Science.gov

Sample records for remote sensing survey

  1. Survey of remote sensing applications

    USGS Publications Warehouse

    Deutsch, Morris

    1974-01-01

    Data from the first earth resources technology satellite (ERTS) as well as from NASA and other aircraft, contain much of the information indicative of the distribution of groundwater and the extent of its utilization. Thermal infrared imagery from aircraft is particularly valuable in studying groundwater discharge to the sea and other surface water bodies. Color infrared photography from aircraft and space is also used to locate areas of potential groundwater development. Anomalies in vegetation, soils, moisture, and their pattern of distribution may be indicative of underlying groundwater conditions. Remote sensing may be used directly or indirectly to identify stream reaches for test holes or production wells. Similarly, location of submarine springs increase effectiveness of groundwater exploration in the coastal zone.

  2. Applications of remote sensing surveys in Texas

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The grant project continues to introduce remote sensing technology to users in Texas and other regions in the South through presentation of papers and briefings at technical and professional meetings.

  3. Soil erosion survey using remote sensing images

    NASA Astrophysics Data System (ADS)

    Jakab, Gergely; Kertész, Ádám; Madarász, Balázs; Pálinkás, Melinda; Tóth, Adrienn

    2016-04-01

    Soil erosion is one of the most effective soil degradation processes reducing crop production on arable fields significantly. It also leads to serious environmental hazards such as eutrophication, mud and flesh floods. Beyond the processes there is an urgent need to survey and descript the current degree of erosion of arable lands in order to provide adequate land use techniques and mitigate the harmful effects. Surveying soil erosion is a very time consuming process since soil loss and deposition take place next to each other resulting a rather diverse erosion pattern even within a plot. Remote sensing is a possible way to determine the degree of soil erosion without special efforts taken in the field. The application of images can provide high resolution erosion maps of almost any type of arable fields. The method is based on the identification of the origin of the surface soil layer, i.e. whether it represents an originally deeper laying horizon (e.g. B horizon), or the parent material. A case study was carried out on a Cambisol formed on loess parent material. The soil and the parent rock have various reflectance spectra in the visible range, so this strip was used for the investigations. For map creation "training sites" were used in ArcMap environment. The obtained results suggest that the method is highly effective and useful, however, other properties like moisture content and plant cover can limit automated application. In this case new training sites are needed. The study was supported by the National Research, Development and Innovation Office (NKFIH),), project Nr. 108755 and the support is gratefully acknowledged here. G. Jakab was supported by the János Bolyai Fellowship.

  4. Land use survey using remote sensing and geographical information systems

    NASA Astrophysics Data System (ADS)

    Suga, Yuzo

    1992-07-01

    A hybrid system which integrates Remote Sensing (RS) data and Geographical Information Systems (GIS) information, has been developed for land use survey in Hiroshima city. The system consists of three interrelated subsystems, i.e., a personal computer, a minicomputer and an engineering workstation: The system can handle an image data base consisting of satellite digital images such as Landsat TM and Spot HRV data, a line map data base consisting of topography and land use zoning, and an updating land use information data base consisting of raster and vector data such as remote sensing data and digital mapping data. This paper describes the implementation of the integration of multiple sensors/multi-temporal remote sensing images with digital mapping data. The application of the system to a land use survey is discussed with respect to a method of extracting land use information based on remote sensing and geographical information systems.

  5. U. S. GEOLOGICAL SURVEY LAND REMOTE SENSING ACTIVITIES.

    USGS Publications Warehouse

    Frederick, Doyle G.

    1983-01-01

    USGS uses all types of remotely sensed data, in combination with other sources of data, to support geologic analyses, hydrologic assessments, land cover mapping, image mapping, and applications research. Survey scientists use all types of remotely sensed data with ground verifications and digital topographic and cartographic data. A considerable amount of research is being done by Survey scientists on developing automated geographic information systems that can handle a wide variety of digital data. The Survey is also investigating the use of microprocessor computer systems for accessing, displaying, and analyzing digital data.

  6. The U.S. Geological Survey Land Remote Sensing Program

    USGS Publications Warehouse

    ,

    2003-01-01

    In 2002, the U. S. Geological Survey (USGS) launched a program to enhance the acquisition, preservation, and use of remotely sensed data for USGS science programs, as well as for those of cooperators and customers. Remotely sensed data are fundamental tools for studying the Earth's land surface, including coastal and near-shore environments. For many decades, the USGS has been a leader in providing remotely sensed data to the national and international communities. Acting on its historical topographic mapping mission, the USGS has archived and distributed aerial photographs of the United States for more than half a century. Since 1972, the USGS has acquired, processed, archived, and distributed Landsat and other satellite and airborne remotely sensed data products to users worldwide. Today, the USGS operates and manages the Landsats 5 and 7 missions and cooperates with the National Aeronautics and Space Administration (NASA) to define and implement future satellite missions that will continue and expand the collection of moderate-resolution remotely sensed data. In addition to being a provider of remotely sensed data, the USGS is a user of these data and related remote sensing technology. These data are used in natural resource evaluations for energy and minerals, coastal environmental surveys, assessments of natural hazards (earthquakes, volcanoes, and landslides), biological surveys and investigations, water resources status and trends analyses and studies, and geographic and cartographic applications, such as wildfire detection and tracking and as a source of information for The National Map. The program furthers these distinct but related roles by leading the USGS activities in providing remotely sensed data while advancing applications of such data for USGS programs and a wider user community.

  7. The U.S. Geological Survey Land Remote Sensing Program

    USGS Publications Warehouse

    ,

    2007-01-01

    The fundamental goals of the U.S. Geological Survey's Land Remote Sens-ing (LRS) Program are to provide the Federal Government and the public with a primary source of remotely sensed data and applications and to be a leader in defining the future of land remote sensing, nationally and internationally. Remotely sensed data provide information that enhance the understand-ing of ecosystems and the capabilities for predicting ecosystem change. The data promote an understanding of the role of the environment and wildlife in human health issues, the requirements for disaster response, the effects of climate variability, and the availability of energy and mineral resources. Also, as land satellite systems acquire global coverage, the program coordinates a network of international receiving stations and users of the data. It is the responsibility of the program to assure that data from land imaging satellites, airborne photography, radar, and other technologies are available to the national and global science communities.

  8. The U.S. Geological Survey land remote sensing program

    USGS Publications Warehouse

    Saunders, T.; Feuquay, J.; Kelmelis, J.A.

    2003-01-01

    The U.S. Geological Survey has been a provider of remotely sensed information for decades. As the availability and use of satellite data has grown, USGS has placed increasing emphasis on expanding the knowledge about the science of remote sensing and on making remotely sensed data more accessible. USGS encourages widespread availability and distribution of these data and through its programs, encourages and enables a variety of research activities and the development of useful applications of the data. The science of remote sensing has great potential for assisting in the monitoring and assessment of the impacts of natural disasters, management and analysis of environmental, biological, energy, and mineral investigations, and supporting informed public policy decisions. By establishing the Land Remote Sensing Program (LRS) as a major unit of the USGS Geography Program, USGS has taken the next step to further increase support for the accessibility, understanding, and use of remotely sensed data. This article describes the LRS Program, its mission and objectives, and how the program has been structured to accomplish its goals.

  9. Survey and analysis of potential users of remote sensing data

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Remote sensing applications for the activities of the regional interstate organizations, the federal agencies, and the private sector are examined. The survey covered activities in all 50 states. Emphasis has been placed on on-going operational programs and no attempt was made to cover the activities of the federal agencies except insofar as they impinged on State or other regional or metropolitan programs.

  10. U.S. Geological Survey land remote sensing activities

    USGS Publications Warehouse

    Frederick, Doyle G.

    1983-01-01

    The U.S. Geological Survey (USGS) and the Department of the Interior (DOI) were among the earliest to recognize the potential applications of satellite land remote sensing for management of the country's land and water resources…not only as a user but also as a program participant responsible for final data processing, product generation, and data distribution. With guidance from Dr. William T. Pecora, who was the Survey's Director at that time and later Under Secretary of Interior, the Earth Resources Observation Systems (EROS) Program was established in 1966 as a focal point for these activities within the Department. Dr. Pecora was among the few who could envision a role for the Survey and the Department as active participants in programs yet to come--like the Landsat, Magsat, Seasat and, most recently, Shuttle Imaging Radar programs.

  11. Remote sensing methods for power line corridor surveys

    NASA Astrophysics Data System (ADS)

    Matikainen, Leena; Lehtomäki, Matti; Ahokas, Eero; Hyyppä, Juha; Karjalainen, Mika; Jaakkola, Anttoni; Kukko, Antero; Heinonen, Tero

    2016-09-01

    To secure uninterrupted distribution of electricity, effective monitoring and maintenance of power lines are needed. This literature review article aims to give a wide overview of the possibilities provided by modern remote sensing sensors in power line corridor surveys and to discuss the potential and limitations of different approaches. Monitoring of both power line components and vegetation around them is included. Remotely sensed data sources discussed in the review include synthetic aperture radar (SAR) images, optical satellite and aerial images, thermal images, airborne laser scanner (ALS) data, land-based mobile mapping data, and unmanned aerial vehicle (UAV) data. The review shows that most previous studies have concentrated on the mapping and analysis of network components. In particular, automated extraction of power line conductors has achieved much attention, and promising results have been reported. For example, accuracy levels above 90% have been presented for the extraction of conductors from ALS data or aerial images. However, in many studies datasets have been small and numerical quality analyses have been omitted. Mapping of vegetation near power lines has been a less common research topic than mapping of the components, but several studies have also been carried out in this field, especially using optical aerial and satellite images. Based on the review we conclude that in future research more attention should be given to an integrated use of various data sources to benefit from the various techniques in an optimal way. Knowledge in related fields, such as vegetation monitoring from ALS, SAR and optical image data should be better exploited to develop useful monitoring approaches. Special attention should be given to rapidly developing remote sensing techniques such as UAVs and laser scanning from airborne and land-based platforms. To demonstrate and verify the capabilities of automated monitoring approaches, large tests in various environments

  12. Microwave remote sensing from space for earth resource surveys

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The concepts of radar remote sensing and microwave radiometry are discussed and their utility in earth resource sensing is examined. The direct relationship between the character of the remotely sensed data and the level of decision making for which the data are appropriate is considered. Applications of active and a passive microwave sensing covered include hydrology, land use, mapping, vegetation classification, environmental monitoring, coastal features and processes, geology, and ice and snow. Approved and proposed microwave sensors are described and the use of space shuttle as a development platform is evaluated.

  13. A survey on object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei

    2016-07-01

    Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.

  14. Field calibration and validation of remote-sensing surveys

    USGS Publications Warehouse

    Pe'eri, Shachak; McLeod, Andy; Lavoie, Paul; Ackerman, Seth D.; Gardner, James; Parrish, Christopher

    2013-01-01

    The Optical Collection Suite (OCS) is a ground-truth sampling system designed to perform in situ measurements that help calibrate and validate optical remote-sensing and swath-sonar surveys for mapping and monitoring coastal ecosystems and ocean planning. The OCS system enables researchers to collect underwater imagery with real-time feedback, measure the spectral response, and quantify the water clarity with simple and relatively inexpensive instruments that can be hand-deployed from a small vessel. This article reviews the design and performance of the system, based on operational and logistical considerations, as well as the data requirements to support a number of coastal science and management projects. The OCS system has been operational since 2009 and has been used in several ground-truth missions that overlapped with airborne lidar bathymetry (ALB), hyperspectral imagery (HSI), and swath-sonar bathymetric surveys in the Gulf of Maine, southwest Alaska, and the US Virgin Islands (USVI). Research projects that have used the system include a comparison of backscatter intensity derived from acoustic (multibeam/interferometric sonars) versus active optical (ALB) sensors, ALB bottom detection, and seafloor characterization using HSI and ALB.

  15. Remote Sensing.

    ERIC Educational Resources Information Center

    Williams, Richard S., Jr.; Southworth, C. Scott

    1983-01-01

    The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)

  16. A Survey of Ethics Content in College-Level Remote Sensing Courses in the United States

    ERIC Educational Resources Information Center

    Wetherholt, William A.; Rundquist, Bradley C.

    2010-01-01

    Easier access to submeter imagery has fueled debates over ethical uses of remote sensing. Some have called for ethics instruction to counter undesired uses of the technology. Here, this article reports the results of a survey examining attitudes related to teaching ethics in remote sensing. It was found that 52 percent of respondents teaching…

  17. Advanced Remote Sensing Research

    USGS Publications Warehouse

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  18. Remote Sensing

    ERIC Educational Resources Information Center

    Williams, Richard S., Jr.; Kover, Allan W.

    1978-01-01

    The steady growth of the Landsat image data base continues to make this kind of remotely sensed data second only to aerial photographs in use by geoscientists who employ image data in their research. Article reviews data uses, meetings and symposia, publications, problems, and future trends. (Author/MA)

  19. CubeSat Remote Sensing: A Survey of Current Capabilities

    NASA Astrophysics Data System (ADS)

    Hegel, D.

    2014-12-01

    Recent years have seen dramatic growth in the availability and capability of very small satellites for atmospheric sensing, and other space-based science, as the simplicity of integration and low cost of these platforms enables projects that would otherwise be prohibitively expensive, or demand excessive expertise/infrastructure to execute. This paper surveys the current state-of-the-art for CubeSat performance, including pointing accuracy, geolocation, available power, and data downlink capacity. Applications for up-coming missions, such as CeREs, MinXSS, and HARP will also be discussed.

  20. Remote Sensing Center

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The applications are reported of new remote sensing techniques for earth resources surveys and environmental monitoring. Applications discussed include: vegetation systems, environmental monitoring, and plant protection. Data processing systems are described.

  1. Remote sensing of wetlands

    NASA Technical Reports Server (NTRS)

    Roller, N. E. G.

    1977-01-01

    The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.

  2. Remote Sensing by Satellite for Environmental Education: A Survey and a Proposal for Teaching at Upper Secondary and University Level.

    ERIC Educational Resources Information Center

    Bosler, Ulrich

    Knowledge of the environment has grown to such an extent that information technology (IT) is essential to make sense of the available data. An example of this is remote sensing by satellite. In recent years this field has grown in importance and remote sensing is used for a range of uses including the automatic survey of wheat yields in North…

  3. Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas

    2008-01-01

    Remote sensing is measuring something without touching it. Most methods measure a portion of the electro-magnetic spectrum using energy reflected from or emitted by a material. Moving the instrument away makes it easier to see more at one time. Airplanes are good but satellites are much better. Many things can not be easily measured on the scale of an individual person. Example - measuring all the vegetation growing at one time in even the smallest country. A satellite can see things over large areas repeatedly and in a consistent way. Data from the detector is reported as digital values for a grid that covers some portion of the Earth. Because it is digital and consistent a computer can extract information or enhance the data for a specific purpose.

  4. Integrated analysis of remote sensing products from basic geological surveys. [Brazil

    NASA Technical Reports Server (NTRS)

    Dasilvafagundesfilho, E. (Principal Investigator)

    1984-01-01

    Recent advances in remote sensing led to the development of several techniques to obtain image information. These techniques as effective tools in geological maping are analyzed. A strategy for optimizing the images in basic geological surveying is presented. It embraces as integrated analysis of spatial, spectral, and temporal data through photoptic (color additive viewer) and computer processing at different scales, allowing large areas survey in a fast, precise, and low cost manner.

  5. Suitability of spectral remote sensing for coral reef surveying, monitoring and mapping

    NASA Astrophysics Data System (ADS)

    Gomez, Richard B.; Kafatos, Menas; Lewis, Ambrose J.

    2003-03-01

    Many researchers consider coral reefs the 'rainforests of the oceans' because they cover such a small area and yet provide homes for literally thousands of unique marine species. A multispectral or hyperspectral remote sensing satellite, with its spectral coverage, offers iadvantages over traditional methodologies for coral reef surveying, monitoring, and mapping. This apper presents research into the suitabilty of spectral remote sensing for coral reed surveying, monitoring and mapping. This paper presents research into the suitability of spectral remote sensing for coral reef surveying, monitoring and mapping using the SeaWiFS multispectral ocean color data for illustration. We describe the information technology developed to support this research and provide an overview of the database driven web application, which was developed to allow live interaction with the data. A database of in situ observations from the ReefBase web site was used as validation data as part of this investigation. This discussion includes details on the XML representation of the satellite and in situ data and metadat. It also introduces a dynamic Java Visualization applet developed to allow the users to visually interact wiht the data. The paper concludes wiht a discussion of the suitability and additional advantages of using hyperspectral remote sensing technology for this application that exploits the full spectral characteristics of submerged coral reefs.

  6. Survey of users of earth resources remote sensing data

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Stephan, J. G.; Smail, H. E.; Landis, L.; Ebbert, T. F.

    1976-01-01

    A user survey was conducted to determine current earth resources survey (ERS) data use/user status and recommendations for strengthening use. Only high-altitude aircraft and satellite (primarily LANDSAT) data were included. Emphasis was placed on the private sector/industrial user. Objectives of the survey included: who is using ERS data, how they are using the data, the relative value of current data use as well as obtaining user views as to possible ways of strengthening future ERS data use. The survey results are documented and should provide relevant decision making information for developing future programs of maximum benefit to all end users of satellite ERS data.

  7. Remote Sensing Methods

    NASA Technical Reports Server (NTRS)

    Sever, Thomas L.

    1998-01-01

    Remotely sensed data allows archeologists and historic preservationists the ability to non-destructively detect phenomena previously unobservable to them. Archeologists have successfully used aerial photography since the turn of the century and it continues to be an important research tool today. Multispectral scanners and computer-implemented analysis techniques extend the range of human vision and provides the investigator with innovative research designs at scales previously unimaginable. Pioneering efforts in the use of remote sensing technology have demonstrated its potential, but it is the recent technological developments in remote sensing instrumentation and computer capability that provide for unlimited, cost-effective applications in the future. The combination of remote sensing, Global Positioning System (GPS) technology, and Geographic Information Systems (GIS) are radically altering survey, inventory, and modelling approaches.

  8. A survey of users of earth resources remote sensing data

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Stephan, J. G.; Smail, H. E.; Ebbert, T. F.

    1977-01-01

    The results of a NASA supported Battelle survey to obtain user views on the nature and value of LANDSAT data use, on current LANDSAT capabilities, and on ways to improve data use were summarized. Questionnaire and interview responses from over 1000 private and public sector users were analyzed and discussed.

  9. Perspectives in remote sensing in Brazil. An approach of the remote sensing applications to Earth resources surveys

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novaes, R. A.

    1982-01-01

    Since the systematic use of earth surface data collection by orbital sensor systems started in 1972 with the launching of the North American LANDSAT satellite, a great effort has been made to assimilate, develop and transfer remote sensing technology (data acquisition and analysis) in its many applications in Brazil. The availability of sensor systems and existing data is considered approached, as well as those which will soon be available to the Brazilian researchers. The new systems of the LANDSAT-4, of the Columbia space shuttle and of the French satellites of the SPOT series are discussed. Some characteristics of the sensor system for the first Brazilian remote sensing satellite, to be launched by the end of the decade, are presented. Some LANDSAT-4 and SPOT simulation products are shown, emphasizing how the data obtained by these new satellites can be applied.

  10. Detection of Coastline Deformation Using Remote Sensing and Geodetic Surveys

    NASA Astrophysics Data System (ADS)

    Sabuncu, A.; Dogru, A.; Ozener, H.; Turgut, B.

    2016-06-01

    The coastal areas are being destroyed due to the usage that effect the natural balance. Unconsciously sand mining from the sea for nearshore nourishment and construction uses are the main ones. Physical interferences for mining of sand cause an ecologic threat to the coastal environment. However, use of marine sand is inevitable because of economic reasons or unobtainable land-based sand resources. The most convenient solution in such a protection-usage dilemma is to reduce negative impacts of sand production from marine. This depends on the accurate determination of criteriaon production place, style, and amount of sand. With this motivation, nearshore geodedic surveying studies performed on Kilyos Campus of Bogazici University located on the Black Sea coast, north of Istanbul, Turkey between 2001-2002. The study area extends 1 km in the longshore. Geodetic survey was carried out in the summer of 2001 to detect the initial condition for the shoreline. Long-term seasonal changes in shoreline positions were determined biannually. The coast was measured with post-processed kinematic GPS. Besides, shoreline change has studied using Landsat imagery between the years 1986-2015. The data set of Landsat 5 imageries were dated 05.08.1986 and 31.08.2007 and Landsat 7 imageries were dated 21.07.2001 and 28.07.2015. Landcover types in the study area were analyzed on the basis of pixel based classification method. Firstly, unsupervised classification based on ISODATA (Iterative Self Organizing Data Analysis Technique) has been applied and spectral clusters have been determined that gives prior knowledge about the study area. In the second step, supervised classification was carried out by using the three different approaches which are minimum-distance, parallelepiped and maximum-likelihood. All pixel based classification processes were performed with ENVI 4.8 image processing software. Results of geodetic studies and classification outputs will be presented in this paper.

  11. Aerial remote sensing surveys, geophysical characterization. Final report

    SciTech Connect

    Labson, V.F.; Pellerin, L.; Anderson, W.L.

    1998-06-01

    The application of helicopter electromagnetic (HEM) and magnetic methods to the requirements of the environmental restoration of the Oak Ridge Reservation (ORR) demand the use of advanced, nontraditional methods of data acquisition, processing and interpretation. The cooperative study by the U.S. Geological Survey (USGS), Oak Ridge National Laboratory (ORNL), and University of California (UCB) has resulted in the planning and supervision of data acquisition, the development of tools for data processing and interpretation, and an intensive application of the methods developed. This final report consists of a series of publications which the USGS collaborated with the ORNL technical staff. These reports represent the full scope of the USGS assistance. Copies of the reports and papers are included in the Appendix. The primary goals of this effort were to quantify the effectiveness of the geophysical methods applied in the survey of the ORR for the identification of buried waste, hydrogeologic pathways by which contamination could migrate through or off the site, and for the more accurate geologic mapping of the ORR. The objectives in buried waste identification are the accurate description of the source of the geophysical anomaly and the determination of the limits of resolution of the geophysical methods to acknowledge what we might have missed. The study of hydrogeologic pathways concentrated on the identification of karst features in the limestone underlying much of the ORR. Work in this study has indicated to the ORNL staff that these karst features can be located from the airborne geophysics. The defining characteristic of this helicopter geophysical study is the collaborative nature of the effort. Each task in which the USGS was involved has included a designated staff member from the Oak Ridge National Laboratory.

  12. [Thematic Issue: Remote Sensing.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1978-01-01

    Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…

  13. Survey of in-situ and remote sensing methods for soil moisture determination

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Jackson, T. J.; Mckim, H. L.

    1981-01-01

    General methods for determining the moisture content in the surface layers of the soil based on in situ or point measurements, soil water models and remote sensing observations are surveyed. In situ methods described include gravimetric techniques, nuclear techniques based on neutron scattering or gamma-ray attenuation, electromagnetic techniques, tensiometric techniques and hygrometric techniques. Soil water models based on column mass balance treat soil moisture contents as a result of meteorological inputs (precipitation, runoff, subsurface flow) and demands (evaporation, transpiration, percolation). The remote sensing approaches are based on measurements of the diurnal range of surface temperature and the crop canopy temperature in the thermal infrared, measurements of the radar backscattering coefficient in the microwave region, and measurements of microwave emission or brightness temperature. Advantages and disadvantages of the various methods are pointed out, and it is concluded that a successful monitoring system must incorporate all of the approaches considered.

  14. Use of remote-sensing techniques to survey the physical habitat of large rivers

    USGS Publications Warehouse

    Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.; Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffrey W.; Kennedy, Gregory W.; Smith, Stephen B.

    1997-01-01

    Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.

  15. U.S. Geological Survey, remote sensing, and geoscience data: Using standards to serve us all

    USGS Publications Warehouse

    Benson, Michael G.; Faundeen, John L.

    2000-01-01

    The U.S. Geological Survey (USGS) advocates the use of standards with geosciences and remotely sensed data and metadata for its own purposes and those of its customers. In activities that range from archiving data to making a product, the incorporation of standards makes these functions repeatable and understandable. More important, when accepted standards are followed, data discovery and sharing can be more efficient and the overall value to society can be expanded. The USGS archives many terabytes of digital geoscience and remotely sensed data. Several million photographs are also available to the research community. To manage these vast holdings and ensure that strict preservation and high usability criteria are observed, the USGS uses standards within the archival, data management, public access and ordering, and data distribution areas. The USGS uses Federal and international standards in performing its role as the U.S. National Satellite Land Remote Sensing Data Archive and in its mission as the long-term archive and production center for aerial photographs and cartographic data covering the United States.

  16. Biodiversity and agriculture in dynamic landscapes: Integrating ground and remotely-sensed baseline surveys.

    PubMed

    Gillison, Andrew N; Asner, Gregory P; Fernandes, Erick C M; Mafalacusser, Jacinto; Banze, Aurélio; Izidine, Samira; da Fonseca, Ambrósio R; Pacate, Hermenegildo

    2016-07-15

    Sustainable biodiversity and land management require a cost-effective means of forecasting landscape response to environmental change. Conventional species-based, regional biodiversity assessments are rarely adequate for policy planning and decision making. We show how new ground and remotely-sensed survey methods can be coordinated to help elucidate and predict relationships between biodiversity, land use and soil properties along complex biophysical gradients that typify many similar landscapes worldwide. In the lower Zambezi valley, Mozambique we used environmental, gradient-directed transects (gradsects) to sample vascular plant species, plant functional types, vegetation structure, soil properties and land-use characteristics. Soil fertility indices were derived using novel multidimensional scaling of soil properties. To facilitate spatial analysis, we applied a probabilistic remote sensing approach, analyzing Landsat 7 satellite imagery to map photosynthetically active and inactive vegetation and bare soil along each gradsect. Despite the relatively low sample number, we found highly significant correlations between single and combined sets of specific plant, soil and remotely sensed variables that permitted testable spatial projections of biodiversity and soil fertility across the regional land-use mosaic. This integrative and rapid approach provides a low-cost, high-return and readily transferable methodology that permits the ready identification of testable biodiversity indicators for adaptive management of biodiversity and potential agricultural productivity. PMID:27064732

  17. Biodiversity and agriculture in dynamic landscapes: Integrating ground and remotely-sensed baseline surveys.

    PubMed

    Gillison, Andrew N; Asner, Gregory P; Fernandes, Erick C M; Mafalacusser, Jacinto; Banze, Aurélio; Izidine, Samira; da Fonseca, Ambrósio R; Pacate, Hermenegildo

    2016-07-15

    Sustainable biodiversity and land management require a cost-effective means of forecasting landscape response to environmental change. Conventional species-based, regional biodiversity assessments are rarely adequate for policy planning and decision making. We show how new ground and remotely-sensed survey methods can be coordinated to help elucidate and predict relationships between biodiversity, land use and soil properties along complex biophysical gradients that typify many similar landscapes worldwide. In the lower Zambezi valley, Mozambique we used environmental, gradient-directed transects (gradsects) to sample vascular plant species, plant functional types, vegetation structure, soil properties and land-use characteristics. Soil fertility indices were derived using novel multidimensional scaling of soil properties. To facilitate spatial analysis, we applied a probabilistic remote sensing approach, analyzing Landsat 7 satellite imagery to map photosynthetically active and inactive vegetation and bare soil along each gradsect. Despite the relatively low sample number, we found highly significant correlations between single and combined sets of specific plant, soil and remotely sensed variables that permitted testable spatial projections of biodiversity and soil fertility across the regional land-use mosaic. This integrative and rapid approach provides a low-cost, high-return and readily transferable methodology that permits the ready identification of testable biodiversity indicators for adaptive management of biodiversity and potential agricultural productivity.

  18. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  19. Commerical Remote Sensing Data Contract

    USGS Publications Warehouse

    ,

    2005-01-01

    The U. S. Geological Survey's (USGS) Commercial Remote Sensing Data Contracts (CRSDCs) provide government agencies with access to a broad range of commercially available remotely sensed airborne and satellite data. These contracts were established to support The National Map partners, other Federal Civilian agency programs, and Department of Defense programs that require data for the United States and its territories. Experience shows that centralized procurement of remotely sensed data leads to considerable cost savings to the Federal government through volume discounts, reduction of redundant contract administrative costs, and avoidance of duplicate purchases. These contracts directly support the President's Commercial Remote Sensing Space Policy, signed in 2003, by providing a centralized mechanism for civil agencies to acquire commercial remote sensing products to support their mission needs in an efficient and coordinated way. CRSDC administration is provided by the USGS Mid-Continent Mapping Center in Rolla, Missouri.

  20. Remote sensing survey applied to synthetic geological mapping in Ivory Coast (West Africa)

    NASA Astrophysics Data System (ADS)

    Deroin, Jean-Paul; Delor, Claude; Simeon, Yves; Yao, Bertin

    1994-12-01

    We have used remote sensing as an additional method in 1:200 000-scale reconnaissance mapping of the Ivory Coast. Landsat imagery was chosen for its low cost, and its interest for relatively small-scale work and its synthetic and multispectral properties. This proved perfectly satisfactory, especially in the bush savanna to the north of latitude 7 deg 30'. The imagery was also compared with aeromagnetic survey results. The lithostructural features revealed by MSS can be directly correlated with field observations. 1) Certain clear facies variations (amphibolites or gabbros among acidic rocks, for example) are spectrally well expressed. Conglomerates are commonly distinctive (on the Katiola sheet for example), when they are sufficiently extensive and they form ridges that can be followed several tens of kilometres. 2) The traces of planar structures can, at least locally, be followed and correlated with a regional schistosity. Certain features mappable on images confirm offset across transcurrent structures identified on the ground (N-S transcurrent fault zones, for example). Our experience in Ivory Coast shows that the use of Landsat MSS imagery should systematically be considered for any small- scale studies in which only a small part of the budget can be attributed to remote sensing.

  1. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Johnson, J. D.; Foster, K. E.

    1977-01-01

    Descriptions of projects engaged by the Applied Remote Sensors Program in the state of Arizona are contained in an annual report for the fiscal year 1976-1977. Remote sensing techniques included thermal infrared imagery in analog and digital form and conversion of data into thermograms. Delineation of geologic areas, surveys of vegetation and inventory of resources were also presented.

  2. Remote sensing: The application of space technology to the survey of the earth and its environment

    NASA Technical Reports Server (NTRS)

    Schertler, R. J.

    1973-01-01

    Research in the earth sciences and management of both natural and man-made resources has been hindered by the difficulty of obtaining accurate and timely information on regional and global scale. Space surveys with remote sensing instruments are simply another means of attempting to attain the total knowledge of the resources needed for sound planning, development, and conservation. The use of earth orbiting satellites will greatly expand the ability to collect this information. The collection and use of these data and imagery, however, are now an end in itself, but only the means to an end, that of achieving total resource knowledge. Satellite systems will provide a valuable supplement to existing aerial and ground based observation techniques.

  3. Laser remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1987-01-01

    The properties and advantages of remote sensing lasers are discussed. The theory of nonresonant techniques, which is based on the lidar equation and elastic backscatter, and their applications to aerosol and meteorological parameters are examined. The characteristics and applications of the differential absorption lidar technique, the fluorescence technique, and Raman scattering are described. The use of a laser heterodyne radiometer and fiber optics for remote sensing is studied. Future developments in the field of remote sensing, in particular the improvement of laser sources, the fabrication of compact remote sensing instruments, and space-borne applications for lidar, are considered.

  4. Land Remote Sensing Overview

    NASA Technical Reports Server (NTRS)

    Byrnes, Ray

    2007-01-01

    A general overview of the USGS land remote sensing program is presented. The contents include: 1) Brief overview of USGS land remote sensing program; 2) Highlights of JACIE work at USGS; 3) Update on NASA/USGS Landsat Data Continuity Mission; and 4) Notes on alternative data sources.

  5. Remote sensing applications program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The activities of the Mississippi Remote Sensing Center are described in addition to technology transfer and information dissemination, remote sensing topics such as timber identification, water quality, flood prevention, land use, erosion control, animal habitats, and environmental impact studies are also discussed.

  6. Aerial Vehicle Surveys of other Planetary Atmospheres and Surfaces: Imaging, Remote-sensing, and Autonomy Technology Requirements

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Gregory; Ippolito, Corey; Alena, Rick

    2005-01-01

    The objective of this paper is to review the anticipated imaging and remote-sensing technology requirements for aerial vehicle survey missions to other planetary bodies in our Solar system that can support in-atmosphere flight. In the not too distant future such planetary aerial vehicle (a.k.a. aerial explorers) exploration missions will become feasible. Imaging and remote-sensing observations will be a key objective for these missions. Accordingly, it is imperative that optimal solutions in terms of imaging acquisition and real-time autonomous analysis of image data sets be developed for such vehicles.

  7. A survey for the use of remote sensing in the Chesapeake Bay region

    NASA Technical Reports Server (NTRS)

    Ulanowicz, R. E.

    1974-01-01

    Environmental problem areas concerning the Chesapeake Bay region are reviewed along with ongoing remote sensing programs pertaining to these problems, and recommendations are presented to help fill lacunae in present research and to utilize the remote sensing capabilities of NASA to their fullest. A list of interested organizations and individuals is presented for each category. The development of technologies to monitor dissolved nutrients in bay waters, the initiation of a census of the disappearing rooted acquatic plants in the littoral zones, and the mapping of natural building constraints in the growth regions of the states of Maryland and Virginia are among the recommendations presented.

  8. Remote sensing as a tool to survey endemic diseases in Brazil.

    PubMed

    Correia, Virginia Ragoni de Moraes; Carvalho, Marilia Sá; Sabroza, Paulo Chagastelles; Vasconcelos, Cíntia Honório

    2004-01-01

    The objective of this study, based on a systematic literature review, is to present the characteristics and potentialities of remote sensing as a useful environmental surveillance tool for applied research in the control of endemics in Brazil. Onboard satellite sensors allow for monitoring the territory, furnishing spatial and temporal information on various scales and regions in the electromagnetic spectrum. Based on the literature review on the application of this technology to the study of endemics and the identification of the potential of new sensors with better spectral, spatial, and temporal resolutions, this study highlights perspectives for the use of remote sensing in the study of important endemics for Brazil.

  9. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Philipson, W. R. (Principal Investigator)

    1983-01-01

    Built on Cornell's thirty years of experience in aerial photographic studies, the NASA-sponsored remote sensing program strengthened instruction and research in remote sensing, established communication links within and beyond the university community, and conducted research projects for or with town, county, state, federal, and private organizations in New York State. The 43 completed applied research projects are listed as well as 13 spinoff grants/contracts. The curriculum offered, consultations provided, and data processing facilities available are described. Publications engendered are listed including the thesis of graduates in the remote sensing program.

  10. An integrated payload design for the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL)

    NASA Astrophysics Data System (ADS)

    Eccleston, Paul; Tinetti, Giovanna; Beaulieu, Jean-Philippe; Güdel, Manuel; Hartogh, Paul; Micela, Giuseppina; Min, Michiel; Rataj, Miroslaw; Ray, Tom; Ribas, Ignasi; Vandenbussche, Bart; Auguères, Jean-Louis; Bishop, Georgia; Da Deppo, Vania; Focardi, Mauro; Hunt, Thomas; Malaguti, Giuseppe; Middleton, Kevin; Morgante, Gianluca; Ollivier, Marc; Pace, Emanuele; Pascale, Enzo; Taylor, William

    2016-07-01

    ARIEL (the Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three candidates for the next ESA medium-class science mission (M4) expected to be launched in 2026. This mission will be devoted to observing spectroscopically in the infrared a large population of warm and hot transiting exoplanets (temperatures from ~500 K to ~3000 K) in our nearby Galactic neighborhood, opening a new discovery space in the field of extrasolar planets and enabling the understanding of the physics and chemistry of these far away worlds. The three candidate missions for M4 are now in a Phase A study which will run until mid-2017 at which point one mission will be selected for implementation. ARIEL is based on a 1-m class telescope feeding both a moderate resolution spectrometer covering the wavelengths from 1.95 to 7.8 microns, and a four channel photometer (which also acts as a Fine Guidance Sensor) with bands between 0.55 and 1.65 microns. During its 3.5 years of operation from an L2 orbit, ARIEL will continuously observe exoplanets transiting their host star.

  11. Remote hydrogen sensing techniques

    NASA Technical Reports Server (NTRS)

    Perry, Cortes L.

    1992-01-01

    The objective of this project is to evaluate remote hydrogen sensing methodologies utilizing metal oxide semi-conductor field effect transistors (MOS-FET) and mass spectrometric (MS) technologies and combinations thereof.

  12. Remote Sensing Information Classification

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.

    2008-01-01

    This viewgraph presentation reviews the classification of Remote Sensing data in relation to epidemiology. Classification is a way to reduce the dimensionality and precision to something a human can understand. Classification changes SCALAR data into NOMINAL data.

  13. ARIEL – Atmospheric Remote-Sensing Infrared Exoplanet Large-survey

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Drossart, Pierre; Eccleston, Paul; Hartogh, Paul; Leconte, Jérémy; Micela, Giusi; Ollivier, Marc; Pilbratt, Göran; Puig, Ludovic; Turrini, Diego; Vandenbussche, Bart; Wolkenberg, Paulina; ARIEL consortium, ARIEL ESA Study Team

    2016-10-01

    The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey (ARIEL) is one of the three candidate missions selected by the European Space Agency (ESA) for its next medium-class science mission due for launch in 2026. The goal of the ARIEL mission is to investigate the atmospheres of several hundreds planets orbiting distant stars in order to address the fundamental questions on how planetary systems form and evolve.During its four (with a potential extension to six) years mission ARIEL will observe 500+ exoplanets in the visible and the infrared with its meter-class telescope in L2. ARIEL targets will include Jupiter- and Neptune-size down to super-Earth and Earth-size around different types of stars. The main focus of the mission will be on hot and warm planets orbiting very close to their star, as they represent a natural laboratory in which to study the chemistry and formation of exoplanets. In cooler planets, different gases separate out through condensation and sinking into distinct cloud layers. The scorching heat experienced by hot exoplanets overrides these processes and keeps all molecular species circulating throughout the atmosphere.The ARIEL mission concept has been developed by a consortium of more than 50 institutes from 12 countries, which include UK, France, Italy, Germany, the Netherlands, Poland, Spain, Belgium, Austria, Denmark, Ireland and Portugal. The analysis of ARIEL spectra and photometric data will allow to extract the chemical fingerprints of gases and condensates in the planets' atmospheres, including the elemental composition for the most favorable targets. It will also enable the study of thermal and scattering properties of the atmosphere as the planet orbit around the star.ARIEL will have an open data policy, enabling rapid access by the general community to the high-quality exoplanet spectra that the core survey will deliver.

  14. The science of ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey)

    NASA Astrophysics Data System (ADS)

    Tinetti, G.; Drossart, P.; Eccleston, P.; Hartogh, P.; Heske, A.; Leconte, J.; Micela, G.; Ollivier, M.; Pilbratt, G.; Puig, L.; Turrini, D.; Vandenbussche, B.; Wolkenberg, P.; Pascale, E.; Beaulieu, J.-P.; Güdel, M.; Min, M.; Rataj, M.; Ray, T.; Ribas, I.; Barstow, J.; Bowles, N.; Coustenis, A.; Coudé du Foresto, V.; Decin, L.; Encrenaz, T.; Forget, F.; Friswell, M.; Griffin, M.; Lagage, P. O.; Malaguti, P.; Moneti, A.; Morales, J. C.; Pace, E.; Rocchetto, M.; Sarkar, S.; Selsis, F.; Taylor, W.; Tennyson, J.; Venot, O.; Waldmann, I. P.; Wright, G.; Zingales, T.; Zapatero-Osorio, M. R.

    2016-07-01

    The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey (ARIEL) is one of the three candidate missions selected by the European Space Agency (ESA) for its next medium-class science mission due for launch in 2026. The goal of the ARIEL mission is to investigate the atmospheres of several hundred planets orbiting distant stars in order to address the fundamental questions on how planetary systems form and evolve. During its four (with a potential extension to six) years mission ARIEL will observe 500+ exoplanets in the visible and the infrared with its meter-class telescope in L2. ARIEL targets will include gaseous and rocky planets down to the Earth-size around different types of stars. The main focus of the mission will be on hot and warm planets orbiting close to their star, as they represent a natural laboratory in which to study the chemistry and formation of exoplanets. The ARIEL mission concept has been developed by a consortium of more than 50 institutes from 12 countries, which include UK, France, Italy, Germany, the Netherlands, Poland, Spain, Belgium, Austria, Denmark, Ireland and Portugal. The analysis of the ARIEL spectra and photometric data in the 0.5-7.8 micron range will allow to extract the chemical fingerprints of gases and condensates in the planets' atmospheres, including the elemental composition for the most favorable targets. It will also enable the study of thermal and scattering properties of the atmosphere as the planet orbit around the star. ARIEL will have an open data policy, enabling rapid access by the general community to the high-quality exoplanet spectra that the core survey will deliver.

  15. Development and Evaluation of a Uav Based Mapping System for Remote Sensing and Surveying Applications

    NASA Astrophysics Data System (ADS)

    Eling, C.; Wieland, M.; Hess, C.; Klingbeil, L.; Kuhlmann, H.

    2015-08-01

    In recent years, unmanned aerial vehicles (UAVs) have increasingly been used in various application areas, such as in the remote sensing or surveying. For these applications the UAV has to be equipped with a mapping sensor, which is mostly a camera. Furthermore, a georeferencing of the UAV platform and/or the acquired mapping data is required. The most efficient way to realize this georeferencing is the direct georeferencing, which is based on an onboard multi-sensor system. In recent decades, direct georeferencing systems have been researched and used extensively in airborne, ship and land vehicle applications. However, these systems cannot easily be adapted to UAV platforms, which is mainly due to weight and size limitations. In this paper a direct georeferencing system for micro- and mini-sized UAVs is presented, which consists of a dual-frequency geodetic grade OEM GPS board, a low-cost single-frequency GPS chip, a tactical grade IMU and a magnetometer. To allow for cm-level position and sub-degree attitude accuracies, RTK GPS (real-time kinematic) and GPS attitude (GPS compass) determination algorithms are running on this system, as well as a GPS/IMU integration. Beside the direct georeferencing, also the precise time synchronization of the camera, which acts as the main sensor for mobile mapping applications, and the calibration of the lever arm between the camera reference point and the direct georeferencing reference point are explained in this paper. Especially the high accurate time synchronization of the camera is very important, to still allow for high surveying accuracies, when the images are taken during the motion of the UAV. Results of flight tests demonstrate that the developed system, the camera synchronization and the lever arm calibration make directly georeferenced UAV based single point measurements possible, which have cm-level accuracies on the ground.

  16. Energy and remote sensing

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1977-01-01

    Effective implementation of the President's National Energy Plan and the Nuclear Power Policy Statement require application of the best remote sensing tools available. The potential contributions of remote sensing, particularly LANDSAT data, have yet to be clearly identified and exploited. These contributions investigated fall into the following categories: (1) exploration; (2) exploitation; (3) power plant siting; (4) environmental assessment and monitoring; and (5) transportation infrastructure.

  17. APPLIED REMOTE SENSING

    EPA Science Inventory

    Remote Sensing is a scientific discipline of non-contact monitoring. It includes a range of technologies that span from aerial photography to advanced spectral imaging and analytical methods. This Session is designed to demonstrate contemporary practical applications of remote se...

  18. Online Remote Sensing Interface

    NASA Technical Reports Server (NTRS)

    Lawhead, Joel

    2007-01-01

    BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.

  19. Remote sensing. [land use mapping

    NASA Technical Reports Server (NTRS)

    Jinich, A.

    1979-01-01

    Various imaging techniques are outlined for use in mapping, land use, and land management in Mexico. Among the techniques discussed are pattern recognition and photographic processing. The utilization of information from remote sensing devices on satellites are studied. Multispectral band scanners are examined and software, hardware, and other program requirements are surveyed.

  20. Remote Sensing of Water Pollution

    NASA Technical Reports Server (NTRS)

    White, P. G.

    1971-01-01

    Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.

  1. Characterization of users of remotely-sensed data in the Alabama coastal zone. [user requirements, surveys - technology utilization

    NASA Technical Reports Server (NTRS)

    Vittor, B. A. (Editor)

    1975-01-01

    Federal, State, local, universities and private companies were polled to determine their needs for remote sensing data. A total of 62 users were polled. Poll results are given in tables. A comprehensive research program was developed to satisfy user needs, and is examined for the disciplines of Geology, Water Resources, Archaeology, Geography, and Conservation. An investigation of silt plume discharge from Mobile Bay is also examined. Sample poll forms used in the surveys are shown.

  2. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  3. Overview of the AgRISTARS research program. I. [AGgriculture and Resources Inventory Surveys Through Aerospace Remote Sensing

    NASA Technical Reports Server (NTRS)

    Caudill, C. E.; Hatch, R. E.

    1985-01-01

    An account is given of the activities and accomplishments to date of the U.S. Department of Agriculture's Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS) program, which is a cooperative venture with NASA and the Departments of the Interior and of Commerce. AgRISTARS research activities encompass early warning and crop condition assessment, inventory technology development for production forecasting, crop yield model development, soil moisture monitoring, domestic crops and land cover sensing, renewable resources inventory, and conservation and pollution assessment.

  4. Applications of remote sensing to estuarine management. [environmental surveys of the Chesapeake Bay (U.S.)

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Gordon, H. H.; Welch, C. S.; Williams, G.

    1976-01-01

    Projects for sewage outfall siting for pollution control in the lower Chesapeake Bay wetlands are reported. A dye-buoy/photogrammetry and remote sensing technique was employed to gather circulation data used in outfall siting. This technique is greatly favored over alternate methods because it is inexpensive, produces results quickly, and reveals Lagrangian current paths which are preferred in making siting decisions. Wetlands data were obtained by interpretation of color and color infrared photographic imagery from several altitudes. Historical sequences of photographs are shown that were used to document wetlands changes. Sequential infrared photography of inlet basins was employed to determine tidal prisms, which were input to mathematical models to be used by state agencies in pollution control. A direct and crucial link between remote sensing and management decisions was demonstrated in the various projects.

  5. Rockfall risk evaluation using geotechnical survey, remote sensing data, and GIS: a case study from western Greece

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos; Depountis, Nikolaos; Vagenas, Nikolaos; Kavoura, Katerina; Vlaxaki, Eleni; Kelasidis, George; Sabatakakis, Nikolaos

    2015-06-01

    In this paper a specific example of the synergistic use of geotechnical survey, remote sensing data and GIS for rockfall risk evaluation is presented. The study area is located in Western Greece. Extensive rockfalls have been recorded along Patras - Ioannina highway just after the cable-stayed bridge of Rio-Antirrio, at Klokova site. The rockfalls include medium- sized limestone boulders with volume up to 1.5m3. A detailed engineering geological survey was conducted including rockmass characterization, laboratory testing and geological - geotechnical mapping. Many Rockfall trajectory simulations were done. Rockfall risk along the road was estimated using spatial analysis in a GIS environment.

  6. Aerosol Remote Sensing

    NASA Technical Reports Server (NTRS)

    Lenoble, Jacqueline (Editor); Remer, Lorraine (Editor); Tanre, Didier (Editor)

    2012-01-01

    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified.

  7. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  8. Remote sensing and image interpretation

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)

    1979-01-01

    A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

  9. A survey of natural aggregate properties and characteristics important in remote sensing and airborne geophysics

    USGS Publications Warehouse

    Knepper, D.H.; Langer, W.H.; Miller, S.

    1995-01-01

    Natural aggregate is vital to the construction industry. Although natural aggregate is a high volume/low value commodity that is abundant, new sources are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transportation costs, and environmental concerns. There are two primary sources of natural aggregate: (1) exposed or near-surface bedrock that can be crushed, and (2) deposits of sand and gravel. Remote sensing and airborne geophysics detect surface and near-surface phenomena, and may be useful for detecting and mapping potential aggregate sources; however, before a methodology for applying these techniques can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits. The distribution of potential aggregate sources is closely tied to local geologic history. Conventional exploration for natural aggregate deposits has been largely a ground-based operation, although aerial photographs and topographic maps have been extensively used to target possible deposits. Today, the exploration process also considers factors such as the availability of the land, space and water supply for processing, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which to judge aggregate material for specific applications; most of these properties and characteristics pertain only to individual aggregate particles. The application of remote sensing and airborne geophysical measurements to detecting and mapping potential aggregate sources, however, is based on intrinsic bulk physical properties and extrinsic characteristics of the deposits that can be directly measured, mathematically derived from measurement, or interpreted with remote sensing and geophysical data. ?? 1995 Oxford UniversityPress.

  10. Brazil's remote sensing activities in the Eighties

    NASA Technical Reports Server (NTRS)

    Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.

    1985-01-01

    Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.

  11. AgRISTARS: Agriculture and resources inventory surveys through aerospace remote sensing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The major objectives and FY 1980 accomplishments are described of a long term program designed to determine the usefulness, cost, and extent to which aerospace remote sensing data can be integrated into existing or future USDA systems to improve the objectivity, reliability, timeliness, and adequacy of information. A general overview, the primary and participating agencies, and the technical highlights of each of the following projects are presented: early warning/crop condition assessment; foreign commodity production forecasting; yield model development; supporting research; soil moisture; domestic crops and land cover; renewable resources inventory; and conservation and pollution.

  12. A survey of image processing developments in support of remote sensing

    USGS Publications Warehouse

    Bauer, Brian P.

    1980-01-01

    New algorithm developments for image processing (IP) will occur throughout the 1980's, resulting from evolution in computer hardware and sensors as well as continuing research. This report will describe the areas of algorithm development that are occurring in applications, research, and operational environments. Included is an overview of image processing activities at institutions which are generally regarded as leaders in IP algorithm development and implementation. Finally, this report addresses directions in IP algorithm development that are being proposed for the EROS Data Center (EDC). The major applications of IP at EDC are developed for use in the processing, analysis, and extraction of remote sensing information from Landsat and aircraft data (platforms).

  13. EPA REMOTE SENSING RESEARCH

    EPA Science Inventory

    The 2006 transgenic corn imaging research campaign has been greatly assisted through a cooperative effort with several Illinois growers who provided planting area and crop composition. This research effort was designed to evaluate the effectiveness of remote sensed imagery of var...

  14. Solar System Remote Sensing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the symposium on Solar System Remote Sensing, September 20-21, 2002, in Pittsburgh, Pennsylvania. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.

  15. Application of remote sensing

    NASA Technical Reports Server (NTRS)

    Graff, W. J. (Compiler)

    1973-01-01

    Remote sensing and aerial photographic interpretation are discussed along with the specific imagery techniques used for this research. The method used to select sites, the results of data analyses for the Houston metropolitan area, and the location of dredging sites along the Houston Ship Channel are presented. The work proposed for the second year of the project is described.

  16. Remote Sensing and the Earth

    NASA Technical Reports Server (NTRS)

    Brosius, C. A.; Gervin, J. C.; Ragusa, J. M.

    1977-01-01

    A text book on remote sensing, as part of the earth resources Skylab programs, is presented. The fundamentals of remote sensing and its application to agriculture, land use, geology, water and marine resources, and environmental monitoring are summarized.

  17. THE EPA REMOTE SENSING ARCHIVE

    EPA Science Inventory

    What would you do if you were faced with organizing 30 years of remote sensing projects that had been haphazardly stored at two separate locations for years then combined? The EPA Remote Sensing Archive, currently located in Las Vegas, Nevada. contains the remote sensing data and...

  18. Remote-sensing applications to geology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of two day workshop on applications of remote sensing to geology are summarized in report. Topics discussed are environmental analysis, crop classification, plant epidemics and diseases, irrigation reform, and soil surveys.

  19. Remote Sensing Laboratory - RSL

    SciTech Connect

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  20. Evapotranspiration and remote sensing

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Gurney, R.

    1982-01-01

    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.

  1. Remote Sensing Laboratory - RSL

    ScienceCinema

    None

    2016-07-12

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  2. Advanced laser remote sensing

    SciTech Connect

    Schultz, J.; Czuchlewski, S.; Karl, R.

    1996-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Remote measurement of wind velocities is critical to a wide variety of applications such as environmental studies, weather prediction, aircraft safety, the accuracy of projectiles, bombs, parachute drops, prediction of the dispersal of chemical and biological warfare agents, and the debris from nuclear explosions. Major programs to develop remote sensors for these applications currently exist in the DoD and NASA. At present, however, there are no real-time, three-dimensional wind measurement techniques that are practical for many of these applications and we report on two new promising techniques. The first new technique uses an elastic backscatter lidar to track aerosol patterns in the atmosphere and to calculate three dimensional wind velocities from changes in the positions of the aerosol patterns. This was first done by Professor Ed Eloranta of the University of Wisconsin using post processing techniques and we are adapting Professor Eloranta`s algorithms to a real-time data processor and installing it in an existing elastic backscatter lidar system at Los Alamos (the XM94 helicopter lidar), which has a compatible data processing and control system. The second novel wind sensing technique is based on radio-frequency (RF) modulation and spatial filtering of elastic backscatter lidars. Because of their compactness and reliability, solid state lasers are the lasers of choice for many remote sensing applications, including wind sensing.

  3. AgRISTARS: Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing. Enumerator's manual, 1981 ground data survey

    NASA Technical Reports Server (NTRS)

    1981-01-01

    General information and administrative instructions are provided for individuals gathering ground truth data to support research and development techniques for estimating crop acreage and production by remote sensing by satellite. Procedures are given for personal safety with regards to organophosphorus insecticides, for conducting interviews for periodic observations, for coding the crops identified and their growth stages, and for selecting sites for placing rain gages. Forms are included for those citizens agreeing to monitor the gages and record the rainfall. Segment selection is also considered.

  4. Coordinated aircraft and ship surveys for determining impact of river inputs on great lakes waters. Remote sensing results

    NASA Technical Reports Server (NTRS)

    Raquet, C. A.; Salzman, J. A.; Coney, T. A.; Svehla, R. A.; Shook, D. F.; Gedney, R. T.

    1980-01-01

    The remote sensing results of aircraft and ship surveys for determining the impact of river effluents on Great Lakes waters are presented. Aircraft multi-spectral scanner data were acquired throughout the spring and early summer of 1976 at five locations: the West Basin of Lake Erie, Genesee River - Lake Ontario, Menomonee River - Lake Michigan, Grand River - Lake Michigan, and Nemadji River - Lake Superior. Multispectral scanner data and ship surface sample data are correlated resulting in 40 contour plots showing large-scale distributions of parameters such as total suspended solids, turbidity, Secchi depth, nutrients, salts, and dissolved oxygen. The imagery and data analysis are used to determine the transport and dispersion of materials from the river discharges, especially during spring runoff events, and to evaluate the relative effects of river input, resuspension, and shore erosion. Twenty-five LANDSAT satellite images of the study sites are also included in the analysis. Examples of the use of remote sensing data in quantitatively estimating total particulate loading in determining water types, in assessing transport across international boundaries, and in supporting numerical current modeling are included. The importance of coordination of aircraft and ship lake surveys is discussed, including the use of telefacsimile for the transmission of imagery.

  5. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1993-01-01

    Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  6. Data compression in remote sensing applications

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid

    1992-01-01

    A survey of current data compression techniques which are being used to reduce the amount of data in remote sensing applications is provided. The survey aspect is far from complete, reflecting the substantial activity in this area. The purpose of the survey is more to exemplify the different approaches being taken rather than to provide an exhaustive list of the various proposed approaches.

  7. Remote Sensing and the Earth.

    ERIC Educational Resources Information Center

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  8. Remote Sensing: A Film Review.

    ERIC Educational Resources Information Center

    Carter, David J.

    1986-01-01

    Reviews the content of 19 films on remote sensing published between 1973 and 1980. Concludes that they are overly simplistic, notably outdated, and generally too optimistic about the potential of remote sensing from space for resource exploration and environmental problem-solving. Provides names and addresses of more current remote sensing…

  9. Remote Sensing and the Environment.

    ERIC Educational Resources Information Center

    Osmers, Karl

    1991-01-01

    Suggests using remote sensing technology to help students make sense of the natural world. Explains that satellite information allows observation of environmental changes over time. Identifies possible student projects based on remotely sensed data. Recommends obtaining the assistance of experts and seeking funding through effective project…

  10. The coastline remote sensing survey for Zhao Shu Island in Xisha Islands based on WorldView-2

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhong, Chang; Kong, Fanping

    2014-11-01

    Due to diastrophism, tide action and human activities, the coastline is always in flux. There are lots of coral islands in the south sea of China. Remote sensing survey for the coastline not only can reassert the necessity and importance of coral protection, but also can provide basic data and scientific basis for island ecologic protection, reasonable utilization of land resources. The study area named Zhao Shu Island lies in Jintong Islands of Xisha. It is a coral island which has people inhabited. Using WorldView-2 satellite remote sensing images as data sources we carry out three phases of coastline investigation and monitoring. The satellite data phases are 2002, 2010 and 2013. Firstly, affirm the bands valuable for color composition on the basis of spectral and correlation analysis. Then extract the coastline by a series of image process, such as image correction, fusion, waterline extraction and coastline revision. Finally determine the coastline types and length by artificial interpretation. The results show that the island length is gradually smaller, which means the island area is reducing. The beach bedrock coast in northern island was eroded seriously especially during the period between 2010 and 2013. In addition, the shoal head shape in the western island changed a lot.

  11. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Whitmore, R. A., Jr. (Principal Investigator)

    1980-01-01

    A syllabus and training materials prepared and used in a series of one-day workshops to introduce modern remote sensing technology to selected groups of professional personnel in Vermont are described. Success in using computer compatible tapes, LANDSAT imagery and aerial photographs is reported for the following applications: (1) mapping defoliation of hardwood forests by tent caterpillar and gypsy moth; (2) differentiating conifer species; (3) mapping ground cover of major lake and pond watersheds; (4) inventorying and locating artificially regenerated conifer forest stands; (5) mapping water quality; (6) ascertaining the boat population to quantify recreational activity on lakes and waterways; and (7) identifying potential aquaculture sites.

  12. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  13. Applications of Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jacha, Charlene

    2015-04-01

    Remote sensing is one of the best ways to be able to monitor and see changes in the Earth. The use of satellite images in the classroom can be a practical way to help students understand the importance and use of remote sensing and Geographic Information Systems (GIS). It is essential in helping students to understand that underlying individual data points are converted to a broad spatial form. The use of actual remote sensing data makes this more understandable to the students e.g. an online map of recent earthquake events, geologic maps, satellite imagery. For change detection, images of years ten or twenty years apart of the same area can be compared and observations recorded. Satellite images of different places can be available on the Internet or from the local space agency. In groups of mixed abilities, students can observe changes in land use over time and also give possible reasons and explanations to those changes. Students should answer essential questions like, how does satellite imagery offer valuable information to different faculties e.g. military, weather, environmental departments and others. Before and after images on disasters for example, volcanoes, floods and earthquakes should be obtained and observed. Key questions would be; how can scientists use these images to predict, or to change the future outcomes over time. How to manage disasters and how the archived images can assist developers in planning land use around that area in the future. Other material that would be useful includes maps and aerial photographs of the area. A flight should be organized over the area for students to acquire aerial photographs of their own; this further enhances their understanding of the concept "remote sensing". Environmental issues such as air, water and land pollution can also be identified on satellite images. Key questions for students would include causes, effects and possible solutions to the problem. Conducting a fieldwork exercise around the area would

  14. Remote Sensing Information Science Research

    NASA Technical Reports Server (NTRS)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  15. The Atmospheric Remote-sensing Infrared Exoplanets Large-survey (ARIEL) payload electronic subsystems

    NASA Astrophysics Data System (ADS)

    Focardi, M.; Pace, E.; Colomé, J.; Ribas, I.; Rataj, M.; Ottensamer, R.; Farina, M.; Di Giorgio, A. M.; Wawer, P.; Pancrazzi, M.; Noce, V.; Pezzuto, S.; Morgante, G.; Artigues, B.; Sierra-Roig, C.; Gesa, L.; Eccleston, P.; Crook, M.; Micela, G.

    2016-07-01

    The ARIEL mission has been proposed to ESA by an European Consortium as the first space mission to extensively perform remote sensing on the atmospheres of a well defined set of warm and hot transiting gas giant exoplanets, whose temperature range between ~600 K and 3000 K. ARIEL will observe a large number (~500) of warm and hot transiting gas giants, Neptunes and super-Earths around a range of host star types using transit spectroscopy in the ~2-8 μm spectral range and broad-band photometry in the NIR and optical. ARIEL will target planets hotter than 600 K to take advantage of their well-mixed atmospheres, which should show minimal condensation and sequestration of high-Z materials and thus reveal their bulk and elemental composition. One of the major motivations for exoplanet characterisation is to understand the probability of occurrence of habitable worlds, i.e. suitable for surface liquid water. While ARIEL will not study habitable planets, its major contribution to this topic will results from its capability to detect the presence of atmospheres on many terrestrial planets outside the habitable zone and, in many cases, characterise them. This represents a fundamental breakthrough in understanding the physical and chemical processes of a large sample of exoplanets atmospheres as well as their bulk properties and to probe in-space technology. The ARIEL infrared spectrometer (AIRS) provides data on the atmospheric composition; these data are acquired and processed by an On-Board Data Handling (OBDH) system including the Cold Front End Electronics (CFEE) and the Instrument Control Unit (ICU). The Telescope Control Unit (TCU) is also included inside the ICU. The latter is directly connected to the Control and Data Management Unit (CDMU) on board the Service Module (SVM). The general hardware architecture and the application software of the ICU are described. The Fine Guidance Sensor (FGS) electronics and the Cooler Control Electronics are also presented.

  16. Microwave remote sensing laboratory design

    NASA Technical Reports Server (NTRS)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  17. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.

    1976-01-01

    The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.

  18. AgRISTARS - Plans and first-year achievements. [Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Hogg, R. C.; Caudill, C. E.

    1981-01-01

    The results of the agriculture and resources inventory surveys through aerospace remote sensing (AgRISTARS) program managed by the USDA for exploring the use of satellite data for domestic and global commodity information needs are discussed. The program was intended to gather early warning of changes affecting production and quality of commodities and renewable resources, for predicting commodity production, land use classification and quantification, for inventories and assessments of renewable resources, land productivity measurements, assessment of conservation practices, and for pollution detection and impact evaluation. Up to 20 crop/region combinations in 7 countries were covered by the experiments, which comprised NOAA 6 and Landsat data analyses. Attempts to reduce variances through improved machine classification techniques are reported, together with soil moisture profiling, and the use of airborne sensors for providing comparative data.

  19. Using satellite remote sensing and household survey data to assess human health and nutrition response to environmental change.

    PubMed

    Brown, Molly E; Grace, Kathryn; Shively, Gerald; Johnson, Kiersten B; Carroll, Mark

    2014-01-01

    Climate change and degradation of ecosystem services functioning may threaten the ability of current agricultural systems to keep up with demand for adequate and inexpensive food and for clean water, waste disposal and other broader ecosystem services. Human health is likely to be affected by changes occurring across multiple geographic and time scales. Impacts range from increasing transmissibility and the range of vectorborne diseases, such as malaria and yellow fever, to undermining nutrition through deleterious impacts on food production and concomitant increases in food prices. This paper uses case studies to describe methods that make use of satellite remote sensing and Demographic and Health Survey data to better understand individual-level human health and nutrition outcomes. By bringing these diverse datasets together, the connection between environmental change and human health outcomes can be described through new research and analysis. PMID:25132700

  20. Remote sensing of effects of land-use practices on water quality. [environmental surveys using Landsat satellites

    NASA Technical Reports Server (NTRS)

    Graves, D. H.

    1975-01-01

    Research efforts are presented for the use of remote sensing in environmental surveys in Kentucky. Ground truth parameters were established that represent the vegetative cover of disturbed and undisturbed watersheds in the Cumberland Plateau of eastern Kentucky. Several water quality parameters were monitored of the watersheds utilized in the establishment of ground truth data. The capabilities of multistage-multispectral aerial photography and satellite imagery were evaluated in detecting various land use practices. The use of photographic signatures of known land use areas utilizing manually-operated spot densitometers was studied. The correlation of imagery signature data to water quality data was examined. Potential water quality predictions were developed from forested and nonforested watersheds based upon the above correlations. The cost effectiveness of predicting water quality values was evaluated using multistage and satellite imagery sampling techniques.

  1. Using Satellite Remote Sensing and Household Survey Data to Assess Human Health and Nutrition Response to Environmental Change

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Grace, Kathryn; Shively, Gerald; Johnson, Kiersten B.; Carroll, Mark

    2014-01-01

    Climate change and degradation of ecosystem services functioning may threaten the ability of current agricultural systems to keep up with demand for adequate and inexpensive food and for clean water, waste disposal and other broader ecosystem services. Human health is likely to be affected by changes occurring across multiple geographic and time scales. Impacts range from increasing transmissibility and the range of vector-borne diseases, such as malaria and yellow fever, to undermining nutrition through deleterious impacts on food production and concomitant increases in food prices. This paper uses case studies to describe methods that make use of satellite remote sensing and Demographic and Health Survey data to better understand individual-level human health and nutrition outcomes. By bringing these diverse datasets together, the connection between environmental change and human health outcomes can be described through new research and analysis.

  2. Discussion on application of WorldView 2 satellite data in West Kunlun metallogenic belt remote sensing geological survey

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-peng; Yang, Zhi-qiang; Kang, Gao-feng; Wang, Jun-feng; Jin, Mou-shun

    2014-05-01

    Studding on the remote sensing geological survey in Tashkurgan area of west Kunlun Metallogenic belt using the latest Worldview 2 high resolution satellite image, using Optimum index factor (OIF) select the band combination suitable for this area to do strata and Lithology interpretation is B8, B4 and B3, and test different image enhancement method for mineralization alteration information such as band ratio, principal component analysis (PCA). Carried out lithology, geological structure and mineralization belt and ore body interpretation on the basis of remote sensing data after processing. The results show that the ratio band combination can identify multiple sets of diorite, marble, schist and the lithological boundaries between them clearly; the principal component transform method can enhance the boundary between black biotite-quartz schist and white granite, meanwhile it can clearly reflect the schist by a different hue and brightness level due to contained different mineral such as quartz, mica, feldspar and others, iron mineralized belt is also exposed very well. Spectrum measurement has been done for the rock and mineral in test area. Lithology inversion and mineralization anomaly information extraction test have been carried out afterwards. The test result proved that the single mineral composition rock such as marble is suitable for spectral inversion. The principal component transform of bands B1, B4, B8, and B6 is used to extract iron alteration from worldView2 data, the result shows that PC3 is the main component containing iron alteration abnormal information. Compared with the abnormalities extracted from worldview2 and low resolution satellite image such as ETM , Aster, we found that they can only distinguish wide range distributed mineralizing alteration information, their identification accuracy is not as good as Worldview2. WorldView2 data contained more abundant information and has higher resolution, it not only able to identify a wide range of

  3. Polarization in remote sensing

    NASA Astrophysics Data System (ADS)

    Egan, Walter G.

    1992-12-01

    A review of the experimental and theoretical aspects of optical polarization is presented with definitions of the observed polarization characteristics and relationship to the Stokes parameters. A typical terrestrial soil polarization curve is characterized and related to the current theoretical knowledge. This polarization relationship is extended to cover planetary surfaces, such as the Moon, and Mars and terrestrial surfaces composed of farm areas and water surfaces. Instrumentation for imaging and non-imaging polarimetry are described including the use of focal plane arrays. Recent Space Shuttle polarimetric observations of the region around the Island of Hawaii and New Madrid, Missouri are described, as well as concurrent cloud and haze observations. Polarization is a sensitive indicator of cloud particle size distributions, soil texture, farm crops, sea state and atmospheric aerosols and haze. Cloud particle size distributions are uniquely characterized by polarization, and this cannot be achieved with photometry. An extensive bibliography of polarization in remote sensing is appended.

  4. Remote sensing for cotton farming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of remote sensing technologies in agriculture began with the use of aerial photography to identify cotton root rot in the late 1920s. From then on, agricultural remote sensing has developed gradually until the introduction of precision farming technologies in the late 1980s and biotechno...

  5. A Remote-Sensing Mission

    ERIC Educational Resources Information Center

    Hotchkiss, Rose; Dickerson, Daniel

    2008-01-01

    Sponsored by NASA and the JASON Education Foundation, the remote Sensing Earth Science Teacher Education Program (RSESTeP) trains teachers to use state-of-the art remote-sensing technology with the idea that participants bring back what they learn and incorporate it into Earth science lessons using technology. The author's participation in the…

  6. THE REMOTE SENSING DATA GATEWAY

    EPA Science Inventory

    The EPA Remote Sensing Data Gateway (RSDG) is a pilot project in the National Exposure Research Laboratory (NERL) to develop a comprehensive data search, acquisition, delivery and archive mechanism for internal, national and international sources of remote sensing data for the co...

  7. Remote sensing of earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU; Yueh, Herng-Aung; Shin, Robert T.

    1991-01-01

    Abstracts from 46 refereed journal and conference papers are presented for research on remote sensing of earth terrain. The topics covered related to remote sensing include the following: mathematical models, vegetation cover, sea ice, finite difference theory, electromagnetic waves, polarimetry, neural networks, random media, synthetic aperture radar, electromagnetic bias, and others.

  8. National Satellite Land Remote Sensing Data Archive

    USGS Publications Warehouse

    Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.

    2013-01-01

    The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.

  9. Future use of digital remote sensing data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.; Jones, N. L.

    1978-01-01

    Users of remote sensing data are increasingly turning to digital processing techniques for the extraction of land resource, environmental, and natural resource information. This paper presents the results of recent and ongoing research efforts sponsored, in part, by NASA/Marshall Space Flight Center on the current uses of and future needs for digital remote sensing data. An ongoing investigation involves a comprehensive survey of capabilities for digital Landsat data use in the Southeastern U.S. Another effort consists of an evaluation of future needs for digital remote sensing data by federal, state, and local governments and the private sector. These needs are projected into the 1980-1985 time frame. Furthermore, the accelerating use of digital remote sensing data is not limited to the U.S. or even to the developed countries of the world.

  10. Comprehensive, integrated, remote sensing at DOE sites

    SciTech Connect

    Lackey, J.G.; Burson, Z.G.

    1984-01-01

    The Department of Energy has established a program called Comprehensive, Integrated Remote Sensing (CIRS). The overall objective is to provide a state-of-the-art data base of remotely sensed data for all users of such information at large DOE sites. The primary types of remote sensing provided consist of the following: (1) large format aerial photography; (2) video from aerial platforms; (3) multispectral scanning; and (4) airborne nuclear radiometric surveys. Implementation of the CIRS Program began with field operations at the Savannah River Plant in 1982 and is continuing at that DOE site at a level of effort of about $1.5 m per year. Integrated remote sensing studies were subsequently extended to the West Valley Demonstration Project in the summer and fall of 1984. It is expected that the Program will eventually be extended to cover all large DOE sites on a continuing basis. 2 figures.

  11. Combining satellite remote sensing and surveys to understand persistent yield variation--- a case study in North China Plain

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Lobell, D. B.; Chen, X.

    2015-12-01

    A large gap between maize yields on average farmers' fields and the highest yields achieved by either experiment or farmers is typical throughout the developing world, including in the North China Plain (NCP). This maize yield gap as identified by previous studies indicates large opportunities for raising yield by improving agronomy. Quzhou county is typical of the winter-wheat summer-maize system in NCP where the average plot size is as small as 0.25 hectares. To analyze this cropping system amidst the challenge of substantial heterogeneity, we identified fields that were either persistently higher or lower yielding according to the remote sensing yield estimates, and then conducted detailed field surveys. We found irrigation facility to be a major constraint to yield both in terms of irrigation water quality and farmers' access to wells. In total, improving the access to unsalty water would be associated with a 0.32t/ha (4.2%) increase in multi-year average yield. In addition, farmers' method of choosing cultivar, which likely relates to their overall knowledge level, significantly explained yield variation. In particular, those choosing cultivars according to technician advice, personal experiences and high yielding neighbors' advice had on average higher yield than farmers that either followed seed sellers' advice or collectively purchased seeds. Overall, the study presents a generalizable methodology of assessing yield gap as well as its persistent factors using a combination of satellite and survey data.

  12. Highlights: US Commercial Remote Sensing Industry Analysis

    NASA Technical Reports Server (NTRS)

    Rabin, Ron

    2002-01-01

    This viewgraph presentation profiles the US remote sensing industry based on responses to a survey by 1450 industry professionals. The presentation divides the industry into three sectors: academic, commercial, and government; the survey results from each are covered in a section of the presentation. The presentation also divides survey results on user needs into the following sectors: spatial resolution, geolocation accuracy; elevation accuracy, area coverage, imagery types, and timeliness. Data, information, and software characteristics are also covered in the presentation.

  13. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  14. Mississippi Sound Remote Sensing Study

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  15. Remote vehicle survey tool

    SciTech Connect

    Armstrong, G.A.; Burks, B.L.; Kress, R.L.; Wagner, D.G.; Ward, C.R.

    1993-05-01

    The Remote Vehicle Survey Tool (RVS7) is a color graphical display tool for viewing remotely acquired scientific data. The RVST displays the data in the form of a color two-dimensional world model map. The world model map allows movement of the remote vehicle to be tracked by the operator and the data from sensors to be graphically depicted in the interface. Linear and logarithmic meters, dual channel oscilloscopes, and directional compasses are used to display sensor information. The RVST is user-configurable by the use of ASCII text files. The operator can configure the RVST to work with any remote data acquisition system and teleoperated or autonomous vehicle. The modular design of the RVST and its ability to be quickly configured for varying system requirements make the RVST ideal for remote scientific data display in all environmental restoration and waste management programs.

  16. Remote vehicle survey tool

    SciTech Connect

    Armstrong, G.A.; Burks, B.L.; Kress, R.L. ); Wagner, D.G.; Ward, C.R. )

    1993-01-01

    The Remote Vehicle Survey Tool (RVS7) is a color graphical display tool for viewing remotely acquired scientific data. The RVST displays the data in the form of a color two-dimensional world model map. The world model map allows movement of the remote vehicle to be tracked by the operator and the data from sensors to be graphically depicted in the interface. Linear and logarithmic meters, dual channel oscilloscopes, and directional compasses are used to display sensor information. The RVST is user-configurable by the use of ASCII text files. The operator can configure the RVST to work with any remote data acquisition system and teleoperated or autonomous vehicle. The modular design of the RVST and its ability to be quickly configured for varying system requirements make the RVST ideal for remote scientific data display in all environmental restoration and waste management programs.

  17. Theory of microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.; Shin, R. T.

    1985-01-01

    Active and passive microwave remote sensing of earth terrains is studied. Electromagnetic wave scattering and emission from stratified media and rough surfaces are considered with particular application to the remote sensing of soil moisture. Radiative transfer theory for both the random and discrete scatterer models is examined. Vector radiative transfer equations for nonspherical particles are developed for both active and passive remote sensing. Single and multiple scattering solutions are illustrated with applications to remote sensing problems. Analytical wave theory using the Dyson and Bethe-Salpeter equations is employed to treat scattering by random media. The backscattering enhancement effects, strong permittivity fluctuation theory, and modified radiative transfer equations are addressed. The electromagnetic wave scattering from a dense distribution of discrete scatterers is studied. The effective propagation constants and backscattering coefficients are calculated and illustrated for dense media.

  18. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1992-01-01

    Research findings are summarized for projects dealing with the following: application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; theoretical modeling for passive microwave remote sensing of earth terrain; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  19. Remote sensing at Savannah River

    SciTech Connect

    Corey, J.C.

    1986-01-01

    The paper discusses remote sensing systems used at the Savannah River Plant. They include three ground-based systems: ground penetrating radar, sniffers, and lasers; and four airborne systems: multispectral photography, lasers, thermal imaging, and radar systems. (ACR)

  20. Remote Sensing of Earth Resources (1970 - 1973 supplement): A literature survey with indexes. Section 2: Indexes

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Documents related to the identification and evaluation by means of sensors in spacecraft and aircraft of vegetation, minerals, and other natural resources, and the techniques and potentialities of surveying and keeping up-to-date inventories of such riches are cited. These documents were announced in the NASA scientific and technical information system between March 1970 and December 1973.

  1. Daytime multispectral scanner aerial surveys of the Oak Ridge Reservation, 1992--1994: Overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal year 1995

    SciTech Connect

    Smyre, J.L.; Hodgson, M.E.; Moll, B.W.; King, A.L.; Cheng, Yang

    1995-11-01

    Environmental Restoration (ER) Remote Sensing and Special Surveys Program was in 1992 to apply the benefits of remote sensing technologies to Environmental Restoration Management (ERWM) programs at all of the five United States Department of Energy facilities operated and managed by Martin Marietta Energy Systems, Inc. (now Lockheed Martin Energy Systems)-the three Oak Ridge Reservation (ORR) facilities, the Paducah Gaseous Diffusion Plant (PGDP), the Portsmouth Gaseous Diffusion Plant (PORTS)-and adjacent off-site areas. The Remote Sensing Program includes the management of routine and special surveys at these sites, application of state-of-the-art remote sensing and geophysical technologies, and data transformation, integration, and analyses required to make the information valuable to ER. Remotely-sensed data collected of the ORR include natural color and color infrared (IR) aerial photography, 12-band multispectral scanner imagery, predawn thermal IR sensor imagery, magnetic and electromagnetic geophysical surveys, and gamma radiological data.

  2. Coral reef habitats mapping of Spermonde Archipelago using remote sensing compared with in situ survey of fish abundance

    NASA Astrophysics Data System (ADS)

    Sawayama, Shuhei; Komatsu, Teruhisa; Nurdin, Nurjannah

    2012-10-01

    Coral reefs worldwide are now facing so great threat due to various impacts that their monitoring is urgently required for conservation and management. To understand status of coral reef ecosystem and find out indicator fish species for health of ecosystem, mapping seabed habitats with remote sensing and in situ visual survey of fish assemblage by snorkeling were conducted in coral reefs in Spermonde Archipelago, Indonesia. ALOS AVNIR-2 multi-band imagery on 14 October 2010 was analyzed to map four habitats: live coral, dead coral, seagrass and sand-rubble. Groundtruth data were obtained using towed video camera and sidescan sonar in May and June 2011. Depth-Invariant indices (DI-indices) based on ratios of radiance values between bands were applied as a water column correction. Overall classification accuracy in Tau-coefficient of mapping with the DI-indices (0.66) didn't differ significantly (p<0.05) from that with the radiance values (0.63). Concerning visual fish survey, 12 fish groups were identified and numbers of individuals belonging to each group were counted along a transect of approximately 100m at 18 sites. We calculated Spearman's rank correlation between abundance (Ind. /100m) of every fish group along a transect and the ratio of each habitat area mapped with DI-indices inside the circle with 50m-diameter which includes the fish transect. We detected significant correlations between abundance of five fish groups and specific habitats, especially butterflyfish and live coral. This result corresponds to the past reports that butterflyfish was a good indicator of healthy corals, suggesting meaningfulness of studying relationships between fish abundance and spatial distribution of habitats in larger scale.

  3. Remote Sensing of Earth and Environment

    ERIC Educational Resources Information Center

    Schertler, Ronald J.

    1974-01-01

    Discusses basic principles of remote sensing applications and five areas of the earth resources survey program: agriculture and forestry production; geography, cartography, cultural resources; geology and mineral resources; hydrology and water resources; and oceanography and marine resources. Indicates that information acquisition is the first…

  4. Use of hyperspectral remote sensing for detection and monitoring of chemical and biological agents: a survey

    NASA Astrophysics Data System (ADS)

    Gomez, Richard B.; Dasgupta, Swarvanu

    2004-12-01

    This paper surveys the potential use of hyperspectral imaging technology for standoff detection of chemical and biological agents in terrorism defense applications. In particular it focuses on the uses of hyperspectral imaging technology to detect and monitor chemical and biological attacks. In so doing it examines current technologies, their advantages and disadvantages, and investigates the possible role of hyperspectral imaging for homeland security applications. The study also addresses and provides applicable solutions for several of the potential challenges that currently create barriers to the full use of hyperspectral technology in the standoff detection of likely available chemical and biological agents.

  5. Earth view: A business guide to orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1990-01-01

    The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.

  6. Application of remote sensing data to surveys of the Alaskan environment

    NASA Technical Reports Server (NTRS)

    Belon, A. E.; Miller, J. M.

    1974-01-01

    Coupling of satellite data to resource management problems in Alaska is implemented through feasibility studies of applicability of Landsat data to specific environmental surveys in ecology, agriculture, hydrology, wildlife management, oceanography, geology, etc.; and using the results of these studies to extend the benefits of satellite data applications to the operational needs of mission-oriented agencies of federal, state, and regional governments, as well as private industry. Activities designed to encourage the participation of users in the Landsat program at levels most appropriate to the users' interests are described and include: observation, coordination, and information exchange; training courses and workshops; data exchange; consulting services; data processing services; user participation in University research projects; and university participation in the operational projects of user agencies. Progress in these areas is reported. The effectiveness of this broad-based approach in overcoming the initial apprehensiveness of users is demonstrated.

  7. A survey of drought and Variation of Vegetation by statistical indexes and remote sensing (Case study: Jahad forest in Bandar Abbas)

    NASA Astrophysics Data System (ADS)

    Tamassoki, E.; Soleymani, Z.; Bahrami, F.; Abbasgharemani, H.

    2014-06-01

    The damages of drought as a climatic and creeping phenomenon are very enormous specially in deserts. Necessity of management and conflict with it is clear. In this case vegetation are damaged too, and even are changed faster. This paper describes the process of vegetation changes and surveys it with drought indexes such as statistical and remote sensing indexes and correlation between temperature and relative humidity by Geographical Information System (GIS) and Remote Sensing (RS) in forest park of Bandar Abbas in successive years. At the end the regression and determination-coefficient for showing the importance of droughts survey are computed. Results revealed that the correlation between vegetation and indexes was 0.5. The humidity had maximum correlation and when we close to 2009 the period of droughts increase and time intervals decrease that influence vegetation enormously and cause the more area lost its vegetation.

  8. Remote sensing aids geologic mapping.

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1973-01-01

    Remote sensing techniques have been applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is to be used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area. Regional and local geologic mapping can be aided by the proper application of remote sensing techniques. Conventional color and color infrared photos contain a large amount of easily-extractable general geologic information and are easily used by geologists untrained in the field of remote sensing. Other kinds of sensor data used in this study, with the exception of SLAR imagery, were generally found to be impractical or unappropriate for broad-scale general geologic mapping.

  9. Remote Sensing of Environmental Pollution

    NASA Technical Reports Server (NTRS)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  10. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  11. Remote sensing survey of Chinese tallow tree in the Toledo Bend Reservoir area, Louisiana and Texas

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Bannister, Terri; Suzuoki, Yukihiro

    2013-01-01

    We applied Hyperion sensor satellite data acquired by the National Aeronautics and Space Administration’s Earth Observing-1 (EO-1) satellite in conjunction with reconnaissance surveys to map the occurrences of the invasive Chinese tallow tree (Triadica sebifera) in the Toledo Bend Reservoir study area of northwestern Louisiana and northeastern Texas. The rationale for application of high spectral resolution EO-1 Hyperion data was based on the successful use of Hyperion data in the mapping of Chinese tallow tree in southwestern Louisiana in 2005. In contrast to the single Hyperion image used in the 2005 project, more than 20 EO-1 Hyperion and Advanced Land Imager (ALI) images of the study area were collected in 2009 and 2010 during the fall senescence when Chinese tallow tree leaves turn red. Atmospherically corrected reflectance spectra of Hyperion imagery collected at ground and aerial observation locations provided the input datasets used in the program for spectral discrimination analysis. Discrimination analysis was used to identify spectral indicator sets to best explain variance contained in the input databases. The expectation was that at least one set of Hyperion-based indicator spectra would uniquely identify occurrences of red-leaf Chinese tallow tree; however, no combination of Hyperion-based reflectance datasets produced a unique identifier. The inability to discover a unique spectral indicator resulted primarily from relatively sparse coverage by red-leaf Chinese tallow tree within the study area (percentage of coverage was less than 5 percent per 30- by 30-meter Hyperion pixel). To enhance the performance of the spectral discrimination analysis, leaf and canopy spectra of Chinese tallow tree were added to the input datasets to guide the indicator selection. In addition, input databases were segregated by land class obtained from an ALI-based landcover classification in order to reduce the input variance and to promote spectral discrimination of red

  12. ARIEL - The Atmospheric Remote-sensing Infrared Exoplanet Large-survey

    NASA Astrophysics Data System (ADS)

    Eccleston, P.; Tinetti, G.

    2015-10-01

    More than 1,000 extrasolar systems have been discovered, hosting nearly 2,000 exoplanets. Ongoing and planned ESA and NASA missions from space such as GAIA, Cheops, PLATO, K2 and TESS, plus ground based surveys, will increase the number of known systems to tens of thousands. Of all these exoplanets we know very little; i.e. their orbital data and, for some of these, their physical parameters such as their size and mass. In the past decade, pioneering results have been obtained using transit spectroscopy with Hubble, Spitzer and ground-based facilities, enabling the detection of a few of the most abundant ionic, atomic and molecular species and to constrain the planet's thermal structure. Future general purpose facilities with large collecting areas will allow the acquisition of better exoplanet spectra, compared to the currently available, especially from fainter targets. A few tens of planets will be observed with JWST and E-ELT in great detail. A breakthrough in our understanding of planet formation and evolution mechanisms will only happen through the observation of the planetary bulk and atmospheric composition of a statistically large sample of planets. This requires conducting spectroscopic observations covering simultaneously a broad spectral region from the visible to the mid-IR. It also requires a dedicated space mission with the necessary photometric stability to perform these challenging measurements and sufficient agility to observe multiple times ~500 exoplanets over 3.5 years. The ESA Cosmic Vision M4 mission candidate ARIEL is designed to accomplish this goal and will provide a complete, statistically significant sample of gas-giants, Neptunes and super-Earths with temperatures hotter than 600K, as these types of planets will allow direct observation of their bulk properties, enabling us to constrain models of planet formation and evolution. The ARIEL consortium currently includes academic institutes and industry from eleven countries in Europe; the

  13. Laser remote sensing of the atmosphere

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1986-01-01

    A guide to the extant literature concerning remote sensing of the atmosphere by laser-based devices is presented, with emphasis on surveys of the field as well as the most important recent results. Topics surveyed include measurements of aerosol constituents using lidar, the differential absorption lidar technique, the use of laser long-path differential absorption, Raman scattering techniques, and fluorescence lidar techniques. Special attention is given to measuring wind velocity using CO2 heterodyne lidar systems.

  14. Using remote sensing and ancillary data to extend airborne electromagnetic resistivity surveys for regional permafrost interpretation

    NASA Astrophysics Data System (ADS)

    Pastick, N.; Wylie, B. K.; Minsley, B. J.; Jorgenson, T. T.; Ji, L.; Walvoord, M. A.; Smith, B. D.; Abraham, J. D.; Rose, J.

    2011-12-01

    Permafrost has a significant impact on high latitude ecosystems and is spatially heterogeneous. However, only generalized maps of permafrost extent are available. Due to its impacts on subsurface hydrology, lake water levels, vegetation communities, and surface soil deformations, understanding the spatial extents and depth of permafrost are critical. Electrical resistivity increases dramatically as a soil freezes and can be used as a proxy for permafrost presence particularly if the underlying soils and geologic characteristics are understood. An airborne electromagnetic survey (AEM) was conducted over a portion of the Yukon Flats ecoregion in central Alaska with measurements taken in both reconnaissance lines and contiguous block area coverage. The AEM was flown in June 2010 and subsurface resistivity models were derived by inverting the AEM data. Landsat TM at-sensor reflectance, thermal, and spectral index data from late August to early September 2008, Digital Elevation Models (DEM) and derivatives, and other ancillary data were used in a regression tree model to predict near surface electrical resistivity at the 0-1m and the 0-2.6m depth intervals. AEM locations from homogenous landsat 90 m by 90 m windows were randomly separated into a training set for model development (n = 8,848) and an impendent test data set (n = 988) for model accuracy assessment. Model development and independent test accuracies for 0-1 m electric resistivity had training and test R2 values of 0.90 and 0.87, respectively, and for the 0-2.6m electric resistivity training and test R2 values were also 0.90 and 0.87, respectively, which indicated accurate prediction models. Important variables for stratifying the various piecewise regressions were elevation and averaged 2000-2008 ecosystem performance anomalies. Important independent variables used in the multiple regression equations were the Normalized Difference Infrared Index (NDII), NDII7 (NDII using band 7), soil moisture mapped from

  15. Survey of university programs in remote sensing funded under grants from the NASA University-Space Applications program

    NASA Technical Reports Server (NTRS)

    Madigan, J. A.; Earhart, R. W.

    1978-01-01

    NASA's Office of Space and Terrestrial Applications (OSTA) is currently assessing approaches to transferring NASA technology to both the public and private sectors. As part of this assessment, NASA is evaluating the effectiveness of an ongoing program in remote sensing technology transfer conducted by 20 university contractors/grantees, each supported totally or partially by NASA funds. The University-Space Applications program has as its objective the demonstration of practical benefits from the use of remote sensing technology to a broad spectrum of new users, principally in state and local governments. To evaluate the University-Space Applications program, NASA has a near-term requirement for data on each university effort including total funding, funding sources, length of program, program description, and effectiveness measures.

  16. ARIEL: Atmospheric Remote Sensing Infrared Exoplanet Large Survey. A proposal for the ESA Cosmic Vision M4

    NASA Astrophysics Data System (ADS)

    Pace, E.; Micela, G.; Ariel Team

    The Atmospheric Remote sensing Infrared Exoplanet Large survey (ARIEL) is a proposal in response to the call for a Medium-size mission opportunity in ESA’s Cosmic Vision 2015-2025 Science Programme for a launch in 2025 (M4). This mission will be devoted to observe spectroscopically in the IR a large population (hundreds to one thousand) of known planets in our Galaxy, opening a new discovery space in the field of extrasolar planet exploration and enabling a quantum leap in the understanding of the physics and chemistry of these far away worlds. The population of planets will include warm and hot gas‑giants, Neptunes and large terrestrial planets. The main ARIEL goal is the determination of the composition, formation and history of these planetary systems In order to fulfill the scientific goals of ARIEL, we propose the development of a 1‑meter class aperture space telescope, passively cooled to 70‑80K, to observe the combined light of stars and their planets, building on the current experience of transit and combined light observations with Hubble, Spitzer, and ground-based telescopes. While JWST and EELT will initiate a detailed mid- to high-resolution IR spectroscopic observation of a few tens of planets, this mission will extend the study to a much larger (an order of magnitude difference) representative population of extrasolar planets discovered by ESA GAIA, Cheops, PLATO, NASA Kepler II, TESS and from the ground. The statistical perspective provided by this mission, will allow us to address some of the fundamental questions of the Cosmic Vision programme: What are the conditions for planet formation and the emergence of life? ls our Solar System unique, rare or very common? How does the Solar System work?

  17. Photogrammetry - Remote Sensing and Geoinformation

    NASA Astrophysics Data System (ADS)

    Lazaridou, M. A.; Patmio, E. N.

    2012-07-01

    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  18. Remote sensing for urban planning

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Schmidt, Nicholas; Jensen, John R.; Cowen, Dave J.; Halls, Joanne; Narumalani, Sunil; Burgess, Bryan

    1994-01-01

    Utility companies are challenged to provide services to a highly dynamic customer base. With factory closures and shifts in employment becoming a routine occurrence, the utility industry must develop new techniques to maintain records and plan for expected growth. BellSouth Telecommunications, the largest of the Bell telephone companies, currently serves over 13 million residences and 2 million commercial customers. Tracking the movement of customers and scheduling the delivery of service are major tasks for BellSouth that require intensive manpower and sophisticated information management techniques. Through NASA's Commercial Remote Sensing Program Office, BellSouth is investigating the utility of remote sensing and geographic information system techniques to forecast residential development. This paper highlights the initial results of this project, which indicate a high correlation between the U.S. Bureau of Census block group statistics and statistics derived from remote sensing data.

  19. Remote sensing of the asteroids

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.

    1981-01-01

    Knowledge of the compositions of the asteroids is obtained by the remote sensing of reflected and emitted radiation from what are essentially star-like points of light. Since asteroids are a remnant population of planetesimals that were never accreted into the larger planets, their compositions and properties can provide insight into the nature of planetary matter in early epochs, before most of it was physically and chemically modified by geological processes within the planets. The progress made during the past decade in learning about asteroids through remote sensing is reviewed.

  20. Remote sensing and global competitiveness

    NASA Astrophysics Data System (ADS)

    Pace, Scott

    1994-03-01

    These remarks were given at the First Annual Symposium on Coupling Technology to National Needs as part of a panel on `Visualization and Communication: Overhead Imagery.' Based on the author's involvement with remote sensing policy while at the Department of Commerce from 1990 to 1993, the paper provides a brief overview of U.S. policy and legislation affecting remote sensing, discusses recent developments, and identifies continuing issues for commercial ventures. Example issues include operating licenses, export controls, government as a customer, and strategic partnerships.

  1. Remote sensing procurement package: Remote Sensing Industry Directory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A directory of over 140 firms and organizations which contains detailed information in the types of products, services and equipment which they offer is presented. Also included for each firm or organization are addresses, phone numbers, contact person(s), and experience in the remote sensing field.

  2. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Liang, T.

    1973-01-01

    Research projects concerning the development and application of remote sensors are discussed. Some of the research projects conducted are as follows: (1) aerial photographic inventory of natural resources, (2) detection of buried river channels, (3) delineation of interconnected waterways, (4) plant indicators of atmospheric pollution, and (5) techniques for data transfer from photographs to base maps. On-going projects involving earth resources analyses are described.

  3. Remote sensing programs and courses in engineering and water resources

    NASA Technical Reports Server (NTRS)

    Kiefer, R. W.

    1981-01-01

    The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.

  4. Paleovalleys mapping using remote sensing

    NASA Astrophysics Data System (ADS)

    Baibatsha, A. B.

    2014-06-01

    For work materials used multispectral satellite imagery Landsat (7 channels), medium spatial resolution (14,25-90 m) and a digital elevation model (data SRTM). For interpretation of satellite images and especially their infrared and thermal channels allocated buried paleovalleys pre-paleogene age. Their total length is 228 km. By manifestation of the content of remote sensing paleovalleys distinctly divided into two types, long ribbon-like read in materials and space survey highlights a network of small lakes. By the nature of the relationship established that the second type of river paleovalleys flogs first. On this basis, proposed to allocate two uneven river paleosystem. The most ancient paleovalleys first type can presumably be attributed to karst erosion, blurry chalk and carbon deposits foundation. Paleovalleys may include significant groundwater resources as drinking and industrial purposes. Also we can control the position paleovalleys zinc and bauxite mineralization area and alluvial deposits include uranium mineralization valleys infiltration type and placer gold. Direction paleovalleys choppy, but in general they have a north-east orientation, which is controlled by tectonic zones of the foundation. These zones are defined as the burial place themselves paleovalleys and position of karst cavities in areas interfacing with other structures orientation. The association of mineralization to the caverns in the beds paleovalleys could generally present conditions of formation of mineralization and carry it to the "Niagara" type. The term is obviously best reflects the mechanism of formation of these ores.

  5. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  6. Remote sensing and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the increasing need for global food production in the presence of dwindling productive acres, the business of modern agriculture needs to use all possible information available to maximize production. One tool that is being used to obtain this information is remote sensing. Any crop disease o...

  7. Remote sensing of environmental disturbance

    NASA Technical Reports Server (NTRS)

    Latham, J. P.

    1972-01-01

    Color, color infrared, and minus-blue films obtained by RB-57 remote sensing aircraft at an altitude of 60,000 feet over Boca Raton and Southeast Florida Earth Resources Test Site were analyzed for nine different types of photographic images of the geographic patterns of the surface. Results of these analyses are briefly described.

  8. Remote sensing for site characterization

    USGS Publications Warehouse

    Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.; Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.

    2000-01-01

    This volume, Remote Sensing for Site Characterization, describes the feasibility of aircraft- and satellite-based methods of revealing environmental-geological problems. A balanced ratio between explanations of the methodological/technical side and presentations of case studies is maintained. The comparison of case studies from North America and Germany show how the respective territorial conditions lead to distinct methodological approaches.

  9. Remote Sensing in Environmental Education.

    ERIC Educational Resources Information Center

    Huber, Thomas P.

    1983-01-01

    Describes general concepts of remote sensing and provides three examples of how its techniques have been used in the context of environmental issues. Examples focus on the use of this data gathering technique in the visible (aerial photography), near infrared, and thermal infrared ranges. (JN)

  10. Use of remote sensing techniques for geological hazard surveys in vegetated urban regions. [multispectral imagery for lithological mapping

    NASA Technical Reports Server (NTRS)

    Stow, S. H.; Price, R. C.; Hoehner, F.; Wielchowsky, C.

    1976-01-01

    The feasibility of using aerial photography for lithologic differentiation in a heavily vegetated region is investigated using multispectral imagery obtained from LANDSAT satellite and aircraft-borne photography. Delineating and mapping of localized vegetal zones can be accomplished by the use of remote sensing because a difference in morphology and physiology results in different natural reflectances or signatures. An investigation was made to show that these local plant zones are affected by altitude, topography, weathering, and gullying; but are controlled by lithology. Therefore, maps outlining local plant zones were used as a basis for lithologic map construction.

  11. The California Cooperative Remote Sensing Project

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Sheffner, Edwin J.

    1988-01-01

    The USDA, the California Department of Water Resources (CDWR), the Remote Sensing Research Program of the University of California (UCB) and NASA have completed a 4-yr cooperative project on the use of remote sensing in monitoring California agriculture. This report is a summary of the project and the final report of NASA's contribution to it. The cooperators developed procedures that combined the use of LANDSAT Multispectral Scanner imagery and digital data with good ground survey data for area estimation and mapping of the major crops in California. An inventory of the Central Valley was conducted as an operational test of the procedures. The satellite and survey data were acquired by USDA and UCB and processed by CDWR and NASA. The inventory was completed on schedule, thus demonstrating the plausibility of the approach, although further development of the data processing system is necessary before it can be used efficiently in an operational environment.

  12. Remote sensing data handbook

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A digest of information on remote sensor data systems is given. It includes characteristics of spaceborne sensors and the supportive systems immediately associated therewith. It also includes end-to-end systems information that will assist the user in appraising total data system impact produced by a sensor. The objective is to provide a tool for anticipating the complexity of systems and potential data system problems as new user needs are generated. Materials in this handbook span sensor systems from the present to those planned for use in the 1990's. Sensor systems on all planned missions are presented in digest form, condensed from data as available at the time of compilation. Projections are made of anticipated systems.

  13. Operational Use of Remote Sensing within USDA

    NASA Technical Reports Server (NTRS)

    Bethel, Glenn R.

    2007-01-01

    A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.

  14. Microwave remote sensing of snowpack properties

    NASA Technical Reports Server (NTRS)

    Rango, A. (Editor)

    1980-01-01

    Topic concerning remote sensing capabilities for providing reliable snow cover data and measurement of snow water equivalents are discussed. Specific remote sensing technqiues discussed include those in the microwave region of the electromagnetic spectrum.

  15. Remote sensing on Indian and public lands

    NASA Technical Reports Server (NTRS)

    Torbert, G. B.; Woll, A. M.

    1972-01-01

    The use of remote sensing techniques by the Bureaus of Indian Affairs and Land Management in planning resource problems, making decisions, writing environmental impact statements, and monitoring their respective programs is investigated. For Indian affairs, data cover the Papago, Fort Apache, San Carlos, and South Dakota Reservations. For the Land Management Office, data cover cadastral surveys, California desert study, range watersheds, and efforts to establish a natural resources information system.

  16. Get a fresh look with remote sensing - remote sensing

    SciTech Connect

    Koger, D.

    1997-04-01

    The ideal exploration approach finds structures and points out where hydrocarbons are buried. It operates to reduce risk, is cost-effective and feeds creativity. Exploration tools fall into two categories: (1) Those which detect structure (seismic, gravity, remote sensing). (2) Those that detect hydrocarbons (geochemistry, well logs, the drill bit, and remote sensing). All exploration takes place in this sometimes-forgotten context: The crust of Earth is not thick. In proportion, it is as thin as tomato skin. Unlike tomato skin, our crust floats on liquid and is unstable. We seek structure because that`s where hydrocarbons can become trapped. Satellite data-and before them airphotos-find structure efficiently. The methodology is well tested. Positive structures and lineaments find surface expression in many ways.

  17. The Economics of Remote Sensing for Planning and Construction

    ERIC Educational Resources Information Center

    Rottweiler, Kurt A.; Wilson, Jerry C.

    1971-01-01

    Discusses the latest in remote sensing technology including multispectral scanners, thermal scanners, aero magnetometers and side looking radar. Describes the application of this technology to preconstruction site surveys. (JF)

  18. Remote sensing of drought: progress, challenges and opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review surveys current and emerging drought monitoring approaches using satellite remote sensing observations from climatological and ecosystem perspectives. We argue that satellite observations not currently used for operational drought monitoring, such as relative humidity data from the Atmos...

  19. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Lowe, D. S.; Istvan, L. B.; Roller, N. E.; Sattinger, I. J.; Sellman, A. N.; Wagner, T. W.

    1974-01-01

    The application of NASA earth resource survey technology to resource management and environmental protection in Michigan was investigated. Remote sensing techniques to aid Michigan government agencies were applied in the following activities: (1) land use inventory and management, (2) great lakes shorelands protection and management, (3) wetlands protection and management, and (4) soil survey. In addition, information was disseminated on remote sensing technology, and advice and assistance was provided to a number of users.

  20. Remote sensing applications for transportation and traffic engineering studies: A review of the literature

    NASA Technical Reports Server (NTRS)

    Epps, J. W.

    1973-01-01

    Current references were surveyed for the application of remote sensing to traffic and transportation studies. The major problems are presented that concern traffic engineers and transportation managers, and the literature references that discuss remote sensing applications are summarized.

  1. Remote Sensing of Earth Terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A. (Principal Investigator)

    1985-01-01

    The objective of this research is to develop theoretical models that are useful and practical in the remote sensing of the Earth environment including the Earth terrain, the lower and the upper atmospheres. Various models applicable to the microwave remote sensing of vegetation, snow-ice, and atmospheric precipitation have been developed. Such studies shall be extended to the higher frequency range to unify the optical band and the microwave theoretical foundations. The study, which had an emphasis on vegetation canopy to include all terrain media, and the whole Earth environment will be extended. A data base will be developed to generate scene radiation characteristics which will benefit the studies of global inhabitability, meteorological applications, and crop yield.

  2. Remote sensing of the nearshore.

    PubMed

    Holman, Rob; Haller, Merrick C

    2013-01-01

    The shallow waters of the nearshore ocean are popular, dynamic, and often hostile. Prediction in this domain is usually limited less by our understanding of the physics or by the power of our models than by the availability of input data, such as bathymetry and wave conditions. It is a challenge for traditional in situ instruments to provide these inputs with the appropriate temporal or spatial density or at reasonable logistical or financial costs. Remote sensing provides an attractive alternative. We discuss the range of different sensors that are available and the differing physical manifestations of their interactions with the ocean surface. We then present existing algorithms by which the most important geophysical variables can be estimated from remote sensing measurements. Future directions and opportunities will depend on expected developments in sensors and platforms and on improving processing algorithms, including data assimilation formalisms.

  3. Geophysical aspects of remote sensing

    NASA Technical Reports Server (NTRS)

    Watson, K.

    1971-01-01

    Results obtained through the NASA Earth Resources Aircraft Program at Mill Creek, Oklahoma, provide a case history example of the application of remote sensing to the identification of geologic rock units. Thermal infrared images are interpreted by means of a sequence of models of increasing complexity. The roles of various parameters are examined: rock properties (thermal inertia, albedo, emissivity), site location (latitude), season (sun's declination), atmospheric effects (cloud cover, transmission, air temperature), and topographic orientation (slope, azimuth). The results obtained at this site also illustrate the development of an important application of remote sensing in geologic identification. Relatively pure limestones and dolomites of the Mill Creek test area can be differentiated in nighttime infrared images, and facies changes between them can be detected along and across strike. The predominance on the earth's surface of sedimentary rocks, of which limestone and dolomite are major members, indicates the importance of this discrimination.

  4. Biogeochemical cycling and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Mouat, D. A.

    1984-01-01

    The present investigation is concerned with the role of remote sensing in the analysis of biochemical cycling. A general review is provided of the interest of NASA in biochemical cycling, taking into account an assessment of the state and dynamics of the pools and fluxes of four major elements (carbon, nitrogen, phosphorus, sulfur), an understanding of the coupling and interaction of the biosphere and the atmosphere, and an understanding of the biosphere and the oceans. Attention is given to biogeochemical cycling science issues, the potential remote sensing role, the vegetation type, aspects of vegetation structure, the leaf area index, the canopy height, functional relationships, environmental and soil variables, questions of experimental design, sampling sites and ground data, and radiometric data and analysis.

  5. Technology Trends and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The science and application of remote sensing is flourishing in the digital age. Geographical information systems can provide a broad range of information tailored to the specific needs of disaster managers. Recent advances in airborne platforms, sensors and information technologies have come together provide the ability to put geo-registered, multispectral imagery on the web in near real-time. Highlights of a demonstration of NASA's First Response Experiment (FiRE) will be presented.

  6. Challenges in Infrared Remote Sensing

    SciTech Connect

    Strasburg, Jana D.; Harper, Warren W.

    2005-06-01

    During the last several years, Pacific Northwest National Lab has developed a remote sensing system designed to detect trace chemicals present in the atmosphere. Using Frequency Modulated Differential Absorption LIDAR (FM DIAL) techniques chemical signatures have been observed over pathlengths ranging from several hundred meters to several kilometers. Throughout the development process, we have encountered many challenges. Some of these have been overcome but others will require new laser technology.

  7. Characterising landslide processes using a combined remote sensing and geophysical surveying approach: examples from north east England, UK

    NASA Astrophysics Data System (ADS)

    Boon, David P.; Chambers, Jonathan E.; Wilby, Philip R.; Grebby, Stephen

    2015-04-01

    The combination of remote sensing, geophysics (electrical resistivity tomography (ERT)) and terrain analysis was applied to characterise landslide processes in northern England. Two different landslide types commonly found on the Jurassic Escarpment slopes in the Cleveland Basin were initially studied: (i) relict, large deep-seated bedrock landslides and (ii) recent, small shallow rotational slides with active earth flows. Interpretation of landslide architectures was supported by detailed surface geomorphological and geological mapping data. When calibrated with borehole control, interpretation of the geophysical ERT data allowed determination of mass movement deposit volumes, movement styles and failure mechanisms, and provided an improved understanding of the depth, geometry and geological factors controlling development and mechanical properties of primary shear surfaces. This new understanding was then used to develop algorithms to perform surface roughness analyses, using a range of DTMs with different spatial resolutions (0.25-5m) derived from airborne LiDAR, airborne radar and photogrammetry. The algorithm was subsequently applied across the region to perform semi-automated landslide recognition, in order to help verify and enhance the regional landslide inventory. A variety of landslide types and other geological features were distinguishable through this surface roughness mapping approach. The combined geophysical and remote sensing approach to landslide characterisation has improved our understanding of the extent and nature of the landslide hazard across the region. This approach is valid for hazard research and civil engineering purposes elsewhere, provided that the DTMs and baseline geological data are available at an appropriate resolution and penetration of vegetation can be achieved.

  8. An overview of GNSS remote sensing

    NASA Astrophysics Data System (ADS)

    Yu, Kegen; Rizos, Chris; Burrage, Derek; Dempster, Andrew G.; Zhang, Kefei; Markgraf, Markus

    2014-12-01

    The Global Navigation Satellite System (GNSS) signals are always available, globally, and the signal structures are well known, except for those dedicated to military use. They also have some distinctive characteristics, including the use of L-band frequencies, which are particularly suited for remote sensing purposes. The idea of using GNSS signals for remote sensing - the atmosphere, oceans or Earth surface - was first proposed more than two decades ago. Since then, GNSS remote sensing has been intensively investigated in terms of proof of concept studies, signal processing methodologies, theory and algorithm development, and various satellite-borne, airborne and ground-based experiments. It has been demonstrated that GNSS remote sensing can be used as an alternative passive remote sensing technology. Space agencies such as NASA, NOAA, EUMETSAT and ESA have already funded, or will fund in the future, a number of projects/missions which focus on a variety of GNSS remote sensing applications. It is envisaged that GNSS remote sensing can be either exploited to perform remote sensing tasks on an independent basis or combined with other techniques to address more complex applications. This paper provides an overview of the state of the art of this relatively new and, in some respects, underutilised remote sensing technique. Also addressed are relevant challenging issues associated with GNSS remote sensing services and the performance enhancement of GNSS remote sensing to accurately and reliably retrieve a range of geophysical parameters.

  9. Earth remote sensing - 1970-1995

    NASA Technical Reports Server (NTRS)

    Thome, P. G.

    1984-01-01

    The past-achievements, current status, and future prospects of the Landsat terrestrial-remote-sensing satellite program are surveyed. Topics examined include the early history of space flight; the development of analysis techniques to interpret the multispectral images obtained by Landsats 1, 2, and 3; the characteristics of the advanced Landsat-4 Thematic Mapper; microwave scanning by Seasat and the Shuttle Imaging Radar; the usefulness of low-resolution AVHRR data from the NOAA satellites; improvements in Landsats 4 and 5 to permit tailoring of information to user needs; expansion and internationalization of the remote-sensing market in the late 1980s; and technological advances in both instrumentation and data-processing predicted by the 1990s.

  10. Technical keynote address on remote sensing

    NASA Technical Reports Server (NTRS)

    Holter, M. R.; Park, A. B.

    1972-01-01

    A review of remote sensing techniques is presented. Various types of remote sensors are described and the platforms used to mount the sensors are examined. Examples of remote sensing by aerial photography in infrared, ultraviolet, and visual spectra are included. The types of equipment are designated and their specific areas of application are defined. It is concluded that the primary objective of remote sensing is to contribute to man's ability to manage and use the terrestrial environment.

  11. The dog and cat population on Maio Island, Cape Verde: characterisation and prediction based on household survey and remotely sensed imagery.

    PubMed

    Lopes Antunes, Ana Carolina; Ducheyne, Els; Bryssinckx, Ward; Vieira, Sara; Malta, Manuel; Vaz, Yolanda; Nunes, Telmo; Mintiens, Koen

    2015-11-04

    The objective was to estimate and characterise the dog and cat population on Maio Island, Cape Verde. Remotely sensed imagery was used to document the number of houses across the island and a household survey was carried out in six administrative areas recording the location of each animal using a global positioning system instrument. Linear statistical models were applied to predict the dog and cat populations based on the number of houses found and according to various levels of data aggregation. In the surveyed localities, a total of 457 dogs and 306 cats were found. The majority of animals had owners and only a few had free access to outdoor activities. The estimated population size was 531 dogs [95% confidence interval (CI): 453-609] and 354 cats (95% CI: 275-431). Stray animals were not a concern on the island in contrast to the rest of the country.

  12. The dog and cat population on Maio Island, Cape Verde: characterisation and prediction based on household survey and remotely sensed imagery.

    PubMed

    Lopes Antunes, Ana Carolina; Ducheyne, Els; Bryssinckx, Ward; Vieira, Sara; Malta, Manuel; Vaz, Yolanda; Nunes, Telmo; Mintiens, Koen

    2015-01-01

    The objective was to estimate and characterise the dog and cat population on Maio Island, Cape Verde. Remotely sensed imagery was used to document the number of houses across the island and a household survey was carried out in six administrative areas recording the location of each animal using a global positioning system instrument. Linear statistical models were applied to predict the dog and cat populations based on the number of houses found and according to various levels of data aggregation. In the surveyed localities, a total of 457 dogs and 306 cats were found. The majority of animals had owners and only a few had free access to outdoor activities. The estimated population size was 531 dogs [95% confidence interval (CI): 453-609] and 354 cats (95% CI: 275-431). Stray animals were not a concern on the island in contrast to the rest of the country. PMID:26618325

  13. Microwave remote sensing from space

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Elachi, C.; Ulaby, F. T.

    1985-01-01

    Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms - soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries.

  14. Remote sensing by plasmonic transport.

    PubMed

    Lee, Seung Joon; Moskovits, Martin

    2012-07-18

    Arrays of periodically disposed silver nanowires embedded in alumina were shown to be capable of conducting plasmons excited by laser illuminating one end of the array to its opposite end where surface-enhanced Raman of molecules resident among the tips of the nanowires was excited. The SERS signals, in turn, excited plasmons which propagated back to the originally illuminated ends of the nanowires where they emitted light signals that were collected and spectroscopically dispersed, in essence creating a sensor capable of exciting and collecting SERS remotely. For nanowire arrays with interwire gaps of ~11 nm and lengths of ~3.3 μm (i.e., after a ~6.6 μm round trip) the SERS signals obtained by remote sensing were rather strong, ~5% the intensity of those obtained by exciting the molecules resident among the nanowire tips directly. PMID:22747443

  15. Applications of Microwaves to Remote Sensing of Terrain

    NASA Technical Reports Server (NTRS)

    Porter, R. A.

    1975-01-01

    A survey and study was conducted to define the role that microwaves may play in the measurement of a variety of terrain-related parameters. The survey consisted of discussions with many users and researchers in the field of remote sensing. In addition, a survey questionnaire was prepared and replies were solicited from these and other users and researchers. The results of the survey, and associated bibliography, were studied and conclusions were drawn as to the usefulness of radiometric systems for remote sensing of terrain.

  16. Biogeochemical cycling and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.

    1985-01-01

    Research is underway at the NASA Ames Research Center that is concerned with aspects of the nitrogen cycle in terrestrial ecosystems. An interdisciplinary research group is attempting to correlate nitrogen transformations, processes, and productivity with variables that can be remotely sensed. Recent NASA and other publications concerning biogeochemical cycling at global scales identify attributes of vegetation that could be related or explain the spatial variation in biologically functional variables. These functional variables include net primary productivity, annual nitrogen mineralization, and possibly the emission rate of nitrous oxide from soils.

  17. Future remote-sensing programs

    NASA Technical Reports Server (NTRS)

    Schweickart, R. L.

    1975-01-01

    User requirements and methods developed to fulfill them are discussed. Quick-look data, data storage on computer-compatible tape, and an integrated capability for production of images from the whole class of earth-viewing satellites are among the new developments briefly described. The increased capability of LANDSAT-C and Nimbus G and the needs of specialized applications such as, urban land use planning, cartography, accurate measurement of small agricultural fields, thermal mapping and coastal zone management are examined. The affect of the space shuttle on remote sensing technology through increased capability is considered.

  18. Remote sensing of earth terrain

    NASA Technical Reports Server (NTRS)

    Yueh, Herng-Aung; Kong, Jin AU

    1991-01-01

    In remote sensing, the encountered geophysical media such as agricultural canopy, forest, snow, or ice are inhomogeneous and contain scatters in a random manner. Furthermore, weather conditions such as fog, mist, or snow cover can intervene the electromagnetic observation of the remotely sensed media. In the modelling of such media accounting for the weather effects, a multi-layer random medium model has been developed. The scattering effects of the random media are described by three-dimensional correlation functions with variances and correlation lengths corresponding to the fluctuation strengths and the physical geometry of the inhomogeneities, respectively. With proper consideration of the dyadic Green's function and its singularities, the strong fluctuation theory is used to calculate the effective permittivities which account for the modification of the wave speed and attenuation in the presence of the scatters. The distorted Born approximation is then applied to obtain the correlations of the scattered fields. From the correlation of the scattered field, calculated is the complete set of scattering coefficients for polarimetric radar observation or brightness temperature in passive radiometer applications. In the remote sensing of terrestrial ecosystems, the development of microwave remote sensing technology and the potential of SAR to measure vegetation structure and biomass have increased effort to conduct experimental and theoretical researches on the interactions between microwave and vegetation canopies. The overall objective is to develop inversion algorithms to retrieve biophysical parameters from radar data. In this perspective, theoretical models and experimental data are methodically interconnected in the following manner: Due to the complexity of the interactions involved, all theoretical models have limited domains of validity; the proposed solution is to use theoretical models, which is validated by experiments, to establish the region in which

  19. Airborne Remote Sensing for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, Andrew

    2013-01-01

    Topics covered include: Passive Remote Sensing Methods, Imaging Spectroscopy Approach, Remote Measurement via Spectral Fitting, Imaging Spectroscopy Mapping Wetland Dominants 2010 LA (AVIRIS), Deepwater Horizon Response I, Deepwater Horizon Response II, AVIRIS Ocean Color Studies.

  20. Remote Sensing and Reflectance Profiling in Entomology.

    PubMed

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  1. Remote Sensing and Reflectance Profiling in Entomology.

    PubMed

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering. PMID:26982438

  2. Individual based, long term monitoring of acacia trees in hyper arid zone: Integration of a field survey and a remote sensing approach

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Blumberg, Dan G.; Ginat, Hanan; Shalmon, Benny

    2013-04-01

    Vegetation in hyper arid zones is very sparse as is. Monitoring vegetation changes in hyper arid zones is important because any reduction in the vegetation cover in these areas can lead to a considerable reduction in the carrying capacity of the ecological system. This study focuses on the impact of climate fluctuations on the acacia population in the southern Arava valley, Israel. The period of this survey includes a sequence of dry years with no flashfloods in most of the plots that ended in two years with vast floods. Arid zone acacia trees play a significant role in the desert ecosystem by moderating the extreme environmental conditions including radiation, temperature, humidity and precipitation. The trees also provide nutrients for the desert dwellers. Therefore, acacia trees in arid zones are considered to be `keystone species', because they have major influence over both plants and animal species, i.e., biodiversity. Long term monitoring of the acacia tree population in this area can provide insights into long term impacts of climate fluctuations on ecosystems in arid zones. Since 2000, a continuous yearly based survey on the three species of acacia population in seven different plots is conducted in the southern Arava (established by Shalmon, ecologist of the Israel nature and parks authority). The seven plots representing different ecosystems and hydrological regimes. A yearly based population monitoring enabled us to determine the mortality and recruitment rate of the acacia populations as well as growing rates of individual trees. This survey provides a unique database of the acacia population dynamics during a sequence of dry years that ended in a vast flood event during the winter of 2010. A lack of quantitative, nondestructive methods to estimate and monitor stress status of the acacia trees, led us to integrate remote sensing tools (ground and air-based) along with conventional field measurements in order to develop a long term monitoring of acacia

  3. Remote sensing for chemical monitoring

    SciTech Connect

    Jago, R.A.; Curran, P.J.

    1996-11-01

    Imaging spectrometry offers the potential of estimating the biochemical content of vegetation canopies, which is likely to provide a more powerful discriminant of land contamination than remotely sensed estimates of vegetation cover. A red edge/chlorophyll concentration/land contamination relationship provides a novel link between reflectance and the biochemical results of contamination. Canopy reflectance data were collected using a field spectrometer in conjunction with substantial ground-based measurements of chlorophyll concentration and leaf area index (LAI) across a contaminated site. There was a strong red edge/chlorophyll concentration/land contamination relationship across the study site and the correlation between red edge position and chlorophyll concentration was r = 0.86. Spectral mixture modelling demonstrated the effects of variable canopy cover and land contamination on the position of the red edge and provided an understanding of a double-peaked maxima present in derivative spectra. Strong red edge/chlorophyll concentration/land contamination relationships at this study site highlighted the potential use of the CASI to estimate depleted canopy chlorophyll concentration and evaluate further the utility of imaging spectrometers for the remote sensing of contaminated land. 30 refs., 5 figs., 2 tabs.

  4. Analysis of Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Guiness, E. A.; Sultan, M.; Arvidson, R. E.

    1985-01-01

    A brief assessment of remote sensing applied to geological studies is given. An analysis of thematic mapping data on oak-hickory forests in southern Missouri is discussed. It was found that there is a control on the infrared reflectance (bands 4, 5, and 7 of the Thematic Mapper (TM) of the forests that correlates with rock and soil types. During the growing season, soils with low water retention capacities correlate with high infrared (band 4, lesser with band 5 and 7) signatures. A metamorphic core complex called the Meatiq located in the Eastern Desert of Egypt was studied. The dome provides exposure of most of the rock units of the Arabian-Nubian Precambrian Shield. The dome bears many resemblances to Cordilleran metamorphic complexes. LANDSAT TM data was used to improve on reconnaissance maps of the dome. The remote sensing data was interpreted in the context of field observations, petrographic, and chemical analysis of rock units in the dome, in order to map similar domes in the Eastern Desert from TM data. Mapping projects such as the one just described will help constrain the geologic evolution of the Arabian-Nubian Shield. Two particular hypotheses that researchers hope to test for the development of the shield are: (1) closure of a proto-Red Sea; and (2) accretion of a primitive island arc system onto the shield.

  5. Applications of remote sensing to watershed management

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1975-01-01

    Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.

  6. Use of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Powell, N. L.; Newhouse, M. E.

    1974-01-01

    Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated.

  7. Textbooks and technical references for remote sensing

    NASA Technical Reports Server (NTRS)

    Rudd, R. D.; Bowden, L. W.; Colwell, R. N.; Estes, J. E.

    1980-01-01

    A selective bibliography is presented which cites 89 textbooks, monographs, and articles covering introductory and advanced remote sensing techniques, photointerpretation, photogrammetry, and image processing.

  8. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1994-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture... This Paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods.

  9. Symmetry in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.

    1993-01-01

    Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is

  10. Remote sensing of the biosphere

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.

  11. Remote Sensing of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    2001-01-01

    Our efforts have been focused on understanding the physical properties of planetary surfaces using remote sensing techniques. Specific application has been to the surfaces of the Moon and Mars. Our approach has been to use thermal-infrared emission and radar reflectance and scattering as a way of exploring the decimeter-scale structure of these surfaces. At this scale, the techniques are sensitive to physical parameters such as the average or effective particle size of surface materials, the degree of induration or physical bonding between individual regolith grains, and the abundance of rocks of different sizes resting on or admixed in to the surface. The results are relevant to understanding the geological processes that have affected the surface and, in the case of Mars, determining site safety and scientific relevance for planning upcoming lander, rover, and sample-return spacecraft missions. Specific results are discussed below, and publications that have resulted are listed at the end.

  12. Energy and remote sensing applications

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1978-01-01

    The nature of the U.S. energy problem is examined. Based upon the best available estimates, it appears that demand for OPEC oil will exceed OPEC productive capacity in the early to mid-eighties. The upward pressure on world oil prices resulting from this supply/demand gap could have serious international consequences, both financial and in terms of foreign policy implementation. National Energy Plan objectives in response to this situation are discussed. Major strategies for achieving these objectives include a conversion of industry and utilities from oil and gas to coal and other abundant fuels. Remote sensing from aircraft and spacecraft could make significant contributions to the solution of energy problems in a number of ways, related to exploration of energy-related resources, the efficiency and safety of exploitation procedures, power plant siting, environmental monitoring and assessment, and the transportation infrastructure.

  13. Lunar remote sensing and measurements

    USGS Publications Warehouse

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  14. Remotely Sensed Ground Control Points

    NASA Astrophysics Data System (ADS)

    Hummel, P.

    2016-06-01

    Accurate ground control is required to georeferenced airborne and spaceborne images. The production of ortho-photogrammetric data requires ground control that is traditionally provided as Ground Control Points (GCPs) by GNSS measurements in the field. However, it can be difficult to acquire accurate ground control points due to required turn-around time, high costs or impossible access. CompassData, Inc. a specialist in ground control, has expanded its service to deliver Remotely Sensed Ground Control Points (RSGCPs®). TerraSAR-X and TanDEM-X are two satellites with such high accuracy of their orbital positions and SAR data that RSGCPs® can be produced to a sub-meter quality depending on certain parameters and circumstances. The technology and required parameters are discussed in this paper as well as the resulting accuracies.

  15. NASA remote sensing programs: Overview

    NASA Technical Reports Server (NTRS)

    Raney, W. P.

    1981-01-01

    In the Earth remote sensing area, NASA's three functions are to understand the basic mechanics and behavior of the Earth, evaluate what resources are available (in the way of minerals, and hydrocarbons on a general scale), and to arrange a scheme for managing our national assets. The capabilities offered by LANDSAT D and technology improvements needed are discussed. The French SPOT system, its orbits, possibilities for stereo imagery, and levels of preprocessing and processing with several degrees of radiometric and geometric corrections are examined. Progress in the AgRISTARS project is mentioned as well as future R & D programs in the use of fluorescence, microwave measurements, and synthetic aperture radar. Other areas of endeaver include studying man environment interactions and Earth radiation budgets, and the establishment of data systems programs.

  16. Remote sensing in West Virginia

    NASA Technical Reports Server (NTRS)

    Lessing, P.

    1981-01-01

    Low altitude black and white aerial photography is the prinicipal remote sensing tool for geologic investigations in West Virginia, although side looking radar and color infrared photography are also used. The first land use/cover map for the state was produced in color infrared and is being digitized. Linear features in Cabell and Wayne Counties, as revealed by LANDSAT, were evaluated to test the possible correlations with rock fractures and gas production from shales. A LANDSAT linear features map (1:250,000) was prepared for the entire state, also. Presently investigations are being made to understand karst and to predict areas that should not be used for development. Aerial photography and field mapping is being conducted to detect the location and causes of landslides.

  17. Mojave remote sensing field experiment

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.; Petroy, S. B.; Plaut, J. J.; Shepard, Michael K.; Evans, D.; Farr, T.; Greeley, Ronald; Gaddis, L.; Lancaster, N.

    1991-01-01

    The Mojave Remote Sensing Field Experiment (MFE), conducted in June 1988, involved acquisition of Thermal Infrared Multispectral Scanner (TIMS); C, L, and P-band polarimetric radar (AIRSAR) data; and simultaneous field observations at the Pisgah and Cima volcanic fields, and Lavic and Silver Lake Playas, Mojave Desert, California. A LANDSAT Thematic Mapper (TM) scene is also included in the MFE archive. TM-based reflectance and TIMS-based emissivity surface spectra were extracted for selected surfaces. Radiative transfer procedures were used to model the atmosphere and surface simultaneously, with the constraint that the spectra must be consistent with field-based spectral observations. AIRSAR data were calibrated to backscatter cross sections using corner reflectors deployed at target sites. Analyses of MFE data focus on extraction of reflectance, emissivity, and cross section for lava flows of various ages and degradation states. Results have relevance for the evolution of volcanic plains on Venus and Mars.

  18. The remote sensing of algae

    NASA Technical Reports Server (NTRS)

    Thorne, J. F.

    1977-01-01

    State agencies need rapid, synoptic and inexpensive methods for lake assessment to comply with the 1972 Amendments to the Federal Water Pollution Control Act. Low altitude aerial photography may be useful in providing information on algal type and quantity. Photography must be calibrated properly to remove sources of error including airlight, surface reflectance and scene-to-scene illumination differences. A 550-nm narrow wavelength band black and white photographic exposure provided a better correlation to algal biomass than either red or infrared photographic exposure. Of all the biomass parameters tested, depth-integrated chlorophyll a concentration correlated best to remote sensing data. Laboratory-measured reflectance of selected algae indicate that different taxonomic classes of algae may be discriminated on the basis of their reflectance spectra.

  19. Remote sensing application for property tax evaluation

    NASA Astrophysics Data System (ADS)

    Jain, Sadhana

    2008-02-01

    This paper presents a study for linking remotely sensed data with property tax related issues. First, it discusses the key attributes required for property taxation and evaluates the capabilities of remote sensing technology to measure these attributes accurately at parcel level. Next, it presents a detailed case study of six representative wards of different characteristics in Dehradun, India, that illustrates how measurements of several of these attributes supported by field survey can be combined to address the issues related to property taxation. Information derived for various factors quantifies the property taxation contributed by an average dwelling unit of the different income groups. Results show that the property tax calculated in different wards varies between 55% for the high-income group, 32% for the middle-income group, 12% for the low-income group and 1% for squatter units. The study concludes that higher spatial resolution satellite data and integrates social survey helps to assess the socio-economic status of the population for tax contribution purposes.

  20. Remote Sensing of Ocean Color

    NASA Astrophysics Data System (ADS)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  1. Ten ways remote sensing can contribute to conservation.

    PubMed

    Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2015-04-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  2. Ten ways remote sensing can contribute to conservation.

    PubMed

    Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2015-04-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  3. Holographic enhanced remote sensing system

    NASA Technical Reports Server (NTRS)

    Iavecchia, Helene P.; Gaynor, Edwin S.; Huff, Lloyd; Rhodes, William T.; Rothenheber, Edward H.

    1990-01-01

    The Holographic Enhanced Remote Sensing System (HERSS) consists of three primary subsystems: (1) an Image Acquisition System (IAS); (2) a Digital Image Processing System (DIPS); and (3) a Holographic Generation System (HGS) which multiply exposes a thermoplastic recording medium with sequential 2-D depth slices that are displayed on a Spatial Light Modulator (SLM). Full-parallax holograms were successfully generated by superimposing SLM images onto the thermoplastic and photopolymer. An improved HGS configuration utilizes the phase conjugate recording configuration, the 3-SLM-stacking technique, and the photopolymer. The holographic volume size is currently limited to the physical size of the SLM. A larger-format SLM is necessary to meet the desired 6 inch holographic volume. A photopolymer with an increased photospeed is required to ultimately meet a display update rate of less than 30 seconds. It is projected that the latter two technology developments will occur in the near future. While the IAS and DIPS subsystems were unable to meet NASA goals, an alternative technology is now available to perform the IAS/DIPS functions. Specifically, a laser range scanner can be utilized to build the HGS numerical database of the objects at the remote work site.

  4. Natural Resource Information System. Remote Sensing Studies.

    ERIC Educational Resources Information Center

    Leachtenauer, J.; And Others

    A major design objective of the Natural Resource Information System entailed the use of remote sensing data as an input to the system. Potential applications of remote sensing data were therefore reviewed and available imagery interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and…

  5. Accommodating Student Diversity in Remote Sensing Instruction.

    ERIC Educational Resources Information Center

    Hammen, John L., III.

    1992-01-01

    Discusses the difficulty of teaching computer-based remote sensing to students of varying levels of computer literacy. Suggests an instructional method that accommodates all levels of technical expertise through the use of microcomputers. Presents a curriculum that includes an introduction to remote sensing, digital image processing, and…

  6. Conference of Remote Sensing Educators (CORSE-78)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Ways of improving the teaching of remote sensing students at colleges and universities are discussed. Formal papers and workshops on various Earth resources disciplines, image interpretation, and data processing concepts are presented. An inventory of existing remote sensing and related subject courses being given in western regional universities is included.

  7. What does remote sensing do for ecology?

    NASA Technical Reports Server (NTRS)

    Roughgarden, J.; Running, S. W.; Matson, P. A.

    1991-01-01

    The application of remote sensing to ecological investigations is briefly discussed. Emphasis is given to the recruitment problem in marine population dynamics, the regional analysis of terrestrial ecosystems, and the monitoring of ecological changes. Impediments to the use of remote sensing data in ecology are addressed.

  8. Sandia multispectral analyst remote sensing toolkit (SMART).

    SciTech Connect

    Post, Brian Nelson; Smith, Jody Lynn; Geib, Peter L.; Nandy, Prabal; Wang, Nancy Nairong

    2003-03-01

    This remote sensing science and exploitation work focused on exploitation algorithms and methods targeted at the analyst. SMART is a 'plug-in' to commercial remote sensing software that provides algorithms to enhance the utility of the Multispectral Thermal Imager (MTI) and other multispectral satellite data. This toolkit has been licensed to 22 government organizations.

  9. Remote sensing and reflectance profiling in entomology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing is about characterizing the status of objects and/or classifies their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be ground-based, and therefore acquired at a high spatial resolutio...

  10. Western Regional Remote Sensing Conference Proceedings, 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Diverse applications of LANDSAT data, problem solutions, and operational goals are described by remote sensing users from 14 western states. The proposed FY82 federal budget reductions for technology transfer activities and the planned transition of the operational remote sensing system to NOAA's supervision are also considered.

  11. Some guidelines for remote sensing in hydrology

    USGS Publications Warehouse

    Robinove, Charles J.; Anderson, Daniel G.

    1969-01-01

    Remote sensing in the field of hydrology is beginning to be applied to significant problems, such as thermal pollution, in many programs of the Federal and State Governments as well as in operation of many private organizations. The purpose of this paper is to guide the hydrologist to a better understanding of how he may collect, synthesize, and interpret remote sensing data.

  12. Use of Remote Sensing for Decision Support in Africa

    NASA Technical Reports Server (NTRS)

    Policelli, Frederick S.

    2007-01-01

    Over the past 30 years, the scientific community has learned a great deal about the Earth as an integrated system. Much of this research has been enabled by the development of remote sensing technologies and their operation from space. Decision makers in many nations have begun to make use of remote sensing data for resource management, policy making, and sustainable development planning. This paper makes an attempt to provide a survey of the current state of the requirements and use of remote sensing for sustainable development in Africa. This activity has shown that there are not many climate data ready decision support tools already functioning in Africa. There are, however, endusers with known requirements who could benefit from remote sensing data.

  13. Remote sensing of hydrological fluxes

    NASA Astrophysics Data System (ADS)

    Gurney, R. J.

    Remote sensing is developing as a measurement technique to the point where data are starting to be used operationally in a quantitative way other than just in weather forecasting. In addition, many other uses of the data are being developed because of the sparseness of conventional data in many parts of the world. A recent session of AGU's Hydrology Section at the Spring Meeting in Baltimore, Md., featured discussions of some of the recent advances in the use of remotely sensed data to estimate hydrological fluxes.Several papers dealt with remote sensing aspects of the First ISLSCP Field Experiment (FIFE), following another session of the Hydrology Section, which discussed nonremote sensing results from FIFE. S. N. Goward (University of Maryland, College Park) presented a review of empirical results from time series of Advanced Very High Resolution Radiometer at the FIFE site and their relationship to some conventional observations. He showed strong relationships between spectral vegetation indices and surface temperature with scatter being at least partly caused by surface moisture variations. Unraveling the relationships from a physical point of view will involve a greater understanding of atmospheric effects and surface properties from other concurrent measurements during FIFE. Similar relationships between spectral vegetation indices and surface temperature were observed and reported by C. L. Walthall (University of Maryland, College Park), who used a radiometer mounted on a helicopter to collect data at the FIFE site. This indicates that the relationships are not entirely due to atmospheric effects. M. F. Jasinski and P. S. Eagleson (Massachusetts Institute of Technology, Cambridge) described a theoretical reflectance model for spectral vegetation indices in terms of ground cover that will be extremely useful in interpreting these experimental results. R. N. Halthore (Applied Research Corp., Landover, Md.) described some of the measurements of aerosols during

  14. Integrating field surveys and remote sensing data to study distribution, habitat use and conservation status of the herpetofauna of the Comoro Islands

    PubMed Central

    Hawlitschek, Oliver; Brückmann, Boris; Berger, Johannes; Green, Katie; Glaw, Frank

    2011-01-01

    Abstract We studied the non-marine reptile and amphibian species of the volcanic Comoro archipelago in the Western Indian Ocean, a poorly known island herpetofauna comprising numerous microendemic species of potentially high extinction risk and widespread, non-endemic and often invasive taxa. According to our data, the Comoro islands are inhabited by two amphibian species and at least 28 species of reptiles although ongoing genetic studies and unconfirmed historical records suggest an even higher species diversity. 14 of the 28 currently recognized species of terrestrial reptiles (50%) and the two amphibians are endemic to a single island or to the Comoro archipelago. The majority of species are most abundant at low elevation. However, a few endemic species, like the gekkonid lizards Paroedura sanctijohannis and Phelsuma nigristriata, are more common in or even confined to higher altitudes. We created habitat maps from remotely sensed data in combination with detailed species distribution maps produced using comprehensive data from field surveys between 2000 and 2010, literature, and historical locality records based on specimens in zoological collections. Using these data, we assessed the conservation status of the endemic terrestrial reptiles and amphibians according to the IUCN Red List criteria. Our results show that although little area of natural forest remains on the Comoros, many species are abundant in degraded forest or plantations. Competition and predation by invasive species appears to be the most important threat factor for the endemic herpetofauna, together with habitat degradation and destruction, which further favours invasive species. We propose the status Endangered for three species, Vulnerable for one species, Near Threatened for six species, Least Concern for four and Data Deficient for two species. The endemic subspecies Oplurus cuvieri comorensis is proposed for the status Critically Endangered. Based on the results of this study, seven

  15. Investigation of fugitive emissions from petrochemical transport barges using optical remote sensing

    EPA Science Inventory

    Recent airborne remote sensing survey data acquired with passive gas imaging equipment (PGIE), in this case infrared cameras, have shown potentially significant fugitive volatile organic carbon (VOC) emissions from petrochemical transport barges. The experiment found remote sens...

  16. Progress in remote sensing (1972-1976)

    USGS Publications Warehouse

    Fischer, W. A.; Hemphill, W.R.; Kover, Allan

    1976-01-01

    This report concerns the progress in remote sensing during the period 1972–1976. Remote sensing has been variously defined but is basically the art or science of telling something about an object without touching it. During the past four years, the major research thrusts have been in three areas: (1) computer-assisted enhancement and interpretation systems; (2) earth science applications of Landsat data; (3) and investigations of the usefulness of observations of luminescence, thermal infrared, and microwave energies. Based on the data sales at the EROS Data Center, the largest users of the Landsat data are industrial companies, followed by government agencies (both national and foreign), and academic institutions. Thermal surveys from aircraft have become largely operational, however, significant research is being undertaken in the field of thermal modeling and analysis of high altitude images. Microwave research is increasing rapidly and programs are being developed for satellite observations. Microwave research is concentrating on oil spill detection, soil moisture measurement, and observations of ice distributions. Luminescence investigations offer promise for becoming a quantitative method of assessing vegetation stress and pollutant concentrations.

  17. Satellite remote sensing of vegetation

    NASA Astrophysics Data System (ADS)

    Mahr, Tobias; Peper, Eva; Schubert, Alexander; Warnach, Simon; Pöhler, Denis; Horbanski, Martin; Beirle, Steffen; Mies, Kornelia; Platt, Ulrich; Wagner, Thomas

    2013-04-01

    DOAS (Differential Optical Absorption Spectroscopy) allows to determine the concentration of trace gases based on their specific absorptions cross-sections along a light path. Since 1995, this principle is employed successfully on satellite-based instruments like GOME, GOME-2 and SCIAMACHY for the global measurement of stratospheric and tropospheric trace gases like ozone and nitrogen oxides. Usually, spectral signatures from the ground, where a big part of the sunlight is reflected, are neglected in the evaluation. This can lead to errors in the trace gas determination. However, these structures offer the opportunity to identify surface properties of the earth and different types of vegetation. To analyse spectral reflectance properties, high resolved reflection spectra (FWHM 0.29 nm) from 95 plants were measured between 350 and 1050 nm. They can serve as a basis for the analysis of satellite data. Including different vegetation reference spectra, it is possible to determine groups of plants with similar optical properties. This allows to derive global maps of the spatio-temporal variation of plant distribution by satellite remote sensing. We present first results of this technique based on SCIAMACHY observations.

  18. Remote sensing of earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1985-01-01

    Progress on the investigation of the anisotropy of the terrain media, such as vegetation canopy and sea ice, and the study of the fluctuation-dissipation theorem in conjunction with the application of strong fluctuation theory for passive remote sensing of snowpacks is reported. The Feynman diagrammatic technique is used to derive the Dyson equation for the mean field and the Bethe-Salpeter equation for the correlation or the covariance of the field for electromagnetic wave propagation and scattering in an anisotropic random medium. With the random permittivity expressed in a general form, the bilocal and the nonlinear approximations are employed to solve the Dyson equation and the ladder approximation to the Bethe-Salpeter equation. The mean dyadic Green's function for a two layer anisotropic random medium with arbitrary three dimensional correlation function was investigated with the zeroth-order solutions to the Dyson equation under the four characteristic waves associated with the coherent vector fields propagating in an anisotropic random medium layer, which are the ordinary and extraordinary waves with upward and downward propagating vectors.

  19. Passive Remote Sensing of Aerosols

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    Remote sensing of aerosol optical and microphysical properties got a resurgence in the 1970s when John Reagan and Ben Herman initiated a program to develop and implement a surface-based sunphotometer system to monitor spectral aerosol optical thickness at the University of Arizona. In this presentation I will review the state of the technology used to monitor aerosol optical and microphysical properties, including the determination of spectral aerosol optical thickness and total ozone content. This work continued with John Reagan developed a surface-based spectral flux radiometer to implement Ben Herman's idea to determine the imaginary part of the complex refractive index of aerosols using the recently developed diffuse-direct technique. Progress made both in surface-based instrumentation, inversion theory for analyzing such data, and in satellite observations of aerosol optical and microphysical properties will be reviewed to highlight the state of knowledge after 30 years of expanded capability and introduction of novel new capabilities, both from the ground and from spacecraft.

  20. Prediction of health levels by remote sensing

    NASA Technical Reports Server (NTRS)

    Rush, M.; Vernon, S.

    1975-01-01

    Measures of the environment derived from remote sensing were compared to census population/housing measures in their ability to discriminate among health status areas in two urban communities. Three hypotheses were developed to explore the relationships between environmental and health data. Univariate and multiple step-wise linear regression analyses were performed on data from two sample areas in Houston and Galveston, Texas. Environmental data gathered by remote sensing were found to equal or surpass census data in predicting rates of health outcomes. Remote sensing offers the advantages of data collection for any chosen area or time interval, flexibilities not allowed by the decennial census.

  1. Parallelized dilate algorithm for remote sensing image.

    PubMed

    Zhang, Suli; Hu, Haoran; Pan, Xin

    2014-01-01

    As an important algorithm, dilate algorithm can give us more connective view of a remote sensing image which has broken lines or objects. However, with the technological progress of satellite sensor, the resolution of remote sensing image has been increasing and its data quantities become very large. This would lead to the decrease of algorithm running speed or cannot obtain a result in limited memory or time. To solve this problem, our research proposed a parallelized dilate algorithm for remote sensing Image based on MPI and MP. Experiments show that our method runs faster than traditional single-process algorithm.

  2. Laser Remote Sensing: Velocimetry Based Techniques

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; Steinvall, Ove

    Laser-based velocity measurement is an area of the field of remote sensing where the coherent properties of laser radiation are the most exposed. Much of the published literature deals with the theory and techniques of remote sensing. We restrict our discussion to current trends in this area, gathered from recent conferences and professional journals. Remote wind sensing and vibrometry are promising in their new scientific, industrial, military, and biomedical applications, including improving flight safety, precise weapon correction, non-contact mine detection, optimization of wind farm operation, object identification based on its vibration signature, fluid flow studies, and vibrometry-associated diagnosis.

  3. Remote sensing and urban public health

    NASA Technical Reports Server (NTRS)

    Rush, M.; Vernon, S.

    1975-01-01

    The applicability of remote sensing in the form of aerial photography to urban public health problems is examined. Environmental characteristics are analyzed to determine if health differences among areas could be predicted from the visual expression of remote sensing data. The analysis is carried out on a socioeconomic cross-sectional sample of census block groups. Six morbidity and mortality rates are the independent variables while environmental measures from aerial photographs and from the census constitute the two independent variable sets. It is found that environmental data collected by remote sensing are as good as census data in evaluating rates of health outcomes.

  4. An international organization for remote sensing

    NASA Technical Reports Server (NTRS)

    Helm, Neil R.; Edelson, Burton I.

    1991-01-01

    A recommendation is presented for the formation of a new commercially oriented international organization to acquire or develop, coordinate or manage, the space and ground segments for a global operational satellite system to furnish the basic data for remote sensing and meteorological, land, and sea resource applications. The growing numbers of remote sensing programs are examined and possible ways of reducing redundant efforts and improving the coordination and distribution of these global efforts are discussed. This proposed remote sensing organization could play an important role in international cooperation and the distribution of scientific, commercial, and public good data.

  5. Needs and emerging trends of remote sensing

    NASA Astrophysics Data System (ADS)

    McNair, Michael

    2014-06-01

    From the earliest need to be able to see an enemy over a hill to sending semi-autonomous platforms with advanced sensor packages out into space, humans have wanted to know more about what is around them. Issues of distance are being minimized through advances in technology to the point where remote control of a sensor is useful but sensing by way of a non-collocated sensor is better. We are not content to just sense what is physically nearby. However, it is not always practical or possible to move sensors to an area of interest; we must be able to sense at a distance. This requires not only new technologies but new approaches; our need to sense at a distance is ever changing with newer challenges. As a result, remote sensing is not limited to relocating a sensor but is expanded into possibly deducing or inferring from available information. Sensing at a distance is the heart of remote sensing. Much of the sensing technology today is focused on analysis of electromagnetic radiation and sound. While these are important and the most mature areas of sensing, this paper seeks to identify future sensing possibilities by looking beyond light and sound. By drawing a parallel to the five human senses, we can then identify the existing and some of the future possibilities. A further narrowing of the field of sensing causes us to look specifically at robotic sensing. It is here that this paper will be directed.

  6. Multiple classifier system for remote sensing image classification: a review.

    PubMed

    Du, Peijun; Xia, Junshi; Zhang, Wei; Tan, Kun; Liu, Yi; Liu, Sicong

    2012-01-01

    Over the last two decades, multiple classifier system (MCS) or classifier ensemble has shown great potential to improve the accuracy and reliability of remote sensing image classification. Although there are lots of literatures covering the MCS approaches, there is a lack of a comprehensive literature review which presents an overall architecture of the basic principles and trends behind the design of remote sensing classifier ensemble. Therefore, in order to give a reference point for MCS approaches, this paper attempts to explicitly review the remote sensing implementations of MCS and proposes some modified approaches. The effectiveness of existing and improved algorithms are analyzed and evaluated by multi-source remotely sensed images, including high spatial resolution image (QuickBird), hyperspectral image (OMISII) and multi-spectral image (Landsat ETM+). Experimental results demonstrate that MCS can effectively improve the accuracy and stability of remote sensing image classification, and diversity measures play an active role for the combination of multiple classifiers. Furthermore, this survey provides a roadmap to guide future research, algorithm enhancement and facilitate knowledge accumulation of MCS in remote sensing community.

  7. What is a picture worth? A history of remote sensing

    USGS Publications Warehouse

    Moore, Gerald K.

    1979-01-01

    Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.

  8. Multiple Classifier System for Remote Sensing Image Classification: A Review

    PubMed Central

    Du, Peijun; Xia, Junshi; Zhang, Wei; Tan, Kun; Liu, Yi; Liu, Sicong

    2012-01-01

    Over the last two decades, multiple classifier system (MCS) or classifier ensemble has shown great potential to improve the accuracy and reliability of remote sensing image classification. Although there are lots of literatures covering the MCS approaches, there is a lack of a comprehensive literature review which presents an overall architecture of the basic principles and trends behind the design of remote sensing classifier ensemble. Therefore, in order to give a reference point for MCS approaches, this paper attempts to explicitly review the remote sensing implementations of MCS and proposes some modified approaches. The effectiveness of existing and improved algorithms are analyzed and evaluated by multi-source remotely sensed images, including high spatial resolution image (QuickBird), hyperspectral image (OMISII) and multi-spectral image (Landsat ETM+). Experimental results demonstrate that MCS can effectively improve the accuracy and stability of remote sensing image classification, and diversity measures play an active role for the combination of multiple classifiers. Furthermore, this survey provides a roadmap to guide future research, algorithm enhancement and facilitate knowledge accumulation of MCS in remote sensing community. PMID:22666057

  9. Application of remote sensing for planning purposes

    NASA Technical Reports Server (NTRS)

    Hughes, T. H. (Editor)

    1977-01-01

    Types of remotely sensed data are many and varied but, all are primarily dependent on the sensor platform and the kind of sensing system used. A sensor platform is the type of aircraft or satellite to which a sensing system is attached; each platform has its own inherent advantages and disadvantages. Selected attributes of several current or recently used platforms are outlined. Though sensing systems are highly varied, they may be divided into various operational categories such as cameras, electromechanical scanners, and radars.

  10. EPA Remote Sensing Information Gateway

    NASA Astrophysics Data System (ADS)

    Paulsen, H. K.; Szykman, J. J.; Plessel, T.; Freeman, M.; Dimmick, F.

    2009-12-01

    The Remote Sensing Information Gateway was developed by the U.S. Environmental Protection Agency (EPA) to assist researchers in easily obtaining and combining a variety of environmental datasets related to air quality research. Current datasets available include, but are not limited to surface PM2.5 and O3 data, satellite derived aerosol optical depth , and 3-dimensional output from U.S. EPA's Models 3/Community Multi-scale Air Quality (CMAQ) modeling system. The presentation will include a demonstration that illustrates several scenarios of how researchers use the tool to help them visualize and obtain data for their work; with a particular focus on episode analysis related to biomass burning impacts on air quality. The presentation will provide an overview on how RSIG works and how the code has been—and can be—adapted for other projects. One example is the Virtual Estuary, which focuses on automating the retrieval and pre-processing of a variety of data needed for estuarine research. RSIG’s source codes are freely available to researchers with permission from the EPA principal investigator, Dr. Jim Szykman. RSIG is available to the community and can be accessed online at http://www.epa.gov/rsig. Once the JAVA policy file is configured on your computer you can run the RSIG applet on your computer and connect to the RSIG server to visualize and retrieve available data sets. The applet allows the user to specify the temporal/spatial areas of interest, and the types of data to retrieve. The applet then communicates with RSIG subsetter codes located on the data owners’ remote servers; the subsetter codes assemble and transfer via ordinary Internet protocols only the specified data to the researcher’s computer. This is much faster than the usual method of transferring large files via FTP and greatly reduces network traffic. The RSIG applet then visualizes the transferred data on a latitude-longitude map, automatically locating the data in the correct

  11. Remote Sensing in Agriculture: An Introductory Review.

    ERIC Educational Resources Information Center

    Curran, Paul J.

    1987-01-01

    Discusses the use of remote sensing techniques to obtain locational, estimated, and mapped information at the scales varying from individual fields and farms, to entire continents and the world. (AEM)

  12. A Teacher's Introduction to Remote Sensing.

    ERIC Educational Resources Information Center

    Kirman, Joseph M.

    1997-01-01

    Defines remote sensing as the examination of something without touching it. Generally, this refers to satellite and aerial photographic images. Discusses how this technology and resulting knowledge can be integrated into geography classes. Includes a sample unit using images. (MJP)

  13. Information Processing of Remote-Sensing Data.

    ERIC Educational Resources Information Center

    Berry, P. A. M.; Meadows, A. J.

    1987-01-01

    Reviews the current status of satellite remote sensing data, including problems with efficient storage and rapid retrieval of the data, and appropriate computer graphics to process images. Areas of research concerned with overcoming these problems are described. (16 references) (CLB)

  14. Sources of support for remote sensing education

    NASA Technical Reports Server (NTRS)

    Estes, J. E.

    1981-01-01

    Past financial support for educational programs in remote sensing came largely in the form of short courses funded by the National Science Foundation. Later NASA began to fund such courses for local and state government and for some university participants in its regional programs. The greater impact came from the funding by a variety of federal agencies for remote sensing research projects at educational institutions throughout the country. Probably the best and most significant example of these programs, from the university standpoint is, and should continue to be, the NASA university affairs programs, which with its long term step funding of a number of institutions has probably done more for remote sensing education than any other federal program in this country. An incomplete listing of federal agencies that support remote sensing research at the university level is presented.

  15. State remote sensing (LANDSAT) programs catalog

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This directory lists the technical capabilities, personnel, and program structure for remote sensing activities as they existed in each state in late 1980. The institutional framework, participating agencies, applications, status, equipment, software, and funding sources are also indicated.

  16. Application of Spaceborne Remote Sensing to Archaeology

    NASA Technical Reports Server (NTRS)

    Crippen, Robert E.

    1997-01-01

    Spaceborne remote sensing data have been underutilized in archaeology for a variety of seasons that are slowly but surely being overcome. Difficulties have included cost/availability of data, inadequate resolution, and data processing issues.

  17. Remote Sensing of Snow and Evapotranspiration

    NASA Technical Reports Server (NTRS)

    Schmugge, T. (Editor)

    1985-01-01

    The use of snowmelt runoff models from both the U.S. and Japan for simulating discharge on basins in both countries is discussed as well as research in snowpack properties and evapotranspiration using remotely sensed data.

  18. Remote sensing: An inventory of earth's resources

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N.

    1974-01-01

    The remote sensing capabilities of Landsat are reviewed along with the broad areas of application of the Landsat imagery. The importance of Landsat imagery in urban planning and resources management is stressed.

  19. Indicators of international remote sensing activities

    NASA Technical Reports Server (NTRS)

    Spann, G. W.

    1977-01-01

    The extent of worldwide remote sensing activities, including the use of satellite and high/medium altitude aircraft data was studied. Data were obtained from numerous individuals and organizations with international remote sensing responsibilities. Indicators were selected to evaluate the nature and scope of remote sensing activities in each country. These indicators ranged from attendance at remote sensing workshops and training courses to the establishment of earth resources satellite ground stations and plans for the launch of earth resources satellites. Results indicate that this technology constitutes a rapidly increasing component of environmental, land use, and natural resources investigations in many countries, and most of these countries rely on the LANDSAT satellites for a major portion of their data.

  20. Remote sensing applications to hydrologic modeling

    NASA Technical Reports Server (NTRS)

    Dozier, J.; Estes, J. E.; Simonett, D. S.; Davis, R.; Frew, J.; Marks, D.; Schiffman, K.; Souza, M.; Witebsky, E.

    1977-01-01

    An energy balance snowmelt model for rugged terrain was devised and coupled to a flow model. A literature review of remote sensing applications to hydrologic modeling was included along with a software development outline.

  1. Remote Sensing of the Arctic Seas.

    ERIC Educational Resources Information Center

    Weeks, W. F.; And Others

    1986-01-01

    Examines remote sensing of the arctic seas by discussing: (1) passive microwave sensors; (2) active microwave sensors; (3) other types of sensors; (4) the future deployment of sensors; (5) data buoys; and (6) future endeavors. (JN)

  2. Satellite remote sensing of water turbidity

    USGS Publications Warehouse

    Moore, Gerald K.

    1980-01-01

    Remote sensing instruments obtain an optical measure of water colour and turbidity. Colour increases the absorption of light in water and decreases the remotely sensed signal; turbidity increases the backscatter of light. For low concentrations of suspended materials, spectral reflectance is determined mostly by the absorptance characteristics of water; for higher concentrations, the absorptance characteristics of suspended particles are the most important factors. -from Authorwater colour suspended materials

  3. Pilot interministerial operation for remote sensing

    NASA Technical Reports Server (NTRS)

    Delamare, J. M.; Bied-Charreton, M.; Couzy, A.; Jahan, A.; Ledder, J.; Pasquet, J.

    1979-01-01

    Advantages and disadvantages of traditional methods of obtaining required information for land and resources management and the possibilities of remote sensing are discussed. The services available, organization and objectives of the pilot operation are presented. Emphasis is placed on multidisciplinary dialog among designers, builders, operators, interpreters and users in all phases. The principles, operation and practical applications of remote sensing systems and processing systems under the pilot operation are presented.

  4. Summary: Remote sensing soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmer, F. A.; Werner, H. D.; Waltz, F. A.

    1970-01-01

    During the 1969 and 1970 growing seasons research was conducted to investigate the relationship between remote sensing imagery and soil moisture. The research was accomplished under two completely different conditions: (1) cultivated cropland in east central South Dakota, and (2) rangeland in western South Dakota. Aerial and ground truth data are being studied and correlated in order to evaluate the moisture supply and water use. Results show that remote sensing is a feasible method for monitoring soil moisture.

  5. Remote sensing, imaging, and signal engineering

    SciTech Connect

    Brase, J.M.

    1993-03-01

    This report discusses the Remote Sensing, Imaging, and Signal Engineering (RISE) trust area which has been very active in working to define new directions. Signal and image processing have always been important support for existing programs at Lawrence Livermore National Laboratory (LLNL), but now these technologies are becoming central to the formation of new programs. Exciting new applications such as high-resolution telescopes, radar remote sensing, and advanced medical imaging are allowing us to participate in the development of new programs.

  6. Western Regional Remote Sensing Conference Proceedings, 1979

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Remote sensing users from the 14 western states explained their diverse applications of LANDSAT data, discussed operational goals, and exchanged problems and solutions. In addition, conference participants stressed the need for increased cooperation among state and local governments, private industry, and universities to aid NASA's objective of transferring to user agencies the ability to operationally use remote sensing technology for resource and environmental quality management.

  7. REMOTE SENSING FOR ENVIRONMENTAL COMPLIANCE MONITORING

    EPA Science Inventory

    I. Remote Sensing Basics
    A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors.
    B. Resolution refers to what a remote sensor can see and how often.
    1. Sp...

  8. Remote sensing data products: types and characteristics

    USGS Publications Warehouse

    Carneggie, David M.

    1978-01-01

    Objectives: To identify and define remote sending data products available for analysis of wildlife management problems. To ascribe characteristics and formats as they relate to a choice of the data product to select for a particular analysis. To identify the various remote sensing data products discussed, displayed, and presented at the symposium.

  9. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Sattinger, I. J.; Istvan, L. B.; Roller, N. E. G.; Lowe, D. S.

    1977-01-01

    An extensive program was conducted to establish practical uses of NASA earth resource survey technology in meeting resource management problems throughout Michigan. As a result, a broad interest in and understanding of the usefulness of remote sensing methods was developed and a wide variety of applications was undertaken to provide information needed for informed decision making and effective action.

  10. Levee Health Monitoring With Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers

  11. Amazonas project: Application of remote sensing techniques for the integrated survey of natural resources in Amazonas. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator)

    1981-01-01

    The use of LANDSAT multispectral scanner and return beam vidicon imagery for surveying the natural resources of the Brazilian Amazonas is described. Purposes of the Amazonas development project are summarized. The application of LANDSAT imagery to identification of vegetation coverage and soil use, identification of soil types, geomorphology, and geology and highway planning is discussed. An evaluation of the worth of LANDSAT imagery in mapping the region is presented. Maps generated by the project are included.

  12. Remote sensing-a geophysical perspective.

    USGS Publications Warehouse

    Watson, K.

    1985-01-01

    In this review of developments in the field of remote sensing from a geophysical perspective, the subject is limited to the electromagnetic spectrum from 0.4 mu m to 25cm. Three broad energy categories are covered: solar reflected, thermal infrared, and microwave.-from Authorremote sensing electromagnetic spectrum solar reflected thermal infrared microwave geophysics

  13. Locusts and remote sensing: a review

    NASA Astrophysics Data System (ADS)

    Latchininsky, Alexandre V.

    2013-01-01

    A dozen species of locusts (Orthoptera: Acrididae) are a major threat to food security worldwide. Their outbreaks occur on every continent except Antarctica, threatening the livelihood of 10% of the world's population. The locusts are infamous for their voracity, polyphagy, and capacity for long-distance migrations. Decades of research revealed very complex bio-ecology of locusts. They exist in two, inter-convertible and density-dependent states, or "phases." Despite the evident progress in understanding locust behavior, our ability to predict and manage locust outbreaks remains insufficient, as evidenced by locust plagues still occurring during the 21st century. One of the main reasons is that locusts typically inhabit remote and scarcely populated areas, and their distribution ranges often spread across continents. This creates tremendous obstacles for locust population monitoring and control. Traditional ground locust surveys are inadequate to address the enormous spatial scale of the locust problem in a limited window of time dictated by the pest's development. Remote sensing (satellite information) appears a promising tool in locust monitoring. Satellite data are increasingly used for monitoring and forecasting two locust species, the desert and the Australian plague locust. However, applications of this geospatial technology to other locust species remain rare.

  14. Research Issues in Image Registration for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Eastman, Roger D.; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2007-01-01

    Image registration is an important element in data processing for remote sensing with many applications and a wide range of solutions. Despite considerable investigation the field has not settled on a definitive solution for most applications and a number of questions remain open. This article looks at selected research issues by surveying the experience of operational satellite teams, application-specific requirements for Earth science, and our experiments in the evaluation of image registration algorithms with emphasis on the comparison of algorithms for subpixel accuracy. We conclude that remote sensing applications put particular demands on image registration algorithms to take into account domain-specific knowledge of geometric transformations and image content.

  15. Agricultural applications of remote sensing: A true life adventure

    NASA Technical Reports Server (NTRS)

    Schaller, E. S.

    1975-01-01

    A study of agricultural applications of remote sensing with a major US agricultural firm was undertaken in mid-1973. The study continued for eighteen months, and covered the areas of crop monitoring and management as well as large scale crop inventories. Pilot programs in the application of aircraft remote sensing and LANDSAT data were conducted. An operational aircraft survey program for ranch management has subsequently been implemented by the agricultural firm. LANDSAT data was successfully used to produce a ninety-seven percent accurate inventory of cotton over 4.8 million acres of California's San Joaquin Valley.

  16. Proceedings of the international symposium on remote sensing of environment. Third thematic conference:Remote sensing for exploration geology

    SciTech Connect

    Not Available

    1984-01-01

    This book presents the papers given at a conference on the remote sensing of petroleum and natural gas deposits. Topics considered at the conference included Landsat imagery, tectonics, a geologic database for petroleum exploration, lithology, hydrothermal alteration mapping, artificial intelligence, geothermal exploration, petroleum geology, geobotany, infrared spectral studies, carbonate rocks, radar, microcomputer-based digital image processing, and terrain mapping for exploration surveys.

  17. Current NASA Earth Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; Van de water, Peter K.; Levetin, Estelle; Crimmins, Theresa

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  18. Role of remote sensing in Bay measurements

    NASA Technical Reports Server (NTRS)

    Mugler, J. P., Jr.; Godfrey, J. P.; Hickman, G. D.; Hovis, W. G.; Pearson, A. O.; Weaver, K. N.

    1978-01-01

    Remote measurements of a number of surface or near surface parameters for baseline definition and specialized studies, remote measurements of episodic events, and remote measurements of the Bay lithosphere are considered in terms of characterizing and understanding the ecology of the Chesapeake Bay. Geologic processes and features best suited for information enhancement by remote sensing methods are identified. These include: (1) rates of sedimentation in the Bay; (2) rates of erosion of Bay shorelines; (3) spatial distribution and geometry of aquifers; (4) mapping of Karst terrain (sinkholes); and (5) mapping of fracture patterns. Recommendations for studying problem areas identified are given.

  19. remote sensing data combinations - global AOD maps

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2009-04-01

    More accurate and more complete measurement-based data-sets are needed to constrain the freedom of global modeling and raise confidence in model predictions. In remote sensing, different methods and sensors frequently yield estimates for the same (or a strongly related) atmospheric property. For maximum benefit to data-users (e.g. input or evaluation data to modeling) - in the context of differences in sensor capabilities and retrieval limitations - there is a desire to combine the strengths of these individual data sources for superior products. In a demonstration, different multi-annual global monthly maps for aerosol optical depth (AOD) from satellite remote sensing been compared and scored against local quality reference data from ground remote sensing. The regionally best performing satellite data-sets have been combined into global monthly AOD maps. As expected, this satellite composite scores better than any individual satellite retrieval. Further improvements are achieved by merging statistics of ground remote sensing into the composite. The global average mid-visible AOD of this remote sensing composite is near 0.13 annually, with lower values during northern hemispheric fall and winter (0.12) and larger values during northern hemispheric spring and summer (0.14). This measurement based data composite also reveals characteristic deficiencies in global modeling: Modeling tends to overestimates AOD over the northern mid-latitudes and to underestimate AOD over tropical and sub-tropical land regions. Also noteworthy are AOD underestimates by modeling in remote oceanic regions, though only in relative sense as AOD values in that region as small. The AOD remote sensing data composite is far from perfect, but it demonstrates the extra value of data-combinations.

  20. Multiscale and Multitemporal Urban Remote Sensing

    NASA Astrophysics Data System (ADS)

    Mesev, V.

    2012-07-01

    The remote sensing of urban areas has received much attention from scientists conducting studies on measuring sprawl, congestion, pollution, poverty, and environmental encroachment. Yet much of the research is case and data-specific where results are greatly influenced by prevailing local conditions. There seems to be a lack of epistemological links between remote sensing and conventional theoretical urban geography; in other words, an oversight for the appreciation of how urban theory fuels urban change and how urban change is measured by remotely sensed data. This paper explores basic urban theories such as centrality, mobility, materiality, nature, public space, consumption, segregation and exclusion, and how they can be measured by remote sensing sources. In particular, the link between structure (tangible objects) and function (intangible or immaterial behavior) is addressed as the theory that supports the wellknow contrast between land cover and land use classification from remotely sensed data. The paper then couches these urban theories and contributions from urban remote sensing within two analytical fields. The first is the search for an "appropriate" spatial scale of analysis, which is conveniently divided between micro and macro urban remote sensing for measuring urban structure, understanding urban processes, and perhaps contributions to urban theory at a variety of scales of analysis. The second is on the existence of a temporal lag between materiality of urban objects and the planning process that approved their construction, specifically how time-dependence in urban structural-functional models produce temporal lags that alter the causal links between societal and political functional demands and structural ramifications.

  1. Near-earth orbital guidance and remote sensing

    NASA Technical Reports Server (NTRS)

    Powers, W. F.

    1972-01-01

    The curriculum of a short course in remote sensing and parameter optimization is presented. The subjects discussed are: (1) basics of remote sensing and the user community, (2) multivariant spectral analysis, (3) advanced mathematics and physics of remote sensing, (4) the atmospheric environment, (5) imaging sensing, and (6)nonimaging sensing. Mathematical models of optimization techniques are developed.

  2. Literature relevant to remote sensing of water quality

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  3. China national space remote sensing infrastructure and its application

    NASA Astrophysics Data System (ADS)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  4. Remote sensing in Virginia agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Newhouse, M. E.; Dunton, E. M., Jr.; Scott, J. H., Jr.

    1972-01-01

    An experimental investigation, designed to develop and evaluate multispectral sensing techniques used in sensing agricultural crops, is described. Initial studies were designed to detect plant species and associated diseases, soil variations, and cultural practices under natural environment conditions. In addition, crop varieties, age, spacing, plant height, percentage of ground cover, and plant vigor are determined.

  5. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    PubMed Central

    Wang, Kai; Franklin, Steven E.; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS). PMID:22163432

  6. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists.

    PubMed

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).

  7. Practical applications of remote sensing technology

    NASA Technical Reports Server (NTRS)

    Whitmore, Roy A., Jr.

    1990-01-01

    Land managers increasingly are becoming dependent upon remote sensing and automated analysis techniques for information gathering and synthesis. Remote sensing and geographic information system (GIS) techniques provide quick and economical information gathering for large areas. The outputs of remote sensing classification and analysis are most effective when combined with a total natural resources data base within the capabilities of a computerized GIS. Some examples are presented of the successes, as well as the problems, in integrating remote sensing and geographic information systems. The need to exploit remotely sensed data and the potential that geographic information systems offer for managing and analyzing such data continues to grow. New microcomputers with vastly enlarged memory, multi-fold increases in operating speed and storage capacity that was previously available only on mainframe computers are a reality. Improved raster GIS software systems have been developed for these high performance microcomputers. Vector GIS systems previously reserved for mini and mainframe systems are available to operate on these enhanced microcomputers. One of the more exciting areas that is beginning to emerge is the integration of both raster and vector formats on a single computer screen. This technology will allow satellite imagery or digital aerial photography to be presented as a background to a vector display.

  8. Satellite Remote Sensing of Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine; Kaufman, Yoram; Ramaprasad, Jaya; Procopio, Aline; Levin, Zev

    1999-01-01

    Aerosol and cloud impacts on the earth's climate become a recent hot topic in climate studies. Having near future earth observing satellites, EOS-AM1 (Earth Observing System-AM1), ENVISAT (Environmental Satellites) and ADEOS-2 (Advanced Earth Observation Satellite-2), it will be a good timing to discuss how to obtain and use the microphysical parameters of aerosols and clouds for studying their climate impacts. Center for Climate System Research (CCSR) of the University of Tokyo invites you to 'Symposium on synergy between satellite-remote sensing and climate modeling in aerosol and cloud issues.' Here, we like to discuss the current and future issues in the remote sensing of aerosol and cloud microphysical parameters and their climate modeling studies. This workshop is also one of workshop series on aerosol remote sensing held in 1996, Washington D. C., and Meribel, France in 1999. It should be reminded that NASDA/ADEOS-1 & -2 (National Space Development Agency of Japan/Advanced Earth Observation Satellite-1 & -2) Workshop will be held in the following week (Dec. 6-10, 1999), so that this opportunity will be a perfect period for you to attend two meetings for satellite remote sensing in Japan. A weekend in Kyoto, the old capital of Japan, will add a nice memory to your visiting Japan. *Issues in the symposium: 1) most recent topics in aerosol and cloud remot sensing, and 2) utility of satellite products on climate modeling of cloud-aerosol effects.

  9. Soil moisture variability within remote sensing pixels

    SciTech Connect

    Charpentier, M.A.; Groffman, P.M. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper addresses the question of soil moisture variation within the field of view of a remote sensing pixel. Remote sensing is the only practical way to sense soil moisture over large areas, but it is known that there can be large variations of soil moisture within the field of view of a pixel. The difficulty with this is that many processes, such as gas exchange between surface and atmosphere can vary dramatically with moisture content, and a small wet spot, for example, can have a dramatic impact on such processes, and thereby bias remote sensing data results. Here the authors looked at the impact of surface topography on the level of soil moisture, and the interaction of both on the variability of soil moisture sensed by a push broom microwave radiometer (PBMR). In addition the authors looked at the question of whether variations of soil moisture within pixel size areas could be used to assign errors to PBMR generated soil moisture data.

  10. Remote sensing for wind power potential: a prospector's handbook

    SciTech Connect

    Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.

    1983-02-01

    Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

  11. An integrated approach to the remote sensing of floating ice

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Ramseier, R. O.; Weeks, W. F.; Gloersen, P.

    1976-01-01

    Review article on remote sensing applications to glaciology. Ice parameters sensed include: ice cover vs open water, ice thickness, distribution and morphology of ice formations, vertical resolution of ice thickness, ice salinity (percolation and drainage of brine; flushing of ice body with fresh water), first-year ice and multiyear ice, ice growth rate and surface heat flux, divergence of ice packs, snow cover masking ice, behavior of ice shelves, icebergs, lake ice and river ice; time changes. Sensing techniques discussed include: satellite photographic surveys, thermal IR, passive and active microwave studies, microwave radiometry, microwave scatterometry, side-looking radar, and synthetic aperture radar. Remote sensing of large aquatic mammals and operational ice forecasting are also discussed.

  12. Roundtable Explores Remote Sensing for Disaster Relief

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-07-01

    Against a backdrop of recent natural disasters—including the 2004 Indian Ocean tsunami, Hurricane Katrina in 2005, and the 2010 Haiti earthquake—an 8 July roundtable at the U.S. National Academies explored ways to improve the use of remote sensing data before, during, and after disasters. At the “From Reality 2010 to Vision 2020” roundtable in Washington, D. C., speakers from U.S. federal government agencies and the private sector generally agreed that there would likely be continued improvements in remote sensing instrumentation, including reduced size and weight and the capability for more rapid dissemination of remote sensing data. However, they also stressed the need for closer collaboration among agencies and settling political and turf battles, overcoming security and other restrictions such as with sharing high-resolution data, and responding better to user needs.

  13. Remote sensing of soil moisture - Recent advances

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1983-01-01

    Recent advancements in microwave remote sensing of soil moisture include a method for estimating the dependence of the soil dielectric constant on its texture, the use of a percent of field capacity to express soil moisture magnitudes independently of soil texture, methods of estimating soil moisture sampling depth, and models for describing the effect of surface roughness on microwave response in terms of surface height variance and horizontal correlation length, as well as the verification of radiative transfer model predictions of microwave emission from soils and methods for the estimation of vegetation effects on the microwave response to soil moisture. Such researches have demonstrated that it is possible to remotely sense soil moisture in the 0-5 cm soil surface layer, and simulation studies have indicated how remotely sensed surface soil moisture may be used to estimate evapotranspiration rates and root-zone soil moisture.

  14. Laboratory exercises, remote sensing of the environment

    NASA Technical Reports Server (NTRS)

    Mintzer, O.; Ray, J.

    1981-01-01

    The exercises are designed to convey principles and theory of remote sensing, and methodologies of its application to civil engineering and environmental concerns, including agronomy, geography, geology, wildlife, forestry, hydrology, and other related fields. During the exercises the student is introduced to several types of remote sensing represented by imagery from conventional format: panchromatic, black-and-white infrared, color, and infrared, 35mm aerial photography, thermal infrared, radar, multispectral scanner, and LANDSAT. Upon completion of the exercises the student is expected to know: (1) the electromagnetic spectrum, its various wavelength sub-sections and their uses as sensors, (2) the limitations of each sensor, (3) the interpretation techniques used for extracting data from the various types of imagery, and (4) the cost effectiveness of remote sensing procedures for acquiring and evaluating data of the natural environment.

  15. High resolution derivative spectra in remote sensing

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, Tanvir H.; Steven, Michael D.; Clark, Jeremy A.

    1990-01-01

    The use of derivative spectra is an established technique in analytical chemistry for the elimination of background signals and for resolving overlapping spectral features. Application of this technique for tackling analogous problems such as interference from soil background reflectance in the remote sensing of vegetation or for resolving complex spectra of several target species within individual pixels in remote sensing is proposed. Methods for generating derivatives of high spectral resolution data are reviewed. Results of experiments to test the use of derivatives for monitoring chlorosis in vegetation show that derivative spectral indices are superior to conventional broad-band spectral indices such as the near-infrared/red reflectance ratio. Conventional broad-band indices are sensitive to both leaf cover as well as leaf color. New derivative spectral indices which were able to monitor chlorosis unambiguously were identified. Potential areas for the application of this technique in remote sensing are considered.

  16. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Lowe, D. S.; Istvan, L. B.; Roller, N. E. G.; Sellman, A. N.; Wagner, T. W.

    1975-01-01

    The utilization of NASA earth resource survey technology as an important aid in the solution of current problems in resource management and environmental protection in Michigan is discussed. Remote sensing techniques to aid Michigan government agencies were used to achieve the following results: (1) provide data on Great Lakes beach recession rates to establish shoreline zoning ordinances; (2) supply technical justification for public acquisition of land to establish the St. John's Marshland Recreation Area; (3) establish economical and effective methods for performing a statewide wetlands survey; (4) accomplish a variety of regional resource management actions in the Upper Peninsula; and (5) demonstrate improved soil survey methods. The project disseminated information on remote sensing technology and provided advice and assistance to a number of users in Michigan.

  17. Introduction to the physics and techniques of remote sensing

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1987-01-01

    This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.

  18. Geobotanical Remote Sensing for Geothermal Exploration

    SciTech Connect

    Pickles, W L; Kasameyer, P W; Martini, B A; Potts, D C; Silver, E A

    2001-05-22

    This paper presents a plan for increasing the mapped resource base for geothermal exploration in the Western US. We plan to image large areas in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults, surface effluents, historical signatures, and discover subtle hidden faults and hidden thermal systems. Large regions can be imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping faults and effluents the Long Valley Caldera and Mammoth Mountain in California.

  19. Remote sensing as a mineral prospecting technique

    NASA Technical Reports Server (NTRS)

    Meneses, P. R. (Principal Investigator)

    1984-01-01

    Remote sensing and its application as an alternative technique to mineral resource exploration are reviewed. Emphasis is given here to the analysis of the three basic attributes of remote sensing, i.e., spatial attributes related to regional structural mapping, spectral attributes related to rock discrimination and seasonal attributes related to geobotanic anomalies mapping, all of which are employed in mineral exploration. Special emphasis is given to new developments of the Thematic Mapper of the LANDSAT-5, principally with reference to the application of the bands 1.6 and 2.2 microns to map hydrothermally altered rocks and the band of red and blue shift to geobotanical anomalies mapping.

  20. Remote sensing of land surface phenology

    USGS Publications Warehouse

    Meier, G.A.; Brown, J.F.

    2014-01-01

    Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at http://phenology.cr.usgs.gov/index.php.

  1. Monitoring water quality by remote sensing

    NASA Technical Reports Server (NTRS)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  2. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  3. Irrigated lands: Monitoring by remote sensing

    NASA Technical Reports Server (NTRS)

    Epiphanio, J. C. N.; Vitorelli, I.

    1983-01-01

    The use of remote sensing for irrigated areas, especially in the region of Guaira, Brazil (state of Sao Paulo), is examined. Major principles of utilizing LANDSAT data for the detection and mapping of irrigated lands are discussed. In addition, initial results obtained by computer processing of digital data, use of MSS (Multispectral Scanner System)/LANDSAT products, and the availability of new remote sensing products are highlighted. Future activities include the launching of the TM (Thematic Mapper)/LANDSAT 4 with 30 meters of resolution and SPOT (Systeme Probatorie d'Observation de la Terre) with 10 to 20 meters of resolution, to be operational in 1984 and 1986 respectively.

  4. Applications of remote sensing in public health.

    NASA Technical Reports Server (NTRS)

    Barnes, C. M.; Fuller, C. E.; Schneider, H. J.; Kennedy, E. E.; Jones, H. G.; Morrison, D. R.

    1973-01-01

    Current research concerning the determination of the habitat of mosquito vectors of disease is discussed. It is shown how advanced interpretative processes have enabled recognition of the breeding areas of salt marsh mosquitoes and the breeding sites of the mosquito responsible for the transmission of St. Louis strain of encephalitis and of human filariasis. In addition, remote sensing data have also been useful in the study of the habitat of endemic strains of Venezuelan encephalitis virus in Florida. The beginning of the application of remote sensing to such public health aspects as air, water, and urban degradation is noted.

  5. Coronal structure inferred from remote sensing observations

    SciTech Connect

    Feldman, W.C.

    1996-09-01

    Remote-sensing observations of the Sun and inner heliosphere are reviewed to appraise our understanding of the mix of the mechanisms that heat the corona and accelerate the solar wind. An assessment of experimental uncertainties and the basic assumptions needed to translate measurables into physical models, reveals very large fundamental uncertainties in our knowledge of coronal structure near the Sun. We develop a time-dependent, filamentary model of the extended corona that is consistent with a large number of remote sensing observations of the solar atmosphere and the solar wind.

  6. Kite Aerial Photography as a Tool for Remote Sensing

    ERIC Educational Resources Information Center

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  7. Recent progresses in atmospheric remote sensing research in China —Chinese national report on atmospheric remote sensing research in China during 1999 2003

    NASA Astrophysics Data System (ADS)

    Qiu, Jinhuan; Chen, Hongbin

    2004-06-01

    Progresses of atmospheric remote sensing research in China during 1999 2003 are summarily introduced. This research includes: (1) microwave remote sensing of the atmosphere; (2) Lidar remote sensing; (3) remote sensing of aerosol optical properties; and (4) other research related to atmospheric remote sensing, including GPS remote sensing of precipitable water vapor and radiation model development.

  8. Quarterly literature review of the remote sensing of natural resources, third quarter 1976. [bibliography

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Abstracts related to remote sensing instrumentation and techniques, and to the remote sensing of natural resources are presented by the Technology Application Center at the University of New Mexico. Areas of interest included theory, general surveys, and miscellaneous studies; geology and hydrology; agriculture and forestry; marine sciences; and urban and land use. An alphabetically arranged Author/Key Word index is provided.

  9. Collection and analysis of remotely sensed data from the Rhode River Estuary Watershed

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.; Williamson, F. S. L.

    1973-01-01

    The remote sensing study to survey the Rhode River watershed for spray irrigation with secondarily treated sewage is reported. The standardization of Autumn coloration changes with Munsell color chips is described along with the mapping of old field vegetation for the spray irrigation project. The interpretation and verification of salt marsh vegetation by remote sensing of the water shed is discussed.

  10. Remote oil spill sensing system (ROSSS)

    SciTech Connect

    Fornaca, S.; Agravante, H.H.; Eberhard, C.; Hauss, B.I.

    1996-10-01

    To provide tactical information during an oil spill, TRW developed Remote Oil Spill Sensing System (ROSSS). It is an integrated system of airborne sensors for rapid in-situ surveillance and a ground system that provides data analysis and display support at the spill cleanup command center. It provides knowledge of precise location of oil spill and produces timely updates, which are critical for effective spill containment and cleanup operations. It is capable of distinguishing where the bulk of spill exists, which is key to directing cleanup efforts for maximum efficiency. Using a passive microwave radiometric imager as the primary sensor, it provides data acquisition capabilities in both day and night and through haze, fog, and light ram. The high-speed air-to-ground telemetry link permits timely delivery of surveyed data from the spill site to the ground system to aid in the planning and assessment of cleanup strategies. ROSSS has been in service since November, 1992, ready to respond in any oil spill emergencies along the U.S. West Coast. 9 refs., 4 figs.

  11. Capabilities of the DOE Remote Sensing Laboratory`s aerial measuring system

    SciTech Connect

    Riedhauser, S.R.

    1995-09-01

    This report describes the capabilities of the Remote Sensing Laboratory`s aircraft for use in environmental radiation surveys, multispectral (visible, near infrared, and thermal infrared) surveys of vegetation and buildings, and photographic documentation of the areas covered by the two other surveys. The report discusses the technical capabilities of the various systems and presents examples of the data from a recent demonstration survey. To provide a view of the types of surveys the Remote Sensing Laboratory has conducted in the past, the appendices describe several of the previous area surveys and emergency search surveys.

  12. Remote Sensing Simulation Activities for Earthlings

    ERIC Educational Resources Information Center

    Krockover, Gerald H.; Odden, Thomas D.

    1977-01-01

    Suggested are activities using a Polaroid camera to illustrate the capabilities of remote sensing. Reading materials from the National Aeronautics and Space Administration (NASA) are suggested. Methods for (1) finding a camera's focal length, (2) calculating ground dimension photograph simulation, and (3) limiting size using film resolution are…

  13. Remote Sensing Via Satellite: The Canadian Experience

    ERIC Educational Resources Information Center

    Classen, Hans George

    1974-01-01

    Describes the joint effort of Canada and NASA in monitoring the Canadian environment using remote-sensing techniques. The project involves the Earth Resources Technology Satellite and has been used to observe seasonal changes, extent of snow cover, crop growth, sea ice, and land use patterns. (GS)

  14. Thermal remote sensing: theory, sensors, and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Applications of thermal infrared remote sensing for Earth science research are both varied and wide in scope. They range from understanding thermal energy responses that drive land-atmosphere energy exchanges in the hydrologic cycle, to measurement of dielectric surface properties for snow, ice, an...

  15. Satellite Remote Sensing for Monitoring and Assessment

    EPA Science Inventory

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  16. Multisensor image fusion guidelines in remote sensing

    NASA Astrophysics Data System (ADS)

    Pohl, C.

    2016-04-01

    Remote sensing delivers multimodal and -temporal data from the Earth's surface. In order to cope with these multidimensional data sources and to make the most of them, image fusion is a valuable tool. It has developed over the past few decades into a usable image processing technique for extracting information of higher quality and reliability. As more sensors and advanced image fusion techniques have become available, researchers have conducted a vast amount of successful studies using image fusion. However, the definition of an appropriate workflow prior to processing the imagery requires knowledge in all related fields - i.e. remote sensing, image fusion and the desired image exploitation processing. From the findings of this research it can be seen that the choice of the appropriate technique, as well as the fine-tuning of the individual parameters of this technique, is crucial. There is still a lack of strategic guidelines due to the complexity and variability of data selection, processing techniques and applications. This paper gives an overview on the state-of-the-art in remote sensing image fusion including sensors and applications. Putting research results in image fusion from the past 15 years into a context provides a new view on the subject and helps other researchers to build their innovation on these findings. Recommendations of experts help to understand further needs to achieve feasible strategies in remote sensing image fusion.

  17. Remote sensing of plant functional types.

    PubMed

    Ustin, Susan L; Gamon, John A

    2010-06-01

    Conceptually, plant functional types represent a classification scheme between species and broad vegetation types. Historically, these were based on physiological, structural and/or phenological properties, whereas recently, they have reflected plant responses to resources or environmental conditions. Often, an underlying assumption, based on an economic analogy, is that the functional role of vegetation can be identified by linked sets of morphological and physiological traits constrained by resources, based on the hypothesis of functional convergence. Using these concepts, ecologists have defined a variety of functional traits that are often context dependent, and the diversity of proposed traits demonstrates the lack of agreement on universal categories. Historically, remotely sensed data have been interpreted in ways that parallel these observations, often focused on the categorization of vegetation into discrete types, often dependent on the sampling scale. At the same time, current thinking in both ecology and remote sensing has moved towards viewing vegetation as a continuum rather than as discrete classes. The capabilities of new remote sensing instruments have led us to propose a new concept of optically distinguishable functional types ('optical types') as a unique way to address the scale dependence of this problem. This would ensure more direct relationships between ecological information and remote sensing observations. PMID:20569415

  18. Remote sensing of geobotanical relations in Georgia

    NASA Technical Reports Server (NTRS)

    Arden, D. D., Jr.; Westra, R. N.

    1977-01-01

    The application of remote sensing to geological investigations, with special attention to geobotanical factors, was evaluated. The general areas of investigation included: (1) recognition of mineral deposits; (2) geological mapping; (3) delineation of geological structure, including areas of complex tectonics; and (4) limestone areas where ground withdrawal had intensified surface collapse.

  19. Remote sensing analysis of forest disturbances

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P. (Inventor)

    2012-01-01

    The present invention provides systems and methods to automatically analyze Landsat satellite data of forests. The present invention can easily be used to monitor any type of forest disturbance such as from selective logging, agriculture, cattle ranching, natural hazards (fire, wind events, storms), etc. The present invention provides a large-scale, high-resolution, automated remote sensing analysis of such disturbances.

  20. Remote Sensing Analysis of Forest Disturbances

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P. (Inventor)

    2015-01-01

    The present invention provides systems and methods to automatically analyze Landsat satellite data of forests. The present invention can easily be used to monitor any type of forest disturbance such as from selective logging, agriculture, cattle ranching, natural hazards (fire, wind events, storms), etc. The present invention provides a large-scale, high-resolution, automated remote sensing analysis of such disturbances.

  1. Remote sensing and today's forestry issues

    NASA Technical Reports Server (NTRS)

    Sayn-Wittgenstein, L.

    1977-01-01

    The actual and the desirable roles of remote sensing in dealing with current forestry issues, such as national forest policy, supply and demand for forest products and competing demands for forest land are discussed. Topics covered include wood shortage, regional timber inventories, forests in tropical and temperate zones, Skylab photography, forest management and protection, available biomass studies, and monitoring.

  2. Use of remote sensing in facility siting

    NASA Technical Reports Server (NTRS)

    Moon, M. L.; Hunt, R. F.; Mcfall, J., Jr.; Pijanowski, J. A.; Price, R. D.

    1978-01-01

    Environmental parameters important to, and necessary for, an environment impact assessment in terms of site selection for an electric power plant are defined. Remote sensing techniques and/or instrumentation applicable to site evaluation are described. Problem areas are discussed and recommendations given.

  3. Using remote sensing to monitor global change

    USGS Publications Warehouse

    Ramsey, Elijah W.

    1997-01-01

    To properly respond to natural and human-induced stresses to wetlands, resource managers must consider their functions and values. Remote sensing is an important tool for monitoring wetland responses to changes in the hydrologic regime and water quality caused by global climate change and sea-level rise.

  4. OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING

    EPA Science Inventory

    The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...

  5. Second Eastern Regional Remote Sensing Applications Conference

    NASA Technical Reports Server (NTRS)

    Imhoff, M. L. (Editor); Witt, R. G. (Editor); Kugelmann, D. (Editor)

    1981-01-01

    Participants from state and local governments share experiences in remote sensing applications with one another and with users in the Federal government, universities, and the private sector during technical sessions and forums covering agriculture and forestry; land cover analysis and planning; surface mining and energy; data processing; water quality and the coastal zone; geographic information systems; and user development programs.

  6. Remote sensing of volcanos and volcanic terrains

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Francis, Peter W.; Wilson, Lionel; Pieri, David C.; Self, Stephen; Rose, William I.; Wood, Charles A.

    1989-01-01

    The possibility of using remote sensing to monitor potentially dangerous volcanoes is discussed. Thermal studies of active volcanoes are considered along with using weather satellites to track eruption plumes and radar measurements to study lava flow morphology and topography. The planned use of orbiting platforms to study emissions from volcanoes and the rate of change of volcanic landforms is considered.

  7. Summary of 1971 land remote sensing investigations

    NASA Technical Reports Server (NTRS)

    Mooneyhan, D. W.

    1972-01-01

    Techniques to provide land use up-date information using remotely sensed data and automatic data processing technology are being developed. The approach utilizes multispectral scanners, the associated data analysis station, and the pattern recognition programs to identify and classify land surface characteristics, including wetlands, and to convert these data to demonstration type experiments in the various disciplines.

  8. Remote Sensing for Climate and Environmental Change

    NASA Technical Reports Server (NTRS)

    Evans, Diane

    2011-01-01

    Remote sensing is being used more and more for decision-making and policy development. Specific examples are: (1) Providing constraints on climate models used in IPCC assessments (2) Framing discussions about greenhouse gas monitoring (3) Providing support for hazard assessment and recovery.

  9. Remote sensing of plant functional types.

    PubMed

    Ustin, Susan L; Gamon, John A

    2010-06-01

    Conceptually, plant functional types represent a classification scheme between species and broad vegetation types. Historically, these were based on physiological, structural and/or phenological properties, whereas recently, they have reflected plant responses to resources or environmental conditions. Often, an underlying assumption, based on an economic analogy, is that the functional role of vegetation can be identified by linked sets of morphological and physiological traits constrained by resources, based on the hypothesis of functional convergence. Using these concepts, ecologists have defined a variety of functional traits that are often context dependent, and the diversity of proposed traits demonstrates the lack of agreement on universal categories. Historically, remotely sensed data have been interpreted in ways that parallel these observations, often focused on the categorization of vegetation into discrete types, often dependent on the sampling scale. At the same time, current thinking in both ecology and remote sensing has moved towards viewing vegetation as a continuum rather than as discrete classes. The capabilities of new remote sensing instruments have led us to propose a new concept of optically distinguishable functional types ('optical types') as a unique way to address the scale dependence of this problem. This would ensure more direct relationships between ecological information and remote sensing observations.

  10. Remote sensing information sciences research group

    NASA Technical Reports Server (NTRS)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1988-01-01

    Research conducted under this grant was used to extend and expand existing remote sensing activities at the University of California, Santa Barbara in the areas of georeferenced information systems, matching assisted information extraction from image data and large spatial data bases, artificial intelligence, and vegetation analysis and modeling. The research thrusts during the past year are summarized. The projects are discussed in some detail.

  11. Remote Sensing Techniques for Monitoring Aquatic Vegetation

    NASA Astrophysics Data System (ADS)

    Blanco, Alfonso

    Hydrilla is an important submerged aquatic vegetation because it has a large capacity to absorb pollutants and it is an indicator of the eutrophic status of a waterbody. Monitoring and restoration of submerged aquatic vegetation is key for the preservation and restoration of the Chesapeake Bay. Remote sensing techniques have been used for assessing wetlands and non-invasive aquatic species, but there is limited studies of hydrilla monitoring combined with space-borne, airborne and in-situ remote sensing measurements for detecting and mapping hydrilla infestation. The first objective of this research was to establish a database of hydrilla spectral signatures from an experimental tank and from a field setting using a handheld spectrometer. The spectral signatures collected will be used to identify the optimal spectral and spatial characteristics that are required to identify and classify the distribution of hydrilla canopies in water bodies. The second objective is to process and analyze two hyperspectral images from a space-borne (Hyperion) and airborne (AISA) sensors with ENVI for detecting and mapping the infestation of hydrilla vertillicata in a coastal estuary in Chesapeake Bay. The third objective was to validate the satellite and airborne hyperspectral images with the spectral signatures collected with the in-situ field measurements. In addition, the Hyperion and AISA imaging results were compared with ground surveys and aerial photos collected by the Maryland Department of Natural Resources and the Virginia Institute of Marine Sciences for verifying the extent and the location of the hydrilla canopies. The hyperspectral analysis of both sensors provided for a dual results, one is the identification and classification of hydrilla from hyperspectral imaging sensors and secondly the identification of algae blooms in very productive waters. A hydrilla spectral signature database was established and housed in GMU's EastFIRE Lab of Environmental Science and

  12. Hyperspectral Remote Sensing of Foliar Nitrogen Content

    NASA Technical Reports Server (NTRS)

    Knyazikhin, Yuri; Schull, Mitchell A.; Stenberg, Pauline; Moettus, Matti; Rautiainen, Miina; Yang, Yan; Marshak, Alexander; Carmona, Pedro Latorre; Kaufmann, Robert K.; Lewis, Philip; Disney, Mathias I.; Vanderbilt, Vern; Davis, Anthony B.; Baret, Frederic; Jacquemoud, Stephane; Lyapustin, Alexei; Myneni, Ranga B.

    2013-01-01

    A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact - it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.

  13. Combining Remote Sensing with in situ Measurements for Riverine Characterization

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Palmsten, M. L.; Simeonov, J.; Dobson, D. W.; Zarske, K.; Puleo, J. A.; Holland, K. T.

    2014-12-01

    At the U.S. Naval Research Laboratory we are employing a wide variety of novel remote sensing techniques combined with traditional in situ sampling to characterize riverine hydrodynamics and morphodynamics. Surface currents were estimated from particle image velocimetry (PIV) using imagery from visible to infrared bands, from both fixed and airborne platforms. Terrestrial LIDAR has been used for subaerial mapping from a fixed platform. Additionally, LIDAR has been combined with hydrographic surveying (multibeam) in mobile scanning mode using a small boat. Hydrographic surveying (side scan) has also been performed using underwater autonomous vehicles. Surface drifters have been deployed in combination with a remotely operated, floating acoustic Doppler current profiler. Other fixed platform, in situ sensors, such as pencil beam and sector scanning sonars, acoustic Doppler velocimeters, and water level sensors have been deployed. We will present an overview of a variety of measurements from different rivers around the world focusing on validation examples of remotely sensed quantities with more traditional in situ measurements. Finally, we will discuss long-term goals to use remotely sensed data within an integrated environmental modeling framework.

  14. NASA's Applied Remote Sensing Training (ARSET) Webinar Series

    Atmospheric Science Data Center

    2016-07-12

    NASA's Applied Remote Sensing Training (ARSET) Webinar Series ... Quality Applications Webinar Series Beginning in July, NASA’s Applied Remote Sensing Training Program (ARSET) will host a 5-part ...

  15. Remote sensing using MIMO systems

    DOEpatents

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  16. GPS Remote Sensing Measurements Using Aerosonde UAV

    NASA Technical Reports Server (NTRS)

    Grant, Michael S.; Katzberg, Stephen J.; Lawrence, R. W.

    2005-01-01

    In February 2004, a NASA-Langley GPS Remote Sensor (GPSRS) unit was flown on an Aerosonde unmanned aerial vehicle (UAV) from the Wallops Flight Facility (WFF) in Virginia. Using direct and surface-reflected 1.575 GHz coarse acquisition (C/A) coded GPS signals, remote sensing measurements were obtained over land and portions of open water. The strength of the surface-reflected GPS signal is proportional to the amount of moisture in the surface, and is also influenced by surface roughness. Amplitude and other characteristics of the reflected signal allow an estimate of wind speed over open water. In this paper we provide a synopsis of the instrument accommodation requirements, installation procedures, and preliminary results from what is likely the first-ever flight of a GPS remote sensing instrument on a UAV. The correct operation of the GPSRS unit on this flight indicates that Aerosonde-like UAV's can serve as platforms for future GPS remote sensing science missions.

  17. Remote sensing of natural resources: Quarterly literature review

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A quarterly review of technical literature concerning remote sensing techniques is presented. The format contains indexed and abstracted materials with emphasis on data gathering techniques performed or obtained remotely from space, aircraft, or ground-based stations. Remote sensor applications including the remote sensing of natural resources are presented.

  18. Reflections on Earth--Remote-Sensing Research from Your Classroom.

    ERIC Educational Resources Information Center

    Campbell, Bruce A.

    2001-01-01

    Points out the uses of remote sensing in different areas, and introduces the program "Reflections on Earth" which provides access to basic and instructional information on remote sensing to students and teachers. Introduces students to concepts related to remote sensing and measuring distances. (YDS)

  19. Education in Environmental Remote Sensing: Potentials and Problems.

    ERIC Educational Resources Information Center

    Kiefer, Ralph W.; Lillesand, Thomas M.

    1983-01-01

    Discusses remote sensing principles and applications and the status and needs of remote sensing education in the United States. A summary of the fundamental policy issues that will determine remote sensing's future role in environmental and resource managements is included. (Author/BC)

  20. History and future of remote sensing technology and education

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1980-01-01

    A historical overview of the discovery and development of photography, related sciences, and remote sensing technology is presented. The role of education to date in the development of remote sensing is discussed. The probable future and potential of remote sensing and training is described.

  1. An introduction to quantitative remote sensing. [data processing

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Russell, J.

    1974-01-01

    The quantitative approach to remote sensing is discussed along with the analysis of remote sensing data. Emphasis is placed on the application of pattern recognition in numerically oriented remote sensing systems. A common background and orientation for users of the LARS computer software system is provided.

  2. Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...

  3. Remote rainfall sensing for landslide hazard analysis

    USGS Publications Warehouse

    Wieczorek, Gerald F.; McWreath, Harry; Davenport, Clay

    2001-01-01

    Methods of assessing landslide hazards and providing warnings are becoming more advanced as remote sensing of rainfall provides more detailed temporal and spatial data on rainfall distribution. Two recent landslide disasters are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. For the June 27, 1995, storm in Madison County, Virginia, USA, National Weather Service WSR-88D Doppler radar provided rainfall estimates based on a relation between cloud reflectivity and moisture content on a 1 sq. km. resolution every 6 minutes. Ground-based measurements of rainfall intensity and precipitation total, in addition to landslide timing and distribution, were compared with the radar-derived rainfall data. For the December 14-16, 1999, storm in Vargas State, Venezuela, infrared sensing from the GOES-8 satellite of cloud top temperatures provided the basis for NOAA/NESDIS rainfall estimates on a 16 sq. km. resolution every 30 minutes. These rainfall estimates were also compared with ground-based measurements of rainfall and landslide distribution. In both examples, the remotely sensed data either overestimated or underestimated ground-based values by up to a factor of 2. The factors that influenced the accuracy of rainfall data include spatial registration and map projection, as well as prevailing wind direction, cloud orientation, and topography.

  4. Microwave remote sensing of ionized air.

    SciTech Connect

    Liao, S.; Gopalsami, N.; Heifetz, A.; Elmer, T.; Fiflis, P.; Koehl, E. R.; Chien, H. T.; Raptis, A. C.

    2011-07-01

    We present observations of microwave scattering from ambient room air ionized with a negative ion generator. The frequency dependence of the radar cross section of ionized air was measured from 26.5 to 40 GHz (Ka-band) in a bistatic mode with an Agilent PNA-X series (model N5245A) vector network analyzer. A detailed calibration scheme is provided to minimize the effect of the stray background field and system frequency response on the target reflection. The feasibility of detecting the microwave reflection from ionized air portends many potential applications such as remote sensing of atmospheric ionization and remote detection of radioactive ionization of air.

  5. Role of remote sensing in documenting living resources

    NASA Technical Reports Server (NTRS)

    Wagner, P. E.; Anderson, R. R.; Brun, B.; Eisenberg, M.; Genys, J. B.; Lear, D. W., Jr.; Miller, M. H.

    1978-01-01

    Specific cases of known or potentially useful applications of remote sensing in assessing biological resources are discussed. It is concluded that the more usable remote sensing techniques relate to the measurement of population fluctuations in aquatic systems. Sensing of the flora and the fauna of the Bay is considered with emphasis on direct sensing of aquatic plant populations and of water quality. Recommendations for remote sensing projects are given.

  6. Depolarization remote sensing by orthogonality breaking.

    PubMed

    Fade, Julien; Alouini, Mehdi

    2012-07-27

    A new concept devoted to sensing the depolarization strength of materials from a single measurement is proposed and successfully validated on a variety of samples. It relies on the measurement of the orthogonality breaking between two orthogonal states of polarization after interaction with the material to be characterized. Due to orthogonality preservation between the two states after propagation in birefringent media, this measurement concept is shown to be perfectly suited to depolarization remote sensing through fibers, opening the way to real-time depolarization endoscopy.

  7. Review of oil spill remote sensing.

    PubMed

    Fingas, Merv; Brown, Carl

    2014-06-15

    Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing.

  8. Practical application of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Phelps, R. A.

    1975-01-01

    Remote sensing program imagery from several types of platforms, from light aircraft to the LANDSAT (ERTS) satellites, have been utilized during the past few years, with preference for inexpensive imagery over expensive magnetic tapes. Emphasis has been on practical application of remote sensing data to increase crop yield by decreasing plant stress, disease, weeds and undesirable insects and by improving irrigation. Imagery obtained from low altitudes via aircraft provides the necessary resolution and complements but does not replace data from high altitude aircraft, Gemini and Apollo spacecraft, Skylab space station and LANDSAT satellites. Federal government centers are now able to supply imagery within about thirty days from data of order. Nevertheless, if the full potential of space imagery in practical agricultural operations is to be realized, the time span from date of imaging to user application needs to be shortened from the current several months to not more than two weeks.

  9. Computer applications in remote sensing education

    NASA Technical Reports Server (NTRS)

    Danielson, R. L.

    1980-01-01

    Computer applications to instruction in any field may be divided into two broad generic classes: computer-managed instruction and computer-assisted instruction. The division is based on how frequently the computer affects the instructional process and how active a role the computer affects the instructional process and how active a role the computer takes in actually providing instruction. There are no inherent characteristics of remote sensing education to preclude the use of one or both of these techniques, depending on the computer facilities available to the instructor. The characteristics of the two classes are summarized, potential applications to remote sensing education are discussed, and the advantages and disadvantages of computer applications to the instructional process are considered.

  10. Remote sensing for disaster mitigation of Sinabung

    NASA Astrophysics Data System (ADS)

    Tampubolon, T.; Yanti, J.

    2016-05-01

    Indonesia, a country with many active volcanoes, potentially occur natural disaster due to eruptions. One of volcanoes at Indonesia was Sinabung mountain, that located on Karo Regency, North Sumatera 3°10'12″ N 98°23'31" E, 2,460 masl. A fasile and new observation method for mapping the erupted areas was remote sensing. the remote sensing consisted of Landsat 8 OLI that was published on February 8th 2015 as input data ENVI 4.7 and ArcGIS 10 as mapping tools. The Land surface temperature (LST) was applied on mapping this resulted. The highest LST was 90.929657 °C. In addition, the LST distribution indicated that the flowing lava through south east. Therefore, the south east areas should be considered as mitigated areas.

  11. Symmetry properties in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.; Li, F. K.

    1992-01-01

    This paper presents the relations among polarimetric backscattering coefficients from the viewpoint of symmetry groups. Symmetry of geophysical media encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered for both reciprocal and nonreciprocal cases. On the basis of the invariance under symmetry transformations in the linear polarization basis, the scattering coefficients are related by a set of equations which restrict the number of independent parameters in the polarimetric covariance matrix. The properties derived under these transformations are general and apply to all scattering mechanisms in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the derived symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is discussed. As a practical application, the results from this paper provide new methods for the external calibration of polarimetric radars without the deployment of man-made calibration targets.

  12. Instrumentation for remote sensing over fiber optics

    NASA Astrophysics Data System (ADS)

    Hirschfeld, T.; Haugen, G.; Milanovich, F. P.

    1983-09-01

    The sensing and analytical abilities of the laser-fluorescence spectrometer was extended beyond the physical confines of the laboratory by means of communications-grade optical fibers. These fiber probes are extremely rugged, compared with sensitive laboratory equipment, and also extremely inexpensive. Sensitive chemical analyses may be performed in hostile environments without risking damage to the laser and the spectrometer. Special-purpose optrodes that are sensitive to selected chemicals were produced. With multiplexing, a number of fibers whose terminals are at widely scattered locations, gathering information in one central instrument without the expense and delay involved in manual sample gathering are scanned. A remote analyzer for monitoring rare earth ion migration in a nuclear-waste repository, an environment too hostile for any previous remote sensing device is being developed. Optrodes sensitive to a wide variety of non-chemical stimuli are being developed.

  13. Land cover mapping from remote sensing data

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Saleh, N. M.; Wong, C. J.; AlSultan, Sultan

    2006-04-01

    Remote sensing data have been widely used for land cover mapping using supervised and unsupervised methods. The produced land cover maps are useful for various applications. This paper examines the use of remote sensing data for land cover mapping over Saudi Arabia. Three supervised classification techniques Maximum Likelihood, ML, Minimum Distance-to-Mean, MDM, and Parallelepiped, P were applied to the imageries to extract the thematic information from the acquired scene by using PCI Geomatica software. Training sites were selected within each scene. This study shows that the ML classifier was the best classifier and produced superior results and achieved a high degree of accuracy. The preliminary analysis gave promising results of land cover mapping over Saudi Arabia by using Landsat TM imageries.

  14. Microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Wang, J. R.

    1988-01-01

    Knowledge of soil moisture is important to many disciplines, such as agriculture, hydrology, and meteorology. Soil moisture distribution of vast regions can be measured efficiently only with remote sensing techniques from airborne or satellite platforms. At low microwave frequencies, water has a much larger dielectric constant than dry soil. This difference manifests itself in surface emissivity (or reflectivity) change between dry and wet soils, and can be measured by a microwave radiometer or radar. The Microwave Sensors and Data Communications Branch is developing microwave remote sensing techniques using both radar and radiometry, but primarily with microwave radiometry. The efforts in these areas range from developing algorithms for data interpretation to conducting feasibility studies for space systems, with a primary goal of developing a microwave radiometer for soil moisture measurement from satellites, such as EOS or the Space Station. These efforts are listed.

  15. Use of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Powell, N. L.

    1975-01-01

    The remote sensing studies of (a) cultivated peanut areas in Southeastern Virginia; (b) studies at the Virginia Truck and Ornamentals Research Station near Painter, Virginia, the Eastern Virginia Research Station near Warsaw, Virginia, the Tidewater Research and Continuing Education Center near Suffolk, Virginia, and the Southern Piedmont Research and Continuing Education Center Blackstone, Virginia; and (c) land use classification studies at Virginia Beach, Virginia are presented. The practical feasibility of using false color infrared imagery to detect and determine the areal extent of peanut disease infestation of Cylindrocladium black rot and Sclerotinia blight is demonstrated. These diseases pose a severe hazard to this major agricultural food commodity. The value of remote sensing technology in terrain analyses and land use classification of diverse land areas is also investigated. Continued refinement of spectral signatures of major agronomic crops and documentation of pertinent environmental variables have provided a data base for the generation of an agricultural-environmental prediction model.

  16. Measurement Strategies for Remote Sensing Applications

    SciTech Connect

    Weber, P.G.; Theiler, J.; Smith, B.; Love, S.P.; LaDelfe, P.C.; Cooke, B.J.; Clodius, W.B.; Borel, C.C.; Bender, S.C.

    1999-03-06

    Remote sensing has grown to encompass many instruments and observations, with concomitant data from a huge number of targets. As evidenced by the impressive growth in the number of published papers and presentations in this field, there is a great deal of interest in applying these capabilities. The true challenge is to transition from directly observed data sets to obtaining meaningful and robust information about remotely sensed targets. We use physics-based end-to-end modeling and analysis techniques as a framework for such a transition. Our technique starts with quantified observables and signatures of a target. The signatures are propagated through representative atmospheres to realistically modeled sensors. Simulated data are then propagated through analysis routines, yielding measurements that are directly compared to the original target attributes. We use this approach to develop measurement strategies which ensure that our efforts provide a balanced approach to obtaining substantive information on our targets.

  17. Texture transforms of remote sensing data

    NASA Technical Reports Server (NTRS)

    Irons, J. R.; Petersen, G. W.

    1981-01-01

    Tone and texture are fundamental interrelated visual concepts. The concepts are used for the digital analysis of remotely sensed image data. The reported investigation had the objective to develop software for the quantification of image texture and to apply the texture information to both image enhancement and thematic classification of remotely sensed data. The quantitative texture information was applied to the analysis of Landsat-2 Multispectral Scanner Subsystem (MSS) data. Attention is given to the characterization of image texture, textured transformations, the subtext program, and a description of methods and results. It is pointed out that the inability to use the texture transforms of the Landsat MSS data for the thematic mapping of the study area's land cover contrasts sharply with the reported results of the textural analysis of digitized aerial photography by Hsu (1978).

  18. NORSEX 1979 microwave remote sensing data report

    NASA Technical Reports Server (NTRS)

    Hennigar, H. F.; Schaffner, S. K.

    1982-01-01

    Airborne microwave remote sensing measurements obtained by NASA Langley Research Center in support of the 1979 Norwegian Remote Sensing Experiment (NORSEX) are summarized. The objectives of NORSEX were to investigate the capabilities of an active/passive microwave system to measure ice concentration and type in the vicinity of the marginal ice zone near Svalbard, Norway and to apply microwave techniques to the investigation of a thermal oceanic front near Bear Island, Norway. The instruments used during NORSEX include the stepped frequency microwave radiometer, airborne microwave scatterometer, precision radiation thermometer and metric aerial photography. The data are inventoried, summarized, and presented in a user-friendly format. Data summaries are presented as time-history plots which indicate when and where data were obtained as well as the sensor configuration. All data are available on nine-track computer tapes in card-image format upon request to the NASA Langley Technical Library.

  19. Approaches to remote sensing data analysis

    USGS Publications Warehouse

    Pettinger, Lawrence R.

    1978-01-01

    Objectives: To present an overview of the essential steps in the remote sensing data analysis process, and to compare and contrast manual (visual) and automated analysis methods Rationale: This overview is intended to provide a framework for choosing a manual of digital analysis approach to collecting resource information. It can also be used as a basis for understanding/evaluating invited papers and poster sessions during the Symposium

  20. Flood Management Enhancement Using Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Romanowski, Gregory J.

    1997-01-01

    SENTAR, Inc., entered into a cooperative agreement with NASA Goddard Space Flight Center (GSFC) in December 1994. The intent of the NASA Cooperative Agreement was to stimulate broad public use, via the Internet, of the very large remote sensing databases maintained by NASA and other agencies, thus stimulating U.S. economic growth, improving the quality of life, and contributing to the implementation of a National Information Infrastructure. SENTAR headed a team of collaborating organizations in meeting the goals of this project. SENTAR's teammates were the NASA Marshall Space Flight Center (MSFC) Global Hydrology and Climate Center (GHCC), the U.S. Army Space and Strategic Defense Command (USASSDC), and the Alabama Emergency Management Agency (EMA). For this cooperative agreement, SENTAR and its teammates accessed remotely sensed data in the Distributed Active Archive Centers, and other available sources, for use in enhancing the present capabilities for flood disaster management by the Alabama EMA. The project developed a prototype software system for addressing prediction, warning, and damage assessment for floods, though it currently focuses on assessment. The objectives of the prototype system were to demonstrate the added value of remote sensing data for emergency management operations during floods and the ability of the Internet to provide the primary communications medium for the system. To help achieve these objectives, SENTAR developed an integrated interface for the emergency operations staff to simplify acquiring and manipulating source data and data products for use in generating new data products. The prototype system establishes a systems infrastructure designed to expand to include future flood-related data and models or to include other disasters with their associated remote sensing data requirements and distributed data sources. This report covers the specific work performed during the seventh, and final, milestone period of the project, which

  1. Remote Sensing of Global Wetland Dynamics

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine; Prigent, Catherine; Birkett, Charon; Coe, Mike; Hasen, James E. (Technical Monitor)

    2000-01-01

    Although natural wetlands only cover about 4% of the earth's ice-free land surface, they are the world's largest methane (CH4) source and the only one dominated by climate. In addition, wetlands affect climate by modulating temperatures and heat fluxes, storing water, increasing evaporation, and altering the seasonality of runoff and river discharge to the oceans. Current CH4 emissions from wetlands are relatively well understood but the sensitivity of wetlands and their emissions to climate variations remains the largest uncertainty in the global CH4 cycle and could strongly influence predictions of future climate. Therefore, characterizing climate-sensitive processes prevailing in the world's wetlands is crucial to understanding and predicting physical and biogeochemical responses of wetlands to interannual and longer-term climate variations. Recent research has resulted in the first generation of models to predict methane emissions from wetlands but the models must still be applied to static data on wetland distributions. Moreover, no models currently exist to realistically predict the distribution and dynamics of wetlands themselves for the current, or any other, climate. The dominant obstacle to modeling wetland dynamics has been lack of remote sensing techniques and data useful for characterizing quantitatively the seasonal and interannual variations of wetlands. We report on initial remote sensing studies undertaken to validate a global hydrological model linking rivers, takes and wetlands. Using a combination of SSM/I microwave and TOPEX Poseidon altimetry data sets, we developed and applied techniques to quantify inundation extent and duration for several large wetlands in tropical Africa and South America. Our initial results indicate that seasonally-inundated wetlands can be well characterized over large spatial scales and at monthly time scales using these remote sensing data. The results also confirm that currently available remote sensing products can

  2. Post senescent grass canopy remote sensing

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1978-01-01

    Analysis of in situ collected spectral reflectance data from a dormant or senescent grass canopy showed a direct relationship existed between spectral reflectance and biomass for the 0.50-0.80 micron spectral region. The data, collected four weeks after the end of the growing season, indicated that post senescent remote sensing of grass canopy biomass is possible and helps to elucidate the spectral contribution of recently dead vegetation in mixed live/dead canopy situations.

  3. Structural analysis techniqes for remote sensing

    NASA Technical Reports Server (NTRS)

    Shapiro, L. G.

    1982-01-01

    The structural analysis of remotely sensed imagery is defined and basic techniques for implementing the process are described. Structural analysis uses knowledge of the properties of an entity, its parts and their relationships, and the relationships in which it participates at a higher level to locate and recognize objects in a visual scene. The representation of structural knowledge, the development of algorithms for using the knowledge to help analyze an image, and techniques for storage and retrieval of relational models are addressed.

  4. Eastern Regional Remote Sensing Applications Conference

    NASA Technical Reports Server (NTRS)

    Short, N. M. (Editor)

    1981-01-01

    The roles and activities of NASA and the National Conference of State Legislatures in fostering remote sensing technology utilization by the states and in promoting interstate communication and cooperation are reviewed. The reduction and interpretation of LANDSAT MSS and aerial reconnaissance data for resources management and environment assessment are described as well as resource information systems, and the value of SEASAT synthetic aperture radar and LANDSAT 4 data.

  5. Photographic Remote Sensing of Sick Citrus Trees

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.

    1971-01-01

    Remote sensing with infrared color aerial photography (Kodak Ektachrome Infrared Aero 8443 film) for detecting citrus tree anomalies is described. Illustrations and discussions are given for detecting nutrient toxicity symptoms, for detecting foot rot and sooty mold fungal diseases, and for distinguishing among citrus species. Also, the influence of internal leaf structure on light reflectance, transmittance, and absorptance are considered; and physiological and environmental factors that affect citrus leaf light reflectance are reviewed briefly and illustrated.

  6. The Fundamental Framework of Remote Sensing Validation System

    NASA Astrophysics Data System (ADS)

    Jiang, X.-G.; Xi, X.-H.; Wu, M.-J.; Li, Z.-L.

    2009-04-01

    Remote sensing is a very complicated course. It is influenced by many factors, such as speciality of remote sensing sensor, radiant transmission characteristic of atmosphere, work environment of remote sensing platform, data transmission, data reception, data processing, and property of observed object etc. Whether the received data is consistent with the design specifications? Can the data meet the demands of remote sensing applications? How about the accuracy of the data products, retrieval products and application products of remote sensing? It is essential to carry out the validation to assess the data quality and application potential. Validation is effective approach to valuate remote sensing products. It is the significant link between remote sensing data and information. Research on remote sensing validation is very important for sensor development, data quality analysis and control. This paper focuses on the study of remote sensing validation and validation system. Different from the previous work done by other researchers, we study the validation from the viewpoint of systematic engineering considering that validation is involved with many aspects as talked about. Validation is not just a single and simple course. It is complicated system. Validation system is the important part of whole earth observation system. First of all, in this paper the category of remote sensing validation is defined. Remote sensing validation includes not only the data products validation, but also the retrieval products validation and application products validation. Second, the new concept, remote sensing validation system, is proposed. Then, the general framework, software structure and functions of validation system are studied and put forward. The validation system is composed of validation field module, data acquirement module, data processing module, data storage and management module, data scaling module, and remote sensing products validation module. And finally the

  7. Center of Excellence in Remote Sensing at SDSM&T

    NASA Technical Reports Server (NTRS)

    Price Maribeth H.

    1999-01-01

    The College of Earth Systems at the South Dakota School of Mines and Technology established a Center for Remote Sensing to consolidate and coordinate the educational and research thrusts from different parts of campus into unified center with a focus on applications of remote sensing data in integrated environmental assessments. The threefold mission objectives of the Center are: 1) To educate students and the community in the principles and applications of remote sensing 2) To facilitate use of remote sensing in research coupling earth modeling, monitoring, and GIS 3) To distribute remote sensing data and expertise to regional federal, state, tribal, and local agencies.

  8. Remote sensing techniques for support of coastal zone resource management.

    NASA Technical Reports Server (NTRS)

    Piland, R. O.

    1973-01-01

    Description of remote sensing studies carried out for the purpose of developing and/or demonstrating techniques which can be employed for land use inventory, marsh vegetation classification, and water characteristics surveys. Attention is given to results obtained with (1) photo interpretation techniques and procedures for the development of land use information from high-altitude aircraft and satellite imagery, (2) computer based pattern recognition techniques utilizing multispectral scanner data for marsh vegetation classification, and (3) infrared and microwave techniques for the monitoring and surveying of coastal water temperature and salinity characteristics.

  9. Compositing multitemporal remote sensing data sets

    USGS Publications Warehouse

    Qi, J.; Huete, A.R.; Hood, J.; Kerr, Y.

    1993-01-01

    To eliminate cloud and atmosphere-affected pixels, the compositing of multi temporal remote sensing data sets is done by selecting the maximum vale of the normalized different vegetation index (NDVI) within a compositing period. The NDVI classifier, however, is strongly affected by surface type and anisotropic properties, sensor viewing geometries, and atmospheric conditions. Consequently, the composited, multi temporal, remote sensing data contain substantial noise from these external conditions. Consequently, the composited, multi temporal, remote sensing data contain substantial noise from these external effects. To improve the accuracy of compositing products, two key approaches can be taken: one is to refine the compositing classifier (NDVI) and the other is to improve existing compositing algorithms. In this project, an alternative classifier was developed and an alternative pixel selection criterion was proposed for compositing. The new classifier and the alternative compositing algorithm were applied to an advanced very high resolution radiometer data set of different biome types in the United States. The results were compared with the maximum value compositing and the best index slope extraction algorithms. The new approaches greatly reduced the high frequency noises related to the external factors and repainted more reliable data. The results suggest that the geometric-optical canopy properties of specific biomes may be needed in compositing. Limitations of the new approaches include the dependency of pixel selection on the length of the composite period and data discontinuity.

  10. Autofocus method for scanning remote sensing cameras.

    PubMed

    Lv, Hengyi; Han, Chengshan; Xue, Xucheng; Hu, Changhong; Yao, Cheng

    2015-07-10

    Autofocus methods are conventionally based on capturing the same scene from a series of positions of the focal plane. As a result, it has been difficult to apply this technique to scanning remote sensing cameras where the scenes change continuously. In order to realize autofocus in scanning remote sensing cameras, a novel autofocus method is investigated in this paper. Instead of introducing additional mechanisms or optics, the overlapped pixels of the adjacent CCD sensors on the focal plane are employed. Two images, corresponding to the same scene on the ground, can be captured at different times. Further, one step of focusing is done during the time interval, so that the two images can be obtained at different focal plane positions. Subsequently, the direction of the next step of focusing is calculated based on the two images. The analysis shows that the method investigated operates without restriction of the time consumption of the algorithm and realizes a total projection for general focus measures and algorithms from digital still cameras to scanning remote sensing cameras. The experiment results show that the proposed method is applicable to the entire focus measure family, and the error ratio is, on average, no more than 0.2% and drops to 0% by reliability improvement, which is lower than that of prevalent approaches (12%). The proposed method is demonstrated to be effective and has potential in other scanning imaging applications.

  11. CLIMATE FEEDBACKS AND FUTURE REMOTE SENSING OBSERVATIONS

    NASA Astrophysics Data System (ADS)

    Teixeira, J.

    2009-12-01

    Water vapor and cloud - climate feedbacks are two fundamental feedbacks in the context of climate change. Although more realistic in terms of water vapor, present-day climate models fail to properly represent the physical processes associated with cloud-climate feedbacks. Remote sensing from space of these small-scale processes, such as clouds, turbulence and convection, is notoriously difficult and is still not good enough in order to provide the necessary constraints that would lead to a better understanding of the climate system and to improved climate prediction. A Program on ‘Climate Feedbacks and Future Remote Sensing Observations’ was organized under the auspices of the Keck Institute for Space Studies (KISS). The goals of this Program were: i) To bring together scientists from different branches of the climate research community (theory, models, observations) to address key problems in the physics of climate feedbacks; ii) To promote the use of remote sensing observational data in the climate physics and climate modeling community; iii) To provide guidance on future research and future missions regarding the physics of climate change. The main conclusions and recommendations from this KISS Program will be presented in detail.

  12. Application of Remote Sensing in Agriculture

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Jan

    2014-12-01

    With increasing intensity of agricultural crop production increases the need to obtain information about environmental conditions in which this production takes place. Remote sensing methods, including satellite images, airborne photographs and ground-based spectral measurements can greatly simplify the monitoring of crop development and decision-making to optimize inputs on agricultural production and reduce its harmful effects on the environment. One of the earliest uses of remote sensing in agriculture is crop identification and their acreage estimation. Satellite data acquired for this purpose are necessary to ensure food security and the proper functioning of agricultural markets at national and global scales. Due to strong relationship between plant bio-physical parameters and the amount of electromagnetic radiation reflected (in certain ranges of the spectrum) from plants and then registered by sensors it is possible to predict crop yields. Other applications of remote sensing are intensively developed in the framework of so-called precision agriculture, in small spatial scales including individual fields. Data from ground-based measurements as well as from airborne or satellite images are used to develop yield and soil maps which can be used to determine the doses of irrigation and fertilization and to take decisions on the use of pesticides.

  13. The NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.; Ryerson, Charles C.; Koenig, George G.

    2005-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data are post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Although the comparison data set is quite small, the cases examined indicate that the remote sensing technique appears to be an acceptable approach.

  14. Remote Sensing of Landscapes with Spectral Images

    NASA Astrophysics Data System (ADS)

    Adams, John B.; Gillespie, Alan R.

    2006-05-01

    Remote Sensing of Landscapes with Spectral Images describes how to process and interpret spectral images using physical models to bridge the gap between the engineering and theoretical sides of remote-sensing and the world that we encounter when we venture outdoors. The emphasis is on the practical use of images rather than on theory and mathematical derivations. Examples are drawn from a variety of landscapes and interpretations are tested against the reality seen on the ground. The reader is led through analysis of real images (using figures and explanations); the examples are chosen to illustrate important aspects of the analytic framework. This textbook will form a valuable reference for graduate students and professionals in a variety of disciplines including ecology, forestry, geology, geography, urban planning, archeology and civil engineering. It is supplemented by a web-site hosting digital color versions of figures in the book as well as ancillary images (www.cambridge.org/9780521662214). Presents a coherent view of practical remote sensing, leading from imaging and field work to the generation of useful thematic maps Explains how to apply physical models to help interpret spectral images Supplemented by a website hosting digital colour versions of figures in the book, as well as additional colour figures

  15. Remote sensing for rural development planning in Africa

    NASA Technical Reports Server (NTRS)

    Dunford, C.; Mouat, D. A.; Norton-Griffiths, M.; Slaymaker, D. M.

    1983-01-01

    Multilevel remote-sensing techniques were combined to provide land resource and land-use information for rural development planning in Arusha Region, Tanzania. Enhanced Landsat imagery, supplemented by low-level aerial survey data, slope angle data from topographic sheets, and existing reports on vegetation and soil conditions, was used jointly by image analysts and district-level land-management officials to divide the region's six districts into land-planning units. District-planning officials selected a number of these land-planning units for priority planning and development activities. For the priority areas, natural color aerial photographs provided detailed information for land-use planning discussions between district officials and villagers. Consideration of the efficiency of this remote sensing approach leads to general recommendations for similar applications. The technology and timing of data collection and interpretation activities should allow maximum participation by intended users of the information.

  16. Application of remote sensing to estimating soil erosion potential

    NASA Technical Reports Server (NTRS)

    Morris-Jones, D. R.; Kiefer, R. W.

    1980-01-01

    A variety of remote sensing data sources and interpretation techniques has been tested in a 6136 hectare watershed with agricultural, forest and urban land cover to determine the relative utility of alternative aerial photographic data sources for gathering the desired land use/land cover data. The principal photographic data sources are high altitude 9 x 9 inch color infrared photos at 1:120,000 and 1:60,000 and multi-date medium altitude color and color infrared photos at 1:60,000. Principal data for estimating soil erosion potential include precipitation, soil, slope, crop, crop practice, and land use/land cover data derived from topographic maps, soil maps, and remote sensing. A computer-based geographic information system organized on a one-hectare grid cell basis is used to store and quantify the information collected using different data sources and interpretation techniques. Research results are compared with traditional Universal Soil Loss Equation field survey methods.

  17. State resource management and role of remote sensing. [California

    NASA Technical Reports Server (NTRS)

    Johnson, H. D.

    1981-01-01

    Remote sensing by satellite can provide valuable information to state officials when making decisions regarding resources management. Portions of California's investment for Prosperity program which seem likely candidates for remote sensing include: (1) surveying vegetation type, age, and density in forests and wildlife habitats; (2) controlling fires through chaparal management; (3) monitoring wetlands and measuring ocean biomass; (4) eliminating ground water overdraught; (5) locating crops in overdraught areas, assessing soil erosion and the areas of poorly drained soils and those affected by salt; (6) monitoring coastal lands and resources; (7) changes in landscapes for recreational purposes; (8) inventorying irrigated lands; (9) classifying ground cover; (10) monitoring farmland conversion; and (11) supplying data for a statewide computerized farmlands data base.

  18. Remote sensing for quantification of agronomic properties

    NASA Astrophysics Data System (ADS)

    Sullivan, Dana Grace

    Remote sensing (RS) may be used to rapidly assess surface features and facilitate natural resource management, precision agriculture and soil survey. Information obtained in such a way would streamline data collection and improve diagnostic capabilities. Current RS technology has had limited testing, particularly within the Southeast. Our study was designed to evaluate RS as a rapid assessment tool in three different natural resource applications: nitrogen (N) management in a corn crop (Zea mays L.), assessment of in situ crop residue cover, and quantification of near-surface soil properties. In 2000, study sites were established in four physiographic provinces of Alabama: Tennessee Valley, Ridge and Valley, Appalachian Plateau, and Coastal Plain. Spectral measurements were acquired via spectroradiometer (350--1050 nm), airborne ATLAS multispectral scanner (400--12,500 nm), and IKONOS satellite (450--900 nm). Corn plots were established from fresh-tilled ground in a completely randomized design at the Appalachian Plateau and Coastal Plain study sites in 2000. Plots received four N rates (0, 56, 112, and 168 kg N ha-1 ), and were maintained for three consecutive growing seasons. Spectroradiometer data were acquired biweekly from V6-R2 and ATLAS and IKONOS were acquired per availability. Results showed vegetation indices derived from hand-held spectroradiometer measurements as early as V6-V8 were linearly related to yield and tissue N. ATLAS imagery showed promise at the AP site during the V6 stage (r2 = 0.66), but no significant relationships between plant N and IKONOS imagery were observed. Residue plots (15m x 15m) were established at the Appalachian Plateau and Coastal Plain in 2000 and 200. Residue treatments consisted of hand applied wheat straw cover (0, 10 20, 50, or 80%) arranged in a completely randomized design. Spectroradiometer data were acquired monthly and ATLAS and IKONOS were acquired per availability. Residue cover estimates were best with ATLAS

  19. Satellite Remote Sensing of Net Ecosystem CO2 Exchange Using Optical-IR and Microwave Sensors: Algorithm Development for the SMAP Decadal Survey Mission

    NASA Astrophysics Data System (ADS)

    Jones, L. A.; Kimball, J. S.; Reichle, R. H.; Zhang, K.; McDonald, K. C.

    2009-12-01

    The global balance between photosynthesis, respiration, and disturbance determines whether ecosystems will continue to offset human CO2 emissions. Changes in temperature and moisture constraints can differentially affect photosynthesis and respiration, whereas disturbance and stand succession can push ecosystems far from steady state, shifting carbon source-sink dynamics. Remote sensing and ecosystem process model simulations allow us to characterize the climatic sensitivity of this balance, but effective model parameters are uncertain at continental scales. We developed a carbon model to derive daily net ecosystem exchange of CO2 (NEE) using MODIS GPP and surface soil moisture and temperature retrievals from AMSR-E as driving data. We apply Bayesian synthesis to parameterize the model with a range of FLUXNET tower CO2 measurements across representative global biomes, while accounting for error in flux observations, driving data, and model structure. Model fit diagnostics are compared to determine the relative value of remotely sensed information for accurate prediction of carbon fluxes. Model parameters vary with ecosystem type and indicate that most ecosystems have not reached soil organic carbon pools expected for steady state. Model fit is relatively more impacted by MODIS GPP than by AMSR-E temperature and moisture. AMSR-E moisture explains arid region fluxes, whereas temperature is a stronger predictor for high-latitude locations. The results of this study offer a benchmark for calibrating and assessing the incremental value of Soil Moisture Active Passive (SMAP) mission observations over information available from existing sensors. The Soil Moisture Active Passive (SMAP) mission with scheduled 2013 launch date will provide moderate resolution soil moisture (10 km) and freeze-thaw state (1-3 km) information potentially providing new estimates of land surface processes, including daily NEE. This work was performed at The University of Montana and Jet

  20. Principles and applications of imaging radar. Manual of remote sensing: Third edition, Volume 2

    SciTech Connect

    Henderson, F.M.; Lewis, A.J.

    1998-12-31

    This second volume in the Third Edition of the Manual of Remote Sensing offers a current and comprehensive survey of the theory, methods, and applications of imaging radar for geoscientists, engineers and application scientists interested in the advantages of radar remote sensing. Produced under the auspices of the American Society for Photogrammetry and Remote Sensing, it brings together contributions from experts around the world to discuss the basic principles of imaging radars and trace the research activity--past, present, and future--across the many sciences where radar remote sensing may be applied. This book offers an invaluable snapshot of radar remote sensing technology, including radargrammetry, radar polarimetry and interferometry and its uses. It combines technical and procedural coverage of systems, data interpretation, and other fundamentals with generous coverage of practical applications in agriculture; forestry; soil moisture monitoring; geology; geomorphology and hydrology; oceanography; land use, land cover mapping and archeology.

  1. TCR backscattering characterization for microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Riccio, Giovanni; Gennarelli, Claudio

    2014-05-01

    A Trihedral Corner Reflector (TCR) is formed by three mutually orthogonal metal plates of various shapes and is a very important scattering structure since it exhibits a high monostatic Radar Cross Section (RCS) over a wide angular range. Moreover it is a handy passive device with low manufacturing costs and robust geometric construction, the maintenance of its efficiency is not difficult and expensive, and it can be used in all weather conditions (i.e., fog, rain, smoke, and dusty environment). These characteristics make it suitable as reference target and radar enhancement device for satellite- and ground-based microwave remote sensing techniques. For instance, TCRs have been recently employed to improve the signal-to-noise ratio of the backscattered signal in the case of urban ground deformation monitoring [1] and dynamic survey of civil infrastructures without natural corners as the Musmeci bridge in Basilicata, Italy [2]. The region of interest for the calculation of TCR's monostatic RCS is here confined to the first quadrant containing the boresight direction. The backscattering term is presented in closed form by evaluating the far-field scattering integral involving the contributions related to the direct illumination and the internal bouncing mechanisms. The Geometrical Optics (GO) laws allow one to determine the field incident on each TCR plate and the patch (integration domain) illuminated by it, thus enabling the use of a Physical Optics (PO) approximation for the corresponding surface current densities to consider for integration on each patch. Accordingly, five contributions are associated to each TCR plate: one contribution is due to the direct illumination of the whole internal surface; two contributions originate by the impinging rays that are simply reflected by the other two internal surfaces; and two contributions are related to the impinging rays that undergo two internal reflections. It is useful to note that the six contributions due to the

  2. The 1994 International Geoscience and Remote Sensing Symposium (IGARSS 1994)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The papers presented at the symposium focus on remote sensing, particularly on global monitoring of the earth with emphasis on the solution of environmental problems. Topics discussed include remote sensing of clouds and earth troposphere, sea ice remote sensing, optical remote sensing, land monitoring and thermal sensing, atmospheric sounding and monitoring, atmospheric correction, and satellite imaging data. Other subject areas are ecosystems and vegetation monitoring; ocean winds and surface scattering; ocean waves, currents and bathymetry; satellite oceanography; SAR for remote sensing; neural nets application to remote sensing; geographical information systems; and electromagnetic wave propagation. Also discussed environmental monitoring using ERS-1; Topex/Poseidon results; spaceborne instruments; image processing and classification algorithms; and future space missions.

  3. Low-cost remote chemical sensing

    NASA Astrophysics Data System (ADS)

    Holland, Stephen Keith

    The intentional or accidental release of a hazardous chemical, such as a chemical warfare agent (CWA) or a toxic industrial chemical (TIC), could endanger many lives. In domestic chemical release situations, a rapid response, which is critical for casualty minimization, requires that primary and first responders have the ability to rapidly probe the threatened area from a safe distance. First responders require sensors that are portable, remote (stand-off), sensitive, robust, and cost effective. While a number of remote chemical sensors are being developed, none meet the requirements of the first responder community due to their cost, complexity, and size. This work proposes a unique approach to hazardous chemical detection based on low-cost, low-energy, uncooled pyroelectric infrared detectors fitted with narrow bandpass filters. Prototype remote differential absorption radiometers (DARs) based on low-cost pyroelectric detectors fitted with relatively broad (30 cm-1) bandpass filters for sensitivity to hazardous chemical simulants, including methanol, dimethyl methylphosphonate (DMMP), and diisopropyl methylphosphonate (DIMP), were developed and tested. A methanol detection limit of 0.014 atm cm was demonstrated with the prototype sensor. This is well below military prescribed detection limits and demonstrates that sensors based on uncooled pyroelectric detectors can achieve sensitivities exceeding military requirements. Once chemical sensitivity was demonstrated, a prototype multi-spectral sensor comprised of 8 pyroelectric detectors. The measured methanol detection limit for this sensor was 0.033 atm cm. This prototype exhibited a unique response to three hazardous chemical simulants which could be used to detect and to identify the chemical reliably. To improve chemical sensitivity in realistic sensing environments, correction for background effects, such as temperature variations and spectral emissivity characteristics, is required. A simple background

  4. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1996-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.

  5. Hyperspectral remote sensing of wild oyster reefs

    NASA Astrophysics Data System (ADS)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal

  6. International Models and Methods of Remote Sensing Education and Training.

    ERIC Educational Resources Information Center

    Anderson, Paul S.

    A classification of remote sensing courses throughout the world, the world-wide need for sensing instruction, and alternative instructional methods for meeting those needs are discussed. Remote sensing involves aerial photointerpretation or the use of satellite and other non-photographic imagery; its focus is to interpret what is in the photograph…

  7. Remote Sensing as a Demonstration of Applied Physics.

    ERIC Educational Resources Information Center

    Colwell, Robert N.

    1980-01-01

    Provides information about the field of remote sensing, including discussions of geo-synchronous and sun-synchronous remote-sensing platforms, the actual physical processes and equipment involved in sensing, the analysis of images by humans and machines, and inexpensive, small scale methods, including aerial photography. (CS)

  8. Method for Identifying Probable Archaeological Sites from Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Comer, Douglas C.; Priebe, Carey E.; Sussman, Daniel

    2011-01-01

    Archaeological sites are being compromised or destroyed at a catastrophic rate in most regions of the world. The best solution to this problem is for archaeologists to find and study these sites before they are compromised or destroyed. One way to facilitate the necessary rapid, wide area surveys needed to find these archaeological sites is through the generation of maps of probable archaeological sites from remotely sensed data. We describe an approach for identifying probable locations of archaeological sites over a wide area based on detecting subtle anomalies in vegetative cover through a statistically based analysis of remotely sensed data from multiple sources. We further developed this approach under a recent NASA ROSES Space Archaeology Program project. Under this project we refined and elaborated this statistical analysis to compensate for potential slight miss-registrations between the remote sensing data sources and the archaeological site location data. We also explored data quantization approaches (required by the statistical analysis approach), and we identified a superior data quantization approached based on a unique image segmentation approach. In our presentation we will summarize our refined approach and demonstrate the effectiveness of the overall approach with test data from Santa Catalina Island off the southern California coast. Finally, we discuss our future plans for further improving our approach.

  9. Remote Sensing for Farmers and Flood Watching

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Applied Sciences Directorate, part of NASA s Science Mission Directorate, makes use of the Agency s remote-sensing capabilities to acquire detailed information about our home planet. It uses this information for a variety of purposes, ranging from increasing agricultural efficiency to protecting homeland security. Sensors fly over areas of interest to detect and record information that sometimes is not even visible from the ground with the human eye. Scientists analyze these data for a variety of purposes and make maps of the areas. These maps are often used to answer questions about the environment, weather, natural resources, community growth, and natural disasters.

  10. Evaluation of reforestation using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Filho, P. H.; Shimabukuro, Y. E.; Dossantos, J. R.

    1982-01-01

    The utilization of remotely sensed orbital data for forestry inventory. The study area (approximately 491,100 ha) encompasses the municipalities of Ribeirao Preto, Altinopolis, Cravinhos, Serra Azul, Luis Antonio, Sao Simao, Sant Rita do Passa Quatro and Santa Rosa do Viterbo (Sao Paulo State). Materials used were LANDSAT data from channels 5 and 7 (scale 1:250,000) and CCT's. Visual interpretation of the imagery showed that for 1977 a total of 37,766.00 ha and for 1979 38,003.75 ha were reforested with Pinus and Eucalyptus within the area under study. The results obtained show that LANDSAT data can be used efficiently in forestry inventory studies.

  11. NASA's program in lidar remote sensing

    NASA Technical Reports Server (NTRS)

    Theon, John S.; Vaughan, William W.; Browell, Edward V.; Jones, William D.; Mccormick, M. P.; Melfi, S. H.; Menzies, Robert T.; Schwemmer, Geary K.; Spinhirne, James D.

    1991-01-01

    Several major NASA research efforts in lidar remote sensing are reviewed, with attention given to hardware and key sensor issues along with results and expectations. The discussion covers temperature and pressure measurements, measurements methods and instrumentation, pressure data, wind field measurements, atmospheric backscatter measurement, aerosol and cloud measurements, and water vapor measurement. Consideration is also given to the applicability of lidar measurements to problems of operational weather analysis and forecasting, climate studies, mesoscale and severe storm analysis and forecastig, and studies of atmosphere/surface interface.

  12. Characrterizing frozen ground with multisensor remote sensing

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Ping, C.; Everett, L. R.; Kimble, J. M.; Michaelson, G.; Tremper, C.

    2006-12-01

    We have a physically based, conceptual understanding of many of the significant interactions that impact permafrost-affected soils. Our observationally based knowledge, however, is inadequate in many cases to quantify these interactions or to predict their net impact. To pursue key goals, such as understanding the response of permafrost-affected soil systems to global environmental changes and their role in the carbon balance, and to transform our conceptual understanding of these processes into quantitative knowledge, it is necessary to acquire geographically diverse sets of fundamental observations at high spatial and often temporal resolution. The main goals of the research presented here are developing methods for mapping soil and permafrost distributions in polar environment as well as characterizing glacial and perglacial geomorphology from multisensor, multiresolution remotely sensed data. The sheer amount of data and the disparate data sets (e.g., LIDAR, stereo imagery, multi- hyperspectral, and SAR imagery) make the joint interpretation (fusion) a daunting task. We combine remote sensing, pattern recognition and landscape analysis techniques for the delineation of soil landscape units and other geomorphic features, for inferring the physical properties and composition of the surface, and for generating numerical measurements of geomorphic features from remotely sensed data. Examples illustrating the concept are presented from the North Slope of Alaska and from the McMurdo Sound region in Antarctica. (1) On the North Slope, Alaska we separated different vegetative, soil and landscape units along the Haul Road. Point-source soils (pedon) data and field spectrometry data have been acquired at different units to provide ground-truth for the satellite image interpretation. (2) A vast amount of remote sensing data, such as multi- and hyperspectral (Landsat, SPOT, ASTER, HYPERION) and SAR satellite imagery (ERS, RADARSAT and JERS), high resolution topographic

  13. Remote Sensing of Mineral Dust Sources (Invited)

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Morain, S. A.

    2009-12-01

    Thirty-four percent of Earth's land surface is arid, home to two billion people routinely exposed to airborne dust and increased risk of cardiovascular and respiratory disease. The NASA-supported Public Health Applications in Remote Sensing project has improved the process of simulating and predicting when and where dust storms will occur and the consequent particulate air quality. Partnerships with state public health offices test model products for epidemiological and health surveillance applications. The key to significant improvement in simulations, forecasts and their use has been identifying and monitoring mineral dust sources via satellite based sensors.

  14. Minimum distance classification in remote sensing

    NASA Technical Reports Server (NTRS)

    Wacker, A. G.; Landgrebe, D. A.

    1972-01-01

    The utilization of minimum distance classification methods in remote sensing problems, such as crop species identification, is considered. Literature concerning both minimum distance classification problems and distance measures is reviewed. Experimental results are presented for several examples. The objective of these examples is to: (a) compare the sample classification accuracy of a minimum distance classifier, with the vector classification accuracy of a maximum likelihood classifier, and (b) compare the accuracy of a parametric minimum distance classifier with that of a nonparametric one. Results show the minimum distance classifier performance is 5% to 10% better than that of the maximum likelihood classifier. The nonparametric classifier is only slightly better than the parametric version.

  15. Identification of Terrestrial Reflectance From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Nolf, Scott R.; Stacy, Kathryn (Technical Monitor)

    2000-01-01

    Correcting for atmospheric effects is an essential part of surface-reflectance recovery from radiance measurements. Model-based atmospheric correction techniques enable an accurate identification and classification of terrestrial reflectances from multi-spectral imagery. Successful and efficient removal of atmospheric effects from remote-sensing data is a key factor in the success of Earth observation missions. This report assesses the performance, robustness and sensitivity of two atmospheric-correction and reflectance-recovery techniques as part of an end-to-end simulation of hyper-spectral acquisition, identification and classification.

  16. Recent Advances in Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.

    1999-01-01

    Current terrestrial and hydrographic laser remote sensing research and applications are briefly reviewed. New progress in airborne oceanic lidar instrumentation and applications is then highlighted. Topics include a discussion of the unique role of airborne active-passive (laser-solar) correlation spectroscopy methods in oceanic radiative transfer studies and satellite ocean color algorithm development. Based on a perceived need for high resolution laser-induced resonance Raman and atomic emission spectra of oceanic constituents, future airborne lidar transmitter and receiver configurations are suggested.

  17. Remote sensing for control of tsetse flies

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.

    1976-01-01

    Remotely sensed information is discussed which has potential for aiding in the control or eradication of tsetse flies. Data are available from earth resources meteorological, and manned satellites, from airborne sensors, and possibly from data collection platforms. A new zone discrimination technique, based on data from meteorological satellites may also allow the identification of zones hospitable to one or another species of tsetse. For background, a review is presented of the vegetation of Tanzania and Zanzibar, and illustrations presented of automatic processing of data from these areas. In addition, a review is presented of the applicability of temperature data to tsetse areas.

  18. Oil pollution signatures by remote sensing.

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.; Mclean, J. T.

    1972-01-01

    Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.

  19. Satellite remote sensing facility for oceanograhic applications

    NASA Technical Reports Server (NTRS)

    Evans, R. H.; Kent, S. S.; Seidman, J. B.

    1980-01-01

    The project organization, design process, and construction of a Remote Sensing Facility at Scripps Institution of Oceanography at LaJolla, California are described. The facility is capable of receiving, processing, and displaying oceanographic data received from satellites. Data are primarily imaging data representing the multispectral ocean emissions and reflectances, and are accumulated during 8 to 10 minute satellite passes over the California coast. The most important feature of the facility is the reception and processing of satellite data in real time, allowing investigators to direct ships to areas of interest for on-site verifications and experiments.

  20. Estimating reforestation by means of remote sensing

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Filho, P. H.; Shimabukuro, Y. E.; Dossantos, J. R.

    1981-01-01

    LANDSAT imagery at the scale of 1:250.000 and obtained from bands 5 and 7 as well as computer compatible tapes were used to evaluate the effectiveness of remotely sensed orbital data in inventorying forests in a 462,100 area of Brazil emcompassing the cities of Ribeirao, Altinopolis Cravinhos, Serra Azul, Luis Antonio, Sao Simao, Santa Rita do Passa Quatro, and Santa Rosa do Viterbo. Visual interpretation of LANDSAT imagery shows that 37,766 hectares (1977) and 38,003.75 hectares (1979) were reforested areas of pine and eucalyptus species. An increment of 237.5 hectares was found during this two-year time lapse.

  1. Applications of remote sensing to estuarine management

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Gordon, H. H.; Hennigar, H. F.

    1977-01-01

    Remote sensing was used in the resolution of estuarine problems facing federal and Virginia governmental agencies. A prototype Elizabeth River Surface Circulation Atlas was produced from photogrammetry to aid in oil spill cleanup and source identification. Aerial photo analysis twice led to selection of alternative plans for dredging and spoil disposal which minimized marsh damage. Marsh loss due to a mud wave from a highway dyke was measured on sequential aerial photographs. An historical aerial photographic sequence gave basis to a potential Commonwealth of Virginia legal claim to accreting and migrating coastal islands.

  2. Active remote sensing of random media

    SciTech Connect

    Zuniga, M.; Kong, J.A.

    1980-01-01

    Analytical results for the bistatic scattering coefficients and the backscattering cross sections have been derived for active remote sensing of earth terrain with the model of bounded random media which accounts for volume-scattering effects. It is found that as a result of the effect of the second boundary, the horizontally polarized return sigma/sub h/h can be greater than the vertically polarized return sigma/sub v/v, whereas for a half-space random medium sigma/sub v/v is always greater than sigma/sub h/h. We illustrate by matching the theoretical results with experimental data collected from vegetation field.

  3. The Geologic Remote Sensing Field Experiment (GRSFE)

    NASA Technical Reports Server (NTRS)

    Dale-Bannister, Mary A.; Arvidson, Raymond E.; Guinness, Edward E.; Slavney, Susan H.; Stein, Thomas C.

    1991-01-01

    Field measurements for the Geologic Remote Sensing Field Experiment (GRSFE) were concentrated in the Lunar Lake area of Nevada. The GRSFE data are meant to be used in a variety of investigations, including tests of multispectral radiative transfer models for scattering and emission from planetary surfaces in support of the Earth Observing System (EOS), Mars Observer, and Magellan Missions. Studies will also be pursued to establish the neotectonic and paleoclimatic history of the arid southwestern United States. The data will also be used to support Mars Rover Sample Return (MRSR) simulation studies.

  4. Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995

    SciTech Connect

    Smyre, J.L.; Moll, B.W.; King, A.L.

    1996-06-01

    Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

  5. Remote shock sensing and notification system

    DOEpatents

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  6. Remote shock sensing and notification system

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Britton, Charles L [Alcoa, TN; Pearce, James [Lenoir City, TN; Jagadish, Usha [Knoxville, TN; Sikka, Vinod K [Oak Ridge, TN

    2010-11-02

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  7. Remote sensing for grassland management in the arid Southwest

    USGS Publications Warehouse

    Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Watson, M.C.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R.

    2006-01-01

    We surveyed a group of rangeland managers in the Southwest about vegetation monitoring needs on grassland. Based on their responses, the objective of the RANGES (Rangeland Analysis Utilizing Geospatial Information Science) project was defined to be the accurate conversion of remotely sensed data (satellite imagery) to quantitative estimates of total (green and senescent) standing cover and biomass on grasslands and semidesert grasslands. Although remote sensing has been used to estimate green vegetation cover, in arid grasslands herbaceous vegetation is senescent much of the year and is not detected by current remote sensing techniques. We developed a ground truth protocol compatible with both range management requirements and Landsat's 30 m resolution imagery. The resulting ground-truth data were then used to develop image processing algorithms that quantified total herbaceous vegetation cover, height, and biomass. Cover was calculated based on a newly developed Soil Adjusted Total Vegetation Index (SATVI), and height and biomass were estimated based on reflectance in the near infrared (NIR) band. Comparison of the remotely sensed estimates with independent ground measurements produced r2 values of 0.80, 0.85, and 0.77 and Nash Sutcliffe values of 0.78, 0.70, and 0.77 for the cover, plant height, and biomass, respectively. The approach for estimating plant height and biomass did not work for sites where forbs comprised more than 30% of total vegetative cover. The ground reconnaissance protocol and image processing techniques together offer land managers accurate and timely methods for monitoring extensive grasslands. The time-consuming requirement to collect concurrent data in the field for each image implies a need to share the high fixed costs of processing an image across multiple users to reduce the costs for individual rangeland managers.

  8. Meta Data Mining in Earth Remote Sensing Data Archives

    NASA Astrophysics Data System (ADS)

    Davis, B.; Steinwand, D.

    2014-12-01

    Modern search and discovery tools for satellite based remote sensing data are often catalog based and rely on query systems which use scene- (or granule-) based meta data for those queries. While these traditional catalog systems are often robust, very little has been done in the way of meta data mining to aid in the search and discovery process. The recently coined term "Big Data" can be applied in the remote sensing world's efforts to derive information from the vast data holdings of satellite based land remote sensing data. Large catalog-based search and discovery systems such as the United States Geological Survey's Earth Explorer system and the NASA Earth Observing System Data and Information System's Reverb-ECHO system provide comprehensive access to these data holdings, but do little to expose the underlying scene-based meta data. These catalog-based systems are extremely flexible, but are manually intensive and often require a high level of user expertise. Exposing scene-based meta data to external, web-based services can enable machine-driven queries to aid in the search and discovery process. Furthermore, services which expose additional scene-based content data (such as product quality information) are now available and can provide a "deeper look" into remote sensing data archives too large for efficient manual search methods. This presentation shows examples of the mining of Landsat and Aster scene-based meta data, and an experimental service using OPeNDAP to extract information from quality band from multiple granules in the MODIS archive.

  9. Remote sensing; Proceedings of the Meeting, Orlando, FL, Apr. 3, 4, 1986

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T. (Editor)

    1986-01-01

    Advances in optical technology for remote sensing are discussed in reviews and reports of recent experimental investigations. Topics examined include industrial applications, laser diagnostics for combustion research, laser remote sensing for ranging and altimetry, and imaging systems for terrestrial remote sensing from space. Consideration is given to LIF in forensic diagnostics, time-resolved laser-induced-breakdown spectrometry for rapid analysis of alloys, CARS in practical combustion environments, airborne inertial surveying using laser tracking and profiling techniques, earth-resources instrumentation for the EOS polar platform of the Space Station, and the SAR for EOS.

  10. Laboratory requirements for in-situ and remote sensing of suspended material

    NASA Technical Reports Server (NTRS)

    Kuo, C. Y.; Cheng, R. Y. K.

    1976-01-01

    Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements.

  11. Laboratory requirements for in-situ and remote sensing of suspended material

    NASA Technical Reports Server (NTRS)

    Kuo, C. Y.; Cheng, R. Y. K.

    1978-01-01

    Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements.

  12. Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use

    SciTech Connect

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. Anthropogenic heat discharge was estimated based on a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. Building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/ Energy Information Administration survey data, Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data.

  13. Remote sensing research in geographic education: An alternative view

    NASA Technical Reports Server (NTRS)

    Wilson, H.; Cary, T. K.; Goward, S. N.

    1981-01-01

    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  14. Proceedings of the eighth thematic conference on geologic remote sensing

    SciTech Connect

    Not Available

    1991-01-01

    These proceedings contain papers presented at the Eighth Thematic Conference on Geologic Remote Sensing. This meeting was held April 29-May 2, 1991, in Denver, Colorado, USA. The conference was organized by the Environmental Research Institute of Michigan, in Cooperation with an international program committee composed primarily of geologic remote sensing specialists. The meeting was convened to discuss state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing as well as research and development activities aimed at increasing the future capabilities of this technology. The presentations in these volumes address the following topics: Spectral Geology; U.S. and International Hydrocarbon Exploration; Radar and Thermal Infrared Remote Sensing; Engineering Geology and Hydrogeology; Minerals Exploration; Remote Sensing for Marine and Environmental Applications; Image Processing and Analysis; Geobotanical Remote Sensing; Data Integration and Geographic Information Systems.

  15. Remote sensing utility in a disaster struck urban environment

    NASA Technical Reports Server (NTRS)

    Rush, M.; Holguin, A.; Vernon, S.

    1974-01-01

    A project to determine the ways in which remote sensing can contribute to solutions of urban public health problems in time of natural disaster is discussed. The objectives of the project are to determine and describe remote sensing standard operating procedures for public health assistance during disaster relief operations which will aid the agencies and organizations involved in disaster intervention. Proposed tests to determine the validity of the remote sensing system are reported.

  16. [A review on polarization information in the remote sensing detection].

    PubMed

    Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao

    2010-04-01

    Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.

  17. Expedition Earth and Beyond: An Introduction to Remote Sensing

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2010-01-01

    This slide presentation reviews some of the current usages of remote sensing, and the science of remote sensing. Included as examples of remote sensing, are emissivity (i.e., infrared) and reflectance (i.e., visible to shortwave infrared) graphs of several minerals, and vegetation spectra. Also, there are pictures of several places on Earth from the photographs that were taken by Astronauts during the earliest missions to later missions.

  18. Active microwave remote sensing of earth/land, chapter 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Geoscience applications of active microwave remote sensing systems are examined. Major application areas for the system include: (1) exploration of petroleum, mineral, and ground water resources, (2) mapping surface and structural features, (3) terrain analysis, both morphometric and genetic, (4) application in civil works, and (5) application in the areas of earthquake prediction and crustal movements. Although the success of radar surveys has not been widely publicized, they have been used as a prime reconnaissance data base for mineral exploration and land-use evaluation in areas where photography cannot be obtained.

  19. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Sattinger, I. J.

    1972-01-01

    This project to demonstrate the application of earth resource survey technology to current problems in Michigan was undertaken jointly by the Environmental Research Institute of Michigan and Michigan State University. Remote sensing techniques were employed to advantage in providing management information for the Pointe Mouillee State Game Area and preparing an impact assessment in advance of the projected construction of the M-14 freeway from Ann Arbor to Plymouth, Michigan. The project also assisted the state government in its current effort to develop and implement a state-wide land management plan.

  20. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Sattinger, I. J.; Sellman, A. N.; Istvan, L. B.; Cook, J. J.

    1973-01-01

    During the period from June 1972 to June 1973, remote sensing techniques were applied to the following tasks: (1) mapping Michigan's land resources, (2) waterfowl habitat management at Point Mouillee, (3) mapping of Lake Erie shoreline flooding, (4) highway impact assessment, (5) applications of the Earth Resources Technology Satellite, ERTS-1, (6) investigation of natural gas eruptions near Williamsburg, and (7) commercial site selection. The goal of the program was the large scale adaption, by both public agencies and private interests in Michigan, of earth-resource survey technology as an important aid in the solution of current problems in resources management and environmental protection.

  1. Wetland fire remote sensing research--The Greater Everglades example

    USGS Publications Warehouse

    Jones, John W.

    2012-01-01

    Fire is a major factor in the Everglades ecosystem. For thousands of years, lightning-strike fires from summer thunderstorms have helped create and maintain a dynamic landscape suited both to withstand fire and recover quickly in the wake of frequent fires. Today, managers in the Everglades National Park are implementing controlled burns to promote healthy, sustainable vegetation patterns and ecosystem functions. The U.S. Geological Survey (USGS) is using remote sensing to improve fire-management databases in the Everglades, gain insights into post-fire land-cover dynamics, and develop spatially and temporally explicit fire-scar data for habitat and hydrologic modeling.

  2. Spatial Inference for Distributed Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Katzfuss, M.; Nguyen, H.

    2014-12-01

    Remote sensing data are inherently spatial, and a substantial portion of their value for scientific analyses derives from the information they can provide about spatially dependent processes. Geophysical variables such as atmopsheric temperature, cloud properties, humidity, aerosols and carbon dioxide all exhibit spatial patterns, and satellite observations can help us learn about the physical mechanisms driving them. However, remote sensing observations are often noisy and incomplete, so inferring properties of true geophysical fields from them requires some care. These data can also be massive, which is both a blessing and a curse: using more data drives uncertainties down, but also drives costs up, particularly when data are stored on different computers or in different physical locations. In this talk I will discuss a methodology for spatial inference on massive, distributed data sets that does not require moving large volumes of data. The idea is based on a combination of ideas including modeling spatial covariance structures with low-rank covariance matrices, and distributed estimation in sensor or wireless networks.

  3. A Terminal Area Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Serke, David J.

    2014-01-01

    NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.

  4. Support for global science: Remote sensing's challenge

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Star, J. L.

    1986-01-01

    Remote sensing uses a wide variety of techniques and methods. Resulting data are analyzed by man and machine, using both analog and digital technology. The newest and most important initiatives in the U. S. civilian space program currently revolve around the space station complex, which includes the core station as well as co-orbiting and polar satellite platforms. This proposed suite of platforms and support systems offers a unique potential for facilitating long term, multidisciplinary scientific investigations on a truly global scale. Unlike previous generations of satellites, designed for relatively limited constituencies, the space station offers the potential to provide an integrated source of information which recognizes the scientific interest in investigating the dynamic coupling between the oceans, land surface, and atmosphere. Earth scientist already face problems that are truly global in extent. Problems such as the global carbon balance, regional deforestation, and desertification require new approaches, which combine multidisciplinary, multinational research teams, employing advanced technologies to produce a type, quantity, and quality of data not previously available. The challenge before the international scientific community is to continue to develop both the infrastructure and expertise to, on the one hand, develop the science and technology of remote sensing, while on the other hand, develop an integrated understanding of global life support systems, and work toward a quantiative science of the biosphere.

  5. Land remote sensing commercialization: A status report

    NASA Technical Reports Server (NTRS)

    Bishop, W. P.; Heacock, E. L.

    1984-01-01

    The current offer by the United States Department of Commerce to transfer the U.S. land remote sensing program to the private sector is described. A Request for Proposals (RFP) was issued, soliciting offers from U.S. firms to provide a commercial land remote sensing satellite system. Proposals must address a complete system including satellite, communications, and ground data processing systems. Offerors are encouraged to propose to take over the Government LANDSAT system which consists of LANDSAT 4 and LANDSAT D'. Also required in proposals are the market development procedures and plans to ensure that commercialization is feasible and the business will become self-supporting at the earliest possible time. As a matter of Federal Policy, the solicitation is designed to protect both national security and foreign policy considerations. In keeping with these concerns, an offeror must be a U.S. Firm. Requirements for data quality, quantity, distribution and delivery are met by current operational procedures. It is the Government's desire that the Offeror be prepared to develop and operate follow-on systems without Government subsidies. However, to facilitate rapid commercialization, an offeror may elect to include in his proposal mechanisms for short term government financial assistance.

  6. Theme Issue "Multitemporal remote sensing data analysis"

    NASA Astrophysics Data System (ADS)

    Mallet, Clément; Chehata, Nesrine; Mercier, Grégoire

    2015-09-01

    The remote sensing and photogrammetric community has witnessed significant evolution during the last decade and is facing today a new paradigm in data processing and analysis. Indeed, the development of new satellite remote sensing missions leads to an increasing amount of multi-temporal data, with improved spatial, spectral, and temporal resolutions, available at various scales (Berger and Aschbacher, 2012; Belward and Skøien, 2015). In parallel, data becomes available for free, often through dedicated infrastructures, with the opening of satellite and aerial image archives (Landsat and Spot World Heritage, Sentinel missions (Wulder and Coops, 2014)) and with the growing power of benchmark contests, more focused on very high resolution data provision (Benedek and Szirányi, 2009; Rottensteiner et al., 2014; Vallet et al., 2015) or on data fusion (Debes et al., 2014). Consequently, it has never been so easy to collect multiple observations for large areas of the Earth's surface, which has significantly raised the interest of the scientific community and permitted the development of innovative methods for handling and analysing temporal series of (multimodal) datasets (Bovolo et al., 2013).

  7. Benthic habitat mapping using hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Vélez-Reyes, Miguel; Goodman, James A.; Castrodad-Carrau, Alexey; Jiménez-Rodriguez, Luis O.; Hunt, Shawn D.; Armstrong, Roy

    2006-09-01

    Benthic habitats are the different bottom environments as defined by distinct physical, geochemical, and biological characteristics. Remote sensing is increasingly being used to map and monitor the complex dynamics associated with estuarine and nearshore benthic habitats. Advantages of remote sensing technology include both the qualitative benefits derived from a visual overview, and more importantly, the quantitative abilities for systematic assessment and monitoring. Advancements in instrument capabilities and analysis methods are continuing to expand the accuracy and level of effectiveness of the resulting data products. Hyperspectral sensors in particular are rapidly emerging as a more complete solution, especially for the analysis of subsurface shallow aquatic systems. The spectral detail offered by hyperspectral instruments facilitates significant improvements in the capacity to differentiate and classify benthic habitats. This paper reviews two techniques for mapping shallow coastal ecosystems that both combine the retrieval of water optical properties with a linear unmixing model to obtain classifications of the seafloor. Example output using AVIRIS hyperspectral imagery of Kaneohe Bay, Hawaii is employed to demonstrate the application potential of the two approaches and compare their respective results.

  8. Remote sensing inputs to water demand modeling

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  9. Wetlands Evapotranspiration Using Remotely Sensed Solar Radiation

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Myers, D. A.; Anderson, M. C.

    2001-12-01

    The application of remote sensing methods to estimate evapotranspiration has the advantage of good spatial resolution and excellent spatial coverage, but may have the disadvantage of infrequent sampling and considerable expense. The GOES satellites provide enhanced temporal resolution with hourly estimates of solar radiation and have a spatial resolution that is significantly better than that available from most ground-based pyranometer networks. As solar radiation is the primary forcing variable in wetland evapotranspiration, the opportunity to apply GOES satellite data to wetland hydrologic analyses is great. An accuracy assessment of the remote sensing product is important and the subsequent validation of the evapotranspiration estimates are a critical step for the use of this product. A wetland field experiment was conducted in the Paynes Prairie Preserve, North Central Florida during a growing season characterized by significant convective activity. Evapotranspiration and other surface energy balance components of a wet prairie community dominated by Panicum hemitomon (maiden cane), Ptilimnium capillaceum (mock bishop's weed), and Eupatorium capillifolium (dog fennel) were investigated. Incoming solar radiation derived from GOES-8 satellite observations, in combination with local meteorological measurements, were used to model evapotranspiration from a wetland. The satellite solar radiation, derived net radiation and estimated evapotranspiration estimates were compared to measured data at 30-min intervals and daily times scales.

  10. [Hyperspectral remote sensing monitoring of grassland degradation].

    PubMed

    Wang, Huan-jiong; Fan, Wen-jie; Cui, Yao-kui; Zhou, Lei; Yan, Bin-yan; Wu, Dai-hui; Xu, Xi-ru

    2010-10-01

    The distributing of China's grassland is abroad and the status of grassland degradation is in serious condition. So achieving real-time and exactly grassland ecological monitoring is significant for the carbon cycle, as well as for climate and on regional economies. With the field measured spectra data as data source, hyperspectral remote sensing monitoring of grassland degradation was researched in the present article. The warm meadow grassland in Hulunbeier was chosen as a study object. Reflectance spectra of leaves and pure canopies of some dominant grassland species such as Leymus chinensis, Stipa krylovii and Artemisia frigid, as well as reflectance spectra of mixed grass community were measured. Using effective spectral feature parametrization methods, the spectral feature of leaves and pure canopies were extracted, so the constructive species and degenerate indicator species can be exactly distinguished. Verification results showed that the accuracy of spectral identification was higher than 95%. Taking it as the foundation, the spectra of mixed grass community were unmixed using linear mixing models, and the proportion of all the components was calculated, and the errors were less than 5%. The research results of this article provided the evidence of hyperspectral remote sensing monitoring of grassland degradation.

  11. Acoustic Remote Sensing of Extreme Sea States

    NASA Astrophysics Data System (ADS)

    Parsons, Wade; Kadri, Usama

    2016-04-01

    Extreme sea states from storms, landslides, ice-quakes, meteorite fall, submarines explosions, and earthquakes, are associated with a sudden change in water pressure. Consequently, acoustic-gravity waves (AGWs) may radiate carrying information on those states at the speed of sound. Using remote sensing of AGWs, we propose an early detection system for such extreme sea states. We show that the AGW pressure signature for a small circularly symmetric sinusoidal component of oscillation of the free surface preserves the frequency but modifies the amplitude of the component. Further tests indicate that this amplitude is independent of the frequency but depends on the radial distance from the source, as expected. Therefore, an input spectrum for a sea state will give rise to a similar spectrum shape for the AGW pressure signal with an amplitude modulation function that can be estimated from the model. This then leads to a robust method to remote sense sea state spectra from measurements of their induced AGW pressure spectra.

  12. Remote sensing techniques for mining waste characterization

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Savastru, R. S.; Savastru, D. M.; Miclos, S. I.; Tautan, M. N. M.

    2009-09-01

    Environmental monitoring is essential information routinely required by the mining industry and regulators to demonstrate that the environment is not adversely impacted by exploration and mining. New mining technologies can not only exploit low-grade ores but also produce high volumes of tailings as mining wastes. Satellite remote sensing imagery provided by Landsat TM and ETM sensors is an important investigation tool of mining waste cover screening, mapping and monitoring at local and regional scales of areas containing multiple sources of mining-related heavy metals. By this, satellite remote sensing data can help to rapidly assess the dimension of mining waste risk and therefore better manage such a geohazard as well as for remediation programs. Based on Landsat TM, ETM satellite data over 1989-2007 period, was possible to be achieved a discrimination between weathered materials and other prone to acidification as well as to perform a spatio temporal landcover change detection analysis in some mining waste areas in Maramures County, Romania. Accuracy of image processing results (mineralogical classification) was confirmed through ground sampling and analysis of reflectance spectra with portable GER 2600 spectroradiometer.

  13. Foreland Basin Structures and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Paylor, E. D.

    1985-01-01

    Rocky Mountain foreland basins are somewhat unique in that the basins may exhibit a variety of structural styles. It is generally agreed that shortening has occurred in the foreland basement but the cause is controversial: vertical vs compressional horizontal tectonics. Even when shortening is attributed to compression, the attitude (dip) of the fault plane and whether the horizontal or vertical component of movement is dominant is unconstrained. The controversy is difficult to resolve from surface data alone due to the variety of possible interpretations. Detailed surface mapping and geologic modeling are needed to constrain subsurface interpretations. In many areas of the Wind River and Bighorn basins detailed geologic maps do not exist. State-of-the-art remote sensing data could potentially provide an efficient means of mapping surface geology. State-of-the-art remote sensing systems now provide geometrically correct data at 30 meter pixel size and increased spectral coverage, capable of more detailed geologic analyses. These data can be photographically enlarged to 1:24,000 scale and combined with 7 1/2' uses topographic quads to provide an excellent base map for geologic interpretations.

  14. Passive Remote Sensing of Cloud Ice Particles

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Wang, James R.

    2004-01-01

    Hurricanes, blizzards and other weather events are important to understand not only for disaster preparation, but also to track the global energy balance and to improve weather and climate forecasts. For several decades, passive radiometers and active radars on aircraft and satellites have been employed to remotely sense rain rates and the properties of liquid particles. In the past few years the relationships between frozen particles and millimeter-wave observations have become understood well enough to estimate the properties of ice in clouds. A brief background of passive remote sensing of precipitation will be presented followed by a focused discussion of recent research at NASA Goddard Space Flight Center estimating the properties of frozen particles in clouds. The retrievals are for (1) ice that will eventually melt into rain, (2) for solid precipitation falling in northern climates, and (3) cirrus ice clouds. The electromagnetic absorption and scattering properties and differences of liquid rain versus frozen particles will be summarized for frequencies from 6 to 340+ GHz. Challenges of this work including surface emissivity variability, non-linear and under-constrained relationships, and frozen particle unknowns will be discussed. Retrieved cloud particle contents and size distributions for ice above the melting layer in hurricanes, retrieved snowfall rates for a blizzard, and cirrus ice estimates will be presented. Future directions of this work will also be described.

  15. Remotely Sensing the Photochemical Reflectance Index (PRI)

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern

    2015-01-01

    In remote sensing, the Photochemical Reflectance Index (PRI) provides insight into physiological processes occurring inside the leaves in a stand of plants. Developed by Gamon et al., (1990 and 1992), PRI evolved from laboratory measurements of the reflectance of individual leaves (Bilger et al.,1989). Yet in a remotely sensed image, a pixel measurement may include light from both reflecting and transmitting leaves. We conducted laboratory experiments comparing values of PRI based upon polarized reflectance and transmittance measurements of water and nutrient stressed leaves. We illuminated single detached leaves using a current controlled light source (Oriel model 66881) and measured the leaf weight using an analytical balance (Mettler model AE 260) and the light reflected and transmitted by the leaf during dry down using two Analytical Spectral Devices spectroradiometers. Polarizers on the incident and reflected light beams allowed us to divide the leaf reflectance into two parts: a polarized surface reflectance and a non-polarized 'leaf interior' reflectance. Our results underscore the importance when calculating PRI of removing the leaf surface reflection, which contains no information about physiological processes ongoing in the leaf interior. The results show that the leaf physiology information is in the leaf interior reflectance, not the leaf transmittance. Applied to a plant stand, these results suggest use of polarization measurements in sun-view directions that minimize the number of sunlit transmitting leaves in the sensor field of view.

  16. Microwave remote sensing of flood inundation

    NASA Astrophysics Data System (ADS)

    Schumann, Guy J.-P.; Moller, Delwyn K.

    Flooding is one of the most costly natural disasters and thus mapping, modeling and forecasting flood events at various temporal and spatial scales is important for any flood risk mitigation plan, disaster relief services and the global (re-)insurance markets. Both computer models and observations (ground-based, airborne and Earth-orbiting) of flood processes and variables are of great value but the amount and quality of information available varies greatly with location, spatial scales and time. It is very well known that remote sensing of flooding, especially in the microwave region of the electromagnetic spectrum, can complement ground-based observations and be integrated with flood models to augment the amount of information available to end-users, decision-makers and scientists. This paper aims to provide a concise review of both the science and applications of microwave remote sensing of flood inundation, focusing mainly on synthetic aperture radar (SAR), in a variety of natural and man-made environments. Strengths and limitations are discussed and the paper will conclude with a brief account on perspectives and emerging technologies.

  17. Remote sensing evaluation of CLMCN GPP

    NASA Astrophysics Data System (ADS)

    Mao, J.; Thornton, P. E.; Shi, X.; Levis, S.

    2010-12-01

    CLMCN is the carbon-nitrogen biogeochemical component of the CESM1, which is one of the major fully coupled earth system models for the IPCC AR5. Accurate simulation and prediction of terrestrial carbon cycles are considerably important to reduce the uncertainty of the carbon-climate feedbacks to global warming. In comparison with other estimations and models, recent work (Beer et al., 2010) showed the systematic overestimation of GPP from CLMCN particularly over the tropical ecosystem. Remote sensing is a versatile tool that is suited to provide the long-term and large scale geography products for model evaluation. In this research, we calibrated and evaluated the CLMCN GPP by the use of improved MODIS GPP and LAI between 2001 and 2009. Compared to the remote sensing data, we found earlier growing timing for most deciduous PFTs, which partly accounts for the errors of global GPP. After modifications of phenology parameters, we improved the GPP and related carbon variables over different temporal and spatial scales.

  18. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats ecoregion, central Alaska

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Minsley, Burke J.; Ji, Lei; Walvoord, Michelle A.; Smith, Bruce D.; Abraham, Jared D.; Rose, Joshua R.

    2013-01-01

    Machine-learning regression tree models were used to extrapolate airborne electromagnetic resistivity data collected along flight lines in the Yukon Flats Ecoregion, central Alaska, for regional mapping of permafrost. This method of extrapolation (r = 0.86) used subsurface resistivity, Landsat Thematic Mapper (TM) at-sensor reflectance, thermal, TM-derived spectral indices, digital elevation models and other relevant spatial data to estimate near-surface (0–2.6-m depth) resistivity at 30-m resolution. A piecewise regression model (r = 0.82) and a presence/absence decision tree classification (accuracy of 87%) were used to estimate active-layer thickness (ALT) (< 101 cm) and the probability of near-surface (up to 123-cm depth) permafrost occurrence from field data, modelled near-surface (0–2.6 m) resistivity, and other relevant remote sensing and map data. At site scale, the predicted ALTs were similar to those previously observed for different vegetation types. At the landscape scale, the predicted ALTs tended to be thinner on higher-elevation loess deposits than on low-lying alluvial and sand sheet deposits of the Yukon Flats. The ALT and permafrost maps provide a baseline for future permafrost monitoring, serve as inputs for modelling hydrological and carbon cycles at local to regional scales, and offer insight into the ALT response to fire and thaw processes.

  19. The availability of conventional forms of remotely sensed data

    USGS Publications Warehouse

    Sturdevant, James A.; Holm, Thomas M.

    1982-01-01

    For decades Federal and State agencies have been collecting aerial photographs of various film types and scales over parts of the United States. More recently, worldwide Earth resources data acquired by orbiting satellites have inundated the remote sensing community. Determining the types of remotely sensed data that are publicly available can be confusing to the land-resource manager, planner, and scientist. This paper is a summary of the more commonly used types of remotely sensed data (aircraft and satellite) and their public availability. Special emphasis is placed on the National High-Altitude Photography (NHAP) program and future remote-sensing satellites.

  20. Application of remote sensing to water resources problems

    NASA Technical Reports Server (NTRS)

    Clapp, J. L.

    1972-01-01

    The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.

  1. Communicating remote sensing concepts in an interdisciplinary environment

    NASA Technical Reports Server (NTRS)

    Chung, R.

    1981-01-01

    Although remote sensing is currently multidisciplinary in its applications, many of its terms come from the engineering sciences, particularly from the field of pattern recognition. Scholars from fields such as the social sciences, botany, and biology, may experience initial difficulty with remote sensing terminology, even though parallel concepts exist in their own fields. Some parallel concepts and terminologies from nonengineering fields, which might enhance the understanding of remote sensing concepts in an interdisciplinary situation are identified. Feedbacks which this analogue strategy might have on remote sensing itself are explored.

  2. Proceedings of the Conference on Practical Applications of Remote Sensing

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conference papers dealing with the principles of remote sensing are summarized. Summaries cover problem solving capabilities within the realms of urbanism, agriculture, forestry, and environmental impact assessment.

  3. Method of determining forest production from remotely sensed forest parameters

    DOEpatents

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  4. AmericaView - A State-Based Remote Sensing Initiative Integrating Remote Sensing Data Into Geospatial Education and Applications

    NASA Astrophysics Data System (ADS)

    Dodge, R. L.; Lawrence, R.

    2007-12-01

    AmericaView (AV) is a national program created to advance the availability, timely distribution, and widespread use of land remote sensing data, especially among users within the university and government communities. Since the 1970s the federal government and private sector have spent billions of dollars on satellite-based earth observing systems, but distribution of data and development of real-world applications have been tough issues for the government and the academic research communities. It has often been hard for researchers to use or even access the data, particularly at smaller schools or research facilities, hindering applied research and current and future workforce development. Many state and local agencies working with applied research programs have not been able to effectively integrate remote sensing data into their geospatial management or decision-support programs. AV addresses these issues through a partnership between the U.S. Geological Survey and the AmericaView Consortium, which is a 501c3 non-profit comprised of university-led, state-based consortia. AmericaView is the federal government's partner in achieving the program vision and goals, which focus both on making data available in usable, cost-effective formats and on helping the university, secondary-education, and public sectors in each state identify, develop, and implement the kinds of remote sensing applications each state needs most. AV is developing applied remote sensing research programs in each of its thirty StateViews. Partner academic institutions are creating internships programs involving students and faculty with applications development, in cooperation with local, state, and federal government agencies. Education and training outreach programs are improving workforce preparation at K-12, post-secondary, and professional levels. Data distribution and sharing infrastructure that leverages funding and avoids duplication is enabling practical archive expansion and distribution

  5. Applications of Remote Sensing to Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Seielstad, G. A.; Laguette, S.; Seelan, S.; Lawrence, R.; Henry, M.; Maynard, C.; Dalsted, K.; Rattling Leaf, J.

    2001-05-01

    The Upper Midwest Aerospace Consortium (UMAC) has changed agricultural practices in the following ways: (1) farmers and ranchers have become partners with, not clients of, researchers; (2) experiments are carried out in the field rather than on small experimental plots; (3) the field is considered an agro-ecosystem, with all the complexities of multiple interactions, rather than attempting to isolate certain parameters and vary only a few; (4) both economic benefit to the producer and sound environmental stewardship for society are achievable. This approach has revealed that information is as significant an input to farm or ranch management as seeds, fertilizers, irrigation, and tillage. Accurate, timely information equips producers with the ability to make decisions during a growing season that optimize the yield at harvest time. An invaluable source of in-season information is imagery acquired from sensors on satellites or aircraft. In addition to sensing reflected sunlight in wavebands outside the visible, remote sensing's overview also reveals anomalous patterns in the vegetation cover that are difficult to spot on the ground. Anomalies can be caused by weeds, disease, water stress, inadequate nutrients, or other causes. Often, anomalies must be detected early or they spread too quickly to be addressed. The paper will demonstrate how remote sensing has been applied to (1) define management zones in farm fields, (2) prescribe variable rate applications of fertilizer, (3) detect pest infestations, and (4) manage cattle grazing according to forage available. The applications were possible because data were processed within 4-5 days of acquisition by the satellite, and then delivered by high-bandwidth satellite links to farmers, ranchers, and tribal government officials in minimal transit time. The applications research described was part of NASA's Synergy Program.

  6. Remote Sensing Training for Middle School through the Center of Excellence in Remote Sensing Education

    NASA Astrophysics Data System (ADS)

    Hayden, L. B.; Johnson, D.; Baltrop, J.

    2012-12-01

    Remote sensing has steadily become an integral part of multiple disciplines, research, and education. Remote sensing can be defined as the process of acquiring information about an object or area of interest without physical contact. As remote sensing becomes a necessity in solving real world problems and scientific questions an important question to consider is why remote sensing training is significant to education and is it relevant to training students in this discipline. What has been discovered is the interest in Science, Technology, Engineering and Mathematics (STEM) fields, specifically remote sensing, has declined in our youth. The Center of Excellence in Remote Sensing Education and Research (CERSER) continuously strives to provide education and research opportunities on ice sheet, coastal, ocean, and marine science. One of those continued outreach efforts are Center for Remote Sensing of Ice Sheets (CReSIS) Middle School Program. Sponsored by the National Science Foundation CReSIS Middle School Program offers hands on experience for middle school students. CERSER and NSF offer students the opportunity to study and learn about remote sensing and its vital role in today's society as it relate to climate change and real world problems. The CReSIS Middle School Program is an annual two-week effort that offers middle school students experience with remote sensing and its applications. Specifically, participants received training with Global Positioning Systems (GPS) where the students learned the tools, mechanisms, and applications of a Garmin 60 GPS. As a part of the program the students were required to complete a fieldwork assignment where several longitude and latitude points were given throughout campus. The students had to then enter the longitude and latitude points into the Garmin 60 GPS, navigate their way to each location while also accurately reading the GPS to make sure travel was in the right direction. Upon completion of GPS training the

  7. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    highlight use in the arctic of two different small remotely piloted aircraft (ScanEagle and RAVEN) for remote sensing of ice and ocean conditions as well as surveys of marine mammals. Finally, we explain how these can be used in future networked environments with DTN support not only for the collection of ocean and ice data for maritime domain awareness, but also for monitoring oil spill dynamics in high latitude environments, including spills in and under sea ice. The networked operation of heterogeneous air and ocean vehicle systems using DTN communications methods can provide unprecedented levels of spatial-temporal sampling resolution important to improving arctic remote sensing and maritime domain awareness capabilities.

  8. Detecting neighborhood vacancy level in Detroit city using remote sensing

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, R.; Yang, A.; Vojnovic, I.

    2015-12-01

    With the decline of manufacturing industries, many Rust Belt cities, which enjoyed prosperity in the past, are now suffering from financial stress, population decrease and urban poverty. As a consequence, urban neighborhoods deteriorate. Houses are abandoned and left to decay. Neighborhood vacancy brings on many problems. Governments and agencies try to survey the vacancy level by going through neighborhoods and record the condition of each structure, or by buying information of active mailing addresses to get approximate neighborhood vacancy rate. But these methods are expensive and time consuming. Remote sensing provides a quick and comparatively cost-efficient way to access spatial information on social and demographical attributes of urban area. In our study, we use remote sensing to detect a major aspect of neighborhood deterioration, the vacancy levels of neighborhoods in Detroit city. We compared different neighborhoods using Landsat 8 images in 2013. We calculated NDVI that indicates the greenness of neighborhoods with the image in July 2013. Then we used thermal infrared information from image in February to detect human activities. In winter, abandoned houses will not consume so much energy and therefore neighborhoods with more abandoned houses will have smaller urban heat island effect. Controlling for the differences in terms of the greenness obtained from summer time image, we used thermal infrared from winter image to determine the temperatures of urban surface. We find that hotter areas are better maintained and have lower house vacancy rates. We also compared the changes over time for neighborhoods using Landsat 7 images from 2003 to 2013. The results show that deteriorated neighborhoods have increased NDVI in summer and get colder in winter due to abandonment of houses. Our results show the potential application of remote sensing as an easily accessed and efficient way to obtain data about social conditions in cities. We used the neighborhood

  9. The Application of NASA Remote Sensing Technology to Human Health

    NASA Technical Reports Server (NTRS)

    Watts, C. T.

    2007-01-01

    With the help of satellites, the Earth's environment can be monitored from a distance. Earth observing satellites and sensors collect data and survey patterns that supply important information about the environment relating to its affect on human health. Combined with ground data, such patterns and remote sensing data can be essential to public health applications. Remote sensing technology is providing information that can help predict factors that affect human health, such as disease, drought, famine, and floods. A number of public health concerns that affect Earth's human population are part of the current National Aeronautics and Space Administration (NASA) Earth Science Applications Plan to provide remotely gathered data to public health decision-makers to aid in forming and implementing policy to protect human health and preserve well-being. These areas of concern are: air quality; water quality; weather and climate change; infectious, zoonotic, and vector-borne disease; sunshine; food resource security; and health risks associated with the built environment. Collaborations within the Earth Science Applications Plan join local, state, national, or global organizations and agencies as partners. These partnerships engage in projects that strive to understand the connection between the environment and health. The important outcome is to put this understanding to use through enhancement of decision support tools that aid policy and management decisions on environmental health risks. Future plans will further employ developed models in formats that are compatible and accessible to all public health organizations.

  10. NASA Remote Sensing Observations for Water Resource and Infrastructure Management

    NASA Astrophysics Data System (ADS)

    Granger, S. L.; Armstrong, L.; Farr, T.; Geller, G.; Heath, E.; Hyon, J.; Lavoie, S.; McDonald, K.; Realmuto, V.; Stough, T.; Szana, K.

    2008-12-01

    Decision support tools employed by water resource and infrastructure managers often utilize data products obtained from local sources or national/regional databases of historic surveys and observations. Incorporation of data from these sources can be laborious and time consuming as new products must be identified, cleaned and archived for each new study site. Adding remote sensing observations to the list of sources holds promise for a timely, consistent, global product to aid decision support at regional and global scales by providing global observations of geophysical parameters including soil moisture, precipitation, atmospheric temperature, derived evapotranspiration, and snow extent needed for hydrologic models and decision support tools. However, issues such as spatial and temporal resolution arise when attempting to integrate remote sensing observations into existing decision support tools. We are working to overcome these and other challenges through partnerships with water resource managers, tool developers and other stakeholders. We are developing a new data processing framework, enabled by a core GIS server, to seamlessly pull together observations from disparate sources for synthesis into information products and visualizations useful to the water resources community. A case study approach is being taken to develop the system by working closely with water infrastructure and resource managers to integrate remote observations into infrastructure, hydrologic and water resource decision tools. We present the results of a case study utilizing observations from the PALS aircraft instrument as a proxy for NASA's upcoming Soil Moisture Active Passive (SMAP) mission and an existing commercial decision support tool.

  11. Remote sensing and earthquake risk: A (re)insurance perspective

    NASA Astrophysics Data System (ADS)

    Smolka, Anselm; Siebert, Andreas

    2013-04-01

    The insurance sector is faced with two issues regarding earthquake risk: the estimation of rarely occurring losses from large events and the assessment of the average annual net loss. For this purpose, knowledge is needed of actual event losses, of the distribution of exposed values, and of their vulnerability to earthquakes. To what extent can remote sensing help the insurance industry fulfil these tasks, and what are its limitations? In consequence of more regular and high-resolution satellite coverage, we have seen earth observation and remote sensing methods develop over the past years to a stage where they appear to offer great potential for addressing some shortcomings of the data underlying risk assessment. These include lack of statistical representativeness and lack of topicality. Here, remote sensing can help in the following areas: • Inventories of exposed objects (pre- and post-disaster) • Projection of small-scale ground-based vulnerability classification surveys to a full inventory • Post-event loss assessment But especially from an insurance point of view, challenges remain. The strength of airborne remote sensing techniques lies in outlining heavily damaged areas where damage is caused by easily discernible structural failure, i.e. total or partial building collapse. Examples are the Haiti earthquake (with minimal insured loss) and the tsunami-stricken areas in the Tohoku district of Japan. What counts for insurers, however, is the sum of monetary losses. The Chile, the Christchurch and the Tohoku earthquakes each caused insured losses in the two-digit billion dollar range. By far the greatest proportion of these insured losses were due to non-structural damage to buildings, machinery and equipment. Even with the Tohoku event, no more than 30% of the total material damage was caused by the tsunami according to preliminary surveys, and this figure includes damage due to earthquake shock which was unrecognisable after the passage of the tsunami

  12. Remote Sensing and Avian Biodiversity Patterns in the United States

    NASA Astrophysics Data System (ADS)

    Culbert, Patrick Davis

    Avian biodiversity is threatened, and in order to prioritize limited conservation resources and conduct effective conservation planning, a better understanding of avian species richness patterns is needed. In general, habitat structure, climatic stability, and sensed data to characterize these three drivers at a national scale, determine the influence and relative importance of these drivers of avian biodiversity, and produce nationwide, predictive maps of avian species richness for all birds, forest birds, grassland birds, shrubland birds, Neotropical migrants, short-distance migrants, and permanent residents. The quantification of habitat structure from remotely sensed data was a primary objective, including the evaluation of remotely sensed image texture and both horizontal and vertical vegetation structure, such as landscape composition and forest canopy height. These measures explained up to 70 percent of variability in avian species richness across the United States, and vertical and horizontal structure measures were complementary. I then developed models of avian species richness as a function of all three drivers of biodiversity. When modeling avian species richness at the scale of a North American Breeding Bird Survey route, all three factors had some explanatory power, but measures of habitat structure dominated, followed by productivity, then climatic stability. Models for specific avian guilds explained between 21 and 67 percent of the variability in avian species richness. Lastly, in order to generate a product useful to planners and resource managers, I produced a nationwide, 30-m spatial resolution map of predicted avian species richness for each of the seven avian guilds. My dissertation makes several technical, theoretical, and applied contributions to biodiversity conservation. The main technical contribution is the use of remotely sensed image texture over a nationwide extent. Theoretical contributions include the evaluation of the relative

  13. Latest developments in active remote sensing at INO

    NASA Astrophysics Data System (ADS)

    Babin, F.; Forest, R.; Bourliaguet, B.; Cantin, D.; Cottin, P.; Pancrati, O.; Turbide, S.; Lambert-Girard, S.; Cayer, F.; Lemieux, D.; Cormier, J.-F.; Châteauneuf, F.

    2012-09-01

    Remote sensing or stand-off detection using controlled light sources is a well known and often used technique for atmospheric and surface spatial mapping. Today, ground based, vehicle-borne and airborne systems are able to cover large areas with high accuracy and good reliability. This kind of detection based on LiDAR (Light Detection and Ranging) or active Differential Optical Absorption Spectroscopy (DOAS) technologies, measures optical responses from controlled illumination of targets. Properties that can be recorded include volume back-scattering, surface reflectivity, molecular absorption, induced fluorescence and Raman scattering. The various elastic and inelastic backscattering responses allow the identification or characterization of content of the target volumes or surfaces. INO has developed instrumentations to measure distance to solid targets and monitor particles suspended in the air or in water in real time. Our full waveform LiDAR system is designed for use in numerous applications in environmental or process monitoring such as dust detection systems, aerosol (pesticide) drift monitoring, liquid level sensing or underwater bathymetric LiDARs. Our gated imaging developments are used as aids in visibility enhancement or in remote sensing spectroscopy. Furthermore, when coupled with a spectrograph having a large number of channels, the technique becomes active multispectral/hyperspectral detection or imaging allowing measurement of ultra-violet laser induced fluorescence (UV LIF), time resolved fluorescence (in the ns to ms range) as well as gated Raman spectroscopy. These latter techniques make possible the stand-off detection of bio-aerosols, drugs, explosives as well as the identification of mineral content for geological survey. This paper reviews the latest technology developments in active remote sensing at INO and presents on-going projects conducted to address future applications in environmental monitoring.

  14. Remote Sensing Characteristics of Wave Breaking Rollers

    NASA Astrophysics Data System (ADS)

    Haller, M. C.; Catalan, P.

    2006-12-01

    The wave roller has a primary influence on the balances of mass and momentum in the surf zone (e.g. Svendsen, 1984; Dally and Brown, 1995; Ruessink et al., 2001). In addition, the roller area and its angle of inclination on the wave front are important quantities governing the dissipation rates in breaking waves (e.g Madsen et al., 1997). Yet, there have been very few measurements published of individual breaking wave roller geometries in shallow water. A number of investigators have focused on observations of the initial jet-like motion at the onset of breaking before the establishment of the wave roller (e.g. Basco, 1985; Jansen, 1986), while Govender et al. (2002) provide observations of wave roller vertical cross-sections and angles of inclination for a pair of laboratory wave conditions. Nonetheless, presently very little is known about the growth, evolution, and decay of this aerated region of white water as it propagates through the surf zone; mostly due to the inherent difficulties in making the relevant observations. The present work is focused on analyzing observations of the time and space scales of individual shallow water breaking wave rollers as derived from remote sensing systems. Using a high-resolution video system in a large-scale laboratory facility, we have obtained detailed measurements of the growth and evolution of the wave breaking roller. In addition, by synchronizing the remote video with in-situ wave gages, we are able to directly relate the video intensity signal to the underlying wave shape. Results indicate that the horizontal length scale of breaking wave rollers differs significantly from the previous observations of Duncan (1981), which has been a traditional basis for roller model parameterizations. The overall approach to the video analysis is new in the sense that we concentrate on individual breaking waves, as opposed to the more commonly used time-exposure technique. In addition, a new parameter of interest, denoted Imax, is

  15. Remote sensing of the Martian surface

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.; Henderson, Bradley G.; Randall, Cora E.; Alexander, M. Joan; Mccollom, Thomas M.

    1991-01-01

    Researchers investigated the physical properties of the Martian surface as inferred from a combination of orbiting and earth-based remote sensing observations and in-situ observations. This approach provides the most detailed and self-consistent view of the global and regional nature of the surface. Results focus on the areas of modeling the diurnal variation of the surface temperature of Mars, incorporating the effects of atmospheric radiation, with implications for the interpretation of surface thermal inertia; modeling the thermal emission from particulate surfaces, with application to observations of the surfaces of the Earth, Moon, and Mars; modeling the reflectance spectrum of Mars in an effort to understand the role of particle size in the difference between the bright and dark regions; and determining the slope properties of different terrestrial surfaces and comparing them with planetary slopes derived from radar observations.

  16. Multisensor image fusion techniques in remote sensing

    NASA Astrophysics Data System (ADS)

    Ehlers, Manfred

    Current and future remote sensing programs such as Landsat, SPOT, MOS, ERS, JERS, and the space platform's Earth Observing System (Eos) are based on a variety of imaging sensors that will provide timely and repetitive multisensor earth observation data on a global scale. Visible, infrared and microwave images of high spatial and spectral resolution will eventually be available for all parts of the earth. It is essential that efficient processing techniques be developed to cope with the large multisensor data volumes. This paper discusses data fusion techniques that have proved successful for synergistic merging of SPOT HRV, Landsat TM and SIR-B images. It is demonstrated that these techniques can be used to improve rectification accuracies, to depicit greater cartographic detail, and to enhance spatial resolution in multisensor image data sets.

  17. Multisource Data Integration in Remote Sensing

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1991-01-01

    Papers presented at the workshop on Multisource Data Integration in Remote Sensing are compiled. The full text of these papers is included. New instruments and new sensors are discussed that can provide us with a large variety of new views of the real world. This huge amount of data has to be combined and integrated in a (computer-) model of this world. Multiple sources may give complimentary views of the world - consistent observations from different (and independent) data sources support each other and increase their credibility, while contradictions may be caused by noise, errors during processing, or misinterpretations, and can be identified as such. As a consequence, integration results are very reliable and represent a valid source of information for any geographical information system.

  18. Neural maps in remote sensing image analysis.

    PubMed

    Villmann, Thomas; Merényi, Erzsébet; Hammer, Barbara

    2003-01-01

    We study the application of self-organizing maps (SOMs) for the analyses of remote sensing spectral images. Advanced airborne and satellite-based imaging spectrometers produce very high-dimensional spectral signatures that provide key information to many scientific investigations about the surface and atmosphere of Earth and other planets. These new, sophisticated data demand new and advanced approaches to cluster detection, visualization, and supervised classification. In this article we concentrate on the issue of faithful topological mapping in order to avoid false interpretations of cluster maps created by an SOM. We describe several new extensions of the standard SOM, developed in the past few years: the growing SOM, magnification control, and generalized relevance learning vector quantization, and demonstrate their effect on both low-dimensional traditional multi-spectral imagery and approximately 200-dimensional hyperspectral imagery.

  19. Layered classification techniques for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Swain, P. H.; Wu, C. L.; Landgrebe, D. A.; Hauska, H.

    1975-01-01

    The single-stage method of pattern classification utilizes all available features in a single test which assigns the unknown to a category according to a specific decision strategy (such as the maximum likelihood strategy). The layered classifier classifies the unknown through a sequence of tests, each of which may be dependent on the outcome of previous tests. Although the layered classifier was originally investigated as a means of improving classification accuracy and efficiency, it was found that in the context of remote sensing data analysis, other advantages also accrue due to many of the special characteristics of both the data and the applications pursued. The layered classifier method and several of the diverse applications of this approach are discussed.

  20. Remote Sensing of Parasitic Nematodes in Plants

    NASA Technical Reports Server (NTRS)

    Lawrence, Gary W.; King, Roger; Kelley, Amber T.; Vickery, John

    2007-01-01

    A method and apparatus for remote sensing of parasitic nematodes in plants, now undergoing development, is based on measurement of visible and infrared spectral reflectances of fields where the plants are growing. Initial development efforts have been concentrated on detecting reniform nematodes (Rotylenchulus reniformis) in cotton plants, because of the economic importance of cotton crops. The apparatus includes a hand-held spectroradiometer. The readings taken by the radiometer are processed to extract spectral reflectances at sixteen wavelengths between 451 and 949 nm that, taken together, have been found to be indicative of the presence of Rotylenchulus reniformis. The intensities of the spectral reflectances are used to estimate the population density of the nematodes in an area from which readings were taken.

  1. Remote sensing of balsam fir forest vigor

    NASA Astrophysics Data System (ADS)

    Luther, Joan E.; Carroll, Allen L.

    1997-12-01

    The potential of remote sensing to monitor indices of forest health was tested by examining the spectral separability of plots with different balsam fir, Abies balsamea (L.) Mill, vigor. Four levels of vigor were achieved with controlled experimental manipulations of forest stands. In order of increasing vigor, the treatments were root pruning, control, thinning and thinning in combination with fertilization. Spectral reflectance of branchlets from each plot were measured under laboratory conditions using a field portable spectroradiometer with a spectral range from 350 - 2500 nm. Branchlets were discriminated using combinations of factor and discriminant analyses techniques with classification accuracies of 91% and 83% for early and late season analyses, respectively. Relationships between spectral reflectance measurements at canopy levels, stand vigor, and foliage quality for an insect herbivore will be analyzed further in support of future large scale monitoring of balsam fir vulnerability to insect disturbance.

  2. Microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1984-01-01

    Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelength, there is a strong dependence of the thermal emission and radar backscatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques is demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research indicates that it is possible to obtain five or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation.

  3. Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1985-01-01

    Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelength, there is a strong dependence of the thermal emission and radar backscatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques is demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research indicates that it is possible to obtain five or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation.

  4. Remote sensing application to regional activities

    NASA Technical Reports Server (NTRS)

    Shahrokhi, F.; Jones, N. L.; Sharber, L. A.

    1976-01-01

    Two agencies within the State of Tennessee were identified whereby the transfer of aerospace technology, namely remote sensing, could be applied to their stated problem areas. Their stated problem areas are wetland and land classification and strip mining studies. In both studies, LANDSAT data was analyzed with the UTSI video-input analog/digital automatic analysis and classification facility. In the West Tennessee area three land-use classifications could be distinguished; cropland, wetland, and forest. In the East Tennessee study area, measurements were submitted to statistical tests which verified the significant differences due to natural terrain, stripped areas, various stages of reclamation, water, etc. Classifications for both studies were output in the form of maps of symbols and varying shades of gray.

  5. Biomass Burning Emissions from Fire Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  6. Global habitability and earth remote sensing

    NASA Technical Reports Server (NTRS)

    Tilford, S. G.

    1984-01-01

    Since 1960, when NASA launched the Tiros satellite to study the atmosphere of the earth, great advances have been made in the study of the earth system by means of remote sensing. It is felt that the time has come for assembling the separate pieces into a coherent whole. Work has, therefore, been conducted to develop a concept called 'global habitability'. The objective of the considered program is to investigate long-term physical, chemical, and biological trends and changes in the earth's environment, including its atmosphere, land masses, and oceans. The program is specifically concerned with a study of the effects of natural and human activities on the earth's environment, and with the future effects on biological productivity and habitability of the earth by man and by other species.

  7. Remote sensing of water vapor features

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.

    1993-01-01

    Water vapor plays a critical role in the atmosphere. It is an important medium of energy exchange between air, land, and water; it is a major greenhouse gas, providing a crucial radiative role in the global climate system; and it is intimately involved in many regional scale atmospheric processes. Our research has been aimed at improving satellite remote sensing of water vapor and better understanding its role in meteorological processes. Our early studies evaluated the current GOES VAS system for measuring water vapor and have used VAS-derived water vapor data to examine pre-thunderstorm environments. Much of that research was described at the 1991 Research Review. A second research component has considered three proposed sensors--the High resolution Interferometer Sounder (HIS), the Multispectral Atmospheric Mapping Sensor (MAMS), and the Advanced Microwave Sounding Unit (AMSU). We have focused on MAMS and AMSU research during the past year and the accomplishments made in this effort are presented.

  8. Toward interactive search in remote sensing imagery

    SciTech Connect

    Porter, Reid B; Hush, Do; Harvey, Neal; Theile, James

    2010-01-01

    To move from data to information in almost all science and defense applications requires a human-in-the-loop to validate information products, resolve inconsistencies, and account for incomplete and potentially deceptive sources of information. This is a key motivation for visual analytics which aims to develop techniques that complement and empower human users. By contrast, the vast majority of algorithms developed in machine learning aim to replace human users in data exploitation. In this paper we describe a recently introduced machine learning problem, called rare category detection, which may be a better match to visual analytic environments. We describe a new design criteria for this problem, and present comparisons to existing techniques with both synthetic and real-world datasets. We conclude by describing an application in broad-area search of remote sensing imagery.

  9. Remote sensing of snow and ice

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1979-01-01

    This paper reviews remote sensing of snow and ice, techniques for improved monitoring, and incorporation of the new data into forecasting and management systems. The snowcover interpretation of visible and infrared data from satellites, automated digital methods, radiative transfer modeling to calculate the solar reflectance of snow, and models using snowcover input data and elevation zones for calculating snowmelt are discussed. The use of visible and near infrared techniques for inferring snow properties, microwave monitoring of snowpack characteristics, use of Landsat images for collecting glacier data, monitoring of river ice with visible imagery from NOAA satellites, use of sequential imagery for tracking ice flow movement, and microwave studies of sea ice are described. Applications of snow and ice research to commercial use are examined, and it is concluded that a major problem to be solved is characterization of snow and ice in nature, since assigning of the correct properties to a real system to be modeled has been difficult.

  10. Method to analyze remotely sensed spectral data

    DOEpatents

    Stork, Christopher L.; Van Benthem, Mark H.

    2009-02-17

    A fast and rigorous multivariate curve resolution (MCR) algorithm is applied to remotely sensed spectral data. The algorithm is applicable in the solar-reflective spectral region, comprising the visible to the shortwave infrared (ranging from approximately 0.4 to 2.5 .mu.m), midwave infrared, and thermal emission spectral region, comprising the thermal infrared (ranging from approximately 8 to 15 .mu.m). For example, employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, MCR can be used to successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. Further, MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of a gas plume component near the minimum detectable quantity.

  11. Superradiant light source for atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri; Traverso, Andrew; Sanchez-Gonzalez, Rodrigo; Yuan, Luqi; Grubb, Michael; Wang, Kai; Zheltikov, Alexei; Dogariu, Arthur; Michael, James; Miles, Richard; Rostovtsev, Yuri; Sautenkov, Vladimir; Sokolov, Alexei; North, Simon; Scully, Marlan

    2012-02-01

    We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O2, followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have thereby shown that a large atomic coherence may well be responsible for the observed temporal structures. Our results suggest that the emission process is coherence brightened in its nature, and is to be compared with ordinary lasing where atomic coherence remains small on the one hand and cooperative Dicke superradiance where atomic coherence is maximized on the other. The collective coherence in this process adds insight as to the optical emission physics. The present superradiant source holds promise for remote sensing techniques employing nonlinear spectroscopy.

  12. Urban environmental health applications of remote sensing

    NASA Technical Reports Server (NTRS)

    Rush, M.; Goldstein, J.; Hsi, B. P.; Olsen, C. B.

    1974-01-01

    An urban area was studied through the use of the inventory-by-surrogate method rather than by direct interpretation of photographic imagery. Prior uses of remote sensing in urban and public research are examined. The effects of crowding, poor housing conditions, air pollution, and street conditions on public health are considered. Color infrared photography was used to categorize land use features and the grid method was used in photo interpretation analysis. The incidence of shigella and salmonella, hepatitis, meningitis, tuberculosis, myocardial infarction and veneral disease were studied, together with mortality and morbidity rates. Sample census data were randomly collected and validated. The hypothesis that land use and residential quality are associated with and act as an influence upon health and physical well-being was studied and confirmed.

  13. Absolute calibration of remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Biggar, S. F.; Bruegge, C. J.; Capron, B. A.; Castle, K. R.; Dinguirard, M. C.; Holm, R. G.; Lingg, L. J.; Mao, Y.; Palmer, J. M.; Phillips, A. L.

    1985-12-01

    Source-based and detector-based methods for the absolute radiometric calibration of a broadband field radiometer are described. Using such a radiometer, calibrated by both methods, the calibration of the integrating sphere used in the preflight calibration of the Thematic Mapper was redetermined. The results are presented. The in-flight calibration of space remote sensing instruments is discussed. A method which uses the results of ground-based reflectance and atmospheric measurements as input to a radiative transfer code to predict the radiance at the instrument is described. A calibrated, helicopter-mounted radiometer is used to determine the radiance levels at intermediate altitudes to check the code predictions. Results of such measurements for the calibration of the Thematic Mapper on Landsat 5 and an analysis that shows the value of such measurements are described.

  14. Unsupervised classification of remote multispectral sensing data

    NASA Technical Reports Server (NTRS)

    Su, M. Y.

    1972-01-01

    The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.

  15. Computational ghost imaging for remote sensing.

    PubMed

    Erkmen, Baris I

    2012-05-01

    Computational ghost imaging is a structured-illumination active imager coupled with a single-pixel detector that has potential applications in remote sensing. Here we report on an architecture that acquires the two-dimensional spatial Fourier transform of the target object (which can be inverted to obtain a conventional image). We determine its image signature, resolution, and signal-to-noise ratio in the presence of practical constraints such as atmospheric turbulence, background radiation, and photodetector noise. We consider a bistatic imaging geometry and quantify the resolution impact of nonuniform Kolmogorov-spectrum turbulence along the propagation paths. We show that, in some cases, short-exposure intensity averaging can mitigate atmospheric-turbulence-induced resolution loss. Our analysis reveals some key performance differences between computational ghost imaging and conventional active imaging, and identifies scenarios in which theory predicts that the former will perform better than the latter.

  16. Benefits to world agriculture through remote sensing

    NASA Technical Reports Server (NTRS)

    Buffalano, A. C.; Kochanowski, P.

    1976-01-01

    Remote sensing of agricultural land permits crop classification and mensuration which can lead to improved forecasts of production. This technique is particularly important for nations which do not already have an accurate agricultural reporting system. Better forecasts have important economic effects. International grain traders can make better decisions about when to store, buy, and sell. Farmers can make better planting decisions by taking advantage of production estimates for areas out of phase with their own agricultural calendar. World economic benefits will accrue to both buyers and sellers because of increased food supply and price stabilization. This paper reviews the econometric models used to establish this scenario and estimates the dollar value of benefits for world wheat as 200 million dollars annually for the United States and 300 to 400 million dollars annually for the rest of the world.

  17. Remote sensing of potential aircraft icing areas

    NASA Astrophysics Data System (ADS)

    Zuev, Vladimir V.; Nakhtigalova, Daria P.; Shelekhov, Alexander P.; Shelekhova, Evgeniya A.; Baranov, Nikolay A.; Kizhner, Lubov I.

    2015-11-01

    Remote sensing technique of detection of potential aircraft icing areas based on temperature profile measurements, using meteorological temperature profiler, and the data of the Airfield Measuring and Information System (AMIS-RF), was proposed, theoretically described and experimentally validated during the field project in 2012 - 2013 in the Tomsk Bogashevo Airport. Spatial areas of potential aircraft icing were determined using the RAP algorithm and Godske formula. The equations for the reconstruction of profiles of relative humidity and dew point using data from AMIS-RF are given. Actual data on the aircraft icing for the Tomsk Bogashevo Airport on 11 October 2012 and 17 March 2013 are presented in this paper. The RAP algorithm and Godske formula show similar results for the location of spatial areas of potential icing. Though, the results obtained using the RAP algorithm are closer to the actual data on the icing known from aircraft crew reports.

  18. Remote sensing and characterization of anomalous debris

    NASA Technical Reports Server (NTRS)

    Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.

    1997-01-01

    The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.

  19. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  20. Remote sensing of some sedimentary rocks.

    NASA Technical Reports Server (NTRS)

    Brennan, P. A.; Lintz, J., Jr.

    1971-01-01

    Sedimentary rocks including varying sized clastics and carbonates were overflown by aircraft between 1966 and 1971 producing data in the ultraviolet to microwave regions of the electromagnetic spectrum. This paper reports that multispectral analysis increases the ease and rapidity of discrimination of rock types having subtle differences in physical characteristics, but fails to enhance and may degrade distinctions where physical characteristics are significantly different. Brief resumes of color and color IR photographic data are presented. Thermal infrared is found to be useful in the mapping of rock units, but limitations such as moisture variation, soil cover, and vegetation may exceed in one formation the distinction between differing lithologies. A brief review of previously published SLAR data is included for completeness. Remote sensing techniques should reduce field geological effort by as much as 50%.

  1. Basic studies in microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Fung, Adrian K.; Bredow, Jonathan

    1992-01-01

    Scattering models were developed in support of microwave remote sensing of earth terrains with particular emphasis on model applications to airborne Synthetic Aperture Radar measurements of forest. Practically useful surface scattering models based on a solution of a pair of integral equations including multiple scattering effects were developed. Comparisons of these models with controlled scattering measurements from statistically known random surfaces indicate that they are valid over a wide range of frequencies. Scattering models treating a forest environment as a two and three layered media were also developed. Extensive testing and comparisons were carried out with the two layered model. Further studies with the three layered model are being carried out. A volume scattering model valid for dense media such as a snow layer was also developed that shows the appropriate trend dependence with the volume fraction of scatterers.

  2. Applications of remote sensing to hydrologic planning

    NASA Technical Reports Server (NTRS)

    Loats, H., Jr.; Fowler, T.; Castruccio, P.

    1978-01-01

    The transfer of LANDSAT remote sensing technology from the research sector to user operational applications requires demonstration of the utility and accuracy of LANDSAT data in solving real problems. This report describes such a demonstration project in the area of water resources, specifically the estimation of non-point source pollutant loads. Non-point source pollutants were estimated from land cover data from LANDSAT images. Classification accuracies for three small watersheds were above 95%. Land cover was converted to pollutant loads for a fourth watershed through the use of coefficients relating significant pollutants to land use and storm runoff volume. These data were input into a simulator model which simulated runoff from average rainfall. The result was the estimation of monthly expected pollutant loads for the 17 subbasins comprising the Magothy watershed.

  3. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Lowe, D. S.; Istvan, L. B.; Roller, N. E. G.; Prentice, V. L.

    1976-01-01

    The Environmental Research Institute of Michigan is conducting a program whose goal is the large-scale adoption, by both public agencies and private interests in Michigan, of NASA earth-resource survey technology as an important aid in the solution of current problems in resource management and environmental protection. During the period from June 1975 to June 1976, remote sensing techniques to aid Michigan government agencies were used to achieve the following major results: (1) supply justification for public acquisition of land to establish the St. John's Marshland Recreation Area; (2) recommend economical and effective methods for performing a statewide wetlands survey; (3) assist in the enforcement of state laws relating to sand and gravel mining, soil erosion and sedimentation, and shorelands protection; (4) accomplish a variety of regional resource management actions in the East Central Michigan Planning and Development Region. Other tasks on which remote sensing technology was used include industrial and school site selection, ice detachment in the Soo Harbor, grave detection, and data presentation for wastewater management programs.

  4. Remote sensing of sagebrush canopy nitrogen

    USGS Publications Warehouse

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.

    2012-01-01

    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.

  5. Using Remote Sensing to Understand Climate Variability

    NASA Astrophysics Data System (ADS)

    Green, J.; Gentine, P.

    2014-12-01

    While a major source of uncertainty in global climate model predictions is due to the coarseness of their resolution, a significant amount of error is also generated due to the lack of information regarding the interactions between atmospheric and land parameters over time. When the behavior of a certain parameter is not clearly understood it is frequently estimated as one specific value while in reality it may vary with time and space. Remote sensing is allowing researchers to better estimate each of these parameters so one can see how they change with time. This study is an effort to improve our knowledge of the inter-annual and seasonal variability in radiation, water and the carbon cycle using remote sensing products on a global scale. By examining monthly data over a multi-year period (data parameter and source are listed in Table 1) for fluorescence, groundwater, net radiation, vegetation indices, precipitation, soil moisture and evapotranspiration, we should be able to determine the behavior and interactions between these parameters and better understand how they vary together seasonally, annually and year to year. With this information it is our hope that global climate models can be improved to better understand what is occurring climatologically in the present as well as more accurately make predictions about future conditions. Table 1. Parameters and Sources Parameter Source Fluorescence Greenhouse gases Observing SATellite (GOSAT)1 Groundwater Gravity Recovery and Climate Experiment (GRACE) Net Radiation Clouds and the Earth's Radiant Energy System (CERES) Vegetation Indices Moderate Resolution Imaging Spectroradiometer (MODIS)/ Multiangle Implementation of Atmospheric Correction (MAIAC) Precipitation Global Precipitation Climatology Project (GPCP) Soil Moisture Water Cycle Mutimission Observation Strategy (WACMOS) Evapotranspiration Global Land-surface Evaporation: the Amsterdam Methodology (GLEAM) 1In future work, we hope to use fluorescence data from

  6. Remote sensing monitoring of the global ozonosphere

    NASA Astrophysics Data System (ADS)

    Genco, S.; Bortoli, D.; Ravegnani, F.

    2013-10-01

    The use of CFCs, which are the main responsible for the ozone depletion in the upper atmosphere and the formation of the so-called "ozone hole" over Antarctic Region, was phase out by Montreal Protocol (1989). CFCs' concentration is recently reported to decrease in the free atmosphere, but severe episodes of ozone depletion in both Arctic and Antarctic regions are still occurring. Nevertheless the complete recovery of the Ozone layer is expected by about 2050. Recent simulation of perturbations in stratospheric chemistry highlight that circulation, temperature and composition are strictly correlated and they influence the global climate changes. Chemical composition plays an important role in the thermodynamic of the atmosphere, as every gaseous species can absorb and emit in different wavelengths, so their different concentration is responsible for the heating or cooling of the atmosphere. Therefore long-term observations are required to monitor the evolution of the stratospheric ozone layer. Measurements from satellite remote sensing instruments, which provide wide coverage, are supplementary to selective ground-based observations which are usually better calibrated, more stable in time and cover a wider time span. The combination of the data derived from different space-borne instruments calibrated with ground-based sensors is needed to produce homogeneous and consistent long-term data records. These last are required for robust investigations and especially for trend analysis. Here, we perform a review of the major remote-sensing techniques and of the principal datasets available to study the evolution of ozone layer in the past decades and predict future behavio

  7. Acoustic Remote Sensing of Rogue Waves

    NASA Astrophysics Data System (ADS)

    Parsons, Wade; Kadri, Usama

    2016-04-01

    We propose an early warning system for approaching rogue waves using the remote sensing of acoustic-gravity waves (AGWs) - progressive sound waves that propagate at the speed of sound in the ocean. It is believed that AGWs are generated during the formation of rogue waves, carrying information on the rogue waves at near the speed of sound, i.e. much faster than the rogue wave. The capability of identifying those special sound waves would enable detecting rogue waves most efficiently. A lot of promising work has been reported on AGWs in the last few years, part of which in the context of remote sensing as an early detection of tsunami. However, to our knowledge none of the work addresses the problem of rogue waves directly. Although there remains some uncertainty as to the proper definition of a rogue wave, there is little doubt that they exist and no one can dispute the potential destructive power of rogue waves. An early warning system for such extreme waves would become a demanding safety technology. A closed form expression was developed for the pressure induced by an impulsive source at the free surface (the Green's function) from which the solution for more general sources can be developed. In particular, we used the model of the Draupner Wave of January 1st, 1995 as a source and calculated the induced AGW signature. In particular we studied the AGW signature associated with a special feature of this wave, and characteristic of rogue waves, of the absence of any local set-down beneath the main crest and the presence of a large local set-up.

  8. MODIS Direct Broadcast and Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2004-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard both Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). Equipped with direct broadcast capability, the MODIS measurements can be received worldwide real time. There are 82 ingest sites (over 900 users, listed on the Direct Readout Portal) around the world for Terra/Aqua-MODIS Direct Broadcast DB) downlink. This represents 27 (6 from EOS science team members) science research organizations for DB land, ocean and atmospheric processing, and 53 companies that base their application algorithms and value added products on DB data. In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of aerosol/cloud optical properties, especially optical thickness and effective particle size. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Preliminary results will be presented and discussed their implications in regional-to-global climatic effects.

  9. Data Fusion for Earth Science Remote Sensing

    NASA Technical Reports Server (NTRS)

    Braverman, Amy

    2007-01-01

    Beginning in 2004, NASA has supported the development of an international network of ground-based remote sensing installations for the measurement of greenhouse gas columns. This collaboration has been successful and is currently used in both carbon cycle investigations and in the efforts to validate the GOSAT space-based column observations of CO2 and CH4. With the support of a grant, this research group has established a network of ground-based column observations that provide an essential link between the satellite observations of CO2, CO, and CH4 and the extensive global in situ surface network. The Total Carbon Column Observing Network (TCCON) was established in 2004. At the time of this report seven sites, employing modern instrumentation, were operational or were expected to be shortly. TCCON is expected to expand. In addition to providing the most direct means of tying the in situ and remote sensing data sets together, TCCON provides a means of testing the retrieval algorithms of SCIAMACHY and GOSAT over the broadest variation in atmospheric state. TCCON provides a critically maintained and long timescale record for identification of temporal drift and spatial bias in the calibration of the space-based sensors. Finally, the global observations from TCCON are improving our understanding of how to use column observations to provide robust estimates of surface exchange of C02 and CH4 in advance of the launch of OCO and GOSAT. TCCON data are being used to better understand the impact of both regional fluxes and long-range transport on gradients in the C02 column. Such knowledge is essential for identifying the tools required to best use the space-based observations. The technical approach and methodology of retrieving greenhouse gas columns from near-IR solar spectra, data quality and process control are described. Additionally, the impact of and relevance to NASA of TCCON and satellite validation and carbon science are addressed.

  10. Satellite marine remote sensing in China

    NASA Astrophysics Data System (ADS)

    Pan, Delu

    2003-05-01

    Since the 1980s, a great attention has been paid to the advanced technique remote sensing in China, especially to development of satellite programs for marine environment. On September 7, 1988, China launched her first polar orbit satellite FY-1A for meteorological and oceanographic application (water color and temperature) and second satellite FY-1B two years later. In May 1999, China launched her second generation of environment satellite FY-1C with higher sensitivity, more channels and stable operation. The special ocean color satellite HY-1 has been in the orbit on May 15, 2002, whose main purpose is detection of marine environment of China Sea. HY-1 is a first Chinese ocean color satellite which was launched as a piggyback satellite on FY-1 satellite using Long March rocket. On the satellite there are two sensors, one is the Chinese Ocean Color and Temperature Scanner (COCTS), the other is CCD Coastal Zone Imager (CZI). The technique systems of ocean color remote sensing have been developed by Second Institute of Oceanography (SIO), State Oceanic Administration (SOA), in 1997 and by National Satellite Ocean Application Service (NSOAS) in 2002. Those systems include the functions of data receiving, processing, distribution, calibration, validation and application. SIO has capability to receive and process the FY-1 and AVHRR data since 1989. It is also a SeaWiFS scientific research station authorized by NASA, USA, to freely receive SeaWiFS data Since September 16, 1997. NSOAS has capability to receive and process the data of HY-1, AVHRR, MODIS and Geo satellite. In the recent years, some local algorithms of atmospheric correction and inversion of ocean color are developed for FY-1C , SeaWiFS and HY-1 to improve the accuracy of the measurement from satellites efficiently. The satellite data have being applied in monitoring marine environment, such as the spatial distribution of chlorophyll, primary products, suspended material, transparency and yellow substance

  11. International Commercial Remote Sensing Practices and Policies: A Comparative Analysis

    NASA Astrophysics Data System (ADS)

    Stryker, Timothy

    sensing satellite industry. In commissioning this study, NOAA's goal was to better understand the role that U.S. Government policies and regulations have in shaping the prospects for emerging commercial remote sensing satellite firms. The study assessed the risks against broader trends in the larger U.S. remote sensing industry and geospatial technology and effective policy implementation. The Department of Commerce is working with NOAA licensees to identify foreign actions which could restrict market access by U.S. firms, and seeking to provide a "level playing field" for U.S. service providers. The Department of Commerce has dedicated new resources to its licensing activities. In Fiscal Year 2002, the Department obtained 1.2 million in funding to support the NOAA program, through staff, equipment, technical support, constituent outreach, and market and policy studies. To better understand the market and make more well-informed licensing decisions, NOAA is participating in a broad-based market study effort under the direction of the American Society for Photogrammetry and Remote Sensing (ASPRS) and NASA's Commercial Remote Sensing Program. This study is providing long-term analysis of the commercial remote sensing industry. It is being supported by interviews with industry and government experts, a web-based survey, and a thorough review and analysis of related literature. The project should more clearly determine future remote sensing needs and requirements, and maximize the industry's baselines, standards, and socio-economic potential. NOAA, through its participation in this study, has gained important new insights into the status and future trends of this industry. The study's initial findings estimate 2001 industry revenue at 2 billion, growing at 13% per year, to an approximate level of 6 billion in 2010 (in constant, calendar year 2000 dollars). Currently, across all sectors, the most active market segments are in nati onal /glo bal security, mapping

  12. Microwave remote sensing: Active and passive. Volume 1 - Microwave remote sensing fundamentals and radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1981-01-01

    The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.

  13. Review of oil spill remote sensing

    SciTech Connect

    Fingas, M.F.; Brown, C.E.

    1996-12-31

    Remote-sensors for application to oil spills are reviewed. The capability of sensors to detect oil and to discriminate oil from background targets is the most important assessment criterion. A common sensor is an infrared camera or an IR/UV system. This sensor class can detect oil under a variety of conditions, discriminate oil from some backgrounds and has the lowest cost of any sensor. The inherent weaknesses include the inability to discriminate oil on beaches, among weeds or debris and under certain lighting conditions oil is not detected. The laser fluorosensor is recommended because of its unique capability to identify oil on most backgrounds. Radar, although low in priority for purchase, offers the only potential for large area searches and foul weather remote sensing. Radar is costly and requires a dedicated aircraft. Radar is prone to many interferences. Equipment operating in the visible spectrum, such as a camera or scanner, is useful for documentation or providing a basis for the overlay of other data. It is not useful beyond this, because oil shows no spectral characteristics in the visible region.

  14. International Space Station Remote Sensing Pointing Analysis

    NASA Technical Reports Server (NTRS)

    Jacobson, Craig A.

    2007-01-01

    This paper analyzes the geometric and disturbance aspects of utilizing the International Space Station for remote sensing of earth targets. The proposed instrument (in prototype development) is SHORE (Station High-Performance Ocean Research Experiment), a multiband optical spectrometer with 15 m pixel resolution. The analysis investigates the contribution of the error effects to the quality of data collected by the instrument. This analysis supported the preliminary studies to determine feasibility of utilizing the International Space Station as an observing platform for a SHORE type of instrument. Rigorous analyses will be performed if a SHORE flight program is initiated. The analysis begins with the discussion of the coordinate systems involved and then conversion from the target coordinate system to the instrument coordinate system. Next the geometry of remote observations from the Space Station is investigated including the effects of the instrument location in Space Station and the effects of the line of sight to the target. The disturbance and error environment on Space Station is discussed covering factors contributing to drift and jitter, accuracy of pointing data and target and instrument accuracies.

  15. Satellite Remote Sensing Signatures of Impact Structures

    NASA Astrophysics Data System (ADS)

    Garvin, J. B.; Grieve, R. A. F.; Schnetzler, C. C.

    1995-09-01

    On Earth the impact record is preserved in the form of ~140 landforms [1], although current cratering flux estimates [2] suggest that hundreds of structures remain undiscovered on the terrestrial continents. A primary focus of our ongoing research efforts in this area has necessarily emphasized the geologically most recent impact events, especially those which formed in the last few million years. For example, we have comprehensively examined the orbital remote sensing characteristics of the Zhamanshin impact feature of Kazakhstan, a ~ 14 km diameter complex crater which apparently formed only ~870,000 years ago in a mixed sedimentary target [3]. In this case, we have been most fortunate to have available TM, SPOT Panchromatic (i.e, 10 m spatial resolution), SRL-1 and SRL-2 multiparameter SAR, and a ~ 90 m horizontal resolution DEM, along with excellent field data. The orbital multispectral data (TM) allowed us to discriminate the larger deposits of allogenic breccias at this youthful feature from erosionally emplaced surficial units, and a subtle signature of those areas covered with lag deposits of impact-related glass (zhamanshinites) was also identified [3,4]. As part of an ongoing collaboration with SRL scientists R. Greeley and D. Blumberg, we have also observed that L-band orbital SAR data clearly reveals the subtleties of the drainage networks that developed as a consequence of the cratering event, and which are apparently controlled by crater-related structures and deposit porosities [5]. When the geomorphically subtle Zhamanshin feature is compared against the Bosumtwi crater of Ghana, which apparently formed in crystalline shield rocks at around the same time (~ 1 million years ago), it appears that target rock properties have strongly influenced the level of preservation of these craters. Indeed, SPOT XS remote sensing data for Bosumtwi reveals a relatively pristine "lunar-like" complex crater with a raised rim, a quasi-polygonal outline, and a deep

  16. Background and principle applications of remote sensing in Mexico

    NASA Technical Reports Server (NTRS)

    Perez, J. A. D.

    1978-01-01

    Remote sensing, or the collection of information from objectives at a distance, crystallizes the interest in implementing techniques which assist in the search for solutions to the problems raised by the detection, exploitation, and conservation of the natural resources of the earth. An attempt is made to present an overview of the studies and achievements which have been obtained with remote sensing in Mexico.

  17. Elementary Age Children and Remote Sensing: Research from Project Omega.

    ERIC Educational Resources Information Center

    Kirman, Joseph M.

    1991-01-01

    Discusses remote sensing technology use in teaching elementary school students about science and social studies. Reviews findings dealing with the use of remote sensing and considering children's abilities, teacher training, computer applications, gifted children, and sex-related differences. Concludes that children as young as grade three can…

  18. Satellites, Remote Sensing, and Classroom Geography for Canadian Teachers.

    ERIC Educational Resources Information Center

    Kirman, Joseph M.

    1998-01-01

    Argues that remote sensing images are a powerful tool for teaching geography. Discusses the use of remote sensing images in the classroom and provides a number of sources for them, some free, many on the World Wide Web. Reviews each source's usefulness for different grade levels and geographic topics. (DSK)

  19. A selected bibliography: Remote sensing applications in wildlife management

    USGS Publications Warehouse

    Carneggie, David M.; Ohlen, Donald O.; Pettinger, Lawrence R.

    1980-01-01

    Citations of 165 selected technical reports, journal articles, and other publications on remote sensing applications for wildlife management are presented in a bibliography. These materials summarize developments in the use of remotely sensed data for wildlife habitat mapping, habitat inventory, habitat evaluation, and wildlife census. The bibliography contains selected citations published between 1947 and 1979.

  20. Sea Surface Salinity: The Next Remote Sensing Challenge

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary S. E.; Swift, Calvin T.; LeVine, David M.

    1995-01-01

    A brief history of salinity remote sensing is presented. The role of sea surface salinity (SSS) in the far north Atlantic and the influence of salinity variations on upper ocean dynamics in the tropics are described. An assessment of the present state of the technology of the SSS satellite remote sensing is given.

  1. Basic principles, methodology, and applications of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Moreira, M. A. (Principal Investigator); Deassuncao, G. V.

    1984-01-01

    The basic principles of remote sensing applied to agriculture and the methods used in data analysis are described. Emphasis is placed on the importance of developing a methodology that may help crop forecast, basic concepts of spectral signatures of vegetation, the methodology of the LANDSAT data utilization in agriculture, and the remote sensing program application of INPE (Institute for Space Research) in agriculture.

  2. Application of remote sensing to solution of ecological problems

    NASA Technical Reports Server (NTRS)

    Adelman, A.

    1972-01-01

    The application of remote sensing techniques to solving ecological problems is discussed. The three phases of environmental ecological management are examined. The differences between discovery and exploitation of natural resources and their ecological management are described. The specific application of remote sensing to water management is developed.

  3. Spaceborne Radar Remote Sensing: Radar Interferometry, Scatterometry and Altimetry

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Yueh, Simon H.; Fu, Lee-Lueng

    1997-01-01

    Spaceborne remote sensing instruments allow the acquisition of global and synoptic information for Earth Science investigations. In particular, active microwave remote sensing that have contributed geophysical measurements of a scale and accuracy which surpass what could be accomplished with ariborne or in-situ observations.

  4. Remote Sensing Data Visualization, Fusion and Analysis via Giovanni

    NASA Technical Reports Server (NTRS)

    Leptoukh, G.; Zubko, V.; Gopalan, A.; Khayat, M.

    2007-01-01

    We describe Giovanni, the NASA Goddard developed online visualization and analysis tool that allows users explore various phenomena without learning remote sensing data formats and downloading voluminous data. Using MODIS aerosol data as an example, we formulate an approach to the data fusion for Giovanni to further enrich online multi-sensor remote sensing data comparison and analysis.

  5. Feasibility study ASCS remote sensing/compliance determination system

    NASA Technical Reports Server (NTRS)

    Duggan, I. E.; Minter, T. C., Jr.; Moore, B. H.; Nosworthy, C. T.

    1973-01-01

    A short-term technical study was performed by the MSC Earth Observations Division to determine the feasibility of the proposed Agricultural Stabilization and Conservation Service Automatic Remote Sensing/Compliance Determination System. For the study, the term automatic was interpreted as applying to an automated remote-sensing system that includes data acquisition, processing, and management.

  6. Analysis of Coastal Dunes: A Remote Sensing and Statistical Approach.

    ERIC Educational Resources Information Center

    Jones, J. Richard

    1985-01-01

    Remote sensing analysis and statistical methods were used to analyze the coastal dunes of Plum Island, Massachusetts. The research methodology used provides an example of a student project for remote sensing, geomorphology, or spatial analysis courses at the university level. (RM)

  7. Remote sensing education in NASA's technology transfer program

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  8. Remote sensing - A new view for public health

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.; Barnes, C. M.; Fuller, C. E.

    1973-01-01

    It is shown that the technology of remote sensing can be of great importance to the field of public health. This possibility is based on the deepened understanding of the biologies and ecologies of the vector/organism/host interelationships of arthropod-, soil-, and water-borne diseases to result from the information that remote sensing can provide.

  9. Applications of remote sensing in resource management in Nebraska

    NASA Technical Reports Server (NTRS)

    Drew, J. V.

    1974-01-01

    The project is reported for studying the application of remote sensing in land use classification and delineation of major tectonic lineaments in Nebraska. Other research reported include the use of aircraft and ERTS-1 satellite imagery in detecting and estimating the acreage of irrigated land, and the application of remote sensing in estimating evapotranspiration in the Platte River Basin.

  10. Preprocessing remotely-sensed data for efficient analysis and classification

    SciTech Connect

    Kelly, P.M.; White, J.M.

    1993-02-01

    Interpreting remotely-sensed data typically requires expensive, specialized computing machinery capable of storing and manipulating large amounts of data quickly. In this paper, we present a method for accurately analyzing and categorizing remotely-sensed data on much smaller, less expensive platforms. Data size is reduced in such a way an efficient, interactive method of data classification.

  11. Bringing remote sensing technology to the user community

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Davis, S. M.; Morrison, D. B.

    1975-01-01

    The procedures and services available for educating and training potential users of remote sensing technology are discussed along with approaches for achieving an in-house capability for the analysis of remotely sensed data using numerical techniques based on pattern recognition principles. Cost estimates are provided where appropriate.

  12. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.

    USGS Publications Warehouse

    Clark, R.N.; Roush, T.L.

    1984-01-01

    Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean path length and the implications for use in modeling reflectance spectra are presented.-from Authors

  13. Hydrological Application of Remote Sensing: Surface States -- Snow

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Kelly, Richard E. J.; Foster, James L.; Chang, Alfred T. C.

    2004-01-01

    Remote sensing research of snow cover has been accomplished for nearly 40 years. The use of visible, near-infrared, active and passive-microwave remote sensing for the analysis of snow cover is reviewed with an emphasis on the work on the last decade.

  14. Remote sensing with unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  15. Groundwater inventory and monitoring technical guide: Remote sensing of groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of remotely sensed data in conjunction with in situ data greatly enhances the ability of the USDA Forest Service to meet the demands of field staff, customers, and others for groundwater information. Generally, the use of remotely sensed data to inventory and monitor groundwater reso...

  16. Remote sensing for mined area reclamation: Application inventory

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Applications of aerial remote sensing to coal mined area reclamation are documented, and information concerning available data banks for coal producing areas in the east and midwest is given. A summary of mined area information requirements to which remote sensing methods might contribute is included.

  17. Laser Remote Sensing: FY07 Summary Report

    SciTech Connect

    Harper, Warren W.; Strasburg, Jana D.; Golovich, Elizabeth C.; Thompson, Jason S.; Stewart, Timothy L.; Batdorf, Michael T.; Mendoza, Albert

    2007-09-30

    Standoff detection and characterization of chemical plumes using Frequency Modulated Differential Absorption Lidar (FM-DIAL) is a promising technique for the detection of nuclear proliferation activities. For the last several years Pacific Northwest National Laboratory (PNNL) has been developing an FM-DIAL based remote sensing system as part of PNNL's Infrared Sensors project within NA-22's Enabling Technologies portfolio. In FY06 the remote sensing effort became a stand-alone project within the Plutonium Production portfolio with the primary goal of transitioning technology from the laboratory to the user community. Current systems remotely detect trace chemicals in the atmosphere over path lengths of hundreds of meters for monostatic operation (without a retro-reflector target) and up to ten kilometers for bistatic operation (with a retro-reflector target). The FM-DIAL sensor is sensitive and highly selective for chemicals with narrow-band absorption features on the order of 1-2 cm-1; as a result, the FM-DIAL sensors are best suited to simple di-atomic or tri-atomic molecules and other molecules with unusually narrow absorption features. A broadband sensor is currently being developed. It is designed to detect chemicals with spectral features on the order of several 10s of wavenumbers wide. This will expand the applicability of this technology to the detection of more complicated molecules. Our efforts in FY07 focused on the detection of chemicals associated with the PUREX process. The highest value performance measure for FY07, namely the demonstration of the Broadband Laser Spectrometer (BLS) during chemical release experiments, was successfully achieved in June, July and August of this year. Significant advancements have been made with each of the other tasks as well. A short-wave infrared version of the miniature FM-DIAL (FM-Mini) instrument was successfully demonstrated during field tests in June. During FY07 another version of the FM-Mini was built using

  18. Remote Chemical Sensing Using Quantum Cascade Lasers

    SciTech Connect

    Harper, Warren W.; Schultz, John F.

    2003-01-30

    Spectroscopic chemical sensing research at Pacific Northwest National Laboratory (PNNL) is focused on developing advanced sensors for detecting the production of nuclear, chemical, or biological weapons; use of chemical weapons; or the presence of explosives, firearms, narcotics, or other contraband of significance to homeland security in airports, cargo terminals, public buildings, or other sensitive locations. For most of these missions, the signature chemicals are expected to occur in very low concentrations, and in mixture with ambient air or airborne waste streams that contain large numbers of other species that may interfere with spectroscopic detection, or be mistaken for signatures of illicit activity. PNNL’s emphasis is therefore on developing remote and sampling sensors with extreme sensitivity, and resistance to interferents, or selectivity. PNNL’s research activities include: 1. Identification of signature chemicals and quantification of their spectral characteristics, 2. Identification and development of laser and other technologies that enable breakthroughs in sensitivity and selectivity, 3. Development of promising sensing techniques through experimentation and modeling the physical phenomenology and practical engineering limitations affecting their performance, and 4. Development and testing of data collection methods and analysis algorithms. Close coordination of all aspects of the research is important to ensure that all parts are focused on productive avenues of investigation. Close coordination of experimental development and numerical modeling is particularly important because the theoretical component provides understanding and predictive capability, while the experiments validate calculations and ensure that all phenomena and engineering limitations are considered.

  19. Field Data Collection: an Essential Element in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Pettinger, L. R.

    1971-01-01

    Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.

  20. Strategies for using remotely sensed data in hydrologic models

    NASA Technical Reports Server (NTRS)

    Peck, E. L.; Keefer, T. N.; Johnson, E. R. (Principal Investigator)

    1981-01-01

    Present and planned remote sensing capabilities were evaluated. The usefulness of six remote sensing capabilities (soil moisture, land cover, impervious area, areal extent of snow cover, areal extent of frozen ground, and water equivalent of the snow cover) with seven hydrologic models (API, CREAMS, NWSRFS, STORM, STANFORD, SSARR, and NWSRFS Snowmelt) were reviewed. The results indicate remote sensing information has only limited value for use with the hydrologic models in their present form. With minor modifications to the models the usefulness would be enhanced. Specific recommendations are made for incorporating snow covered area measurements in the NWSRFS Snowmelt model. Recommendations are also made for incorporating soil moisture measurements in NWSRFS. Suggestions are made for incorporating snow covered area, soil moisture, and others in STORM and SSARR. General characteristics of a hydrologic model needed to make maximum use of remotely sensed data are discussed. Suggested goals for improvements in remote sensing for use in models are also established.