth's hydrological and climate cycles. These processes can serve as an important source of fresh water as well as a cause of flooding. Various missions have been proposed by NASA and ESA for the purpose of remote sensing of snow. This research looks at applying bistatic radar reflectometry to the remote sensing of snow water equivalent. The resulting phase offset from changes in optical path length due to reflection through snow are the primary measurements made. The research uses data from a field campaign in Fraser, CO, involving an instrument collecting direct and reflected from S band during Jan 2015 - Apr 2015. Phase measurements from the field data are made from the two signals and compared to theoretical phase computed from a forward model using in situ data. A moderate correlation (>0.6) is found between the measured and modeled phase.

  10. Seasonality of a boreal forest: a remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Rautiainen, Miina; Heiskanen, Janne; Lukes, Petr; Majasalmi, Titta; Mottus, Matti; Pisek, Jan

    2016-04-01

    Understanding the seasonal dynamics of boreal ecosystems through interpretation of satellite reflectance data is needed for efficient large-scale monitoring of northern vegetation dynamics and productivity trends. Satellite remote sensing enables continuous global monitoring of vegetation status and is not limited to single-date phenological metrics. Using remote sensing also enables gaining a wider perspective to the seasonality of vegetation dynamics. The seasonal reflectance cycles of boreal forests observed in optical satellite images are explained by changes in biochemical properties and geometrical structure of vegetation as well as seasonal variation in solar illumination. This poster provides a synthesis of a research project (2010-2015) dedicated to monitoring the seasonal cycle of boreal forests. It is based on satellite and field data collected from the Hyytiälä Forestry Field Station in Finland. The results highlight the role understory vegetation has in forming the forest reflectance measured by satellite instruments.

  11. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers.

    PubMed

    Gamon, John A; Huemmrich, K Fred; Wong, Christopher Y S; Ensminger, Ingo; Garrity, Steven; Hollinger, David Y; Noormets, Asko; Peñuelas, Josep

    2016-11-15

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying "photosynthetic phenology" from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a "chlorophyll/carotenoid index" (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA's Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology.

  12. Initial results of the spatial distribution of rubber trees in Peninsular Malaysia using remotely sensed data for biomass estimate

    NASA Astrophysics Data System (ADS)

    Shidiq, I. P. A.; Ismail, M. H.; Kamarudin, N.

    2014-02-01

    The preservation and sustainable management of forest and other land cover ecosystems such as rubber trees will help addressing two major recent issues: climate change and bio-resource energy. The rubber trees are dominantly distributed in the Negeri Sembilan and Kedah on the west coast side of Peninsular Malaysia. This study is aimed to analyse the spatial distribution and biomass of rubber trees in Peninsular Malaysia with special emphasis in Negeri Sembilan State. Geospatial data from remote sensors are used to tackle the time and labour consuming problem due to the large spatial coverage and the need of continuous temporal data. Remote sensing imagery used in this study is a Landsat 5 TM. The image from optical sensor was used to sense the rubber trees and further classified rubber tree by different age.

  13. The Scientific and Societal Need for Accurate Global Remote Sensing of Marine Suspended Sediments

    NASA Technical Reports Server (NTRS)

    Acker, James G.

    2006-01-01

    Population pressure, commercial development, and climate change are expected to cause continuing alteration of the vital oceanic coastal zone environment. These pressures will influence both the geology and biology of the littoral, nearshore, and continental shelf regions. A pressing need for global observation of coastal change processes is an accurate remotely-sensed data product for marine suspended sediments. The concentration, delivery, transport, and deposition of sediments is strongly relevant to coastal primary production, inland and coastal hydrology, coastal erosion, and loss of fragile wetland and island habitats. Sediment transport and deposition is also related to anthropogenic activities including agriculture, fisheries, aquaculture, harbor and port commerce, and military operations. Because accurate estimation of marine suspended sediment concentrations requires advanced ocean optical analysis, a focused collaborative program of algorithm development and assessment is recommended, following the successful experience of data refinement for remotely-sensed global ocean chlorophyll concentrations.

  14. Research on airborne infrared leakage detection of natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Tan, Dongjie; Xu, Bin; Xu, Xu; Wang, Hongchao; Yu, Dongliang; Tian, Shengjie

    2011-12-01

    An airborne laser remote sensing technology is proposed to detect natural gas pipeline leakage in helicopter which carrying a detector, and the detector can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne laser remote sensing system is based on tunable diode laser absorption spectroscopy (TDLAS). The system consists of an optical unit containing the laser, camera, helicopter mount, electronic unit with DGPS antenna, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne laser remote sensing system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that airborne detection method is suitable for detecting gas leak of pipeline on plain, desert, hills but unfit for the area with large altitude diversification.

  15. Feasibility study of the application of existing techniques to remotely monitor hydrochloric acid in the atmosphere

    NASA Technical Reports Server (NTRS)

    Zwick, H.; Ward, V.; Beaudette, L.

    1973-01-01

    A critical evaluation of existing optical remote sensors for HCl vapor detection in solid propellant rocket plumes is presented. The P branch of the fundamental vibration-rotation band was selected as the most promising spectral feature to sense. A computation of transmittance for HCl vapor, an estimation of interferent spectra, the application of these spectra to computer modelled remote sensors, and a trade-off study for instrument recommendation are also included.

  16. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2017-09-01

    For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

  17. Remote Sensing of Soil Moisture: A Comparison of Optical and Thermal Methods

    NASA Astrophysics Data System (ADS)

    Foroughi, H.; Naseri, A. A.; Boroomandnasab, S.; Sadeghi, M.; Jones, S. B.; Tuller, M.; Babaeian, E.

    2017-12-01

    Recent technological advances in satellite and airborne remote sensing have provided new means for large-scale soil moisture monitoring. Traditional methods for soil moisture retrieval require thermal and optical RS observations. In this study we compared the traditional trapezoid model parameterized based on the land surface temperature - normalized difference vegetation index (LST-NDVI) space with the recently developed optical trapezoid model OPTRAM parameterized based on the shortwave infrared transformed reflectance (STR)-NDVI space for an extensive sugarcane field located in Southwestern Iran. Twelve Landsat-8 satellite images were acquired during the sugarcane growth season (April to October 2016). Reference in situ soil moisture data were obtained at 22 locations at different depths via core sampling and oven-drying. The obtained results indicate that the thermal/optical and optical prediction methods are comparable, both with volumetric moisture content estimation errors of about 0.04 cm3 cm-3. However, the OPTRAM model is more efficient because it does not require thermal data and can be universally parameterized for a specific location, because unlike the LST-soil moisture relationship, the reflectance-soil moisture relationship does not significantly vary with environmental variables (e.g., air temperature, wind speed, etc.).

  18. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  19. Advancements in Electromagnetic Wave Backscattering Simulations: Applications in Active Lidar Remote Sensing Involving Aerosols

    NASA Astrophysics Data System (ADS)

    Bi, L.

    2016-12-01

    Atmospheric remote sensing based on the Lidar technique fundamentally relies on knowledge of the backscattering of light by particulate matters in the atmosphere. This talk starts with a review of the current capabilities of electromagnetic wave scattering simulations to determine the backscattering optical properties of irregular particles, such as the backscatterer and depolarization ratio. This will be followed by a discussion of possible pitfalls in the relevant simulations. The talk will then be concluded with reports on the latest advancements in computational techniques. In addition, we summarize the laws of the backscattering optical properties of aerosols with respect to particle geometries, particle sizes, and mixing rules. These advancements will be applied to the analysis of the Lidar observation data to reveal the state and possible microphysical processes of various aerosols.

  20. Development of moored oceanographic spectroradiometer

    NASA Technical Reports Server (NTRS)

    Booth, Charles R.; Mitchell, B. Greg; Holm-Hansen, O.

    1987-01-01

    Biospherical Instruments has successfully completed a NASA sponsored SBIR (Small Business Innovational Research Program) project to develop spectroradiometers capable of being deployed in the ocean for long periods of time. The completion of this project adds a valuable tool for the calibration of future spaceborne ocean color sensors and enables oceanographers to extend remote sensing optical techniques beyond the intermittent coverage of spaceborne sensors. Highlights of the project include two moorings totalling 8 months generating extensive sets of optical, biological, and physical data sets in the ocean off La Jolla, California, and a 70 day operational deployment of the resulting commercial product by the ONR and NASA sponsored BIOWATT program. Based on experience gained in these moorings, Biospherical Instruments has developed a new line of spectroradiometers designed to support the oceanographic remote sensing missions of NASA, the Navy, and various oceanographers.

  1. Material Characterization using Passive Multispectral Polarimetric Imagery

    DTIC Science & Technology

    2013-03-01

    least intuitive RS technique is undoubtedly polarimetry . Polarization is a property of all TEM waves, so its applications are not limited to any...Shaw. “Review of passive imaging polarimetry for remote sensing applications”. Applied Optics, 45(22):5453–5469, 2006. [48] Vanderbilt, V.C. and...refractive index; polarimetry ; multispectral; polarization; polarisation; polarimetric imagery; dispersion; Drude model; Cauchy equation; remote

  2. High temperature, minimally invasive optical sensing modules

    DOEpatents

    Riza, Nabeel Agha [Oviedo, FL; Perez, Frank [Tujunga, CA

    2008-02-05

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

  3. Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis.

    PubMed

    Herrera-Piad, Luis A; Haus, Joseph W; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M; Estudillo-Ayala, Julian M; Lopez-Dieguez, Yanelis; Rojas-Laguna, Roberto

    2017-10-20

    A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.

  4. Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis

    PubMed Central

    Herrera-Piad, Luis A.; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M.; Lopez-Dieguez, Yanelis

    2017-01-01

    A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material. PMID:29053570

  5. Supporting Remote Sensing Research with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Shanks, P. C.; Kritis, L. A.; Trani, M. G.

    2014-11-01

    We describe several remote sensing research projects supported with small Unmanned Aerial Systems (sUAS) operated by the NGA Basic and Applied Research Office. These sUAS collections provide data supporting Small Business Innovative Research (SBIR), NGA University Research Initiative (NURI), and Cooperative Research And Development Agreements (CRADA) efforts in addition to inhouse research. Some preliminary results related to 3D electro-optical point clouds are presented, and some research goals discussed. Additional details related to the autonomous operational mode of both our multi-rotor and fixed wing small Unmanned Aerial System (sUAS) platforms are presented.

  6. Different atmospheric effects in remote sensing of uniform and nonuniform surfaces

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1982-01-01

    The atmospheric effect on the radiance of sunlight scattered from the earth-atmosphere system is greatly dependent on the surface reflectance pattern, the contrast between adjacent fields, and the optical properties of the atmosphere. In addition, the atmospheric effect is described by the range and magnitude of the adjacency effects, the atmospheric modulation transfer function, and the apparent spatial resolution of remotely sensed imagery. This paper discusses the atmospheric effect on classification of surface features and shows that surface nonuniformity can be used for developing procedures to remove the atmospheric effect from the satellite imagery.

  7. Development of a generalized multi-pixel and multi-parameter satellite remote sensing algorithm for aerosol properties

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Nakajima, T.; Takenaka, H.; Higurashi, A.

    2013-12-01

    We develop a new satellite remote sensing algorithm to retrieve the properties of aerosol particles in the atmosphere. In late years, high resolution and multi-wavelength, and multiple-angle observation data have been obtained by grand-based spectral radiometers and imaging sensors on board the satellite. With this development, optimized multi-parameter remote sensing methods based on the Bayesian theory have become popularly used (Turchin and Nozik, 1969; Rodgers, 2000; Dubovik et al., 2000). Additionally, a direct use of radiation transfer calculation has been employed for non-linear remote sensing problems taking place of look up table methods supported by the progress of computing technology (Dubovik et al., 2011; Yoshida et al., 2011). We are developing a flexible multi-pixel and multi-parameter remote sensing algorithm for aerosol optical properties. In this algorithm, the inversion method is a combination of the MAP method (Maximum a posteriori method, Rodgers, 2000) and the Phillips-Twomey method (Phillips, 1962; Twomey, 1963) as a smoothing constraint for the state vector. Furthermore, we include a radiation transfer calculation code, Rstar (Nakajima and Tanaka, 1986, 1988), numerically solved each time in iteration for solution search. The Rstar-code has been directly used in the AERONET operational processing system (Dubovik and King, 2000). Retrieved parameters in our algorithm are aerosol optical properties, such as aerosol optical thickness (AOT) of fine mode, sea salt, and dust particles, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength. We simultaneously retrieve all the parameters that characterize pixels in each of horizontal sub-domains consisting the target area. Then we successively apply the retrieval method to all the sub-domains in the target area. We conducted numerical tests for the retrieval of aerosol properties and ground surface albedo for GOSAT/CAI imager data to test the algorithm for the land area. In this test, we simulated satellite-observed radiances for a sub-domain consisting of 5 by 5 pixels by the Rstar code assuming wavelengths of 380, 674, 870 and 1600 [nm], atmospheric condition of the US standard atmosphere, and the several aerosol and ground surface conditions. The result of the experiment showed that AOTs of fine mode and dust particles, soot fraction and ground surface albedo at the wavelength of 674 [nm] are retrieved within absolute value differences of 0.04, 0.01, 0.06 and 0.006 from the true value, respectively, for the case of dark surface, and also, for the case of blight surface, 0.06, 0.03, 0.04 and 0.10 from the true value, respectively. We will conduct more tests to study the information contents of parameters needed for aerosol and land surface remote sensing with different boundary conditions among sub-domains.

  8. Integration of remote sensing and hydrologic modeling through multi-disciplinary semiarid field campaigns: Moonsoon 1990, Walnut Gulch 1992, and SALSA-MEX

    NASA Technical Reports Server (NTRS)

    Moran, M. S.; Goodrich, D. C.; Kustas, W. P.

    1994-01-01

    A research and modeling strategy is presented for development of distributed hydrologic models given by a combination of remotely sensed and ground based data. In support of this strategy, two experiments Moonsoon'90 and Walnut Gulch'92 were conducted in a semiarid rangeland southeast of Tucson, Arizona, (U.S.) and a third experiment, the SALSA-MEX (Semi Arid Land Surface Atmospheric Mountain Experiment) was proposed. Results from the Moonsoon'90 experiment substantially advanced the understanding of the hydrologic and atmospheric fluxes in an arid environment and provided insight into the use of remote sensing data for hydrologic modeling. The Walnut Gulch'92 experiment addressed the seasonal hydrologic dynamics of the region and the potential of combined optical microwave remote sensing for hydrologic applications. SALSA-MEX will combine measurements and modeling to study hydrologic processes influenced by surrounding mountains, such as enhanced precipitation, snowmelt and recharge to ground water aquifers. The results from these experiments, along with the extensive experimental data bases, should aid the research community in large scale modeling of mass and energy exchanges across the soil-plant-atmosphere interface.

  9. An overview of remote sensing of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Xing, Xiao-Gang; Zhao, Dong-Zhi; Liu, Yu-Guang; Yang, Jian-Hong; Xiu, Peng; Wang, Lin

    2007-03-01

    Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyl l - a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

  10. Regional yield predictions of malting barley by remote sensing and ancillary data

    NASA Astrophysics Data System (ADS)

    Weissteiner, Christof J.; Braun, Matthias; Kuehbauch, Walter

    2004-02-01

    Yield forecasts are of high interest to the malting and brewing industry in order to allow the most convenient purchasing policy of raw materials. Within this investigation, malting barley yield forecasts (Hordeum vulgare L.) were performed for typical growing regions in South-Western Germany. Multisensoral and multitemporal Remote Sensing data on one hand and ancillary meteorological, agrostatistical, topographical and pedological data on the other hand were used as input data for prediction models, which were based on an empirical-statistical modeling approach. Since spring barley production is depending on acreage and on the yield per area, classification is needed, which was performed by a supervised multitemporal classification algorithm, utilizing optical Remote Sensing data (LANDSAT TM/ETM+). Comparison between a pixel-based and an object-oriented classification algorithm was carried out. The basic version of the yield estimation model was conducted by means of linear correlation of Remote Sensing data (NOAA-AVHRR NDVI), CORINE land cover data and agrostatistical data. In an extended version meteorological data (temperature, precipitation, etc.) and soil data was incorporated. Both, basic and extended prediction systems, led to feasible results, depending on the selection of the time span for NDVI accumulation.

  11. An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks

    NASA Astrophysics Data System (ADS)

    Holben, Brent N.; Kim, Jhoon; Sano, Itaru; Mukai, Sonoyo; Eck, Thomas F.; Giles, David M.; Schafer, Joel S.; Sinyuk, Aliaksandr; Slutsker, Ilya; Smirnov, Alexander; Sorokin, Mikhail; Anderson, Bruce E.; Che, Huizheng; Choi, Myungje; Crawford, James H.; Ferrare, Richard A.; Garay, Michael J.; Jeong, Ukkyo; Kim, Mijin; Kim, Woogyung; Knox, Nichola; Li, Zhengqiang; Lim, Hwee S.; Liu, Yang; Maring, Hal; Nakata, Makiko; Pickering, Kenneth E.; Piketh, Stuart; Redemann, Jens; Reid, Jeffrey S.; Salinas, Santo; Seo, Sora; Tan, Fuyi; Tripathi, Sachchida N.; Toon, Owen B.; Xiao, Qingyang

    2018-01-01

    Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.

  12. Post-Disaster Damage Assessment using Remotely Sensed Data for Post Disaster Needs Assessments: Pakistan and Nigeria case studies

    NASA Astrophysics Data System (ADS)

    Saito, Keiko; Lemoine, Guido; Dell'Oro, Luca; Pedersen, Wendi; Nunez-Gomez, Ariel; Dalmasso, Simone; Balbo, Simone; Louvrier, Christophe; Caravaggi, Ivano; de Groeve, Tom; Slayback, Dan; Policelli, Frederick; Brakenridge, Bob; Rashid, Kashif; Gad, Sawsan; Arshad, Raja; Wielinga, Doekle; Parvez, Ayaz; Khan, Haris

    2013-04-01

    Since the launch of high-resolution optical satellites in 1999, remote sensing has increasingly been used in the context of post-disaster damage assessments worldwide. In the immediate aftermath of a natural disaster, particularly when extensive geographical areas are affected, it is often difficult to determine the extent and magnitude of disaster impacts. The Global Facility for Disaster Reduction and Recovery (GFDRR) has been leading efforts to utilise remote sensing techniques during disasters, starting with the 2010 Haiti earthquake. However, remote sensing has mostly been applied to extensive flood events in the context of developing Post-Disaster Needs Assessments (PDNAs). Given that worldwide, floods were the most frequent type of natural disasters between 2000 and 2011, affecting 106 million people in 2011 alone (EM-DAT) , there is clearly significant potential for on-going use of remote sensing techniques. Two case studies will be introduced here, the 2010 Pakistan flood and the 2012 Nigeria flood. The typical approach is to map the maximum cumulative inundation extent, then overlay this hazard information with available exposure datasets. The PDNA methodology itself is applied to a maximum of 15 sectors, of which remote sensing is most useful for housing, agriculture, transportation. Environment and irrigation could be included but these sectors were not covered in these events. The maximum cumulative flood extent is determined using remotely sensed data led by in-country agencies together with international organizations. To enhance this process, GFDRR hosted a SPRINT event in 2012 to tailor daily flood maps derived from MODIS imagery by NASA Goddard's Office of Applied Sciences to this purpose. To estimate the (direct) damage, exposure data for each sector is required. Initially global datasets are used, but these may be supplemented by national level datasets to revise damage estimates, depending on availability. Remote sensed estimates of direct damage are used to confirm field estimates of the magnitude of the damage; thus, the speed of assessment can be balanced not having to achieve high accuracy results. In the future, to increase the speed of remote sensed damage assessments, there is a need for existing exposure information - which can also be used for risk prediction as well as disaster response. However, advances in this area vary significantly by country and sector and therefore efforts to move this agenda forward will significantly improve disaster reduction and recovery.

  13. Monitoring terrestrial dissolved organic carbon export at land-water interfaces using remote sensing

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Li, J.; Tian, Y. Q.

    2017-12-01

    Carbon flux from land to oceans and lakes is a crucial component of carbon cycling. However, this lateral carbon flow at land-water interface is often neglected in the terrestrial carbon cycle budget, mainly because observations of the carbon dynamics are very limited. Monitoring CDOM/DOC dynamics using remote sensing and assessing DOC export from land to water remains a challenge. Current CDOM retrieval algorithms in the field of ocean color are not simply applicable to inland aquatic ecosystems since they were developed for coarse resolution ocean-viewing imagery and less complex water types in open-sea. We developed a new semi-analytical algorithm, called SBOP (Shallow water Bio-Optical Properties algorithm) to adapt to shallow inland waters. SBOP was first developed and calibrated based on in situ hyperspectral radiometer data. Then we applied it to the Landsat-8 OLI images and evaluated the effectiveness of the multispectral images on inversion of CDOM absorption based on our field sampling at the Saginaw Bay in the Lake Huron. The algorithm performances (RMSE = 0.17 and R2 = 0.87 in the Saginaw Bay; R2 = 0.80 in the northeastern US lakes) is promising and we conclude the CDOM absorption can be derived from Landsat-8 OLI image in both optically deep and optically shallow waters with high accuracy. Our method addressed challenges on employing appropriate atmospheric correction, determining bottom reflectance influence for shallow waters, and improving for bio-optical properties retrieval, as well as adapting to both hyperspectral and the multispectral remote sensing imagery. Over 100 Landsat-8 images in Lake Huron, northeastern US lakes, and the Arctic major rivers were processed to understand the CDOM spatio-temporal dynamics and its associated driving factors.

  14. Ocean Colour Products from Remote Sensing Related to In-Situ Data for Supporting Management of Offshore Aquaculture

    NASA Astrophysics Data System (ADS)

    Fragoso, Bruno Dias Duarte; Icely, John; Moore, Gerald; Laanen, Marnix; Ghbrehiwot, Semhar

    2016-08-01

    The EU funded "AQUAculture USEr driven operational Remote Sensing information services project" (AQUA- USERS grant number 607325) is a user driven project for the aquaculture industry that aims at providing this industry with relevant and timely information based on the most recent satellite data and innovative optical in- situ measurements. The Water Insight Spectrometer (WISP-3) is a hand held instrument which can provide measurements of the optical parameters Chlorophyll-a (Chl-a), Total Suspended Matter (TSM), Coloured Dissolved Organic Matter (CDOM), and the Spectral Diffuse Attenuation Coefficient (Kd). Sampling campaigns were carried out between March 2014 and September 2015, to collect water samples at the same time as taking optical reading from the WISP-3 at an offshore aquaculture site off Sagres on the SW Portugal, operated by Finisterra Lda, one of the "users" in the project. The estimates from the WISP-3 for Chla and TSM have been compared with in-situ measurements from the water samples for these two variables, with the objective of calibrating the algorithms used by the WISP-3 for estimation of Chla and TSM. At a later stage in the project, it is expected that WISP-3 readings can be related to remote sensing products developed from the Ocean Land Coloured Instrument (OLCI) from the Sentinel-3 satellite. The key purpose of AQUA- Users is to develop, in collaboration with "users" from the aquaculture industry, a mobile phone application (app) that collates satellite information on optical water quality and temperature together with in-situ data of these variables to develop a decision support system for daily management of the aquaculture.

  15. Towards non-contact photo-acoustic endoscopy using speckle pattern analysis

    NASA Astrophysics Data System (ADS)

    Lengenfelder, Benjamin; Mehari, Fanuel; Tang, Yuqi; Klämpfl, Florian; Zalevsky, Zeev; Schmidt, Michael

    2017-03-01

    Photoacoustic Tomography combines the advantages of optical and acoustic imaging as it makes use of the high optical contrast of tissue and the high resolution of ultrasound. Furthermore, high penetration depths in tissue in the order of several centimeters can be achieved by the combination of these modalities. Extensive research is being done in the field of miniaturization of photoacoustic devices, as photoacoustic imaging could be of significant benefits for the physician during endoscopic interventions. All the existing miniature systems are based on contact transducers for signal detection that are placed at the distal end of an endoscopic device. This makes the manufacturing process difficult and impedance matching to the inspected surface a requirement. The requirement for contact limits the view of the physician during the intervention. Consequently, a fiber based non-contact optical sensing technique would be highly beneficial for the development of miniaturized photoacoustic endoscopic devices. This work demonstrates the feasibility of surface displacement detection using remote speckle-sensing using a high speed camera and an imaging fiber bundle that is used in commercially available video endoscopes. The feasibility of displacement sensing is demonstrated by analysis of phantom vibrations which are induced by loudspeaker membrane oscillations. Since the usability of the remote speckle-sensing for photo-acoustic signal detection was already demonstrated, the fiber bundle approach demonstrates the potential for non-contact photoacoustic detections during endoscopy.

  16. Remote sensing of three-dimensional cirrus clouds from satellites: application to continuous-wave laser atmospheric transmission and backscattering.

    PubMed

    Liou, K N; Ou, Szu-Cheng; Takano, Yoshihide; Cetola, Jeffrey

    2006-09-10

    A satellite remote sensing methodology has been developed to retrieve 3D ice water content (IWC) and mean effective ice crystal size of cirrus clouds from satellite data on the basis of a combination of the conventional retrieval of cloud optical depth and particle size in a horizontal plane and a parameterization of the vertical cloud profile involving temperature from sounding and/or analysis. The inferred 3D cloud fields of IWC and mean effective ice crystal size associated with two impressive cirrus clouds that occurred in the vicinity of northern Oklahoma on 18 April 1997 and 9 March 2000, obtained from the Department of Energy's Atmospheric Radiation Measurement Program, have been validated against the ice crystal size distributions that were collected independently from collocated and coincident aircraft optical probe measurements. The 3D cloud results determined from satellite data have been applied to the simulation of cw laser energy propagation, and we show the significance of 3D cloud geometry and inhomogeneity and spherical atmosphere on the transmitted and backscattered laser powers. Finally, we demonstrate that the 3D cloud fields derived from satellite remote sensing can be used for the 3D laser transmission and backscattering model for tactical application.

  17. Multispectral image enhancement processing for microsat-borne imager

    NASA Astrophysics Data System (ADS)

    Sun, Jianying; Tan, Zheng; Lv, Qunbo; Pei, Linlin

    2017-10-01

    With the rapid development of remote sensing imaging technology, the micro satellite, one kind of tiny spacecraft, appears during the past few years. A good many studies contribute to dwarfing satellites for imaging purpose. Generally speaking, micro satellites weigh less than 100 kilograms, even less than 50 kilograms, which are slightly larger or smaller than the common miniature refrigerators. However, the optical system design is hard to be perfect due to the satellite room and weight limitation. In most cases, the unprocessed data captured by the imager on the microsatellite cannot meet the application need. Spatial resolution is the key problem. As for remote sensing applications, the higher spatial resolution of images we gain, the wider fields we can apply them. Consequently, how to utilize super resolution (SR) and image fusion to enhance the quality of imagery deserves studying. Our team, the Key Laboratory of Computational Optical Imaging Technology, Academy Opto-Electronics, is devoted to designing high-performance microsat-borne imagers and high-efficiency image processing algorithms. This paper addresses a multispectral image enhancement framework for space-borne imagery, jointing the pan-sharpening and super resolution techniques to deal with the spatial resolution shortcoming of microsatellites. We test the remote sensing images acquired by CX6-02 satellite and give the SR performance. The experiments illustrate the proposed approach provides high-quality images.

  18. Fast and Robust Registration of Multimodal Remote Sensing Images via Dense Orientated Gradient Feature

    NASA Astrophysics Data System (ADS)

    Ye, Y.

    2017-09-01

    This paper presents a fast and robust method for the registration of multimodal remote sensing data (e.g., optical, LiDAR, SAR and map). The proposed method is based on the hypothesis that structural similarity between images is preserved across different modalities. In the definition of the proposed method, we first develop a pixel-wise feature descriptor named Dense Orientated Gradient Histogram (DOGH), which can be computed effectively at every pixel and is robust to non-linear intensity differences between images. Then a fast similarity metric based on DOGH is built in frequency domain using the Fast Fourier Transform (FFT) technique. Finally, a template matching scheme is applied to detect tie points between images. Experimental results on different types of multimodal remote sensing images show that the proposed similarity metric has the superior matching performance and computational efficiency than the state-of-the-art methods. Moreover, based on the proposed similarity metric, we also design a fast and robust automatic registration system for multimodal images. This system has been evaluated using a pair of very large SAR and optical images (more than 20000 × 20000 pixels). Experimental results show that our system outperforms the two popular commercial software systems (i.e. ENVI and ERDAS) in both registration accuracy and computational efficiency.

  19. Remote sensing of three-dimensional cirrus clouds from satellites: application to continuous-wave laser atmospheric transmission and backscattering

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Ou, Szu-Cheng; Takano, Yoshihide; Cetola, Jeffrey

    2006-09-01

    A satellite remote sensing methodology has been developed to retrieve 3D ice water content (IWC) and mean effective ice crystal size of cirrus clouds from satellite data on the basis of a combination of the conventional retrieval of cloud optical depth and particle size in a horizontal plane and a parameterization of the vertical cloud profile involving temperature from sounding and/or analysis. The inferred 3D cloud fields of IWC and mean effective ice crystal size associated with two impressive cirrus clouds that occurred in the vicinity of northern Oklahoma on 18 April 1997 and 9 March 2000, obtained from the Department of Energy's Atmospheric Radiation Measurement Program, have been validated against the ice crystal size distributions that were collected independently from collocated and coincident aircraft optical probe measurements. The 3D cloud results determined from satellite data have been applied to the simulation of cw laser energy propagation, and we show the significance of 3D cloud geometry and inhomogeneity and spherical atmosphere on the transmitted and backscattered laser powers. Finally, we demonstrate that the 3D cloud fields derived from satellite remote sensing can be used for the 3D laser transmission and backscattering model for tactical application.

  20. An empirical InSAR-optical fusion approach to mapping vegetation canopy height

    Treesearch

    Wayne S. Walker; Josef M. Kellndorfer; Elizabeth LaPoint; Michael Hoppus; James Westfall

    2007-01-01

    Exploiting synergies afforded by a host of recently available national-scale data sets derived from interferometric synthetic aperture radar (InSAR) and passive optical remote sensing, this paper describes the development of a novel empirical approach for the provision of regional- to continental-scale estimates of vegetation canopy height. Supported by data from the...

  1. Evaluating the potential of image fusion of multispectral and radar remote sensing data for the assessment of water body structure

    NASA Astrophysics Data System (ADS)

    Hunger, Sebastian; Karrasch, Pierre; Wessollek, Christine

    2016-10-01

    The European Water Framework Directive (Directive 2000/60/EC) is a mandatory agreement that guides the member states of the European Union in the field of water policy to fulfill the requirements for reaching the aim of the good ecological status of water bodies. In the last years several workflows and methods were developed to determine and evaluate the characteristics and the status of the water bodies. Due to their area measurements remote sensing methods are a promising approach to constitute a substantial additional value. With increasing availability of optical and radar remote sensing data the development of new methods to extract information from both types of remote sensing data is still in progress. Since most limitations of these data sets do not agree the fusion of both data sets to gain data with higher spectral resolution features the potential to obtain additional information in contrast to the separate processing of the data. Based thereupon this study shall research the potential of multispectral and radar remote sensing data and the potential of their fusion for the assessment of the parameters of water body structure. Due to the medium spatial resolution of the freely available multispectral Sentinel-2 data sets especially the surroundings of the water bodies and their land use are part of this study. SAR data is provided by the Sentinel-1 satellite. Different image fusion methods are tested and the combined products of both data sets are evaluated afterwards. The evaluation of the single data sets and the fused data sets is performed by means of a maximum-likelihood classification and several statistical measurements. The results indicate that the combined use of different remote sensing data sets can have an added value.

  2. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation.

    PubMed

    Qin, Changbo; Jia, Yangwen; Su, Z; Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-07-29

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.

  3. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation

    PubMed Central

    Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-01-01

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946

  4. Visible-infrared remote-sensing model and applications for ocean waters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping

    1994-01-01

    Remote sensing has become important in the ocean sciences, especially for research involving large spatial scales. To estimate the in-water constituents through remote sensing, whether carried out by satellite or airplane, the signal emitted from beneath the sea surface, the so called water-leaving radiance (L(w)), is of prime importance. The magnitude of L(w) depends on two terms: one is the intensity of the solar input, and the other is the reflectance of the in-water constituents. The ratio of the water-leaving radiance to the downwelling irradiance (E(d)) above the sear surface (remote-sensing reflectance, R(sub rs)) is independent of the intensity of the irradiance input, and is largely a function of the optical properties of the in-water constituents. In this work, a model is developed to interpret r(sub rs) for ocean water in the visible-infrared range. In addition to terms for the radiance scattered from molecules and particles, the model includes terms that describe contributions from bottom reflectance, fluorescence of gelbstoff or colored dissolved organic matter (CDOM), and water Raman scattering. By using this model, the measured R(sub rs) of waters from the West Florida Shelf to the Mississippi River plume, which covered a (concentration of chlorophyll a) range of 0.07 - 50 mg/cu m, were well interpreted. The average percentage difference (a.p.d.) between the measured and modeled R(sub rs) is 3.4%, and, for the shallow waters, the model-required water depth is within 10% of the chart depth. Simple mathematical simulations for the phytoplankton pigment absorption coefficient (a(sub theta)) are suggested for using the R(sub rs) model. The inverse problem of R(sub rs), which is to analytically derive the in-water constituents from R(sub rs) data alone, can be solved using the a(sub theta) functions without prior knowledge of the in-water optical properties. More importantly, this method avoids problems associated with a need for knowledge of the shape and value of the chlorophyll-specific absorption coefficient. The simulation was tested for a wide range of water types, including waters from Monterey Bay, the West Florida Shelf, and the Mississippi River plume. Using the simulation, the R(sub rs)-derived in-water absorption coefficients were consistent with the values from in-water measurements (r(exp 2) greater than 0.94, slope approximately 1.0). In the remote-sensing applications, a new approach is suggested for the estimation of primary production based on remote sensing. Using this approach, the calculated primary production (PP) values based upon remotely sensed data were very close to the measured values for the euphotic zone (r(exp 2) = 0.95, slope 1.26, and 32% average difference), while traditional, pigment-based PP model provided values only one-third the size of the measured data. This indicates a potential to significantly improve the accuracy of the estimation of primary production based upon remote sensing.

  5. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    PubMed Central

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-01-01

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors. PMID:26437407

  6. Pan Sharpening Quality Investigation of Turkish In-Operation Remote Sensing Satellites: Applications with Rasat and GÖKTÜRK-2 Images

    NASA Astrophysics Data System (ADS)

    Ozendi, Mustafa; Topan, Hüseyin; Cam, Ali; Bayık, Çağlar

    2016-10-01

    Recently two optical remote sensing satellites, RASAT and GÖKTÜRK-2, launched successfully by the Republic of Turkey. RASAT has 7.5 m panchromatic, and 15 m visible bands whereas GÖKTÜRK-2 has 2.5 m panchromatic and 5 m VNIR (Visible and Near Infrared) bands. These bands with various resolutions can be fused by pan-sharpening methods which is an important application area of optical remote sensing imagery. So that, the high geometric resolution of panchromatic band and the high spectral resolution of VNIR bands can be merged. In the literature there are many pan-sharpening methods. However, there is not a standard framework for quality investigation of pan-sharpened imagery. The aim of this study is to investigate pan-sharpening performance of RASAT and GÖKTÜRK-2 images. For this purpose, pan-sharpened images are generated using most popular pan-sharpening methods IHS, Brovey and PCA at first. This procedure is followed by quantitative evaluation of pan-sharpened images using Correlation Coefficient (CC), Root Mean Square Error (RMSE), Relative Average Spectral Error (RASE), Spectral Angle Mapper (SAM) and Erreur Relative Globale Adimensionnelle de Synthése (ERGAS) metrics. For generation of pan-sharpened images and computation of metrics SharpQ tool is used which is developed with MATLAB computing language. According to metrics, PCA derived pan-sharpened image is the most similar one to multispectral image for RASAT, and Brovey derived pan-sharpened image is the most similar one to multispectral image for GÖKTÜRK-2. Finally, pan-sharpened images are evaluated qualitatively in terms of object availability and completeness for various land covers (such as urban, forest and flat areas) by a group of operators who are experienced in remote sensing imagery.

  7. Evaluation of 3-D Air Quality System Remotely-Sensed Aerosol Optical Depth for the Baltimore/Washington Metropolitan Air Shed

    NASA Astrophysics Data System (ADS)

    Weber, S. A.; Engel-Cox, J. A.; Hoff, R. M.; Prados, A.; Zhang, H.

    2008-12-01

    Integrating satellite- and ground-based aerosol optical depth (AOD) observations with surface total fine particulate (PM2.5) and sulfate concentrations allows for a more comprehensive understanding of local- and urban-scale air quality. This study evaluates the utility of integrated databases being developed for NOAA and EPA through the 3D-AQS project by examining the relationship between remotely-sensed AOD and PM2.5 concentrations for each platform for the summer of 2004 and the entire year of 2005. We compare results for the Baltimore, MD/Washington, DC metropolitan air shed, incorporating AOD products from the Terra and GOES-12 satellites, AERONET sunphotometer, and ground-based lidar, and PM2.5 concentrations from five surface monitoring sites. The satellite-derived products include AOD from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR), as well as the GOES Aerosol/Smoke Product (GASP). The vertical profile of lidar backscatter is used to retrieve the planetary boundary layer (PBL) height in an attempt to capture only that fraction of the AOD arising from near surface aerosols. Adjusting the AOD data using platform- and season-specific ratios, calculated using the parameters of the regression equations, for two case studies resulted in a more accurate representation of surface PM2.5 concentrations when compared to a constant ratio that is currently being used in the NOAA IDEA product. This work demonstrates that quantitative relationships between remotely-sensed and in-situ aerosol observations in an integrated database can be computed and applied to improve the use of remotely-sensed observations for estimating surface concentrations.

  8. Creating Aerosol Types from CHemistry (CATCH): A New Algorithm to Extend the Link Between Remote Sensing and Models

    NASA Astrophysics Data System (ADS)

    Dawson, K. W.; Meskhidze, N.; Burton, S. P.; Johnson, M. S.; Kacenelenbogen, M. S.; Hostetler, C. A.; Hu, Y.

    2017-11-01

    Current remote sensing methods can identify aerosol types within an atmospheric column, presenting an opportunity to incrementally bridge the gap between remote sensing and models. Here a new algorithm was designed for Creating Aerosol Types from CHemistry (CATCH). CATCH-derived aerosol types—dusty mix, maritime, urban, smoke, and fresh smoke—are based on first-generation airborne High Spectral Resolution Lidar (HSRL-1) retrievals during the Ship-Aircraft Bio-Optical Research (SABOR) campaign, July/August 2014. CATCH is designed to derive aerosol types from model output of chemical composition. CATCH-derived aerosol types are determined by multivariate clustering of model-calculated variables that have been trained using retrievals of aerosol types from HSRL-1. CATCH-derived aerosol types (with the exception of smoke) compare well with HSRL-1 retrievals during SABOR with an average difference in aerosol optical depth (AOD) <0.03. Data analysis shows that episodic free tropospheric transport of smoke is underpredicted by the Goddard Earth Observing System- with Chemistry (GEOS-Chem) model. Spatial distributions of CATCH-derived aerosol types for the North American model domain during July/August 2014 show that aerosol type-specific AOD values occurred over representative locations: urban over areas with large population, maritime over oceans, smoke, and fresh smoke over typical biomass burning regions. This study demonstrates that model-generated information on aerosol chemical composition can be translated into aerosol types analogous to those retrieved from remote sensing methods. In the future, spaceborne HSRL-1 and CATCH can be used to gain insight into chemical composition of aerosol types, reducing uncertainties in estimates of aerosol radiative forcing.

  9. Plant-Stress Measurements Using Laser-Induced Fluorescence Excitation: Poland Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gene Capelle; Steve Jones

    1999-05-01

    Bechtel Nevada's Special Technologies Laboratory (STL) has been involved in remote sensing for many years, and in April 1995 STL began to study the use of active remote sensing for detecting plant stress. This work was motivated by the need to detect subsurface contamination, with the supposition that this could be accomplished by remote measurement of optical signatures from the overgrowing vegetation. The project has been a cooperative DOE/Disney effort, in which basic optical signature measurements (primarily fluorescence) were done at the Disney greenhouse facilities at Epcot Center in Florida, using instrumentation developed by STL on DOE funding. The primarymore » instrument is a LIFI system, which had originally been developed for detection of surface uranium contamination at DOE sites. To deal specifically with the plant stress measurements, a LIFS system was built that utilizes the same laser, but captures the complete fluorescence spectrum from blue to red wavelengths. This system had continued to evolve, and the version in existence in September 1997 was sent to Poland, accompanied by two people from STL, for the purpose of making the measurements described in this report.« less

  10. Optical remote sensing for monitoring flying mosquitoes, gender identification and discussion on species identification

    NASA Astrophysics Data System (ADS)

    Genoud, Adrien P.; Basistyy, Roman; Williams, Gregory M.; Thomas, Benjamin P.

    2018-03-01

    Mosquito-borne diseases are a major challenge for Human health as they affect nearly 700 million people every year and result in over 1 million deaths. Reliable information on the evolution of population and spatial distribution of key insects species is of major importance in the development of eco-epidemiologic models. This paper reports on the remote characterization of flying mosquitoes using a continuous-wave infrared optical remote sensing system. The system is setup in a controlled environment to mimic long-range lidars, mosquitoes are free flying at a distance of 4 m from the collecting optics. The wing beat frequency is retrieved from the backscattered light from mosquitoes transiting through the laser beam. A total of 427 transit signals have been recorded from three mosquito species, males and females. Since the mosquito species and gender are known a priori, we investigate the use of wing beat frequency as the sole predictor variable for two Bayesian classifications: gender alone (two classes) and species/gender (six classes). The gender of each mosquito is retrieved with a 96.5% accuracy while the species/gender of mosquitoes is retrieved with a 62.3% accuracy. Known to be an efficient mean to identify insect family, we discuss the limitations of using wing beat frequency alone to identify insect species.

  11. Nano-Fabrication Methods for Micro-Miniature Optical Thermometers Suited to High Temperatures and Harsh Environments

    NASA Astrophysics Data System (ADS)

    DePew, K. A.; Ma, C.; Schiffbauer, J. D.; Wang, J.; Dong, B.; Lally, E.; Wang, A.

    2012-12-01

    The Center for Photonics Technology (CPT) at Virginia Tech is engaged in cutting edge research of fiber optic sensing technologies. One current research area is the design of fiber optic temperature sensors for harsh environments. Fiber optic temperature sensing offers significant advantages over electronic sensing in terms of size and insensitivity to harsh environmental conditions and electromagnetic interference. In the field, fiber optic thermometers have been used in recent snow cover studies as well as fluvial temperature profiling projects. The extended capabilities of CPT optical sensors open further possibilities for application in additional geologic realms requiring high temperature sensing in corrosive environments. Significant strides have been made in developing single-crystal sapphire based fiber optic sensing elements for high temperature environments which are otherwise difficult to instrument. Utilization of strain insensitive designs and optical sapphire materials allow for thermometers capable of operation above 1500°C with reduced sensitivity to chemical corrosion and mechanical interference. Current efforts in fabrication techniques are reducing the footprint of temperature sensors below the millimeter scale while maintaining high resolution and operating range. The FEI Helios 600 NanoLab workstation at the Virginia Tech Institute for Critical Technologies and Applied Science has been employed, providing the capabilities necessary to reduce the footprint of sensing elements to the dimensions of standard optical communication fiber using a Ga+ focused ion beam (FIB). The capability of semi-distributed multi-point sensing can also be accomplished at this scale using similar FIB milling techniques. The fiber optic thermometer designs resulting from these methods are compact, lightweight, and able to provide remote sensing without need for electrical power at the measurement point. These traits make them an ideal sensing platform for laboratory applications with minimal instrumentation egress as well as field deployment in areas where traditional electronic technologies cannot survive.

  12. Modeling, simulation, and analysis of optical remote sensing systems

    NASA Technical Reports Server (NTRS)

    Kerekes, John Paul; Landgrebe, David A.

    1989-01-01

    Remote Sensing of the Earth's resources from space-based sensors has evolved in the past 20 years from a scientific experiment to a commonly used technological tool. The scientific applications and engineering aspects of remote sensing systems have been studied extensively. However, most of these studies have been aimed at understanding individual aspects of the remote sensing process while relatively few have studied their interrelations. A motivation for studying these interrelationships has arisen with the advent of highly sophisticated configurable sensors as part of the Earth Observing System (EOS) proposed by NASA for the 1990's. Two approaches to investigating remote sensing systems are developed. In one approach, detailed models of the scene, the sensor, and the processing aspects of the system are implemented in a discrete simulation. This approach is useful in creating simulated images with desired characteristics for use in sensor or processing algorithm development. A less complete, but computationally simpler method based on a parametric model of the system is also developed. In this analytical model the various informational classes are parameterized by their spectral mean vector and covariance matrix. These class statistics are modified by models for the atmosphere, the sensor, and processing algorithms and an estimate made of the resulting classification accuracy among the informational classes. Application of these models is made to the study of the proposed High Resolution Imaging Spectrometer (HRIS). The interrelationships among observational conditions, sensor effects, and processing choices are investigated with several interesting results.

  13. Experimental results for correlation-based wavefront sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyneer, L A; Palmer, D W; LaFortune, K N

    2005-07-01

    Correlation wave-front sensing can improve Adaptive Optics (AO) system performance in two keys areas. For point-source-based AO systems, Correlation is more accurate, more robust to changing conditions and provides lower noise than a centroiding algorithm. Experimental results from the Lick AO system and the SSHCL laser AO system confirm this. For remote imaging, Correlation enables the use of extended objects for wave-front sensing. Results from short horizontal-path experiments will show algorithm properties and requirements.

  14. Fiber optic probes for laser light scattering: Ground based evaluation for micgrogravity flight experimentation. Integrated coherent imaging fiber optic systems for laser light scattering and other applications

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh

    1994-01-01

    The research work presented in this report has established a new class of backscatter fiber optics probes for remote dynamic light scattering capability over a range of scattering angles from 94 degrees to 175 degrees. The fiber optic probes provide remote access to scattering systems, and can be utilized in either a noninvasive or invasive configuration. The fiber optics create an interference free data channel to inaccessible and harsh environments. Results from several studies of concentrated suspension, microemulsions, and protein systems are presented. The second part of the report describes the development of a new technology of wavefront processing within the optical fiber, that is, integrated fiber optics. Results have been very encouraging and the technology promises to have significant impact on the development of fiber optic sensors in a variety of fields ranging from environmental monitoring to optical recording, from biomedical sensing to photolithography.

  15. Laser applications in meteorology and earth and atmospheric remote sensing; Proceedings of the Meeting, Los Angeles, CA, Jan. 16-18, 1989

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M. (Editor)

    1989-01-01

    Various papers on laser applications in meteorology and earth and atmospheric remote sensing are presented. The individual topics addressed include: solid state lasers for the mid-IR region, tunable chromium lasers, GaInAsSb/AlGaAsSb injection lasers for remote sensing applications, development and design of an airborne autonomous wavemeter for laser tuning, fabrication of lightweight Si/SiC lidar mirrors, low-cost double heterostructure and quantum-well laser array development, nonlinear optical processes for the mid-IR region, simulated space-based Doppler lidar performance in regions of backscatter inhomogeneities, design of CO2 recombination catalysts for closed-cycle CO2 lasers, density measurements with combined Raman-Rayleigh lidar, geodynamics applications of spaceborne laser ranging, use of aircraft laser ranging data for forest mensuration, remote active spectrometer, multiwavelngth and triple CO2 lidars for trace gas detection, analysis of laser diagnostics in plumes, laser atmospheric wind sounder, compact Doppler lidar system using commercial off-the-shelf components, and preliminary design for a laser atmospheric wind sounder.

  16. A Search-and-Rescue Robot System for Remotely Sensing the Underground Coal Mine Environment

    PubMed Central

    Gao, Junyao; Zhao, Fangzhou; Liu, Yi

    2017-01-01

    This paper introduces a search-and-rescue robot system used for remote sensing of the underground coal mine environment, which is composed of an operating control unit and two mobile robots with explosion-proof and waterproof function. This robot system is designed to observe and collect information of the coal mine environment through remote control. Thus, this system can be regarded as a multifunction sensor, which realizes remote sensing. When the robot system detects danger, it will send out signals to warn rescuers to keep away. The robot consists of two gas sensors, two cameras, a two-way audio, a 1 km-long fiber-optic cable for communication and a mechanical explosion-proof manipulator. Especially, the manipulator is a novel explosion-proof manipulator for cleaning obstacles, which has 3-degree-of-freedom, but is driven by two motors. Furthermore, the two robots can communicate in series for 2 km with the operating control unit. The development of the robot system may provide a reference for developing future search-and-rescue systems. PMID:29065560

  17. Optical and Physical Methods for Mapping Flooding with Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Fayne, Jessica Fayne; Bolten, John; Lakshmi, Venkat; Ahamed, Aakash

    2016-01-01

    Flood and surface water mapping is becoming increasingly necessary, as extreme flooding events worldwide can damage crop yields and contribute to billions of dollars economic damages as well as social effects including fatalities and destroyed communities (Xaio et al. 2004; Kwak et al. 2015; Mueller et al. 2016).Utilizing earth observing satellite data to map standing water from space is indispensable to flood mapping for disaster response, mitigation, prevention, and warning (McFeeters 1996; Brakenridge and Anderson 2006). Since the early 1970s(Landsat, USGS 2013), researchers have been able to remotely sense surface processes such as extreme flood events to help offset some of these problems. Researchers have demonstrated countless methods and modifications of those methods to help increase knowledge of areas at risk and areas that are flooded using remote sensing data from optical and radar systems, as well as free publically available and costly commercial datasets.

  18. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source.

    PubMed

    Cadiou, Erwan; Mammez, Dominique; Dherbecourt, Jean-Baptiste; Gorju, Guillaume; Pelon, Jacques; Melkonian, Jean-Michel; Godard, Antoine; Raybaut, Myriam

    2017-10-15

    We report on the capability of a direct detection differential absorption lidar (DIAL) for range resolved and integrated path (IPDIAL) remote sensing of CO 2 in the atmospheric boundary layer (ABL). The laser source is an amplified nested cavity optical parametric oscillator (NesCOPO) emitting approximately 8 mJ at the two measurement wavelengths selected near 2050 nm. Direct detection atmospheric measurements are taken from the ground using a 30 Hz frequency switching between emitted wavelengths. Results show that comparable precision measurements are achieved in DIAL and IPDIAL modes (not better than a few ppm) on high SNR targets such as near range ABL aerosol and clouds, respectively. Instrumental limitations are analyzed and degradation due to cloud scattering variability is discussed to explain observed DIAL and IPDIAL limitations.

  19. MODIS Cloud Products Derived from Terra and Aqua During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, S.; Riedi, J. C.; Ackerman, S. A.; Menzel, W. P.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. During the CRYSTAL-FACE experiment, numerous aircraft coordinated both in situ and remote sensing observations with the Terra and Aqua spacecraft. In this paper we will emphasize the optical, microphysical, and physical properties of both liquid water and ice clouds obtained from an analysis of the satellite observations over Florida and the Gulf of Mexico during July 2002. We will present the frequency distribution of liquid water and ice cloud microphysical properties throughout the region, separating the results over land and ocean. Probability distributions of effective radius and cloud optical thickness will also be shown.

  20. Biogeochemical and Optical Analysis of Coastal DOM for Satellite Retrieval of Terrigenous DOM in the U.S. Middle Atlantic Bight

    NASA Technical Reports Server (NTRS)

    Mannino, A.; Dyda, R. Y.; Hernes, P. J.; Hooker, Stan; Hyde, Kim; Novak, Mike

    2012-01-01

    Estuaries and coastal ocean waters experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine/estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements (elemental content, molecular analyses), optical properties (absorption) and remote sensing to examine terrestrial DOM contributions into the U.S. Middle Atlantic Bight (MAB). We measured lignin phenol composition, DOC and CDOM absorption within the Chesapeake and Delaware Bay mouths, plumes and adjacent coastal ocean waters to derive empirical relationships between CDOM and biogeochemical measurements for satellite remote sensing application. Lignin ranged from 0.03 to 6.6 ug/L between estuarine and outer shelf waters. Our results demonstrate that satellite-derived CDOM is useful as a tracer of terrigenous DOM in the coastal ocean

  1. Ship detection in optical remote sensing images based on deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Jiang, Zhiguo; Zhang, Haopeng; Zhao, Danpei; Cai, Bowen

    2017-10-01

    Automatic ship detection in optical remote sensing images has attracted wide attention for its broad applications. Major challenges for this task include the interference of cloud, wave, wake, and the high computational expenses. We propose a fast and robust ship detection algorithm to solve these issues. The framework for ship detection is designed based on deep convolutional neural networks (CNNs), which provide the accurate locations of ship targets in an efficient way. First, the deep CNN is designed to extract features. Then, a region proposal network (RPN) is applied to discriminate ship targets and regress the detection bounding boxes, in which the anchors are designed by intrinsic shape of ship targets. Experimental results on numerous panchromatic images demonstrate that, in comparison with other state-of-the-art ship detection methods, our method is more efficient and achieves higher detection accuracy and more precise bounding boxes in different complex backgrounds.

  2. IOCCG Report Number 16, 2015 Ocean Colour Remote Sensing in Polar Seas . Chapter 2; The Polar Environment: Sun, Clouds, and Ice

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Perovich, Don; Stamnes, Knut; Stuart, Venetia (Editor)

    2015-01-01

    The polar regions are places of extremes. There are months when the regions are enveloped in unending darkness, and months when they are in continuous daylight. During the daylight months the sun is low on the horizon and often obscured by clouds. In the dark winter months temperatures are brutally cold, and high winds and blowing snow are common. Even in summer, temperatures seldom rise above 0degC. The cold winter temperatures cause the ocean to freeze, forming sea ice. This sea ice cover acts as a barrier limiting the transfer of heat, moisture, and momentum between the atmosphere and the ocean. It also greatly complicates the optical signature of the surface. Taken together, these factors make the polar regions a highly challenging environment for optical remote sensing of the ocean.

  3. Compact Hyperspectral Mapper for Environmental Remote Sensing Applications (CHyMERA) End-of-phase Data Review Package

    NASA Technical Reports Server (NTRS)

    Janz, Scott J.; Hilsenrath, Ernest; Mount, George; Heath, Donald

    2000-01-01

    CHYMERA is an Instrument Incubator concept to design, build, and test an instrument that will reduce size, mass, and cost and increase science potential and flexibility for future atmospheric remote sensing missions within the focus of NASA's Earth Science Enterprise (ESE). The primary effort of the development plan will be on high spatial resolution ozone, N02, S02, aerosol, and cloud measurements, but it is hoped that the techniques developed will prove useful for other measurements as well. The core design will involve a high performance, wide field-of-view (FOV) front end telescope which will illuminate a filter/focal plane array (FFPA) package. The use of a non-dispersive optical configuration will reduce size, mass and complexity. The wide FOV optics will permit short duration global coverage (1-2 days) without the need for a scanner.

  4. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    NASA Astrophysics Data System (ADS)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and manufacture of the scanning infrared imaging system, the infrared remote sensing system, the infrared early-warning satellite, and so on.

  5. Remote Sensing of plant functional types: Relative importance of biochemical and structural plant traits

    NASA Astrophysics Data System (ADS)

    Kattenborn, Teja; Schmidtlein, Sebastian

    2017-04-01

    Monitoring ecosystems is a key priority in order to understand vegetation patterns, underlying resource cycles and changes their off. Driven by biotic and abiotic factors, plant species within an ecosystem are likely to share similar structural, physiological or phenological traits and can therefore be grouped into plant functional types (PFT). It can be assumed that plants which share similar traits also share similar optical characteristics. Therefore optical remote sensing was identified as a valuable tool for differentiating PFT. Although several authors list structural and biochemical plant traits which are important for differentiating PFT using hyperspectral remote sensing, there is no quantitative or qualitative information on the relative importance of these traits. Thus, little is known about the explicit role of plant traits for an optical discrimination of PFT. One of the main reasons for this is that various optical traits affect the same wavelength regions and it is therefore difficult to isolate the discriminative power of a single trait. A way to determine the effect of single plant traits on the optical reflectance of plant canopies is given by radiative transfer models. The most established radiative transfer model is PROSAIL, which incorporates biochemical and structural plant traits, such as pigment contents or leaf area index. In the present study 25 grassland species of different PFT were cultivated and traits relevant for PROSAIL were measured for the entire vegetation season of 2016. The information content of each trait for differentiating PFTs was determined by applying a Multi-response Permutation Procedure on the actual traits, as well as on simulated canopy spectra derived from PROSAIL. According to our results some traits, especially biochemical traits, show a weaker separability of PFT on a spectral level than compared to the actual trait measurements. Overall structural traits (leaf angle and leaf area index) are more important for differentiating PFT than biochemical traits.

  6. Sensitivity of Calibration Gains to Ocean Color Processing in Coastal and Open Waters Using Ensembles Members for NPP-VIIRS

    DTIC Science & Technology

    2014-07-01

    a different impact on spectral normalized water leaving radiances and the derived ocean color products (inherent optical properties, chlorophyll ). We...leaving radiances and the derived ocean color products (inherent optical properties, chlorophyll ). We evaluated the influence of gains from open and...34gain" on ocean color products. These products include the spectral Remote Sensing Reflectance (RRS), chlorophyll concentration, and Inherent Optical

  7. Remote sensing of plant trait responses to field-based plant-soil feedback using UAV-based optical sensors

    NASA Astrophysics Data System (ADS)

    van der Meij, Bob; Kooistra, Lammert; Suomalainen, Juha; Barel, Janna M.; De Deyn, Gerlinde B.

    2017-02-01

    Plant responses to biotic and abiotic legacies left in soil by preceding plants is known as plant-soil feedback (PSF). PSF is an important mechanism to explain plant community dynamics and plant performance in natural and agricultural systems. However, most PSF studies are short-term and small-scale due to practical constraints for field-scale quantification of PSF effects, yet field experiments are warranted to assess actual PSF effects under less controlled conditions. Here we used unmanned aerial vehicle (UAV)-based optical sensors to test whether PSF effects on plant traits can be quantified remotely. We established a randomized agro-ecological field experiment in which six different cover crop species and species combinations from three different plant families (Poaceae, Fabaceae, Brassicaceae) were grown. The feedback effects on plant traits were tested in oat (Avena sativa) by quantifying the cover crop legacy effects on key plant traits: height, fresh biomass, nitrogen content, and leaf chlorophyll content. Prior to destructive sampling, hyperspectral data were acquired and used for calibration and independent validation of regression models to retrieve plant traits from optical data. Subsequently, for each trait the model with highest precision and accuracy was selected. We used the hyperspectral analyses to predict the directly measured plant height (RMSE = 5.12 cm, R2 = 0.79), chlorophyll content (RMSE = 0.11 g m-2, R2 = 0.80), N-content (RMSE = 1.94 g m-2, R2 = 0.68), and fresh biomass (RMSE = 0.72 kg m-2, R2 = 0.56). Overall the PSF effects of the different cover crop treatments based on the remote sensing data matched the results based on in situ measurements. The average oat canopy was tallest and its leaf chlorophyll content highest in response to legacy of Vicia sativa monocultures (100 cm, 0.95 g m-2, respectively) and in mixture with Raphanus sativus (100 cm, 1.09 g m-2, respectively), while the lowest values (76 cm, 0.41 g m-2, respectively) were found in response to legacy of Lolium perenne monoculture, and intermediate responses to the legacy of the other treatments. We show that PSF effects in the field occur and alter several important plant traits that can be sensed remotely and quantified in a non-destructive way using UAV-based optical sensors; these can be repeated over the growing season to increase temporal resolution. Remote sensing thereby offers great potential for studying PSF effects at field scale and relevant spatial-temporal resolutions which will facilitate the elucidation of the underlying mechanisms.

  8. Grapevine Remote Sensing Analysis of Phylloxera Early Stress (GRAPES): Remote Sensing Analysis Summary

    NASA Technical Reports Server (NTRS)

    Lobitz, Brad; Johnson, Lee; Hlavka, Chris; Armstrong, Roy; Bell, Cindy

    1997-01-01

    High spatial resolution airborne imagery was acquired in California's Napa Valley in 1993 and 1994 as part of the Grapevine Remote sensing Analysis of Phylloxera Early Stress (GRAPES) project. Investigators from NASA, the University of California, the California State University, and Robert Mondavi Winery examined the application of airborne digital imaging technology to vineyard management, with emphasis on detecting the phylloxera infestation in California vineyards. Because the root louse causes vine stress that leads to grapevine death in three to five years, the infested areas must be replanted with resistant rootstock. Early detection of infestation and changing cultural practices can compensate for vine damage. Vineyard managers need improved information to decide where and when to replant fields or sections of fields to minimize crop financial losses. Annual relative changes in leaf area due to phylloxera infestation were determined by using information obtained from computing Normalized Difference Vegetation Index (NDVI) images. Two other methods of monitoring vineyards through imagery were also investigated: optical sensing of the Red Edge Inflection Point (REIP), and thermal sensing. These did not convey the stress patterns as well as the NDVI imagery and require specialized sensor configurations. NDVI-derived products are recommended for monitoring phylloxera infestations.

  9. Monitoring cover crops using radar remote sensing in southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Shang, J.; Huang, X.; Liu, J.; Wang, J.

    2016-12-01

    Information on agricultural land surface conditions is important for developing best land management practices to maintain the overall health of the fields. The climate condition supports one harvest per year for the majority of the field crops in Canada, with a relative short growing season between May and September. During the non-growing-season months (October to the following April), many fields are traditionally left bare. In more recent year, there has been an increased interest in planting cover crops. Benefits of cover crops include boosting soil organic matters, preventing soil from erosion, retaining soil moisture, and reducing surface runoff hence protecting water quality. Optical remote sensing technology has been exploited for monitoring cover crops. However limitations inherent to optical sensors such as cloud interference and signal saturation (when leaf area index is above 2.5) impeded its operational application. Radar remote sensing on the other hand is not hindered by unfavorable weather conditions, and the signal continues to be sensitive to crop growth beyond the saturation point of optical sensors. It offers a viable means for capturing timely information on field surface conditions (with or without crop cover) or crop development status. This research investigated the potential of using multi-temporal RADARSAT-2 C-band synthetic aperture radar (SAR) data collected in 2015 over multiple fields of winter wheat, corn and soybean crops in southern Ontario, Canada, to retrieve information on the presence of cover crops and their growth status. Encouraging results have been obtained. This presentation will report the methodology developed and the results obtained.

  10. Recent advances in radar remote sensing of forest

    NASA Technical Reports Server (NTRS)

    Letoan, Thuy

    1993-01-01

    On a global scale, forests represent most of the terrestrial standing biomass (80 to 90 percent). Thus, natural and anthropogenic change in forest covers can have major impacts not only on local ecosystems but also on global hydrologic, climatic, and biogeochemical cycles that involve exchange of energy, water, carbon, and other elements between the earth and atmosphere. Quantitative information on the state and dynamics of forest ecosystems and their interactions with the global cycles appear necessary to understand how the earth works as a natural system. The information required includes the lateral and vertical distribution of forest cover, the estimates of standing biomass (woody and foliar volume), the phenological and environmental variations and disturbances (clearcutting, fires, flood), and the longer term variations following deforestation (regeneration, successional stages). To this end, seasonal, annual, and decadal information is necessary in order to separate the long term effects in the global ecosystem from short term seasonal and interannual variations. Optical remote sensing has been used until now to study the forest cover at local, regional, and global scales. Radar remote sensing, which provides recent SAR data from space on a regular basis, represents an unique means of consistently monitoring different time scales, at all latitudes and in any atmospheric conditions. Also, SAR data have shown the potential to detect several forest parameters that cannot be inferred from optical data. The differences--and complementarity--lie in the penetration capabilities of SAR data and their sensitivity to dielectric and geometric properties of the canopy volume, whereas optical data are sensitive to the chemical composition of the external foliar layer of the vegetation canopy.

  11. Determining phytoplankton community structure from ocean color at the Martha's Vineyard Coastal Observatory (MVCO)

    NASA Astrophysics Data System (ADS)

    Kramer, S. J.; Sosik, H. M.; Roesler, C. S.

    2016-02-01

    Satellite remote sensing of ocean color allows for estimates of phytoplankton biomass on broad spatial and temporal scales. Recently, a variety of approaches have been offered for determining phytoplankton taxonomic composition or phytoplankton functional types (PFTs) from remote sensing reflectance. These bio-optical algorithms exploit spectral differences to discriminate waters dominated by different types of cells. However, the efficacy of these models remains difficult to constrain due to limited datasets for detailed validation. In this study, we examined the region around the Martha's Vineyard Coastal Observatory (MVCO), a near-shore location on the New England shelf with optically complex coastal waters. This site offers many methods for detailed validation of ocean color algorithms: an AERONET-OC above-water radiometry system provides sea-truth ocean color observations; time series of absorption and backscattering coefficients are measured; and phytoplankton composition is assessed with a combination of continuous in situ flow cytometry and intermittent discrete sampling for HPLC pigments. Our analysis showed that even models originally parameterized for the Northwest Atlantic perform poorly in capturing the variability in relationships between optical properties and water constituents at coastal sites such as MVCO. We refined models with local parameterizations of variability in absorption and backscattering coefficients, and achieved much better agreement of modeled and observed relationships between predicted spectral reflectance, chlorophyll concentration, and indices of phytoplankton composition such as diatom dominance. Applying these refined models to satellite remote sensing imagery offers the possibility of describing large-scale variations in phytoplankton community structure both at MVCO and on the surrounding shelf over space and time.

  12. Six years of surface remote sensing of stratiform warm clouds in marine and continental air over Mace Head, Ireland

    NASA Astrophysics Data System (ADS)

    Preißler, Jana; Martucci, Giovanni; Saponaro, Giulia; Ovadnevaite, Jurgita; Vaishya, Aditya; Kolmonen, Pekka; Ceburnis, Darius; Sogacheva, Larisa; de Leeuw, Gerrit; O'Dowd, Colin

    2016-12-01

    A total of 118 stratiform water clouds were observed by ground-based remote sensing instruments at the Mace Head Atmospheric Research Station on the west coast of Ireland from 2009 to 2015. Microphysical and optical characteristics of these clouds were studied as well as the impact of aerosols on these properties. Microphysical and optical cloud properties were derived using the algorithm SYRSOC (SYnergistic Remote Sensing Of Clouds). Ground-based in situ measurements of aerosol concentrations and the transport path of air masses at cloud level were investigated as well. The cloud properties were studied in dependence of the prevailing air mass at cloud level and season. We found higher cloud droplet number concentrations (CDNC) and smaller effective radii (reff) with greater pollution. Median CDNC ranged from 60 cm-3 in marine air masses to 160 cm-3 in continental air. Median reff ranged from 8 μm in polluted conditions to 10 μm in marine air. Effective droplet size distributions were broader in marine than in continental cases. Cloud optical thickness (COT) and albedo were lower in cleaner air masses and higher in more polluted conditions, with medians ranging from 2.1 to 4.9 and 0.22 to 0.39, respectively. However, calculation of COT and albedo was strongly affected by liquid water path (LWP) and departure from adiabatic conditions. A comparison of SYRSOC results with MODIS (Moderate-Resolution Imaging Spectroradiometer) observations showed large differences for LWP and COT but good agreement for reff with a linear fit with slope near 1 and offset of -1 μm.

  13. Spectral Variability of Oil Slicks under Different Observing Conditions: Examples from Satellite and Airborne Measurement

    NASA Astrophysics Data System (ADS)

    Sun, S.; Hu, C.

    2017-12-01

    Optical remote sensing is one of the most commonly used techniques in detecting oil in the surface ocean. This is because that oil has different optical properties from the surrounding oil-free water and oil can also modulate surface waves, thus providing a spatial contrast to facilitate delineating the oil-water boundary. Estimating oil volume or thickness from the delineated oil footprint, on the other hand, is much more difficult and currently represents a major challenge in remote sensing of oil spills. Several studies have attempted to associate reflectance spectra (magnitude and spectral shape) with oil thickness from experiments under controlled conditions, where such established relationships were used to quantify oil thickness. However, it is unclear whether or how these experiment derived relationships could be used in the real environment. Here, oil pixel spectra were extracted from several satellite sensors including Landsat, MERIS, MODIS and MISR together with airborne sensor AVIRIS that captured during the Deepwater Horizon oil spill in 2010. Same day imagery of these sensors were co-registered to compare spectra difference of oil under different observing conditions. Combining those resulted spectra with laboratory-measured oil spectra in previous study, oil's diverse spectral magnitudes and shapes were presented. Besides oil thickness, we concluded several other potential factors that may contribute significantly to the spectral response of oil slicks in the marine environment, which include sun glint strength, oil emulsification state, optical properties of oil covered water and remote sensing imagery's spatial resolution as well. And future perspectives for more accurate estimation of oil thickness are proposed.

  14. Instrumentation for optical remote sensing from space; Proceedings of the Meeting, Cannes, France, November 27-29, 1985

    NASA Technical Reports Server (NTRS)

    Seeley, John S. (Editor); Lear, John W. (Editor); Russak, Sidney L. (Editor); Monfils, Andre (Editor)

    1986-01-01

    Papers are presented on such topics as the development of the Imaging Spectrometer for Shuttle and space platform applications; the in-flight calibration of pushbroom remote sensing instruments for the SPOT program; buttable detector arrays for 1.55-1.7 micron imaging; the design of the Improved Stratospheric and Mesospheric Sounder on the Upper Atmosphere Research Satellite; and SAGE II design and in-orbit performance. Consideration is also given to the Shuttle Imaging Radar-B/C instruments; the Venus Radar Mapper multimode radar system design; various ISO instruments (ISOCAM, ISOPHOT, and SWS and LWS); and instrumentation for the Space Infrared Telescope Facility.

  15. Potential of Remote Sensing in the Corps of Engineers Dredging Program.

    DTIC Science & Technology

    1985-11-01

    remotely sensed sultispectral data. Earth Resources Survey Symposium June 9-12, Houston. Texas. Lyndon B. Johnson Space Center, pp. 2087-2098. Kalle , K ...a" -- , :0 0 4 n - 0 00 0 𔃾A 14. U ,U a4 t4 f"’ 4- t4- -- cf 0 0-4 z so a 0 . 4," . +" ’," - AC8" N N- ,, . -o - o 0 0 - 4.4 o o 0’, K . 0...signal. Several studies have shown that many substances can be identified by their optical properties. Using cruise data, Kalle (1966) was one of the

  16. Optical researches for cyanobacteria bloom monitoring in Curonian Lagoon

    NASA Astrophysics Data System (ADS)

    Shirshin, Evgeny A.; Budylin, Gleb B.; Yakimov, Boris P.; Voloshina, Olga V.; Karabashev, Genrik S.; Evdoshenko, Marina A.; Fadeev, Victor V.

    2016-04-01

    Cyanobacteria bloom is a great ecological problem of Curonian Lagoon and Baltic Sea. The development of novel methods for the on-line control of cyanobacteria concentration and, moreover, for prediction of bloom spreading is of interest for monitoring the state of ecosystem. Here, we report the results of the joint application of hyperspectral measurements and remote sensing of Curonian Lagoon in July 2015 aimed at the assessment of cyanobacteria communities. We show that hyperspectral data allow on-line detection and qualitative estimation of cyanobacteria concentration, while the remote sensing data indicate the possibility of cyanobacteria bloom detection using the spectral features of upwelling irradiation.

  17. Information content of in situ and remotely sensed chlorophyll-a: Learning from size-structured phytoplankton model

    NASA Astrophysics Data System (ADS)

    Laiolo, Leonardo; Matear, Richard; Baird, Mark E.; Soja-Woźniak, Monika; Doblin, Martina A.

    2018-07-01

    Chlorophyll-a measurements in the form of in situ observations and satellite ocean colour products are commonly used in data assimilation to calibrate marine biogeochemical models. Here, a two size-class phytoplankton biogeochemical model, with a 0D configuration, was used to simulate the surface chlorophyll-a dynamics (simulated surface Chl-a) for cyclonic and anticyclonic eddies off East Australia. An optical model was then used to calculate the inherent optical properties from the simulation and convert them into remote-sensing reflectance (Rrs). Subsequently, Rrs was used to produce a satellite-like estimate of the simulated surface Chl-a concentrations through the MODIS OC3M algorithm (simulated OC3M Chl-a). Identical parameter optimisation experiments were performed through the assimilation of the two separate datasets (simulated surface Chl-a and simulated OC3M Chl-a), with the purpose of investigating the contrasting information content of simulated surface Chl-a and remotely-sensed data sources. The results we present are based on the analysis of the distribution of a cost function, varying four parameters of the biogeochemical model. In our idealized experiments the simulated OC3M Chl-a product is a poor proxy for the total simulated surface Chl-a concentration. Furthermore, our result show the OC3M algorithm can underestimate the simulated chlorophyll-a concentration in offshore eddies off East Australia (Case I waters), because of the weak relationship between large-sized phytoplankton and remote-sensing reflectance. Although Case I waters are usually characteristic of oligotrophic environments, with a photosynthetic community typically represented by relatively small-sized phytoplankton, mesoscale features such as eddies can generate seasonally favourable conditions for a photosynthetic community with a greater proportion of large phytoplankton cells. Furthermore, our results show that in mesoscale features such as eddies, in situ chlorophyll-a observations and the ocean colour products can carry different information related to phytoplankton sizes. Assimilating both remote-sensing reflectance and measurements of in situ chlorophyll-a concentration reduces the uncertainty of the parameter values more than either data set alone, thus reducing the spread of acceptable solutions, giving an improved simulation of the natural environment.

  18. Method and apparatus for distinguishing actual sparse events from sparse event false alarms

    DOEpatents

    Spalding, Richard E.; Grotbeck, Carter L.

    2000-01-01

    Remote sensing method and apparatus wherein sparse optical events are distinguished from false events. "Ghost" images of actual optical phenomena are generated using an optical beam splitter and optics configured to direct split beams to a single sensor or segmented sensor. True optical signals are distinguished from false signals or noise based on whether the ghost image is presence or absent. The invention obviates the need for dual sensor systems to effect a false target detection capability, thus significantly reducing system complexity and cost.

  19. Laser Covariance Vibrometry for Unsymmetrical Mode Detection

    DTIC Science & Technology

    2006-09-01

    surface rough- ness. Results show that the remote sensing spectra adequately match the structural vibration, including non – imaging spatially...the speckle. 10 profile (cross – section), is an air turbulence effect ignored in this work that will affect both the sensed vibration phase change and...like spike impulse. 13 Chapter three describes optical processing issues. This chapter delineates the image propagation algorithms used for the work

  20. Nanoimprinting on optical fiber end faces for chemical sensing

    NASA Astrophysics Data System (ADS)

    Kostovski, G.; White, D. J.; Mitchell, A.; Austin, M. W.; Stoddart, P. R.

    2008-04-01

    Optical fiber surface-enhanced Raman scattering (SERS) sensors offer a potential solution to monitoring low chemical concentrations in-situ or in remote sensing scenarios. We demonstrate the use of nanoimprint lithography to fabricate SERS-compatible nanoarrays on the end faces of standard silica optical fibers. The antireflective nanostructure found on cicada wings was used as a convenient template for the nanoarray, as high sensitivity SERS substrates have previously been demonstrated on these surfaces. Coating the high fidelity replicas with silver creates a dense array of regular nanoscale plasmonic resonators. A monolayer of thiophenol was used as a low concentration analyte, from which strong Raman spectra were collected using both direct endface illumination and through-fiber interrogation. This unique combination of nanoscale replication with optical fibers demonstrates a high-resolution, low-cost approach to fabricating high-performance optical fiber chemical sensors.

  1. EXPERIMENTS IN LITHOGRAPHY FROM REMOTE SENSOR IMAGERY.

    USGS Publications Warehouse

    Kidwell, R. H.; McSweeney, J.; Warren, A.; Zang, E.; Vickers, E.

    1983-01-01

    Imagery from remote sensing systems such as the Landsat multispectral scanner and return beam vidicon, as well as synthetic aperture radar and conventional optical camera systems, contains information at resolutions far in excess of that which can be reproduced by the lithographic printing process. The data often require special handling to produce both standard and special map products. Some conclusions have been drawn regarding processing techniques, procedures for production, and printing limitations.

  2. Fiber optic sensors IV; Proceedings of the Third European Congress on Optics, The Hague, Netherlands, Mar. 13, 14, 1990

    NASA Technical Reports Server (NTRS)

    Kersten, Ralf T. (Editor)

    1990-01-01

    Recent advances in fiber-optic sensor (FOS) technology are examined in reviews and reports. Sections are devoted to components for FOSs, special fibers for FOSs, interferometry, FOS applications, and sensing principles and influence. Particular attention is given to solder glass sealing technology for FOS packaging, the design of optical-fiber current sensors, pressure and temperature effects on beat length in highly birefringent optical fibers, a pressure FOS based on vibrating-quartz-crystal technology, remote sensing of flammable gases using a fluoride-fiber evanescent probe, a displacement sensor with electronically scanned white-light interferometer, the use of multimode laser diodes in low-coherence coupled-cavity interferometry, electronic speckle interferometry compensated for environmentally induced phase noise, a dual-resolution noncontact vibration and displacement sensor based on a two-wavelength source, and fiber optics in composite materials.

  3. Estimation of water quality parameters of inland and coastal waters with the use of a toolkit for processing of remote sensing data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, A.G.; Hoogenboom, H.J.; Rijkeboer, M.

    1997-06-01

    Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air/water interface correction, and application of water quality algorithms. A prototype software environment has recently been developed that enables the user to perform and control these processing steps. Main parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code for removing atmospheric and air-water interface influences, (ii) a tool for analyzing of algorithms for estimating water quality and (iii) a spectral database, containing apparent and inherent optical properties and associated water quality parameters.more » The use of the software is illustrated by applying implemented algorithms for estimating chlorophyll to data from a spectral library of Dutch inland waters with CHL ranging from 1 to 500 pg 1{sup -1}. The algorithms currently implemented in the Toolkit software are recommended for optically simple waters, but for optically complex waters development of more advanced retrieval methods is required.« less

  4. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  5. Apparent Optical Properties in Waters Influenced by the Mississippi River

    NASA Technical Reports Server (NTRS)

    D'Sa, E.; Miller, R. L.; McKee, B. A.; Trzaska, R.

    2002-01-01

    In-water downwelling irradiance (E(sub d)) and upwelling radiance (L(sub u)) were measured in coastal waters influenced by the Mississippi River at wavelengths corresponding to SeaWiFS spectral bands in April of 2000. Results of derived apparent optical properties (AOP's) such as spectral diffise attenuation coefficient for downwelling irradiance (K(sub d)) suggest that they are mainly influenced by phytoplankton chlorophyll. Large variations in chlorophyll concentrations (0.2 to greater than 10 mg per cubic meters) correspond to variations in K(sub d) at 443 nm ranging from about 0.1 to greater than 1.5 per meter. Attenuation values at 443 nm generally peaked (or were minimal at 555 nm) at depths where chlorophyll concentrations were high. Above water remote sensing reflectance R(sub rs) (443) derived from E(sub d) and L(sub u) shows good agreement to surface chlorophyll. Ratios of remote sensing reflectance, R(sub rs)(443/R(sub rs)(555)versus chlorophyll suggests a potential for obtaining a suitable bio-optical algorithm for the region influenced by the Mississippi River.

  6. The Atlantic Meridional Transect: Spatially Extensive Calibration and Validation of Optical Properties and Remotely Sensed Measurements of Ocean Colour

    NASA Technical Reports Server (NTRS)

    Aiken, James; Hooker, Stanford

    1997-01-01

    Twice a year, the Royal Research Ship (RRS) James Clark Ross (JCR) steams a meridional transect of the atlantic Ocean between Grimsly (UK) and Stanley (Falkland Islands) with a port call in Montevideo (Uruguay), as part of the annual research activities of the British Antarctic Survey (BAS). In September, the JCR sails from the UK, and the following April it makes the return trip. The ship is operated by the BAS for the Natural Environment Research Council (NERC). The Atlantic Meridional Transect (AMT) Program exploits the passage of the JCR from approximately 50 deg. N to 50 deg. S with a primary objective to investigate physical and biological processes, as well as to measure the mesi-to-basin-scale bio-optical properties of the atlantic Ocean. The calibration and validation of remotely sensed observations of ocean colour is an inherent objective of these studies: first, by relating in situ measurements of water leaving radiance to satellite measurement, and second, by measuring the bio-optically active constituents of the water.

  7. Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season

    NASA Technical Reports Server (NTRS)

    Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.

    2014-01-01

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  8. Specific absorption and backscatter coefficient signatures in southeastern Atlantic coastal waters

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.

    1998-12-01

    Measurements of natural water samples in the field and laboratory of hyperspectral signatures of total absorption and reflectance were obtained using long pathlength absorption systems (50 cm pathlength). Water was sampled in Indian River Lagoon, Banana River and Port Canaveral, Florida. Stations were also occupied in near coastal waters out to the edge of the Gulf Stream in the vicinity of Kennedy Space Center, Florida and estuarine waters along Port Royal Sound and along the Beaufort River tidal area in South Carolina. The measurements were utilized to calculate natural water specific absorption, total backscatter and specific backscatter optical signatures. The resulting optical cross section signatures suggest different models are needed for the different water types and that the common linear model may only appropriate for coastal and oceanic water types. Mean particle size estimates based on the optical cross section, suggest as expected, that particle size of oceanic particles are smaller than more turbid water types. The data discussed and presented are necessary for remote sensing applications of sensors as well as for development and inversion of remote sensing algorithms.

  9. Amazon forests maintain consistent canopy structure and greenness during the dry season.

    PubMed

    Morton, Douglas C; Nagol, Jyoteshwar; Carabajal, Claudia C; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D; Vermote, Eric F; Harding, David J; North, Peter R J

    2014-02-13

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data. We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  10. Field calibration and validation of remote-sensing surveys

    USGS Publications Warehouse

    Pe'eri, Shachak; McLeod, Andy; Lavoie, Paul; Ackerman, Seth D.; Gardner, James; Parrish, Christopher

    2013-01-01

    The Optical Collection Suite (OCS) is a ground-truth sampling system designed to perform in situ measurements that help calibrate and validate optical remote-sensing and swath-sonar surveys for mapping and monitoring coastal ecosystems and ocean planning. The OCS system enables researchers to collect underwater imagery with real-time feedback, measure the spectral response, and quantify the water clarity with simple and relatively inexpensive instruments that can be hand-deployed from a small vessel. This article reviews the design and performance of the system, based on operational and logistical considerations, as well as the data requirements to support a number of coastal science and management projects. The OCS system has been operational since 2009 and has been used in several ground-truth missions that overlapped with airborne lidar bathymetry (ALB), hyperspectral imagery (HSI), and swath-sonar bathymetric surveys in the Gulf of Maine, southwest Alaska, and the US Virgin Islands (USVI). Research projects that have used the system include a comparison of backscatter intensity derived from acoustic (multibeam/interferometric sonars) versus active optical (ALB) sensors, ALB bottom detection, and seafloor characterization using HSI and ALB.

  11. Demonstration of a mid-infrared NO molecular Faraday optical filter.

    PubMed

    Wu, Kuijun; Feng, Yutao; Li, Juan; Yu, Guangbao; Liu, Linmei; Xiong, Yuanhui; Li, Faquan

    2017-12-11

    A molecular Faraday optical filter (MFOF) working in the mid-infrared region is realized for the first time. NO molecule was used as the working material of the MFOF for potential applications in atmospheric remote sensing and combustion diagnosis. We develop a complete theory to describe the performance of MFOF by taking both Zeeman absorption and Faraday rotation into account. We also record the Faraday rotation transmission (FRT) signal using a quantum cascade laser over the range of 1,820 cm -1 to 1,922 cm -1 and calibrate it by using a 101.6 mm long solid germanium etalon with a free spectral range of 0.012 cm -1 . Good agreement between the simulation results and experimental data is achieved. The NO-MFOF's transmission characteristics as a function of magnetic field and pressure are studied in detail. Both Comb-like FRT spectrum and single branch transmission spectrum are obtained by changing the magnetic field. The diversity of FRT spectrum expands the range of potential applications in infrared optical remote sensing. This filtering method can also be extended to the lines of other paramagnetic molecules.

  12. Detection of TNT using a sensitive two-photon organic dendrimer for remote sensing

    NASA Astrophysics Data System (ADS)

    Narayanan, Aditya; Varnavski, Oleg; Mongin, Oliver; Majoral, Jean-Pierre; Blanchard-Desce, Mireille; Goodson, Theodore, III

    2008-03-01

    There is currently a need for superior stand-off detection schemes for protection against explosive weapons of mass destruction. Fluorescence detection at small distances from the target has proven to be attractive. A novel unexplored route in fluorescence chemical sensing that utilizes the exceptional spectroscopic capabilities of nonlinear optical methods is two-photon excited fluorescence. This approach utilizes infra-red light for excitation of remote sensors. Infra-red light suffers less scattering in porous materials which is beneficial for vapor sensing and has greater depth of penetration through the atmosphere, and there are fewer concerns regarding eye safety in remote detection schemes. We demonstrate this method using a novel dendritic system which possesses both excellent fluorescence sensitivity to the presence of TNT with infra-red pulses of light and high two-photon absorption (TPA) response. This illustrates the use of TPA for potential stand-off detection of energetic materials in the infra-red spectral regions in a highly two-photon responsive dendrimer.

  13. Resolution verification targets for airborne and spaceborne imaging systems at the Stennis Space Center

    NASA Astrophysics Data System (ADS)

    McKellip, Rodney; Yuan, Ding; Graham, William; Holland, Donald E.; Stone, David; Walser, William E.; Mao, Chengye

    1997-06-01

    The number of available spaceborne and airborne systems will dramatically increase over the next few years. A common systematic approach toward verification of these systems will become important for comparing the systems' operational performance. The Commercial Remote Sensing Program at the John C. Stennis Space Center (SSC) in Mississippi has developed design requirements for a remote sensing verification target range to provide a means to evaluate spatial, spectral, and radiometric performance of optical digital remote sensing systems. The verification target range consists of spatial, spectral, and radiometric targets painted on a 150- by 150-meter concrete pad located at SSC. The design criteria for this target range are based upon work over a smaller, prototypical target range at SSC during 1996. This paper outlines the purpose and design of the verification target range based upon an understanding of the systems to be evaluated as well as data analysis results from the prototypical target range.

  14. Remote Sensing of Aerosol and Aerosol Radiative Forcing of Climate from EOS Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The recent launch of EOS-Terra into polar orbit has begun to revolutionize remote sensing of aerosol and their effect on climate. Terra has five instruments, two of them,Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR) are designed to monitor global aerosol in two different complementary ways. Here we shall discuss the use of the multispectral measurements of MODIS to derive: (1) the global distribution of aerosol load (and optical thickness) over ocean and land; (2) to measure the impact of aerosol on reflection of sunlight to space; and (3) to measure the ability of aerosol to absorb solar radiation. These measurements have direct applications on the understanding of the effect of aerosol on climate, the ability to predict climate change, and on the monitoring of dust episodes and man-made pollution. Principles of remote sensing of aerosol from MODIS will be discussed and first examples of measurements from MODIS will be provided.

  15. SCIAMACHY validation by aircraft remote sensing: design, execution, and first measurement results of the SCIA-VALUE mission

    NASA Astrophysics Data System (ADS)

    Fix, A.; Ehret, G.; Flentje, H.; Poberaj, G.; Gottwald, M.; Finkenzeller, H.; Bremer, H.; Bruns, M.; Burrows, J. P.; Kleinböhl, A.; Küllmann, H.; Kuttippurath, J.; Richter, A.; Wang, P.; Heue, K.-P.; Platt, U.; Pundt, I.; Wagner, T.

    2005-05-01

    For the first time three different remote sensing instruments - a sub-millimeter radiometer, a differential optical absorption spectrometer in the UV-visible spectral range, and a lidar - were deployed aboard DLR's meteorological research aircraft Falcon 20 to validate a large number of SCIAMACHY level 2 and off-line data products such as O3, NO2, N2O, BrO, OClO, H2O, aerosols, and clouds. Within two validation campaigns of the SCIA-VALUE mission (SCIAMACHY VALidation and Utilization Experiment) extended latitudinal cross-sections stretching from polar regions to the tropics as well as longitudinal cross sections at polar latitudes at about 70° N and the equator were generated. This contribution gives an overview over the campaigns performed and reports on the observation strategy for achieving the validation goals. We also emphasize the synergetic use of the novel set of aircraft instrumentation and the usefulness of this innovative suite of remote sensing instruments for satellite validation.

  16. Optical characterization of Chinese hybrid rice using laser-induced fluorescence techniques-laboratory and remote-sensing measurements.

    PubMed

    Duan, Zheng; Peng, Ting; Zhu, Shiming; Lian, Ming; Li, Yiyun; Wei, Fu; Xiong, Jiabao; Svanberg, Sune; Zhao, Quanzhi; Hu, Jiandong; Zhao, Guangyu

    2018-05-01

    Chinese hybrid rice of different varieties, growing in paddies in the Pingqiao district, north of Xinyang city, Henan province, China, was studied in detailed spectroscopic characteristics using laser-induced fluorescence. The base for the studies was the new South China Normal University mobile lidar laboratory, which was dispatched on site, providing facilities both for laboratory studies using a 405 nm excitation source as well as remote sensing measurements at ranges from around 40 m-120 m, mostly employing the 532 nm output from a Nd:YAG laser. We, in particular, studied the spectral influence of the species varieties as well as the level of nitrogen fertilization supplied. Specially developed contrast functions as well as multivariate techniques with principal components and Fisher's discriminate analyses were applied, and useful characterization of the rice could be achieved. The chlorophyll content mapping of the 30 zones was obtained with the remote sensing measurements.

  17. The interaction of light with phytoplankton in the marine environment

    NASA Technical Reports Server (NTRS)

    Carder, Kendall L.; Collins, Donald J.; Perry, Mary Jane; Clark, H. Lawrence; Mesias, Jorge M.

    1986-01-01

    In many regions of the ocean, the phytoplankton population dominates both the attenuation and scattering of light. In other regions, non-phytoplankton contributions to the absorption and scattering may change the remote sensing reflectance and thus affect the ability to interpret remotely sensed ocean color. Hence, variations in the composition of both the phytoplankton population and of the non-phytoplankton material in the water can affect the optical properties of the sea. The effects of these contributions to the remote sensing reflectance and the submarine light field are modeled using scattering and absorption measurements of phytoplankton cultures obtained at the Friday Harbor Laboratory of the University of Washington. These measurements are used to develop regional chlorophyll algorithms specific to the summer waters of Puget Sound for the Coastal Zone Color Scanner, Thematic Mapper and future Ocean Color Imager, and their accuracies are compared for high chlorophyll waters with little or no Gelbstoff, but with variable detrital and suspended material.

  18. Temporal variations in atmospheric water vapor and aerosol optical depth determined by remote sensing

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Mcallum, W. E.; Heidt, M.; Jeske, K.; Lee, J. T.; Demonbrun, D.; Morgan, A.; Potter, J.

    1977-01-01

    By automatically tracking the sun, a four-channel solar radiometer was used to continuously measure optical depth and atmospheric water vapor. The design of this simple autotracking solar radiometer is presented. A technique for calculating the precipitable water from the ratio of a water band to a nearby nonabsorbing band is discussed. Studies of the temporal variability of precipitable water and atmospheric optical depth at 0.610, 0.8730 and 1.04 microns are presented. There was good correlation between the optical depth measured using the autotracker and visibility determined from National Weather Service Station data. However, much more temporal structure was evident in the autotracker data than in the visibility data. Cirrus clouds caused large changes in optical depth over short time periods. They appear to be the largest deleterious atmospheric effect over agricultural areas that are remote from urban pollution sources.

  19. Comparison of remote sensing algorithms for retrieval of suspended particulate matter concentration from reflectance in coastal waters

    NASA Astrophysics Data System (ADS)

    Freeman, Lauren A.; Ackleson, Steven G.; Rhea, William Joseph

    2017-10-01

    Suspended particulate matter (SPM) is a key environmental indicator for rivers, estuaries, and coastal waters, which can be calculated from remote sensing reflectance obtained by an airborne or satellite imager. Here, algorithms from prior studies are applied to a dataset of in-situ at surface hyperspectral remote sensing reflectance, collected in three geographic regions representing different water types. These data show the optically inherent exponential nature of the relationship between reflectance and sediment concentration. However, linear models are also shown to provide a reasonable estimate of sediment concentration when utilized with care in similar conditions to those under which the algorithms were developed, particularly at lower SPM values (0 to 20 mg/L). Fifteen published SPM algorithms are tested, returning strong correlations of R2>0.7, and in most cases, R2>0.8. Very low SPM values show weaker correlation with algorithm calculated SPM that is not wavelength dependent. None of the tested algorithms performs well for high SPM values (>30 mg/L), with most algorithms underestimating SPM. A shift toward a smaller number of simple exponential or linear models relating satellite remote sensing reflectance to suspended sediment concentration with regional consideration will greatly aid larger spatiotemporal studies of suspended sediment trends.

  20. Remote sensing detection of atmospheric pollutants using lidar, sodar and correlation with air quality data in an industrial area

    NASA Astrophysics Data System (ADS)

    Steffens, Juliana; da Costa, Renata F.; Landulfo, Eduardo; Guardani, Roberto; Moreira, Paulo F., Jr.; Held, Gerhard

    2011-11-01

    Optical remote sensing techniques have obvious advantages for monitoring gas and aerosol emissions, since they enable the operation over large distances, far from hostile environments, and fast processing of the measured signal. In this study two remote sensing devices, namely a Lidar (Light Detection and Ranging) for monitoring the vertical profile of backscattered light intensity, and a Sodar (Acoustic Radar, Sound Detection and Ranging) for monitoring the vertical profile of the wind vector were operated during specific periods. The acquired data were processed and compared with data of air quality obtained from ground level monitoring stations, in order to verify the possibility of using the remote sensing techniques to monitor industrial emissions. The campaigns were carried out in the area of the Environmental Research Center (Cepema) of the University of Sao Paulo, in the city of Cubatao, Brazil, a large industrial site, where numerous different industries are located, including an oil refinery, a steel plant, as well as fertilizer, cement and chemical/petrochemical plants. The local environmental problems caused by the industrial activities are aggravated by the climate and topography of the site, unfavorable to pollutant dispersion. Results of a campaign are presented for a 24- hour period, showing data of a Lidar, an air quality monitoring station and a Sodar.

  1. AccuRT: A versatile tool for radiative transfer simulations in the coupled atmosphere-ocean system

    NASA Astrophysics Data System (ADS)

    Hamre, Børge; Stamnes, Snorre; Stamnes, Knut; Stamnes, Jakob

    2017-02-01

    Reliable, accurate, and efficient modeling of the transport of electromagnetic radiation in turbid media has important applications in the study of the Earth's climate by remote sensing. For example, such modeling is needed to develop forward-inverse methods used to quantify types and concentrations of aerosol and cloud particles in the atmosphere, the dissolved organic and particulate biogeochemical matter in lakes, rivers, coastal, and open-ocean waters. It is also needed to simulate the performance of remote sensing detectors deployed on aircraft, balloons, and satellites as well as radiometric detectors deployed on buoys, gliders and other aquatic observing systems. Accurate radiative transfer modeling is also required to compute irradiances and scalar irradiances that are used to compute warming/cooling and photolysis rates in the atmosphere and primary production and warming/cooling rates in the water column. AccuRT is a radiative transfer model for the coupled atmosphere-water system that is designed to be a versatile tool for researchers in the ocean optics and remote sensing communities. It addresses the needs of researchers interested in analyzing irradiance and radiance measurements in the field and laboratory as well as those interested in making simulations of the top-of-the-atmosphere radiance in support of remote sensing algorithm development.

  2. IR lasers in a struggle against dangerous cosmic objects

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Boris A.

    2001-03-01

    Humanity can struggle with the small dangerous cosmic objects in our time and its parameter knowledge are needed. A present paper deals with prospects for the perspective of the laser methods applications for a dangerous asteroids discovering and a remote sensing and for the course correction systems of the influence expedients. The cosmic IR lasers will be used for remote sensing measurement of the various cosmic objects parameters: dimensions are more than 50 m, velocity is more than 10 km/s. The laser methods have the good perspectives among a large fleet of diagnostics technical means. The more effective CO2-laser parameters were defined for the solar systems smaller bodies velocity analysis. The laser is supplied with modulated laser radiation and an automatic tuning optical system. The CO2-lidars are needed for the asteroids detections and remote sensing at the distances of 30,000 km to 1 Mkm. A laser Doppler anemometer method with adaptive selection is used. The power calculations were made for the various asteroids in a cosmic space. The possibilities are estimated for remote sensing and for the course correction systems of the influence expedients also. The such system must be good for the distances nearby 12600 km, as the asteroids velocity can be more than 70 km/s.

  3. Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting

    PubMed Central

    Gupta, Banshi D.; Shrivastav, Anand M.; Usha, Sruthi P.

    2016-01-01

    Molecular imprinting is earning worldwide attention from researchers in the field of sensing and diagnostic applications, due to its properties of inevitable specific affinity for the template molecule. The fabrication of complementary template imprints allows this technique to achieve high selectivity for the analyte to be sensed. Sensors incorporating this technique along with surface plasmon or localized surface plasmon resonance (SPR/LSPR) provide highly sensitive real time detection with quick response times. Unfolding these techniques with optical fiber provide the additional advantages of miniaturized probes with ease of handling, online monitoring and remote sensing. In this review a summary of optical fiber sensors using the combined approaches of molecularly imprinted polymer (MIP) and the SPR/LSPR technique is discussed. An overview of the fundamentals of SPR/LSPR implementation on optical fiber is provided. The review also covers the molecular imprinting technology (MIT) with its elementary study, synthesis procedures and its applications for chemical and biological anlayte detection with different sensing methods. In conclusion, we explore the advantages, challenges and the future perspectives of developing highly sensitive and selective methods for the detection of analytes utilizing MIT with the SPR/LSPR phenomenon on optical fiber platforms. PMID:27589746

  4. The Impact of Iron Limitation on Remote Sensing Reflectance in Phaeocystis antarctica

    NASA Astrophysics Data System (ADS)

    Tagliabue, A.; van Dijken, G. L.; Arrigo, K. R.

    2006-12-01

    The iron limited Southern Ocean is an important controller of the global carbon cycle and is predicted to be heavily impacted by future changes in climate. Such remote regions are heavily reliant on acquiring data from remotely sensed satellite observations of pigment concentrations, via algorithms that utilize bio-optical properties to estimate chlorophyll a concentrations. The haptophyte Phaeocystis antarctica is a key phytoplankton functional group across the Southern Ocean and dominates phytoplankton biomass in the highly productive southwestern Ross Sea. In this study, we examine absorption spectra obtained from laboratory cultures of P. antarctica grown under iron sufficient and deficient conditions. We then utilize a semi-analytical reflectance model, alongside data collected from the Ross Sea, to compare remote sensing reflectance (Rrs) derived from absorption spectra to chlorophyll a. We find that Rrs(490):Rrs(555) per unit chlorophyll a for iron sufficient P. antarctica is consistent with the existing Ross Sea algorithm. However, the increased chlorophyll specific absorption at 490 and 555 nm of iron deficient P. antarctica results in a reduction in Rrs(490):Rrs(555) per unit chlorophyll a. Therefore, remotely sensed chlorophyll a concentrations based on Rrs(490):Rrs(555) will be overestimated when waters dominated by P. antarctica experience iron stress. If remotely sensed chlorophyll a concentrations are erroneously high when P. antarctica is iron limited, then both the magnitude and duration of P. antarctica blooms might have been overestimated. We suggest that an in situ investigation of the P. antarctica Rrs to chlorophyll a relationship is necessary during the onset of iron limitation. The likely causes and broader implications of these conclusions will also be discussed.

  5. Atmospheric particles retrieval using satellite remote sensing: Applications for sandstorms and volcanic clouds

    NASA Astrophysics Data System (ADS)

    Gu, Yingxin

    This thesis is concerned with atmospheric particles produced by sandstorms and volcanic eruptions. Three studies were conducted in order to examine particle retrieval methodology, and apply these towards an improved understanding of large-scale sandstorms. A thermal infrared remote sensing retrieval method developed by Wen and Rose [1994], which retrieves particle sizes, optical depth, and total masses of silicate particles in the volcanic cloud, was applied to an April 07, 2001 sandstorm over northern China, using MODIS. Results indicate that the area of the dust cloud observed was 1.34 million km2, the mean particle radius of the dust was 1.44 mum, and the mean optical depth at 11 mum was 0.79. The mean burden of dust was approximately 4.8 tons/km2 and the main portion of the dust storm on April 07, 2001 contained 6.5 million tons of dust. The results are supported by both independent remote sensing data (TOMS) and in-situ data for a similar event in 1998, therefore suggesting that the technique is appropriate for quantitative analysis of silicate dust clouds. This is the first quantitative evaluation of annual and seasonal dust loading in 2003 produced by Saharan dust storms by satellite remote sensing analysis. The retrieved mean particle effective radii of 2003 dust events are between 1.7--2.6 mum which is small enough to be inhaled and is hazardous to human health. The retrieved yearly dust mass load is 658--690 Tg, which is ˜45% of the annual global mineral dust production. Winter is the heaviest dust loading season in the year 2003, which is more than 5 times larger than that in the summer season in 2003.The mean optical depths at 11 mum in the winter season (around 0.7) are higher than those in the summer season (around 0.5). The results could help both meteorologists and environmental scientists to evaluate and predict the hazard degree caused by Saharan dust storms. (Abstract shortened by UMI.)

  6. Here, there and everywhere: The art and science of optics at work

    NASA Astrophysics Data System (ADS)

    Ambrosini, Dario; Ferraro, Pietro

    2018-05-01

    Optics, the ancient science of vision and light [1-5] can look forward to a "bright" future [6,7], as its applications are now ubiquitous in fields as diverse as science, engineering, technology, medicine and everyday life. Optical methods play a crucial and often revolutionary role in non-destructive testing, biomedical applications, microscopy, cultural heritage protection, advanced imaging in medicine, development of self-driving cars, astronomy, remote sensing, and manufacturing to cite a few examples.

  7. Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements

    NASA Astrophysics Data System (ADS)

    Lee, Zhongping; Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.; Mueller, James L.

    1997-02-01

    Remote-sensing reflectance and inherent optical properties of oceanic properties of oceanic waters are important parameters for ocean optics. Due to surface reflectance, Rrs or water-leaving radiance is difficult to measure from above the surface. It usually is derived by correcting for the reflected skylight in the measured above-water upwelling radiance using a theoretical Fresnel reflectance value. As it is difficult to determine the reflected skylight, there are errors in the Q and E derived Rrs, and the errors may get bigger for high chl_a coastal waters. For better correction of the reflected skylight,w e propose the following derivation procedure: partition the skylight into Rayleigh and aerosol contributions, remove the Rayleigh contribution using the Fresnel reflectance, and correct the aerosol contribution using an optimization algorithm. During the process, Rrs and in-water inherent optical properties are derived at the same time. For measurements of 45 sites made in the Gulf of Mexico and Arabian Sea with chl_a concentrations ranging from 0.07 to 49 mg/m3, the derived Rrs and inherent optical property values were compared with those from in-water measurements. These results indicate that for the waters studied, the proposed algorithm performs quite well in deriving Rrs and in- water inherent optical properties from above-surface measurements for clear and turbid waters.

  8. Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data

    PubMed Central

    Huang, Jingfeng; Wei, Chen; Zhang, Yao; Blackburn, George Alan; Wang, Xiuzhen; Wei, Chuanwen; Wang, Jing

    2015-01-01

    Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); carotenoids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge (700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a. PMID:26356842

  9. Integration of Remote Sensing Data In Operational Flood Forecast In Southwest Germany

    NASA Astrophysics Data System (ADS)

    Bach, H.; Appel, F.; Schulz, W.; Merkel, U.; Ludwig, R.; Mauser, W.

    Methods to accurately assess and forecast flood discharge are mandatory to minimise the impact of hydrological hazards. However, existing rainfall-runoff models rarely accurately consider the spatial characteristics of the watershed, which is essential for a suitable and physics-based description of processes relevant for runoff formation. Spatial information with low temporal variability like elevation, slopes and land use can be mapped or extracted from remote sensing data. However, land surface param- eters of high temporal variability, like soil moisture and snow properties are hardly available and used in operational forecasts. Remote sensing methods can improve flood forecast by providing information on the actual water retention capacities in the watershed and facilitate the regionalisation of hydrological models. To prove and demonstrate this, the project 'InFerno' (Integration of remote sensing data in opera- tional water balance and flood forecast modelling) has been set up, funded by DLR (50EE0053). Within InFerno remote sensing data (optical and microwave) are thor- oughly processed to deliver spatially distributed parameters of snow properties and soil moisture. Especially during the onset of a flood this information is essential to estimate the initial conditions of the model. At the flood forecast centres of 'Baden- Württemberg' and 'Rheinland-Pfalz' (Southwest Germany) the remote sensing based maps on soil moisture and snow properties will be integrated in the continuously op- erated water balance and flood forecast model LARSIM. The concept is to transfer the developed methodology from the Neckar to the Mosel basin. The major challenges lie on the one hand in the implementation of algorithms developed for a multisensoral synergy and the creation of robust, operationally applicable remote sensing products. On the other hand, the operational flood forecast must be adapted to make full use of the new data sources. In the operational phase of the project ESA's ENVISAT satellite, which will be launched in 2002, will serve as remote sensing data source. Until EN- VISAT data is available, algorithm retrieval, software development and product gener- ation is performed using existing sensors with ENVISAT-like specifications. Based on these data sets test cases and demonstration runs are conducted and will be presented to prove the advantages of the approach.

  10. Remote sensing estimation of colored dissolved organic matter (CDOM) in optically shallow waters

    NASA Astrophysics Data System (ADS)

    Li, Jiwei; Yu, Qian; Tian, Yong Q.; Becker, Brian L.

    2017-06-01

    It is not well understood how bottom reflectance of optically shallow waters affects the algorithm performance of colored dissolved organic matters (CDOM) retrieval. This study proposes a new algorithm that considers bottom reflectance in estimating CDOM absorption from optically shallow inland or coastal waters. The field sampling was conducted during four research cruises within the Saginaw River, Kawkawlin River and Saginaw Bay of Lake Huron. A stratified field sampling campaign collected water samples, determined the depth at each sampling location and measured optical properties. The sampled CDOM absorption at 440 nm broadly ranged from 0.12 to 8.46 m-1. Field sample analysis revealed that bottom reflectance does significantly change water apparent optical properties. We developed a CDOM retrieval algorithm (Shallow water Bio-Optical Properties algorithm, SBOP) that effectively reduces uncertainty by considering bottom reflectance in shallow waters. By incorporating the bottom contribution in upwelling radiances, the SBOP algorithm was able to explain 74% of the variance of CDOM values (RMSE = 0.22 and R2 = 0.74). The bottom effect index (BEI) was introduced to efficiently separate optically shallow and optically deep waters. Based on the BEI, an adaptive approach was proposed that references the amount of bottom effect in order to identify the most suitable algorithm (optically shallow water algorithm [SBOP] or optically deep water algorithm [QAA-CDOM]) to improve CDOM estimation (RMSE = 0.22 and R2 = 0.81). Our results potentially help to advance the capability of remote sensing in monitoring carbon pools at the land-water interface.

  11. a Coarse-To Model for Airplane Detection from Large Remote Sensing Images Using Saliency Modle and Deep Learning

    NASA Astrophysics Data System (ADS)

    Song, Z. N.; Sui, H. G.

    2018-04-01

    High resolution remote sensing images are bearing the important strategic information, especially finding some time-sensitive-targets quickly, like airplanes, ships, and cars. Most of time the problem firstly we face is how to rapidly judge whether a particular target is included in a large random remote sensing image, instead of detecting them on a given image. The problem of time-sensitive-targets target finding in a huge image is a great challenge: 1) Complex background leads to high loss and false alarms in tiny object detection in a large-scale images. 2) Unlike traditional image retrieval, what we need to do is not just compare the similarity of image blocks, but quickly find specific targets in a huge image. In this paper, taking the target of airplane as an example, presents an effective method for searching aircraft targets in large scale optical remote sensing images. Firstly, we used an improved visual attention model utilizes salience detection and line segment detector to quickly locate suspected regions in a large and complicated remote sensing image. Then for each region, without region proposal method, a single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation is adopted to search small airplane objects. Unlike sliding window and region proposal-based techniques, we can do entire image (region) during training and test time so it implicitly encodes contextual information about classes as well as their appearance. Experimental results show the proposed method is quickly identify airplanes in large-scale images.

  12. A Hybrid of Optical Remote Sensing and Hydrological Modeling Improves Water Balance Estimation

    NASA Astrophysics Data System (ADS)

    Gleason, Colin J.; Wada, Yoshihide; Wang, Jida

    2018-01-01

    Declining gauging infrastructure and fractious water politics have decreased available information about river flows globally. Remote sensing and water balance modeling are frequently cited as potential solutions, but these techniques largely rely on these same in-decline gauge data to make accurate discharge estimates. A different approach is therefore needed, and we here combine remotely sensed discharge estimates made via at-many-stations hydraulic geometry (AMHG) and the PCR-GLOBWB hydrological model to estimate discharge over the Lower Nile. Specifically, we first estimate initial discharges from 87 Landsat images and AMHG (1984-2015), and then use these flow estimates to tune the model, all without using gauge data. The resulting tuned modeled hydrograph shows a large improvement in flow magnitude: validation of the tuned monthly hydrograph against a historical gauge (1978-1984) yields an RMSE of 439 m3/s (40.8%). By contrast, the original simulation had an order-of-magnitude flow error. This improvement is substantial but not perfect: tuned flows have a 1-2 month wet season lag and a negative base flow bias. Accounting for this 2 month lag yields a hydrograph RMSE of 270 m3/s (25.7%). Thus, our results coupling physical models and remote sensing is a promising first step and proof of concept toward future modeling of ungauged flows, especially as developments in cloud computing for remote sensing make our method easily applicable to any basin. Finally, we purposefully do not offer prescriptive solutions for Nile management, and rather hope that the methods demonstrated herein can prove useful to river stakeholders in managing their own water.

  13. Remote sensing for studying atmospheric aerosols in Malaysia

    NASA Astrophysics Data System (ADS)

    Kanniah, Kasturi D.; Kamarul Zaman, Nurul A. F.

    2015-10-01

    The aerosol system is Southeast Asia is complex and the high concentrations are due to population growth, rapid urbanization and development of SEA countries. Nevertheless, only a few studies have been carried out especially at large spatial extent and on a continuous basis to study atmospheric aerosols in Malaysia. In this review paper we report the use of remote sensing data to study atmospheric aerosols in Malaysia and document gaps and recommend further studies to bridge the gaps. Satellite data have been used to study the spatial and seasonal patterns of aerosol optical depth (AOD) in Malaysia. Satellite data combined with AERONET data were used to delineate different types and sizes of aerosols and to identify the sources of aerosols in Malaysia. Most of the aerosol studies performed in Malaysia was based on station-based PM10 data that have limited spatial coverage. Thus, satellite data have been used to extrapolate and retrieve PM10 data over large areas by correlating remotely sensed AOD with ground-based PM10. Realising the critical role of aerosols on radiative forcing numerous studies have been conducted worldwide to assess the aerosol radiative forcing (ARF). Such studies are yet to be conducted in Malaysia. Although the only source of aerosol data covering large region in Malaysia is remote sensing, satellite observations are limited by cloud cover, orbital gaps of satellite track, etc. In addition, relatively less understanding is achieved on how the atmospheric aerosol interacts with the regional climate system. These gaps can be bridged by conducting more studies using integrated approach of remote sensing, AERONET and ground based measurements.

  14. Object-Based Change Detection Using High-Resolution Remotely Sensed Data and GIS

    NASA Astrophysics Data System (ADS)

    Sofina, N.; Ehlers, M.

    2012-08-01

    High resolution remotely sensed images provide current, detailed, and accurate information for large areas of the earth surface which can be used for change detection analyses. Conventional methods of image processing permit detection of changes by comparing remotely sensed multitemporal images. However, for performing a successful analysis it is desirable to take images from the same sensor which should be acquired at the same time of season, at the same time of a day, and - for electro-optical sensors - in cloudless conditions. Thus, a change detection analysis could be problematic especially for sudden catastrophic events. A promising alternative is the use of vector-based maps containing information about the original urban layout which can be related to a single image obtained after the catastrophe. The paper describes a methodology for an object-based search of destroyed buildings as a consequence of a natural or man-made catastrophe (e.g., earthquakes, flooding, civil war). The analysis is based on remotely sensed and vector GIS data. It includes three main steps: (i) generation of features describing the state of buildings; (ii) classification of building conditions; and (iii) data import into a GIS. One of the proposed features is a newly developed 'Detected Part of Contour' (DPC). Additionally, several features based on the analysis of textural information corresponding to the investigated vector objects are calculated. The method is applied to remotely sensed images of areas that have been subjected to an earthquake. The results show the high reliability of the DPC feature as an indicator for change.

  15. A Design of a Novel Airborne Aerosol Spectrometer for Remote Sensing Validation

    NASA Astrophysics Data System (ADS)

    Adler, G. A.; Brock, C. A.; Dube, W. P.; Erdesz, F.; Gordon, T.; Law, D. C.; Manfred, K.; Mason, B. J.; McLaughlin, R. J.; Richardson, M.; Wagner, N. L.; Washenfelder, R. A.; Murphy, D. M.

    2016-12-01

    Aerosols and their effect on the radiative properties of clouds contribute one of the largest sources of uncertainty to the Earth's energy budget. Many current global assessments, of atmospheric aerosol radiative forcing rely heavily on remote sensing observation; therefore, in situ aircraft and ground-based measurements are essential for validation of remote sensing measurements. Cavity ringdown spectrometers (CRD) measure aerosol extinction and are commonly used to validate remote sensing observations. These instruments have been deployed on aircraft based platforms over the years thus providing the opportunity to measure these properties over large areas in various conditions. However, deployment of the CRD on an aircraft platform has drawbacks. Typically, aircraft based CRDs draw sampled aerosol into a cabin based instrument through long lengths of tubing. This limits the ability of the instrument to measure: 1) Course mode aerosols (e.g. dust) 2) Aerosols at high relative humidity (above 90%) Here we describe the design of a novel aircraft based open path CRD. The open path CRD is intended to be mounted external to the cabin and has no sample tubing for aerosol delivery, thus measuring optical properties of all aerosol at the ambient conditions. However, the design of an open path CRD for operation on a wing-mounted aircraft platform has certain design complexities. The instrument's special design features include 2 CRD channels, 2 airfoils around the open Path CRD and a configuration which could be easily aligned and rigid at the same time. This novel implementation of cavity ringdown spectroscopy will provide a better assessment of the accuracy of remote sensing satellite measurements

  16. In situ optical measurements for characterization of flame species and remote sensing

    NASA Astrophysics Data System (ADS)

    Cullum, Brian Michael

    1998-12-01

    The following dissertation describes the use of spectroscopic techniques for both characterization of combustion intermediates and remote chemical sensing. The primary techniques that have been used for these measurements include, laser-induced fluorescence (LIF), time resolved LIF, resonance enhanced multiphoton ionization (REMPI) and Raman spectroscopy. A simple and quantitative means of measuring the efficiency of halogenated flame retardants is described, using laser-induced fluorescence (LIF). Intensity based LIF measurements of OH radical have been used to quantitatively measure the efficacy of halogenated flame retardant/polymer plaques. Temporally resolved LIF has been used to determine the extent to which the chemical kinetic theory of flame retardation applies to the effect of these compounds on combustion. We have shown that LIF of OH radicals is a very sensitive means of measuring the efficiency of these flame retardants as well as the giving information about the nature of flame retardation. In addition, we have developed a technique for the introduction of insoluble polymer plaques into a flame for fluorescence analysis. A high power pulsed Nd:YAG laser is used to ablate the sample into the flame while a second pulse from a dye laser is used to measure the LIF of OH radicals. Spectroscopic techniques are also very useful for trace remote analysis of environmental pollutants via optical fibers. A simple fiber-optic probe suitable for remote analysis using resonance enhanced multiphoton ionization (REMPI) has been developed for this purpose and is used to determine the toluene/gasoline concentration in water samples via a headspace measurement. The limit of detection for toluene in water using this probe is 0.54 ppb (wt/wt) with a sample standard deviation of 0.02 ppb (wt/wt). Another technique that has great potential for optical sensing is fluorescence lifetime imaging. A new method for measuring fluorescence lifetime images of quickly decaying species has been developed. This method employs a high powered pulsed laser that excites the fluorescent species in a dual pulse manner, and a non-gated charge coupled device (CCD) for detection of the fluorescence. Unlike other fluorescence lifetime imaging methods, this technique has the potential of monitoring fluorescent species with picosecond lifetimes.

  17. Remote Sensing Reflectance and Inherent Optical Properties in the Mid-mesohaline Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Tzortziou, Maria; Subramaniam, Ajit; Herman, Jay R.; Gallegos, Charles L.; Neal, Patrick J.; Harding, Lawrence W., Jr.

    2006-01-01

    We used an extensive set of bio-optical data and radiative transfer (RT) model simulations of radiation fields to investigate relationships between inherent optical properties and remotely sensed quantities in the optically complex, mid-mesohaline Chesapeake Bay waters. Field observations showed that the chlorophyll algorithms used by the MODIS (MODerate resolution Imaging Spectroradiometer) ocean color sensor (i.e. Chlor_a, chlor_MODIS, chlor_a_3 products) do not perform accurately in these Case 2 waters. This is because, when applied to waters with high concentrations of chlorophyll, all MODIS algorithms are based on empirical relationships between chlorophyll concentration and blue-green wavelength remote sensing reflectance (Rrs) ratios that do not account for the typically strong blue-wavelength absorption by non-covarying, dissolved and non-algal particulate components. Stronger correlation was observed between chlorophyll concentration and Rrs ratios in the red (i.e. Rrs(677)/Rrs(554)) where dissolved and non-algal particulate absorption become exponentially smaller. Regionally-specific algorithms that are based on the phytoplankton optical properties in the red wavelength region provide a better basis for satellite monitoring of phytoplankton blooms in these Case 2 waters. Good optical closure was obtained between independently measured Rrs spectra and the optical properties of backscattering, b(sub b), and absorption, a, over the wide range of in-water conditions observed in the Chesapeake Bay. Observed variability in the quantity f/Q (proportionality factor in the relationship between Rrs and the water inherent optical properties ratio b(sub b)/(a+b(sub b)) was consistent with RT model calculations for the specific measurement geometry and water bio-optical characteristics. Data and model results showed that f/Q values in these Case 2 coastal waters are not considerably different from those estimated in previous studies for Case 1 waters. Variation in surface backscattering significantly affected Rrs magnitude across the visible spectrum and was most strongly correlated (R(sup 2)=0.88) with observed variability in Rrs at 670 nm. Surface values of particulate backscattering were strongly correlated with non-algal particulate absorption, a(sub nap), in the blue wavelengths (R(sup 2)=0.83). These results, along with the measured values of backscattering fraction magnitude and non-algal particulate absorption spectral slope, suggest that suspended non-algal particles with high inorganic content are the major water constituents regulating b(sub b) variability in the mid-mesohaline Chesapeake Bay. Remote retrieval of surface b(sub b) and (a(sub nap), from Rrs(670) can be used in regionally-specific satellite algorithms to separate contribution by non-algal particles and dissolved organic matter to total light absorption in the blue, and monitor non-algal suspended particle concentration and distribution in these Case 2 waters.

  18. Propagation Limitations in Remote Sensing.

    DTIC Science & Technology

    Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .

  19. Mobile lidar system for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyu; Lian, Ming; Li, Yiyun; Duan, Zheng; Zhu, Shiming; Svanberg, Sune

    2018-04-01

    A versatile mobile remote sensing system for multidisciplinary environmental monitoring tasks on the Chinese scene is described. The system includes a 20 Hz Nd:YAG laser-pumped dye laser, optical transmitting/receiving systems with a 30 cm and a 40 cm Newtonian telescope, and electronics, all integrated in a laboratory, installed on a Jiefang truck. Results from field experiments on atomic mercury DIAL mapping and remote laser-induced fluorescence and break-down spectroscopy are given.

  20. Recent Developments Of Optical Fiber Sensors For Automotive Use

    NASA Astrophysics Data System (ADS)

    Sasayama, Takao; Oho, Shigeru; Kuroiwa, Hiroshi; Suzuki, Seikoo

    1987-12-01

    Optical fiber sensing technologies are expected to apply for many future electronic control systems in automobiles, because of their original outstanding features, such as high noise immunity, high heat resistance, and flexible light propagation paths which can be applicable to measure the movements and directions of the mobiles. In this paper, two typical applications of fiber sensing technologies in automobiles have been described in detail. The combustion flame detector is one of the typical applications of a fiber spectroscopic technology which utilizes the feature of high noise and heat resistibility and remote sensibility. Measurements of engine combustion conditions, such as the detonation, the combustion initiation, and the air-fuel ratio, have been demonstrated in an experimental fiber sensing method. Fiber interferometers, such as a fiber gyroscope, have a lot of possibilities in future mobile applications because they are expandable to many kinds of measurements for movements and physical variables. An optical fiber gyroscope utilizing the single polarized optical fiber and optical devices has been developed. Quite an accurate measurement of vehicle position was displayed on a prototype navigation system which installed the fiber gyroscope as a rotational speed sensor.

  1. MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL

    EPA Science Inventory

    This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...

  2. Low cost fiber optic sensing of sugar solution

    NASA Astrophysics Data System (ADS)

    Muthuraju, M. E.; Patlolla, Anurag Reddy; Vadakkapattu Canthadai, Badrinath; Pachava, Vengalrao

    2015-03-01

    The demand for highly sensitive and reliable sensors to assess the refractive index of liquid get many applications in chemical and biomedical areas. Indeed, the physical parameters such as concentration, pressure and density, etc., can be found using the refractive index of liquid. In contrast to the conventional refractometer for measurement, optical fiber sensor has several advantages like remote sensing, small in size, low cost, immune to EMI etc., In this paper we have discussed determination of refractive index of sugar solution using optical fiber. An intensity modulated low cost plastic fiber optic refractive index sensor has been designed for the study. The sensor is based on principle of change in angle of reflected light caused by refractive index change of the medium surrounding the fiber. The experimental results obtained for the sugar solution of different refractive indices prove that the fiber optic sensor is cable of measuring the refractive indices as well as the concentrations.

  3. Fiber-optic sensing in cryogenic environments. [for rocket propellant tank monitoring

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Brooks, R. E.

    1980-01-01

    Passive optical sensors using fiber-optic signal transmission to a remote monitoring station are explored as an alternative to electrical sensors used to monitor the status of explosive propellants. The designs of passive optical sensors measuring liquid level, pressure, and temperature in cryogenic propellant tanks are discussed. Test results for an experimental system incorporating these sensors and operating in liquid nitrogen demonstrate the feasibility of passive sensor techniques and indicate that they can serve as non-hazardous replacements for more conventional measuring equipment in explosive environments.

  4. Characterizing Open Water Bodies and Their Color Properties Through Optical Remote Sensing to Identify Areas of Vector-Borne Disease Risk

    NASA Astrophysics Data System (ADS)

    Podest, E.; De La Torre Juarez, M.; McDonald, K. C.; Jensen, K.; Ceccato, P.

    2014-12-01

    Predicting the risk of vector-borne disease outbreaks is a required step towards their control and eradication. Satellite observations can provide needed data to support agency decisions with respect to deployment of preventative measures and control resources. The coverage and persistence of open water is one of the primary indicators of conditions suitable for mosquito breeding habitats. This is currently a poorly measured variable due to its spatial and temporal variability across landscapes, especially in remote areas. Here we develop a methodology for monitoring these conditions through optical remote sensing images from Landsat. We pansharpen the images and apply a decision tree classification approach using Random Forests to generate 15 meter resolution maps of open water. In addition, since some mosquitos breed in clear water while others in turbid water, we classify water bodies according to their water color properties and we validate the results using field knowledge. We focus in East Africa where we assses the usefulness of these products to improve prediction of malaria outbreaks. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  5. Detection and Monitoring of Small-Scale Mining Operations in the Eastern Democratic Republic of the Congo (DRC) Using Multi-Temporal, Multi-Sensor Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Walther, Christian; Frei, Michaela

    2017-04-01

    Mining of so-called "conflict minerals" is often related with small-scale mining activities. The here discussed activities are located in forested areas in the eastern DRC, which are often remote, difficult to access and insecure for traditional geological field inspection. In order to accelerate their CTC (Certified Trading Chain)-certification process, remote sensing data are used for detection and monitoring of these small-scale mining operations. This requires a high image acquisition frequency due to mining site relocations and for compensation of year-round high cloud coverage, especially for optical data evaluation. Freely available medium resolution optical data of Sentinel-2 and Landsat-8 as well as SAR data of Sentinel-1 are used for detecting small mining targets with a minimum size of approximately 0.5 km2. The developed method enables a robust multi-temporal detection of mining sites, monitoring of mining site spatio-temporal relocations and environmental changes. Since qualitative and quantitative comparable results are generated, the followed change detection approach is objective and transparent and may push the certification process forward.

  6. [Application of hyper-spectral remote sensing technology in environmental protection].

    PubMed

    Zhao, Shao-Hua; Zhang, Feng; Wang, Qiao; Yao, Yun-Jun; Wang, Zhong-Ting; You, Dai-An

    2013-12-01

    Hyper-spectral remote sensing (RS) technology has been widely used in environmental protection. The present work introduces its recent application in the RS monitoring of pollution gas, green-house gas, algal bloom, water quality of catch water environment, safety of drinking water sources, biodiversity, vegetation classification, soil pollution, and so on. Finally, issues such as scarce hyper-spectral satellites, the limits of data processing and information extract are related. Some proposals are also presented, including developing subsequent satellites of HJ-1 satellite with differential optical absorption spectroscopy, greenhouse gas spectroscopy and hyper-spectral imager, strengthening the study of hyper-spectral data processing and information extraction, and promoting the construction of environmental application system.

  7. Topical Issue on Optical Particle Characterization and Remote Sensing of the Atmosphere: Part I

    NASA Technical Reports Server (NTRS)

    Videen, Gorden; Kocifaj, Miroslav; Sun, Wenbo; Kai, Kenji; Kawamoto, Kazuaki; Horvath, Helmuth; Mishchenko, Michael

    2015-01-01

    Increasing our understanding of the Earth-atmosphere system has been a scientific and political priority for the last few decades. This system not only touches on environmental science, but it has applicability to our broader understanding of planetary atmospheres in general. While this issue focuses primarily on electromagnetics, other fundamental fields of science, including fluid and thermodynamics play major roles. In recent years, significant research efforts have led to advances in the fields of radiative transfer and electromagnetic scattering from irregularly shaped particles. Recently, several workshops and small conferences have taken place to promote the fusion of these efforts. Late in 2013, for instance, two such meetings took place. The Optical Characterization of Atmospheric Aerosols (OCAA) meeting took place in Smolenice, Slovakia to promote a better understanding of microphysical properties of aerosol particles, and the characterization of such atmospheric particles using optical techniques. A complementary conference was organized in Nagoya, Japan, the 3rd International Symposium on Atmospheric Light Scattering and Remote Sensing (ISALSaRS), whose goal is to fuse the advances achieved in particle characterization with remote-sensing techniques. While the focus of these meetings is slightly different, they represent the same aspects of this rapidly growing field. This Topical Issue is the first of two parts. Within this issue we analyze different aspects of the problem of atmospheric characterization and present a broad overview of the topical area. Research includes theory and experiment, ranging from fundamental microphysical properties of individual aerosol particles to broad characterizations of atmospheric properties. Since this is an active field, we also have encouraged the submission of ideas for new methodologies that may represent the future of the field.

  8. Remote Sensing of the Absorption Coefficients and Chlorophyll a Concentration in the U.S. Southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua

    NASA Technical Reports Server (NTRS)

    Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.

    2008-01-01

    At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.

  9. Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Lato, M. J.; Frauenfelder, R.; Bühler, Y.

    2012-09-01

    Snow avalanches in mountainous areas pose a significant threat to infrastructure (roads, railways, energy transmission corridors), personal property (homes) and recreational areas as well as for lives of people living and moving in alpine terrain. The impacts of snow avalanches range from delays and financial loss through road and railway closures, destruction of property and infrastructure, to loss of life. Avalanche warnings today are mainly based on meteorological information, snow pack information, field observations, historically recorded avalanche events as well as experience and expert knowledge. The ability to automatically identify snow avalanches using Very High Resolution (VHR) optical remote sensing imagery has the potential to assist in the development of accurate, spatially widespread, detailed maps of zones prone to avalanches as well as to build up data bases of past avalanche events in poorly accessible regions. This would provide decision makers with improved knowledge of the frequency and size distributions of avalanches in such areas. We used an object-oriented image interpretation approach, which employs segmentation and classification methodologies, to detect recent snow avalanche deposits within VHR panchromatic optical remote sensing imagery. This produces avalanche deposit maps, which can be integrated with other spatial mapping and terrain data. The object-oriented approach has been tested and validated against manually generated maps in which avalanches are visually recognized and digitized. The accuracy (both users and producers) are over 0.9 with errors of commission less than 0.05. Future research is directed to widespread testing of the algorithm on data generated by various sensors and improvement of the algorithm in high noise regions as well as the mapping of avalanche paths alongside their deposits.

  10. Understanding Effective Diameter and Its Application to Terrestrial Radiation in Ice Clouds

    NASA Technical Reports Server (NTRS)

    Mitchell, D. L.; Lawson, R. P.; Baker, B.

    2011-01-01

    The cloud property known as "effective diameter" or "effective radius", which in essence is the cloud particle size distribution (PSD) volume at bulk density divided by its projected area, is used extensively in atmospheric radiation transfer, climate modeling and remote sensing. This derives from the assumption that PSD optical properties can be uniquely described in terms of their effective diameter, D(sub e), and their cloud water content (CWC), henceforth referred to as the D(sub e)-CWC assumption. This study challenges this assumption, showing that while the D(sub e)-CWC assumption appears generally valid for liquid water clouds, it appears less valid for ice clouds in regions where (1) absorption is not primarily a function of either the PSD ice water content (IWC) or the PSD projected area, and (2) where wave resonance (i.e. photon tunneling) contributes significantly to absorption. These two regions often strongly coincide at terrestrial wavelengths when De less than 60 m, which is where this D(sub e)-CWC assumption appears poorest. Treating optical properties solely in terms of D(sub e) and IWC may lead to errors up to 24%, 26% and 20% for terrestrial radiation in the window region regarding the absorption and extinction coefficients and the single scattering albedo, respectively. Outside the window region, errors may reach 33% and 42% regarding absorption and extinction. The magnitude and sign of these errors can change rapidly with wavelength, which may produce significant errors in climate modeling, remote sensing and other applications concerned with the wavelength dependence of radiation. Where the D(sub e)-CWC assumption breaks down, ice cloud optical properties appear to depend on D(sub e), IWC and the PSD shape. Optical property parameterizations in climate models and remote sensing algorithms based on historical PSD measurements may exhibit errors due to previously unknown PSD errors (i.e. the presence of ice artifacts due to the shattering of larger ice particles on the probe inlet tube during sampling). More recently developed cloud probes are designed to mitigate this shattering problem. Using realistic PSD shapes for a given temperature (and/or IWC) and cloud type may minimize errors associated with PSD shape in ice optics parameterizations and remote sensing algorithms. While this topic was investigated using two ice optics schemes (the Yang et al., 2005 database and the modified anomalous diffraction approximation, or MADA), a physical understanding of the limitations of the D(sub e)-IWC assumption was made possible by using MADA. MADA allows one to approximate the contribution of photon tunneling to absorption relative to other optical processes, which reveals that part of the error regarding the D(sub e)-IWC assumption can be associated with tunneling. By relating the remaining error to the radiation penetration depth in bulk ice (DELTA L) due to absorption, the domain where the D(sub e)-IWC assumption is weakest was described in terms of D(sub e) and DELTA L.

  11. Understanding effective diameter and its application to terrestrial radiation in ice clouds

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Lawson, R. P.; Baker, B.

    2010-12-01

    The cloud property known as "effective diameter" or "effective radius", which in essence is the cloud particle size distribution (PSD) volume at bulk density divided by its projected area, is used extensively in atmospheric radiation transfer, climate modeling and remote sensing. This derives from the assumption that PSD optical properties can be uniquely described in terms of their effective diameter, De, and their cloud water content (CWC), henceforth referred to as the De-CWC assumption. This study challenges this assumption, showing that while the De-CWC assumption appears generally valid for liquid water clouds, it appears less valid for ice clouds in regions where (1) absorption is not primarily a function of either the PSD ice water content (IWC) or the PSD projected area, and (2) where wave resonance (i.e. photon tunneling) contributes significantly to absorption. These two regions often strongly coincide at terrestrial wavelengths when De<∼60 μm, which is where this De-CWC assumption appears poorest. Treating optical properties solely in terms of De and IWC may lead to errors up to 24%, 26% and 20% for terrestrial radiation in the window region regarding the absorption and extinction coefficients and the single scattering albedo, respectively. Outside the window region, errors may reach 33% and 42% regarding absorption and extinction. The magnitude and sign of these errors can change rapidly with wavelength, which may produce significant errors in climate modeling, remote sensing and other applications concerned with the wavelength dependence of radiation. Where the De-CWC assumption breaks down, ice cloud optical properties appear to depend on De, IWC and the PSD shape. Optical property parameterizations in climate models and remote sensing algorithms based on historical PSD measurements may exhibit errors due to previously unknown PSD errors (i.e. the presence of ice artifacts due to the shattering of larger ice particles on the probe inlet tube during sampling). More recently developed cloud probes are designed to mitigate this shattering problem. Using realistic PSD shapes for a given temperature (and/or IWC) and cloud type may minimize errors associated with PSD shape in ice optics parameterizations and remote sensing algorithms. While this topic was investigated using two ice optics schemes (the Yang et al. (2005) database and the modified anomalous diffraction approximation, or MADA), a physical understanding of the limitations of the De-IWC assumption was made possible by using MADA. MADA allows one to separate the photon tunneling process from the other optical processes, which reveals that much of the error regarding the De-IWC assumption can be associated with tunneling. By relating the remaining error to the radiation penetration depth in bulk ice (ΔL) due to absorption, the domain where the De-IWC assumption is weakest was described in terms of De and ΔL.

  12. Payload Configurations for Efficient Image Acquisition - Indian Perspective

    NASA Astrophysics Data System (ADS)

    Samudraiah, D. R. M.; Saxena, M.; Paul, S.; Narayanababu, P.; Kuriakose, S.; Kiran Kumar, A. S.

    2014-11-01

    The world is increasingly depending on remotely sensed data. The data is regularly used for monitoring the earth resources and also for solving problems of the world like disasters, climate degradation, etc. Remotely sensed data has changed our perspective of understanding of other planets. With innovative approaches in data utilization, the demands of remote sensing data are ever increasing. More and more research and developments are taken up for data utilization. The satellite resources are scarce and each launch costs heavily. Each launch is also associated with large effort for developing the hardware prior to launch. It is also associated with large number of software elements and mathematical algorithms post-launch. The proliferation of low-earth and geostationary satellites has led to increased scarcity in the available orbital slots for the newer satellites. Indian Space Research Organization has always tried to maximize the utility of satellites. Multiple sensors are flown on each satellite. In each of the satellites, sensors are designed to cater to various spectral bands/frequencies, spatial and temporal resolutions. Bhaskara-1, the first experimental satellite started with 2 bands in electro-optical spectrum and 3 bands in microwave spectrum. The recent Resourcesat-2 incorporates very efficient image acquisition approach with multi-resolution (3 types of spatial resolution) multi-band (4 spectral bands) electro-optical sensors (LISS-4, LISS-3* and AWiFS). The system has been designed to provide data globally with various data reception stations and onboard data storage capabilities. Oceansat-2 satellite has unique sensor combination with 8 band electro-optical high sensitive ocean colour monitor (catering to ocean and land) along with Ku band scatterometer to acquire information on ocean winds. INSAT- 3D launched recently provides high resolution 6 band image data in visible, short-wave, mid-wave and long-wave infrared spectrum. It also has 19 band sounder for providing vertical profile of water vapour, temperature, etc. The same system has data relay transponders for acquiring data from weather stations. The payload configurations have gone through significant changes over the years to increase data rate per kilogram of payload. Future Indian remote sensing systems are planned with very high efficient ways of image acquisition. This paper analyses the strides taken by ISRO (Indian Space research Organisation) in achieving high efficiency in remote sensing image data acquisition. Parameters related to efficiency of image data acquisition are defined and a methodology is worked out to compute the same. Some of the Indian payloads are analysed with respect to some of the system/ subsystem parameters that decide the configuration of payload. Based on the analysis, possible configuration approaches that can provide high efficiency are identified. A case study is carried out with improved configuration and the results of efficiency improvements are reported. This methodology may be used for assessing other electro-optical payloads or missions and can be extended to other types of payloads and missions.

  13. Single-Image Super Resolution for Multispectral Remote Sensing Data Using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Liebel, L.; Körner, M.

    2016-06-01

    In optical remote sensing, spatial resolution of images is crucial for numerous applications. Space-borne systems are most likely to be affected by a lack of spatial resolution, due to their natural disadvantage of a large distance between the sensor and the sensed object. Thus, methods for single-image super resolution are desirable to exceed the limits of the sensor. Apart from assisting visual inspection of datasets, post-processing operations—e.g., segmentation or feature extraction—can benefit from detailed and distinguishable structures. In this paper, we show that recently introduced state-of-the-art approaches for single-image super resolution of conventional photographs, making use of deep learning techniques, such as convolutional neural networks (CNN), can successfully be applied to remote sensing data. With a huge amount of training data available, end-to-end learning is reasonably easy to apply and can achieve results unattainable using conventional handcrafted algorithms. We trained our CNN on a specifically designed, domain-specific dataset, in order to take into account the special characteristics of multispectral remote sensing data. This dataset consists of publicly available SENTINEL-2 images featuring 13 spectral bands, a ground resolution of up to 10m, and a high radiometric resolution and thus satisfying our requirements in terms of quality and quantity. In experiments, we obtained results superior compared to competing approaches trained on generic image sets, which failed to reasonably scale satellite images with a high radiometric resolution, as well as conventional interpolation methods.

  14. Remote sensing of tropospheric gases and aerosols with airborne DIAL system

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1983-01-01

    The multipurpose airborne DIAL system developed at NASA Langley Research Center is characterized, and the published results of tropospheric O3, H2O, and aerosol-backscatter remote-sensing experiments performed in 1980 and 1981 are summarized. The system comprises two tunable dye lasers pumped by frequency-doubled Nd:YAG lasers, dielectric-coated steering optics, a 36-cm-diameter Cassegrain receiver telescope, gateable photomultiplier tubes, and a minicomputer data-processing unit for real-time calculation of gas concentrations and backscattering profiles. The transmitted energy of the 100-microsec-separated dye-laser pulses is 40, 80, or 50 mJ/pulse at around 300, 600, or 720-nm wavelength, respectively. Good agreement was found between DIAL-remote-sensed and in-situ H2O and O3 profiles of the lower troposphere and O3 profiles of the tropopause region, and the usefulness of DIAL backscattering measurements in the study of boundary-layer and tropospheric dynamics is demonstrated. The feasibility of DIAL sensing of power-plant or urban plume SO2, of urban-area (or rural-area column-content) NO2, and of temperature and H2O (simultaneously using a third laser) has been suggested by simulation studies.

  15. Remote Sensing of Crystal Shapes in Ice Clouds

    NASA Technical Reports Server (NTRS)

    van Diedenhoven, Bastiaan

    2017-01-01

    Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally inconsistent with the data and thus crystal impurity, distortion or surface roughness is prevalent. However, conclusions about the dominating ice shapes are often inconclusive and contradictory and are highly dependent on the limited selection of shapes included in the investigations. Since ice crystal optical properties are mostly determined by the aspect ratios of the crystal components and their microscale structure, it is advised that remote sensing applications focus on the variation of these ice shape characteristics, rather than on the macroscale shape or habit. Recent studies use databases with nearly continuous ranges of crystal component aspect ratio and-or roughness levels to infer the variation of ice crystal shape from satellite and airborne remote sensing measurements. Here, the rationale and results of varying strategies for the remote sensing of ice crystal shape are reviewed. Observed systematic variations of ice crystal geometry with location, cloud height and atmospheric state suggested by the data are discussed. Finally, a prospective is given on the future of the remote sensing of ice cloud particle shapes.

  16. Development and implementation of a remote-sensing and in situ data-assimilating version of CMAQ for operational PM2.5 forecasting. Part 1: MODIS aerosol optical depth (AOD) data-assimilation design and testing.

    PubMed

    McHenry, John N; Vukovich, Jeffery M; Hsu, N Christina

    2015-12-01

    This two-part paper reports on the development, implementation, and improvement of a version of the Community Multi-Scale Air Quality (CMAQ) model that assimilates real-time remotely-sensed aerosol optical depth (AOD) information and ground-based PM2.5 monitor data in routine prognostic application. The model is being used by operational air quality forecasters to help guide their daily issuance of state or local-agency-based air quality alerts (e.g. action days, health advisories). Part 1 describes the development and testing of the initial assimilation capability, which was implemented offline in partnership with NASA and the Visibility Improvement State and Tribal Association of the Southeast (VISTAS) Regional Planning Organization (RPO). In the initial effort, MODIS-derived aerosol optical depth (AOD) data are input into a variational data-assimilation scheme using both the traditional Dark Target and relatively new "Deep Blue" retrieval methods. Evaluation of the developmental offline version, reported in Part 1 here, showed sufficient promise to implement the capability within the online, prognostic operational model described in Part 2. In Part 2, the addition of real-time surface PM2.5 monitoring data to improve the assimilation and an initial evaluation of the prognostic modeling system across the continental United States (CONUS) is presented. Air quality forecasts are now routinely used to understand when air pollution may reach unhealthy levels. For the first time, an operational air quality forecast model that includes the assimilation of remotely-sensed aerosol optical depth and ground based PM2.5 observations is being used. The assimilation enables quantifiable improvements in model forecast skill, which improves confidence in the accuracy of the officially-issued forecasts. This helps air quality stakeholders be more effective in taking mitigating actions (reducing power consumption, ride-sharing, etc.) and avoiding exposures that could otherwise result in more serious air quality episodes or more deleterious health effects.

  17. Earth view: A business guide to orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1990-01-01

    The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.

  18. Novel EO/IR sensor technologies

    NASA Astrophysics Data System (ADS)

    Lewis, Keith

    2011-10-01

    The requirements for advanced EO/IR sensor technologies are discussed in the context of evolving military operations, with significant emphasis on the development of new sensing technologies to meet the challenges posed by asymmetric threats. The Electro-Magnetic Remote Sensing (EMRS DTC) was established in 2003 to provide a centre of excellence in sensor research and development, supporting new capabilities in key military areas such as precision attack, battlespace manoeuvre and information superiority. In the area of advanced electro-optic technology, the DTC has supported work on discriminative imaging, advanced detectors, laser components/technologies, and novel optical techniques. This paper provides a summary of some of the EO/IR technologies explored by the DTC.

  19. FTIR Monitoring Of Curing Of Composites

    NASA Technical Reports Server (NTRS)

    Druy, Mark A.; Stevenson, William A.; Young, Philip R.

    1990-01-01

    Infrared-sensing optical fiber system developed to monitor principal infrared absorption bands resulting from vibrations of atoms and molecules as chemical bonds form when resin cured. System monitors resin chemistry more directly. Used to obtain Fourier transform infrared (FTIR) spectrum from graphite fiber/polyimide matrix resin prepreg. Embedded fiber optic FTIR sensor used to indicate state of cure of thermosetting composite material. Developed primarily to improve quality of advanced composites, many additional potential applications exist because principal of operation applicable to all organic materials and most inorganic gases. Includes monitoring integrities of composite materials in service, remote sensing of hazardous materials, and examination of processes in industrial reactors and furnaces.

  20. In-service communication channel sensing based on reflectometry for TWDM-PON systems

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Kuwano, Shigeru; Terada, Jun

    2014-05-01

    Many base stations are accommodated in TWDM-PON based mobile backhaul and fronthaul networks for future radio access, and failed connections in an optical network unit (ONU) wavelength channel severely degrade system performance. A cost effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue we propose a reflectometry-based remote sensing method that provides wavelength channel information with the optical line terminal (OLT)-ONU distance. The method realizes real-time monitoring of ONU wavelength channels without signal quality degradation. Experimental results show it achieves wavelength channel distinction with high distance resolution.

  1. Reflective ghost imaging through turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, Nicholas D.; Shapiro, Jeffrey H.

    2011-12-15

    Recent work has indicated that ghost imaging may have applications in standoff sensing. However, most theoretical work has addressed transmission-based ghost imaging. To be a viable remote-sensing system, the ghost imager needs to image rough-surfaced targets in reflection through long, turbulent optical paths. We develop, within a Gaussian-state framework, expressions for the spatial resolution, image contrast, and signal-to-noise ratio of such a system. We consider rough-surfaced targets that create fully developed speckle in their returns and Kolmogorov-spectrum turbulence that is uniformly distributed along all propagation paths. We address both classical and nonclassical optical sources, as well as a computational ghostmore » imager.« less

  2. Quantum Lidar - Remote Sensing at the Ultimate Limit

    DTIC Science & Technology

    2009-07-01

    of Lossy Propaga- tion of Non-Classical Dual-Mode Entangled Photon States 57 34 Decay of Coherence for a N00N State (N=10) as a Function of...resolution could be beaten by exploiting entangled photons [Boto2000, Kok2001]. This effect is now universally known as quantum super-resolution. We...spontaneous parametric down conversion (SPDC), optical parametric amplifier (OPA), optical parametric oscillator (OPO), and entangled - photon Laser (EPL

  3. Remote Sensing of the Optical and Physical Densities of Smoke, Dust, and Water Clouds.

    DTIC Science & Technology

    1982-12-01

    systems to measure variability of aerosol concentration distributions along horizontal optical paths . Analysis of backscatter... extinction measurements using a single- laser lidar system operating at 1.06- and 0.53-pm wavelengths. For larger mean particle sizes the extinction ratio...clear air paths and The transmissometers were mounted across a 10-m complete blockage of the source energy. Transmisso- long aerosol tunnel that

  4. An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery

    NASA Astrophysics Data System (ADS)

    Tong, Xiaohua; Luo, Xin; Liu, Shuguang; Xie, Huan; Chao, Wei; Liu, Shuang; Liu, Shijie; Makhinov, A. N.; Makhinova, A. F.; Jiang, Yuying

    2018-02-01

    Remote sensing techniques offer potential for effective flood detection with the advantages of low-cost, large-scale, and real-time surface observations. The easily accessible data sources of optical remote sensing imagery provide abundant spectral information for accurate surface water body extraction, and synthetic aperture radar (SAR) systems represent a powerful tool for flood monitoring because of their all-weather capability. This paper introduces a new approach for flood monitoring by the combined use of both Landsat 8 optical imagery and COSMO-SkyMed radar imagery. Specifically, the proposed method applies support vector machine and the active contour without edges model for water extent determination in the periods before and during the flood, respectively. A map difference method is used for the flood inundation analysis. The proposed approach is particularly suitable for large-scale flood monitoring, and it was tested on a serious flood that occurred in northeastern China in August 2013, which caused immense loss of human lives and properties. High overall accuracies of 97.46% for the optical imagery and 93.70% for the radar imagery are achieved by the use of the techniques presented in this study. The results show that about 12% of the whole study area was inundated, corresponding to 5466 km2 of land surface.

  5. Optimal design of an earth observation optical system with dual spectral and high resolution

    NASA Astrophysics Data System (ADS)

    Yan, Pei-pei; Jiang, Kai; Liu, Kai; Duan, Jing; Shan, Qiusha

    2017-02-01

    With the increasing demand of the high-resolution remote sensing images by military and civilians, Countries around the world are optimistic about the prospect of higher resolution remote sensing images. Moreover, design a visible/infrared integrative optic system has important value in earth observation. Because visible system can't identify camouflage and recon at night, so we should associate visible camera with infrared camera. An earth observation optical system with dual spectral and high resolution is designed. The paper mainly researches on the integrative design of visible and infrared optic system, which makes the system lighter and smaller, and achieves one satellite with two uses. The working waveband of the system covers visible, middle infrared (3-5um). Dual waveband clear imaging is achieved with dispersive RC system. The focal length of visible system is 3056mm, F/# is 10.91. And the focal length of middle infrared system is 1120mm, F/# is 4. In order to suppress the middle infrared thermal radiation and stray light, the second imaging system is achieved and the narcissus phenomenon is analyzed. The system characteristic is that the structure is simple. And the especial requirements of the Modulation Transfer Function (MTF), spot, energy concentration, and distortion etc. are all satisfied.

  6. A Novel Optical Model for Remote Sensing of Near-Surface Soil Moisture

    NASA Astrophysics Data System (ADS)

    Babaeian, E.; Sadeghi, M.; Jones, S. B.; Tuller, M.

    2016-12-01

    Common triangle and trapezoid methods that are based on both optical and thermal remote sensing (RS) information have been widely applied in the past to estimate near-surface soil moisture from the soil temperature - vegetation index space (e.g., LST-NDVI). For most cases, this approach assumes a linear relationship between soil moisture and temperature. Though this linearity assumption yields reasonable moisture estimates, it is not always justified as evidenced by laboratory and field measurements. Furthermore, this approach requires optical as well as thermal RS data for definition of the land surface temperature (LST) - vegetation index space, therefore, it is not applicable to satellites that do not provide thermal output such as the ESA Sentinel-2. To overcome these limitations, we propose a novel trapezoid model that only relies on optical NIR and SWIR data. The new model was validated using Sentinel-2 and Landsat-8 data for the semiarid Walnut Gulch (AZ) and sub humid Little Washita (OK) watersheds that vastly differ in land use and surface cover and provide excellent ground-truth moisture information from extensive sensor networks. Preliminary results for 2015-2016 indicate significant potential of the new model with a RMSE smaller than 4% volumetric near-surface moisture content and also confirm the enhanced utility of the high spatially and temporally resolved Sentinel-2 data.

  7. Bio-Optical and Geochemical Properties of the South Atlantic Subtropical Gyre

    NASA Technical Reports Server (NTRS)

    Signorini, S. R.; Hooker, Stanford B.; McClain, Charles R.

    2003-01-01

    An investigation of the bio-optical properties of the South Atlantic subtropical gyre (SASG) was conducted using data primarily from the UK Atlantic Meridional Transect (AMT) program and SeaWiFS. The AMT cruises extend from the UK to the Falklands Islands (sailing on the RRS James Clark Ross) with the purpose of improving our knowledge of surface layer hydrography, biogeochemical processes, ecosystem dynamics and food webs across basin scales in the Atlantic Ocean. Two objectives of the AMT program relevant to this study are the characterization of biogeochemical provinces and the analysis of optical and pigment parameters in connection with remote sensing ocean color data. The primary focus of this NASA Technical Memorandum is on the variability of the vertical distribution of phytoplankton pigments and associated absorption properties across the SASG, and their relevance to remote sensing algorithms. Therefore, a subset of the AMT data within the SASG from all available cruises was used in the analyses. One of the challenges addressed here is the determination of the SASG geographic boundaries. One of the major problems is to reconcile the properties of biogeochemical provinces. We use water mass analysis, dynamics of ocean currents, and meridional gradients of bio-optical properties, to identify the SASG boundaries.

  8. Comparison of polarimetric cameras

    DTIC Science & Technology

    2017-03-01

    polarimetry field of science. Maxwell’s differential equations based on Faraday’s concepts put EM waves into transverse wave solutions. His theory of the...Dennis L. Goldstein, David B. Chenault, and Joseph A. Shaw. “Review of Passive Imaging Polarimetry for Remote Sensing Applications.” Applied Optics 45

  9. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management - pilot project.

    DOT National Transportation Integrated Search

    2016-09-29

    This project piloted the findings from an initial research and development project pertaining to the detection, : quantification, and visualization of bridge deck distresses through the use of remote sensing techniques, specifically : combining optic...

  10. NEAR ROAD NITRIC OXIDE AND HYDROCARBON MEASUREMENTS WITH DUV-DOAS

    EPA Science Inventory

    As part of the overall EPA effort to increase understanding of the distribution of air pollutants in near road environments, optical remote sensing techniques developed for area source measurement are being used to assess mobile source emissions and dispersion from roadway segmen...

  11. Development of EPA OTM 10 for Landfill Applications

    EPA Science Inventory

    In 2006, the U.S. Environmental Protection Agency posted a new test method on its website called OTM 10 which describes direct measurement of pollutant mass emission flux from area sources using ground-based optical remote sensing. The method has validated application to relative...

  12. MERIS Retrieval of Water Quality Components in the Turbid Albemarle-Pamlico Sound Estuary, USA

    EPA Science Inventory

    Two remote-sensing optical algorithms for the retrieval of the water quality components (WQCs) in the Albemarle-Pamlico Estuarine System (APES) have been developed and validated for chlorophyll a (Chl) concentration. Both algorithms are semiempirical because they incorporate some...

  13. Peter Waterman and T-Matrix Methods

    NASA Technical Reports Server (NTRS)

    Mishchenko, M. I.; Martin, P.A.

    2013-01-01

    This paper summarizes the scientific legacy of Peter C. Waterman (1928-2012) who introduced concepts and theoretical techniques that have had a major impact on the fields of scattering by particles and particle groups, optical particletcharacterization, radiative transfer, and remote sensing. A biographical sketch is also included.

  14. Remote Distributed Vibration Sensing Through Opaque Media Using Permanent Magnets

    DOE PAGES

    Chen, Yi; Mazumdar, Anirban; Brooks, Carlton F.; ...

    2018-04-05

    Vibration sensing is critical for a variety of applications from structural fatigue monitoring to understanding the modes of airplane wings. In particular, remote sensing techniques are needed for measuring the vibrations of multiple points simultaneously, assessing vibrations inside opaque metal vessels, and sensing through smoke clouds and other optically challenging environments. Here, in this paper, we propose a method which measures high-frequency displacements remotely using changes in the magnetic field generated by permanent magnets. We leverage the unique nature of vibration tracking and use a calibrated local model technique developed specifically to improve the frequency-domain estimation accuracy. The results showmore » that two-dimensional local models surpass the dipole model in tracking high-frequency motions. A theoretical basis for understanding the effects of electronic noise and error due to correlated variables is generated in order to predict the performance of experiments prior to implementation. Simultaneous measurements of up to three independent vibrating components are shown. The relative accuracy of the magnet-based displacement tracking with respect to the video tracking ranges from 40 to 190 μm when the maximum displacements approach ±5 mm and when sensor-to-magnet distances vary from 25 to 36 mm. Finally, vibration sensing inside an opaque metal vessel and mode shape changes due to damage on an aluminum beam are also studied using the wireless permanent-magnet vibration sensing scheme.« less

  15. Remote Distributed Vibration Sensing Through Opaque Media Using Permanent Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Mazumdar, Anirban; Brooks, Carlton F.

    Vibration sensing is critical for a variety of applications from structural fatigue monitoring to understanding the modes of airplane wings. In particular, remote sensing techniques are needed for measuring the vibrations of multiple points simultaneously, assessing vibrations inside opaque metal vessels, and sensing through smoke clouds and other optically challenging environments. Here, in this paper, we propose a method which measures high-frequency displacements remotely using changes in the magnetic field generated by permanent magnets. We leverage the unique nature of vibration tracking and use a calibrated local model technique developed specifically to improve the frequency-domain estimation accuracy. The results showmore » that two-dimensional local models surpass the dipole model in tracking high-frequency motions. A theoretical basis for understanding the effects of electronic noise and error due to correlated variables is generated in order to predict the performance of experiments prior to implementation. Simultaneous measurements of up to three independent vibrating components are shown. The relative accuracy of the magnet-based displacement tracking with respect to the video tracking ranges from 40 to 190 μm when the maximum displacements approach ±5 mm and when sensor-to-magnet distances vary from 25 to 36 mm. Finally, vibration sensing inside an opaque metal vessel and mode shape changes due to damage on an aluminum beam are also studied using the wireless permanent-magnet vibration sensing scheme.« less

  16. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  17. The tongue of the ocean as a remote sensing ocean color calibration range

    NASA Technical Reports Server (NTRS)

    Strees, L. V.

    1972-01-01

    In general, terrestrial scenes remain stable in content from both temporal and spacial considerations. Ocean scenes, on the other hand, are constantly changing in content and position. The solar energy that enters the ocean waters undergoes a process of scattering and selective spectral absorption. Ocean scenes are thus characterized as low level radiance with the major portion of the energy in the blue region of the spectrum. Terrestrial scenes are typically of high level radiance with their spectral energies concentrated in the green-red regions of the visible spectrum. It appears that for the evaluation and calibration of ocean color remote sensing instrumentation, an ocean area whose optical ocean and atmospheric properties are known and remain seasonably stable over extended time periods is needed. The Tongue of the Ocean, a major submarine channel in the Bahama Banks, is one ocean are for which a large data base of oceanographic information and a limited amount of ocean optical data are available.

  18. Suppressing the image smear of the vibration modulation transfer function for remote-sensing optical cameras.

    PubMed

    Li, Jin; Liu, Zilong; Liu, Si

    2017-02-20

    In on-board photographing processes of satellite cameras, the platform vibration can generate image motion, distortion, and smear, which seriously affect the image quality and image positioning. In this paper, we create a mathematical model of a vibrating modulate transfer function (VMTF) for a remote-sensing camera. The total MTF of a camera is reduced by the VMTF, which means the image quality is degraded. In order to avoid the degeneration of the total MTF caused by vibrations, we use an Mn-20Cu-5Ni-2Fe (M2052) manganese copper alloy material to fabricate a vibration-isolation mechanism (VIM). The VIM can transform platform vibration energy into irreversible thermal energy with its internal twin crystals structure. Our experiment shows the M2052 manganese copper alloy material is good enough to suppress image motion below 125 Hz, which is the vibration frequency of satellite platforms. The camera optical system has a higher MTF after suppressing the vibration of the M2052 material than before.

  19. Retrieval and Validation of Aerosol Optical Depth by using the GF-1 Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Xu, S.; Wang, L.; Cai, K.; Ge, Q.

    2017-05-01

    Based on the characteristics of GF-1 remote sensing data, the method and data processing procedure to retrieve the Aerosol Optical Depth (AOD) are developed in this study. The surface contribution over dense vegetation and urban bright target areas are respectively removed by using the dark target and deep blue algorithms. Our method is applied for the three serious polluted Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions. The retrieved AOD are validated by ground-based AERONET data from Beijing, Hangzhou, Hong Kong sites. Our results show that, 1) the heavy aerosol loadings are usually distributed in high industrial emission and dense populated cities, with the AOD value near 1. 2) There is a good agreement between satellite-retrievals and in-site observations, with the coefficient factors of 0.71 (BTH), 0.55 (YRD) and 0.54(PRD). 3) The GF-1 retrieval uncertainties are mainly from the impact of cloud contamination, high surface reflectance and assumed aerosol model.

  20. Coarse-to-fine wavelet-based airport detection

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Shuigen; Pang, Zhaofeng; Zhao, Baojun

    2015-10-01

    Airport detection on optical remote sensing images has attracted great interest in the applications of military optics scout and traffic control. However, most of the popular techniques for airport detection from optical remote sensing images have three weaknesses: 1) Due to the characteristics of optical images, the detection results are often affected by imaging conditions, like weather situation and imaging distortion; and 2) optical images contain comprehensive information of targets, so that it is difficult for extracting robust features (e.g., intensity and textural information) to represent airport area; 3) the high resolution results in large data volume, which makes real-time processing limited. Most of the previous works mainly focus on solving one of those problems, and thus, the previous methods cannot achieve the balance of performance and complexity. In this paper, we propose a novel coarse-to-fine airport detection framework to solve aforementioned three issues using wavelet coefficients. The framework includes two stages: 1) an efficient wavelet-based feature extraction is adopted for multi-scale textural feature representation, and support vector machine(SVM) is exploited for classifying and coarsely deciding airport candidate region; and then 2) refined line segment detection is used to obtain runway and landing field of airport. Finally, airport recognition is achieved by applying the fine runway positioning to the candidate regions. Experimental results show that the proposed approach outperforms the existing algorithms in terms of detection accuracy and processing efficiency.

  1. Small Business Innovations (Photodetector)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Epitaxx, Inc. of Princeton, NJ, developed the Epitaxx Near Infrared Room Temperature Indium-Gallium-Arsenide (InGaAs) Photodetector based on their Goddard Space Flight Center Small Business Innovation Research (SBIR) contract work to develop a linear detector array for satellite imaging applications using InGaAs alloys that didn't need to be cooled to (difficult and expensive) cryogenic temperatures. The photodetectors can be used for remote sensing, fiber optic and laser position-sensing applications.

  2. The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera

    PubMed Central

    Leeuw, Thomas; Boss, Emmanuel

    2018-01-01

    HydroColor is a mobile application that utilizes a smartphone’s camera and auxiliary sensors to measure the remote sensing reflectance of natural water bodies. HydroColor uses the smartphone’s digital camera as a three-band radiometer. Users are directed by the application to collect a series of three images. These images are used to calculate the remote sensing reflectance in the red, green, and blue broad wavelength bands. As with satellite measurements, the reflectance can be inverted to estimate the concentration of absorbing and scattering substances in the water, which are predominately composed of suspended sediment, chlorophyll, and dissolved organic matter. This publication describes the measurement method and investigates the precision of HydroColor’s reflectance and turbidity estimates compared to commercial instruments. It is shown that HydroColor can measure the remote sensing reflectance to within 26% of a precision radiometer and turbidity within 24% of a portable turbidimeter. HydroColor distinguishes itself from other water quality camera methods in that its operation is based on radiometric measurements instead of image color. HydroColor is one of the few mobile applications to use a smartphone as a completely objective sensor, as opposed to subjective user observations or color matching using the human eye. This makes HydroColor a powerful tool for crowdsourcing of aquatic optical data. PMID:29337917

  3. Compositing multitemporal remote sensing data sets

    USGS Publications Warehouse

    Qi, J.; Huete, A.R.; Hood, J.; Kerr, Y.

    1993-01-01

    To eliminate cloud and atmosphere-affected pixels, the compositing of multi temporal remote sensing data sets is done by selecting the maximum vale of the normalized different vegetation index (NDVI) within a compositing period. The NDVI classifier, however, is strongly affected by surface type and anisotropic properties, sensor viewing geometries, and atmospheric conditions. Consequently, the composited, multi temporal, remote sensing data contain substantial noise from these external conditions. Consequently, the composited, multi temporal, remote sensing data contain substantial noise from these external effects. To improve the accuracy of compositing products, two key approaches can be taken: one is to refine the compositing classifier (NDVI) and the other is to improve existing compositing algorithms. In this project, an alternative classifier was developed and an alternative pixel selection criterion was proposed for compositing. The new classifier and the alternative compositing algorithm were applied to an advanced very high resolution radiometer data set of different biome types in the United States. The results were compared with the maximum value compositing and the best index slope extraction algorithms. The new approaches greatly reduced the high frequency noises related to the external factors and repainted more reliable data. The results suggest that the geometric-optical canopy properties of specific biomes may be needed in compositing. Limitations of the new approaches include the dependency of pixel selection on the length of the composite period and data discontinuity.

  4. The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera.

    PubMed

    Leeuw, Thomas; Boss, Emmanuel

    2018-01-16

    HydroColor is a mobile application that utilizes a smartphone's camera and auxiliary sensors to measure the remote sensing reflectance of natural water bodies. HydroColor uses the smartphone's digital camera as a three-band radiometer. Users are directed by the application to collect a series of three images. These images are used to calculate the remote sensing reflectance in the red, green, and blue broad wavelength bands. As with satellite measurements, the reflectance can be inverted to estimate the concentration of absorbing and scattering substances in the water, which are predominately composed of suspended sediment, chlorophyll, and dissolved organic matter. This publication describes the measurement method and investigates the precision of HydroColor's reflectance and turbidity estimates compared to commercial instruments. It is shown that HydroColor can measure the remote sensing reflectance to within 26% of a precision radiometer and turbidity within 24% of a portable turbidimeter. HydroColor distinguishes itself from other water quality camera methods in that its operation is based on radiometric measurements instead of image color. HydroColor is one of the few mobile applications to use a smartphone as a completely objective sensor, as opposed to subjective user observations or color matching using the human eye. This makes HydroColor a powerful tool for crowdsourcing of aquatic optical data.

  5. Analysis of flood inundation in ungauged basins based on multi-source remote sensing data.

    PubMed

    Gao, Wei; Shen, Qiu; Zhou, Yuehua; Li, Xin

    2018-02-09

    Floods are among the most expensive natural hazards experienced in many places of the world and can result in heavy losses of life and economic damages. The objective of this study is to analyze flood inundation in ungauged basins by performing near-real-time detection with flood extent and depth based on multi-source remote sensing data. Via spatial distribution analysis of flood extent and depth in a time series, the inundation condition and the characteristics of flood disaster can be reflected. The results show that the multi-source remote sensing data can make up the lack of hydrological data in ungauged basins, which is helpful to reconstruct hydrological sequence; the combination of MODIS (moderate-resolution imaging spectroradiometer) surface reflectance productions and the DFO (Dartmouth Flood Observatory) flood database can achieve the macro-dynamic monitoring of the flood inundation in ungauged basins, and then the differential technique of high-resolution optical and microwave images before and after floods can be used to calculate flood extent to reflect spatial changes of inundation; the monitoring algorithm for the flood depth combining RS and GIS is simple and easy and can quickly calculate the depth with a known flood extent that is obtained from remote sensing images in ungauged basins. Relevant results can provide effective help for the disaster relief work performed by government departments.

  6. Monitoring, analyzing and simulating of spatial-temporal changes of landscape pattern over mining area

    NASA Astrophysics Data System (ADS)

    Liu, Pei; Han, Ruimei; Wang, Shuangting

    2014-11-01

    According to the merits of remotely sensed data in depicting regional land cover and Land changes, multi- objective information processing is employed to remote sensing images to analyze and simulate land cover in mining areas. In this paper, multi-temporal remotely sensed data were selected to monitor the pattern, distri- bution and trend of LUCC and predict its impacts on ecological environment and human settlement in mining area. The monitor, analysis and simulation of LUCC in this coal mining areas are divided into five steps. The are information integration of optical and SAR data, LULC types extraction with SVM classifier, LULC trends simulation with CA Markov model, landscape temporal changes monitoring and analysis with confusion matrixes and landscape indices. The results demonstrate that the improved data fusion algorithm could make full use of information extracted from optical and SAR data; SVM classifier has an efficient and stable ability to obtain land cover maps, which could provide a good basis for both land cover change analysis and trend simulation; CA Markov model is able to predict LULC trends with good performance, and it is an effective way to integrate remotely sensed data with spatial-temporal model for analysis of land use / cover change and corresponding environmental impacts in mining area. Confusion matrixes are combined with landscape indices to evaluation and analysis show that, there was a sustained downward trend in agricultural land and bare land, but a continues growth trend tendency in water body, forest and other lands, and building area showing a wave like change, first increased and then decreased; mining landscape has undergone a from small to large and large to small process of fragmentation, agricultural land is the strongest influenced landscape type in this area, and human activities are the primary cause, so the problem should be pay more attentions by government and other organizations.

  7. Remote sensing of smoke, clouds, and radiation using AVIRIS during SCAR experiments

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Remer, Lorraine; Kaufman, Yorman J.

    1995-01-01

    During the past two years, researchers from several institutes joined together to take part in two SCAR experiments. The SCAR-A (Sulfates, Clouds And Radiation - Atlantic) took place in the mid-Atlantic region of the United States in July, 1993. remote sensing data were acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), the MODIS Airborne Simulator (MAS), and a RC-10 mapping camera from an ER-2 aircraft at 20 km. In situ measurements of aerosol and cloud microphysical properties were made with a variety of instruments equipped on the University of Washington's C-131A research aircraft. Ground based measurements of aerosol optical depths and particle size distributions were made using a network of sunphotometers. The main purpose of SCAR-A experiment was to study the optical, physical and chemical properties of sulfate aerosols and their interaction with clouds and radiation. Sulfate particles are believed to affect the energy balance of the earth by directly reflecting solar radiation back to space and by increasing the cloud albedo. The SCAR-C (Smoke, Clouds And Radiation - California) took place on the west coast areas during September - October of 1994. Sets of aircraft and ground-based instruments, similar to those used during SCAR-A, were used during SCAR-C. Remote sensing of fires and smoke from AVIRIS and MAS imagers on the ER-2 aircraft was combined with a complete in situ characterization of the aerosol and trace gases from the C-131A aircraft of the University of Washington and the Cesna aircraft from the U.S. Forest Service. The comprehensive data base acquired during SCAR-A and SCAR-C will contribute to a better understanding of the role of clouds and aerosols in global change studies. The data will also be used to develop satellite remote sensing algorithms from MODIS on the Earth Observing System.

  8. Modeling light scattering by mineral dust particles using spheroids

    NASA Astrophysics Data System (ADS)

    Merikallio, Sini; Nousiainen, Timo

    Suspended dust particles have a considerable influence on light scattering in both terrestrial and planetary atmospheres and can therefore have a large effect on the interpretation of remote sensing measurements. Assuming dust particles to be spherical is known to produce inaccurate results when modeling optical properties of real mineral dust particles. Yet this approximation is widely used for its simplicity. Here, we simulate light scattering by mineral dust particles using a distribution of model spheroids. This is done by comparing scattering matrices calculated from a dust optical database of Dubovik et al. [2006] with those measured in the laboratory by Volten et al. [2001]. Wavelengths of 441,6 nm and 632,8 nm and refractive indexes of Re = 1.55 -1.7 and Im = 0.001i -0.01i were adopted in this study. Overall, spheroids are found to fit the measurements significantly better than Mie spheres. Further, we confirm that the shape distribution parametrization developed in Nousiainen et al. (2006) significantly improves the accuracy of simulated single-scattering for small mineral dust particles. The spheroid scheme should therefore yield more reliable interpretations of remote sensing data from dusty planetary atmospheres. While the spheroidal scheme is superior to spheres in remote sensing applications, its performance is far from perfect especially for samples with large particles. Thus, additional advances are clearly possible. Further studies of the Martian atmosphere are currently under way. Dubovik et al. (2006) Application of spheroid models to account for aerosol particle nonspheric-ity in remote sensing of desert dust, JGR, Vol. 111, D11208 Volten et al. (2001) Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm, JGR, Vol. 106, No. D15, pp. 17375-17401 Nousiainen et al. (2006) Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids, JQSRT 101, pp. 471-487

  9. A extract method of mountainous area settlement place information from GF-1 high resolution optical remote sensing image under semantic constraints

    NASA Astrophysics Data System (ADS)

    Guo, H., II

    2016-12-01

    Spatial distribution information of mountainous area settlement place is of great significance to the earthquake emergency work because most of the key earthquake hazardous areas of china are located in the mountainous area. Remote sensing has the advantages of large coverage and low cost, it is an important way to obtain the spatial distribution information of mountainous area settlement place. At present, fully considering the geometric information, spectral information and texture information, most studies have applied object-oriented methods to extract settlement place information, In this article, semantic constraints is to be added on the basis of object-oriented methods. The experimental data is one scene remote sensing image of domestic high resolution satellite (simply as GF-1), with a resolution of 2 meters. The main processing consists of 3 steps, the first is pretreatment, including ortho rectification and image fusion, the second is Object oriented information extraction, including Image segmentation and information extraction, the last step is removing the error elements under semantic constraints, in order to formulate these semantic constraints, the distribution characteristics of mountainous area settlement place must be analyzed and the spatial logic relation between settlement place and other objects must be considered. The extraction accuracy calculation result shows that the extraction accuracy of object oriented method is 49% and rise up to 86% after the use of semantic constraints. As can be seen from the extraction accuracy, the extract method under semantic constraints can effectively improve the accuracy of mountainous area settlement place information extraction. The result shows that it is feasible to extract mountainous area settlement place information form GF-1 image, so the article proves that it has a certain practicality to use domestic high resolution optical remote sensing image in earthquake emergency preparedness.

  10. Remotely piloted aircraft in the civil environment

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.; Nelms, W. P.; Karmarkar, J. S.

    1977-01-01

    Improved remotely piloted aircraft (RPAs), i.e., incorporating reductions in size, weight, and cost, are becoming available for civilian applications. Existing RPA programs are described and predicted into the future. Attention is given to the NASA Mini-Sniffer, which will fly to altitudes of more than 20,000 m, sample the atmosphere behind supersonic cruise aircraft, and telemeter the data to ground stations. Design and operating parameters of the aircraft are given, especially the optical sensing systems, and civilian RPA uses are outlined, including airborne research, remote mapping, rescue, message relay, and transportation of need materials. Civil regulatory factors are also dealt with.

  11. Non-Topographic Space-Based Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Abshire, James B.; Riris, Haris; Purucker, Michael; Janches, Diego; Getty, Stephanie; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Li, Steve X.; hide

    2016-01-01

    In the past 20+ years, NASA Goddard Space Flight Center (GSFC) has successfully developed and flown lidars for mapping of Mars, the Earth, Mercury and the Moon. As laser and electro-optics technologies expand and mature, more sophisticated instruments that once were thought to be too complicated for space are being considered and developed. We will present progress on several new, space-based laser instruments that are being developed at GSFC. These include lidars for remote sensing of carbon dioxide and methane on Earth for carbon cycle and global climate change; sodium resonance fluorescence lidar to measure environmental parameters of the middle and upper atmosphere on Earth and Mars and a wind lidar for Mars orbit; in situ laser instruments include remote and in-situ measurements of the magnetic fields; and a time-of-flight mass spectrometer to study the diversity and structure of nonvolatile organics in solid samples on missions to outer planetary satellites and small bodies.

  12. Visible absorbance spectra: A basis for in situ and passive remote sensing of phytoplankton concentration and community composition

    NASA Technical Reports Server (NTRS)

    Farmer, F. H.; Jarrett, O., Jr.; Brown, C. A., Jr.

    1983-01-01

    The concentration and composition of phytoplankton populations are measured by an optical method which can be used either in situ or remotely. This method is based upon the in vivo light absorption characteristics of phytoplankton. To provide a data base for testing assumptions relative to the proposed method, visible absorbance spectra of pure cultures of 20 marine phytoplankton were obtained under laboratory conditions. Descriptive and analytical statistics were computed for the absorbance spectra and were used to make comparisons between members of major taxonomic groups and between groups. Spectral variation between the members of the major taxonomic groups was observed to be considerably less than the spectral variation between these groups. In several cases the differences between the mean absorbance spectra of major taxonomic groups are significant enough to be detected with passive remote sensing techniques.

  13. Inland and coastal waters

    NASA Astrophysics Data System (ADS)

    Mouw, Colleen; Greb, Steven

    2012-09-01

    Workshop for Remote Sensing of Coastal and Inland Waters;Madison, Wisconsin, 20-22 June 2012 Coastal and inland water bodies, which have great value for recreation, food supply, commerce, transportation, and human health, have been experiencing external pressure from direct human activities and climate change. Given their societal and economic value, understanding issues of water quality, water quantity, and the impact of environmental change on the ecological and biogeochemical functioning of these water bodies is of interest to a broad range of communities. Remote sensing offers one of the most spatially and temporally comprehensive tools for observing these waters. While there has been some success with remotely observing these water bodies, many challenges still remain, including algorithm performance, atmospheric correction, the relationships between optical properties and biogeochemical parameters, sufficient spatial and spectral resolution, and a lack of uncertainty estimates over the wide range of environmental conditions encountered across these coastal and inland water bodies.

  14. LIDAR Remote Sensing of Particulate Matter Emissions from On-Road Vehicles

    NASA Astrophysics Data System (ADS)

    Keislar, R. E.; Kuhns, H.; Mazzoleni, C.; Moosmuller, H.; Watson, J.

    2002-12-01

    DRI has developed a remote sensing method for on-road particulate matter emissions from gasoline-powered and diesel-powered vehicles called the Vehicle Emissions Remote Sensing System (VERSS). Remote sensing of gaseous pollutants in vehicle exhaust is a well-established, economical way to determine on-road emissions for thousands of vehicles per day. The VERSS adds a particulate matter channel to complement gaseous pollutant measurements. The VERSS uses 266-nm ultraviolet laser light to achieve greater sensitivity than visible light to sub-micrometer particles, where the greatest mass fraction has been reported. The VERSS system integrates the lidar channel with a commercial remote sensing device (RSD) for gaseous pollutants, and the RSD CO2 measurement can be used to estimate fuel-based particle mass emissions. We describe the interpretation and processing of lidar returns from field measurements taken by the combined VERSS during the Southern Nevada Air Quality Study (SNAQS), conducted in the Las Vegas area. With suitable assumptions regarding size distribution and particle composition, the lidar backscatter signal and the RSD yield three basic measurements of particulate matter in the exhaust plume. For each passing vehicle, these three channels are: 1) Columnar extinction in the infrared (IR at 3.9 micrometers) 2) Columnar extinction in the ultraviolet (UV at 266 nm) 3) Range-resolved backscatter at 266 nm (horizontal spatial resolution of 20-25 cm) The 3.9-micrometer channel is a good surrogate for absorption by elemental carbon (EC) in tailpipe emissions and has been utilized in previous studies. Opacity measurements at 266 nm provide optical extinction due to scattering from tailpipe organic carbon (OC) and EC emissions.

  15. Developing particle emission inventories using remote sensing (PEIRS).

    PubMed

    Tang, Chia-Hsi; Coull, Brent A; Schwartz, Joel; Lyapustin, Alexei I; Di, Qian; Koutrakis, Petros

    2017-01-01

    Information regarding the magnitude and distribution of PM 2.5 emissions is crucial in establishing effective PM regulations and assessing the associated risk to human health and the ecosystem. At present, emission data is obtained from measured or estimated emission factors of various source types. Collecting such information for every known source is costly and time-consuming. For this reason, emission inventories are reported periodically and unknown or smaller sources are often omitted or aggregated at large spatial scale. To address these limitations, we have developed and evaluated a novel method that uses remote sensing data to construct spatially resolved emission inventories for PM 2.5 . This approach enables us to account for all sources within a fixed area, which renders source classification unnecessary. We applied this method to predict emissions in the northeastern United States during the period 2002-2013 using high-resolution 1 km × 1 km aerosol optical depth (AOD). Emission estimates moderately agreed with the EPA National Emission Inventory (R 2 = 0.66-0.71, CV = 17.7-20%). Predicted emissions are found to correlate with land use parameters, suggesting that our method can capture emissions from land-use-related sources. In addition, we distinguished small-scale intra-urban variation in emissions reflecting distribution of metropolitan sources. In essence, this study demonstrates the great potential of remote sensing data to predict particle source emissions cost-effectively. We present a novel method, particle emission inventories using remote sensing (PEIRS), using remote sensing data to construct spatially resolved PM 2.5 emission inventories. Both primary emissions and secondary formations are captured and predicted at a high spatial resolution of 1 km × 1 km. Using PEIRS, large and comprehensive data sets can be generated cost-effectively and can inform development of air quality regulations.

  16. Remote sensing for restoration ecology: Application for restoring degraded, damaged, transformed, or destroyed ecosystems.

    PubMed

    Reif, Molly K; Theel, Heather J

    2017-07-01

    Restoration monitoring is generally perceived as costly and time consuming, given the assumptions of successfully restoring ecological functions and services of a particular ecosystem or habitat. Opportunities exist for remote sensing to bolster the restoration science associated with a wide variety of injured resources, including resources affected by fire, hydropower operations, chemical releases, and oil spills, among others. In the last decade, the role of remote sensing to support restoration monitoring has increased, in part due to the advent of high-resolution satellite sensors as well as other sensor technology, such as lidar. Restoration practitioners in federal agencies require monitoring standards to assess restoration performance of injured resources. This review attempts to address a technical need and provides an introductory overview of spatial data and restoration metric considerations, as well as an in-depth review of optical (e.g., spaceborne, airborne, unmanned aerial vehicles) and active (e.g., radar, lidar) sensors and examples of restoration metrics that can be measured with remotely sensed data (e.g., land cover, species or habitat type, change detection, quality, degradation, diversity, and pressures or threats). To that end, the present article helps restoration practitioners assemble information not only about essential restoration metrics but also about the evolving technological approaches that can be used to best assess them. Given the need for monitoring standards to assess restoration success of injured resources, a universal monitoring framework should include a range of remote sensing options with which to measure common restoration metrics. Integr Environ Assess Manag 2017;13:614-630. Published 2016. This article is a US Government work and is in the public domain in the USA. Published 2016. This article is a US Government work and is in the public domain in the USA.

  17. NeMO-Net & Fluid Lensing: The Neural Multi-Modal Observation & Training Network for Global Coral Reef Assessment Using Fluid Lensing Augmentation of NASA EOS Data

    NASA Technical Reports Server (NTRS)

    Chirayath, Ved

    2018-01-01

    We present preliminary results from NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. NeMO-Net is an open-source deep convolutional neural network (CNN) and interactive active learning training software in development which will assess the present and past dynamics of coral reef ecosystems. NeMO-Net exploits active learning and data fusion of mm-scale remotely sensed 3D images of coral reefs captured using fluid lensing with the NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as hyperspectral airborne remote sensing data from the ongoing NASA CORAL mission and lower-resolution satellite data to determine coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. Aquatic ecosystems, particularly coral reefs, remain quantitatively misrepresented by low-resolution remote sensing as a result of refractive distortion from ocean waves, optical attenuation, and remoteness. Machine learning classification of coral reefs using FluidCam mm-scale 3D data show that present satellite and airborne remote sensing techniques poorly characterize coral reef percent living cover, morphology type, and species breakdown at the mm, cm, and meter scales. Indeed, current global assessments of coral reef cover and morphology classification based on km-scale satellite data alone can suffer from segmentation errors greater than 40%, capable of change detection only on yearly temporal scales and decameter spatial scales, significantly hindering our understanding of patterns and processes in marine biodiversity at a time when these ecosystems are experiencing unprecedented anthropogenic pressures, ocean acidification, and sea surface temperature rise. NeMO-Net leverages our augmented machine learning algorithm that demonstrates data fusion of regional FluidCam (mm, cm-scale) airborne remote sensing with global low-resolution (m, km-scale) airborne and spaceborne imagery to reduce classification errors up to 80% over regional scales. Such technologies can substantially enhance our ability to assess coral reef ecosystems dynamics.

  18. Remote sensing of atmospheric optical depth using a smartphone sun photometer.

    PubMed

    Cao, Tingting; Thompson, Jonathan E

    2014-01-01

    In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12-0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations.

  19. Remote sounding of tropospheric minor constituents

    NASA Technical Reports Server (NTRS)

    Drayson, S. Roland; Hays, Paul B.; Wang, Jinxue

    1993-01-01

    The etalon interferometer, or Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution was widely used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2) and the High Resolution Doppler Imager (HRDI) to be flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible spectral region. The successful space flight of DE-FPI and the test and delivery of UARS-HRDI demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory (SPRL). The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. CLIO makes the use of linear array detectors more practical and efficient with FPI, the combination of FPI and CLIO represents a very promising new technique for the remote sensing of the lower atmospheres of Earth, Mars, Venus, Neptune, and other planets. The Multiorder Etalon Spectrometer (MOES), as a combination of the rugged etalon and the CLIO, compares very favorably to other spaceborne optical instruments in terms of performance versus complexity. The feasibility of an advanced etalon spectrometer for the remote sensing of tropospheric trace species, particularly carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4) was discussed. The etalon atmospheric spectroscopy techniques are described, instrument design and related technical issues are discussed. The primary objective is to establish the concept of atmospheric spectroscopy with the CLIO and etalon system and its applications for the measurements of tropospheric trace species analyze system requirements and performance, determine the feasibility of components and subsystem implementation with available technology, and develop inversion algorithm for retrieval simulation and data analysis.

  20. Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function

    NASA Astrophysics Data System (ADS)

    Hochberg, E. J.

    2016-02-01

    Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.

  1. Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function

    NASA Astrophysics Data System (ADS)

    Hochberg, E. J.

    2015-12-01

    Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.

  2. Comparison of in-situ and optical current-meter estimates of rip-current circulation

    NASA Astrophysics Data System (ADS)

    Moulton, M.; Chickadel, C. C.; Elgar, S.; Raubenheimer, B.

    2016-12-01

    Rip currents are fast, narrow, seaward flows that transport material from the shoreline to the shelf. Spatially and temporally complex rip current circulation patterns are difficult to resolve with in-situ instrument arrays. Here, high spatial-resolution estimates of rip current circulation from remotely sensed optical images of the sea surface are compared with in-situ estimates of currents in and near channels ( 1- to 2-m deep and 30-m wide) dredged across the surf zone. Alongshore flows are estimated using the optical current-meter method, and cross-shore flows are derived with the assumption of continuity. The observations span a range of wave conditions, tidal elevations, and flow patterns, including meandering alongshore currents near and in the channel, and 0.5 m/s alongshore flows converging at a 0.8 m/s rip jet in the channel. In addition, the remotely sensed velocities are used to investigate features of the spatially complex flow patterns not resolved by the spatially sparse in-situ sensors, including the spatial extent of feeder current zones and the width, alongshore position, and cross-shore extent of rip current jets. Funded by ASD(R&E) and NSF.

  3. Asian Dust Weather Categorization with Satellite and Surface Observations

    NASA Technical Reports Server (NTRS)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  4. Solid-state lasers for coherent communication and remote sensing

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1992-01-01

    Semiconductor-diode laser-pumped solid-state lasers have properties that are superior to other lasers for the applications of coherent communication and remote sensing. These properties include efficiency, reliability, stability, and capability to be scaled to higher powers. We have demonstrated that an optical phase-locked loop can be used to lock the frequency of two diode-pumped 1.06 micron Nd:YAG lasers to levels required for coherent communication. Monolithic nonplanar ring oscillators constructed from solid pieces of the laser material provide better than 10 kHz frequency stability over 0.1 sec intervals. We have used active feedback stabilization of the cavity length of these lasers to demonstrate 0.3 Hz frequency stabilization relative to a reference cavity. We have performed experiments and analysis to show that optical parametric oscillators (OPO's) reproduce the frequency stability of the pump laser in outputs that can be tuned to arbitrary wavelengths. Another measurement performed in this program has demonstrated the sub-shot-noise character of correlations of the fluctuations in the twin output of OPO's. Measurements of nonlinear optical coefficients by phase-matched second harmonic generation are helping to resolve inconsistency in these important parameters.

  5. Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Deschamps, Pierre-Yves

    1997-01-01

    Firstly, we have analyzed atmospheric transmittance and sky radiance data connected at the Scripps Institution of Oceanography pier, La Jolla during the winters of 1993 and 1994. Aerosol optical thickness at 870 nm was generally low in La Jolla, with most values below 0.1 after correction for stratospheric aerosols. For such low optical thickness, variability in aerosol scattering properties cannot be determined, and a mean background model, specified regionally under stable stratospheric component, may be sufficient for ocean color remote sensing, from space. For optical thicknesses above 0. 1, two modes of variability characterized by Angstrom exponents of 1.2 and 0.5 and corresponding, to Tropospheric and Maritime models, respectively, were identified in the measurements. The aerosol models selected for ocean color remote sensing, allowed one to fit, within measurement inaccuracies, the derived values of Angstrom exponent and 'pseudo' phase function (the product of single scattering albedo and phase function), key atmospheric correction parameters. Importantly, the 'pseudo' phase function can be derived from measurements of the Angstrom exponent. Shipborne sun photometer measurements at the time of satellite overpass are usually sufficient to verify atmospheric correction for ocean color.

  6. IEEE 1393 Spaceborne Fiber Optic Data Bus: A Standard Approach to On-Board Payload Data Handling Networks for the AIAA Space Technology Conference and Exposition "Partnering in the 21th Century"

    NASA Technical Reports Server (NTRS)

    Andrucyk, Dennis J.; Orlando, Fred J.; Chalfant, Charles H.

    1999-01-01

    The Spaceborne Fiber Optic Data Bus (SFODB) is the next generation in on-board data handling networks. It will do for high speed payloads what SAE 1773 has done for on-board command and telemetry systems. That is, it will significantly reduce the cost of payload development, integration and test through interface standardization. As defined in IEEE 1393, SFODB is a 1 Gb/s, fiber optic network specifically designed to support the real-time, on-board data handling requirements of remote sensing spacecraft. The network is highly reliable, fault tolerant, and capable of withstanding the rigors of launch and the harsh space environment. SFODB achieves this operational and environmental performance while maintaining the small size, light weight, and low power necessary for spaceborne applications. SFODB was developed jointly by DoD and NASA GSFC to meet the on-board data handling needs of Remote Sensing satellites. This jointly funded project produced a complete set of flight transmitters, receivers and protocol ASICS; a complete Development & Evaluation System; and, the IEEE 1393 standard.

  7. Bio-Optical and Remote Sensing Observations in Chesapeake Bay. Chapter 7

    NASA Technical Reports Server (NTRS)

    Harding, Lawrence W., Jr.; Magnuson, Andrea

    2003-01-01

    The high temporal and spatial resolution of satellite ocean color observations will prove invaluable for monitoring the health of coastal ecosystems where physical and biological variability demands sampling scales beyond that possible by ship. However, ocean color remote sensing of Case 2 waters is a challenging undertaking due to the optical complexity of the water. The focus of this SIMBIOS support has been to provide in situ optical measurements from Chesapeake Bay (CB) and adjacent mid-Atlantic bight (MAB) waters for use in algorithm development and validation efforts to improve the satellite retrieval of chlorophyll (chl a) in Case 2 waters. CB provides a valuable site for validation of data from ocean color sensors for a number of reasons. First, the physical dimensions of the Bay (> 6,500 km2) make retrievals from satellites with a spatial resolution of approx. 1 km (i.e., SeaWiFS) or less (i.e., MODIS) reasonable for most of the ecosystem. Second, CB is highly influenced by freshwater flow from major rivers, making it a classic Case 2 water body with significant concentrations of chlorophyll, particulates and chromophoric dissolved organic matter (CDOM) that highly impact the shape of reflectance spectra.

  8. Remote sensing of deep hermatypic coral reefs in Puerto Rico and the U.S. Virgin Islands using the Seabed autonomous underwater vehicle

    NASA Astrophysics Data System (ADS)

    Armstrong, Roy A.; Singh, Hanumant

    2006-09-01

    Optical imaging of coral reefs and other benthic communities present below one attenuation depth, the limit of effective airborne and satellite remote sensing, requires the use of in situ platforms such as autonomous underwater vehicles (AUVs). The Seabed AUV, which was designed for high-resolution underwater optical and acoustic imaging, was used to characterize several deep insular shelf reefs of Puerto Rico and the US Virgin Islands using digital imagery. The digital photo transects obtained by the Seabed AUV provided quantitative data on living coral, sponge, gorgonian, and macroalgal cover as well as coral species richness and diversity. Rugosity, an index of structural complexity, was derived from the pencil-beam acoustic data. The AUV benthic assessments could provide the required information for selecting unique areas of high coral cover, biodiversity and structural complexity for habitat protection and ecosystem-based management. Data from Seabed sensors and related imaging technologies are being used to conduct multi-beam sonar surveys, 3-D image reconstruction from a single camera, photo mosaicking, image based navigation, and multi-sensor fusion of acoustic and optical data.

  9. Automatic registration of optical imagery with 3d lidar data using local combined mutual information

    NASA Astrophysics Data System (ADS)

    Parmehr, E. G.; Fraser, C. S.; Zhang, C.; Leach, J.

    2013-10-01

    Automatic registration of multi-sensor data is a basic step in data fusion for photogrammetric and remote sensing applications. The effectiveness of intensity-based methods such as Mutual Information (MI) for automated registration of multi-sensor image has been previously reported for medical and remote sensing applications. In this paper, a new multivariable MI approach that exploits complementary information of inherently registered LiDAR DSM and intensity data to improve the robustness of registering optical imagery and LiDAR point cloud, is presented. LiDAR DSM and intensity information has been utilised in measuring the similarity of LiDAR and optical imagery via the Combined MI. An effective histogramming technique is adopted to facilitate estimation of a 3D probability density function (pdf). In addition, a local similarity measure is introduced to decrease the complexity of optimisation at higher dimensions and computation cost. Therefore, the reliability of registration is improved due to the use of redundant observations of similarity. The performance of the proposed method for registration of satellite and aerial images with LiDAR data in urban and rural areas is experimentally evaluated and the results obtained are discussed.

  10. Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: Experimental proof

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Sivignon, J. F.; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2018-06-01

    Optical sensors based on absorption spectroscopy play a central role in the detection and monitoring of atmospheric trace gases. We here present for the first time the experimental demonstration of OSAS-Lidar on the remote sensing of CH4 in the atmosphere. This new methodology, the OSAS-Lidar, couples the Optical Similitude Absorption Spectroscopy (OSAS) methodology with a light detection and ranging device. It is based on the differential absorption of spectrally integrated signals following Beer Lambert-Bouguer law, which are range-resolved. Its novelty originates from the use of broadband laser spectroscopy and from the mathematical approach used to retrieve the trace gas concentration. We previously applied the OSAS methodology in laboratory on the 2ν3 methane absorption band, centered at the 1665 nm wavelength and demonstrated that the OSAS-methodology is almost independent from atmospheric temperature and pressure. In this paper, we achieve an OSAS-Lidar device capable of observing large concentrations of CH4 released from a methane source directly into the atmosphere. Comparison with a standard in-situ measurement device shows that the path-integrated concentrations retrieved from OSAS-Lidar methodology exhibit sufficient sensitivity (2 000 ppm m) and observational time resolution (1 s) to remotely sense methane leaks in the atmosphere. The coupling of OSAS-lidar with a wind measurement device opens the way to monitor time-resolved methane flux emissions, which is important in regards to future climate mitigation involving regional reduction of CH4 flux emissions.

  11. Remote sensing estimation of terrestrially derived colored dissolved organic matterinput to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Li, J.; Yu, Q.; Tian, Y. Q.

    2017-12-01

    The DOC flux from land to the Arctic Ocean has remarkable implication on the carbon cycle, biogeochemical & ecological processes in the Arctic. This lateral carbon flux is required to be monitored with high spatial & temporal resolution. However, the current studies in the Arctic regions were obstructed by the factors of the low spatial coverages. The remote sensing could provide an alternative bio-optical approach to field sampling for DOC dynamics monitoring through the observation of the colored dissolved organic matter (CDOM). The DOC and CDOM were found highly correlated based on the analysis of the field sampling data from the Arctic-GRO. These provide the solid foundation of the remote sensing observation. In this study, six major Arctic Rivers (Yukon, Kolyma, Lena, Mackenzie, Ob', Yenisey) were selected to derive the CDOM dynamics along four years. Our newly developed SBOP algorithm was applied to the large Landsat-8 OLI image data (nearly 100 images) for getting the high spatial resolution results. The SBOP algorithm is the first approach developing for the Shallow Water Bio-optical properties estimation. The CDOM absorption derived from the satellite images were verified with the field sampling results with high accuracy (R2 = 0.87). The distinct CDOM dynamics were found in different Rivers. The CDOM absorptions were found highly related to the hydrological activities and the terrestrially environmental dynamics. Our study helps to build the reliable system for studying the carbon cycle at Arctic regions.

  12. An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Pitts, Michael; Hostetler, Chris; Poole, Lamont; Holden, Carl; Rault, Didier

    2000-01-01

    Atmospheric remote sensing with the O2 A-band has a relatively long history, but most of these studies were attempting to estimate surface pressure or cloud-top pressure. Recent conceptual studies have demonstrated the potential of spaceborne high spectral resolution O2 A-band spectrometers for retrieval of aerosol and cloud optical properties. The physical rationale of this new approach is that information on the scattering properties of the atmosphere is embedded in the detailed line structure of the O2 A-band reflected radiance spectrum. The key to extracting this information is to measure the radiance spectrum at very high spectral resolution. Instrument performance requirement studies indicate that, in addition to high spectral resolution, the successful retrieval of aerosol and cloud properties from A-band radiance spectra will also require high radiometric accuracy, instrument stability, and high signal-to-noise measurements. To experimentally assess the capabilities of this promising new remote sensing application, the NASA Langley Research Center is developing an airborne high spectral resolution A-band spectrometer. The spectrometer uses a plane holographic grating with a folded Littrow geometry to achieve high spectral resolution (0.5 cm-1) and low stray light in a compact package. This instrument will be flown in a series of field campaigns beginning in 2001 to evaluate the overall feasibility of this new technique. Results from these campaigns should be particularly valuable for future spaceborne applications of A-band spectrometers for aerosol and cloud retrievals.

  13. MODIS Direct Broadcast and Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2004-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard both Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). Equipped with direct broadcast capability, the MODIS measurements can be received worldwide real time. There are 82 ingest sites (over 900 users, listed on the Direct Readout Portal) around the world for Terra/Aqua-MODIS Direct Broadcast DB) downlink. This represents 27 (6 from EOS science team members) science research organizations for DB land, ocean and atmospheric processing, and 53 companies that base their application algorithms and value added products on DB data. In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of aerosol/cloud optical properties, especially optical thickness and effective particle size. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Preliminary results will be presented and discussed their implications in regional-to-global climatic effects.

  14. Driving terrestrial ecosystem models from space

    NASA Technical Reports Server (NTRS)

    Waring, R. H.

    1993-01-01

    Regional air pollution, land-use conversion, and projected climate change all affect ecosystem processes at large scales. Changes in vegetation cover and growth dynamics can impact the functioning of ecosystems, carbon fluxes, and climate. As a result, there is a need to assess and monitor vegetation structure and function comprehensively at regional to global scales. To provide a test of our present understanding of how ecosystems operate at large scales we can compare model predictions of CO2, O2, and methane exchange with the atmosphere against regional measurements of interannual variation in the atmospheric concentration of these gases. Recent advances in remote sensing of the Earth's surface are beginning to provide methods for estimating important ecosystem variables at large scales. Ecologists attempting to generalize across landscapes have made extensive use of models and remote sensing technology. The success of such ventures is dependent on merging insights and expertise from two distinct fields. Ecologists must provide the understanding of how well models emulate important biological variables and their interactions; experts in remote sensing must provide the biophysical interpretation of complex optical reflectance and radar backscatter data.

  15. Probability theory for 3-layer remote sensing radiative transfer model: univariate case.

    PubMed

    Ben-David, Avishai; Davidson, Charles E

    2012-04-23

    A probability model for a 3-layer radiative transfer model (foreground layer, cloud layer, background layer, and an external source at the end of line of sight) has been developed. The 3-layer model is fundamentally important as the primary physical model in passive infrared remote sensing. The probability model is described by the Johnson family of distributions that are used as a fit for theoretically computed moments of the radiative transfer model. From the Johnson family we use the SU distribution that can address a wide range of skewness and kurtosis values (in addition to addressing the first two moments, mean and variance). In the limit, SU can also describe lognormal and normal distributions. With the probability model one can evaluate the potential for detecting a target (vapor cloud layer), the probability of observing thermal contrast, and evaluate performance (receiver operating characteristics curves) in clutter-noise limited scenarios. This is (to our knowledge) the first probability model for the 3-layer remote sensing geometry that treats all parameters as random variables and includes higher-order statistics. © 2012 Optical Society of America

  16. Some Insights of Spectral Optimization in Ocean Color Inversion

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping; Franz, Bryan; Shang, Shaoling; Dong, Qiang; Arnone, Robert

    2011-01-01

    In the past decades various algorithms have been developed for the retrieval of water constituents from the measurement of ocean color radiometry, and one of the approaches is spectral optimization. This approach defines an error target (or error function) between the input remote sensing reflectance and the output remote sensing reflectance, with the latter modeled with a few variables that represent the optically active properties (such as the absorption coefficient of phytoplankton and the backscattering coefficient of particles). The values of the variables when the error reach a minimum (optimization is achieved) are considered the properties that form the input remote sensing reflectance; or in other words, the equations are solved numerically. The applications of this approach implicitly assume that the error is a monotonic function of the various variables. Here, with data from numerical simulation and field measurements, we show the shape of the error surface, in a way to justify the possibility of finding a solution of the various variables. In addition, because the spectral properties could be modeled differently, impacts of such differences on the error surface as well as on the retrievals are also presented.

  17. Atmospheric pollution measurement by optical cross correlation methods - A concept

    NASA Technical Reports Server (NTRS)

    Fisher, M. J.; Krause, F. R.

    1971-01-01

    Method combines standard spectroscopy with statistical cross correlation analysis of two narrow light beams for remote sensing to detect foreign matter of given particulate size and consistency. Method is applicable in studies of generation and motion of clouds, nuclear debris, ozone, and radiation belts.

  18. THE CHALLENGE OF QUALITY ASSURANCE FOR EMISSION FLUX MEASUREMENTS OF LARGE AREA SOURCES BY OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper examines the quality assurance challenges associated with open path Fourier transform infrared (OPFTIR) measurements of large area pollution sources with plume reconstruction by computed tomography (CT) and how each challenge may be met. Traditionally, pollutant concent...

  19. OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA

    EPA Science Inventory

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...

  20. Simplified and low cost optical remote sensing technology for fenceline monitoring of fugitive releases

    EPA Science Inventory

    Reducing fugitive emissions of hazardous air pollutants from industrial facilities is an ongoing priority for the U.S. Environmental Protection Agency (EPA). Unlike stack emissions, fugitive releases are difficult to detect due to their spatial extent and inherent temporal variab...

Top