Science.gov

Sample records for remote sensors applied

  1. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Johnson, J. D.; Foster, K. E.

    1977-01-01

    Descriptions of projects engaged by the Applied Remote Sensors Program in the state of Arizona are contained in an annual report for the fiscal year 1976-1977. Remote sensing techniques included thermal infrared imagery in analog and digital form and conversion of data into thermograms. Delineation of geologic areas, surveys of vegetation and inventory of resources were also presented.

  2. Remote electrochemical sensor

    DOEpatents

    Wang, Joseph; Olsen, Khris; Larson, David

    1997-01-01

    An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

  3. Implementation of the remote measuring system for addiction patients in rehabilitation applying vital sensor

    PubMed Central

    Lim, Myung-Jae; Lee, Ki-Young; Kwon, Young-Man

    2014-01-01

    Recently, with the rapid development of related ubiquitous industries, ubiquitous-Zone (u-Zone) development is being promoted to build a ubiquitous environment within a specific area. From a health care system perspective, in particular, u-Zone is expected to contribute to reducing cost and effort to manage patients’ condition such as in-patients, addiction patients and mental patients. In contrast, the current health care system only targets specific persons or continues to expand the internal system of hospitals. As addiction patients are on the rise in terms of drug addiction, including alcohol and narcotics, behavioural addiction attributable to the exposure to games, gambling, Internet and mobile communications and shopping is also becoming a problem. That is why it is difficult to collect data for the daily addiction status, which causes difficulties in systematic management and accurate diagnosis. Therefore, this paper suggests a remote measuring system to collect continuous condition data, which monitors the addiction patients via the vital sign measuring sensor within u-Zone. That is, the system collects their condition information from the sensors measuring heart rate, body temperature and acceleration, based on which the specialists determine the patient's emotional state. These data are expected to become the basis of diagnosing and managing addiction patients. PMID:26019608

  4. Digital imaging and remote sensing image generator (DIRSIG) as applied to NVESD sensor performance modeling

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly E.; Choi, Hee-sue S.; Kaur, Balvinder; Olson, Jeffrey T.; Hill, Clayton F.; Hutchinson, James A.

    2016-05-01

    The US Army's Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (referred to as NVESD) is developing a virtual detection, recognition, and identification (DRI) testing methodology using simulated imagery as a means of augmenting the field testing component of sensor performance evaluation, which is expensive, resource intensive, time consuming, and limited to the available target(s) and existing atmospheric visibility and environmental conditions at the time of testing. Existing simulation capabilities such as the Digital Imaging Remote Sensing Image Generator (DIRSIG) and NVESD's Integrated Performance Model Image Generator (NVIPM-IG) can be combined with existing detection algorithms to reduce cost/time, minimize testing risk, and allow virtual/simulated testing using full spectral and thermal object signatures, as well as those collected in the field. NVESD has developed an end-to-end capability to demonstrate the feasibility of this approach. Simple detection algorithms have been used on the degraded images generated by NVIPM-IG to determine the relative performance of the algorithms on both DIRSIG-simulated and collected images. Evaluating the degree to which the algorithm performance agrees between simulated versus field collected imagery is the first step in validating the simulated imagery procedure.

  5. Implementation of the remote measuring system for addiction patients in rehabilitation applying vital sensor.

    PubMed

    Lim, Myung-Jae; Lee, Ki-Young; Kwon, Young-Man

    2014-11-14

    Recently, with the rapid development of related ubiquitous industries, ubiquitous-Zone (u-Zone) development is being promoted to build a ubiquitous environment within a specific area. From a health care system perspective, in particular, u-Zone is expected to contribute to reducing cost and effort to manage patients' condition such as in-patients, addiction patients and mental patients. In contrast, the current health care system only targets specific persons or continues to expand the internal system of hospitals. As addiction patients are on the rise in terms of drug addiction, including alcohol and narcotics, behavioural addiction attributable to the exposure to games, gambling, Internet and mobile communications and shopping is also becoming a problem. That is why it is difficult to collect data for the daily addiction status, which causes difficulties in systematic management and accurate diagnosis. Therefore, this paper suggests a remote measuring system to collect continuous condition data, which monitors the addiction patients via the vital sign measuring sensor within u-Zone. That is, the system collects their condition information from the sensors measuring heart rate, body temperature and acceleration, based on which the specialists determine the patient's emotional state. These data are expected to become the basis of diagnosing and managing addiction patients.

  6. Remote electrochemical sensor

    DOEpatents

    Wang, J.; Olsen, K.; Larson, D.

    1997-10-14

    An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

  7. Applied remote sensing

    SciTech Connect

    Lo, C.P.

    1986-01-01

    The author presents selected case studies to demonstrate theories and practices of remote sensing and its value to the study of the terrestrial environment. Begins with an overview of sensor types and electromagnetic remote sensing, continuing with an examination of photographic and non-photographic systems in the study of the radiation budget, temperature structure and weather conditions of the atmosphere. Includes thorough coverage of the lithosphere, biosphere and hydrosphere, as well as the cartographic problems involved in land use/land cover and topographic mapping. Concludes with a discussion of the impact of electromagnetic computers in the development of geographic information systems.

  8. Airborne remote sensors applied to engineering geology and civil works design investigations

    NASA Technical Reports Server (NTRS)

    Gelnett, R. H.

    1975-01-01

    The usefulness of various airborne remote sensing systems in the detection and identification of regional and specific geologic structural features that may affect the design and location of engineering structures on major civil works projects is evaluated. The Butler Valley Dam and Blue Lake Project in northern California was selected as a demonstration site. Findings derived from the interpretation of various kinds of imagery used are given.

  9. remote sensor network

    NASA Astrophysics Data System (ADS)

    von Unold, Georg; Junker, Astrid; Altmann, Thomas

    2016-04-01

    High-throughput (HT) plant phenotyping systems enable the quantitative analysis of a variety of plant features in a fully automated fashion. The comprehensive phenomics infrastructure at IPK comprises three LemnaTec conveyor belt-based (plant-to-sensor) systems for the simultaneous analysis of large numbers of individual plants of different sizes. For monitoring of environmental conditions within the plant growth area and soil conditions in individual pots, highly modular and flexible remote sensing devices are required. We present the architecture of a wireless sensor network implemented in the HT plant phenotyping systems at IPK in the frame of the German Plant Phenotyping Network (DPPN). This system comprises 350 soil monitoring modules, each measuring water content, water matrix potential, temperature and electric conductivity. Furthermore small and large sensor platforms enable the continuous monitoring of environmental parameters such as incident photosynthetic active radiation, total radiation balance, relative humidity and CO2 concentration and more. Finally we present an introduction into data management and maintenance."

  10. APPLIED REMOTE SENSING

    EPA Science Inventory

    Remote Sensing is a scientific discipline of non-contact monitoring. It includes a range of technologies that span from aerial photography to advanced spectral imaging and analytical methods. This Session is designed to demonstrate contemporary practical applications of remote se...

  11. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.

    1976-01-01

    The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.

  12. Remote sensors - Prospects and limitations

    NASA Technical Reports Server (NTRS)

    Lehmann, J.

    1973-01-01

    Review of the history, present status, and future prospects and limitations of remote sensing systems for satellite-based earth resources surveys. The objectives and special areas of interest of ongoing sensor development experiments are summarized, and the measurement and performance goals of current potential sensor research is discussed.

  13. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Papasin, Richard; Gawdiak, Yuri; Maluf, David A.; Leidich, Christopher; Tran, Peter B.

    2001-01-01

    Remote Tower Sensor Systems (RTSS) are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA (Federal Aviation Administration) and NOAA (National Oceanic Atmospheric Administration). RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to realtime airport conditions and aircraft status.

  14. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin

    2006-01-01

    Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.

  15. Remote Attitude Measurement Sensor (RAMS)

    NASA Technical Reports Server (NTRS)

    Davis, H. W.

    1989-01-01

    Remote attitude measurement sensor (RAMS) offers a low-cost, low-risk, proven design concept that is based on mature, demonstrated space sensor technology. The electronic design concepts and interpolation algorithms were tested and proven in space hardware like th Retroreflector Field Tracker and various star trackers. The RAMS concept is versatile and has broad applicability to both ground testing and spacecraft needs. It is ideal for use as a precision laboratory sensor for structural dynamics testing. It requires very little set-up or preparation time and the output data is immediately usable without integration or extensive analysis efforts. For on-orbit use, RAMS rivals any other type of dynamic structural sensor (accelerometer, lidar, photogrammetric techniques, etc.) for overall performance, reliability, suitability, and cost. Widespread acceptance and extensive usage of RAMS will occur only after some interested agency, such as OAST, adopts the RAMS concept and provides the funding support necessary for further development and implementation of RAMS for a specific program.

  16. FIRRE Remote Sensor Station (RSS)

    NASA Astrophysics Data System (ADS)

    Cruickshanks, J. R.; Wickstrand, E. L.; Kramer, T. A.; Laird, R. T.; Barngrover, C. M.; Gardner, C. W.

    2006-05-01

    The Family of Integrated Rapid Response Equipment (FIRRE) is an advanced technology demonstration program intended to develop a family of affordable, scalable, modular, and logistically supportable unmanned systems to meet urgent operational force protection needs and requirements worldwide. The near-term goal is to provide the best available unmanned ground systems to the warfighter in Iraq and Afghanistan. The overarching long-term goal is to develop a fully-integrated, layered force protection system of systems for our forward deployed forces that is networked with the future force C4ISR systems architecture. The intent of the FIRRE program is to reduce manpower requirements, enhance force protection capabilities, and reduce casualties through the use of unmanned systems. FIRRE is sponsored by the Office of the Under Secretary of Defense, Acquisitions, Technology and Logistics (OUSD AT&L), and is managed by the Product Manager, Force Protection Systems (PM-FPS). The Remote Sensor Station (RSS) provides FIRRE with the ability to remote (or extend the range of) manned/unmanned sensors. The RSS consists of three primary components: (1) an actively cooled and hermetically sealed (NEMA-4X) electronics enclosure, (2) a 22' telescoping tower, (3) and the PM-MEP 531A 2KW GENSET. The current configuration supports a Digital Imaging Infrared (DII) DI-5000 thermal imaging system/visual imaging system (TIS/VIS), a Syracuse Research Corporation (SRC) PPS-5D ground surveillance radar (GSR), an AN/PRS-9 (BAIS) unmanned ground sensor (UGS) receiver, an Intuicom Military Navigator II (MILNAVII) data link radio, and a DTC Communications Palladium 12000 audio/video (A/V) radio. The electronics box is insulated with a radiant barrier and fitted with a EIC Solutions 1500 BTU solid state thermoelectric cooler (TEC) capable of maintaining a safe operating temperature in extreme conditions (<120° Fahrenheit).

  17. Remote environmental sensor array system

    NASA Astrophysics Data System (ADS)

    Hall, Geoffrey G.

    This thesis examines the creation of an environmental monitoring system for inhospitable environments. It has been named The Remote Environmental Sensor Array System or RESA System for short. This thesis covers the development of RESA from its inception, to the design and modeling of the hardware and software required to make it functional. Finally, the actual manufacture, and laboratory testing of the finished RESA product is discussed and documented. The RESA System is designed as a cost-effective way to bring sensors and video systems to the underwater environment. It contains as water quality probe with sensors such as dissolved oxygen, pH, temperature, specific conductivity, oxidation-reduction potential and chlorophyll a. In addition, an omni-directional hydrophone is included to detect underwater acoustic signals. It has a colour, high-definition and a low-light, black and white camera system, which it turn are coupled to a laser scaling system. Both high-intensity discharge and halogen lighting system are included to illuminate the video images. The video and laser scaling systems are manoeuvred using pan and tilt units controlled from an underwater computer box. Finally, a sediment profile imager is included to enable profile images of sediment layers to be acquired. A control and manipulation system to control the instruments and move the data across networks is integrated into the underwater system while a power distribution node provides the correct voltages to power the instruments. Laboratory testing was completed to ensure that the different instruments associated with the RESA performed as designed. This included physical testing of the motorized instruments, calibration of the instruments, benchmark performance testing and system failure exercises.

  18. Remote query pressure measurement using magnetoelastic sensors

    NASA Astrophysics Data System (ADS)

    Grimes, C. A.; Stoyanov, P. G.; Kouzoudis, D.; Ong, K. G.

    1999-12-01

    Two magnetostriction-based methods for measuring atmospheric pressure are presented. Each technique correlates changes in pressure with the characteristic resonant frequency of a magnetoelastic magnetostrictive thick-film sensor. In each case the sensor is monitored remotely, using an adjacently located pickup coil, without the use of physical connections to the sensor.

  19. Remote control of open groups of remote sensors

    NASA Astrophysics Data System (ADS)

    Sapaty, Peter

    2009-09-01

    A distributed technology will be presented enabling a remote operator to manage arbitrary sized groups of stationary or mobile sensors (or robots), behaving altogether as an integral and global-goal-driven unit. The group is tasked in a Distributed Scenario Language (DSL) collectively executed by communicating interpreters embedded in individual sensors and integrated with their functionalities. Compact and created on the fly, DSL scenarios can be remotely injected into any sensor, subsequently self-replicating, self-modifying, and self-spreading in a virus mode throughout the whole group, tasking individual units and setting needed operational infrastructures among them. The approach can remotely control dynamic and open systems of different natures and comprehend complex phenomena unavailable to individual sensors.

  20. Remote sensor support requirements for planetary missions

    NASA Technical Reports Server (NTRS)

    Weddell, J. B.; Wheeler, A. E.

    1971-01-01

    The study approach, methods, results, and conclusions of remote sensor support requirements for planetary missions are summarized. Major efforts were made to (1) establish the scientific and engineering knowledge and observation requirements for planetary exploration in the 1975 to 1985 period; (2) define the state of the art and expected development of instrument systems appropriate for sensing planetary environments; (3) establish scaling laws relating performance and support requirements of candidate remote sensor systems; (4) establish fundamental remote sensor system capabilities, limitations, and support requirements during encounter and other dynamical conditions for specific missions; and (5) construct families of candidate remote sensors compatible with selected missions. It was recommended that these data be integrated with earlier results to enhance utility, and that more restrictions be placed on the system.

  1. Magnetoelastic sensors for remote query environmental monitoring

    NASA Astrophysics Data System (ADS)

    Grimes, C. A.; Ong, K. G.; Loiselle, K.; Stoyanov, P. G.; Kouzoudis, D.; Liu, Y.; Tong, C.; Tefiku, F.

    1999-10-01

    Magnetoelastic thin film sensors can be considered the magnetic analog of surface acoustic wave sensors, with the characteristic resonant frequency of the magnetoelastic sensor changing in response to different environmental parameters. We report on the application of magnetoelastic sensors for remote query measurement of pressure, temperature, liquid viscosity and, in combination with a glucose-responding mass-changing polymer, glucose concentrations. The advantage of using magnetoelastic sensors is that no direct physical connections, such as wires or cables, are required to obtain sensor information allowing the sensor to be monitored from inside sealed containers. Furthermore since it is the frequency response of the sensor that is monitored, rather than the amplitude, the relative orientation of the sensor with respect to the query field is unimportant.

  2. Hyperspectral Remote Sensing-Sensors and Applications

    USDA-ARS?s Scientific Manuscript database

    Multispectral remote sensors have been traditionally used to map and monitor anthropogenic and environmental changes in the biosphere. While these sensors have proven robust for many applications, they often lack the spectral resolution necessary to differentiate characteristics of the Earth’s surfa...

  3. Remote Whispering Applying Time Reversal

    SciTech Connect

    Anderson, Brian Eric

    2015-07-16

    The purpose of this project was to explore the use of time reversal technologies as a means for communication to a targeted individual or location. The idea is to have the privacy of whispering in one’s ear, but to do this remotely from loudspeakers not located near the target. Applications of this work include communicating with hostages and survivors in rescue operations, communicating imaging and operational conditions in deep drilling operations, monitoring storage of spent nuclear fuel in storage casks without wires, or clandestine activities requiring signaling between specific points. This technology provides a solution in any application where wires and radio communications are not possible or not desired. It also may be configured to self calibrate on a regular basis to adjust for changing conditions. These communications allow two people to converse with one another in real time, converse in an inaudible frequency range or medium (i.e. using ultrasonic frequencies and/or sending vibrations through a structure), or send information for a system to interpret (even allowing remote control of a system using sound). The time reversal process allows one to focus energy to a specific location in space and to send a clean transmission of a selected signal only to that location. In order for the time reversal process to work, a calibration signal must be obtained. This signal may be obtained experimentally using an impulsive sound, a known chirp signal, or other known signals. It may also be determined from a numerical model of a known environment in which the focusing is desired or from passive listening over time to ambient noise.

  4. Remote Sensing and Quantization of Analog Sensors

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.

    2011-01-01

    This method enables sensing and quantization of analog strain gauges. By manufacturing a piezoelectric sensor stack in parallel (physical) with a piezoelectric actuator stack, the capacitance of the sensor stack varies in exact proportion to the exertion applied by the actuator stack. This, in turn, varies the output frequency of the local sensor oscillator. The output, F(sub out), is fed to a phase detector, which is driven by a stable reference, F(sub ref). The output of the phase detector is a square waveform, D(sub out), whose duty cycle, t(sub W), varies in exact proportion according to whether F(sub out) is higher or lower than F(sub ref). In this design, should F(sub out) be precisely equal to F(sub ref), then the waveform has an exact 50/50 duty cycle. The waveform, D(sub out), is of generally very low frequency suitable for safe transmission over long distances without corruption. The active portion of the waveform, t(sub W), gates a remotely located counter, which is driven by a stable oscillator (source) of such frequency as to give sufficient digitization of t(sub W) to the resolution required by the application. The advantage to this scheme is that it negates the most-common, present method of sending either very low level signals (viz. direct output from the sensors) across great distances (anything over one-half meter) or the need to transmit widely varying higher frequencies over significant distances thereby eliminating interference [both in terms of beat frequency generation and in-situ EMI (electromagnetic interference)] caused by ineffective shielding. It also results in a significant reduction in shielding mass.

  5. Atmospheric transformation of multispectral remote sensor data. [Great Lakes

    NASA Technical Reports Server (NTRS)

    Turner, R. E. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The effects of earth's atmosphere were accounted for, and a simple algorithm, based upon a radiative transfer model, was developed to determine the radiance at earth's surface free of atmospheric effects. Acutal multispectral remote sensor data for Lake Erie and associated optical thickness data were used to demonstrate the effectiveness of the atmospheric transformation algorithm. The basic transformation was general in nature and could be applied to the large scale processing of multispectral aircraft or satellite remote sensor data.

  6. Multi-instrument remote sensor characterization study

    SciTech Connect

    Riese, C.; Best, L.; McLaughlin, S.; Eaton, F.; Hines, J.; Peterman, R.

    1996-12-31

    During April 1995, the US Environmental Protection Agency, in cooperation with the National Oceanic and Atmospheric Administration, sponsored a Ground-Based Remote Sensor Characterization Study at the Boulder Atmospheric Observatory (BAO) near Erie, Colorado. The BAO is a 300-meter instrumented tower used as a ground-truth profile device for calibrating tower mounted in-situ or ground-based remote sensors. The following remote sensors were evaluated: 915 MHZ Boundary Layer Radar Profiler; Phased Array Sodar; Fixed-Beam Sodar; and 2.7 GHz FM-CW Backscatter Radar Profiler. This paper examines the excellent agreement among these various instruments and the BAO tower using traditional comparative graphic plots and tables. Data were collected at the BAO site continuously over a one-month period. The variety of synoptic weather features and diurnal inversion cycles during the month made the comparisons particularly useful for objective data comparison analyses. The relationship between the remote sensor data and current issues of air pollution meteorology such as tropospheric ozone management strategies is also examined.

  7. Interpolating for the location of remote sensor data

    NASA Technical Reports Server (NTRS)

    Puccinelli, E. F.; Kornfield, J.

    1981-01-01

    An interpolation algorithm is presented as a practical alternative to common interpolation and approximation methods when applied to the problem of determining the location of remote sensor data. This algorithm is based upon knowledge of the geometry of the problem and is shown to be inherently more accurate than common interpolation schemes which may be applied to all types of data. A practical location problem is used to demonstrate its accuracy and computational cost.

  8. Guidelines for spaceborne microwave remote sensors

    NASA Technical Reports Server (NTRS)

    Litman, V.; Nicholas, J.

    1982-01-01

    A handbook was developed to provide information and support to the spaceborne remote sensing and frequency management communities: to guide sensor developers in the choice of frequencies; to advise regulators on sensor technology needs and sharing potential; to present sharing analysis models and, through example, methods for determining sensor sharing feasibility; to introduce developers to the regulatory process; to create awareness of proper assignment procedures; to present sensor allocations; and to provide guidelines on the use and limitations of allocated bands. Controlling physical factors and user requirements and the regulatory environment are discussed. Sensor frequency allocation achievable performance and usefulness are reviewed. Procedures for national and international registration, the use of non-allocated bands and steps for obtaining new frequency allocations, and procedures for reporting interference are also discussed.

  9. Remotely deployable aerial inspection using tactile sensors

    NASA Astrophysics Data System (ADS)

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Sullivan, J. C.; Pipe, A. G.; Dobie, G.; Summan, R.

    2014-02-01

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  10. Remotely deployable aerial inspection using tactile sensors

    SciTech Connect

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Dobie, G.; Summan, R.; Sullivan, J. C.; Pipe, A. G.

    2014-02-18

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  11. Remote monitoring of biodynamic activity using electric potential sensors

    NASA Astrophysics Data System (ADS)

    Harl, C. J.; Prance, R. J.; Prance, H.

    2008-12-01

    Previous work in applying the electric potential sensor to the monitoring of body electrophysiological signals has shown that it is now possible to monitor these signals without needing to make any electrical contact with the body. Conventional electrophysiology makes use of electrodes which are placed in direct electrical contact with the skin. The electric potential sensor requires no cutaneous electrical contact, it operates by sensing the displacement current using a capacitive coupling. When high resolution body electrophysiology is required a strong (capacitive) coupling is used to maximise the collected signal. However, in remote applications where there is typically an air-gap between the body and the sensor only a weak coupling can be achieved. In this paper we demonstrate that the electric potential sensor can be successfully used for the remote sensing and monitoring of bioelectric activity. We show examples of heart-rate measurements taken from a seated subject using sensors mounted in the chair. We also show that it is possible to monitor body movements on the opposite side of a wall to the sensor. These sensing techniques have biomedical applications for non-contact monitoring of electrophysiological conditions and can be applied to passive through-the-wall surveillance systems for security applications.

  12. Optical Fiber Networks for Remote Fiber Optic Sensors

    PubMed Central

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011

  13. Optical fiber networks for remote fiber optic sensors.

    PubMed

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered.

  14. Remote fire detection using MMW radiometric sensor

    NASA Astrophysics Data System (ADS)

    Sadovnik, Lev S.; Manasson, Vladimir A.; Chapman, Robert E.; Mino, Robert M.; Kiseliov, Vladimir

    1998-08-01

    Lack of reliable fire warning and detection systems for urban/wildland interface, large area industrial facilities and transportation systems result each year in a loss of millions of dollars worth of property; it also endangers lives. Typical optical fire detection sensor do not work well under frequency encountered adverse atmospheric conditions and, in addition, are incapable of covering sizable areas. WaveBand has recently developed hardware to study the feasibility of fire detection using a millimeter wave (MMW) scanning radiometer. It has proven the advantages of remote fire detection even under adverse weather conditions and through fire-generated smoke, better immunity to false alarms than optical sensors, and larger area of coverage. Despite using a wavelength that is much longer than that of visible light, the MMW sensor can accurate pinpoint the location of a developing fire.

  15. The wildfire experiment (WIFE): observations with airborne remote sensors

    Treesearch

    L.F. Radke; T.L. Clark; J.L. Coen; C.A. Walther; R.N. Lockwood; P.J. Riggan; J.A. Brass; R.G. Higgins

    2000-01-01

    Airborne remote sensors have long been a cornerstone of wildland fire research, and recently three-dimensional fire behaviour models fully coupled to the atmosphere have begun to show a convincing level of verisimilitude. The WildFire Experiment (WiFE) attempted the marriage of airborne remote sensors, multi-sensor observations together with fire model development and...

  16. Development of a remote vital signs sensor

    SciTech Connect

    Ladd, M.D.; Pacheco, M.S.; Rivas, R.R.

    1997-06-01

    This paper describes the work at Sandia National Laboratories to develop sensors that remotely detect unique life-form characteristics, such as breathing patterns or heartbeat patterns. This paper will address the Technical Support Working Group`s (TSWG) objective: to develop a remote vital signs detector which can be used to assess someone`s malevolent intent. The basic concept of operations for the projects, system development issues, and the preliminary results for a radar device currently in-house and the implications for implementation are described. A survey that identified the in-house technology currently being evaluated is reviewed, as well as ideas for other potential technologies to explore. A radar unit for breathing and heartbeat detection is being tested, and the applicability of infrared technology is being explored. The desire for rapid prototyping is driving the need for off-the-shelf technology. As a conclusion, current status and future directions of the effort are reviewed.

  17. Sensor motion control and mobile platforms for aquatic remote sensing

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.

    2006-09-01

    Modern remote sensing systems used in repetitive environmental monitoring and surveillance applications are used on various platforms. These platforms can be categorized as stationary (fixed) or moving platforms. The sensing systems monitor the ambient environment which also may have inherent motion, such as the water surface with water waves. This is particularly the case for airborne or ship borne sensing of aquatic environments and is true for ground based walking or crawling systems. The time sequential comparison and spatial registration of sensor images, particularly "hyperspectral imagery" requires pixel to pixel registration for science based change and target (or medium) detection applications. These applications require sensor motion control combined with platform motion control. If the pixel sizes are small - on the order of 1 meter to less than 1 mm, then "nano-positioning accuracy" may be necessary for various aspects of the camera or surveillance sensor system, and/or related sensors used to control the moving platform. In this paper and presentation, an overview of converging technologies to sensor motion control and nano-positioning is discussed. The paper and presentation will demonstrate that the technologies converging on this aspect of remote sensing monitoring systems will require professionals with a combination of skills that are not readily available in today's workforce nor taught in educational programs today - especially at the undergraduate level. Thus there is a need to consider new avenues for educating professionals necessary to engineer and apply these converging technologies to important social environmental monitoring and surveillance needs.

  18. Wearable Sensors for Remote Health Monitoring

    PubMed Central

    Majumder, Sumit; Mondal, Tapas; Deen, M. Jamal

    2017-01-01

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed. PMID:28085085

  19. Wearable Sensors for Remote Health Monitoring.

    PubMed

    Majumder, Sumit; Mondal, Tapas; Deen, M Jamal

    2017-01-12

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  20. Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1972-01-01

    A variety of remote sensor data has aided geologic mapping in central Colorado. This report summarizes the application of sensor data to both regional and local geologic mapping and presents some conclusions on the practical use of remote sensing for solving geologic mapping problems. It is emphasized that this study was not conducted primarily to test or evaluate remote sensing systems or data, but, rather, to apply sensor data as an accessory tool for geologic mapping. The remote sensor data used were acquired by the NASA Earth Observations Aircraft Program. Conclusions reached on the utility of the various sensor data and interpretation techniques for geologic mapping were by-products of attempts to use them.

  1. NASA's Applied Remote Sensing Training (ARSET) Webinar Series

    Atmospheric Science Data Center

    2016-07-12

    NASA's Applied Remote Sensing Training (ARSET) Webinar Series Tuesday, July 12, 2016 ... you of a free training opportunity: Introduction to Remote Sensing for Air Quality Applications Webinar Series Beginning in ...

  2. Regional Drought Monitoring Based on Multi-Sensor Remote Sensing

    NASA Astrophysics Data System (ADS)

    Rhee, Jinyoung; Im, Jungho; Park, Seonyoung

    2014-05-01

    of land cover types. Remote sensing data from the Tropical Rainfall Measuring Mission satellite (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) sensors were obtained for the period from 2000 to 2012, and observation data from 99 weather stations, 441 streamflow gauges, as well as the gridded observation data from Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of the Water Resources (APHRODITE) were obtained for validation. The objective blends of multiple indicators helped better assessment of various types of drought, and can be useful for drought early warning system. Since the improved SDCI is based on remotely sensed data, it can be easily applied to regions with limited or no observation data for drought assessment and monitoring.

  3. ROAN Remote radio meteor detection sensor

    NASA Astrophysics Data System (ADS)

    Lesanu, C. E.

    2016-01-01

    Only few meteor enthusiasts across the world today, approaches systematically the radio meteor detection technique, one of the reasons being the difficulty to build and install proper permanent antennas, especially when low-VHF frequency opportunity transmitters are used as illuminators. Other reasons were in the past the relatively high cost of the entire system, receivers and computers, and not ultimately the high power consumption of the system in a 24/7 operation, when using regular personal computers. The situation changed in the recent years with the advent of the low cost software defined radio SDR receivers and low consumption/cost single board computers SBC. A commercial off-the-shelf hardware based remote radio meteor detection sensor is presented.

  4. Miniaturised Gravity Sensors for Remote Gravity Surveys.

    NASA Astrophysics Data System (ADS)

    Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.

    2016-12-01

    Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.

  5. Software and Equipment for Remote Testing of Sensors

    PubMed Central

    Brezovec, Barbara; Matko, Vojko

    2007-01-01

    An improved approach for remote testing of elements and systems is presented in this article. To ensure high reliability of products, tests must be done in the production phase to detect possible errors in working mode. Because environmental testing involves long-term processes the possibility of remote observation and remote controlling of tests is very useful solution. The concept is to connect the testing chamber with a personal computer, create a reliable driver and control it remotely over the local network or Internet from other client. It is designed for performing tests on wide area of sensors and sensor based systems.

  6. Simulating optoelectronic systems for remote sensing with SENSOR

    NASA Astrophysics Data System (ADS)

    Boerner, Anko

    2003-04-01

    The consistent end-to-end simulation of airborne and spaceborne remote sensing systems is an important task and sometimes the only way for the adaptation and optimization of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software ENvironment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. It allows the simulation of a wide range of optoelectronic systems for remote sensing. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. Part three consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimization requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and examples of its use are given. The verification of SENSOR is demonstrated.

  7. Applying Sensor Web Technology to Marine Sensor Data

    NASA Astrophysics Data System (ADS)

    Jirka, Simon; del Rio, Joaquin; Mihai Toma, Daniel; Nüst, Daniel; Stasch, Christoph; Delory, Eric

    2015-04-01

    SWE specifications that provide stricter guidance how these standards shall be applied to marine data (e.g. SensorML 2.0 profiles stating which metadata elements are mandatory building upon the ESONET Sensor Registry developments, etc.). Within the NeXOS project the presented architecture is implemented as a set of open source components. These implementations can be re-used by all interested scientists and data providers needing tools for publishing or consuming oceanographic sensor data. In further projects such as the European project FixO3 (Fixed-point Open Ocean Observatories), these software development activities are complemented with additional efforts to provide guidance how Sensor Web technology can be applied in an efficient manner. This way, not only software components are made available but also documentation and information resources that help to understand which types of Sensor Web deployments are best suited to fulfil different types of user requirements.

  8. Evaluation of satellites and remote sensors for atmospheric pollution measurements

    NASA Technical Reports Server (NTRS)

    Carmichael, J.; Eldridge, R.; Friedman, E.; Keitz, E.

    1976-01-01

    An approach to the development of a prioritized list of scientific goals in atmospheric research is provided. The results of the analysis are used to estimate the contribution of various spacecraft/remote sensor combinations for each of several important constituents of the stratosphere. The evaluation of the combinations includes both single-instrument and multiple-instrument payloads. Attention was turned to the physical and chemical features of the atmosphere as well as the performance capability of a number of atmospheric remote sensors. In addition, various orbit considerations were reviewed along with detailed information on stratospheric aerosols and the impact of spacecraft environment on the operation of the sensors.

  9. Medical Remote Sensors in Tactical Networks

    DTIC Science & Technology

    2015-03-01

    Wireless sensor networks come in many forms and levels of complexity. This diversification is needed because of the variety of uses for sensors ...measured by a capacitive pressure sensor that detects circumference expansion and contraction of the torso as an output as breaths per minute. Temperature... SENSORS IN TACTICAL NETWORKS by Hunter R. Coates Gabriel R. Urquidez March 2015 Thesis Advisor: Alex Bordetsky Second Reader: Steven

  10. Remote Environmental Monitoring With a Wireless Sensor Network System

    NASA Astrophysics Data System (ADS)

    Kizito, F.; Hopmans, J. W.; Bales, R.; Tuli, A.; Kamai, T.

    2007-12-01

    Wireless sensors have the potential to reveal dynamic environmental variables in remote landscapes at reduced long-term costs and offer a promising approach to revolutionize environmental monitoring. Better management of surface water in remote landscapes warrants close monitoring of moisture and temperature variability. This work describes field data demonstrating the functionality of a deployed wireless network system, consisting of various soil moisture sensors. Soil water potential sensors with an imbedded thermistor were deployed in a remote meadow along a topographic gradient with dense tree canopies in Wolverton Meadows in Sequoia National Park. The sensors responded to moisture and temperature variations and the wireless system met the goal of providing informative data on dynamic responses of soil moisture to rainfall and snowmelt. The deployed sensor system functioned well during harsh winter conditions at 7000 feet, requiring low power. The study highlights measurement accuracy limitations and presents an alternative, robust wireless Zigbee sensor network, using Crossbow motes. We demonstrate that deployment, implementation and long-term field monitoring in remote and challenging environments is possible with current technologies.

  11. Optical flows method for lightweight agile remote sensor design and instrumentation

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Xing, Fei; Wang, Hongjian; You, Zheng

    2013-08-01

    eliminate the limitations for the performance indexes, and succeeded to be applied for integrative system design. Finally, a principle prototype of agile remote sensor designed by the method is discussed.

  12. NASA Remote Sensing Research as Applied to Archaeology

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.; Thomas, Michael R.

    2002-01-01

    The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.

  13. Remote sensing of tropical forests - An overview of research and applications using non-photographic sensors

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.; Stone, Thomas A.; Joyce, Armond T.

    1990-01-01

    A comprehensive overview is presented on how remote sensing technology has been applied to tropical forest monitoring over the past 20 years. Research needs for monitoring the condition and extent of tropical forests are suggested. The discussion focuses on nonphotographic sensors, especially those on orbiting satellites. Several remote sensing approaches to tropical forest monitoring are outlined, including NOAA AVHRR, Landsat MSS, the Landsat Thematic Mapper, SPOT-1, and Synthetic Aperture Radar. Suggested research needs are addressed, along with discussions on the use of Geographic Information Systems, and multistage and multisensor approaches in data analysis and acquisition. It is concluded that additional research and technique development is urgently needed to advance the utility of remotely sensed data for tropical forest monitoring. However, there is sufficient information available now to prototype a global tropical forest monitoring system that would utilize current satellite sensors complemented with airborne sensors for detailed measurements on sample locations.

  14. Advanced and applied remote sensing of environmental conditions

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.; Marr, David A.; Milheim, Lesley E.; Roig-Silva, Coral M.

    2013-01-01

    "Remote sensing” is a general term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth’s surface. Remotely sensed data are fundamental to geographic science. The U.S. Geological Survey’s (USGS) Eastern Geographic Science Center (EGSC) is currently conducting and promoting the research and development of several different aspects of remote sensing science in both the laboratory and from overhead instruments. Spectroscopy is the science of recording interactions of energy and matter and is the bench science for all remote sensing. Visible and infrared analysis in the laboratory with special instruments called spectrometers enables the transfer of this research from the laboratory to multispectral (5–15 broad bands) and hyperspectral (50–300 narrow contiguous bands) analyses from aircraft and satellite sensors. In addition, mid-wave (3–5 micrometers, µm) and long-wave (8–14 µm) infrared data analysis, such as attenuated total reflectance (ATR) spectral analysis, are also conducted. ATR is a special form of vibrational infrared spectroscopy that has many applications in chemistry and biology but has recently been shown to be especially diagnostic for vegetation analysis.

  15. Design and implementation of a wireless sensor network-based remote water-level monitoring system.

    PubMed

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).

  16. Remote sensing applied to forest resources

    NASA Technical Reports Server (NTRS)

    Hernandezfilho, P. (Principal Investigator)

    1984-01-01

    The development of methodologies to classify reforested areas using remotely sensed data is discussed. A preliminary study was carried out in northeast of the Sao Paulo State in 1978. The reforested areas of Pinus spp and Eucalyptus spp were based on the spectral, spatial and temporal characteristics fo LANDSAT imagery. Afterwards, a more detailed study was carried out in the Mato Grosso do Sul State. The reforested areas were mapped in functions of the age (from: 0 to 1 year, 1 to 2 years, 2 to 3 years, 3 to 4 years, 4 to 5 years and 5 to 6 years) and of the heterogeneity stand (from: 0 to 20%, 20 to 40%, 40 to 60%, 60 to 80% and 80 to 100%). The relative differences between the artificial forest areas, estimated from LANDSAT data and ground information, varied from -8.72 to +9.49%. The estimation of forest volume through a multistage sampling technique, with probability proportional to size, is also discussed.

  17. Surface-enhanced Raman fiberoptic sensors for remote monitoring

    SciTech Connect

    Stokes, D.L.; Alarie, J.P.; Vo-Dinh, T.

    1995-09-01

    A new sensor design for remote surface-enhanced Raman scattering (SERS) measurements has been developed for environmental applications. The design features the modification of an optical fiber using layers of alumina microparticles and silver coatings for inducing the SERS effect at the sensing probe. A single fiber carries both the laser excitation and the SERS signal radiation, keeping optical parameters at the remote tip simple and consistent. The small tip size achievable with this configuration also demonstrates potential of this new design as a microsensor for in-situ measurement in microenvironments. Details of sensor tip fabrication and optical system design are described. SERS spectra of aqueous environmental samples acquired in-situ using the SERS sensor are also presented to illustrate the effectiveness of the SERS sensor.

  18. A wireless acoustic emission sensor remotely powered by light

    NASA Astrophysics Data System (ADS)

    Zahedi, F.; Huang, H.

    2014-03-01

    In this paper, wireless sensing of acoustic emission (AE) signals using a battery-free sensor node remotely powered by light is presented. The wireless sensor consists of a piezoelectric wafer active sensor (PWAS) for AE signal acquisition and a wireless transponder that performs signal conditioning, frequency conversion, and wireless transmission. For signal conditioning, a voltage follower that consumes less than 2 mW was introduced to buffer the high impedance of the PWAS from the low impedance of the wireless transponder. A photocell-based energy harvester with a stable voltage output was developed to power the voltage follower so that the wireless AE sensor can operate without an external power source. The principle of operation of the battery-free wireless AE sensor node and the sensor interrogation system is described, followed by a detailed description of the hardware implementation. The voltage follower and the wireless channel were characterized by ultrasound pitch-catch and pencil lead break experiments.

  19. Interactive display/graphics systems for remote sensor data analysis

    NASA Technical Reports Server (NTRS)

    Eppler, W. G.; Loe, D. L.; Wilson, E. L.; Whitley, S. L.; Sachen, R. J.

    1970-01-01

    A color-television display system and interactive graphics equipment on-line to an IBM 360/44 computer are used to develop a variety of interactive displays which aid in analyzing remote sensor data. These interactive displays are used to: (1) analyze data from a multispectral scanner; (2) develop automatic pattern recognition systems based on multispectral scanner measurements; and (3) analyze data from non-imaging sensors such as the infrared radiometer and microwave scatterometer.

  20. Cooperative feasibility test of remote monitoring of unattended sensors

    SciTech Connect

    Ystesund, K.; LeGalley, R.; Koyama, K.; Yamamoto, Y.; Kyriakopoulos, N.

    1993-07-01

    A feasibility test on remote monitoring of unattended sensors has been conducted by Sandia National Laboratories (SNL) and the Japan Atomic Energy Research Institute (JAERI) under a bilateral agreement between the United States Arms Control and Disarmament Agency (ACDA) and JAERI. The Containment and Surveillance Data Authenticated Communication (CASDAC) system developed by JAERI for nuclear safeguards and physical protection is a prototype system for remote monitoring of sensor status through the international telephone network. Sensor inputs to the CASDAC system are provided by prototype Tamper Protected Sensor Enclosures developed by SNL on behalf of ACDA. The CASDAC system normally operates on a polling basis from the central control console at JAERI, but data transmission may also be initiated from the remote unit at SNL when a sensor activation is detected. All transmission data are encrypted. Statistics concerning reliability, time delay for anomaly detection, and records of all sensor activations have been accumulated since May 1992. This paper describes the objectives and preliminary evaluation of the accumulated data. The United States Defense Nuclear Agency (DNA) has funded the experiment at SNL to obtain information about the potential of CASDAC for use in Chemical Weapons Convention (CWC) applications.

  1. Thermal remote sensing: theory, sensors, and applications

    USDA-ARS?s Scientific Manuscript database

    Applications of thermal infrared remote sensing for Earth science research are both varied and wide in scope. They range from understanding thermal energy responses that drive land-atmosphere energy exchanges in the hydrologic cycle, to measurement of dielectric surface properties for snow, ice, an...

  2. Security applications of a remote electric-field sensor technology

    NASA Astrophysics Data System (ADS)

    Prance, Robert J.; Harland, Christopher J.; Prance, Helen

    2008-10-01

    A new generation of electric field sensors developed at the University of Sussex is enabling an alternative to contact voltage and non-contact magnetic field measurements. We have demonstrated the capability of this technology in a number of areas including ECG through clothing, remote off-body ECG, through wall movement sensing and electric field imaging. Clearly, there are many applications for a generic sensor technology with this capability, including long term vital sign monitoring. The non-invasive nature of the measurement also makes these sensors ideal for man/machine and human/robot interfacing. In addition, there are obvious security and biometric possibilities since we can obtain physiological data remotely, without the knowledge of the subject. This is a clear advantage if such systems are to be used for evaluating the psychological state of a subject. In this paper we report the results obtained with a new version of the sensor which is capable of acquiring electrophysiological signals remotely in an open unshielded laboratory. We believe that this technology opens up a new area of remote biometrics which could have considerable implications for security applications. We have also demonstrated the ability of EPS to function in closely-packed one and two dimensional arrays for real-time imaging.

  3. A Remote Code Update Mechanism for Wireless Sensor Networks

    DTIC Science & Technology

    2003-11-01

    A Remote Code Update Mechanism for Wireless Sensor Networks Thanos Stathopoulos † John Heidemann ‡ Deborah Estrin † CENS Technical Report # 30 Center...Ganesan, L. Girod, B. Greenstein, T. Schoellhammer, T. Stathopoulos , and D. Es- trin. EmStar: An Environment for Developing Wire- less Embedded

  4. Proliferation detection using a remote resonance Raman chemical sensor

    SciTech Connect

    Sedlacek, A.J.; Chen, C.L.; Dougherty, D.R.

    1993-08-01

    The authors discussed the potential of the resonance Raman chemical sensor as a remote sensor that can be used for gases, liquids or solids. This spectroscopy has the fundamental advantage that it is based on optical fingerprints that are insensitive to environmental perturbations or excitation frequency. By taking advantage of resonance enhancement, the inelastic scattering cross-section can increase anywhere from 4 to 6 orders of magnitude which translates into increased sensing range or lower detection limits. It was also shown that differential cross-sections as small as 10{sup {minus}27} cm{sup 2}/sr do not preclude the use of this technique as being an important component in one`s remote-sensing arsenal. The results obtained in the early 1970s on various pollutants and the more recent work on atmospheric water cast a favorable light on the prospects for the successful development of a resonance Raman remote sensor. Currently, of the 20 CW agent-related {open_quotes}signature{close_quotes} chemicals that the authors have investigated, 18 show enhancements ranging from 3 to 6 orders of magnitude. The absolute magnitudes of the measured resonance enhanced Raman cross-sections for these 18 chemicals suggest that detection and identification of trace quantities of the {open_quotes}signature{close_quotes} chemicals, through a remote resonance Raman chemical sensor, could be achieved.

  5. EXPERIMENTS IN LITHOGRAPHY FROM REMOTE SENSOR IMAGERY.

    USGS Publications Warehouse

    Kidwell, R. H.; McSweeney, J.; Warren, A.; Zang, E.; Vickers, E.

    1983-01-01

    Imagery from remote sensing systems such as the Landsat multispectral scanner and return beam vidicon, as well as synthetic aperture radar and conventional optical camera systems, contains information at resolutions far in excess of that which can be reproduced by the lithographic printing process. The data often require special handling to produce both standard and special map products. Some conclusions have been drawn regarding processing techniques, procedures for production, and printing limitations.

  6. Fire behavior sensor package remote trigger design

    Treesearch

    Dan Jimenez; Jason Forthofer; James Reardon; Bret Butler

    2007-01-01

    Fire behavior characteristics (such as temperature, radiant and total heat flux, 2- and 3-dimensional velocities, and air flow) are extremely difficult to measure insitu. Although insitu sensor packages are capable of such measurements in realtime, it is also essential to acquire video documentation as a means of better understanding the fire behavior data recorded by...

  7. Sensor Data Qualification Technique Applied to Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Simon, Donald L.

    2013-01-01

    This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.

  8. A wireless, remote query magnetoelastic CO2 sensor.

    PubMed

    Cai, Q Y; Cammers-Goodwin, A; Grimes, C A

    2000-12-01

    This paper presents a wireless, passive, remote query CO2 sensor comprising a ribbon-like magnetoelastic thick-film coated with a mass-changing CO2 responsive polymer synthesized from acrylamide and isooctylacrylate. In response to a magnetic field impulse, the magnetostrictive magnetoelastic sensor vibrates at a characteristic resonant frequency that is inversely dependent upon the mass of the attached CO2 responsive polymer. The mechanical vibrations of the magnetostrictive sensor launch magnetic flux, which can be detected remotely using a pickup coil. By monitoring the resonant frequency of the passive sensor, the atmospheric CO2 concentration can be determined without the need for physical connections to the sensor or specific alignment requirements. The effect of humidity and the CO2 responsive copolymer composition on the measurement sensitivity are reported. Greatest sensitivity is achieved with a polymer comprising a 1:1 mole ratio of acrylamide to isooctyl acrylate. A 0.7% change in atmospheric CO2 concentration can be detected for a 20 microns thick polymer coated sensor.

  9. Preliminary data for the 20 May 1974, simultaneous evaluation of remote sensors experiment. [water pollution monitoring

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Batten, C. E.; Bowker, D. E.; Bressette, W. E.; Grew, G. W.

    1975-01-01

    Several remote sensors were simultaneously used to collect data over the tidal James River from Hopewell to Norfolk, Virginia. Sensors evaluated included the Multichannel-Ocean Color Sensor, multispectral scanners, and multispectral photography. Ground truth measurements and remotely sensed data are given. Preliminary analysis indicates that suspended sediment and concentrated industrial effluent are observable from all sensors.

  10. Role of passive remote sensors. Sensor System Panel report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Capabilities of present passive systems are described and the development of passive remote sensing systems for the more abundant tropospheric trace species is recommended. The combination of nadir-viewing spectrometers and solar occultation for tropospheric measurement of those gases having large stratospheric burdens is discussed. Development of a nadir-viewing instrument capable of obtaining continuous spectra in narrower bands is recommended. Gas filter radiometers for species specific measurements and development of a spectral survey instrument are discussed. Further development of aerosol retrieval algorithms, including polarization techniques, for obtaining aerosol thickness and size distributions is advised. Recommendations of specific investigations to be pursued are presented.

  11. Remote optical sensor system for E-field measurements

    NASA Astrophysics Data System (ADS)

    Heinzelmann, Robert; Stoehr, Andreas; Alder, Thomas; Kalinowski, D.; Schmidt, Manuel; Gross, Matthias; Jaeger, Dieter

    1998-12-01

    The concept of a remote optical sensor system for frequency selective electric field measurements will be presented. The system will be applicable to field measurement problems up to frequencies in the microwave regime. Additionally, it will provide minimum interference with the measured field, due to the optical fiber coupled sensor head. The electrooptic key components within the head of this sensor system are an array of photovoltaic cells and an electroabsorption waveguide modulator. Based on experimental results these components will be discussed and evaluated for the application within the sensor system. Furthermore, a novel fiber modulator coupling technique employing the monolithic integration of the device with InP V-grooves will be presented.

  12. Three examples of applied remote sensing of vegetation

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr.; Benton, A. R., Jr.; Toler, R. W.; Haas, R. H.

    1975-01-01

    Cause studies in which remote sensing techniques were adapted to assist in the solution of particular problem situations in Texas involving vegetation are described. In each case, the final sensing technique developed for operational use by the concerned organizations employed photographic sensors which were optimized through studies of the spectral reflectance characteristics of the vegetation species and background conditions unique to the problem being considered. The three examples described are: (1) Assisting Aquatic Plant Monitoring and Control; (2) Improving Vegetation Utilization in Urban Planning; and (3) Enforcing the Quarantine of Diseased Crops.

  13. Interactive display/graphics systems for remote sensor data analysis.

    NASA Technical Reports Server (NTRS)

    Eppler, W. G.; Loe, D. L.; Wilson, E. L.; Whitley, S. L.; Sachen, R. J.

    1971-01-01

    Using a color-television display system and interactive graphics equipment on-line to an IBM 360/44 computer, investigators at the Manned Spacecraft Center have developed a variety of interactive displays which aid in analyzing remote sensor data. This paper describes how such interactive displays are used to: (1) analyze data from a multispectral scanner, (2) develop automatic pattern recognition systems based on multispectral scanner measurements, and (3) analyze data from nonimaging sensors such as the infrared radiometer and microwave scatterometer.

  14. Exploitation of resonance Raman spectroscopy as a remote chemical sensor

    SciTech Connect

    Sedlacek, A.J.; Chen, C.L.

    1995-08-01

    We have discussed recent experimental results using a resonance-Raman-based LIDAR system as a remote chemical sensor. This spectroscopy has the fundamental advantage that it is based on optical fingerprints that are insensitive to environmental perturbations. By taking advantage of resonance enhancement, which 6 orders-of-magnitude, can be as large as 4 to an increased sensing range for a given chemical concentration or lower detection limit for a given stand-off distance can be realized. The success discussed above can in part be traced back to the use of new state-of-the-art technologies which, only recently, have allowed the phenomenon of resonance-enhanced Raman spectroscopy to be fully exploited as a remote chemical sensor platform. Since many chemicals have electronic transitions in the UV/IS, it is expected that many will have pronounced resonance enhancements.

  15. Remote sensing: Physical principles, sensors and products, and the LANDSAT

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Steffen, C. A.; Lorenzzetti, J. A.; Stech, J. L.; Desouza, R. C. M.

    1981-01-01

    Techniques of data acquisition by remote sensing are introduced in this teaching aid. The properties of the elements involved (radiant energy, topograph, atmospheric attenuation, surfaces, and sensors) are covered. Radiometers, photography, scanners, and radar are described as well as their products. Aspects of the LANDSAT system examined include the characteristics of the satellite and its orbit, the multispectral band scanner, and the return beam vidicon. Pixels (picture elements), pattern registration, and the characteristics, reception, and processing of LANDSAT imagery are also considered.

  16. Innovative Remote Sensors for Streamflow Measurement

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Fulton, J. W.; Daniel, W.

    2016-12-01

    The United States Geological Survey operates and maintains over 7000 streamgages across the United States., Conventional streamgages have several important limitations: annual maintenance cost of approximately $15k makes gaging smaller basins uneconomical, manual updating of stage-discharge rating curves is inefficient and can be hazardous to operators, and instruments in contact with the water are sometimes damaged or lost during flood events. A suite of new, non-contact sensors is proposed to address these limitations and add new, previously unmeasured variables. First, a commercially available radar system has been fielded in a very dynamic stream environment and successfully used to measure stage height and stream velocity at high temporal resolution, on the order of a few minutes. Second, a custom water-penetrating lidar has been developed and demonstrated to map 1-D bathymetry (cross-section) in clear streams. Combined with stage and velocity measurements from the radar, this will allow for computation of discharge using non-contact methods without the need to update and maintain an empirical rating curve. Once mature, these technologies promise to reduce cost and manual intervention, allow proliferation of measurements to smaller streams, and introduce previously unmeasured variables to the hydrological scientist's toolbox.

  17. [A mobile sensor for remote detection of natural gas leakage].

    PubMed

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Kan, Rui-feng; Ruan, Jun; Wang, Li-ming; Yu, Dian-qiang; Dong, Jin-ting; Han, Xiao-lei; Cui, Yi-ben; Liu, Jian-guo

    2012-02-01

    The detection of natural gas pipeline leak becomes a significant issue for body security, environmental protection and security of state property. However, the leak detection is difficult, because of the pipeline's covering many areas, operating conditions and complicated environment. A mobile sensor for remote detection of natural gas leakage based on scanning wavelength differential absorption spectroscopy (SWDAS) is introduced. The improved soft threshold wavelet denoising was proposed by analyzing the characteristics of reflection spectrum. And the results showed that the signal to noise ratio (SNR) was increased three times. When light intensity is 530 nA, the minimum remote sensitivity will be 80 ppm x m. A widely used SWDAS can make quantitative remote sensing of natural gas leak and locate the leak source precisely in a faster, safer and more intelligent way.

  18. Equivalent Sensor Radiance Generation and Remote Sensing from Model Parameters. Part 1; Equivalent Sensor Radiance Formulation

    NASA Technical Reports Server (NTRS)

    Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.

    2013-01-01

    In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.

  19. BIOME: An Ecosystem Remote Sensor Based on Imaging Interferometry

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Hammer, Philip; Smith, William H.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Until recent times, optical remote sensing of ecosystem properties from space has been limited to broad band multispectral scanners such as Landsat and AVHRR. While these sensor data can be used to derive important information about ecosystem parameters, they are very limited for measuring key biogeochemical cycling parameters such as the chemical content of plant canopies. Such parameters, for example the lignin and nitrogen contents, are potentially amenable to measurements by very high spectral resolution instruments using a spectroscopic approach. Airborne sensors based on grating imaging spectrometers gave the first promise of such potential but the recent decision not to deploy the space version has left the community without many alternatives. In the past few years, advancements in high performance deep well digital sensor arrays coupled with a patented design for a two-beam interferometer has produced an entirely new design for acquiring imaging spectroscopic data at the signal to noise levels necessary for quantitatively estimating chemical composition (1000:1 at 2 microns). This design has been assembled as a laboratory instrument and the principles demonstrated for acquiring remote scenes. An airborne instrument is in production and spaceborne sensors being proposed. The instrument is extremely promising because of its low cost, lower power requirements, very low weight, simplicity (no moving parts), and high performance. For these reasons, we have called it the first instrument optimized for ecosystem studies as part of a Biological Imaging and Observation Mission to Earth (BIOME).

  20. BIOME: An Ecosystem Remote Sensor Based on Imaging Interferometry

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Hammer, Philip; Smith, William H.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Until recent times, optical remote sensing of ecosystem properties from space has been limited to broad band multispectral scanners such as Landsat and AVHRR. While these sensor data can be used to derive important information about ecosystem parameters, they are very limited for measuring key biogeochemical cycling parameters such as the chemical content of plant canopies. Such parameters, for example the lignin and nitrogen contents, are potentially amenable to measurements by very high spectral resolution instruments using a spectroscopic approach. Airborne sensors based on grating imaging spectrometers gave the first promise of such potential but the recent decision not to deploy the space version has left the community without many alternatives. In the past few years, advancements in high performance deep well digital sensor arrays coupled with a patented design for a two-beam interferometer has produced an entirely new design for acquiring imaging spectroscopic data at the signal to noise levels necessary for quantitatively estimating chemical composition (1000:1 at 2 microns). This design has been assembled as a laboratory instrument and the principles demonstrated for acquiring remote scenes. An airborne instrument is in production and spaceborne sensors being proposed. The instrument is extremely promising because of its low cost, lower power requirements, very low weight, simplicity (no moving parts), and high performance. For these reasons, we have called it the first instrument optimized for ecosystem studies as part of a Biological Imaging and Observation Mission to Earth (BIOME).

  1. Captain, sensors report ...: Correction of Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Arnold, James E. (Technical Monitor)

    2001-01-01

    Remote sensing data acquired by airborne and satellite Systems have many impressive virtues for ecology and other sciences. They are synoptic. They are extremely cheap per data point. They cover large areas. They are not subjective. They detect features that are of clear and obvious interest for many uses. But, they also yield totally irreproducible measurements. Sensors that operate in the visible, near infrared and thermal portions of the spectrum are sensitive to a host of phenomena that are usually of little interest to the average user. Fully recognizing the power and sophistication of the algorithms currently available to users of remote sensing, the authors as long time developers (20+ years) of such algorithms, demonstrate that a host of other signals are convolved with the typical data set, and that many of these signals are very commonly not even recognized, and that these signals are often larger than the signal from the putative target. These derive from both geometric and radiometric sources as well as fundamental flaws in sensor engineering. Until such extraneous factors can be controlled or eliminated the utility of the data is greatly restricted. Finally, the authors lay out a design elements for a rational sensor and methods of deconvolving the complexity of the real world data using such a sensor.

  2. Miniature Wireless BioSensor for Remote Endoscopic Monitoring

    NASA Astrophysics Data System (ADS)

    Nemiroski, Alex; Brown, Keith; Issadore, David; Westervelt, Robert; Thompson, Chris; Obstein, Keith; Laine, Michael

    2009-03-01

    We have built a miniature wireless biosensor with fluorescence detection capability that explores the miniaturization limit for a self-powered sensor device assembled from the latest off-the-shelf technology. The device is intended as a remote medical sensor to be inserted endoscopically and remainin a patient's gastrointestinal tract for a period of weeks, recording and transmitting data as necessary. A sensing network may be formed by using multiple such devices within the patient, routing information to an external receiver that communicates through existing mobilephone networks to relay data remotely. By using a monolithic IC chip with integrated processor, memory, and 2.4 GHz radio,combined with a photonic sensor and miniature battery, we have developed a fully functional computing device in a form factorcompliantwith insertion through the narrowest endoscopic channels (less than 3mm x 3mm x 20mm). We envision similar devices with various types of sensors to be used in many different areas of the human body.

  3. Remote Automatic Material On-Line Sensor

    SciTech Connect

    Magnuson, Erik

    2005-12-20

    Low cost NMR sensor for measuring moisture content of forest products. The Department of Energy (DOE) Industries of the Future (IOF) program seeks development and implementation of technologies that make industry more efficient--in particular, more energy-efficient. Quantum Magnetics, Inc. (QM), a wholly-owned subsidiary of GE Security, received an award under the program to investigate roles for low-cost Nuclear Magnetic Resonance (NMR) technology in furtherance of these goals. Most NMR systems are designed for high-resolution spectroscopy applications. These systems use intense magnetic fields produced by superconducting magnets that drive price and operating cost to levels beyond industry tolerance. At low magnetic fields, achievable at low cost, one loses the ability to obtain spectroscopic information. However, measuring the time constants associated with the NMR signal, called NMR relaxometry, gives indications of chemical and physical states of interest to process control and optimization. It was the purpose of this effort to investigate the technical and economic feasibility of using such low-field, low-cost NMR to monitor parameters enabling greater process efficiencies. The primary target industry identified in the Cooperative Development Agreement was the wood industry, where the moisture content of wood is a key process parameter from the time the cut tree enters a mill until the time it is delivered as pieces of lumber. Extracting the moisture is energy consuming, and improvements in drying efficiency stand to reduce costs and emissions substantially. QM designed and developed a new, low-cost NMR instrument suitable for inspecting lumber up to 3 inches by 12 inches in cross section, and other materials of similar size. Low cost is achieved via an inexpensive, permanent magnet and low-cost NMR spectrometer electronics. Laboratory testing demonstrated that the NMR system is capable of accurate ({+-} 0.5%) measurements of the moisture content of wood for

  4. Magnetoelastic sensors in combination with nanometer-scale honeycombed thin film ceramic TiO2 for remote query measurement of humidity

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Kouzoudis, D.; Dickey, E. C.; Qian, D.; Anderson, M. A.; Shahidain, R.; Lindsey, M.; Green, L.

    2000-01-01

    Ribbonlike magnetoelastic sensors can be considered the magnetic analog of an acoustic bell; in response to an externally applied magnetic field impulse the sensors emit magnetic flux with a characteristic resonant frequency. The magnetic flux can be detected external to the test area using a pick-up coil, enabling query remote monitoring of the sensor. The characteristic resonant frequency of a magnetoelastic sensor changes in response to mass loads. [L.D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, New York, 1986). p. 100].Therefore, remote query chemical sensors can be fabricated by combining the magnetoelastic sensors with a mass changing, chemically responsive layer. In this work magnetoelastic sensors are coated with humidity-sensitive thin films of ceramic, nanodimensionally porous TiO2 to make remote query humidity sensors. c2000 American Institute of Physics.

  5. Magnetoelastic sensors in combination with nanometer-scale honeycombed thin film ceramic TiO2 for remote query measurement of humidity.

    PubMed

    Grimes, C A; Kouzoudis, D; Dickey, E C; Qian, D; Anderson, M A; Shahidain, R; Lindsey, M; Green, L

    2000-05-01

    Ribbonlike magnetoelastic sensors can be considered the magnetic analog of an acoustic bell; in response to an externally applied magnetic field impulse the sensors emit magnetic flux with a characteristic resonant frequency. The magnetic flux can be detected external to the test area using a pick-up coil, enabling query remote monitoring of the sensor. The characteristic resonant frequency of a magnetoelastic sensor changes in response to mass loads. [L.D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, New York, 1986). p. 100].Therefore, remote query chemical sensors can be fabricated by combining the magnetoelastic sensors with a mass changing, chemically responsive layer. In this work magnetoelastic sensors are coated with humidity-sensitive thin films of ceramic, nanodimensionally porous TiO2 to make remote query humidity sensors.

  6. Magnetoelastic sensors in combination with nanometer-scale honeycombed thin film ceramic TiO2 for remote query measurement of humidity

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Kouzoudis, D.; Dickey, E. C.; Qian, D.; Anderson, M. A.; Shahidain, R.; Lindsey, M.; Green, L.

    2000-01-01

    Ribbonlike magnetoelastic sensors can be considered the magnetic analog of an acoustic bell; in response to an externally applied magnetic field impulse the sensors emit magnetic flux with a characteristic resonant frequency. The magnetic flux can be detected external to the test area using a pick-up coil, enabling query remote monitoring of the sensor. The characteristic resonant frequency of a magnetoelastic sensor changes in response to mass loads. [L.D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, New York, 1986). p. 100].Therefore, remote query chemical sensors can be fabricated by combining the magnetoelastic sensors with a mass changing, chemically responsive layer. In this work magnetoelastic sensors are coated with humidity-sensitive thin films of ceramic, nanodimensionally porous TiO2 to make remote query humidity sensors. c2000 American Institute of Physics.

  7. Active structural acoustic control using the remote sensor method

    NASA Astrophysics Data System (ADS)

    Cheer, Jordan; Daley, Steve

    2016-09-01

    Active structural acoustic control (ASAC) is an effective method of reducing the sound radiation from vibrating structures. In order to implement ASAC systems using only structural actuators and sensors, it is necessary to employ a model of the sound radiation from the structure. Such models have been presented in the literature for simple structures, such as baffled rectangular plates, and methods of determining the radiation modes of more complex practical structures using experimental data have also been explored. A similar problem arises in the context of active noise control, where cancellation of a disturbance is required at positions in space where it is not possible to locate a physical error microphone. In this case the signals at the cancellation points can be estimated from the outputs of remotely located measurement sensors using the “remote microphone method”. This remote microphone method is extended here to the ASAC problem, in which the pressures at a number of microphone locations must be estimated from measurements on the structure of the radiating system. The control and estimation strategies are described and the performance is assessed for a typical structural radiation problem.

  8. Remote sensing and human health: new sensors and new opportunities

    NASA Technical Reports Server (NTRS)

    Beck, L. R.; Lobitz, B. M.; Wood, B. L.

    2000-01-01

    Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Systeme Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.

  9. Remote sensing and human health: new sensors and new opportunities

    NASA Technical Reports Server (NTRS)

    Beck, L. R.; Lobitz, B. M.; Wood, B. L.

    2000-01-01

    Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Systeme Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.

  10. Remote sensing and human health: new sensors and new opportunities.

    PubMed Central

    Beck, L. R.; Lobitz, B. M.; Wood, B. L.

    2000-01-01

    Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Système Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases. PMID:10827111

  11. Remote Imaging Applied to Schistosomiasis Control: The Anning River Project

    NASA Technical Reports Server (NTRS)

    Seto, Edmund Y. W.; Maszle, Don R.; Spear, Robert C.; Gong, Peng

    1997-01-01

    The use of satellite imaging to remotely detect areas of high risk for transmission of infectious disease is an appealing prospect for large-scale monitoring of these diseases. The detection of large-scale environmental determinants of disease risk, often called landscape epidemiology, has been motivated by several authors (Pavlovsky 1966; Meade et al. 1988). The basic notion is that large-scale factors such as population density, air temperature, hydrological conditions, soil type, and vegetation can determine in a coarse fashion the local conditions contributing to disease vector abundance and human contact with disease agents. These large-scale factors can often be remotely detected by sensors or cameras mounted on satellite or aircraft platforms and can thus be used in a predictive model to mark high risk areas of transmission and to target control or monitoring efforts. A review of satellite technologies for this purpose was recently presented by Washino and Wood (1994) and Hay (1997) and Hay et al. (1997).

  12. Distinctive Order Based Self-Similarity descriptor for multi-sensor remote sensing image matching

    NASA Astrophysics Data System (ADS)

    Sedaghat, Amin; Ebadi, Hamid

    2015-10-01

    Robust, well-distributed and accurate feature matching in multi-sensor remote sensing image is a difficult task duo to significant geometric and illumination differences. In this paper, a robust and effective image matching approach is presented for multi-sensor remote sensing images. The proposed approach consists of three main steps. In the first step, UR-SIFT (Uniform robust scale invariant feature transform) algorithm is applied for uniform and dense local feature extraction. In the second step, a novel descriptor namely Distinctive Order Based Self Similarity descriptor, DOBSS descriptor, is computed for each extracted feature. Finally, a cross matching process followed by a consistency check in the projective transformation model is performed for feature correspondence and mismatch elimination. The proposed method was successfully applied for matching various multi-sensor satellite images as: ETM+, SPOT 4, SPOT 5, ASTER, IRS, SPOT 6, QuickBird, GeoEye and Worldview sensors, and the results demonstrate its robustness and capability compared to common image matching techniques such as SIFT, PIIFD, GLOH, LIOP and LSS.

  13. Application of remote sensors in coastal zone observations

    NASA Technical Reports Server (NTRS)

    Caillat, J. M.; Elachi, C.; Brown, W. E., Jr.

    1975-01-01

    A review of processes taking place along coastlines and their biological consideration led to the determination of the elements which are required in the study of coastal structures and which are needed for better utilization of the resources from the oceans. The processes considered include waves, currents, and their influence on the erosion of coastal structures. Biological considerations include coastal fisheries, estuaries, and tidal marshes. Various remote sensors were analyzed for the information which they can provide and sites were proposed where a general ocean-observation plan could be tested.

  14. Analysis of interference to remote passive microwave sensors

    NASA Technical Reports Server (NTRS)

    Boyd, Douglas; Tillotson, Tom

    1986-01-01

    The final acts of the 1979 World Administrative Radio Conference (WARC) were analyzed to determine potential interference to remote passive microwave sensors. Using interferer populations determined from the U.S. Government and FCC Master File Lists and assuming uniform geographical distribution of interferers, the level of interference from shared services and active services in adjacent and subharmonic bands was calculated for each of the 22 passive sensing bands. In addition, due to the theoretically large antennas required for passive sensing, an analysis was performed to determine if smaller antennas, i.e., relaxed resolution requirements, would have an effect on interference and to what extent.

  15. Optimal feedback control of a bioreactor with a remote sensor

    NASA Technical Reports Server (NTRS)

    Niranjan, S. C.; San, K. Y.

    1988-01-01

    Sensors used to monitor bioreactor conditions directly often perform poorly in the face of adverse nonphysiological conditions. One way to circumvent this is to use a remote sensor block. However, such a configuration usually causes a significant time lag between measurements and the actual state values. Here, the problem of implementing feedback control strategies for such systems, described by nonlinear equations, is addressed. The problem is posed as an optimal control problem with a linear quadratic performance index. The linear control law so obtained is used to implement feedback. A global linearization technique as well as an expansion using Taylor series is used to linearize the nonlinear system, and the feedback is subsequently implemented.

  16. Optimal feedback control of a bioreactor with a remote sensor

    NASA Technical Reports Server (NTRS)

    Niranjan, S. C.; San, K. Y.

    1988-01-01

    Sensors used to monitor bioreactor conditions directly often perform poorly in the face of adverse nonphysiological conditions. One way to circumvent this is to use a remote sensor block. However, such a configuration usually causes a significant time lag between measurements and the actual state values. Here, the problem of implementing feedback control strategies for such systems, described by nonlinear equations, is addressed. The problem is posed as an optimal control problem with a linear quadratic performance index. The linear control law so obtained is used to implement feedback. A global linearization technique as well as an expansion using Taylor series is used to linearize the nonlinear system, and the feedback is subsequently implemented.

  17. Remote sensing applied to agriculture: Basic principles, methodology, and applications

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Mendonca, F. J.

    1981-01-01

    The general principles of remote sensing techniques as applied to agriculture and the methods of data analysis are described. the theoretical spectral responses of crops; reflectance, transmittance, and absorbtance of plants; interactions of plants and soils with reflectance energy; leaf morphology; and factors which affect the reflectance of vegetation cover are dicussed. The methodologies of visual and computer-aided analyses of LANDSAT data are presented. Finally, a case study wherein infrared film was used to detect crop anomalies and other data applications are described.

  18. The Sensor Management for Applied Research Technologies (SMART) Project

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Jedlovec, Gary; Conover, Helen; Botts, Mike; Robin, Alex; Blakeslee, Richard; Hood, Robbie; Ingenthron, Susan; Li, Xiang; Maskey, Manil; hide

    2007-01-01

    NASA seeks on-demand data processing and analysis of Earth science observations to facilitate timely decision-making that can lead to the realization of the practical benefits of satellite instruments, airborne and surface remote sensing systems. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep "learning curve" associated with each sensor, data type, and associated products. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output.

  19. Modified Michelson fiber-optic interferometer: A remote low-coherence distributed strain sensor array

    NASA Astrophysics Data System (ADS)

    Yuan, Libo

    2003-01-01

    A simple modified Michelson fiber-optic low-coherence interferometric quasi-distributed sensing system permitting absolute length measurement in remote reflective sensor array is proposed. The sensor reflective signals characteristics have been analyzed and the relationship between light signal intensities and sensors number was given for multiplexing potential evaluation. The proposed sensing scheme will be useful for the remote measurement of strain. An important application could be deformation sensing in smart structures. Experimentally, a three sensors array has been demonstrated.

  20. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NASA Astrophysics Data System (ADS)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  1. Comparison of NDVI fields obtained from different remote sensors

    NASA Astrophysics Data System (ADS)

    Escribano Rodriguez, Juan; Alonso, Carmelo; Tarquis, Ana Maria; Benito, Rosa Maria; Hernandez Díaz-Ambrona, Carlos

    2013-04-01

    Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI and their interpretation as a drought index. During 2012 three locations (at Salamanca, Granada and Córdoba) were selected and a periodic pasture monitoring and botanic composition were achieved. Daily precipitation, temperature and monthly soil water content were measurement as well as fresh and dry pasture weight. At the same time, remote sensing images were capture by DEIMOS-1 and MODIS of the chosen places. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is conceived for obtaining Earth images with a good enough resolution to study the terrestrial vegetation cover (20x20 m), although with a great range of visual field (600 km) in order to obtain those images with high temporal resolution and at a

  2. A technique for interpretation of multispectral remote sensor data

    NASA Technical Reports Server (NTRS)

    Williamson, A. N.

    1973-01-01

    The author has identified the following significant results. The U.S. Army Engineer Waterways Experiment Station is engaged in a study to detect from ERTS-1 satellite data alterations to the absorption and scattering properties caused by movement of suspended particles and solutes in selected areas of the Chesapeake Bay and to correlate the data to determine the feasibility of delineating flow patterns, flushing action of the estuary, and sediment and pollutant dispersion. As a part of this study, ADP techniques have been developed that permit automatic interpretation of data from any multispectral remote sensor with computer systems which have limited memory capacity and computing speed. The multispectral remote sensor is considered as a reflectance spectrophotometer. The data which define the spectral reflectance characteristics of a scene are scanned pixel by pixel. Each pixel whose spectral reflectance matches a reference spectrum is identified, and the results are shown in a map that identifies the locations where spectrum matches were detected and spectrum that was matched. The interpretation technique is described and an example of interpreted data from ERTS-1 is presented.

  3. Applying Digital Sensor Technology: A Problem-Solving Approach

    ERIC Educational Resources Information Center

    Seedhouse, Paul; Knight, Dawn

    2016-01-01

    There is currently an explosion in the number and range of new devices coming onto the technology market that use digital sensor technology to track aspects of human behaviour. In this article, we present and exemplify a three-stage model for the application of digital sensor technology in applied linguistics that we have developed, namely,…

  4. Applying Digital Sensor Technology: A Problem-Solving Approach

    ERIC Educational Resources Information Center

    Seedhouse, Paul; Knight, Dawn

    2016-01-01

    There is currently an explosion in the number and range of new devices coming onto the technology market that use digital sensor technology to track aspects of human behaviour. In this article, we present and exemplify a three-stage model for the application of digital sensor technology in applied linguistics that we have developed, namely,…

  5. Passive and Self-Powered Autonomous Sensors for Remote Measurements

    PubMed Central

    Sardini, Emilio; Serpelloni, Mauro

    2009-01-01

    Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds. PMID:22399949

  6. A remote quantitative Fugl-Meyer assessment framework for stroke patients based on wearable sensor networks.

    PubMed

    Yu, Lei; Xiong, Daxi; Guo, Liquan; Wang, Jiping

    2016-05-01

    To extend the use of wearable sensor networks for stroke patients training and assessment in non-clinical settings, this paper proposes a novel remote quantitative Fugl-Meyer assessment (FMA) framework, in which two accelerometer and seven flex sensors were used to monitoring the movement function of upper limb, wrist and fingers. The extreme learning machine based ensemble regression model was established to map the sensor data to clinical FMA scores while the RRelief algorithm was applied to find the optimal features subset. Considering the FMA scale is time-consuming and complicated, seven training exercises were designed to replace the upper limb related 33 items in FMA scale. 24 stroke inpatients participated in the experiments in clinical settings and 5 of them were involved in the experiments in home settings after they left the hospital. Both the experimental results in clinical and home settings showed that the proposed quantitative FMA model can precisely predict the FMA scores based on wearable sensor data, the coefficient of determination can reach as high as 0.917. It also indicated that the proposed framework can provide a potential approach to the remote quantitative rehabilitation training and evaluation.

  7. Remote sensing applied to numerical modelling. [water resources pollution

    NASA Technical Reports Server (NTRS)

    Sengupta, S.; Lee, S. S.; Veziroglu, T. N.; Bland, R.

    1975-01-01

    Progress and remaining difficulties in the construction of predictive mathematical models of large bodies of water as ecosystems are reviewed. Surface temperature is at present the only variable than can be measured accurately and reliably by remote sensing techniques, but satellite infrared data are of sufficient resolution for macro-scale modeling of oceans and large lakes, and airborne radiometers are useful in meso-scale analysis (of lakes, bays, and thermal plumes). Finite-element and finite-difference techniques applied to the solution of relevant coupled time-dependent nonlinear partial differential equations are compared, and the specific problem of the Biscayne Bay and environs ecosystem is tackled in a finite-differences treatment using the rigid-lid model and a rigid-line grid system.

  8. Remote sensing applied to numerical modelling. [water resources pollution

    NASA Technical Reports Server (NTRS)

    Sengupta, S.; Lee, S. S.; Veziroglu, T. N.; Bland, R.

    1975-01-01

    Progress and remaining difficulties in the construction of predictive mathematical models of large bodies of water as ecosystems are reviewed. Surface temperature is at present the only variable than can be measured accurately and reliably by remote sensing techniques, but satellite infrared data are of sufficient resolution for macro-scale modeling of oceans and large lakes, and airborne radiometers are useful in meso-scale analysis (of lakes, bays, and thermal plumes). Finite-element and finite-difference techniques applied to the solution of relevant coupled time-dependent nonlinear partial differential equations are compared, and the specific problem of the Biscayne Bay and environs ecosystem is tackled in a finite-differences treatment using the rigid-lid model and a rigid-line grid system.

  9. Spline function approximation techniques for image geometric distortion representation. [for registration of multitemporal remote sensor imagery

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.

    1975-01-01

    Least squares approximation techniques were developed for use in computer aided correction of spatial image distortions for registration of multitemporal remote sensor imagery. Polynomials were first used to define image distortion over the entire two dimensional image space. Spline functions were then investigated to determine if the combination of lower order polynomials could approximate a higher order distortion with less computational difficulty. Algorithms for generating approximating functions were developed and applied to the description of image distortion in aircraft multispectral scanner imagery. Other applications of the techniques were suggested for earth resources data processing areas other than geometric distortion representation.

  10. Development of a remote spectroelectrochemical sensor for technetium as pertechnetate

    NASA Astrophysics Data System (ADS)

    Monk, David James

    Subsurface contamination by technetium (Tc) is of particular concern in the monitoring, characterization, and remediation of underground nuclear waste storage tanks, processing areas, and associated surroundings at the Hanford Site and other U.S. DOE sites nationwide. The concern over this radioactive element arises for two reasons. First, its most common isotope, 99Tc, has an extremely long lifetime of 2.15 x 105 years. Second, it's most common chemical form in environmental conditions, pertechnetate (TcO4-), exhibits very fast migration through soils and readily presents itself to any nearby aquifer. Standard procedures of sampling and analysis in a laboratory prove to be slow and costly in the case of subsurface contamination by radioactive materials. It is highly desirable to develop sensors for these materials that possess the capability of either in-situ or on-site placement for continuous monitoring or immediate analysis of collected samples. These sensors need to possess adequate detection limit and selectivity, rapid response, reversibility (many measurements with one sensor), the ability to perform remotely, and ruggedness. This dissertation describes several areas of the continued work toward a sensor for 99Tc as TcO4-. Research initially focused on developing spectroelectrochemical instrumentation and a disposable sensing element, engineered to address the need to perform remote measurements. The instrument was then tested using samples containing 99Tc, resulting in the development of ancillary equipment and techniques to address concerns associated with performing experiments on radioactive materials. In these tests, the electrochemistry of TcO4 - was demonstrated to be irreversible. Electrochemical reduction of TcO4- on a bare or polymer modified electrode resulted in the continuous build up of technetium oxide (TcO2) on the electrode surface. This TcO2 formed in visual quantities in these films during electrochemistry, and proved to be non-ideal for

  11. Remote Respiration Monitoring Using Ultra-wideband Microwave Sensor

    NASA Astrophysics Data System (ADS)

    Higashikatsuragi, Kenji; Nakahata, Youichiro; Matsunami, Isamu; Kajiwara, Akihiro

    Impulse based ultra-wideband radio has lately attracted considerable attention as medical monitoring sensor since it is expected to measure bio-signals of a patient on a bed such as respiration rate and heartbeat with a remote non-contact approach. It is also friendly to the environment including the human body due to the very low electromagnetic energy emission. Using conventional ranging scheme, however, high speed A/D device should be required in order to detect the small respiratory displacement. This paper suggests a respiratory monitoring scheme where the respiration rate is measured by observing the variation of the path strength from the patient. Therefore, it does not require high speed A/D. It also makes possible to design the simultaneous monitoring of multiple patients in hospital beds, for example. In this paper the measurements were conducted for various scenarios and the feasibility is discussed.

  12. Remote sensing and sensor testing via hot air balloons

    SciTech Connect

    Watson, S.M.; Kroutil, R.T.; Traynor, C.A.

    1996-11-01

    Tethered and free-flying manned hot air balloons have been demonstrated as platforms for various remote sensing asks and sensor testing and atmospheric measurements. These platforms are inexpensive to operate, do not cause atmospheric disturbances as do higher speed platforms, and are extremely stable and free of vibrations inherent in aircraft structures. The equipment operated and tested on the balloons in connection with this project includes a prototype multispectral imaging spectrometer, high resolution CCD cameras, mid- and far-infrared cameras, a radiometer, FTIR spectrometers, video recording equipment and portable power generators carried beneath the balloon providing power to the equipment The experiments conducted on and from the balloon include chemical effluents characterization, atmospheric propagation through slant paths, obscurants imaging and scene reflectance. 7 refs.

  13. High-resolution spectropolarimetry - A new atmospheric remote sensor

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1977-01-01

    Polarimetry within a spectral line or band is proposed as a new atmospheric remote sensor, particularly for clouds and hazes. The limitations of conventional absorption/emission spectroscopy and photopolarimetry are discussed. The selective formation and behavior of intensity and polarization lines is analyzed under a variety of atmospheric and scattering conditions. The technique, limitations and advantages of Fourier Transform Spectroscopy are reviewed as a prelude to the proposed approach. Experimental results obtained at the telescope for the planet Venus are presented as evidence for the existence, behavior and effects of line polarization. Fourier Transform Spectropolarimetry provides means for separating the effects of scattering from those of absorption, probing the internal properties of clouds and hazes, and studying the detailed wavelength dependence of polarization with variable spectral resolutions from low to high.

  14. Novel remote sensor systems: design, prototyping, and characterization

    NASA Astrophysics Data System (ADS)

    Kayastha, V.; Gibbons, S.; Lamb, J. E.; Giedd, R. E.

    2014-06-01

    We have designed and tested a prototype TRL4 radio-frequency (RF) sensing platform containing a transceiver that interrogates a passive carbon nanotube (CNT)-based sensor platform. The transceiver can be interfaced to a server technology such as a Bluetooth® or Wi-Fi device for further connectivity. The novelty of a very-low-frequency (VLF) implementation in the transceiver design will ultimately enable deep penetration into the ground or metal structures to communicate with buried sensing platforms. The sensor platform generally consists of printed electronic devices made of CNTs on flexible poly(ethylene terephthalate) (PET) and Kapton® substrates. This novel remote sensing system can be integrated with both passive and active sensing platforms. It offers unique characteristics suitable for a variety of sensing applications. The proposed sensing platforms can take on different form factors and the RF output of the sensing platforms could be modulated by humidity, temperature, pressure, strain, or vibration signals. Resonant structures were designed and constructed to operate in the very-high-frequency (VHF) and VLF ranges. In this presentation, we will report results of our continued effort to develop a commercially viable transceiver capable of interrogating the conformally mounted sensing platforms made from CNTs or silver-based nanomaterials on polyimide substrates over a broad range of frequencies. The overall performance of the sensing system with different sensing elements and at different frequency ranges will be discussed.

  15. Radiochemical Sensor for Continuous and Remote Liquid Effluents Monitoring

    SciTech Connect

    Tarancon, A.; Garcia, J.F.; Rauret, G.; Padro, A.

    2008-07-01

    On-line radioactivity monitoring in liquid effluents is an increasing need according to the international regulations at present. Classical activity determination procedures include the sequence of sampling, chemical treatment, measurement and data treatment. These steps are man-power consuming, generate a great amount of waste and introduce an important delay between the potential pollution event and its detection and quantification. To overcome these limitations, we have developed a radiochemical sensor for liquid effluents capable of sending information about the specific activity and volume of a contamination episode to a remote position, on line and continuously. The capabilities of the sensor developed here allow detecting and quantifying contamination pulses of alpha, beta and gamma emitters of different volumes and activity levels included in a continuous stream. Sensor receptor includes two detection systems, one addressed to determine alpha, beta and gamma events and the other to detect sample gamma emissions. Detailed sensor structure will be shown at the conference because patent is in process at this moment. Detection efficiencies (%) obtained in the alpha-beta-gamma system for the range of contamination volumes considered (2- 300 ml) are: 1.6 - 3.2%, for Pu-240; 22.2 - 58.4%, for Sr-90/Y-90 and 8.8 -17.7%, for Cs-134. In the gamma system, values for Cs-134 detection range from 0.6% to 1.3%. Prediction errors obtained show that sensor is capable to detect Sr-90/Y-90 contamination pulses of at least 2 ml and 3 Bq/ml with a relative error lower of 10% in activity and 60% in volume. When contamination pulse increases up to 7 ml, relative errors decrease to 5% for both magnitudes. For Pu-240 and Cs-134, when contamination pulses are of at least 7 ml and 300 Bq/ml, the relative errors obtained in determinations performed in the alpha-beta-gamma system are lower than 10% in activity and 20 % in volume. The same errors are obtained in the gamma system for Cs

  16. Integrating Scientific Inquiry into an Undergraduate Applied Remote Sensing Course

    NASA Astrophysics Data System (ADS)

    Sivanpillai, R.

    2015-12-01

    Inquiry-based learning (IBL) methods require students to engage in learning activities instead of focusing on learning concepts and facts. Working with the instructor, students have to formulate their research questions, collect and analyze data, and arrive at conclusions. In other words, the focus is shifted from preparing for exams to learning to apply the concepts introduced in the classroom. This experience could result in better understanding of the scientific concepts but instructors have to devote more time for designing and implementing IBL methods in their classroom. At the University of Wyoming, an applied remote sensing course has been taught since 2008. Students enrolled in this course are required to complete a project that is designed around IBL methods. Students do not receive detailed instructions for completing their project, but are trained to develop their own research questions, design an experiment, review literature, and collect, analyze and interpret their data. Additionally they learn about uncertainties and strategies for addressing them at various stages of their project. This presentation will describe the work involved in designing, implementing and mentoring students to successfully complete the course requirements and learn scientific research methods. Lessons learned from this course could provide insights to other instructors interested in implementing IBL or other active learning methods in their classroom.

  17. A generalised random encounter model for estimating animal density with remote sensor data.

    PubMed

    Lucas, Tim C D; Moorcroft, Elizabeth A; Freeman, Robin; Rowcliffe, J Marcus; Jones, Kate E

    2015-05-01

    Wildlife monitoring technology is advancing rapidly and the use of remote sensors such as camera traps and acoustic detectors is becoming common in both the terrestrial and marine environments. Current methods to estimate abundance or density require individual recognition of animals or knowing the distance of the animal from the sensor, which is often difficult. A method without these requirements, the random encounter model (REM), has been successfully applied to estimate animal densities from count data generated from camera traps. However, count data from acoustic detectors do not fit the assumptions of the REM due to the directionality of animal signals.We developed a generalised REM (gREM), to estimate absolute animal density from count data from both camera traps and acoustic detectors. We derived the gREM for different combinations of sensor detection widths and animal signal widths (a measure of directionality). We tested the accuracy and precision of this model using simulations of different combinations of sensor detection widths and animal signal widths, number of captures and models of animal movement.We find that the gREM produces accurate estimates of absolute animal density for all combinations of sensor detection widths and animal signal widths. However, larger sensor detection and animal signal widths were found to be more precise. While the model is accurate for all capture efforts tested, the precision of the estimate increases with the number of captures. We found no effect of different animal movement models on the accuracy and precision of the gREM.We conclude that the gREM provides an effective method to estimate absolute animal densities from remote sensor count data over a range of sensor and animal signal widths. The gREM is applicable for count data obtained in both marine and terrestrial environments, visually or acoustically (e.g. big cats, sharks, birds, echolocating bats and cetaceans). As sensors such as camera traps and acoustic

  18. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development

    SciTech Connect

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ' polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  19. Remote management for multipoint sensing systems using hetero-core spliced optical fiber sensors.

    PubMed

    Goh, Lee See; Anoda, Yuji; Kazuhiro, Watanabe; Shinomiya, Norihiko

    2013-12-27

    This paper describes the design and experimental verification of a multipoint sensing system with hetero-core spliced optical fiber sensors and its remote management using an internet-standard protocol. The study proposes two different types of design and conducts experiments to verify those systems' feasibility. In order to manage the sensing systems remotely, the management method uses a standard operation and maintenance protocol for internet: the Simple Network Management Protocol is proposed. The purpose of this study is to construct a multipoint sensing system remote management tool by which the system can also determine the status and the identity of fiber optic sensors. The constructed sensing systems are verified and the results have demonstrated that the first proposed system can distinguish the responses from different hetero-core spliced optical fiber sensors remotely. The second proposed system shows that data communications are performed successfully while identifying the status of hetero-core spliced optical fiber sensors remotely.

  20. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.

    PubMed

    Wang, Menghua

    2016-05-30

    To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude

  1. Compliant tactile sensor for generating a signal related to an applied force

    NASA Technical Reports Server (NTRS)

    Torres-Jara, Eduardo (Inventor)

    2012-01-01

    Tactile sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector.

  2. Remote Sensing as a Demonstration of Applied Physics.

    ERIC Educational Resources Information Center

    Colwell, Robert N.

    1980-01-01

    Provides information about the field of remote sensing, including discussions of geo-synchronous and sun-synchronous remote-sensing platforms, the actual physical processes and equipment involved in sensing, the analysis of images by humans and machines, and inexpensive, small scale methods, including aerial photography. (CS)

  3. Remote Sensing as a Demonstration of Applied Physics.

    ERIC Educational Resources Information Center

    Colwell, Robert N.

    1980-01-01

    Provides information about the field of remote sensing, including discussions of geo-synchronous and sun-synchronous remote-sensing platforms, the actual physical processes and equipment involved in sensing, the analysis of images by humans and machines, and inexpensive, small scale methods, including aerial photography. (CS)

  4. SENSOR++: Simulation of Remote Sensing Systems from Visible to Thermal Infrared

    NASA Astrophysics Data System (ADS)

    Paproth, C.; Schlüßler, E.; Scherbaum, P.; Börner, A.

    2012-07-01

    During the development process of a remote sensing system, the optimization and the verification of the sensor system are important tasks. To support these tasks, the simulation of the sensor and its output is valuable. This enables the developers to test algorithms, estimate errors, and evaluate the capabilities of the whole sensor system before the final remote sensing system is available and produces real data. The presented simulation concept, SENSOR++, consists of three parts. The first part is the geometric simulation which calculates where the sensor looks at by using a ray tracing algorithm. This also determines whether the observed part of the scene is shadowed or not. The second part describes the radiometry and results in the spectral at-sensor radiance from the visible spectrum to the thermal infrared according to the simulated sensor type. In the case of earth remote sensing, it also includes a model of the radiative transfer through the atmosphere. The final part uses the at-sensor radiance to generate digital images by using an optical and an electronic sensor model. Using SENSOR++ for an optimization requires the additional application of task-specific data processing algorithms. The principle of the simulation approach is explained, all relevant concepts of SENSOR++ are discussed, and first examples of its use are given, for example a camera simulation for a moon lander. Finally, the verification of SENSOR++ is demonstrated.

  5. A remote assessment system with a vision robot and wearable sensors.

    PubMed

    Zhang, Tong; Wang, Jue; Ren, Yumiao; Li, Jianjun

    2004-01-01

    This paper describes an ongoing researched remote rehabilitation assessment system that has a 6-freedom double-eyes vision robot to catch vision information, and a group of wearable sensors to acquire biomechanical signals. A server computer is fixed on the robot, to provide services to the robot's controller and all the sensors. The robot is connected to Internet by wireless channel, and so do the sensors to the robot. Rehabilitation professionals can semi-automatically practise an assessment program via Internet. The preliminary results show that the smart device, including the robot and the sensors, can improve the quality of remote assessment, and reduce the complexity of operation at a distance.

  6. A remote compact sensor for the real-time monitoring of human heartbeat and respiration rate.

    PubMed

    Jung Han Choi; Dong Kyun Kim

    2009-06-01

    A remote compact sensor system for the detection of human vital signs (heartbeat and respiration rate) is presented. The frequency band of 24 GHz is employed for remote sensing. For the compact size, the developed sensor uses a circularly polarized electromagnetic wave with a single antenna. The sensor system is composed of radio-frequency circuits, a signal conditioning block, a data-acquisition unit, and a signal-processing part. The peak detection of the power spectral density with a tracking algorithm is utilized for the real-time detection of human vital signs. The measurement result is compared with the commercial fingertip sensor. The comparison result shows excellent agreement.

  7. Sensor Management for Applied Research Technologies (SMART) On Demand Modeling (ODM) Project

    NASA Astrophysics Data System (ADS)

    Conover, H.; Berthiau, G.; Blakeslee, R.; Botts, M.; Goodman, M.; Hood, R.; Jedlovec, G.; Li, X.; Lu, J.; Maskey, M.

    2007-12-01

    On-demand data processing and analysis of Earth science observations will facilitate timely decision making that can lead to the realization of the practical benefits of satellite instruments, airborne and surface remote sensing systems. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep learning curve associated with each sensor, data type and associated products. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. The authors will present initial results from Sensor Management for Applied Research Technologies (SMART) On Demand Modeling (ODM). This NASA- funded project is developing and demonstrating the readiness of Open Geospatial Consortium Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. First year accomplishments include development of numerous Sensor Observation Services (SOS) and an SOS registry for sensor data discovery and access, as well as a prototype user application, built on these services, for validating cloud types as observed by multiple instruments. The three-year goal of this project is to demonstration how SWE-enabled systems can have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.

  8. Comparison of fractal dimensions based on segmented NDVI fields obtained from different remote sensors.

    NASA Astrophysics Data System (ADS)

    Alonso, C.; Benito, R. M.; Tarquis, A. M.

    2012-04-01

    such complexities from remote sensing images and will applied in this study to see the scaling behavior for each sensor in generalized fractal dimensions. The studied area is located in the provinces of Caceres and Salamanca (east of Iberia Peninsula) with an extension of 32 x 32 km2. The altitude in the area varies from 1,560 to 320 m, comprising natural vegetation in the mountain area (forest and bushes) and agricultural crops in the valleys. Scaling analysis were applied to Landsat-5 and MODIS TERRA to the normalized derived vegetation index (NDVI) on the same region with one day of difference, 13 and 12 of July 2003 respectively. From these images the area of interest was selected obtaining 1024 x 1024 pixels for Landsat image and 128 x 128 pixels for MODIS image. This implies that the resolution for MODIS is 250x250 m. and for Landsat is 30x30 m. From the reflectance data obtained from NIR and RED bands, NDVI was calculated for each image focusing this study on 0.2 to 0.5 ranges of values. Once that both NDVI fields were obtained several fractal dimensions were estimated in each one segmenting the values in 0.20-0.25, 0.25-0.30 and so on to rich 0.45-0.50. In all the scaling analysis the scale size length was expressed in meters, and not in pixels, to make the comparison between both sensors possible. Results are discussed. Acknowledgements This work has been supported by the Spanish MEC under Projects No. AGL2010-21501/AGR, MTM2009-14621 and i-MATH No. CSD2006-00032

  9. Application of remote sensor data to geologic analysis of the Bonanza test site Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler); Butler, R. W.; Fisher, J. C.; Huntley, D.; Hulstrom, R. L.; Knepper, D. H., Jr.; Muhm, J. R.; Sawatzky, D. L.; Worman, K. E.; Wychgram, D.

    1973-01-01

    Research activities on geologic remote sensing applications for Colorado are summarized. Projects include: regional and detailed geologic mapping, surficial and engineering geology, fracture studies, uranium exploration, hydrology, and data reduction and enhancement. The acquisition of remote sensor data is also discussed.

  10. Moderate resolution remote sensing alternatives: a review of Landsat-like sensors and their applications

    Treesearch

    Scott L. Powell; Dirk Pflugmacher; Alan A. Kirschbaum; Yunsuk Kim; Warren B. Cohen

    2007-01-01

    Earth observation with Landsat and other moderate resolution sensors is a vital component of a wide variety of applications across disciplines. Despite the widespread success of the Landsat program, recent problems with Landsat 5 and Landsat 7 create uncertainty about the future of moderate resolution remote sensing. Several other Landsat-like sensors have demonstrated...

  11. Tagless remote refractometric sensor based on WGMs in quantum dot-embedded microspheres

    NASA Astrophysics Data System (ADS)

    Pang, Shuo; Meissner, Kenith E.

    2008-02-01

    Optical resonances in microspheres have recently been applied to biosensing applications. The resonances, known as Whispering Gallery Modes (WGMs) result from the total internal reflection of the light propagating inside the high index spherical surface within a lower index medium. The evanescent field of the WGM, which extends beyond the microsphere surface, is sensitive to the changes in the local refractive index in the surrounding medium. The high Q factor associated with WGMs enables a highly sensitive sensor element. Here we present a refractometric sensor with high sensitivity based on quantum dot (QD) embedded polystyrene microspheres. Ultrashort laser pulses are used to induce two photon excited luminescence from the QDs inside the microspheres. By optimizing the detection area of the microsphere, an enhanced resonance signal to background ratio can be achieved. Theoretical calculations of the resonance peak shifts are compared with the experimental data. Refractometric sensing based on WGMs is a technique that does not require analyte labeling. In this work, QDs are used as a local, broadband light source within the microspheres to enable remote excitation of the resonant modes. The sensor has great potential in many biosensing applications.

  12. Flexible Wing Base Micro Aerial Vehicles: Micro Air Vehicles (MAVs) for Surveillance and Remote Sensor Delivery

    NASA Technical Reports Server (NTRS)

    Ifju, Peter

    2002-01-01

    Micro Air Vehicles (MAVs) will be developed for tracking individuals, locating terrorist threats, and delivering remote sensors, for surveillance and chemical/biological agent detection. The tasks are: (1) Develop robust MAV platform capable of carrying sensor payload. (2) Develop fully autonomous capabilities for delivery of sensors to remote and distant locations. The current capabilities and accomplishments are: (1) Operational electric (inaudible) 6-inch MAVs with novel flexible wing, providing superior aerodynamic efficiency and control. (2) Vision-based flight stability and control (from on-board cameras).

  13. Support requirements for remote sensor systems on unmanned planetary missions, phase 3

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results of a study to determine the support requirements for remote sensor systems on unmanned planetary flyby and orbiter missions are presented. Sensors and experiment groupings for selected missions are also established. Computer programs were developed to relate measurement requirements to support requirements. Support requirements were determined for sensors capable of performing required measurements at various points along the trajectories of specific selected missions.

  14. SENSOR: a tool for the simulation of hyperspectral remote sensing systems

    NASA Astrophysics Data System (ADS)

    Börner, Anko; Wiest, Lorenz; Keller, Peter; Reulke, Ralf; Richter, Rolf; Schaepman, Michael; Schläpfer, Daniel

    The consistent end-to-end simulation of airborne and spaceborne earth remote sensing systems is an important task, and sometimes the only way for the adaptation and optimisation of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software Environment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray-tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. The third part consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimisation requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and first examples of its use are given. The verification of SENSOR is demonstrated. This work is closely related to the Airborne PRISM Experiment (APEX), an airborne imaging spectrometer funded by the European Space Agency.

  15. Economical wind powered bioventing systems successfully applied at remote locations

    SciTech Connect

    Graves, D.; Klein, J.; Dillon, T. Jr.; Wilson, B.; Walker, K.

    1996-12-31

    Wind-powered bioventing systems were designed to operate at remote locations in the absence of electrical power. Laboratory measurements of soil respiration under bioventing conditions indicated the biodegradation of up to 25 mg of weathered diesel per kg of site soil per day. Further testing demonstrated the potential for harnessing wind-power to stimulate air movement through vadose zone soil. Several wind-powered bioventing systems were installed near Nome, Alaska. In situ respiration tests, soil gas composition measurements and measurable pressure changes in the soil indicated that the systems were capable of aerating the soil. Diesel range oil measurements indicated contaminant reductions up to 90% after only two treatments seasons. The results demonstrate the effectiveness of wind-powered biovents. The low cost, low maintenance, and simplicity of the biovents make them a very attractive treatment option for windy, remote sites with unsaturated soil impacted by biodegradable contaminants.

  16. Development of Novel, Simple, Multianalyte Sensors for Remote Environmental Analysis

    SciTech Connect

    Asher, Sanford A.

    2000-06-01

    We will develop simple, inexpensive new chemical sensing materials which can be used as visual color test strips to sensitively and selectively report on the concentration and identity of environmental pollutants such as cations of Pb, U, Pu, Sr, Hg, Cs, Co as well as other species. We will develop inexpensive chemical test strips which can be immersed in water to determine these analytes in the field. We will also develop arrays of these chemical sensing materials which will be attached to fiber optic bundles to be used as rugged multichannel optrodes to simultaneously monitor numerous analytes remotely in hostile environments. These sensing materials are based on the intelligent polymerized crystalline colloidal array (PCCA) technology we recently developed. This sensing motif utilizes a mesoscopically periodic array of colloidal particles polymerized into an acrylamide hydrogel. This array Bragg diffracts light in the visible spectral region due to the periodic array of colloidal particles. This material also contains chelating agents for the analytes of interest. When an analyte binds, its charge is immobilized within the acrylamide hydrogel. The resulting Donnan potential causes an osmotic pressure which swells the array proportional to the concentration of analyte bound. The diffracted wavelength shifts and the color changes. The change in the wavelength diffracted reports on the identity and concentration of the target analyte. Our successful development of these simple, inexpensive highly sensitive chemical sensing optrodes, which are easily coupled to simple optical instrumentation, could revolutionize environmental monitoring. In addition, we will develop highly rugged versions, which can be attached to core penetrometers and which can be used to determine analytes in buried core samples. Research Progress and Implications This report summarizes work after 21 months of a three year project. We have developed a new method to crosslink our PCCA sensing

  17. Heterogeneous Wireless Sensor Network for Real Time Remote Monitoring of Sand Dynamics on Coastal Dunes

    NASA Astrophysics Data System (ADS)

    Pozzebon, Alessandro; Bove, Carmine; Cappelli, Irene; Alquini, Fernanda; Bertoni, Duccio; Sarti, Giovanni

    2016-10-01

    In this paper, the architecture of a heterogeneous Wireless Sensor Network (WSN) to be deployed on coastal sand dunes is described, the aim of which is to provide real time measurements of physical parameters to better define the sediment transport in connection with Aeolian processes. The WSN integrates different typologies of sensors and is provided with both local and remote connection. In particular, three different typologies of sensors are integrated in the network: a multilayer anemometric station, a sensor developed ad-hoc to measure the sand dune level and a sand collector capable of measuring the weight of trapped sand and its quantity. Each sensor node is made up at least of a ZigBee radio module that is able to transmit the data collected by the sensor at a distance of about 100 meters. While the sand level sensor and the sand collector are provided only with this transmission module, the anemometric station also integrates a microprocessor board in charge of data processing. A Gateway node provided with a GSM connection for remote data transmission and a Zigbee radio module for Local Area communication has also been developed. This node is in charge of collecting all the data packets sent by the Sensor Nodes and transmit them to a remote server through GPRS connection. A Web server has been set up to collect these packets and store them in a database. The proposed WSN can provide both a static and a dynamic framework of sand transport processes acting on coastal dunes.

  18. Remote-sensing technology applied to forest assessment in California

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.

    1983-01-01

    Remote-sensing technology has been thoroughly evaluated for the analysis of California forest policy. A statewide, 1.6-acre-resolution, digital land-cover data base of Landsat Multispectral Scanner (MSS) classification has been produced. Three major resource regions have been analyzed in detail and one of them geographically integrated with 12 other physical and socioeconomic data layers to model fire and reforestation problems, using a geographic information system (GIS). A study of GIS design criteria has been conducted and the California Department of Forestry, the cooperator in all of these studies, is presently evaluating the alternatives and implementing certain aspects of them.

  19. A new type of remote sensors which allow directly forming certain statistical estimates of images

    NASA Astrophysics Data System (ADS)

    Podlaskin, Boris; Guk, Elena; Karpenko, Andrey

    2010-10-01

    A new approach to the problems of statistical and structural pattern recognition, a signal processing and image analysis techniques has been considered. These problems are extremely important for tasks being solved by airborne and space borne remote sensing systems. Development of new remote sensors for image and signal processing is inherently connected with a possibility of statistical processing of images. Fundamentally new optoelectronic sensors "Multiscan" have been suggested in the present paper. Such sensors make it possible to form directly certain statistical estimates, which describe completely enough the different types of images. The sensors under discussion perform the Lebesgue-Stieltjes signal integration rather than the Cauchy-Riemann one. That permits to create integral functionals for determining statistical features of images. The use of the integral functionals for image processing provides a good agreement of obtained statistical estimates with required image information features. The Multiscan remote sensors allows to create a set of integral moments of an input image right up to high-order integral moments, to form a quantile representation of an input image, which provides a count number limited texture, to form a median, which provides a localisation of a low-contrast horizon line in fog, localisation of water flow boundary etc. This work presents both the description of the design concept of the new remote sensor and mathematical apparatus providing the possibility to create input image statistical features and integral functionals.

  20. Remotely controlled sensor apparatus for use in dig-face characterization system

    DOEpatents

    Josten, N.E.; Svoboda, J.M.

    1999-05-25

    A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency. 13 figs.

  1. Remotely controlled sensor apparatus for use in dig-face characterization system

    DOEpatents

    Josten, Nicholas E.; Svoboda, John M.

    1999-01-01

    A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency.

  2. Remote sensing techniques applied to seismic vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Juan Arranz, Jose; Torres, Yolanda; Hahgi, Azade; Gaspar-Escribano, Jorge

    2016-04-01

    Advances in remote sensing and photogrammetry techniques have increased the degree of accuracy and resolution in the record of the earth's surface. This has expanded the range of possible applications of these data. In this research, we have used these data to document the construction characteristics of the urban environment of Lorca, Spain. An exposure database has been created with the gathered information to be used in seismic vulnerability assessment. To this end, we have used data from photogrammetric flights at different periods, using both orthorectified images in the visible and infrared spectrum. Furthermore, the analysis is completed using LiDAR data. From the combination of these data, it has been possible to delineate the building footprints and characterize the constructions with attributes such as the approximate date of construction, area, type of roof and even building materials. To carry out the calculation, we have developed different algorithms to compare images from different times, segment images, classify LiDAR data, and use the infrared data in order to remove vegetation or to compute roof surfaces with height value, tilt and spectral fingerprint. In addition, the accuracy of our results has been validated with ground truth data. Keywords: LiDAR, remote sensing, seismic vulnerability, Lorca

  3. Application of remote power-by-light switching in a simplified BOTDA sensor network.

    PubMed

    Bravo, Mikel; Ullan, Angel; Zornoza, Ander; Loayssa, Alayn; Lopez-Amo, Manuel; Lopez-Higuera, Jose Miguel

    2013-12-17

    We propose and demonstrate the use of spatial multiplexing as a means to reduce the costs of distributed sensing networks. We propose a new scheme in which remote power-by-light switching is deployed to scan multiple branches of a distributed sensing network based on Brillouin Optical Time Domain Analysis (BOTDA) sensors. A proof-of-concept system is assembled with two 5-km sensor fiber branches that are alternatively monitored using a fast remotely controlled and optically powered optical switch. The multiplexed distributed sensor fibers were located 10 km away from the interrogation unit and a Raman pump is used to remotely power the switch. Furthermore, the deployed BOTDA unit uses an alternative configuration that can lead to simplified setups.

  4. Application of Remote Power-by-Light Switching in a Simplified BOTDA Sensor Network

    PubMed Central

    Bravo, Mikel; Ullan, Angel; Zornoza, Ander; Loayssa, Alayn; Lopez-Amo, Manuel; Lopez-Higuera, Jose Miguel

    2013-01-01

    We propose and demonstrate the use of spatial multiplexing as a means to reduce the costs of distributed sensing networks. We propose a new scheme in which remote power-by-light switching is deployed to scan multiple branches of a distributed sensing network based on Brillouin Optical Time Domain Analysis (BOTDA) sensors. A proof-of-concept system is assembled with two 5-km sensor fiber branches that are alternatively monitored using a fast remotely controlled and optically powered optical switch. The multiplexed distributed sensor fibers were located 10 km away from the interrogation unit and a Raman pump is used to remotely power the switch. Furthermore, the deployed BOTDA unit uses an alternative configuration that can lead to simplified setups. PMID:24351644

  5. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios.

    PubMed

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-11-17

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN.

  6. Respirable particulate monitoring with remote sensors. (Public health ecology: Air pollution)

    NASA Technical Reports Server (NTRS)

    Severs, R. K.

    1974-01-01

    The feasibility of monitoring atmospheric aerosols in the respirable range from air or space platforms was studied. Secondary reflectance targets were located in the industrial area and near Galveston Bay. Multichannel remote sensor data were utilized to calculate the aerosol extinction coefficient and thus determine the aerosol size distribution. Houston Texas air sampling network high volume data were utilized to generate computer isopleth maps of suspended particulates and to establish the mass loading of the atmosphere. In addition, a five channel nephelometer and a multistage particulate air sampler were used to collect data. The extinction coefficient determined from remote sensor data proved more representative of wide areal phenomena than that calculated from on site measurements. It was also demonstrated that a significant reduction in the standard deviation of the extinction coefficient could be achieved by reducing the bandwidths used in remote sensor.

  7. ‘Baseline-offset’ scheme for a methane remote sensor based on wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Ding, Wuwen; Sun, Liqun; Yi, Luying; Zhang, Enyao

    2016-08-01

    A new scheme for methane remote sensing is presented. Unlike a standard published remote sensor based on wavelength modulation spectroscopy (WMS), a reference cell is inserted into the measuring optical path. This scheme inherits the merits of WMS and can achieve high signal-to-noise ratio especially in a low concentration environment. Experimental results show that the presented remote sensor can detect ambient methane with a detection limit of 5 ppm m (parts per million · meter) at a distance of 10 m and 16 ppm m for 20 m. A methane leak test shows the sensor can detect a methane leak of 15 ml min-1 within a range up to 37 m.

  8. Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios

    PubMed Central

    Zhang, Wei; Zhang, Gengxin; Dong, Feihong; Xie, Zhidong; Bian, Dongming

    2015-01-01

    This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN. PMID:26593919

  9. Remote Sensing Information Applied to Geological Study of Planets

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.

    2004-01-01

    The Planetary Geology and Geophysics tasks under this grant have concentrated on the development and testing of tools for remote compositional analyses for the Moon and other airless bodies (especially asteroids). The grant has supported the PI and her students. Detailed analyses of space-weathering analogs were undertaken. Lunar research included development of models for regolith evolution and redistribution of materials across the Moon, with particular emphasis on the interior of South Pole-Aitken Basin. Lunar compositional analyses identified general rock types using Clementine data and mapped their distribution globally and locally based on the type of mafic mineralogy present (or lack thereof). Progress in these areas has been extensively discussed in the literature and in proposals submitted to the PGG program in 2003 and 2004.

  10. Remote monitoring of soldier safety through body posture identification using wearable sensor networks

    NASA Astrophysics Data System (ADS)

    Biswas, Subir; Quwaider, Muhannad

    2008-04-01

    The physical safety and well being of the soldiers in a battlefield is the highest priority of Incident Commanders. Currently, the ability to track and monitor soldiers rely on visual and verbal communication which can be somewhat limited in scenarios where the soldiers are deployed inside buildings and enclosed areas that are out of visual range of the commanders. Also, the need for being stealth can often prevent a battling soldier to send verbal clues to a commander about his or her physical well being. Sensor technologies can remotely provide various data about the soldiers including physiological monitoring and personal alert safety system functionality. This paper presents a networked sensing solution in which a body area wireless network of multi-modal sensors can monitor the body movement and other physiological parameters for statistical identification of a soldier's body posture, which can then be indicative of the physical conditions and safety alerts of the soldier in question. The specific concept is to leverage on-body proximity sensing and a Hidden Markov Model (HMM) based mechanism that can be applied for stochastic identification of human body postures using a wearable sensor network. The key idea is to collect relative proximity information between wireless sensors that are strategically placed over a subject's body to monitor the relative movements of the body segments, and then to process that using HMM in order to identify the subject's body postures. The key novelty of this approach is a departure from the traditional accelerometry based approaches in which the individual body segment movements, rather than their relative proximity, is used for activity monitoring and posture detection. Through experiments with body mounted sensors we demonstrate that while the accelerometry based approaches can be used for differentiating activity intensive postures such as walking and running, they are not very effective for identification and

  11. Multi-sensor Cloud Retrieval Simulator and Remote Sensing from Model Parameters . Pt. 1; Synthetic Sensor Radiance Formulation; [Synthetic Sensor Radiance Formulation

    NASA Technical Reports Server (NTRS)

    Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.

    2013-01-01

    In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.

  12. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development. Final technical report

    SciTech Connect

    Sassen, K.

    1993-11-01

    In support of the initial phase of the Instrument Development Program (IDP) of the Atmospheric Radiation Measurement (ARM) program, the authors have researched the means by which multiple remote sensing techniques could be best applied to characterizing the cloudy atmosphere. This research has directly supported the short-term goal of aiding in the selection of the most appropriate instrumentation for ARM Clouds and Radiation Testbed (CART) sites, but also has more long-term consequences for the application of remote sensing for measuring cloud properties of crucial concern to general circulation and climate models. To accomplish the goals they have (1) developed a mobile, state-of-the-art, scanning polarization diversity lidar (PDL) to test a variety of techniques for cloud remote sensing, including simultaneous dual-wavelength and dual-polarization, and high-speed variable field-of-view operations; (2) successfully participated in field projects using the PDL along with other remote sensors and instrumented aircraft to obtain detailed datasets for the testing of instrument techniques; (3) in collaboration with researchers at the NOAA Wave Propagation Laboratory, used numerical cloud modeling and empirical studies to develop and refine remote sensing approaches for cloud property retrieval.

  13. Development of Novel, Simple Multianalyte Sensors for Remote Environmental Analysis

    SciTech Connect

    Professor Sanford A. Asher

    2003-02-18

    Advancement of our polymerized crystalline colloidal array chemical sensing technology. They have dramatically advanced their polymerized crystalline colloidal array chemical sensing technology. They fabricated nonselective sensors for determining pH and ionic strength. They also developed selective sensors for glucose and organophosphorus mimics of nerve gas agents. They developed a trace sensor for cations in water which utilized a novel crosslinking sensing motif. In all of these cases they have been able to theoretically model their sensor response by extending hydrogel volume phase transition theory. They also developed transient sampling methods to allow their ion sensing methods to operate at high ionic strengths. They also developed a novel optrode to provide for simple sampling.

  14. Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling

    PubMed Central

    Melesse, Assefa M.; Weng, Qihao; S.Thenkabail, Prasad; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling. PMID:28903290

  15. Remote sensing sensors and applications in environmental resources mapping and modeling

    USGS Publications Warehouse

    Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.

  16. Development of Ecogenomic Sensors for Remote Detection of Marine Microbes, Their Genes and Gene Products

    NASA Astrophysics Data System (ADS)

    Scholin, C.; Preston, C.; Harris, A.; Birch, J.; Marin, R.; Jensen, S.; Roman, B.; Everlove, C.; Makarewicz, A.; Riot, V.; Hadley, D.; Benett, W.; Dzenitis, J.

    2008-12-01

    An internet search using the phrase "ecogenomic sensor" will return numerous references that speak broadly to the idea of detecting molecular markers indicative of specific organisms, genes or other biomarkers within an environmental context. However, a strict and unified definition of "ecogenomic sensor" is lacking and the phrase may be used for laboratory-based tools and techniques as well as semi or fully autonomous systems that can be deployed outside of laboratory. We are exploring development of an ecogenomic sensor from the perspective of a field-portable device applied towards oceanographic research and water quality monitoring. The device is known as the Environmental Sample Processor, or ESP. The ESP employs wet chemistry molecular analytical techniques to autonomously assess the presence and abundance of specific organisms, their genes and/or metabolites in near real-time. Current detection chemistries rely on low- density DNA probe and protein arrays. This presentation will emphasize results from 2007-8 field trials when the ESP was moored in Monterey Bay, CA, as well as current engineering activities for improving analytical capacity of the instrument. Changes in microbial community structure at the rRNA level were observed remotely in accordance with changing chemical and physical oceanographic conditions. Current developments include incorporation of a reusable solid phase extraction column for purifying nucleic acids and a 4-channel real-time PCR module. Users can configure this system to support a variety of PCR master mixes, primer/probe combinations and control templates. An update on progress towards fielding a PCR- enabled ESP will be given along with an outline of plans for its use in coastal and oligotrophic oceanic regimes.

  17. Mountainous Ecosystem Sensor Array (MESA): a mesh sensor network for climate change research in remote mountainous environments

    NASA Astrophysics Data System (ADS)

    Robinson, P. W.; Neal, D.; Frome, D.; Kavanagh, K.; Davis, A.; Gessler, P. E.; Hess, H.; Holden, Z. A.; Link, T. E.; Newingham, B. A.; Smith, A. M.

    2013-12-01

    Developing sensor networks robust enough to perform unattended in the world's remote regions is critical since these regions serve as important benchmarks that lack anthropogenic influence. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. The MESA (Mountainous Ecosystem Sensor Array) project has faced these challenges and developed a wireless mesh sensor network across a 660 m topoclimatic gradient in a wilderness area in central Idaho. This sensor array uses advances in sensing, networking, and power supply technologies to provide near real-time synchronized data covering a suite of biophysical parameters used in ecosystem process models. The 76 sensors in the network monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, and leaf wetness at synchronized time intervals ranging from two minutes to two hours and spatial scales from a few meters to two kilometers. We present our novel methods of placing sensors and network nodes above, below, and throughout the forest canopy without using meteorological towers. In addition, we explain our decision to use different forms of power (wind and solar) and the equipment we use to control and integrate power harvesting. Further, we describe our use of the network to sense and quantify its own power use. Using examples of environmental data from the project, we discuss how these data may be used to increase our understanding of the effects of climate change on ecosystem processes in mountainous environments. MESA sensor locations across a 700 m topoclimatic gradient at the University of Idaho Taylor Wilderness Research Station.

  18. Research-grade CMOS image sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Martin-Gonthier, Philippe; Corbiere, Franck; Belliot, Pierre; Estribeau, Magali

    2004-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding space applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this paper will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments and performances of CIS prototypes built using an imaging CMOS process will be presented in the corresponding section.

  19. Multi-Sensor Registration of Earth Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Cole-Rhodes, Arlene; Eastman, Roger; Johnson, Kisha; Morisette, Jeffrey; Netanyahu, Nathan S.; Stone, Harold S.; Zavorin, Ilya; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Assuming that approximate registration is given within a few pixels by a systematic correction system, we develop automatic image registration methods for multi-sensor data with the goal of achieving sub-pixel accuracy. Automatic image registration is usually defined by three steps; feature extraction, feature matching, and data resampling or fusion. Our previous work focused on image correlation methods based on the use of different features. In this paper, we study different feature matching techniques and present five algorithms where the features are either original gray levels or wavelet-like features, and the feature matching is based on gradient descent optimization, statistical robust matching, and mutual information. These algorithms are tested and compared on several multi-sensor datasets covering one of the EOS Core Sites, the Konza Prairie in Kansas, from four different sensors: IKONOS (4m), Landsat-7/ETM+ (30m), MODIS (500m), and SeaWIFS (1000m).

  20. A simulation of remote sensor systems and data processing algorithms for spectral feature classification

    NASA Technical Reports Server (NTRS)

    Arduini, R. F.; Aherron, R. M.; Samms, R. W.

    1984-01-01

    A computational model of the deterministic and stochastic processes involved in multispectral remote sensing was designed to evaluate the performance of sensor systems and data processing algorithms for spectral feature classification. Accuracy in distinguishing between categories of surfaces or between specific types is developed as a means to compare sensor systems and data processing algorithms. The model allows studies to be made of the effects of variability of the atmosphere and of surface reflectance, as well as the effects of channel selection and sensor noise. Examples of these effects are shown.

  1. Field Test of a Remote Multi-Path CLaDS Methane Sensor

    PubMed Central

    Plant, Genevieve; Nikodem, Michal; Mulhall, Phil; Varner, Ruth K.; Sonnenfroh, David; Wysocki, Gerard

    2015-01-01

    Existing technologies for quantifying methane emissions are often limited to single point sensors, making large area environmental observations challenging. We demonstrate the operation of a remote, multi-path system using Chirped Laser Dispersion Spectroscopy (CLaDS) for quantification of atmospheric methane concentrations over extended areas, a technology that shows potential for monitoring emissions from wetlands. PMID:26343670

  2. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor

    PubMed Central

    Sifuentes, Ernesto; Gonzalez-Landaeta, Rafael; Cota-Ruiz, Juan; Reverter, Ferran

    2017-01-01

    This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate. PMID:28524078

  3. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor.

    PubMed

    Sifuentes, Ernesto; Gonzalez-Landaeta, Rafael; Cota-Ruiz, Juan; Reverter, Ferran

    2017-05-18

    This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.

  4. Engineering a laser remote sensor for atmospheric pressure and temperature

    NASA Technical Reports Server (NTRS)

    Kalshoven, J. E., Jr.; Korb, C. L.

    1978-01-01

    A system for the remote sensing of atmospheric pressure and temperature is described. Resonant lines in the 7600 Angstrom oxygen A band region are used and an organic dye laser beam is tuned to measure line absorption changes with temperature or pressure. A reference beam outside this band is also transmitted for calibration. Using lidar techniques, profiling of these parameters with altitude can be accomplished.

  5. Sensor and data fusion of remotely sensed wide-area geospatial targets

    NASA Astrophysics Data System (ADS)

    Churchill, Stephen

    This thesis consists of the examination of methodologies for sensor fusion and data fusion of remotely sensed, sparse geospatial targets. Methods for attaining an increased awareness of targets in both tactical and strategic roles are proposed and examined. The example methodologies are demonstrated, and areas for further research noted. Discussions of the proposed methods are carried forth in the context of iceberg detection. Amongst the difficulties associated with the combination of sensor parameters and sensor data are the wide variety of technologies, performance ability, coverage, and reliability that are available to those users of remote sensing technology. Typical sensors include airborne search radars, marine search radars, surface wave radar, and satellite synthetic aperture radar. The ability to mitigate the related parametric variances is the test of an appropriate sensor or data fusion algorithm. Documented herein are the efforts to find such an algorithm using various statistical methods. Primary among these is Bayes Theorem combined with tracking systems such the multiple hypothesis tracker. This and other methodologies are explored and evaluated, where appropriate. It will be demonstrated that such a methodology can combine sensor data returns to provide high performance, wide-area, situational awareness with sensors considered to have poor performance.

  6. Inductive Coupling Method for Remote Powering of Sensors

    DTIC Science & Technology

    2007-07-03

    expensive wiring harnesses . [0005] The wiring harnesses can add significant weight to the vessel and each power connection from the harness to a...sensor requires a penetration through the hull. The wiring harnesses and penetrations can add significantly to the costs of the vessel. Additionally, each

  7. REMOTE DETECTION OF INTERNAL PIPELINE CORROSION USING FLUIDIZED SENSORS

    SciTech Connect

    Narasi Sridhar; Garth Tormoen; Ashok Sabata

    2005-10-31

    Pipelines present a unique challenge to monitoring because of the great geographical distances they cover, their burial depth, their age, and the need to keep the product flowing without much interruption. Most other engineering structures that require monitoring do not pose such combined challenges. In this regard, a pipeline system can be considered analogous to the blood vessels in the human body. The human body has an extensive ''pipeline'' through which blood and other fluids are transported. The brain can generally sense damage to the system at any location and alert the body to provide temporary repair, unless the damage is severe. This is accomplished through a vast network of fixed and floating sensors combined with a vast and extremely complex communication/decision making system. The project described in this report mimics the distributed sensor system of our body, albeit in a much more rudimentary fashion. Internal corrosion is an important factor in pipeline integrity management. At present, the methods to assess internal corrosion in pipelines all have certain limitations. In-line inspection tools are costly and cannot be used in all pipelines. Because there is a significant time interval between inspections, any impact due to upsets in pipeline operations can be missed. Internal Corrosion Direct Assessment (ICDA) is a procedure that can be used to identify locations of possible internal corrosion. However, the uncertainties in the procedure require excavation and location of damage using more detailed inspection tools. Non-intrusive monitoring techniques can be used to monitor internal corrosion, but these tools also require pipeline excavation and are limited in the spatial extent of corrosion they can examine. Therefore, a floating sensor system that can deposit at locations of water accumulation and communicate the corrosion information to an external location is needed. To accomplish this, the project is divided into four main tasks related to

  8. PRIRODA module: the optical sensors for remote sensing in Italy

    NASA Astrophysics Data System (ADS)

    Armand, Neon A.; Efremenko, Vsevolod V.; Pantani, Luca; Pippi, Ivan

    1995-12-01

    The space module PRIRODA is the technical base for the international scientific project PRIRODA. It will be launched and attached at the end of 1995 to the inhabited space platform MIR. By means of the optical sensors placed on board the PRIRODA module, we are going to study the following topics: (a) water quality in the coastal zone and particularly near the river estuaries; (b) vegetation stress due to the anthropogenic activities; (c) geophysical studies in areas of geothermal and volcanic activities; (d) estimation and verification of the atmosphere contributions. In order to perform the goals mentioned above, the Italian side has identified some test sites mainly in the Tuscany region and the data from the following optical sensors of the PRIRODA module will be utilized: (1) ISTOK-1 -- the instrument is a 64 channel infrared spectro-radiometer in the band of 4 to 16 micrometers. (2) MOS-OBZOR -- this imaging spectrometer is dedicated to the investigation of the reflected solar radiation in the visible and near infrared. (3) OZON-M -- the instrument is suitable to the investigation of the spatial structure of the infrared radiation of the ocean surface and the atmosphere. (4) MSU-E -- this electro-optical scanner operates at a spatial resolution of 25 m in three visible and near infrared spectral bands. (5) MSU-SK -- this opto-mechanical scanner operates in four adjacent visible and near infrared bands at 120 m of spatial resolution plus one band in the thermal infrared region with 300 m of spatial resolution. Taking into account the characteristics of these sensors and utilizing both experimental data available now and coming from similar sensors placed on aircraft or spacecraft and suitable models, we are estimating the possible applications of such new sensors.

  9. Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing

    PubMed Central

    Seidel, Felix; Schläpfer, Daniel; Nieke, Jens; Itten, Klaus I.

    2008-01-01

    This study explores performance requirements for the retrieval of the atmospheric aerosol optical depth (AOD) by airborne optical remote sensing instruments. Independent of any retrieval techniques, the calculated AOD retrieval requirements are compared with the expected performance parameters of the upcoming hyperspectral sensor APEX at the reference wavelength of 550nm. The AOD accuracy requirements are defined to be capable of resolving transmittance differences of 0.01 to 0.04 according to the demands of atmospheric corrections for remote sensing applications. For the purposes of this analysis, the signal at the sensor level is simulated by radiation transfer equations. The resulting radiances are translated into the AOD retrieval sensitivity (Δτλaer) and compared to the available measuring sensitivity of the sensor (NEΔLλsensor). This is done for multiple signal-to-noise ratios (SNR) and surface reflectance values. It is shown that an SNR of 100 is adequate for AOD retrieval at 550nm under typical remote sensing conditions and a surface reflectance of 10% or less. Such dark surfaces require the lowest SNR values and therefore offer the best sensitivity for measuring AOD. Brighter surfaces with up to 30% reflectance require an SNR of around 300. It is shown that AOD retrieval for targets above 50% surface reflectance is more problematic with the current sensor performance as it may require an SNR larger than 1000. In general, feasibility is proven for the analyzed cases under simulated conditions. PMID:27879801

  10. Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing.

    PubMed

    Seidel, Felix; Schläpfer, Daniel; Nieke, Jens; Itten, Klaus I

    2008-03-18

    This study explores performance requirements for the retrieval of the atmospheric aerosol optical depth (AOD) by airborne optical remote sensing instruments. Independent of any retrieval techniques, the calculated AOD retrieval requirements are compared with the expected performance parameters of the upcoming hyperspectral sensor APEX at the reference wavelength of 550nm. The AOD accuracy requirements are defined to be capable of resolving transmittance differences of 0.01 to 0.04 according to the demands of atmospheric corrections for remote sensing applications. For the purposes of this analysis, the signal at the sensor level is simulated by radiation transfer equations. The resulting radiances are translated into the AOD retrieval sensitivity (Δτλ(aer) ) and compared to the available measuring sensitivity of the sensor (NE ΔLλ(sensor)). This is done for multiple signal-to-noise ratios (SNR) and surface reflectance values. It is shown that an SNR of 100 is adequate for AOD retrieval at 550nm under typical remote sensing conditions and a surface reflectance of 10% or less. Such dark surfaces require the lowest SNR values and therefore offer the best sensitivity for measuring AOD. Brighter surfaces with up to 30% reflectance require an SNR of around 300. It is shown that AOD retrieval for targets above 50% surface reflectance is more problematic with the current sensor performance as it may require an SNR larger than 1000. In general, feasibility is proven for the analyzed cases under simulated conditions.

  11. A magnetostatic-coupling based remote query sensor for environmental monitoring

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Stoyanov, P. G.; Liu, Y.; Tong, C.; Ong, K. G.; Loiselle, K.; Shaw, M.; Doherty, S. A.; Seitz, W. R.

    1999-01-01

    A new type of in situ, remotely monitored magnetism-based sensor is presented that is comprised of an array of magnetically soft, magnetostatically-coupled ferromagnetic thin-film elements or particles combined with a chemically responsive material that swells or shrinks in response to the analyte of interest. As the chemically responsive material changes size the distance between the ferromagnetic elements changes, altering the inter-element magnetostatic coupling. This in turn changes the coercive force of the sensor, the amplitude of the voltage spikes detected in nearby pick-up coils upon magnetization reversal and the number of higher-order harmonics generated by the flux reversal. Since the sensor is monitored through changes in magnetic flux, no physical connections such as wires or cables are needed to obtain sensor information, nor is line of sight alignment required as with laser telemetry; the sensors can be detected from within sealed, opaque or thin metallic enclosures.

  12. A remote sensor for detecting methane based on palladium-decorated single walled carbon nanotubes.

    PubMed

    Liu, Jian; Li, Guomin

    2013-07-10

    The remote detection of the concentration of methane at room temperature is performed by a sensor that is configured by the combination of radio frequency identification (RFID), and functionalized carbon nanotubes (CNTs). The proposed sensor is schemed as a thin film RFID tag in a polyethylene substrate, on which a metal trace dipole, a metal trace T impedance matching networks, a 0.5 µm-CMOS RF/DC rectifier chipset and a sensor head of palladium-decorated single walled carbon nanotubes (Pd-SWCNTs) are surface mounted in cascade. The performances of the sensor are examined and described by the defined parameters of the received signal strength index (RSSI) and the comparative analog identifier (∆AID). Results validate the sensor's ability to detect molecules of methane at room temperature, showing that the RSSI can increase 4 dB and the ∆AID can increase 3% in response to methane concentrations ranging from zero to 100 ppm.

  13. A magnetostatic-coupling based remote query sensor for environmental monitoring

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Stoyanov, P. G.; Liu, Y.; Tong, C.; Ong, K. G.; Loiselle, K.; Shaw, M.; Doherty, S. A.; Seitz, W. R.

    1999-01-01

    A new type of in situ, remotely monitored magnetism-based sensor is presented that is comprised of an array of magnetically soft, magnetostatically-coupled ferromagnetic thin-film elements or particles combined with a chemically responsive material that swells or shrinks in response to the analyte of interest. As the chemically responsive material changes size the distance between the ferromagnetic elements changes, altering the inter-element magnetostatic coupling. This in turn changes the coercive force of the sensor, the amplitude of the voltage spikes detected in nearby pick-up coils upon magnetization reversal and the number of higher-order harmonics generated by the flux reversal. Since the sensor is monitored through changes in magnetic flux, no physical connections such as wires or cables are needed to obtain sensor information, nor is line of sight alignment required as with laser telemetry; the sensors can be detected from within sealed, opaque or thin metallic enclosures.

  14. REMOTE, a Wireless Sensor Network Based System to Monitor Rowing Performance

    PubMed Central

    Llosa, Jordi; Vilajosana, Ignasi; Vilajosana, Xavier; Navarro, Nacho; Suriñach, Emma; Marquès, Joan Manuel

    2009-01-01

    In this paper, we take a hard look at the performance of REMOTE, a sensor network based application that provides a detailed picture of a boat movement, individual rower performance, or his/her performance compared with other crew members. The application analyzes data gathered with a WSN strategically deployed over a boat to obtain information on the boat and oar movements. Functionalities of REMOTE are compared to those of RowX [1] outdoor instrument, a commercial wired sensor instrument designed for similar purposes. This study demonstrates that with smart geometrical configuration of the sensors, rotation and translation of the oars and boat can be obtained. Three different tests are performed: laboratory calibration allows us to become familiar with the accelerometer readings and validate the theory, ergometer tests which help us to set the acquisition parameters, and on boat tests shows the application potential of this technologies in sports. PMID:22423204

  15. Passive relative ranging applied to sensor-to-sensor data association

    NASA Astrophysics Data System (ADS)

    Grantham, James L., II; Brahm, Steven J.; Zounes, Randolph S.; Whitt, Ellis

    2002-08-01

    Ballistic Missile Defense (BMD) effectiveness depends on a system's capability to acquire, track, identify, and engage threat missiles. The probability of a successful engagement can be improved by performing multiple-sensor data fusion, especially if the participating sensor systems are based on both radar frequency (RF) and infrared (IR) phenomenology. In this paper, we apply this observation to the Target Object Map (TOM) correlation problem for the standard configuration of a kill vehicle (with a single or multicolor IR seeker) receiving uplinks from a ground based radar. Specifically, we examine the application of a relative ranging technique that augments the angles-only track information of a passive IR sensor with non-parametric range-ranking of the threat complex. Since data association performance is significantly better for three-dimensional (3-D) matching that for two-dimensional (2-D) matching, the idea is to take advantage of relative range-ranking information of the threat complex to potentially improve performance. Numerous techniques that attempt to extract absolute range estimates from a passive IR sensor have been investigated by researchers in the BMD community and it is understood that range information allows for improved threat tracking, radiant intensity estimates, and data association performance. However, extracting absolute target range estimates from irradiance measurements is extremely difficult because of the presence of data uncertainties/ambiguities, environment and sensor noises, and small angular rates of tracked objects. Passive Relative Ranging (PRR) is distinct in that it focuses on the relative range-ranking of objects; knowledge that one object is closer than a second object, while not relevant for improving track or intensity estimation performance, can possibly improve the performance of sensor-to-sensor object assignment. The proposed PRR technique is based on the physical range-squared relationship between intensity and

  16. EVALUATING AN INNOVATIVE OXYGEN SENSOR FOR REMOTE SUBSURFACE OXYGEN MEASUREMENTS

    SciTech Connect

    Millings, M; Brian Riha, B; Warren Hyde, W; Karen Vangelas, K; Brian02 Looney, B

    2006-10-12

    Oxygen is a primary indicator of whether anaerobic reductive dechlorination and similar redox based processes contribute to natural attenuation remedies at chlorinated solvent contaminated sites. Thus, oxygen is a viable indicator parameter for documenting that a system is being sustained in an anaerobic condition. A team of researchers investigated the adaptation of an optical sensor that was developed for oceanographic applications. The optical sensor, because of its design and operating principle, has potential for extended deployment and sensitivity at the low oxygen levels relevant to natural attenuation. The results of the research indicate this tool will be useful for in situ long-term monitoring applications, but that the traditional characterization tools continue to be appropriate for characterization activities.

  17. Intercomparison of Land Surface Remote Sensing Products From Various Sensors.

    NASA Astrophysics Data System (ADS)

    Gobron, N.; Pinty, B.; Mélin, F.; Taberner, M.; Verstraete, M.; Widlowski, J.

    2003-12-01

    The biophysical activities on land surfaces are documented from spectral measurements made in space. Advances in the understanding of radiation transfer and availability of higher performance instruments have lead to the development of a new generation of geophysical products able to provide reliable, accurate information on the state and evolution of terrestrial environments. Specifically, a series of optimized algorithms have been developed to estimate the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) for various instruments. Such an approach allows the synergistic use of FAPAR products derived from different sensors and the construction of global FAPAR time series independent from the life time of these specific sensors. The outline of the methodology will be summarized and the preliminary results of an inter-comparison exercise conducted with SeaWiFS, MERIS(ENVISAT), MISR(Terra) and MODIS(Terra) products will be presented.

  18. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development. Technical progress report

    SciTech Connect

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ` polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  19. Test Structures Applied to the Rapid Prototyping of Sensors

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Chang, L-J.; Martin, D.

    1997-01-01

    Recently, test structures were used to aid in the rapid development of a gas sensor and pressure sensor. These sensors were fabricated using co-fired ceramic technology and a multiproject approach. This talk will describe results obtained from a ceramic substrate which contained 36 chips with six variants including the sensors, process control monitors, and an interconnect chip. As far as the authors know, this is the first implementation of multi-projects in co-fired ceramic substrate. The gas sensor is being developed for the Space Shuttle and the pressure gage is being developed as a Martian barometer.

  20. Test Structures Applied to the Rapid Prototyping of Sensors

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Chang, L-J.; Martin, D.

    1997-01-01

    Recently, test structures were used to aid in the rapid development of a gas sensor and pressure sensor. These sensors were fabricated using co-fired ceramic technology and a multiproject approach. This talk will describe results obtained from a ceramic substrate which contained 36 chips with six variants including the sensors, process control monitors, and an interconnect chip. As far as the authors know, this is the first implementation of multi-projects in co-fired ceramic substrate. The gas sensor is being developed for the Space Shuttle and the pressure gage is being developed as a Martian barometer.

  1. A tunable MWIR laser remote sensor for chemical vapor detection

    NASA Astrophysics Data System (ADS)

    Bunn, Thomas L.; Noblett, Patricia M.; Otting, William D.

    1998-01-01

    The Air Force vision for Global Virtual Presence suggests a need for active remote sensing systems that provide both global coverage and the ability to detect multiple gaseous chemical species at low concentration from a significant standoff distance. The system will need to have acceptable weight, volume, and power characteristics, as well as a long operating lifetime for integration with various surveillance platforms. Laser based remote sensing systems utilizing the differential absorption lidar (DIAL) technique are promising for long range chemical sensing applications. Recent advancements in pulsed, diode pumped solid state laser (DPSSL) technology and in tunable optical parametric oscillators (OPO) make broadly tunable laser transmitters possible for the DIAL system. Also the characteristic narrow spectral bandwidth of these laser devices provides high measurement sensitivity and spectral selectivity with the potential to avoid interfering species. Rocketdyne has built and tested a tunable, midwave infrared (MWIR) DIAL system using DPSSL/OPO technology. The key to the system is a novel tuning and line narrowing technology developed for the OPO. The tuning system can quickly adjust to the desired wavelength and precisely locate a narrow spectral feature of interest. Once the spectral feature is located, a rapid dither tuning technique is employed. The laser pulses are tuned ``on'' and ``off'' the spectral resonance of a molecule with precise and repeatable performance as required to make the DIAL measurement. To date, the breadboard system has been tested by measuring methane, ethane, and sulfur dioxide in a calibrated gas cell at a range of 60 meters.

  2. GIS Integration for Quantitatively Determining the Capabilities of Five Remote Sensors for Resource Exploration

    NASA Technical Reports Server (NTRS)

    Pascucci, R. F.; Smith, A.

    1982-01-01

    To assist the U.S. Geological Survey in carrying out a Congressional mandate to investigate the use of side-looking airborne radar (SLAR) for resources exploration, a research program was conducted to define the contribution of SLAR imagery to structural geologic mapping and to compare this with contributions from other remote sensing systems. Imagery from two SLAR systems and from three other remote sensing systems was interpreted, and the resulting information was digitized, quantified and intercompared using a computer-assisted geographic information system (GIS). The study area covers approximately 10,000 square miles within the Naval Petroleum Reserve, Alaska, and is situated between the foothills of the Brooks Range and the North Slope. The principal objectives were: (1) to establish quantitatively, the total information contribution of each of the five remote sensing systems to the mapping of structural geology; (2) to determine the amount of information detected in common when the sensors are used in combination; and (3) to determine the amount of unique, incremental information detected by each sensor when used in combination with others. The remote sensor imagery that was investigated included real-aperture and synthetic-aperture radar imagery, standard and digitally enhanced LANDSAT MSS imagery, and aerial photos.

  3. Improvements in Virtual Sensors: Using Spatial Information to Estimate Remote Sensing Spectra

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Srivastava, Ashok N.; Stroeve, Julienne

    2005-01-01

    Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. Sometimes these instruments are built in a phased approach, with additional measurement capabilities added in later phases. In other cases, technology may mature to the point that the instrument offers new measurement capabilities that were not planned in the original design of the instrument. In still other cases, high resolution spectral measurements may be too costly to perform on a large sample and therefore lower resolution spectral instruments are used to take the majority of measurements. Many applied science questions that are relevant to the earth science remote sensing community require analysis of enormous amounts of data that were generated by instruments with disparate measurement capabilities. In past work [1], we addressed this problem using Virtual Sensors: a method that uses models trained on spectrally rich (high spectral resolution) data to "fill in" unmeasured spectral channels in spectrally poor (low spectral resolution) data. We demonstrated this method by using models trained on the high spectral resolution Terra MODIS instrument to estimate what the equivalent of the MODIS 1.6 micron channel would be for the NOAA AVHRR2 instrument. The scientific motivation for the simulation of the 1.6 micron channel is to improve the ability of the AVHRR2 sensor to detect clouds over snow and ice. This work contains preliminary experiments demonstrating that the use of spatial information can improve our ability to estimate these spectra.

  4. Wearable dry sensors with bluetooth connection for use in remote patient monitoring systems.

    PubMed

    Gargiulo, Gaetano; Bifulco, Paolo; Cesarelli, Mario; Jin, Craig; McEwan, Alistair; van Schaik, Andre

    2010-01-01

    Cost reduction has become the primary theme of healthcare reforms globally. More providers are moving towards remote patient monitoring, which reduces the length of hospital stays and frees up their physicians and nurses for acute cases and helps them to tackle staff shortages. Physiological sensors are commonly used in many human specialties e.g. electrocardiogram (ECG) electrodes, for monitoring heart signals, and electroencephalogram (EEG) electrodes, for sensing the electrical activity of the brain, are the most well-known applications. Consequently there is a substantial unmet need for physiological sensors that can be simply and easily applied by the patient or primary carer, are comfortable to wear, can accurately sense parameters over long periods of time and can be connected to data recording systems using Bluetooth technology. We have developed a small, battery powered, user customizable portable monitor. This prototype is capable of recording three-axial body acceleration, skin temperature, and has up to four bio analogical front ends. Moreover, it is also able of continuous wireless transmission to any Bluetooth device including a PDA or a cellular phone. The bio-front end can use long-lasting dry electrodes or novel textile electrodes that can be embedded in clothes. The device can be powered by a standard mobile phone which has a Ni-MH 3.6 V battery, to sustain more than seven days continuous functioning when using the Bluetooth Sniff mode to reduce TX power. In this paper, we present some of the evaluation experiments of our wearable personal monitor device with a focus on ECG applications.

  5. Spacecraft technology. [development of satellites and remote sensors

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Developments in spacecraft technology are discussed with emphasis on the Explorer satellite program. The subjects considered include the following: (1) nutational behavior of the Explorer-45 satellite, (2) panoramic sensor development, (3) onboard camera signal processor for Explorer satellites, and (4) microcircuit development. Information on the zero gravity testing of heat pipes is included. Procedures for cleaning heat treated aluminum heat pipes are explained. The development of a five-year magnetic tape, an accurate incremental angular encoder, and a blood freezing apparatus for leukemia research are also discussed.

  6. Virtual Sensors: Using Data Mining Techniques to Efficiently Estimate Remote Sensing Spectra

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Oza, Nikunj; Stroeve, Julienne

    2004-01-01

    Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. These instruments are sometimes built in a phased approach, with some measurement capabilities being added in later phases. In other cases, there may not be a planned increase in measurement capability, but technology may mature to the point that it offers new measurement capabilities that were not available before. In still other cases, detailed spectral measurements may be too costly to perform on a large sample. Thus, lower resolution instruments with lower associated cost may be used to take the majority of measurements. Higher resolution instruments, with a higher associated cost may be used to take only a small fraction of the measurements in a given area. Many applied science questions that are relevant to the remote sensing community need to be addressed by analyzing enormous amounts of data that were generated from instruments with disparate measurement capability. This paper addresses this problem by demonstrating methods to produce high accuracy estimates of spectra with an associated measure of uncertainty from data that is perhaps nonlinearly correlated with the spectra. In particular, we demonstrate multi-layer perceptrons (MLPs), Support Vector Machines (SVMs) with Radial Basis Function (RBF) kernels, and SVMs with Mixture Density Mercer Kernels (MDMK). We call this type of an estimator a Virtual Sensor because it predicts, with a measure of uncertainty, unmeasured spectral phenomena.

  7. Portable remote laser sensor for methane leak detection

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Hinkley, E. D., Jr. (Inventor)

    1984-01-01

    A portable laser system for remote detection of methane gas leaks and concentrations is disclosed. The system transmitter includes first and second lasers, tuned respectively to a wavelength coincident with a strong absorption line of methane and a reference wavelength which is weakly absorbed by methane gas. The system receiver includes a spherical mirror for collecting the reflected laser radiation and focusing the collected radiation through a narrowband optical filter onto an optial detector. The filter is tuned to the wavelength of the two lasers, and rejects background noise. The output of the optical detector is processed by a lock-in detector synchronized to the chopper, and which measures the difference between the first wavelength signal and the reference wavelength signal.

  8. An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications.

    PubMed

    Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard

    2017-02-19

    A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m).

  9. Magnetically remote-controlled optical sensor spheres for monitoring oxygen or pH.

    PubMed

    Mistlberger, Günter; Koren, Klaus; Borisov, Sergey M; Klimant, Ingo

    2010-03-01

    Magnetic sensor macrospheres (MagSeMacs), i.e., stainless steel spheres coated with optical chemical sensors, are presented as an alternative to existing optical sensor patches and fiber-optical dip-probes. Such spheres can either be reversibly attached to the tip of an optical fiber (dip-probe) or trapped inside a vessel for read-out through the side wall. Moving the magnetic separator at the exterior enables measurements at varying positions with a single sensor. Moreover, the sensor's replacement is rapid and contactless. We measured dissolved oxygen or pH in stirred liquids, rotating flasks, and 24-well plates with a SensorDish-reader device for parallel cell culture monitoring. In these applications, MagSeMacs proved to be advantageous over conventional sensor patches and magnetic optical sensor particles because of their magnetism, spherical shape, reflectance, and size. These properties resulted in strong but reversible fixation, magnetic remote-controllability, short response times, high signal intensities, and simplified handling.

  10. An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications

    PubMed Central

    Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard

    2017-01-01

    A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m). PMID:28218727

  11. Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)

    NASA Technical Reports Server (NTRS)

    Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke

    2004-01-01

    The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.

  12. Practical approach to apply range image sensors in machine automation

    NASA Astrophysics Data System (ADS)

    Moring, Ilkka; Paakkari, Jussi

    1993-10-01

    In this paper we propose a practical approach to apply range imaging technology in machine automation. The applications we are especially interested in are industrial heavy-duty machines like paper roll manipulators in harbor terminals, harvesters in forests and drilling machines in mines. Characteristic of these applications is that the sensing system has to be fast, mid-ranging, compact, robust, and relatively cheap. On the other hand the sensing system is not required to be generic with respect to the complexity of scenes and objects or number of object classes. The key in our approach is that just a limited range data set or as we call it, a sparse range image is acquired and analyzed. This makes both the range image sensor and the range image analysis process more feasible and attractive. We believe that this is the way in which range imaging technology will enter the large industrial machine automation market. In the paper we analyze as a case example one of the applications mentioned and, based on that, we try to roughly specify the requirements for a range imaging based sensing system. The possibilities to implement the specified system are analyzed based on our own work on range image acquisition and interpretation.

  13. Development of Remote-Type Haptic Catheter Sensor System using Piezoelectric Transducer

    NASA Astrophysics Data System (ADS)

    Haruta, Mineyuki; Murayama, Yoshinobu; Omata, Sadao

    This study describes the development of Remote-Type Haptic Catheter Sensor System which enables the mechanical property evaluation of a blood vessel. This system consists of a feedback circuit and a piezoelectric ultrasound transducer, and is operated based on a phase shift method so that the entire system oscillates at its inherent resonance frequency. Ultrasound reflected by the blood vessel makes a phase shift of the resonance system depending on the acoustic impedance of the reflector. The phase shift is then measured as a change in resonance frequency of the system; therefore, the detection resolution is highly improved. The correlation between the acoustic impedance and the resonance frequency change of the sensor system was demonstrated using silicone rubbers, metals and actual blood vessels from a pig. The performance of the sensor was also examined using vessel shaped phantom model. Finally, the discussion surveys a possibility of the novel sensor system in an application for intra vascular diagnosis.

  14. Dynamics of plankton populations in upwelling areas. [by remote sensors

    NASA Technical Reports Server (NTRS)

    Szekielda, K.

    1974-01-01

    Recent investigations of the upwelling area along the NW Coast of Africa which include studies with satellites are discussed. The detection of patchiness in temperature and plankton distribution in the upwelling area is of special interest because they can be investigated from space synoptically with repeated coverage. The recent satellite missions provide recordings in the infrared region of the electromagnetic spectrum (EMR) as well as in the visible part. The information from those two parts of the EMR is useful for establishing the sea surface temperature and plankton distribution in upwelling areas. The temperature distribution as observed with infrared sensors and the patchiness in plankton patterns are discussed as observed with the most recent satellites, namely the Earth Resources Technology Satellite (ERTS) and NOAA-2.

  15. Incorporating Applied Undergraduate Research in Senior to Graduate Level Remote Sensing Courses

    ERIC Educational Resources Information Center

    Henley, Richard B.; Unger, Daniel R.; Kulhavy, David L.; Hung, I-Kuai

    2016-01-01

    An Arthur Temple College of Forestry and Agriculture (ATCOFA) senior spatial science undergraduate student engaged in a multi-course undergraduate research project to expand his expertise in remote sensing and assess the applied instruction methodology employed within ATCOFA. The project consisted of performing a change detection…

  16. Remote Raman Sensor System for Testing of Rocks and Minerals

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher S.; Abedin, M. Nurul; Sharma, Shiv K.; Misra, Anupam K.; Ismail, Syed; Sanford, Stephen P.; Elsayed-Ali, Hani

    2007-01-01

    Recent and future explorations of Mars and lunar surfaces through rovers and landers have spawned great interest in developing an instrument that can perform in-situ analysis of minerals on planetary surfaces. Several research groups have anticipated that for such analysis, Raman spectroscopy is the best suited technique because it can unambiguously provide the composition and structure of a material. A remote pulsed Raman spectroscopy system for analyzing minerals was demonstrated at NASA Langley Research Center in collaboration with the University of Hawaii. This system utilizes a 532 nm pulsed laser as an excitation wavelength, and a telescope with a 4-inch aperture for collecting backscattered radiation. A spectrograph equipped with a super notch filter for attenuating Rayleigh scattering is used to analyze the scattered signal. To form the Raman spectrum, the spectrograph utilizes a holographic transmission grating that simultaneously disperses two spectral tracks on the detector for increased spectral range. The spectrum is recorded on an intensified charge-coupled device (ICCD) camera system, which provides high gain to allow detection of inherently weak Stokes lines. To evaluate the performance of the system, Raman standards such as calcite and naphthalene are analyzed. Several sets of rock and gemstone samples obtained from Ward s Natural Science are tested using the Raman spectroscopy system. In addition, Raman spectra of combustible substances such acetone and isopropanol are also obtained. Results obtained from those samples and combustible substances are presented.

  17. Development of Novel, Simple, Multianalyte Sensors For Remote Environmental Analysis

    SciTech Connect

    Asher, Sanfor A.

    1999-06-01

    We will develop simple, inexpensive new chemical sensing materials which can be used as visual color test strips to sensitively and selectively report on the concentration and identity of environmental pollutants such as cations of Pb, U, Pu, Sr, Hg, Cs, Co as well as other species. We will develop inexpensive chemical test strips which can be immersed in water to determine these analytes in the field. We will also develop arrays of these chemical sensing materials which will be attached to fiber optic bundles to be used as rugged multichannel optrodes to simultaneously monitor numerous analytes remotely in hostile environments. These sensing materials are based on the intelligent polymerized crystalline colloidal array (PCCA) technology we recently developed. This sensing motif utilizes a mesoscopically periodic array of colloidal particles polymerized into an acrylamide hydrogel. This array Bragg diffracts light in the visible spectral region due to the periodic array of colloidal particles. This material also contains chelating agents for the analytes of interest. When an analyte binds, its charge is immobilized within the acrylamide hydrogel. The resulting Donnan potential causes an osmotic pressure which swells the array proportional to the concentration of analyte bound. The diffracted wavelength shifts and the color changes. The change in the wavelength diffracted reports on the identity and concentration of the target analyte.

  18. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing

    PubMed Central

    Handcock, Rebecca N.; Swain, Dave L.; Bishop-Hurley, Greg J.; Patison, Kym P.; Wark, Tim; Valencia, Philip; Corke, Peter; O'Neill, Christopher J.

    2009-01-01

    Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle. PMID:22412327

  19. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing.

    PubMed

    Handcock, Rebecca N; Swain, Dave L; Bishop-Hurley, Greg J; Patison, Kym P; Wark, Tim; Valencia, Philip; Corke, Peter; O'Neill, Christopher J

    2009-01-01

    Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle.

  20. A manual for inexpensive methods of analyzing and utilizing remote sensor data

    NASA Technical Reports Server (NTRS)

    Elifrits, C. D.; Barr, D. J.

    1978-01-01

    Instructions are provided for inexpensive methods of using remote sensor data to assist in the completion of the need to observe the earth's surface. When possible, relative costs were included. Equipment need for analysis of remote sensor data is described, and methods of use of these equipment items are included, as well as advantages and disadvantages of the use of individual items. Interpretation and analysis of stereo photos and the interpretation of typical patterns such as tone and texture, landcover, drainage, and erosional form are described. Similar treatment is given to monoscopic image interpretation, including LANDSAT MSS data. Enhancement techniques are detailed with respect to their application and simple techniques of creating an enhanced data item. Techniques described include additive and subtractive (Diazo processes) color techniques and enlargement of photos or images. Applications of these processes, including mappings of land resources, engineering soils, geology, water resources, environmental conditions, and crops and/or vegetation, are outlined.

  1. Magnetically Remote-Controlled Optical Sensor Spheres for Monitoring Oxygen or pH

    PubMed Central

    2010-01-01

    Magnetic sensor macrospheres (MagSeMacs), i.e., stainless steel spheres coated with optical chemical sensors, are presented as an alternative to existing optical sensor patches and fiber-optical dip-probes. Such spheres can either be reversibly attached to the tip of an optical fiber (dip-probe) or trapped inside a vessel for read-out through the side wall. Moving the magnetic separator at the exterior enables measurements at varying positions with a single sensor. Moreover, the sensor’s replacement is rapid and contactless. We measured dissolved oxygen or pH in stirred liquids, rotating flasks, and 24-well plates with a SensorDish-reader device for parallel cell culture monitoring. In these applications, MagSeMacs proved to be advantageous over conventional sensor patches and magnetic optical sensor particles because of their magnetism, spherical shape, reflectance, and size. These properties resulted in strong but reversible fixation, magnetic remote-controllability, short response times, high signal intensities, and simplified handling. PMID:20121206

  2. Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. The Hayden Pass (Orient mine area) includes 60 sq miles of the northern Sangre de Cristo Mountains and San Luis Valley in south-central Colorado. Based on interpretation of the remote sensor data, a geologic map was prepared and compared with a second geologic map, prepared from interpretation of both remote sensor data and field data. Comparison of the two maps gives an indication of the usefulness and reliability of the remote sensor data. The relative utility of color and color infrared photography was tested. The photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all quaternary deposits and 62% of all areas of tertiary volcanic outcrop. Using a filter wheel photometer, more than 8,600 measurements of band reflectance of several sedimentary rocks were performed. The following conclusions were drawn: (1) the typical spectral reflectance curve shows a gradual increase with increasing wavelength; (2) the average band reflectance is about 0.20; and (3) within a formation, the minimum natural variation is about 0.04, or about 20% of the mean band reflectance.

  3. Portable Remote Imaging Spectrometer coastal ocean sensor: design, characteristics, and first flight results.

    PubMed

    Mouroulis, Pantazis; Van Gorp, Byron; Green, Robert O; Dierssen, Heidi; Wilson, Daniel W; Eastwood, Michael; Boardman, Joseph; Gao, Bo-Cai; Cohen, David; Franklin, Brian; Loya, Frank; Lundeen, Sarah; Mazer, Alan; McCubbin, Ian; Randall, David; Richardson, Brandon; Rodriguez, Jose I; Sarture, Charles; Urquiza, Eugenio; Vargas, Rudolph; White, Victor; Yee, Karl

    2014-03-01

    The design, characteristics, and first test flight results are described of the Portable Remote Imaging Spectrometer, an airborne sensor specifically designed to address the challenges of coastal ocean remote sensing. The sensor incorporates several technologies that are demonstrated for the first time, to the best of our knowledge, in a working system in order to achieve a high performance level in terms of uniformity, signal-to-noise ratio, low polarization sensitivity, low stray light, and high spatial resolution. The instrument covers the 350-1050 nm spectral range with a 2.83 nm sampling per pixel, and a 0.88 mrad instantaneous field of view, with 608 cross-track pixels in a pushbroom configuration. Two additional infrared channels (1240 and 1610 nm) are measured by a spot radiometer housed in the same head. The spectrometer design is based on an optically fast (F/1.8) Dyson design form coupled to a wide angle two-mirror telescope in a configuration that minimizes polarization sensitivity without the use of a depolarizer. A grating with minimum polarization sensitivity and broadband efficiency was fabricated as well as a slit assembly with black (etched) silicon surface to minimize backscatter. First flight results over calibration sites as well as Monterey Bay in California have demonstrated good agreement between in situ and remotely sensed data, confirming the potential value of the sensor to the coastal ocean science community.

  4. Test-bed for the remote health monitoring system for bridge structures using FBG sensors

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog

    2009-05-01

    This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.

  5. Applying Sensor-Based Technology to Improve Construction Safety Management.

    PubMed

    Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng

    2017-08-11

    Construction sites are dynamic and complicated systems. The movement and interaction of people, goods and energy make construction safety management extremely difficult. Due to the ever-increasing amount of information, traditional construction safety management has operated under difficult circumstances. As an effective way to collect, identify and process information, sensor-based technology is deemed to provide new generation of methods for advancing construction safety management. It makes the real-time construction safety management with high efficiency and accuracy a reality and provides a solid foundation for facilitating its modernization, and informatization. Nowadays, various sensor-based technologies have been adopted for construction safety management, including locating sensor-based technology, vision-based sensing and wireless sensor networks. This paper provides a systematic and comprehensive review of previous studies in this field to acknowledge useful findings, identify the research gaps and point out future research directions.

  6. Applying Sensor-Based Technology to Improve Construction Safety Management

    PubMed Central

    Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng

    2017-01-01

    Construction sites are dynamic and complicated systems. The movement and interaction of people, goods and energy make construction safety management extremely difficult. Due to the ever-increasing amount of information, traditional construction safety management has operated under difficult circumstances. As an effective way to collect, identify and process information, sensor-based technology is deemed to provide new generation of methods for advancing construction safety management. It makes the real-time construction safety management with high efficiency and accuracy a reality and provides a solid foundation for facilitating its modernization, and informatization. Nowadays, various sensor-based technologies have been adopted for construction safety management, including locating sensor-based technology, vision-based sensing and wireless sensor networks. This paper provides a systematic and comprehensive review of previous studies in this field to acknowledge useful findings, identify the research gaps and point out future research directions. PMID:28800061

  7. NASA Applied Sciences' DEVELOP Program Fosters the Next Generation of Earth Remote Sensing Scientists

    NASA Technical Reports Server (NTRS)

    Childs, Lauren M.; Brozen, Madeline W.; Gleason, Jonathan L.; Silcox, Tracey L.; Rea, Mimi; Holley, Sharon D.; Renneboog, Nathan; Underwood, Lauren W.; Ross, Kenton W.

    2009-01-01

    Satellite remote sensing technology and the science associated with the evaluation of the resulting data are constantly evolving. To meet the growing needs related to this industry, a team of personnel that understands the fundamental science as well as the scientific applications related to remote sensing is essential. Therefore, the workforce that will excel in this field requires individuals who not only have a strong academic background, but who also have practical hands-on experience with remotely sensed data, and have developed knowledge of its real-world applications. NASA's DEVELOP Program has played an integral role in fulfilling this need. DEVELOP is a NASA Science Mission Directorate Applied Sciences training and development program that extends the benefits of NASA Earth science research and technology to society.

  8. Validation of Remote Sensing Retrieval Products using Data from a Wireless Sensor-Based Online Monitoring in Antarctica.

    PubMed

    Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long

    2016-11-17

    Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region.

  9. Validation of Remote Sensing Retrieval Products using Data from a Wireless Sensor-Based Online Monitoring in Antarctica

    PubMed Central

    Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long

    2016-01-01

    Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region. PMID:27869668

  10. Remote detection of nuclear magnetic resonance with an anisotropic magnetoresistive sensor.

    PubMed

    Verpillat, F; Ledbetter, M P; Xu, S; Michalak, D J; Hilty, C; Bouchard, L-S; Antonijevic, S; Budker, D; Pines, A

    2008-02-19

    We report the detection of nuclear magnetic resonance (NMR) using an anisotropic magnetoresistive (AMR) sensor. A "remote-detection" arrangement was used in which protons in flowing water were prepolarized in the field of a superconducting NMR magnet, adiabatically inverted, and subsequently detected with an AMR sensor situated downstream from the magnet and the adiabatic inverter. AMR sensing is well suited for NMR detection in microfluidic "lab-on-a-chip" applications because the sensors are small, typically on the order of 10 mum. An estimate of the sensitivity for an optimized system indicates that approximately 6 x 10(13) protons in a volume of 1,000 mum(3), prepolarized in a 10-kG magnetic field, can be detected with a signal-to-noise ratio of 3 in a 1-Hz bandwidth. This level of sensitivity is competitive with that demonstrated by microcoils in superconducting magnets and with the projected sensitivity of microfabricated atomic magnetometers.

  11. Remote interrogation of WDM fiber-optic intensity sensors deploying delay lines in the virtual domain.

    PubMed

    Montero, David Sánchez; Vázquez, Carmen

    2013-05-07

    In this work a radio-frequency self-referencing WDM intensity-based fiber-optic sensor operating in reflective configuration and using virtual instrumentation is presented. The use of virtual delay lines at the reception stage, along with novel flexible self-referencing techniques, and using a single frequency, avoids all-optical or electrical-based delay lines approaches. This solution preserves the self-referencing and performance characteristics of the proposed WDM-based optical sensing topology, and leads to a more compact solution with higher flexibility for the multiple interrogation of remote sensing points in a sensor network. Results are presented for a displacement sensor demonstrating the concept feasibility.

  12. Bluetooth-based sensor networks for remotely monitoring the physiological signals of a patient.

    PubMed

    Zhang, Ying; Xiao, Hannan

    2009-11-01

    Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.

  13. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation

    PubMed Central

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B. Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth’s land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies’ scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized1. PMID:26601030

  14. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation.

    PubMed

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized.

  15. Use of remotely reporting electronic sensors for assessing use of water filters and cookstoves in Rwanda.

    PubMed

    Thomas, Evan A; Barstow, Christina K; Rosa, Ghislaine; Majorin, Fiona; Clasen, Thomas

    2013-01-01

    Remotely reporting electronic sensors offer the potential to reduce bias in monitoring use of environmental health interventions. In the context of a five-month randomized controlled trial of household water filters and improved cookstoves in rural Rwanda, we collected data from intervention households on product compliance using (i) monthly surveys and direct observations by community health workers and environmental health officers, and (ii) sensor-equipped filters and cookstoves deployed for about two weeks in each household. The adoption rate interpreted by the sensors varied from the household reporting: 90.5% of households reported primarily using the intervention stove, while the sensors interpreted 73.2% use, and 96.5% of households reported using the intervention filter regularly, while the sensors interpreted no more than 90.2%. The sensor-collected data estimated use to be lower than conventionally collected data both for water filters (approximately 36% less water volume per day) and cookstoves (approximately 40% fewer uses per week). An evaluation of intrahousehold consistency in use suggests that households are not using their filters or stoves on an exclusive basis, and may be both drinking untreated water at times and using other stoves ("stove-stacking"). These results provide additional evidence that surveys and direct observation may exaggerate compliance with household-based environmental interventions.

  16. A study of the potential of remote sensors in urban transportation planning

    NASA Technical Reports Server (NTRS)

    Rietschier, D.; Modlin, D. G., Jr.

    1973-01-01

    The potential uses of remotely sensed data as applied to the transportation planning process are presented. By utilizing the remote sensing technology developed by the National Aeronautics and Space Administration in the various space programs, it is hoped that both the expense and errors inherent in the conventional data collection techniques can be avoided. Additional bonuses derived from the use of remotely sensed data are those of the permanent record nature of the data and the traffic engineering data simultaneously made available. The major mathematical modeling phases and the role remotely sensed data might play in replacing conventionally collected data are discussed. Typical surveys undertaken in the overall planning process determine the nature and extent of travel desires, land uses, transportation facilities and socio-economic characteristics. Except for the socio-economic data, data collected in the other surveys mentioned can be taken from photographs in sufficient detail to be useful in the modeling procedures.

  17. SAR-EDU - An education initiative for applied Synthetic Aperture Radar remote sensing

    NASA Astrophysics Data System (ADS)

    Eckardt, Robert; Richter, Nicole; Auer, Stefan; Eineder, Michael; Roth, Achim; Hajnsek, Irena; Walter, Diana; Braun, Matthias; Motagh, Mahdi; Pathe, Carsten; Pleskachevsky, Andrey; Thiel, Christian; Schmullius, Christiane

    2013-04-01

    Since the 1970s, radar remote sensing techniques have evolved rapidly and are increasingly employed in all fields of earth sciences. Applications are manifold and still expanding due to the continuous development of new instruments and missions as well as the availability of very high-quality data. The trend worldwide is towards operational employment of the various algorithms and methods that have been developed. However, the utilization of operational services does not keep up yet with the rate of technical developments and the improvements in sensor technology. With the enhancing availability and variety of space borne Synthetic Aperture Radar (SAR) data and a growing number of analysis algorithms the need for a vital user community is increasing. Therefore the German Aerospace Center (DLR) together with the Friedrich-Schiller-University Jena (FSU) and the Technical University Munich (TUM) launched the education initiative SAR-EDU. The aim of the project is to facilitate access to expert knowledge in the scientific field of radar remote sensing. Within this effort a web portal will be created to provide seminar material on SAR basics, methods and applications to support both, lecturers and students. The overall intension of the project SAR-EDU is to provide seminar material for higher education in radar remote sensing covering the topic holistically from the very basics to the most advanced methods and applications that are available. The principles of processing and interpreting SAR data are going to be taught using test data sets and open-source as well as commercial software packages. The material that is provided by SAR-EDU will be accessible at no charge from a DLR web portal. The educational tool will have a modular structure, consisting of separate modules that broach the issue of a particular topic. The aim of the implementation of SAR-EDU as application-oriented radar remote sensing educational tool is to advocate the development and wider use of

  18. Crosstalk effect and its mitigation in thermal emissive bands of remote sensors

    NASA Astrophysics Data System (ADS)

    Sun, J.; Madhavan, S.; Wang, M.

    2016-09-01

    It has been found that there is severe electronic noise in the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) bands 27-30 which corresponds to wavelengths ranging between 6.7 μm to 9.73 μm. The cause for the issue has been identified to be crosstalk, which is significantly amplified since 2010 due to severe degradation in the electronic circuitry. The crosstalk effect causes unexpected discontinuity/change in the calibration coefficients and induces strong striping artifacts in the earth view (EV) images. Also it is noticed, that there are large long-term drifts in the EV brightness temperature (BT) in these bands. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect for them. It was demonstrated that the crosstalk correction can remarkably minimize the discontinuity/change in the calibration coefficients, substantially reduce the striping in the EV images, and significantly remove the long-term drift in the EV BT in all these bands. In this paper, we present the recent progresses in the crosstalk effect analysis and its mitigation. In addition, we will show that besides these four bands, the TEBs in other satellite remote sensors also have significant crosstalk contaminations. Further, it will be demonstrated that the crosstalk correction algorithm we developed can be successfully applied to all the contaminated TEBs to significantly reduce the crosstalk effects and substantially improve both the image quality and the radiometric accuracy of Level-1B (L1B) products for the bands.

  19. Multiple sensors applied to monitorland subsidence in Central Taiwan

    NASA Astrophysics Data System (ADS)

    Hung, W.-C.; Wang, C.; Hwang, C.; Chen, Y.-A.; Chiu, H.-C.; Lin, S.-H.

    2015-11-01

    During 1992-2013, pumping of groundwater caused large-scale aquifer-system compaction and land subsidence in the Choshui River Alluvial Fan (CRAF) in Taiwan. The subsidence has already endangered the operation of Taiwan High Speed Rail (THSR). In this paper, we introduce the multiple sensors monitoring system to study the extent of subsidence in CRAF and its mechanism, including GPS (Global Positioning System), PSI (Persistent Scatterer Interferometry), leveling and multi-layer compaction monitoring well. These sensors complement each other in spatial and temporal resolutions.

  20. Polyvinylidene Flouride Polymer Applied in an Intraocular Pressure Sensor

    NASA Astrophysics Data System (ADS)

    González Morán, Carlos Omar; González Ballesteros, Rubén; Rodríguez Guzmán, Maria Dolores Alicia; Suaste Gómez, Ernesto

    2005-06-01

    An indentation intraocular pressure sensor (IIOPS) was designed and manufactured. It is based on piezoelectric polyvinylidene fluoride (PVDF) films. This sensor will help in the detection and diagnosis of intraocular pressure (IOP) in eye diseases like glaucoma. The pressure in the normal aqueous and vitreous phases is, on average, 15.5 mmHg and up of 21 mmHg when glaucoma exists. The proposed IIOPS offers a measurement range from 10-29 mmHg with a resolution of 1 mmHg and an accuracy of ± 0.025.

  1. Applying neural networks as software sensors for enzyme engineering.

    PubMed

    Linko, S; Zhu, Y H; Linko, P

    1999-04-01

    The on-line control of enzyme-production processes is difficult, owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables. For example, intelligent methods to predict the end point of fermentation could be of great economic value. Computer-assisted control based on artificial-neural-network models offers a novel solution in such situations. Well-trained feedforward-backpropagation neural networks can be used as software sensors in enzyme-process control; their performance can be affected by a number of factors.

  2. Fully switchable multi-wavelength fiber laser based interrogator system for remote and versatile fiber optic sensors multiplexing structures

    NASA Astrophysics Data System (ADS)

    Bravo Acha, M.; DeMiguel-Soto, V.; Ortigosa, A.; Lopez-Amo, M.

    2014-05-01

    A novel interrogation system for multiple fiber optic sensor technologies and based on a fully-switchable multiwavelength fiber laser (MWFL) is proposed and experimentally demonstrated. The MWFL can generate any wavelength combination with a minimum emission line distance up to 50 GHz fitting the ITU grid specifications. On the other hand, as proof of concept sensor network, two different networks were multiplexed by using a remote powered by light fiber optic switch. They are based on two different sensor technologies. One of them based on PCF intensity sensors and multiplexed by using an 8 port WDM and the other one based on wavelength temperature/strain FBG sensors.

  3. Wireless Sensor Networks Applied on Environmental Monitoring in Fowl Farm

    NASA Astrophysics Data System (ADS)

    Dong, Fangwu; Zhang, Naiqing

    Aiming at the real time monitoring requirement of poultry farms on the environment, a online monitoring system is proposed for poultry farms on the environment based on ZigBee, its application of ZigBee wireless networks and sensor technology. supply a network structure of monitoring system, monitoring system node controller of data acquisition, data transmission and control node, which is TI's CC2430 based on ZigBee technology. CO2 sensors use TGS4161, temperature and humidity sensors use SHT75 to detect environmental parameters. designed circuit diagram of parameter testing node and system master control node, CC2430 as a data processing chip. through the analysis of data transmission of system, simplifying the ZigBee protocol stack, designed data transmission protocols and communication formats of the system. given program flow chart of sensors nodes and main node. practical application shows that the performance ratio cable monitoring system is better, Especially in real-time systems and anti-jamming, it so superior on the current forms of environmental monitoring SCM cable system which cost lower than the SCM cable control system about 30%.Successfully achieved the Monitoring of fowlery's CO2 concentration, temperature, humidity and other environmental parameters for large-scale poultry farming, and to provide a new monitoring environment technologie.

  4. Research on distributed temperature sensor (DTS) applied in underground tunnel

    NASA Astrophysics Data System (ADS)

    Hu, Chuanlong; Wang, Jianfeng; Zhang, Zaixuan; Shen, Changyu; Jin, Yongxing; Jin, Shangzhong

    2011-11-01

    A distributed temperature sensor (DTS) system with a sensing distance of 4 km was developed for applications in tunnel temperature measurement and fire alarm. Characteristics of DTS and experiment results are introduced. The results show that DTS system can play an important role in tunnel fire alarm.

  5. Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks †

    PubMed Central

    Hayajneh, Thaier; Mohd, Bassam J; Imran, Muhammad; Almashaqbeh, Ghada; Vasilakos, Athanasios V.

    2016-01-01

    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes. PMID:27023540

  6. Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks.

    PubMed

    Hayajneh, Thaier; Mohd, Bassam J; Imran, Muhammad; Almashaqbeh, Ghada; Vasilakos, Athanasios V

    2016-03-24

    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes.

  7. A land use and land cover classification system for use with remote sensor data

    USGS Publications Warehouse

    Anderson, James R.; Hardy, Ernest E.; Roach, John T.; Witmer, Richard E.

    1976-01-01

    The framework of a national land use and land cover classification system is presented for use with remote sensor data. The classification system has been developed to meet the needs of Federal and State agencies for an up-to-date overview of land use and land cover throughout the country on a basis that is uniform in categorization at the more generalized first and second levels and that will be receptive to data from satellite and aircraft remote sensors. The proposed system uses the features of existing widely used classification systems that are amenable to data derived from remote sensing sources. It is intentionally left open-ended so that Federal, regional, State, and local agencies can have flexibility in developing more detailed land use classifications at the third and fourth levels in order to meet their particular needs and at the same time remain compatible with each other and the national system. Revision of the land use classification system as presented in U.S. Geological Survey Circular 671 was undertaken in order to incorporate the results of extensive testing and review of the categorization and definitions.

  8. A Remote Sensor for Detecting Methane Based on Palladium-Decorated Single Walled Carbon Nanotubes

    PubMed Central

    Liu, Jian; Li, Guomin

    2013-01-01

    The remote detection of the concentration of methane at room temperature is performed by a sensor that is configured by the combination of radio frequency identification (RFID), and functionalized carbon nanotubes (CNTs). The proposed sensor is schemed as a thin film RFID tag in a polyethylene substrate, on which a metal trace dipole, a metal trace T impedance matching networks, a 0.5 μm-CMOS RF/DC rectifier chipset and a sensor head of palladium-decorated single walled carbon nanotubes (Pd-SWCNTs) are surface mounted in cascade. The performances of the sensor are examined and described by the defined parameters of the received signal strength index (RSSI) and the comparative analog identifier (ΔAID). Results validate the sensor's ability to detect molecules of methane at room temperature, showing that the RSSI can increase 4 dB and the ΔAID can increase 3% in response to methane concentrations ranging from zero to 100 ppm. PMID:23845931

  9. Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: application to environmental sensing

    NASA Technical Reports Server (NTRS)

    Ong, K. G.; Wang, J.; Singh, R. S.; Bachas, L. G.; Grimes, C. A.; Daunert, S. (Principal Investigator)

    2001-01-01

    A new technique is presented for in-vivo remote query measurement of the complex permittivity spectra of a biological culture solution. A sensor comprised of a printed inductor-capacitor resonant-circuit is placed within the culture solution of interest, with the impedance spectrum of the sensor measured using a remotely located loop antenna; the complex permittivity spectra of the culture is calculated from the measured impedance spectrum. The remote query nature of the sensor platform enables, for example, the in-vivo real-time monitoring of bacteria or yeast growth from within sealed opaque containers. The wireless monitoring technique does not require a specific alignment between sensor and antenna. Results are presented for studies conducted on laboratory strains of Bacillus subtilis, Escherichia coli JM109, Pseudomonas putida and Saccharomyces cerevisiae.

  10. Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: application to environmental sensing

    NASA Technical Reports Server (NTRS)

    Ong, K. G.; Wang, J.; Singh, R. S.; Bachas, L. G.; Grimes, C. A.; Daunert, S. (Principal Investigator)

    2001-01-01

    A new technique is presented for in-vivo remote query measurement of the complex permittivity spectra of a biological culture solution. A sensor comprised of a printed inductor-capacitor resonant-circuit is placed within the culture solution of interest, with the impedance spectrum of the sensor measured using a remotely located loop antenna; the complex permittivity spectra of the culture is calculated from the measured impedance spectrum. The remote query nature of the sensor platform enables, for example, the in-vivo real-time monitoring of bacteria or yeast growth from within sealed opaque containers. The wireless monitoring technique does not require a specific alignment between sensor and antenna. Results are presented for studies conducted on laboratory strains of Bacillus subtilis, Escherichia coli JM109, Pseudomonas putida and Saccharomyces cerevisiae.

  11. Remote detection of buried explosives by fluorescent and bioluminescent microbial sensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Belkin, Shimshon; Yagur-Kroll, Sharon; Zohar, Cheinat; Rabinovitz, Zahi; Nussinovitch, Amos; Kabessa, Yossi; Agranat, Aharon J.

    2017-06-01

    Current landmine detection methodologies are not much different in principle from those employed 75 years ago, in that they require actual presence in the minefield, with obvious risks to personnel and equipment. Other limitations include an extremely large ratio of false positives, as well as a very limited ability to detect non-metallic landmines. In this lecture a microbial-based solution for the remote detection of buried landmines described. The small size requirements, rapid responses and sensing versatility of bacterial bioreporters allow their integration into diverse types of devices, for laboratory as well as field applications. The relative ease by which molecular sensing and reporting elements can be fused together to generate dose-dependent quantifiable physical (luminescent, fluorescent, colorimetric, electrochemical) responses to pre-determined conditions allows the construction of diverse classes of sensors. Over the last two decades we and others have employed this principle to design and construct microbial bioreporter strains for the sensitive detection of (a) specific chemicals of environmental concern (heavy metals, halogenated organics etc.) or (b) their deleterious biological effects on living systems (such as toxicity or genotoxicity). In many of these cases, additional molecular manipulations beyond the initial sensor-reporter fusion may be highly beneficial for enhancing the performance of the engineered sensor systems. This presentation highlights several of the approaches we have adopted over the years to achieve this aim, while focusing on the application of live cell microbeads for the remote detection of buried landmines and other explosive devices.

  12. Research on application of photoelectric rotary encoder in space optical remote sensor

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Qi, Shao-fan; Wang, Yuan-yuan; Zhang, Zhan-dong

    2016-11-01

    For space optical remote sensor, especially wide swath detecting sensor, the focusing control system for the focal plane should be well designed to obtain the best image quality. The crucial part of this system is the measuring instrument. For previous implements, the potentiometer, which is essentially a voltage divider, is usually introduced to conduct the position in feedback closed-loop control process system. However, the performances of both electro-mechanical and digital potentiometers is limited in accuracy, temperature coefficients, and scale range. To have a better performance of focal plane moving detection, this article presents a new measuring implement with photoelectric rotary encoder, which consists of the photoelectric conversion system and the signal process system. In this novel focusing control system, the photoelectric conversion system is fixed on main axis, which can transform the angle information into a certain analog signal. Through the signal process system, after analog-to-digital converting and data format processing of the certain analog signal, the focusing control system can receive the digital precision angle position which can be used to deduct the current moving position of the focal plane. For utilization of space optical remote sensor in aerospace areas, the reliability design of photoelectric rotary encoder system should be considered with highest priority. As mentioned above, this photoelectric digital precision angle measurement device is well designed for this real-time control and dynamic measurement system, because its characters of high resolution, high accuracy, long endurance, and easy to maintain.

  13. Application of remote sensors in mapping rice area and forecasting its production: a review.

    PubMed

    Mosleh, Mostafa K; Hassan, Quazi K; Chowdhury, Ehsan H

    2015-01-05

    Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ~19% of the global dietary energy in recent times and its annual average consumption per capita was ~65 kg during 2010-2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield were

  14. In situ ozone data for evaluation of the laser absorption spectrometer ozone remote sensor: 1979 southeastern Virginia urban plume study summer field program

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Mcdougal, D. S.; Mathis, J. J., Jr.

    1980-01-01

    Ozone data from the 1979 Southeastern Virginia Urban Study (SEV-UPS) field program are presented. The SEV-UPS was conducted for evaluation of an ozone remote sensor, the Laser Absorption Spectrometer. During the measurement program, remote-sensor evaluation was in two areas; (1) determination of the remote sensor's accuracy, repeatability, and operational characteristics, and (2) demonstration of the application of remotely sensed ozone data in air-quality studies. Data from six experiments designed to provide in situ ozone data for evaluation of the sensor in area 1, above, are presented. Experiments consisted of overflights of a test area with the remote sensor aircraft while in situ measurements with a second aircraft and selected surface stations provided correlative ozone data within the viewing area of the remote sensor.

  15. Thirty years of use and improvement of remote sensing, applied to epidemiology: from early promises to lasting frustration.

    PubMed

    Herbreteau, Vincent; Salem, Gérard; Souris, Marc; Hugot, Jean-Pierre; Gonzalez, Jean-Paul

    2007-06-01

    Remote sensing, referring to the remote study of objects, was originally developed for Earth observation, through the use of sensors on board planes or satellites. Improvements in the use and accessibility of multi-temporal satellite-derived environmental data have, for 30 years, contributed to a growing use in epidemiology. Despite the potential of remote-sensed images and processing techniques for a better knowledge of disease dynamics, an exhaustive analysis of the bibliography shows a generalized use of pre-processed spatial data and low-cost images, resulting in a limited adaptability when addressing biological questions.

  16. Operation of remote mobile sensors for security of drinking water distribution systems.

    PubMed

    Perelman, By Lina; Ostfeld, Avi

    2013-09-01

    The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection.

  17. The Challenges in Applying Magnetroesistive Sensors on the 'Curiosity' Rover

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.

    2013-01-01

    Magnetoresistive Sensors were selected for use on the motor encoders throughout the Curiosity Rover for motor position feedback devices. The Rover contains 28 acuators with a corresponding number of encoder assemblies. The environment on Mars provides opportunities for challenges to any hardware design. The encoder assemblies presented several barriers that had to be vaulted in order to say the rover was ready to fly. The environment and encoder specific design features provided challenges that had to be solved in time to fly.

  18. The Challenges in Applying Magnetroesistive Sensors on the 'Curiosity' Rover

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.

    2013-01-01

    Magnetoresistive Sensors were selected for use on the motor encoders throughout the Curiosity Rover for motor position feedback devices. The Rover contains 28 acuators with a corresponding number of encoder assemblies. The environment on Mars provides opportunities for challenges to any hardware design. The encoder assemblies presented several barriers that had to be vaulted in order to say the rover was ready to fly. The environment and encoder specific design features provided challenges that had to be solved in time to fly.

  19. A Configurable Sensor Network Applied to Ambient Assisted Living

    PubMed Central

    Villacorta, Juan J.; Jiménez, María I.; del Val, Lara; Izquierdo, Alberto

    2011-01-01

    The rising older people population has increased the interest in Ambient Assisted Living systems. This article presents a system for monitoring the disabled or older persons developed from an existing surveillance system. The modularity and adaptability characteristics of the system allow an easy adaptation for a different purpose. The proposed system uses a network of sensors capable of motion detection that includes fall warning, identification of persons and a configurable control system which allows its use in different scenarios. PMID:22346668

  20. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance

    PubMed Central

    Jha, Maya Nand; Levy, Jason; Gao, Yang

    2008-01-01

    Reducing the risk of oil spill disasters is essential for protecting the environment and reducing economic losses. Oil spill surveillance constitutes an important component of oil spill disaster management. Advances in remote sensing technologies can help to identify parties potentially responsible for pollution and to identify minor spills before they cause widespread damage. Due to the large number of sensors currently available for oil spill surveillance, there is a need for a comprehensive overview and comparison of existing sensors. Specifically, this paper examines the characteristics and applications of different sensors. A better understanding of the strengths and weaknesses of oil spill surveillance sensors will improve the operational use of these sensors for oil spill response and contingency planning. Laser fluorosensors were found to be the best available sensor for oil spill detection since they not only detect and classify oil on all surfaces but also operate in either the day or night. For example, the Scanning Laser Environmental Airborne Fluorosensor (SLEAF) sensor was identified to be a valuable tool for oil spill surveillance. However, no single sensor was able to provide all information required for oil spill contingency planning. Hence, combinations of sensors are currently used for oil spill surveillance. Specifically, satellite sensors are used for preliminary oil spill assessment while airborne sensors are used for detailed oil spill analysis. While satellite remote sensing is not suitable for tactical oil spill planning it can provide a synoptic coverage of the affected area. PMID:27879706

  1. Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    SciTech Connect

    Cameron, S.M.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-01

    Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in

  2. Assessment of Flooded Areas Projections and Floods Potential Impacts Applying Remote Sensing Imagery and Demographic Data

    NASA Astrophysics Data System (ADS)

    Rodriguez, D. A.; Carriello, F.; Fernandes, P. J. F.; Garofolo Lopes, L.; Siqueira Júnior, J. L.

    2016-06-01

    Assessing vulnerability and potential impacts associated with extreme discharges requires an accurate topographic description in order to estimate the extension of flooded areas. However, in most populated regions, topographic data obtained by in-situ measurements is not available. In this case, digital elevation models derived from remote sensing date are usually applied. Moreover, this digital elevation models have intrinsic errors that introduce bigger uncertainty in results than the associated to hydrological projections. On the other hand, estimations of flooded areas through remote sensing images provide accurate information, which could be used for the construction of river level-flooded area relationships regarding vulnerability assessment. In this work, this approach is applied for the city of Porto Velho in the Brazilian Amazonia to assess potential vulnerability to floods associated with climate change projections. The approach is validated using census data, provided by the Brazilian Institute of Geography and Statistics, and information about socio-economical injuries associated to historical floods, provided by the Brazilian Civil Defence. Hydrological projections under climate change are carried out using several downscaling of climate projections as inputs in a hydrological model. Results show more accurate estimation of flood impacts than the obtained using digital elevation models derivate from remote sensing data. This reduces uncertainties in the assessment of vulnerability to floods associated with climate change in the region.

  3. Analyses of the lunar surface with advanced remote sensors: Expectations for the 1990's

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.

    1991-01-01

    Today's advanced sensor capabilities provide unprecedented opportunities for exploration that mesh well with the science requirements for a sophisticated integration of several types of remotely acquired information. Science priorities for the 1990's include an evaluation of the global composition and structure of the primordial lunar crust in order to model its origin and evolution, using the Moon as a natural laboratory to study the impact process and time-cumulative events at 1 AU, and, ultimately, constraining the origin of the Moon and its relation to Earth.

  4. Study Of Remote Sensor Spectral Responses And Data Processing Algorithms For Feature Classification

    NASA Astrophysics Data System (ADS)

    Huck, F. O.; Davis, R. E.; Fales, C. L.; Ardiuni, R. F.; Samms, R. W.

    1984-10-01

    A computational model of the deterministic and stochastic processes involved in remote sensing is used to study and compare the performance of sensor spectral responses and data processing algorithms for classifying spectral features. The simulated spectral responses include those of the U.S. Landsat Thematic Mapper (TM) and the French Systeme Probatoire d'Observation de la Terre (SPOT). The simulated data processing algorithms include the computationally simple boundary approximation method (BAM) to discriminate between general target categories such as vegetation, bare land, water, snow, and clouds, and the maximum likelihood (MLH) and mean-square distance (MSD) classifications to discriminate between specific targets such as various crop types.

  5. Raman backscatter as a remote laser power sensor in high-energy-density plasmas.

    PubMed

    Moody, J D; Strozzi, D J; Divol, L; Michel, P; Robey, H F; LePape, S; Ralph, J; Ross, J S; Glenzer, S H; Kirkwood, R K; Landen, O L; MacGowan, B J; Nikroo, A; Williams, E A

    2013-07-12

    Stimulated Raman backscatter is used as a remote sensor to quantify the instantaneous laser power after transfer from outer to inner cones that cross in a National Ignition Facility (NIF) gas-filled hohlraum plasma. By matching stimulated Raman backscatter between a shot reducing outer versus a shot reducing inner power we infer that about half of the incident outer-cone power is transferred to inner cones, for the specific time and wavelength configuration studied. This is the first instantaneous nondisruptive measure of power transfer in an indirect drive NIF experiment using optical measurements.

  6. Global coverage measurement planning strategies for mobile robots equipped with a remote gas sensor.

    PubMed

    Arain, Muhammad Asif; Trincavelli, Marco; Cirillo, Marcello; Schaffernicht, Erik; Lilienthal, Achim J

    2015-03-20

    The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions.

  7. Cardiac Care Assistance using Self Configured Sensor Network—a Remote Patient Monitoring System

    NASA Astrophysics Data System (ADS)

    Sarma Dhulipala, V. R.; Kanagachidambaresan, G. R.

    2014-04-01

    Pervasive health care systems are used to monitor patients remotely without disturbing the normal day-to-day activities in real-time. Wearable physiological sensors required to monitor various significant ecological parameters of the patients are connected to Body Central Unit (BCU). Body Sensor Network (BSN) updates data in real-time and are designed to transmit alerts against abnormalities which enables quick response by medical units in case of an emergency. BSN helps monitoring patient without any need for attention to the subject. BSN helps in reducing the stress and strain caused by hospital environment. In this paper, mathematical models for heartbeat signal, electro cardio graph (ECG) signal and pulse rate are introduced. These signals are compared and their RMS difference-fast Fourier transforms (PRD-FFT) are processed. In the context of cardiac arrest, alert messages of these parameters and first aid for post-surgical operations has been suggested.

  8. Remote sensing of debris-covered glaciers: Change detection and analysis using multiple sensors

    NASA Astrophysics Data System (ADS)

    Ahn, Y.; Huh, K.; Mark, B. G.; La Frenierre, J.; Gulley, J. D.; Park, K.

    2013-12-01

    Debris-cover can insulate glaciers and hinder surface melting, but also challenges accurate assessment of change detection and subsequent risk evaluation of outburst floods from moraine-dammed supra-glacial lakes that endanger downstream inhabitants. These events have been predicted to increase frequency along with the coverage of debris as warming accelerates. Enhanced monitoring capability from optical air and space-borne sensors has improved the detection of changes in surface-derived characteristics such as areal and volumetric fluctuations as well as glacier velocity over debris-covered glaciers, improving the accuracy of geometric and temporal resolutions in hydrological analysis. In this study we present case studies from Nepal, Peru and Ecuador focusing on: 1) time series of debris-coverage and moraine-dammed lakes; and 2) the relationship of remotely sensed observable quantities from different sensors such as aerial photographs, ASTER, Landsat imagery and Airborne/Terrestrial Laser Scanner.

  9. Monitoring of atmospheric aerosol emissions using a remotely piloted air vehicle (RPV)-Borne Sensor Suite

    SciTech Connect

    1996-05-01

    We have developed a small sensor system, the micro-atmospheric measurement system ({mu}-AMS), to monitor and track aerosol emissions. The system was developed to fly aboard a remotely piloted air vehicle, or other mobile platform, to provide real-time particle measurements in effluent plumes and to collect particles for chemical analysis. The {mu}-AMS instrument measures atmospheric parameters including particle mass concentration and size distribution, temperature, humidity, and airspeed, altitude and position (by GPS receiver) each second. The sensor data are stored onboard and are also down linked to a ground station in real time. The {mu}-AMS is battery powered, small (8 in. dia x 36 in.), and lightweight (15 pounds). Aerosol concentrations and size distributions from above ground explosive tests, airbone urban pollution, and traffic-produced particulates are presented.

  10. Global Coverage Measurement Planning Strategies for Mobile Robots Equipped with a Remote Gas Sensor

    PubMed Central

    Arain, Muhammad Asif; Trincavelli, Marco; Cirillo, Marcello; Schaffernicht, Erik; Lilienthal, Achim J.

    2015-01-01

    The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions. PMID:25803707

  11. Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Kouzoudis, D.

    2000-01-01

    Free-standing magnetoelastic thick-film sensors have a characteristic resonant frequency that can be determined by monitoring the magnetic flux emitted from the sensor in response to a time varying magnetic field. This property allows the sensors to be monitored remotely without the use of direct physical connections, such as wires, enabling measurement of environmental parameters from within sealed, opaque containers. In this work, we report on application of magnetoelastic sensors to measurement of atmospheric pressure, fluid-flow velocity, temperature, and mass load. Mass loading effects are demonstrated by fabrication of a remote query humidity sensor, made by coating the magnetoelastic thick film with a thin layer of solgel deposited Al2O3 that reversibly changes mass in response to humidity. c2000 Elsevier Science S.A. All rights reserved.

  12. Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Kouzoudis, D.

    2000-01-01

    Free-standing magnetoelastic thick-film sensors have a characteristic resonant frequency that can be determined by monitoring the magnetic flux emitted from the sensor in response to a time varying magnetic field. This property allows the sensors to be monitored remotely without the use of direct physical connections, such as wires, enabling measurement of environmental parameters from within sealed, opaque containers. In this work, we report on application of magnetoelastic sensors to measurement of atmospheric pressure, fluid-flow velocity, temperature, and mass load. Mass loading effects are demonstrated by fabrication of a remote query humidity sensor, made by coating the magnetoelastic thick film with a thin layer of solgel deposited Al2O3 that reversibly changes mass in response to humidity. c2000 Elsevier Science S.A. All rights reserved.

  13. Remote Sensing Image Classification Applied to the First National Geographical Information Census of China

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Wen, Zongyong; Zhu, Zhaorong; Xia, Qiang; Shun, Lan

    2016-06-01

    Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN) to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC) and Maximum Likelihood Classification Method (MLC) in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.

  14. Orbiting passive microwave sensor simulation applied to soil moisture estimation

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Clark, B. V.; Pitchford, W. M.; Paris, J. F.

    1979-01-01

    A sensor/scene simulation program was developed and used to determine the effects of scene heterogeneity, resolution, frequency, look angle, and surface and temperature relations on the performance of a spaceborne passive microwave system designed to estimate soil water information. The ground scene is based on classified LANDSAT images which provide realistic ground classes, as well as geometries. It was determined that the average sensitivity of antenna temperature to soil moisture improves as the antenna footprint size increased. Also, the precision (or variability) of the sensitivity changes as a function of resolution.

  15. Cyberinfrastructure for remote environmental observatories: a model homogeneous sensor network in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Strachan, Scotty; Slater, David; Fritzinger, Eric; Lyles, Bradley; Kent, Graham; Smith, Kenneth; Dascalu, Sergiu; Harris, Frederick

    2017-04-01

    Sensor-based data collection has changed the potential scale and resolution of in-situ environmental studies by orders of magnitude, increasing expertise and management requirements accordingly. Cost-effective management of these observing systems is possible by leveraging cyberinfrastructure resources. Presented is a case study environmental observation network in the Great Basin region, USA, the Nevada Climate-ecohydrological Assessment Network (NevCAN). NevCAN stretches hundreds of kilometers across several mountain ranges and monitors climate and ecohydrological conditions from low desert (900 m ASL) to high subalpine treeline (3360 m ASL) down to 1-minute timescales. The network has been operating continuously since 2010, collecting billions of sensor data points and millions of camera images that record hourly conditions at each site, despite requiring relatively low annual maintenance expenditure. These data have provided unique insight into fine-scale processes across mountain gradients, which is crucial scientific information for a water-scarce region. The key to maintaining data continuity for these remotely-located study sites has been use of uniform data transport and management systems, coupled with high-reliability power system designs. Enabling non-proprietary digital communication paths to all study sites and sensors allows the research team to acquire data in near-real-time, troubleshoot problems, and diversify sensor hardware. A wide-area network design based on common Internet Protocols (IP) has been extended into each study site, providing production bandwidth of between 2 Mbps and 60 Mbps, depending on local conditions. The network architecture and site-level support systems (such as power generation) have been implemented with the core objectives of capacity, redundancy, and modularity. NevCAN demonstrates that by following simple but uniform "best practices", the next generation of regionally-specific environmental observatories can evolve to

  16. Optical fiber gas sensor for remote detection of methane gas in coal mines

    NASA Astrophysics Data System (ADS)

    Li, Sanguo

    Characteristic molecular and atomic absorption spectra in the middle infrared and near infrared regions are extensively used for chemical analysis and spectroscopic detection of gases. The absorption of electromagnetic radiation in this spectral region is due to the vibration-rotational bands of molecular structure. Various techniques have been developed for high resolution and high sensitivity absorption spectroscopic detection. Optical gas sensors based on absorption of light by the vibrational-rotational energy levels of gas molecules at near-IR (1-1.8mum) wavelength have attracted considerable attention recently [1]-[4]. The advantages of fiber sensors are remote detection capability, safety in hazardous environments, immunity to electromagnetic fields, etc. The possible gases that can be detected are methane, acetylene, hydrogen sulphide, carbon dioxide, carbon monoxide, etc. In this Dissertation, a particular one-channel optical-fiber-based CH 4 gas real-time monitoring system which can be deployed in mining complexes has been developed. A long-distance silica fiber link with double-pass gas sensor head has been employed in conjunction with a wavelength-tunable InGaAsP DFB laser diode at 1.64 mum (at R(6)line of the 2nu3 absorption band of methane) to realize highly sensitive remote interrogation of CH 4. By wavelength modulation with the DFB laser diode together with a self-designed processing circuit and data processing software, sensitivities of less than 0.1% (volume) and response time of less than 6 sec. have been achieved. Extensive tests have been carried out, and comparisons made with existing conventional CH4 gas detection systems, it is shown, that the performance of the optical fiber sensor system is generally better and is completely qualified for application in the coal mine safety monitoring.

  17. Applying Sensor Networks to Evaluate Air Pollutant Emissions from Fugitive and Area Sources

    EPA Science Inventory

    This is a presentation to be given at Duke University's Wireless Intelligent Sensor Network workshop on June 5, 2013. The presentation discusses the evaluation of a low cost carbon monoxide sensor network applied at a recent forest fire study and also evaluated against a referen...

  18. Applying Sensor Networks to Evaluate Air Pollutant Emissions from Fugitive and Area Sources

    EPA Science Inventory

    This is a presentation to be given at Duke University's Wireless Intelligent Sensor Network workshop on June 5, 2013. The presentation discusses the evaluation of a low cost carbon monoxide sensor network applied at a recent forest fire study and also evaluated against a referen...

  19. A multi-sensor remote sensing approach for measuring primary production from space

    NASA Technical Reports Server (NTRS)

    Gautier, Catherine

    1989-01-01

    It is proposed to develop a multi-sensor remote sensing method for computing marine primary productivity from space, based on the capability to measure the primary ocean variables which regulate photosynthesis. The three variables and the sensors which measure them are: (1) downwelling photosynthetically available irradiance, measured by the VISSR sensor on the GOES satellite, (2) sea-surface temperature from AVHRR on NOAA series satellites, and (3) chlorophyll-like pigment concentration from the Nimbus-7/CZCS sensor. These and other measured variables would be combined within empirical or analytical models to compute primary productivity. With this proposed capability of mapping primary productivity on a regional scale, we could begin realizing a more precise and accurate global assessment of its magnitude and variability. Applications would include supplementation and expansion on the horizontal scale of ship-acquired biological data, which is more accurate and which supplies the vertical components of the field, monitoring oceanic response to increased atmospheric carbon dioxide levels, correlation with observed sedimentation patterns and processes, and fisheries management.

  20. Evaluation of SMART sensor displays for multidimensional precision control of Space Shuttle remote manipulator

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Brown, J. W.; Lewis, J. L.

    1982-01-01

    An enhanced proximity sensor and display system was developed at the Jet Propulsion Laboratory (JPL) and tested on the full scale Space Shuttle Remote Manipulator at the Johnson Space Center (JSC) Manipulator Development Facility (MDF). The sensor system, integrated with a four-claw end effector, measures range error up to 6 inches, and pitch and yaw alignment errors within + or 15 deg., and displays error data on both graphic and numeric displays. The errors are referenced to the end effector control axes through appropriate data processing by a dedicated microcomputer acting on the sensor data in real time. Both display boxes contain a green lamp which indicates whether the combination of range, pitch and yaw errors will assure a successful grapple. More than 200 test runs were completed in early 1980 by three operators at JSC for grasping static and capturing slowly moving targets. The tests have indicated that the use of graphic/numeric displays of proximity sensor information improves precision control of grasp/capture range by more than a factor of two for both static and dynamic grapple conditions.

  1. A high-performance miniaturized time division multiplexed sensor system for remote structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lloyd, Glynn D.; Everall, Lorna A.; Sugden, Kate; Bennion, Ian

    2004-09-01

    We report for the first time the design, implementation and commercial application of a hand-held optical time division multiplexed, distributed fibre Bragg grating sensor system. A unique combination of state-of-the art electronic and optical components enables system miniaturization whilst maintaining exceptional performance. Supporting more than 100 low-cost sensors per channel, the battery-powered system operates remotely via a wireless GSM link, making it ideal for real-time structural health monitoring in harsh environments. Driven by highly configurable timing electronics, an off-the-shelf telecommunications semiconductor optical amplifier performs combined amplification and gating. This novel optical configuration boasts a spatial resolution of less than 20cm and an optical signal to noise ratio of better than 30dB, yet utilizes sensors with reflectivity of only a few percent and does not require RF speed signal processing devices. This paper highlights the performance and cost advantages of a system that utilizes TDM-style mass manufactured commodity FBGs. Created in continual lengths, these sensors reduce stock inventory, eradicate application-specific array design and simplify system installation and expansion. System analysis from commercial installations in oil exploration, wind energy and vibration measurement will be presented, with results showing kilohertz interrogation speed and microstrain resolution.

  2. Yield variability prediction by remote sensing sensors with different spatial resolution

    NASA Astrophysics Data System (ADS)

    Kumhálová, Jitka; Matějková, Štěpánka

    2017-04-01

    Currently, remote sensing sensors are very popular for crop monitoring and yield prediction. This paper describes how satellite images with moderate (Landsat satellite data) and very high (QuickBird and WorldView-2 satellite data) spatial resolution, together with GreenSeeker hand held crop sensor, can be used to estimate yield and crop growth variability. Winter barley (2007 and 2015) and winter wheat (2009 and 2011) were chosen because of cloud-free data availability in the same time period for experimental field from Landsat satellite images and QuickBird or WorldView-2 images. Very high spatial resolution images were resampled to worse spatial resolution. Normalised difference vegetation index was derived from each satellite image data sets and it was also measured with GreenSeeker handheld crop sensor for the year 2015 only. Results showed that each satellite image data set can be used for yield and plant variability estimation. Nevertheless, better results, in comparison with crop yield, were obtained for images acquired in later phenological phases, e.g. in 2007 - BBCH 59 - average correlation coefficient 0.856, and in 2011 - BBCH 59-0.784. GreenSeeker handheld crop sensor was not suitable for yield estimation due to different measuring method.

  3. Evaluation of SMART sensor displays for multidimensional precision control of Space Shuttle remote manipulator

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Brown, J. W.; Lewis, J. L.

    1982-01-01

    An enhanced proximity sensor and display system was developed at the Jet Propulsion Laboratory (JPL) and tested on the full scale Space Shuttle Remote Manipulator at the Johnson Space Center (JSC) Manipulator Development Facility (MDF). The sensor system, integrated with a four-claw end effector, measures range error up to 6 inches, and pitch and yaw alignment errors within + or 15 deg., and displays error data on both graphic and numeric displays. The errors are referenced to the end effector control axes through appropriate data processing by a dedicated microcomputer acting on the sensor data in real time. Both display boxes contain a green lamp which indicates whether the combination of range, pitch and yaw errors will assure a successful grapple. More than 200 test runs were completed in early 1980 by three operators at JSC for grasping static and capturing slowly moving targets. The tests have indicated that the use of graphic/numeric displays of proximity sensor information improves precision control of grasp/capture range by more than a factor of two for both static and dynamic grapple conditions.

  4. Remote detection of nitroaromatic explosives in soil using distributed sensor particles

    NASA Astrophysics Data System (ADS)

    Simonson, Robert J.; Hance, Bradley G.; Schmitt, Randal L.; Johnson, Mark S.; Hargis, Philip J., Jr.

    2001-10-01

    Environmental fate and transport studies of explosives in soil indicate that 2,4,6-trinitrotoluene (TNT) and similar products such as dinitrotoluene (DNT) are major contributors to the trace chemical signature emanating from buried landmines. Chemical analysis methods are under development that have great potential to detect mines, or to rapidly classify electromagnetically detected anomalies as mines vs. 'mine-like objects'. However, these chemical methods are currently confined to point sensors. In contrast, we have developed a method that can remotely determine the presence of nitroaromatic explosives in surface soil. This method utilizes a novel distributed granular sensor approach in combination with uv-visible fluorescence LIDAR (Light Detection and Ranging) technology. We have produced prototype sensor particles that combine sample preconcentration, explosives sensing, signal amplification, and optical signal output functions. These particles can be sprayed onto soil areas that are suspected of explosives contamination. By design, the fluorescence emission spectrum of the distributed particles is strongly affected by absorption of nitroaromatic explosives from the surrounding environment. Using ~1mg/cm2 coverage of the sensor particles on natural soil, we have observed significant spectral changes due to TNT concentrations in the ppm range (mg TNT/kg soil) on 2-inch diameter targets at a standoff distance of 0.5 km.

  5. Sensor Management for Applied Research Technologies (SMART)-On Demand Modeling (ODM) Project

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Blakeslee, R.; Hood, R.; Jedlovec, G.; Botts, M.; Li, X.

    2006-01-01

    NASA requires timely on-demand data and analysis capabilities to enable practical benefits of Earth science observations. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep learning curve associated with each sensor and data type. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. A three year project, entitled Sensor Management for Applied Research Technologies (SMART) - On Demand Modeling (ODM), will develop and demonstrate the readiness of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. The advancement of SWE-enabled systems (i.e., use of SensorML, sensor planning services - SPS, sensor observation services - SOS, sensor alert services - SAS and common observation model protocols) will have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.

  6. Sensor Management for Applied Research Technologies (SMART) On Demand Modeling (ODM) Project

    NASA Astrophysics Data System (ADS)

    Goodman, M.; Blakeslee, R.; Hood, R.; Jedlovec, G.; Botts, M.; Li, X.

    2006-12-01

    NASA requires timely on-demand data and analysis capabilities to enable practical benefits of Earth science observations. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep "learning curve" associated with each sensor and data type. The development of sensor web capabilities to autonomously process these data streams (whether real- time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. A three year project, entitled Sensor Management for Applied Research Technologies (SMART) On Demand Modeling (ODM), will develop and demonstrate the readiness of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. The advancement of SWE-enabled systems (i.e., use of SensorML, sensor planning services - SPS, sensor observation services - SOS, sensor alert services - SAS and common observation model protocols) will have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.

  7. Sensor Management for Applied Research Technologies (SMART)-On Demand Modeling (ODM) Project

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Blakeslee, R.; Hood, R.; Jedlovec, G.; Botts, M.; Li, X.

    2006-01-01

    NASA requires timely on-demand data and analysis capabilities to enable practical benefits of Earth science observations. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep learning curve associated with each sensor and data type. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. A three year project, entitled Sensor Management for Applied Research Technologies (SMART) - On Demand Modeling (ODM), will develop and demonstrate the readiness of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. The advancement of SWE-enabled systems (i.e., use of SensorML, sensor planning services - SPS, sensor observation services - SOS, sensor alert services - SAS and common observation model protocols) will have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.

  8. A Large-Scale Remote Wireless Data Acquisition Network for Environmental Sensors

    NASA Astrophysics Data System (ADS)

    Brown, R. F.; Natvig, D. O.

    2013-12-01

    Over the past nine years we have constructed a large-scale wireless telemetry network that connects remote environmental research experiments and wildlife monitoring webcams to the Internet. This network, which connects back to the University of New Mexico Sevilleta Field Station, is distributed across several thousand square kilometers in central New Mexico, providing real-time automated data acquisition from nearly fifty dataloggers and thousands of sensors located at meteorological stations, global change experiments, and eddy covariance flux towers. This is one of the largest remote environmental wireless data acquisition networks in the world. While the majority of sites connected to this network are within the boundaries of the Sevilleta National Wildlife Refuge, the network includes several sites outside the Refuge, with the most distant link being nearly one hundred kilometers from the Sevilleta Field Station. An ancillary network in the Valles Caldera National Preserve in northern New Mexico exists to provide remote connectivity to additional environmental research experiments. Hundreds of person hours and thousands of vehicle miles are saved each year by eliminating regular visits to download data at these remote sites. Additionally, this network allows for prompt detection of equipment and power failures, reducing data loss. The use of Wi-Fi devices has permitted tremendous flexibility in the overall network design while keeping costs low. Moreover, such devices have allowed wireless links averaging more than ten kilometers and in several instances, exceeding thirty kilometers. Here, we describe the basic elements of this remote wireless data acquisition network, including network design, equipment choices, power options, and datalogger interfaces.

  9. Path-averaged atmospheric CO2 measurement using a 1.57 μm active remote sensor compared with multi-positioned in situ sensors

    NASA Astrophysics Data System (ADS)

    Sakaizawa, Daisuke; Kawakami, Shuji; Nakajima, Masakatsu; Sawa, Yosuke; Matsueda, Hidekazu; Asai, Kazuhiro; Kameyama, Syumpei; Imaki, Masaharu; Hirano, Yoshihito; Ueno, Shinichi

    2009-08-01

    The Green-house gas Observation SATellite (GOSAT) was launched to determine the continental CO2 inventories. Its sensor is based on a passive remote sensing technique developed to achieve less than 1% relative accuracy for atmospheric CO2 measurements. Meanwhile, a laser remote sensor with the differential absorption spectrometry has been developed for a candidate of a future space-based mission to observe the atmospheric CO2 or other trace gases. A prototype of the newly developed active remote sensor has been performed to demonstrate a properly validated performance for ground-based and airborne systems. This study shows the results of the in-house and field measurements. The in-house measurement demonstrated the linearity with the correlation coefficient of over 0.99 between the instrumental response and the known CO2 density in the cell. The diurnal variation obtained from our system is consistent (correlation coefficient of 0.95) with that of multi-positioned in situ sensors, indicates the spatial responsibility of the atmospheric CO2 obtained from our remote sensor with two ~3-km observation paths.

  10. Computer-aided modeling applied to microengineered pressure sensors

    NASA Astrophysics Data System (ADS)

    Georgaras, C.; Samaan, Noel D.

    1998-04-01

    The development of miniaturized diaphragm structures is highly significant to the successful realization of many microengineered devices. Most industrial designs of physical sensors are now based upon detailed finite element modeling of the mechanical microstructures using software currently available for conventional mechanics. This paper investigates the effects of miniaturization on corrugated diaphragm structures through the use of advanced computer modeling and simulation techniques. By developing detailed models of the diaphragm structures using commercial finite element analysis software it is possible to investigate the effects on diaphragm performance when diaphragms are scaled from a macro level (eg. 10 mm diameter) down to a micro level (< 1 mm diameter). Case studies are presented and comparisons are made with research work published by other workers. With subsequent sensitivity analysis it is possible to explore the critical design parameters of the microengineered diaphragms, and parameterize the diaphragm such that its performance will be compensated to some degree from limitations imposed by processing parameters.

  11. Real-Time Field Data Acquisition and Remote Sensor Reconfiguration Using Scientific Workflows

    NASA Astrophysics Data System (ADS)

    Silva, F.; Mehta, G.; Vahi, K.; Deelman, E.

    2010-12-01

    download sensor data, perform basic QA/QC, and identify events of interest as well as sensor and data logger failures almost in real-time. As a result of this automation, scientists can quickly be notified (e.g. via e-mail or SMS) so that important events are not missed. In addition, Pegasus WMS has the ability to abstract the execution environment of where programs run. By placing a Pegasus WMS agent inside an embedded processor in the field, we allow scientists to ship simple computational models to the field, enabling remote data processing at the field site. As an example, scientists can send an image processing algorithm to the field so that the embedded processor can analyze images, thus reducing the bandwidth necessary for communication. In addition, when real-time communication to the laboratory is not possible, scientists can create simple computational models that can be run on sensor nodes autonomously, monitoring sensor data and making adjustments without any human intervention. We believe our system lowers the bar for the adoption of reconfigurable sensor networks by field scientists. In this poster, we will show how this technology can be used to provide not only data acquisition, but also real-time data validation and sensor reconfiguration.

  12. A Real-Time Health Monitoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors

    PubMed Central

    Kakria, Priyanka; Tripathi, N. K.; Kitipawang, Peerapong

    2015-01-01

    Online telemedicine systems are useful due to the possibility of timely and efficient healthcare services. These systems are based on advanced wireless and wearable sensor technologies. The rapid growth in technology has remarkably enhanced the scope of remote health monitoring systems. In this paper, a real-time heart monitoring system is developed considering the cost, ease of application, accuracy, and data security. The system is conceptualized to provide an interface between the doctor and the patients for two-way communication. The main purpose of this study is to facilitate the remote cardiac patients in getting latest healthcare services which might not be possible otherwise due to low doctor-to-patient ratio. The developed monitoring system is then evaluated for 40 individuals (aged between 18 and 66 years) using wearable sensors while holding an Android device (i.e., smartphone under supervision of the experts). The performance analysis shows that the proposed system is reliable and helpful due to high speed. The analyses showed that the proposed system is convenient and reliable and ensures data security at low cost. In addition, the developed system is equipped to generate warning messages to the doctor and patient under critical circumstances. PMID:26788055

  13. Scaling of infrared remote sensor hydrocarbon measurements for motor vehicle emission inventory calculations

    SciTech Connect

    Singer, B.C.; Harley, R.A.; Littlejohn, D.; Ho, J.; Vo, T.

    1998-11-01

    Infrared (IR) remote sensors calibrated with propane understate volatile organic compound (VOC) concentrations in vehicle exhaust by 30--70% when compared to flame ionization detectors (FID). The difference depends on VOC composition and arises because many organic compounds in vehicle exhaust absorb less IR radiation than propane on a per-carbon basis. This study demonstrates an approach for scaling infrared measurements to reflect more accurately total exhaust VOC emissions from on-road motor vehicle fleets. Infrared versus flame ionization detector response to individual VOC was measured in the laboratory for methyl tert-butyl ether and a range of alkanes, alkenes, and aromatics that are prominent in vehicle exhaust. Overall IR/FID response to real exhaust mixtures was calculated by summing the response contributions of all individual VOC constitutents. Average IR/FID response factors were calculated for typical on-road vehicle fleets based on VOC speciation profiles measured in several US roadway tunnels. Results indicate that hydrocarbon concentrations measured by remote sensors with 3.5 {micro}m filters should be multiplied by a factor of 2.0 {+-} 0.1 for light-duty vehicles using either California or federal reformulated gasoline blends and by 2.2 {+-} 0.1 when conventional gasoline is used.

  14. A Real-Time Health Monitoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors.

    PubMed

    Kakria, Priyanka; Tripathi, N K; Kitipawang, Peerapong

    2015-01-01

    Online telemedicine systems are useful due to the possibility of timely and efficient healthcare services. These systems are based on advanced wireless and wearable sensor technologies. The rapid growth in technology has remarkably enhanced the scope of remote health monitoring systems. In this paper, a real-time heart monitoring system is developed considering the cost, ease of application, accuracy, and data security. The system is conceptualized to provide an interface between the doctor and the patients for two-way communication. The main purpose of this study is to facilitate the remote cardiac patients in getting latest healthcare services which might not be possible otherwise due to low doctor-to-patient ratio. The developed monitoring system is then evaluated for 40 individuals (aged between 18 and 66 years) using wearable sensors while holding an Android device (i.e., smartphone under supervision of the experts). The performance analysis shows that the proposed system is reliable and helpful due to high speed. The analyses showed that the proposed system is convenient and reliable and ensures data security at low cost. In addition, the developed system is equipped to generate warning messages to the doctor and patient under critical circumstances.

  15. [Biooptical properties of marine phytoplankton as they apply to satellite remote sensing

    NASA Technical Reports Server (NTRS)

    Yentsch, Charles S.

    1992-01-01

    This final report covers research performed over a period of 10 years from 1982 to 1992. During this time, Grant #NAGW410 was funded under three titles through a series of Supplements. The original proposal was entitled 'Photoecology, optical properties and remote sensing of warm core rings'; the second and major portion was entitled 'Continuation of studies of biooptical properties of phytoplankton and the study of mesoscale and submesoscale features using fluorescence and colorimetry'; with the final portion named 'Studies of biooptical properties of phytoplankton, with reference to identification of spectral types associated with meso- and submesoscale features in the ocean'. The focus of these projects was to try to expand our knowledge of the biooptical properties of marine phytoplankton as they apply to satellite remote sensing. We used a variety of techniques, new and old, to better measure these optical properties at appropriate scales, in some cases at the level of individual cells. We also exploited the specialized oceanic conditions that occur within certain regions and features of the ocean around the world in order to explain the tremendous variability one sees in a single remote sensing image. This document strives to provide as complete a summary as possible for this large body of work, including the pertinent publications supported by this funding.

  16. Comparison of Surface and Column Variations of CO2 Over Urban Areas for Future Active Remote CO2 Sensors

    NASA Technical Reports Server (NTRS)

    Choi, Yonghoon; Yang, Melissa; Kooi, Susan; Browell, Edward

    2015-01-01

    High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaign, to investigate the ability of space-based observations to accurately assess near surface conditions related to air quality. This campaign includes, Washington DC/Baltimore, MD (July 2011), San Joaquin Valley, CA (January - February 2013), Houston, TX (September 2013), and Denver, CO (July-August 2014). Each of these campaigns consisted of missed approaches and approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 km). In this study, surface (0 - 1 km) and column-averaged (0 - 3.5 km) CO2 mixing ratio values from the vertical soundings in the four geographically different urban areas are used to investigate the temporal and spatial variability of CO2 within the different urban atmospheric emission environments. Tracers such as CO, CH2O, NOx, and NMHCs are used to identify the source of CO2 variations in the urban sites. Additionally, we apply nominal CO2 column weighting functions for potential future active remote CO2 sensors operating in the 1.57-microns and 2.05-microns measurement regions to convert the in situ CO2 vertical mixing ratio profiles to variations in CO2 column optical depths, which is what the active remote sensors actually measure. Using statistics calculated from the optical depths at each urban site measured during the DISCOVER-AQ field campaign and for each nominal weighting function, we investigate the natural variability of CO2 columns in the lower troposphere; relate the CO2 column variability to the urban surface emissions; and show the measurement requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) in the continental U.S. urban areas.

  17. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach.

    PubMed

    Liebisch, Frank; Kirchgessner, Norbert; Schneider, David; Walter, Achim; Hund, Andreas

    2015-01-01

    Field-based high throughput phenotyping is a bottleneck for crop breeding research. We present a novel method for repeated remote phenotyping of maize genotypes using the Zeppelin NT aircraft as an experimental sensor platform. The system has the advantage of a low altitude and cruising speed compared to many drones or airplanes, thus enhancing image resolution while reducing blurring effects. Additionally there was no restriction in sensor weight. Using the platform, red, green and blue colour space (RGB), normalized difference vegetation index (NDVI) and thermal images were acquired throughout the growing season and compared with traits measured on the ground. Ground control points were used to co-register the images and to overlay them with a plot map. NDVI images were better suited than RGB images to segment plants from soil background leading to two separate traits: the canopy cover (CC) and its NDVI value (NDVIPlant). Remotely sensed CC correlated well with plant density, early vigour, leaf size, and radiation interception. NDVIPlant was less well related to ground truth data. However, it related well to the vigour rating, leaf area index (LAI) and leaf biomass around flowering and to very late senescence rating. Unexpectedly, NDVIPlant correlated negatively with chlorophyll meter measurements. This could be explained, at least partially, by methodical differences between the used devices and effects imposed by the population structure. Thermal images revealed information about the combination of radiation interception, early vigour, biomass, plant height and LAI. Based on repeatability values, we consider two row plots as best choice to balance between precision and available field space. However, for thermography, more than two rows improve the precision. We made important steps towards automated processing of remotely sensed data, and demonstrated the value of several procedural steps, facilitating the application in plant genetics and breeding. Important

  18. Applying remote sensing to invasive species science—A tamarisk example

    USGS Publications Warehouse

    Morisette, Jeffrey T.

    2011-01-01

    The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. This fact sheet considers the invasive plant species tamarisk (Tamarix spp), addressing three fundamental questions: *Where is it now? *What are the potential or realized ecological impacts of invasion? *Where can it survive and thrive if introduced? It provides peer-review examples of how the U.S. Geological Survey, working with other federal agencies and university partners, are applying remote-sensing technologies to address these key questions.

  19. Applying high resolution remote sensing image and DEM to falling boulder hazard assessment

    NASA Astrophysics Data System (ADS)

    Huang, Changqing; Shi, Wenzhong; Ng, K. C.

    2005-10-01

    Boulder fall hazard assessing generally requires gaining the boulder information. The extensive mapping and surveying fieldwork is a time-consuming, laborious and dangerous conventional method. So this paper proposes an applying image processing technology to extract boulder and assess boulder fall hazard from high resolution remote sensing image. The method can replace the conventional method and extract the boulder information in high accuracy, include boulder size, shape, height and the slope and aspect of its position. With above boulder information, it can be satisfied for assessing, prevention and cure boulder fall hazard.

  20. The detection and mapping of oil on a marshy area by a remote luminescent sensor

    USGS Publications Warehouse

    McFarlane, C.; Watson, R.D.

    2005-01-01

    Airborne remote sensing can be a cost-effective method for monitoring pollutants in large areas such as occur in oil spills. An opportunity to test a particular method arose when a well ruptured and for 23 days spewed a 90-meter fountain of oil into the air, dispersing the oil over a wide area. The method tested was an airborne luminescence detector with a Fraunhofer Line Discriminator (FLD) which was flown over the affected area 41 days after the well was capped to obtain a map or the deposition pattern. To calibrate the system, samples of Spartina (wire grass) and Phragmites (common reed) were collected from the contaminated area and the oil residues were eluted in cyclohexane and quantitatively analyzed in a fluorescence photometer. Good correlation was observed between the remote sensor (FLD) and the laboratory analysis. Isopleths defining the deposition pattern of oil were drawn from the remote sensing information. A discussion will be presented on the feasibility of using this instrument for similar contamination incidents for cleanup and damage assessment.

  1. Multi-Sensor Remote Sensing of Forest Dynamics in Central Siberia

    NASA Technical Reports Server (NTRS)

    Ransom, K. J.; Sun, G.; Kharuk, V. I.; Howl, J.

    2011-01-01

    The forested regions of Siberia, Russia are vast and contain about a quarter of the world's forests that have not experienced harvesting. However, many Siberian forests are facing twin pressures of rapidly changing climate and increasing timber harvest activity. Monitoring the dynamics and mapping the structural parameters of the forest is important for understanding the causes and consequences of changes observed in these areas. Because of the inaccessibility and large extent of this forest, remote sensing data can play an important role for observing forest state and change. In Central Siberia, multi-sensor remote sensing data have been used to monitor forest disturbances and to map above-ground biomass from the Sayan Mountains in the south to the taiga-tundra boundaries in the north. Radar images from the Shuttle Imaging Radar-C (SIR-C)/XSAR mission were used for forest biomass estimation in the Sayan Mountains. Radar images from the Japanese Earth Resources Satellite-1 (JERS-1), European Remote Sensing Satellite-1 (ERS-1) and Canada's RADARSAT-1, and data from ETM+ on-board Landsat-7 were used to characterize forest disturbances from logging, fire, and insect damage in Boguchany and Priangare areas.

  2. Continuous Water Vapor Profiles from Operational Ground-Based Active and Passive Remote Sensors

    NASA Technical Reports Server (NTRS)

    Turner, D. D.; Feltz, W. F.; Ferrare, R. A.

    2000-01-01

    The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote sensors as well as traditional in situ radiosonde measurements. Remote sensing technologies include an automated Raman lidar and an automated Atmospheric Emitted Radiance Interferometer (AERI), which are able to retrieve water vapor profiles operationally through the lower troposphere throughout the diurnal cycle. Comparisons of these two water vapor remote sensing methods to each other and to radiosondes over an 8-month period are presented and discussed, highlighting the accuracy and limitations of each method. Additionally, the AERI is able to retrieve profiles of temperature while the Raman lidar is able to retrieve aerosol extinction profiles operationally. These data, coupled with hourly wind profiles from a 915-MHz wind profiler, provide complete specification of the state of the atmosphere in noncloudy skies. Several case studies illustrate the utility of these high temporal resolution measurements in the characterization of mesoscale features within a 3-day time period in which passage of a dryline, warm air advection, and cold front occurred.

  3. Applying Mean-Shift - Clustering for 3D object detection in remote sensing data

    NASA Astrophysics Data System (ADS)

    Simon, Jürgen-Lorenz; Diederich, Malte; Troemel, Silke

    2013-04-01

    The timely warning and forecasting of high-impact weather events is crucial for life, safety and economy. Therefore, the development and improvement of methods for detection and nowcasting / short-term forecasting of these events is an ongoing research question. A new 3D object detection and tracking algorithm is presented. Within the project "object-based analysis and seamless predictin (OASE)" we address a better understanding and forecasting of convective events based on the synergetic use of remotely sensed data and new methods for detection, nowcasting, validation and assimilation. In order to gain advanced insight into the lifecycle of convective cells, we perform an object-detection on a new high-resolution 3D radar- and satellite based composite and plan to track the detected objects over time, providing us with a model of the lifecycle. The insights in the lifecycle will be used in order to improve prediction of convective events in the nowcasting time scale, as well as a new type of data to be assimilated into numerical weather models, thus seamlessly bridging the gap between nowcasting and NWP.. The object identification (or clustering) is performed using a technique borrowed from computer vision, called mean-shift clustering. Mean-Shift clustering works without many of the parameterizations or rigid threshold schemes employed by many existing schemes (e. g. KONRAD, TITAN, Trace-3D), which limit the tracking to fully matured, convective cells of significant size and/or strength. Mean-Shift performs without such limiting definitions, providing a wider scope for studying larger classes of phenomena and providing a vehicle for research into the object definition itself. Since the mean-shift clustering technique could be applied on many types of remote-sensing and model data for object detection, it is of general interest to the remote sensing and modeling community. The focus of the presentation is the introduction of this technique and the results of its

  4. A MGy radiation-hardened sensor instrumentation link for nuclear reactor monitoring and remote handling

    SciTech Connect

    Verbeeck, Jens; Cao, Ying; Van Uffelen, Marco; Mont Casellas, Laura; Damiani, Carlo; Morales, Emilio Ruiz; Santana, Roberto Ranz; De Cock, Wouter; Vermeeren, Ludo; Steyaert, Michiel; Leroux, Paul

    2015-07-01

    Decommissioning, dismantling and remote handling applications in nuclear facilities all require robotic solutions that are able to survive in radiation environments. Recently raised safety, radiation hardness and cost efficiency demands from both the nuclear regulatory and the society impose severe challenges in traditional methods. For example, in case of the dismantling of the Fukushima sites, solutions that survive accumulated doses higher than 1 MGy are mandatory. To allow remote operation of these tools in nuclear environments, electronics were used to be shielded with several centimeters of lead or even completely banned in these solutions. However, shielding electronics always leads to bulky and heavy solutions, which reduces the flexibility of robotic tools. It also requires longer repair time and produces extra waste further in a dismantling or decommissioning cycle. In addition, often in current reactor designs, due to size restrictions and the need to inspect very tight areas there are limitations to the use of shielding. A MGy radiation-hardened sensor instrumentation link developed by MAGyICS provides a solution to build a flexible, easy removable and small I and C module with MGy radiation tolerance without any shielding. Hereby it removes all these pains to implement electronics in robotic tools. The demonstrated solution in this poster is developed for ITER Remote Handling equipments operating in high radiation environments (>1 MGy) in and around the Tokamak. In order to obtain adequately accurate instrumentation and control information, as well as to ease the umbilical management, there is a need of front-end electronics that will have to be located close to those actuators and sensors on the remote handling tool. In particular, for diverter remote handling, it is estimated that these components will face gamma radiation up to 300 Gy/h (in-vessel) and a total dose of 1 MGy. The radiation-hardened sensor instrumentation link presented here, consists

  5. Monitoring soil moisture patterns in alpine meadows using ground sensor networks and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Brenner, Johannes; Notarnicola, Claudia; Greifeneder, Felix; Nicolini, Irene; Della Chiesa, Stefano; Niedrist, Georg; Tappeiner, Ulrike

    2015-04-01

    Soil moisture content (SMC) is a key factor for numerous processes, including runoff generation, groundwater recharge, evapotranspiration, soil respiration, and biological productivity. Understanding the controls on the spatial and temporal variability of SMC in mountain catchments is an essential step towards improving quantitative predictions of catchment hydrological processes and related ecosystem services. The interacting influences of precipitation, soil properties, vegetation, and topography on SMC and the influence of SMC patterns on runoff generation processes have been extensively investigated (Vereecken et al., 2014). However, in mountain areas, obtaining reliable SMC estimations is still challenging, because of the high variability in topography, soil and vegetation properties. In the last few years, there has been an increasing interest in the estimation of surface SMC at local scales. On the one hand, low cost wireless sensor networks provide high-resolution SMC time series. On the other hand, active remote sensing microwave techniques, such as Synthetic Aperture Radars (SARs), show promising results (Bertoldi et al. 2014). As these data provide continuous coverage of large spatial extents with high spatial resolution (10-20 m), they are particularly in demand for mountain areas. However, there are still limitations related to the fact that the SAR signal can penetrate only a few centimeters in the soil. Moreover, the signal is strongly influenced by vegetation, surface roughness and topography. In this contribution, we analyse the spatial and temporal dynamics of surface and root-zone SMC (2.5 - 5 - 25 cm depth) of alpine meadows and pastures in the Long Term Ecological Research (LTER) Area Mazia Valley (South Tyrol - Italy) with different techniques: (I) a network of 18 stations; (II) field campaigns with mobile ground sensors; (III) 20-m resolution RADARSAT2 SAR images; (IV) numerical simulations using the GEOtop hydrological model (Rigon et al

  6. Applying remote sensing and GIS for chimpanzee habitat change detection, behaviour and conservation

    NASA Astrophysics Data System (ADS)

    Pintea, Lilian

    Chimpanzees (Pan troglodytes), our closest living relatives, are declining alarmingly in abundance and distribution all across Africa. Clearing of forests and woodlands has one of the most rapid and devastating impacts, leaving chimpanzees in isolated, small populations that face edge effects and elevated risk of extinction. Satellite imagery could be a powerful tool to map chimpanzee habitats and threats at the landscape scale even in the most remote, difficult to access areas. However, few applications exist to demonstrate how remote sensing methods can be used in Africa for chimpanzee research and conservation in practice. In chapter one, I investigate the use of Landsat MSS and ETM+ satellite imagery to monitor dry tropical forests and miombo woodlands change between 1972-1999 inside and outside Gombe National Park, Tanzania. I show that canopy cover increased in the northern and middle parts of the park but with severe canopy loss outside protected area. Deforestation has had unequal effects on the three chimpanzee communities inside the park. The Kasekela chimpanzees have been least affected by canopy loss outside the park. In contrast, the Mitumba and Kalande communities have likely lost key range areas. In chapter two, I use 25 years of data on Gombe chimpanzees to investigate to what extent vegetation variables detected from multi-temporal satellite images can be applied to understand changes in chimpanzee feeding and party size. NDVI positively correlated with the time chimpanzees spent feeding but had no affect on the average number of adult males in the party. Instead the number of males in the party increased with proximity to hostile neighboring communities. In chapter three, I use Landsat and SPOT satellite imagery as the basis for Threat Reduction Assessment to evaluate conservation outcomes of a ten year community based conservation project in Tanzania. The findings suggest that the remote sensing methods applied in this study could provide new

  7. Pose Versus State: are Sensor Position and Attitude Sufficient for Modern Photogrammetry and Remote Sensing?

    NASA Astrophysics Data System (ADS)

    Colomina, I.; Blázquez, M.

    2014-03-01

    We investigate the advantages of using what we call sensor state parameters or sensor state to describe the geometrical relationship between a sensor and the 3D space or the 4D time-space that extend the traditional image pose or orientation (position and attitude) to the image state. In our concept, at some point in time t, the sensor state is a 12-dimensional vector composed of four 3-dimensional subvectors p(t), v(t), γ(t) and ω(t). Roughly speaking, p(t) is the sensor's position, v(t) its linear velocity, γ(t) its attitude and ω(t) its angular velocity. It is clear that the state concept extends the pose or orientation ones and attempts to describe both a sensor's statics (p(t), γ(t)) and dynamics (v(t), ω(t)). It is also clear that if p(t), γ(t) are known for all t within some time interval of interest, then v(t) and ω(t) can be derived from the former. We present three methods to compute the state parameters, two for the continuous case and one for the discrete case. The first two methods rely on the availability of inertial measurements and their derived time-Position-Velocity-Attitude (tPVA) trajectories. The first method extends the INS mechanization equations and the second method derives the IMU angular velocities from INS mechanization equations' output data. The third method derives lineal and angular velocities from relative orientation parameters. We illustrate how sensor states can be applied to solve practical problems. For this purpose we have selected three cases: multi-sensor synchronization calibration, correction of image motion blur (translational and rotational) and accurate orientation of images acquired with focal-plane shutters.

  8. Mapping Palm Swamp Wetland Ecosystems in the Peruvian Amazon: a Multi-Sensor Remote Sensing Approach

    NASA Astrophysics Data System (ADS)

    Podest, E.; McDonald, K. C.; Schroeder, R.; Pinto, N.; Zimmerman, R.; Horna, V.

    2012-12-01

    Wetland ecosystems are prevalent in the Amazon basin, especially in northern Peru. Of specific interest are palm swamp wetlands because they are characterized by constant surface inundation and moderate seasonal water level variation. This combination of constantly saturated soils and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, it is critical to develop methods to quantify their spatial extent and inundation state in order to assess their carbon dynamics. Spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We developed a remote sensing methodology using multi-sensor remote sensing data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR), Shuttle Radar Topography Mission (SRTM) DEM, and Landsat to derive maps at 100 meter resolution of palm swamp extent and inundation based on ground data collections; and combined active and passive microwave data from AMSR-E and QuikSCAT to derive inundation extent at 25 kilometer resolution on a weekly basis. We then compared information content and accuracy of the coarse resolution products relative to the high-resolution datasets. The synergistic combination of high and low resolution datasets allowed for characterization of palm swamps and assessment of their flooding status. This work has been undertaken partly within the framework of the JAXA ALOS Kyoto & Carbon Initiative. PALSAR data have been provided by JAXA. Portions of this work were carried out at the Jet Propulsion Laboratory

  9. The potential for synthesizing multi-sensor remote sensing data for global volcano monitoring

    NASA Astrophysics Data System (ADS)

    Furtney, M.; Pritchard, M. E.; Carn, S. A.; McCormick, B.; Ebmeier, S. K.; Jay, J.

    2015-12-01

    Volcanoes exhibit variable eruption frequencies and styles, from near-continuous eruptions of effusive lavas to more intermittent, explosive eruptions. The monitoring frequency necessary to capture precursory signals at any volcano remains uncertain, as some warnings allot hours for evacuation. Likewise, no precursory signal appears deterministic for each volcano. Volcanic activity manifests in a variety of ways (i.e. tremor, deformation), thus requiring multiple monitoring mechanisms (i.e. geodetic, geochemical, geothermal). We are developing databases to compare relationships among remotely sensed volcanic unrest signals and eruptions. Satellite remote sensing utilizes frequent temporal measurements (daily to bi-weekly), an essential component of worldwide volcano monitoring. Remote sensing methods are also capable of detecting diverse precursory signals such as ground deformation from satellite interferometric synthetic aperture radar—InSAR— (multiple space agencies), degassing from satellite spectroscopy (i.e. OMI SO2 from NASA), and hot spots from thermal infrared (i.e. MODIS from NASA). We present preliminary results from seven SAR satellites and two thermal infrared satellites for 24 volcanoes with prominent SO2 emissions. We find near-continuous emissions at Ibu (Indonesia) since 2008 corresponded with hotspots and 10 cm of subsidence, with degassing and comparable subsidence observed at Pagan (Marianas). A newcomer to volcano monitoring, remote sensing data are only beginning to be utilized on a global scale, let alone as a synthesized dataset for monitoring developing eruptions. We foresee a searchable tool for rapidly accessing basic volcanic unrest characteristics for different types of volcanoes and whether or not they resulted in eruption. By including data from multiple satellite sensors in our database we hope to develop quantitative assessments for calculating the likelihood of eruption from individual events.

  10. Remote detection of nuclear magnetic resonance with an anisotropic magnetoresistive sensor

    PubMed Central

    Verpillat, F.; Ledbetter, M. P.; Xu, S.; Michalak, D. J.; Hilty, C.; Bouchard, L.-S.; Antonijevic, S.; Budker, D.; Pines, A.

    2008-01-01

    We report the detection of nuclear magnetic resonance (NMR) using an anisotropic magnetoresistive (AMR) sensor. A “remote-detection” arrangement was used in which protons in flowing water were prepolarized in the field of a superconducting NMR magnet, adiabatically inverted, and subsequently detected with an AMR sensor situated downstream from the magnet and the adiabatic inverter. AMR sensing is well suited for NMR detection in microfluidic “lab-on-a-chip” applications because the sensors are small, typically on the order of 10 μm. An estimate of the sensitivity for an optimized system indicates that ≈6 × 1013 protons in a volume of 1,000 μm3, prepolarized in a 10-kG magnetic field, can be detected with a signal-to-noise ratio of 3 in a 1-Hz bandwidth. This level of sensitivity is competitive with that demonstrated by microcoils in superconducting magnets and with the projected sensitivity of microfabricated atomic magnetometers. PMID:18268323

  11. Spatial Copula Model for Imputing Traffic Flow Data from Remote Microwave Sensors.

    PubMed

    Ma, Xiaolei; Luan, Sen; Du, Bowen; Yu, Bin

    2017-09-21

    Issues of missing data have become increasingly serious with the rapid increase in usage of traffic sensors. Analyses of the Beijing ring expressway have showed that up to 50% of microwave sensors pose missing values. The imputation of missing traffic data must be urgently solved although a precise solution that cannot be easily achieved due to the significant number of missing portions. In this study, copula-based models are proposed for the spatial interpolation of traffic flow from remote traffic microwave sensors. Most existing interpolation methods only rely on covariance functions to depict spatial correlation and are unsuitable for coping with anomalies due to Gaussian consumption. Copula theory overcomes this issue and provides a connection between the correlation function and the marginal distribution function of traffic flow. To validate copula-based models, a comparison with three kriging methods is conducted. Results indicate that copula-based models outperform kriging methods, especially on roads with irregular traffic patterns. Copula-based models demonstrate significant potential to impute missing data in large-scale transportation networks.

  12. Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review

    PubMed Central

    Mosleh, Mostafa K.; Hassan, Quazi K.; Chowdhury, Ehsan H.

    2015-01-01

    Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ∼19% of the global dietary energy in recent times and its annual average consumption per capita was ∼65 kg during 2010–2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield

  13. Development of Maintenance Techniques of Railway Structures Applying Sensor and Information Technologies

    NASA Astrophysics Data System (ADS)

    Yamada, Seiji; Nihei, Tatsuya; Kobayashi, Yusuke; Minegishi, Kuniyuki; Nakayama, Takashi; Sato, Norio

    Maintenance of railway structures is important. However, the expense and time for inspection of the structures are large. In addition, judgments of performance of the structures depend on experience and knowledge of inspector. Therefore we have applied sensor and information technologies in order to support inspection and to improve inspection and diagnosis technologies. In this paper, we have shown mechanisms of damage outbreak and performance of sensors for five kinds of structures. Furthermore we have suggested joint-translation-angle detection device, damage detection sensor, FBG (Fiber Bragg Grating) sensor, electric conductible paint and piezoelectric element as self-sensing sensors. In addition, as non-contact transmission system, we have adopted Zig-Bee radio, RF-ID tag and specified low-power radio. By the completion of those systems, inspection systems of structures which have depended on experience and knowledge of inspector will be extensively improved and precision and certainty for inspection and diagnosis technologies are will be ensured.

  14. Remote sensing systems – Platforms and sensors: Aerial, satellites, UAVs, optical, radar, and LiDAR: Chapter 1

    USGS Publications Warehouse

    Panda, Sudhanshu S.; Rao, Mahesh N.; Thenkabail, Prasad S.; Fitzerald, James E.

    2015-01-01

    The American Society of Photogrammetry and Remote Sensing defined remote sensing as the measurement or acquisition of information of some property of an object or phenomenon, by a recording device that is not in physical or intimate contact with the object or phenomenon under study (Colwell et al., 1983). Environmental Systems Research Institute (ESRI) in its geographic information system (GIS) dictionary defines remote sensing as “collecting and interpreting information about the environment and the surface of the earth from a distance, primarily by sensing radiation that is naturally emitted or reflected by the earth’s surface or from the atmosphere, or by sending signals transmitted from a device and reflected back to it (ESRI, 2014).” The usual source of passive remote sensing data is the measurement of reflected or transmitted electromagnetic radiation (EMR) from the sun across the electromagnetic spectrum (EMS); this can also include acoustic or sound energy, gravity, or the magnetic field from or of the objects under consideration. In this context, the simple act of reading this text is considered remote sensing. In this case, the eye acts as a sensor and senses the light reflected from the object to obtain information about the object. It is the same technology used by a handheld camera to take a photograph of a person or a distant scenic view. Active remote sensing, however, involves sending a pulse of energy and then measuring the returned energy through a sensor (e.g., Radio Detection and Ranging [RADAR], Light Detection and Ranging [LiDAR]). Thermal sensors measure emitted energy by different objects. Thus, in general, passive remote sensing involves the measurement of solar energy reflected from the Earth’s surface, while active remote sensing involves synthetic (man-made) energy pulsed at the environment and the return signals are measured and recorded.

  15. Development of a Three Dimensional Wireless Sensor Network for Terrain-Climate Research in Remote Mountainous Environments

    NASA Astrophysics Data System (ADS)

    Kavanagh, K.; Davis, A.; Gessler, P.; Hess, H.; Holden, Z.; Link, T. E.; Newingham, B. A.; Smith, A. M.; Robinson, P.

    2011-12-01

    Developing sensor networks that are robust enough to perform in the world's remote regions is critical since these regions serve as important benchmarks compared to human-dominated areas. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. We aim to overcome these challenges by developing a three-dimensional sensor network arrayed across a topoclimatic gradient (1100-1800 meters) in a wilderness area in central Idaho. Development of this sensor array builds upon advances in sensing, networking, and power supply technologies coupled with experiences of the multidisciplinary investigators in conducting research in remote mountainous locations. The proposed gradient monitoring network will provide near real-time data from a three-dimensional (3-D) array of sensors measuring biophysical parameters used in ecosystem process models. The network will monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, tree stem growth and leaf wetness at time intervals ranging from seconds to days. The long-term goal of this project is to realize a transformative integration of smart sensor networks adaptively communicating data in real-time to ultimately achieve a 3-D visualization of ecosystem processes within remote mountainous regions. Process models will be the interface between the visualization platforms and the sensor network. This will allow us to better predict how non-human dominated terrestrial and aquatic ecosystems function and respond to climate dynamics. Access to the data will be ensured as part of the Northwest Knowledge Network being developed at the University of Idaho, through ongoing Idaho NSF-funded cyber infrastructure initiatives, and existing data management systems funded by NSF, such as

  16. Smart agile lens remote optical sensor for three-dimensional object shape measurements.

    PubMed

    Riza, Nabeel A; Reza, Syed Azer

    2010-03-01

    We demonstrate what is, to the best of our knowledge, the first electronically controlled variable focus lens (ECVFL)-based sensor for remote object shape sensing. Using a target illuminating laser, the axial depths of the shape features on a given object are measured by observing the intensity profile of the optical beam falling on the object surface and tuning the ECVFL focal length to form a minimum beam spot. Using a lens focal length control calibration table, the object feature depths are computed. Transverse measurement of the dimensions of each object feature is done using a surface-flooding technique that completely illuminates a given feature. Alternately, transverse measurements can also be made by the variable spatial sampling scan technique, where, depending upon the feature sizes, the spatial sampling spot beam size is controlled using the ECVFL. A proof-of-concept sensor is demonstrated using an optical beam from a laser source operating at a power of 10 mW and a wavelength of 633 nm. A three-dimensional (3D) test object constructed from LEGO building blocks forms has three mini-skyscraper structures labeled A, B, and C. The (x, y, z) dimensions for A, B, and C are (8 mm, 8 mm, 124.84 mm), (24.2 mm, 24.2 mm, 38.5 mm), and (15.86 mm, 15.86 mm, 86.74 mm), respectively. The smart sensor experimentally measured (x,y,z) dimensions for A, B, C are (7.95 mm, 7.95 mm, 120 mm), (24.1 mm, 24.1 mm, 37 mm), and (15.8 mm, 15.8 mm, 85 mm), respectively. The average shape sensor transverse measurement percentage errors for A, B, and C are +/-0.625%, +/-0.41%, and +/-0.38%, respectively. The average shape sensor axial measurement percentage errors for A, B, and C are +/-4.03%, +/-3.9%, and +/-2.01%, respectively. Applications for the proposed shape sensor include machine parts inspection, 3D object reconstruction, and animation.

  17. Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts

    SciTech Connect

    Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson

    2012-07-01

    A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses on developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ß?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-ß?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-ß?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-ß?-Al2O3 samples. Microfocus X-ray Diffraction (µ-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-ß?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ß?-Al2O3 phase after annealing was verified by µ-XRD. Preliminary sensor tests with different assembly designs will also be presented.

  18. Earth Resources: A continuing bibliography with indexes, issue 2. [remote sensors and data acquisition techniques

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Reports, articles, and other documents announced between April and June 1974 in Scientific and Technical Aerospace Reports (STAR), and International Aerospace Abstracts (IAA) are cited. Documents related to the identification and evaluation by means of sensors in spacecraft and aircraft of vegetation, minerals, and other natural resources, and the techniques and potentialities of surveying and keeping up-to-date inventories of such riches are included along with studies of such natural phenomena as earthquakes, volcanoes, ocean currents, and magnetic fields; and such cultural phenomena as cities, transportation networks, and irrigation systems. The components and use of remote sensing and geophysical instrumentation, their subsystems, observational procedures, signature and analyses and interpretive techniques for gathering data are, described. All reports generated under NASA's Earth Resources Survey Program for the time period covered are included.

  19. Implementation of multichannel sensors for remote biomedical measurements in a microsystems format.

    PubMed

    Johannessen, Erik A; Wang, Lei; Cui, Li; Tang, Tong Boon; Ahmadian, Mansour; Astaras, Alexander; Reid, Stuart W J; Yam, Philippa S; Murray, Alan F; Flynn, Brian W; Beaumont, Steve P; Cumming, David R S; Cooper, Jonathan M

    2004-03-01

    A novel microelectronic "pill" has been developed for in situ studies of the gastro-intestinal tract, combining microsensors and integrated circuits with system-level integration technology. The measurement parameters include real-time remote recording of temperature, pH, conductivity, and dissolved oxygen. The unit comprises an outer biocompatible capsule encasing four microsensors, a control chip, a discrete component radio transmitter, and two silver oxide cells (the latter providing an operating time of 40 h at the rated power consumption of 12.1 mW). The sensors were fabricated on two separate silicon chips located at the front end of the capsule. The robust nature of the pill makes it adaptable for use in a variety of environments related to biomedical and industrial applications.

  20. Photographic films as remote sensors for measuring albedos of terrestrial surfaces

    NASA Technical Reports Server (NTRS)

    Pease, S. R.; Pease, R. W.

    1972-01-01

    To test the feasibility of remotely measuring the albedos of terrestrial surfaces from photographic images, an inquiry was carried out at ground level using several representative common surface targets. Problems of making such measurements with a spectrally selective sensor, such as photographic film, have been compared to previous work utilizing silicon cells. Two photographic approaches have been developed: a multispectral method which utilizes two or three photographic images made through conventional multispectral filters and a single shot method which utilizes the broad spectral sensitivity of black and white infrared film. Sensitometry related to the methods substitutes a Log Albedo scale for the conventional Log Exposure for creating characteristic curves. Certain constraints caused by illumination goemetry are discussed.

  1. Discrimination techniques employing both reflective and thermal multispectral signals. [for remote sensor technology

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Richardson, W.

    1973-01-01

    Recent improvements in remote sensor technology carry implications for data processing. Multispectral line scanners now exist that can collect data simultaneously and in registration in multiple channels at both reflective and thermal (emissive) wavelengths. Progress in dealing with two resultant recognition processing problems is discussed: (1) More channels mean higher processing costs; to combat these costs, a new and faster procedure for selecting subsets of channels has been developed. (2) Differences between thermal and reflective characteristics influence recognition processing; to illustrate the magnitude of these differences, some explanatory calculations are presented. Also introduced, is a different way to process multispectral scanner data, namely, radiation balance mapping and related procedures. Techniques and potentials are discussed and examples presented.

  2. First measurements of the Twomey indirect effect using ground-based remote sensors

    NASA Astrophysics Data System (ADS)

    Feingold, Graham; Eberhard, Wynn L.; Veron, Dana E.; Previdi, Michael

    2003-03-01

    We demonstrate first measurements of the aerosol indirect effect using ground-based remote sensors at a continental US site. The response of nonprecipitating, ice-free clouds to changes in aerosol loading is quantified in terms of a relative change in cloud-drop effective radius for a relative change in aerosol extinction under conditions of equivalent cloud liquid water path. This is done in a single column of air at a temporal resolution of 20 s (spatial resolution of ~100 m). Cloud-drop effective radius is derived from a cloud radar and microwave radiometer. Aerosol extinction is measured below cloud base by a Raman lidar. Results suggest that aerosols associated with maritime or northerly air trajectories tend to have a stronger effect on clouds than aerosols associated with northwesterly trajectories that also have local influence. There is good correlation (0.67) between the cloud response and a measure of cloud turbulence.

  3. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    SciTech Connect

    Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.; Choi, Junoh; Howell, Stephen W.

    2015-09-01

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.

  4. Remote sensing space science enabled by the multiple instrument distributed aperture sensor (MIDAS) concept

    NASA Astrophysics Data System (ADS)

    Pitman, Joseph T.; Duncan, Alan; Stubbs, David; Sigler, Robert D.; Kendrick, Richard L.; Smith, Eric H.; Mason, James E.; Delory, Gregory; Lipps, Jere H.; Manga, Michael; Graham, James R.; de Pater, Imke; Reiboldt, Sarah; Bierhaus, Edward; Dalton, James B.; Fienup, James R.; Yu, Jeffrey W.

    2004-11-01

    The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems aimed at increasing the return on future planetary science missions many fold are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional space telescopes, by integrating advanced optical imaging interferometer technologies into a multi-functional remote sensing science payload. MIDAS acts as a single front-end actively controlled telescope array for use on common missions, reducing the cost, resources, complexity, and risks of developing a set of back-end science instruments (SIs) tailored to each specific mission. By interfacing to multiple science instruments, MIDAS enables either sequential or concurrent SI operations in all functional modes. Passive imaging modes enable remote sensing at diffraction-limited resolution sequentially by each SI, as well as at somewhat lower resolution by multiple SIs acting concurrently on the image, such as in different wavebands. MIDAS inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the SI's. Our optical design features high-resolution imaging for long dwell times at high altitudes, <1m GSD from the 5000km extent of spiral orbits, thereby enabling regional remote sensing of dynamic planet surface processes, as well as ultra-high resolution of 2cm GSD from a 100km science orbit that enable orbital searches for signs of life processes on the planet surface. In its active remote sensing modes, using an integrated solid-state laser source, MIDAS enables LIDAR, vibrometry, surface illumination, ablation, laser spectroscopy and optical laser communications. The powerful combination of MIDAS passive and active modes, each with sequential or concurrent SI operations, increases potential science return

  5. Applied Industrial Electronics. Sensors and Logic Systems. Oklahoma Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Harwick, Jim; Siebert, Leo

    This curriculum guide, part of a series of curriculum guides dealing with industrial electricity and industrial electronics, is designed for use in teaching a course in applied industrial electronics. The first half of the guide contains units on remote sensing devices and the industrial uses of transducers. The second part of the course,…

  6. The National Vegetation Classification Standard applied to the remote sensing classification of two semiarid environments.

    PubMed

    Ramsey, Elijah W; Nelson, Gene A; Echols, Darrell; Sapkota, Sijan K

    2002-05-01

    The National Vegetation Classification Standard (NVCS) was implemented at two US National Park Service (NPS) sites in Texas, the Padre Island National Seashore (PINS) and the Lake Meredith National Recreation Area (LMNRA), to provide information for NPS oil and gas management plans. Because NVCS landcover classifications did not exist for these two areas prior to this study, we created landcover classes, through intensive ground and aerial reconnaissance, that characterized the general landscape features and at the same time complied with NVCS guidelines. The created landcover classes were useful for the resource management and were conducive to classification with optical remote sensing systems, such as the Landsat Thematic Mapper (TM). In the LMNRA, topographic elevation data were added to the TM data to reduce confusion between cliff, high plains, and forest classes. Classification accuracies (kappa statistics) of 89.9% (0.89) and 88.2% (0.87) in PINS and LMNRA, respectively, verified that the two NPS landholdings were adequately mapped with TM data. Improved sensor systems with higher spectral and spatial resolutions will ultimately refine the broad classes defined in this classification; however, the landcover classifications created in this study have already provided valuable information for the management of both NPS lands. Habitat information provided by the classifications has aided in the placement of inventory and monitoring plots, has assisted oil and gas operators by providing information on sensitive habitats, and has allowed park managers to better use resources when fighting wildland fires and in protecting visitors and the infrastructure of NPS lands.

  7. Sharing NASA Science with Decision Makers: A Perspective from NASA's Applied Remote Sensing Training (ARSET) Program

    NASA Astrophysics Data System (ADS)

    Prados, A. I.; Blevins, B.; Hook, E.

    2015-12-01

    NASA ARSET http://arset.gsfc.nasa.gov has been providing applied remote sensing training since 2008. The goals of the program are to develop the technical and analytical skills necessary to utilize NASA resources for decision-support. The program has reached over 3500 participants, with 1600 stakeholders from 100 countries in 2015 alone. The target audience for the program are professionals engaged in environmental management in the public and private sectors, such as air quality forecasters, public utilities, water managers and non-governmental organizations engaged in conservation. Many program participants have little or no expertise in NASA remote sensing, and it's frequently their very first exposure to NASA's vast resources. One the key challenges for the program has been the evolution and refinement of its approach to communicating NASA data access, research, and ultimately its value to stakeholders. We discuss ARSET's best practices for sharing NASA science, which include 1) training ARSET staff and other NASA scientists on methods for science communication, 2) communicating the proper amount of scientific information at a level that is commensurate with the technical skills of program participants, 3) communicating the benefit of NASA resources to stakeholders, and 4) getting to know the audience and tailoring the message so that science information is conveyed within the context of agencies' unique environmental challenges.

  8. Spot phosphor concept applied to the remote phosphor configuration of a white phosphor-converted LED

    NASA Astrophysics Data System (ADS)

    Acuña, Paula; Correia, António; Ryckaert, Jana; Meuret, Youri; Deconinck, Geert; Hanselaer, Peter

    2016-04-01

    Although the remote phosphor technology outperforms the conformal phosphor technology for mid-power applications, one of the limiting factors is the amount of phosphor required and its impact on the total cost. Besides, an important loss mechanisms in remote phosphor LED technology is the re-absorption of converted light. An obvious solution to this issue is enabling a light path for the converted light, such that further interactions with the phosphor element are avoided. In order to explore such a configuration, a simulation model of a phosphor element is devised and validated based on experimental data and the application of the inverse adding-doubling method. The resulting configuration, denoted as spot concept, along with a long-pass filter is shown to be a potential solution to reduce the phosphor usage. Since the moderate change in the light extraction ratio when applying the spot concept is partly attributed to the losses in the secondary optics needed to narrow the LED beam, the application of the spot concept configuration with a directional light source such as a laser diode could be a powerful combination for the enhancement of the light extraction ratio.

  9. Wireless sensor network for remote monitoring of parameters in distribution points of district utilities for heat and water

    NASA Astrophysics Data System (ADS)

    Drumea, Andrei; Ilie, Ioana; Vasile, Alexandru; Svasta, Paul; Tapu, Adina

    2009-01-01

    Rigorous monitoring of technological parameters optimizes the activities and reduces energy losses in distribution points of heat and water from utility companies. Extra efficiency can be achieved by remote monitoring via Internet or GSM communications and using networks of wireless sensors for collecting data. Presented paper focuses on hardware and software design aspects of wireless sensors for measuring parameters required by water and heat distribution, with focus on flow and temperature measurement. The sensors consist of two modules - one control and communication unit and sensing unit. Sensing unit is specific to measured parameter (flow, temperature, humidity etc.) but control and communication unit is the same for all sensors. Software for sensing unit was developed and tested on a universal electronic module for industrial control. Sensors group together in a plug-and-play wireless mesh network and one of them is connected to an Internet/GSM communication module for remote access. Wireless sensors are battery based devices so energy management issues (hardware and software) play a big role in sensor design. Current consumption of different configurations and in different operation states is analyzed.

  10. The search for phytoplankton applied remote sensing to the Barataria basin

    SciTech Connect

    Massasati, A.S.; Marstall, T.W.

    1997-08-01

    Mapping phytoplankton has been and still is an important issue in determining the productivity of major water bodies in the United States and around the world. While traditional procedures require an immense amount of time and manpower, remote sensing/GIS technology shows promise for a more cost effective and comprehensive solution for the mapping problem. Satellite Thematic Mapper and airborne CAMS data are used to identify and delineate phytoplankton. The physical properties of phytoplankton represented per pixel are measured and characterized into classes so that objective and statistically significant statements are made at the most elementary level. On this qualitative foundation, pixels are aggregated into units of phytoplankton concentration. These pixels are characterized by class groups and compared to well known facts and field observations of phytoplankton to determine its concentration. The procedure has been applied to the Barataria Bay drainage basin in Southern Louisiana and showed strong possibilities in mapping phytoplankton concentrations.

  11. A Study of Applying Pulsed Remote Field Eddy Current in Ferromagnetic Pipes Testing.

    PubMed

    Luo, Qingwang; Shi, Yibing; Wang, Zhigang; Zhang, Wei; Li, Yanjun

    2017-05-05

    Pulsed Remote Field Eddy Current Testing (PRFECT) attracts the attention in the testing of ferromagnetic pipes because of its continuous spectrum. This paper simulated the practical PRFECT of pipes by using ANSYS software and employed Least Squares Support Vector Regression (LSSVR) to extract the zero-crossing time to analyze the pipe thickness. As a result, a secondary peak is found in zero-crossing time when transmitter passed by a defect. The secondary peak will lead to wrong quantification and the localization of defects, especially when defects are found only at the transmitter location. Aiming to eliminate the secondary peaks, double sensing coils are set in the transition zone and Wiener deconvolution filter is applied. In the proposed method, position dependent response of the differential signals from the double sensing coils is calibrated by employing zero-mean normalization. The methods proposed in this paper are validated by analyzing the simulation signals and can improve the practicality of PRFECT of ferromagnetic pipes.

  12. Improved thermal-vacuum compatible flat plate radiometric source for system-level testing of remote optical sensors

    NASA Astrophysics Data System (ADS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-09-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance. Keywords: Calibration, radiometry, remote sensing, source.

  13. A real-time heart rate analysis for a remote millimeter wave I-Q sensor.

    SciTech Connect

    Bakhtiari, S.; Liao, S.; Elmer, T.; Gopalsami, N.; Raptis, A. C.

    2011-06-01

    This paper analyzes heart rate (HR) information from physiological tracings collected with a remote millimeter wave (mmW) I-Q sensor for biometric monitoring applications. A parameter optimization method based on the nonlinear Levenberg-Marquardt algorithm is used. The mmW sensor works at 94 GHz and can detect the vital signs of a human subject from a few to tens of meters away. The reflected mmW signal is typically affected by respiration, body movement, background noise, and electronic system noise. Processing of the mmW radar signal is, thus, necessary to obtain the true HR. The down-converted received signal in this case consists of both the real part (I-branch) and the imaginary part (Q-branch), which can be considered as the cosine and sine of the received phase of the HR signal. Instead of fitting the converted phase angle signal, the method directly fits the real and imaginary parts of the HR signal, which circumvents the need for phase unwrapping. This is particularly useful when the SNR is low. Also, the method identifies both beat-to-beat HR and individual heartbeat magnitude, which is valuable for some medical diagnosis applications. The mean HR here is compared to that obtained using the discrete Fourier transform.

  14. An investigation for the development of an integrated optical data preprocessor. [preprocessing remote sensor outputs

    NASA Technical Reports Server (NTRS)

    Verber, C. M.; Kenan, R. P.; Hartman, N. F.; Chapman, C. M.

    1980-01-01

    A laboratory model of a 16 channel integrated optical data preprocessor was fabricated and tested in response to a need for a device to evaluate the outputs of a set of remote sensors. It does this by accepting the outputs of these sensors, in parallel, as the components of a multidimensional vector descriptive of the data and comparing this vector to one or more reference vectors which are used to classify the data set. The comparison is performed by taking the difference between the signal and reference vectors. The preprocessor is wholly integrated upon the surface of a LiNbO3 single crystal with the exceptions of the source and the detector. He-Ne laser light is coupled in and out of the waveguide by prism couplers. The integrated optical circuit consists of a titanium infused waveguide pattern, electrode structures and grating beam splitters. The waveguide and electrode patterns, by virtue of their complexity, make the vector subtraction device the most complex integrated optical structure fabricated to date.

  15. Wireless patch sensor for remote monitoring of heart rate, respiration, activity, and falls.

    PubMed

    Chan, Alexander M; Selvaraj, Nandakumar; Ferdosi, Nima; Narasimhan, Ravi

    2013-01-01

    Unobtrusive continuous monitoring of important vital signs and activity metrics has the potential to provide remote health monitoring, at-home screening, and rapid notification of critical events such as heart attacks, falls, or respiratory distress. This paper contains validation results of a wireless Bluetooth Low Energy (BLE) patch sensor consisting of two electrocardiography (ECG) electrodes, a microcontroller, a tri-axial accelerometer, and a BLE transceiver. The sensor measures heart rate, heart rate variability (HRV), respiratory rate, posture, steps, and falls and was evaluated on a total of 25 adult participants who performed breathing exercises, activities of daily living (ADLs), various stretches, stationary cycling, walking/running, and simulated falls. Compared to reference devices, the heart rate measurement had a mean absolute error (MAE) of less than 2 bpm, time-domain HRV measurements had an RMS error of less than 15 ms, respiratory rate had an MAE of 1.1 breaths per minute during metronome breathing, posture detection had an accuracy of over 95% in two of the three patch locations, steps were counted with an absolute error of less than 5%, and falls were detected with a sensitivity of 95.2% and specificity of 100%.

  16. Monitoring drought using multi-sensor remote sensing data in cropland of Gansu Province

    NASA Astrophysics Data System (ADS)

    Zeng, Linglin; Shan, Jie; Xiang, Daxiang

    2014-03-01

    Various drought monitoring models have been developed from different perspectives, as drought is impacted by various factors (precipitation, evaporation, runoff) and usually reflected in various aspects (vegetation condition, temperature). Cloud not only plays an important role in the earth's energy balance and climate change, but also directly impacts the regional precipitation and evaporation. As a result, the change of cloud cover and cloud type can be used to monitor drought. This paper proposes a new drought composite index, the Drought Composite Index (DCI), for drought monitoring based on multi-sensor remote sensing data in cropland of Gansu Province. This index combines the cloud classification data (CLS) from FY satellite and Vegetation Condition Index (VCI) which was calculated using the maximum and minimum NDVI values for the same time period from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Pearson correlation was performed to correlate NDVI, VCI, CLS and DCI values to precipitation data and soil moisture (SM) data collected from 20 meteorological stations during the growing season of 2011 and 2012. Better agreement was observed between DCI and precipitation as compared with that between NDVI/VCI and precipitation, especially the one-month precipitation, and there is an obvious time lag in the response of vegetation to precipitation. In addition, the results indicated that DCI well reflected precipitation fluctuations in the study area promising a possibility for early drought awareness necessary and near real-time drought monitoring.

  17. A more acceptable endoluminal implantation for remotely monitoring ingestible sensors anchored to the stomach wall.

    PubMed

    Ohta, Hidetoshi; Izumi, Shintaro; Yoshimoto, Masahiko

    2015-01-01

    Several types of implant devices have been proposed and introduced into healthcare and telemedicine systems for monitoring physiological parameters, sometimes for very long periods of time. To our disappointment, most of the devices are implanted invasively and by surgery. We often have to surgically remove such devices after they have finished their mission or before the battery becomes worn out. Wearable devices have the possibility to become new modalities for monitoring vital parameters less-invasively. However, for round-the-clock monitoring of data from sensors over long periods of time, it would be better to put them inside the body to avoid causing inconvenience to patients in their daily lives. This study tested a less invasive endoluminal approach and innovative tools (developed during our research into therapeutic capsule endoscopy) for remotely anchoring ingestible sensors to the stomach wall. Preliminary investigations are also described about wireless communication (NFC, ZigBee, and Bluetooth) for low power consumption and inductive extracorporeal power feeding wirelessly to the circuits in a phantom lined with swine gastric mucosa. Electrocardiogram and pH were monitored and those parameters were successfully transmitted by wireless communication ICs to the Internet via a portable device.

  18. Review of remote-sensor potential for wind-energy studies

    SciTech Connect

    Hooke, W.H.

    1981-03-01

    This report evaluates a number of remote-sensing systems such as radars, lidars, and acoustic echo sounders which are potential alternatives to the cup- and propeller anemometers routinely used in wind energy siting. The high costs and demanding operational requirements of these sensors currently preclude their use in the early stages of a multi-phase wind energy siting strategy such as that recently articulated by Hiester and Pennell (1981). Instead, these systems can be used most effectively in the lattermost stages of the siting process - what Hiester and Pennell (1981) refer to as the site development phase, necessary only for the siting of large wind-energy conversion systems (WECS) or WECS clusters. Even for this particular application only four techniques appear to be operational now; that is, if used properly, these techniques should provide the data sets currently considered adequate for wind-energy siting purposes. They are, in rough order of increasing expense and operating demands: optical transverse wind sensors; acoustic Doppler sounders; time-of-flight and continuous wave (CW) Doppler lidar; and frequency-modulated, continuous wave (FM-CW) Doppler radar.

  19. NASA Applied Sciences' DEVELOP National Program: Training the Next Generation of Remote Sensing Scientists

    NASA Technical Reports Server (NTRS)

    Childs, Lauren; Brozen, Madeline; Hillyer, Nelson

    2010-01-01

    Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.

  20. What's next in remote sensing archaeology? Use of field spectroscopy to design a new space sensor

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Diofantos G.

    2014-08-01

    The traditional archaeological surveys have been shifted through time from single to multi-disciplinary studies of material remains based on the advantages of new technologies. Remote Sensing (RS) techniques in the last years have been proven to be an essential tool for the detection of un-excavated sites as well an important tool for the better understanding of the landscape of a site. Although the use of such technologies is widely accepted by the archaeological community, the practical use of these RS is not equally adopted. This phenomenon has been dramatically increased though the last years, and therefore "two-speed archaeology" is more evidence than before: Archaeologists in technologically developed countries may fully exploit RS technologies while in following countries this is still limited due to the lack of funding or equipment (e.g. special RS airplanes). Despite the fact that the above phenomenon is also frequently observed in other scientific fields, when this comes to archaeology then the problem is of paramount importance for the science itself: how can we better understand human past and old civilizations -which goes beyond the geographical limits of modern countries- when the data quality is fragmental though out the world? Extensive field spectroscopy measurements contacted in simulated archaeological environments have identified spectral regions suitable for the detection of buried archaeological research. Such characteristics can be implemented into a specially designed satellite sensor in order to support archaeological research. The potential use of such sensor will be a break though for the science of archaeology. The sensor can fully exploit the advantages of space technology and therefore can be used to support archaeological surveys in pan-European level as well outside Europe. The sensor will be able to provide a better inside look to lost landscapes and archaeological remains and therefore providing to archaeologists new windows to

  1. A low power on-chip class-E power amplifier for remotely powered implantable sensor systems

    NASA Astrophysics Data System (ADS)

    Ture, Kerim; Kilinc, Enver G.; Dehollain, Catherine

    2015-06-01

    This paper presents a low power fully integrated class-E power amplifier and its integration with remotely powered sensor system. The class-E power amplifier is suitable solution for low-power applications due to its high power efficiency. However, the required high inductance values which make the on-chip integration of the power amplifier difficult. The designed power amplifier is fully integrated in the remotely powered sensor system and fabricated in 0.18 μm CMOS process. The power is transferred to the implantable sensor system at 13.56 MHz by using an inductively coupled remote powering link. The induced AC voltage on the implant coil is converted into a DC voltage by a passive full-wave rectifier. A voltage regulator is used to suppress the ripples and create a clean and stable 1.8 V supply voltage for the sensor and communication blocks. The data collected from the sensors is transmitted by on-off keying modulated low-power transmitter at 1.2 GHz frequency. The transmitter is composed of a LC tank oscillator and a fully on-chip class-E power amplifier. An additional output network is used for the power amplifier which makes the integration of the power amplifier fully on-chip. The integrated power amplifier with 0.2 V supply voltage has a drain efficiency of 31.5% at -10 dBm output power for 50 Ω load. The measurement results verify the functionality of the power amplifier and the remotely powered implantable sensor system. The data communication is also verified by using a commercial 50 Ω chip antenna and has 600 kbps data rate at 1 m communication distance.

  2. Remote sensing technologies applied to the irrigation water management on a golf course

    NASA Astrophysics Data System (ADS)

    Pedras, Celestina; Lança, Rui; Martins, Fernando; Soares, Cristina; Guerrero, Carlos; Paixão, Helena

    2015-04-01

    An adequate irrigation water management in a golf course is a complex task that depends upon climate (multiple microclimates) and land cover (where crops differ in morphology, physiology, plant density, sensitivity to water stress, etc.). These factors change both in time and space on a landscape. A direct measurement provides localized values of the evapotranspiration and climate conditions. Therefore this is not a practical or economical methodology for large-scale use due to spatial and temporal variability of vegetation, soils, and irrigation management strategies. Remote sensing technology combines large scale with ground measurement of vegetation indexes. These indexes are mathematical combinations of different spectral bands mostly in the visible and near infrared regions of the electromagnetic spectrum. They represent the measures of vegetation activity that vary not only with the seasonal variability of green foliage, but also across space, thus they are suitable for detecting spatial landscape variability. The spectral vegetation indexes may enhance irrigation management through the information contained in spectral reflectance data. This study was carried out on the 18th fairway of the Royal Golf Course, Vale do Lobo, Portugal, and it aims to establish the relationship between direct measurements and vegetation indexes. For that it is required (1) to characterize the soil and climatic conditions, (2) to assessment of the irrigation system, (3) to estimate the evapotranspiration (4) and to calculate the vegetation indices. The vegetation indices were determined with basis on spectral bands red, green and blue, RGB, and near Infrared, NIR, obtained from the analysis of images acquired from a unpiloted aerial vehicle, UAV, platform. The measurements of reference evapotranspiration (ETo) were obtained from two meteorological stations located in the study area. The landscape evapotranspiration, ETL, was determined in the fairway with multiple microclimates

  3. A Novel High Sensitivity Sensor for Remote Field Eddy Current Non-Destructive Testing Based on Orthogonal Magnetic Field

    PubMed Central

    Xu, Xiaojie; Liu, Ming; Zhang, Zhanbin; Jia, Yueling

    2014-01-01

    Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors' disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted. PMID:25615738

  4. Optimized sampling strategy of Wireless sensor network for validation of remote sensing products over heterogeneous coarse-resolution pixel

    NASA Astrophysics Data System (ADS)

    Peng, J.; Liu, Q.; Wen, J.; Fan, W.; Dou, B.

    2015-12-01

    Coarse-resolution satellite albedo products are increasingly applied in geographical researches because of their capability to characterize the spatio-temporal patterns of land surface parameters. In the long-term validation of coarse-resolution satellite products with ground measurements, the scale effect, i.e., the mismatch between point measurement and pixel observation becomes the main challenge, particularly over heterogeneous land surfaces. Recent advances in Wireless Sensor Networks (WSN) technologies offer an opportunity for validation using multi-point observations instead of single-point observation. The difficulty is to ensure the representativeness of the WSN in heterogeneous areas with limited nodes. In this study, the objective is to develop a ground-based spatial sampling strategy through consideration of the historical prior knowledge and avoidance of the information redundancy between different sensor nodes. Taking albedo as an example. First, we derive monthly local maps of albedo from 30-m HJ CCD images a 3-year period. Second, we pick out candidate points from the areas with higher temporal stability which helps to avoid the transition or boundary areas. Then, the representativeness (r) of each candidate point is evaluated through the correlational analysis between the point-specific and area-average time sequence albedo vector. The point with the highest r was noted as the new sensor point. Before electing a new point, the vector component of the selected points should be taken out from the vectors in the following correlational analysis. The selection procedure would be ceased once if the integral representativeness (R) meets the accuracy requirement. Here, the sampling method is adapted to both single-parameter and multi-parameter situations. Finally, it is shown that this sampling method has been effectively worked in the optimized layout of Huailai remote sensing station in China. The coarse resolution pixel covering this station could be

  5. Assessment of soil-vegetation cover condition in river basins applying remote sensing data

    NASA Astrophysics Data System (ADS)

    Mishchenko, Natalia; Petrosian, Janna; Shirkin, Leonid; Repkin, Roman

    2017-04-01

    Constant observation of vegetation and soil cover is one of the key issues of river basins ecologic monitoring. Lately remotely determining vegetation indices have been used for this purpose alongside with terrestrial data. It is necessary to consider that observation objects have been continuously changing and these changes are comprehensive and depend on temporal and dimensional parameters. Remote sensing data, embracing vast areas and reflecting various interrelations, allow excluding accidental and short-term changes though concentrating on the transformation of the observed river basin ecosystem environmental condition. The research objective is to assess spatial - temporal peculiarities and the dynamics of soil-vegetation condition of the Klyazma basin as whole and minor river basins within the area. Research objects are located in the centre of European Russia. Data used in our research include both statistic and published data, characterizing soil-vegetation cover of the area, space images («Landsat» ETM+ etc.) Research methods. 1. Dynamics analysis NDVI (Normalized difference vegetation index) 2. Remote data have been correlated to terrestrial measurement results of phytomass reserve, phytoproductivity, soil fertility characteristics, crop capacity (http://biodat.ru) 3. For the digital processing of space images software Erdas Imagine has been used, GIS analysis has been carried out applying Arc GIS. NDVI computation for each image pixel helped to map general condition of the Klyazma vegetation cover and to determine geographic ranges without vegetation or with depressed vegetation. For instance high vegetation index geographic range has been defined which corresponded to Vladimir Opolye characterized with the most fertile grey forest soil in the region. Comparative assessment of soil vegetation cover of minor river basins within the Klyazma basin, judging by the terrestrial data, revealed its better condition in the Koloksha basin which is also located

  6. The National Vegetation Classification Standard applied to the remote sensing classification of two semiarid environments

    USGS Publications Warehouse

    Ramsey, Elijah W.; Nelson, G.A.; Echols, D.; Sapkota, S.K.

    2002-01-01

    The National Vegetation Classification Standard (NVCS) was implemented at two US National Park Service (NPS) sites in Texas, the Padre Island National Seashore (PINS) and the Lake Meredith National Recreation Area (LM-NRA), to provide information for NPS oil and gas management plans. Because NVCS landcover classifications did not exist for these two areas prior to this study, we created landcover classes, through intensive ground and aerial reconnaissance, that characterized the general landscape features and at the same time complied with NVCS guidelines. The created landcover classes were useful for the resource management and were conducive to classification with optical remote sensing systems, such as the Landsat Thematic Mapper (TM). In the LMNRA, topographic elevation data were added to the TM data to reduce confusion between cliff, high plains, and forest classes. Classification accuracies (kappa statistics) of 89.9% (0.89) and 88.2% (0.87) in PINS and LMNRA, respectively, verified that the two NPS landholdings were adequately mapped with TM data. Improved sensor systems with higher spectral and spatial resolutions will ultimately refine the broad classes defined in this classification; however, the landcover classifications created in this study have already provided valuable information for the management of both NPS lands. Habitat information provided by the classifications has aided in the placement of inventory and monitoring plots, has assisted oil and gas operators by providing information on sensitive habitats, and has allowed park managers to better use resources when fighting wildland fires and in protecting visitors and the infrastructure of NPS lands.

  7. Applying information and communications technologies to collect health data from remote settings: a systematic assessment of current technologies.

    PubMed

    Ashar, Raj; Lewis, Sheri; Blazes, David L; Chretien, J P

    2010-04-01

    Modern information and communications technologies (ICTs) are now so feature-rich and widely available that they can be used to "capture," or collect and transmit, health data from remote settings. Electronic data capture can reduce the time necessary to notify public health authorities, and provide important baseline information. A number of electronic health data capture systems based on specific ICTs have been developed for remote areas. We expand on that body of work by defining and applying an assessment process to characterize ICTs for remote-area health data capture. The process is based on technical criteria, and assesses the feasibility and effectiveness of specific technologies according to the resources and constraints of a given setting. Our characterization of current ICTs compares different system architectures for remote-area health data capture systems. Ultimately, we believe that our criteria-based assessment process will remain useful for characterizing future ICTs.

  8. Detection, Identification, Location, and Remote Sensing using SAW RFID Sensor Tags

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2009-01-01

    In this presentation, we will consider the problem of simultaneous detection, identification, location estimation, and remote sensing for multiple objects. In particular, we will describe the design and testing of a wireless system capable of simultaneously detecting the presence of multiple objects, identifying each object, and acquiring both a low-resolution estimate of location and a high-resolution estimate of temperature for each object based on wireless interrogation of passive surface acoustic wave (SAW) radiofrequency identification (RFID) sensor tags affixed to each object. The system is being studied for application on the lunar surface as well as for terrestrial remote sensing applications such as pre-launch monitoring and testing of spacecraft on the launch pad and monitoring of test facilities. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In the presentation, we will summarize the system design and illustrate several aspects of the operational characteristics and signal structure. We will examine the theoretical performance characteristics of the system and compare the theoretical results with results obtained from experiments in both controlled laboratory environments and in the field.

  9. A Method for Application of Classification Tree Models to Map Aquatic Vegetation Using Remotely Sensed Images from Different Sensors and Dates

    PubMed Central

    Jiang, Hao; Zhao, Dehua; Cai, Ying; An, Shuqing

    2012-01-01

    In previous attempts to identify aquatic vegetation from remotely-sensed images using classification trees (CT), the images used to apply CT models to different times or locations necessarily originated from the same satellite sensor as that from which the original images used in model development came, greatly limiting the application of CT. We have developed an effective normalization method to improve the robustness of CT models when applied to images originating from different sensors and dates. A total of 965 ground-truth samples of aquatic vegetation types were obtained in 2009 and 2010 in Taihu Lake, China. Using relevant spectral indices (SI) as classifiers, we manually developed a stable CT model structure and then applied a standard CT algorithm to obtain quantitative (optimal) thresholds from 2009 ground-truth data and images from Landsat7-ETM+, HJ-1B-CCD, Landsat5-TM and ALOS-AVNIR-2 sensors. Optimal CT thresholds produced average classification accuracies of 78.1%, 84.7% and 74.0% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. However, the optimal CT thresholds for different sensor images differed from each other, with an average relative variation (RV) of 6.40%. We developed and evaluated three new approaches to normalizing the images. The best-performing method (Method of 0.1% index scaling) normalized the SI images using tailored percentages of extreme pixel values. Using the images normalized by Method of 0.1% index scaling, CT models for a particular sensor in which thresholds were replaced by those from the models developed for images originating from other sensors provided average classification accuracies of 76.0%, 82.8% and 68.9% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. Applying the CT models developed for normalized 2009 images to 2010 images resulted in high classification (78.0%–93.3%) and overall (92.0%–93.1%) accuracies. Our results suggest

  10. Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies

    NASA Astrophysics Data System (ADS)

    Hamel, Caroline; Pinet, Éric

    2006-02-01

    We present how fiber-optic temperature or pressure sensors could be applied to minimally invasive diagnostics and therapies. For instance a miniature pressure sensor based on micro-optical mechanical systems (MOMS) could solve most of the problems associated with fluidic pressure transduction presently used for triggering purposes. These include intra-aortic balloon pumping (IABP) therapy and other applications requiring detection of fast and/or subtle fluid pressure variations such as for intracranial pressure monitoring or for urology diagnostics. As well, miniature temperature sensors permit minimally invasive direct temperature measurement in diagnostics or therapies requiring energy transfer to living tissues. The extremely small size of fiber-optic sensors that we have developed allows quick and precise in situ measurements exactly where the physical parameters need to be known. Furthermore, their intrinsic immunity to electromagnetic interference (EMI) allows for the safe use of EMI-generating therapeutic or diagnostic equipments without compromising the signal quality. With the trend of ambulatory health care and the increasing EMI noise found in modern hospitals, the use of multi-parameter fiber-optic sensors will improve constant patient monitoring without any concern about the effects of EMI disturbances. The advantages of miniature fiberoptic sensors will offer clinicians new monitoring tools that open the way for improved diagnostic accuracy and new therapeutic technologies.

  11. Enhancement of bend sensor properties as applied in a glove for use in neurorehabilitation settings.

    PubMed

    Oess, Ninja P; Wanek, Johann; van Hedel, Hubertus J A

    2010-01-01

    Following hand function impairment caused by a neurological disorder, the functional level of the upper extremities has to be assessed in the clinical and rehabilitation settings. Current hand function evaluation tests are somewhat imprecise. Instrumented gloves allow finger motion monitoring during the performance of skilled tasks, such as grasping objects. As a result, they provide an objective tool for evaluating slight changes in the fine motor skills of the hand. Numerous gloves are based on resistive bend sensors, given that this is an easy to handle, low-cost, and reliable sensing element. When bending is not applied homogeneously along such a sensor, as is the case with finger-joint bending, its output response varies with the sensor's longitudinal position. Our goal is to determine the optimal sensor position with respect to the finger-joint in order to enhance the resolution of the sensors embedded in a glove. The validity of the integrated sensors is evaluated and the accuracy values are given.

  12. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition.

    PubMed

    González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel

    2016-10-31

    In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented.

  13. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition

    PubMed Central

    González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel

    2016-01-01

    In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented. PMID:27809229

  14. A Multi-Sensor Remote Sensing Approach for Railway Corridor Ground Hazard Management

    NASA Astrophysics Data System (ADS)

    Kromer, Ryan; Hutchinson, Jean; Lato, Matt; Gauthier, Dave; Edwards, Tom

    2015-04-01

    Characterizing and monitoring ground hazard processes is a difficult endeavor along mountainous transportation corridors. This is primarily due to the quantity of hazard sites, complex topography, limited and sometimes hazardous access to sites, and obstructed views. The current hazard assessment approach for Canadian railways partly relies on the ability of inspection employees to assess hazard from track level, which isn't practical in complex slope environments. Various remote sensing sensors, implemented on numerous platforms have the potential to be used in these environments. They are frequently found to be complementary in their use, however, an optimum combination of these approaches has not yet been found for an operational rail setting. In this study, we investigate various cases where remote sensing technologies have been used to characterize and monitor ground hazards along railway corridors across the Canadian network, in order to better understand failure mechanisms, identify hazard source zones and to provide early warning. Since early 2012, a series of high resolution gigapixel images, Terrestrial Laser Scanning (TLS), Aerial laser scanning (ALS), ground based photogrammetry, oblique aerial photogrammetry (from helicopter and Unmanned Aerial Vehicle (UAV) platforms), have been collected at ground hazard sites throughout the Canadian rail network. On a network level scale, comparison of sequential ALS scanning data has been found to be an ideal methodology for observing large-scale change and prioritizing high hazard sites for more detailed monitoring with terrestrial methods. The combination of TLS and high resolution gigapixel imagery at various temporal scales has allowed for a detailed characterization of the hazard level posed by the slopes, the identification of the main failure modes, an analysis of hazard activity, and the observation failure precursors such as deformation, rockfall and tension crack opening. At sites not feasible for ground

  15. Vineyard zonal management for grape quality assessment by combining airborne remote sensed imagery and soil sensors

    NASA Astrophysics Data System (ADS)

    Bonilla, I.; Martínez De Toda, F.; Martínez-Casasnovas, J. A.

    2014-10-01

    Vineyard variability within the fields is well known by grape growers, producing different plant responses and fruit characteristics. Many technologies have been developed in last recent decades in order to assess this spatial variability, including remote sensing and soil sensors. In this paper we study the possibility of creating a stable classification system that better provides useful information for the grower, especially in terms of grape batch quality sorting. The work was carried out during 4 years in a rain-fed Tempranillo vineyard located in Rioja (Spain). NDVI was extracted from airborne imagery, and soil conductivity (EC) data was acquired by an EM38 sensor. Fifty-four vines were sampled at véraison for vegetative parameters and before harvest for yield and grape analysis. An Isocluster unsupervised classification in two classes was performed in 5 different ways, combining NDVI maps individually, collectively and combined with EC. The target vines were assigned in different zones depending on the clustering combination. Analysis of variance was performed in order to verify the ability of the combinations to provide the most accurate information. All combinations showed a similar behaviour concerning vegetative parameters. Yield parameters classify better by the EC-based clustering, whilst maturity grape parameters seemed to give more accuracy by combining all NDVIs and EC. Quality grape parameters (anthocyanins and phenolics), presented similar results for all combinations except for the NDVI map of the individual year, where the results were poorer. This results reveal that stable parameters (EC or/and NDVI all-together) clustering outcomes in better information for a vineyard zonal management strategy.

  16. Remote sensor application studies report, July 1, 1968 to June 30, 1969: Remote sensing reconnaissance, Mill creek area, Arbuckle Mountains, Oklahoma

    USGS Publications Warehouse

    Rowan, L.C.; Offield, T.W.; Watson, Kenneth; Cannon, P.J.; Watson, R.D.

    1970-01-01

    As part of the U.S. Geological Survey's Remote Sensor Application Studies program, infrared images and several kinds of photographs were obtained on reconnaissance flights over two areas in the Arbuckle Mountains near Mill Creek, Oklahoma. These data were used in a preliminary investigation (1) to determine the diagnostic reflection and emission characteristics of various rock types, and (2) io evaluate the perturbing influence of atmospheric conditions, surface coatings, rock texture, and topography on the observed reflected and emitted energy in the thermal infrared (8-14μ) part of the spectrum

  17. Detection, Identification, Location, and Remote Sensing Using SAW RFID Sensor Tags

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.; Kennedy, Timothy F.; Williams, Robert M.; Fink, Patrick W.; Ngo, Phong H.

    2009-01-01

    The Electromagnetic Systems Branch (EV4) of the Avionic Systems Division at NASA Johnson Space Center in Houston, TX is studying the utility of surface acoustic wave (SAW) radiofrequency identification (RFID) tags for multiple wireless applications including detection, identification, tracking, and remote sensing of objects on the lunar surface, monitoring of environmental test facilities, structural shape and health monitoring, and nondestructive test and evaluation of assets. For all of these applications, it is anticipated that the system utilized to interrogate the SAW RFID tags may need to operate at fairly long range and in the presence of considerable multipath and multiple-access interference. Towards that end, EV4 is developing a prototype SAW RFID wireless interrogation system for use in such environments called the Passive Adaptive RFID Sensor Equipment (PARSED) system. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In this paper, we will consider the application of the PARSEQ system to the problem of simultaneous detection, identification, localization, and temperature estimation for multiple objects. We will summarize the overall design of the PARSEQ system and present a detailed description of the design and performance of the signal detection and estimation algorithms incorporated in the system. The system is currently configured only to measure temperature

  18. A Practical Approach for Applying Online Remote Experiments: OnPReX

    ERIC Educational Resources Information Center

    Khachadorian, Sevak; Scheel, Harald; de Vries, Pieter; Thomsen, Christian

    2011-01-01

    The development of Internet technologies stimulates the increase of online technology-supported education in universities. Online learning based on remote experiments is capable of diminishing the scantiness in practical courses. In this paper, we present online practical courses based on remote experiments (OnPReX). These courses consist of…

  19. A Practical Approach for Applying Online Remote Experiments: OnPReX

    ERIC Educational Resources Information Center

    Khachadorian, Sevak; Scheel, Harald; de Vries, Pieter; Thomsen, Christian

    2011-01-01

    The development of Internet technologies stimulates the increase of online technology-supported education in universities. Online learning based on remote experiments is capable of diminishing the scantiness in practical courses. In this paper, we present online practical courses based on remote experiments (OnPReX). These courses consist of…

  20. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.

    PubMed

    Nguyen, Phong Ha; Kim, Ki Wan; Lee, Young Won; Park, Kang Ryoung

    2017-08-30

    Unmanned aerial vehicles (UAVs), which are commonly known as drones, have proved to be useful not only on the battlefields where manned flight is considered too risky or difficult, but also in everyday life purposes such as surveillance, monitoring, rescue, unmanned cargo, aerial video, and photography. More advanced drones make use of global positioning system (GPS) receivers during the navigation and control loop which allows for smart GPS features of drone navigation. However, there are problems if the drones operate in heterogeneous areas with no GPS signal, so it is important to perform research into the development of UAVs with autonomous navigation and landing guidance using computer vision. In this research, we determined how to safely land a drone in the absence of GPS signals using our remote maker-based tracking algorithm based on the visible light camera sensor. The proposed method uses a unique marker designed as a tracking target during landing procedures. Experimental results show that our method significantly outperforms state-of-the-art object trackers in terms of both accuracy and processing time, and we perform test on an embedded system in various environments.

  1. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor

    PubMed Central

    Nguyen, Phong Ha; Kim, Ki Wan; Lee, Young Won; Park, Kang Ryoung

    2017-01-01

    Unmanned aerial vehicles (UAVs), which are commonly known as drones, have proved to be useful not only on the battlefields where manned flight is considered too risky or difficult, but also in everyday life purposes such as surveillance, monitoring, rescue, unmanned cargo, aerial video, and photography. More advanced drones make use of global positioning system (GPS) receivers during the navigation and control loop which allows for smart GPS features of drone navigation. However, there are problems if the drones operate in heterogeneous areas with no GPS signal, so it is important to perform research into the development of UAVs with autonomous navigation and landing guidance using computer vision. In this research, we determined how to safely land a drone in the absence of GPS signals using our remote maker-based tracking algorithm based on the visible light camera sensor. The proposed method uses a unique marker designed as a tracking target during landing procedures. Experimental results show that our method significantly outperforms state-of-the-art object trackers in terms of both accuracy and processing time, and we perform test on an embedded system in various environments. PMID:28867775

  2. Design and performance of the halogen occultation experiment (HALOE) remote sensor

    NASA Technical Reports Server (NTRS)

    Baker, R. L.; Mauldin, L. E., III; Russell, J. M., III

    1986-01-01

    HALOE is an optical remote sensor that measures extinction of solar radiation caused by the earth's atmosphere in eight channels, ranging in wavelength from 2.5 to 10.1 microns. These measurements, which occur twice each satellite orbit during solar occultation, are inverted to yield vertical distributions of middle atmosphere ozone (O3), water vapor, nitrogen dioxide, nitric oxide, hydrogen fluoride, hydrogen chloride, and methane. A channel located in the 2.7 region is used to infer the tangent point pressure by measuring carbon dioxide absorption. The HALOE instrument consists of a two-axis gimbal system, telescope, spectral discrimination optics and a 12-bit data system. The gimbal system tracks the solar radiometric centroid in the azimuthal plane and tracks the solar limb in the elevation plane, placing the instrument's instantaneous field-of-view 4 arcmin down from the solar top edge. The instrument gathers data for tangent altitudes ranging from 150 km to the earth's horizon. Prior to an orbital sunset and after an orbital sunrise, HALOE automatically performs calibration sequences to enhance data interpretation. The instrument is presently being tested at the NASA Langley Research Center in preparation for launch on the Upper Atmosphere Research Satellite near the end of this decade. This paper describes the instrumenmt design, operation, and functional performance.

  3. Remote assessment of cultural heritage environments with wireless sensor array networks.

    PubMed

    Agbota, Henoc; Mitchell, John E; Odlyha, Marianne; Strlič, Matija

    2014-05-19

    The logistics and cost of environmental monitoring can represent challenges for heritage managers, partly because of the sheer number of environmental parameters to consider. There is a need for a system, capable of monitoring the holistic impact of the environment on cultural materials while remaining relatively easy to use and providing remote access. This paper describes a dosimetric system based on piezoelectric quartz crystal technology. The prototype sensing module consists of an array of piezoelectric quartz crystals (PQC) coated with different metals (Fe, Cu, Ni and Sn) and includes a temperature and relative humidity sensor. The communication module involves an 802.15.4 low-power radio and a GPRS gateway which allows real time visualisation of the measurements online. An energy management protocol ensures that the system consumes very low power between measurements. The paper also describes the results and experiences from two heritage field deployments, at Apsley House in London, UK, and at the Royal Palaces of Abomey in Benin. Evaluation of PQC measurements, temperature, relative humidity and the rate of successful transmission over the communication systems are also reported.

  4. Remote fiber optic sensor for gaseous and liquid environments, phase 2

    NASA Astrophysics Data System (ADS)

    Carrabba, Michael M.; Rauh, R. D.; Spencer, K. M.; Edmonds, R. B.

    1992-09-01

    The goal of this program was to develop techniques and instrumentation for the implementation of Raman spectroscopy as a chemical sensor for both gas and liquid phase samples. Surface enhanced Raman techniques have been employed for low level detection. Novel SERS substrates have been demonstrated which enable complexation and preconcentration of gas phase species, a new development since SERS had previously been associated only with the liquid phase. The substrates were demonstrated for Raman sensing of hydrazine, ethanol, dimethyl methylphosphonate (DMMP), and other vapor species. In order to conduct remote sensing using Raman, a fiber optic probe, was developed. The probe permits the excitation and collection of Raman spectra over greater than 50 m of optical fiber without interference from scattering originating within the fibers themselves, previously a serious problem with this approach. Spectral analysis has been conducted with small spectrographs, some of them palm-sized. Special Raman filters based on holographic optical elements were developed for this purpose, removing all vestiges of the primary Raman excitation light before introducing the scattered Raman light into the spectrograph. Several spectrograph configurations were examined, including a novel Echelle design which enables better than 1 cm-1 spectral resolution in a compact package (e.g., approximately 10(exp 3) cu cm, including CCD detector).

  5. Remote Assessment of Cultural Heritage Environments with Wireless Sensor Array Networks

    PubMed Central

    Agbota, Henoc; Mitchell John, E.; Odlyha, Marianne; Strlič, Matija

    2014-01-01

    The logistics and cost of environmental monitoring can represent challenges for heritage managers, partly because of the sheer number of environmental parameters to consider. There is a need for a system, capable of monitoring the holistic impact of the environment on cultural materials while remaining relatively easy to use and providing remote access. This paper describes a dosimetric system based on piezoelectric quartz crystal technology. The prototype sensing module consists of an array of piezoelectric quartz crystals (PQC) coated with different metals (Fe, Cu, Ni and Sn) and includes a temperature and relative humidity sensor. The communication module involves an 802.15.4 low-power radio and a GPRS gateway which allows real time visualisation of the measurements online. An energy management protocol ensures that the system consumes very low power between measurements. The paper also describes the results and experiences from two heritage field deployments, at Apsley House in London, UK, and at the Royal Palaces of Abomey in Benin. Evaluation of PQC measurements, temperature, relative humidity and the rate of successful transmission over the communication systems are also reported. PMID:24854056

  6. Design and performance of the halogen occultation experiment (HALOE) remote sensor

    NASA Technical Reports Server (NTRS)

    Baker, R. L.; Mauldin, L. E., III; Russell, J. M., III

    1986-01-01

    HALOE is an optical remote sensor that measures extinction of solar radiation caused by the earth's atmosphere in eight channels, ranging in wavelength from 2.5 to 10.1 microns. These measurements, which occur twice each satellite orbit during solar occultation, are inverted to yield vertical distributions of middle atmosphere ozone (O3), water vapor, nitrogen dioxide, nitric oxide, hydrogen fluoride, hydrogen chloride, and methane. A channel located in the 2.7 region is used to infer the tangent point pressure by measuring carbon dioxide absorption. The HALOE instrument consists of a two-axis gimbal system, telescope, spectral discrimination optics and a 12-bit data system. The gimbal system tracks the solar radiometric centroid in the azimuthal plane and tracks the solar limb in the elevation plane, placing the instrument's instantaneous field-of-view 4 arcmin down from the solar top edge. The instrument gathers data for tangent altitudes ranging from 150 km to the earth's horizon. Prior to an orbital sunset and after an orbital sunrise, HALOE automatically performs calibration sequences to enhance data interpretation. The instrument is presently being tested at the NASA Langley Research Center in preparation for launch on the Upper Atmosphere Research Satellite near the end of this decade. This paper describes the instrumenmt design, operation, and functional performance.

  7. Use of a Fourier transform spectrometer as a remote sensor at Superfund sites

    SciTech Connect

    Russwurm, G.M.; Kagann, R.H.; Simpson, O.A.; McClenny, W.A.

    1991-01-01

    A Fourier transform infrared remote sensor (FTIR-RS) was used to measure chemical emissions at the Shaver's Farm Superfund site in northwestern Georgia. The system was bistatic with a source/receiver at one end of a 250 m path and a retroreflector at the other end. The source/receiver was a Nicolet Model 730 FTIR system coupled to a telescope with the appropriate transfer optics. The average concentrations of target gases along the path are inferred by matching field spectra with reference spectra of precisely measured quantities of the target gases. Measurements indicated that benzonitrile and benzaldehyde concentrations at the site were lower than the FTIR-RS detection limits of 70 and 16 ppm-m, respectively. Background IR radiation was successfully eliminated by modulating the IR beam before it was transmitted along the path. Quality assurance measurements to establish the precision and accuracy of known gas burdens (ppm-m) were carried out using a 15-cm cell containing high concentrations of several gases.

  8. Flooding of Monroe County, Michigan - A comparison of three remote sensor data sets

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.

    1976-01-01

    During the spring of 1973, three techniques were used to obtain remotely sensed data pertaining to the flooded shoreline of Monroe County, Michigan. Although digitized data from the Earth Resources Technology Satellite were available on magnetic tapes, analysis was based on interpretation methods normally used for aerial photography, since the black and white IR photography and side-looking airborne radar (SLAR) data were available only as images. Using IR photography as the standard, it was found that ERTS-1 Band 7 imagery had a 93% accuracy in detecting areas in the combined category of open water and flooded fields. X(HH) data from SLAR detected that built-up and wet areas were built-up (89 to 100% accuracy), but not that they were wet. It is suggested that these two sensors used in concert from orbital heights could provide information useful to relief organizations in flooded areas. It is considered likely that SLAR data will improve as higher resolution becomes available.

  9. Multiple-scale Proximal Sensor and Remote Imagery Technology for Sustaining Agricultural Productivity During Climate Change

    NASA Astrophysics Data System (ADS)

    Corwin, D. L.; Scudiero, E.

    2016-12-01

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley. Climate change has impacted water availability, which subsequently has impacted soil salinity levels in the root zone, especially on the west side of the San Joaquin Valley (WSJV). Inventorying and monitoring the extent of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation management strategies that will sustain the agricultural productivity of the WSJV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for the WSJV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Land resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.

  10. Propagation Limitations in Remote Sensing.

    DTIC Science & Technology

    Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .

  11. Autonomous Correction of Sensor Data Applied to Building Technologies Utilizing Statistical Processing Methods

    SciTech Connect

    Castello, Charles C; New, Joshua Ryan

    2012-01-01

    Autonomous detection and correction of potentially missing or corrupt sensor data is a essential concern in building technologies since data availability and correctness is necessary to develop accurate software models for instrumented experiments. Therefore, this paper aims to address this problem by using statistical processing methods including: (1) least squares; (2) maximum likelihood estimation; (3) segmentation averaging; and (4) threshold based techniques. Application of these validation schemes are applied to a subset of data collected from Oak Ridge National Laboratory s (ORNL) ZEBRAlliance research project, which is comprised of four single-family homes in Oak Ridge, TN outfitted with a total of 1,218 sensors. The focus of this paper is on three different types of sensor data: (1) temperature; (2) humidity; and (3) energy consumption. Simulations illustrate the threshold based statistical processing method performed best in predicting temperature, humidity, and energy data.

  12. Research on linguistic concept creation method applied to environmental comfort sensors in health smart home.

    PubMed

    Xin, Li; Wenxue, Hong; Jialin, Song; Jiannan, Kang

    2005-01-01

    We endeavor to provide a novel tool to evaluate environmental comfort level in Health Smart Home (HSH). HSH is regarded a good alternative for the independent life of elders and people with disability. Numerous intelligent devices, installed within a home environment, can provide the resident with continuous monitoring and comfortable environment. In this paper, a novel method of evaluating environmental comfort level is provided. An intelligent sensor is a fuzzy comfort sensor that can measure and fusion the environmental parameters. Based upon the results, it will further give a linguistic description about the environmental comfort level, in the manner of an expert system. The core of the sensor is multi-parameter information fusion. Similar to human behavior, the sensor makes all the evaluation about the surrounding environment's comfort level based on the symbolic measurement theory. We applied chart representation theory in multivariate analysis in the biomedical engineering field to complete the human comfortable sensor's linguistic concept creation. We achieved better performance when using this method to complete multi-parameter fusion and fuzziness. It is our belief that this method can be used in both biology intelligent sensing and many other areas, where the quantitative and qualitative information transform is needed.

  13. A study of remote sensing as applied to regional and small watersheds. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Ambaruch, R.

    1974-01-01

    The accuracy of remotely sensed measurements to provide inputs to hydrologic models of watersheds is studied. A series of sensitivity analyses on continuous simulation models of three watersheds determined: (1)Optimal values and permissible tolerances of inputs to achieve accurate simulation of streamflow from the watersheds; (2) Which model inputs can be quantified from remote sensing, directly, indirectly or by inference; and (3) How accurate remotely sensed measurements (from spacecraft or aircraft) must be to provide a basis for quantifying model inputs within permissible tolerances.

  14. Integrating remote sensing data from multiple optical sensors for ecological and crop condition monitoring

    USDA-ARS?s Scientific Manuscript database

    Ecological and crop condition monitoring requires high temporal and spatial resolution remote sensing data. Due to technical limitations and budget constraints, remote sensing instruments trade spatial resolution for swath width. As a result, it is difficult to acquire remotely sensed data with both...

  15. Smart Multi-Level Tool for Remote Patient Monitoring Based on a Wireless Sensor Network and Mobile Augmented Reality

    PubMed Central

    González, Fernando Cornelio Jimènez; Villegas, Osslan Osiris Vergara; Ramírez, Dulce Esperanza Torres; Sánchez, Vianey Guadalupe Cruz; Domínguez, Humberto Ochoa

    2014-01-01

    Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN) and mobile augmented reality (MAR). The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1) hardware such as Arduino microcontrollers (in the patient nodes), personal computers (for the nurse server), smartphones (for the mobile nurse monitor and the virtual patient file) and sensors (to measure body temperature and heart rate), (2) a network layer using WiFly technology, and (3) software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia. PMID:25230306

  16. Smart multi-level tool for remote patient monitoring based on a wireless sensor network and mobile augmented reality.

    PubMed

    González, Fernando Cornelio Jiménez; Villegas, Osslan Osiris Vergara; Ramírez, Dulce Esperanza Torres; Sánchez, Vianey Guadalupe Cruz; Domínguez, Humberto Ochoa

    2014-09-16

    Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN) and mobile augmented reality (MAR). The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1) hardware such as Arduino microcontrollers (in the patient nodes), personal computers (for the nurse server), smartphones (for the mobile nurse monitor and the virtual patient file) and sensors (to measure body temperature and heart rate), (2) a network layer using WiFly technology, and (3) software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia.

  17. Applying remote sensing and GIS techniques in solving rural county information needs

    NASA Technical Reports Server (NTRS)

    Johannsen, Chris J.; Fernandez, R. Norberto; Lozano-Garcia, D. Fabian

    1992-01-01

    The project designed was to acquaint county government officials and their clientele with remote sensing and GIS products that contain information about land conditions and land use. Other users determined through the course of this project were federal agencies working at the county level, agricultural businesses and others in need of spatial information. The specific project objectives were: (1) to investigate the feasibility of using remotely sensed data to identify and quantify specific land cover categories and conditions for purposes of tax assessment, cropland area measurements and land use evaluation; (2) to investigate the use of satellite remote sensing data as an aid in assessing soil management practices; and (3) to evaluate the use of remotely sensed data to assess soil resources and conditions which affect productivity.

  18. A Method for Monitoring the Heat Flux from an Urban District with a Single Infrared Remote Sensor

    NASA Astrophysics Data System (ADS)

    Hénon, Aurélien; Mestayer, Patrice G.

    2014-07-01

    The proposed methodology relies on the modelling capabilities of the thermo-radiative model Suc(olene) to simulate the heat and radiation energy exchanges between an actual urban district and the atmosphere. It is based on the comparison of the simulated upward infrared and sensible heat flux diurnal cycles that may be measured by elevated sensors above the three-dimensional scene, as a function of sensor position: the heat flux is a function of an equivalent surface temperature given by the infrared sensor and an equivalent heat transfer coefficient deduced from Suc(olene) simulations with the actual geometry. The method is tested against measurements obtained in the city centre of Toulouse, France during an experimental campaign in 2004-2005. To improve the computation of the heat exchanges between air and building surfaces a new algorithm is first implemented, based on an empirical model of the wind distribution within street canyons. This improvement is assessed by a direct comparison of the simulated brightness surface temperatures of the Toulouse city centre to measurements obtained with an airborne infrared sensor. The optimization of the infrared remote sensor position is finally analyzed as a function of its height above the mean roof level: it allows evaluation of the heat flux from an urban district when the three different classes of surfaces (roofs, walls, grounds) have similar contributions to the infrared flux towards the sensor, and to the heat flux into the atmosphere.

  19. Remote Sensing Applied to Geology (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the use of remote sensing in geological resource exploration. Technologies discussed include thermal, optical, photographic, and electronic imaging using ground-based, aerial, and satellite-borne devices. Analog and digital techniques to locate, classify, and assess geophysical features, structures, and resources are also covered. Application of remote sensing to petroleum and minerals exploration is treated in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.)

  20. Remote Sensing Applied to Geology (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the use of remote sensing in geological resource exploration. Technologies discussed include thermal, optical, photographic, and electronic imaging using ground-based, aerial, and satellite-borne devices. Analog and digital techniques to locate, classify, and assess geophysical features, structures, and resources are also covered. Application of remote sensing to petroleum and minerals exploration is treated in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.)

  1. Feasibility of simultaneous operation of passive remote microwave sensors and active services occupying adjacent frequency bands

    NASA Technical Reports Server (NTRS)

    Sue, M. K.

    1982-01-01

    To ensure proper sensor operations, it is necessary to understand the situation of potential interference to sensors due to active equipment sharing common frequency bands as well as equipment occupying adjacent bands. The feasibility of sharing common frequency bands between passive sensors and other active services was analyzed. Potential interference to sensors due to equipment in bands adjacent to sensor frequency bands is examined and criteria to avoid interference is developed.

  2. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital

  3. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital

  4. The effect of the three non-collinear chips on the imaging of infrared remote sensor

    NASA Astrophysics Data System (ADS)

    Tang, Shaofan; Jin, Libing

    2016-10-01

    With the development of high-resolution imaging infrared remote satellites, high resolution imaging and wide swath width are required. Now one effective way to get a wide imaging swath is to increase the length of infrared chip linear array. Restricted by the number of sensor elements on each chip, field butting of the multiple chips is often adopted to obtain a wide of the field of view (FOV). However, since each infrared chip is actually an array in physical structure, and there is also an outer cover for each chip, it is really impossible to place the multiple infrared chips directly as a straight line on the focal plane, and three non-collinear arranging style is adopted instead. Due to the control stability of the drift angle, a non-collinear arrangement of the three chips on the focal plane, the undulation of the ground elevation and so on, the sub-image separately captured by each infrared chip cannot directly from as an integrated image scene. In this paper, the image mode of the three non-collinear Infrared chips is proposed. What is more, some key factors that affect the imaging quality of the three non-collinear infrared chips are discussed in detail, including the control of the drift angle, the placement of the three infrared chips on the focal plane, the terrain undulation and so on. The scales of the effect caused by those factors are calculated in the paper. In order to test and verify the methods given in the paper, flight mission of sun synchronism circle orbit is taken as an example for simulation. Some practical conclusions are arrived at. When the drift angle is out of control, it can bring the effect of the drift angle on the overlapping degree about pixel number, and relative distortion variation tendency was given based on altitude difference.

  5. Remote Sensing of Chlorophyll Fluorescence by the Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Yee, J. H.; Boldt, J.; Cook, W. B.; Morgan, F., II; Demajistre, R.; Cook, B. D.; Corp, L. A.

    2014-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the amount of fill-in of strong O2 absorption lines or Fraunhofer lines in the reflected solar spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is designed and constructed specifically for airborne and groundbased ChlF measurements using the line fill-in ChlF measurement technique. In this paper, we will present the design of this triple etalon Fabry-Perot imaging instrument and the results of its vegetation fluorescence measurements obtained from the ground in the laboratory and from a NASA Langley King Air during our 2014 airborne campaign over vegetated targets in North Carolina and Virginia.

  6. Objective Determination of Cloud Heights and Radar Reflectivities Using a Combination of Active Remote Sensors at the ARM CART Sites.

    NASA Astrophysics Data System (ADS)

    Clothiaux, Eugene E.; Ackerman, Thomas P.; Mace, Gerald G.; Moran, Kenneth P.; Marchand, Roger T.; Miller, Mark A.; Martner, Brooks E.

    2000-05-01

    The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program is deploying sensitive, millimeter-wave cloud radars at its Cloud and Radiation Test Bed (CART) sites in Oklahoma, Alaska, and the tropical western Pacific Ocean. The radars complement optical devices, including a Belfort or Vaisala laser ceilometer and a micropulse lidar, in providing a comprehensive source of information on the vertical distribution of hydrometeors overhead at the sites. An algorithm is described that combines data from these active remote sensors to produce an objective determination of hydrometeor height distributions and estimates of their radar reflectivities, vertical velocities, and Doppler spectral widths, which are optimized for accuracy. These data provide fundamental information for retrieving cloud microphysical properties and assessing the radiative effects of clouds on climate. The algorithm is applied to nine months of data from the CART site in Oklahoma for initial evaluation. Much of the algorithm's calculations deal with merging and optimizing data from the radar's four sequential operating modes, which have differing advantages and limitations, including problems resulting from range sidelobes, range aliasing, and coherent averaging. Two of the modes use advanced phase-coded pulse compression techniques to yield approximately 10 and 15 dB more sensitivity than is available from the two conventional pulse modes. Comparison of cloud-base heights from the Belfort ceilometer and the micropulse lidar confirms small biases found in earlier studies, but recent information about the ceilometer brings the agreement to within 20-30 m. Merged data of the radar's modes were found to miss approximately 5.9% of the clouds detected by the laser systems. Using data from only the radar's two less-sensitive conventional pulse modes would increase the missed detections to 22%-34%. A significant remaining problem is that the radar's lower-altitude data are often

  7. Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC) Structural Elements

    PubMed Central

    Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro

    2013-01-01

    In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse. PMID:28809343

  8. Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC) Structural Elements.

    PubMed

    Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro

    2013-03-06

    In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.

  9. Method for remote detection of trace contaminants

    DOEpatents

    Simonson, Robert J.; Hance, Bradley G.

    2003-09-09

    A method for remote detection of trace contaminants in a target area comprises applying sensor particles that preconcentrate the trace contaminant to the target area and detecting the contaminant-sensitive fluorescence from the sensor particles. The sensor particles can have contaminant-sensitive and contaminant-insensitive fluorescent compounds to enable the determination of the amount of trace contaminant present in the target are by relative comparison of the emission of the fluorescent compounds by a local or remote fluorescence detector. The method can be used to remotely detect buried minefields.

  10. A field evaluation of remote sensor measurements of wind, temperature, and moisture for ARM integrated sounding system research

    SciTech Connect

    Martner, B.E.; Westwater, E.R.; Strauch, R.G.

    1993-10-01

    Remote sensing systems were operated in Colorado in February and March 1991 to obtain detailed profiles of the kinematic and thermodynamic structure of the atmosphere for the US Department of Energy`s Atmospheric Radiation Measurement (ARM) research program. The instruments included wind profilers, Radio Acoustic Sounding Systems (PASS), microwave and infrared radiometers, an infrared spectrometer, ceilometers, radiosondes, surface meteorological stations, and other equipment. A mesoscale data assimilation model will be used to combine the data into dynamically consistent four-dimensional fields as part of an integrated data assimilation sounding system. This report evaluates the performance of the NOAA remote sensors used in the 1991 field data collection. These included five different wind profilers, each equipped with RASS capability for temperature profiling, and microwave radiometers for measurements of pathintegrated water vapor and liquid water content. The design and initial testing of a Fourier-transform InfraRed Sounder (FIRS) for humidity profiling is also described. The ranges of height coverage and measurement accuracies for each wind profiler/RASS are examined. Specific recommendations for optimizing the design and configuration of similar instruments are made for the ARM cloud and Radiation Testbed (CART) sites, based on results of the 1991 field work and earlier tests. Examples of routine processed data products are presented for three intensive operating period studies to further illustrate the remote sensors` capabilities.

  11. Analysis of possibility of applying the PVDF foil in industrial vibration sensors

    NASA Astrophysics Data System (ADS)

    Wróbel, A.

    2015-11-01

    There are many machines using the piezoelectric effects. Systems with smart materials are often used because they have high potential applications for example transducers can be applied to receive required characteristic of projected system. Every engineer and designer know how important it is properly mathematical model and method of the analysis. Also it is important to consider all parameters of analyzed system for example glue layer between elements. Geometrical and material parameters has a significant impact on the characteristics of the all system's components because the omission of the influence of one of them results in inaccuracy in the analysis of the system. In article the modeling and testing of vibrating systems with piezoelectric ceramic materials transducers used as actuators and vibration dampers. The method of analysis of the vibrating sensor systems will be presented, mathematical model, and characteristics, to determine the influence of the system's properties on these characteristics. Main scientific point of the project is to analyze and demonstrate possibility of applying new construction with the PVDF foil or any other belonging to a group of smart materials in industrial sensors. Currently, the vibration level sensors are used by practically all manufacturers of piezoelectric ceramic plates to generate and detect the vibration of the fork.

  12. Applications of remote sensor data to geologic and economic analysis on the Bonanza Test Site, Colorado

    NASA Technical Reports Server (NTRS)

    Reeves, R. G. (Compiler)

    1972-01-01

    Recent studies conducted in the Bonanza Test Site, Colorado, area indicated that: (1) more geologic structural information is available from remote sensing data than from conventional techniques; (2) greater accuracy results from using remote sensing data; (3) all major structural features were detected; (4) of all structural interpretations, about 75% were correct; and (5) interpretation of remote sensing data will not supplant field work, but it enables field work to be done much more efficiently.

  13. Sensors and methods for weather-independent remote sensing with microwaves

    NASA Technical Reports Server (NTRS)

    Keydel, W.

    1981-01-01

    Sensors and methods of radar and microwave radiometry which operate in the millimeter wave range are discussed. The properties of electromagnetic waves are discussed as well as the resolution capacity and measurement accuracy of sensor systems.

  14. Applying Semantic Web Services and Wireless Sensor Networks for System Integration

    NASA Astrophysics Data System (ADS)

    Berkenbrock, Gian Ricardo; Hirata, Celso Massaki; de Oliveira Júnior, Frederico Guilherme Álvares; de Oliveira, José Maria Parente

    In environments like factories, buildings, and homes automation services tend to often change during their lifetime. Changes are concerned to business rules, process optimization, cost reduction, and so on. It is important to provide a smooth and straightforward way to deal with these changes so that could be handled in a faster and low cost manner. Some prominent solutions use the flexibility of Wireless Sensor Networks and the meaningful description of Semantic Web Services to provide service integration. In this work, we give an overview of current solutions for machinery integration that combine both technologies as well as a discussion about some perspectives and open issues when applying Wireless Sensor Networks and Semantic Web Services for automation services integration.

  15. Raman Backscatter as a Remote Laser Power Sensor in High-Energy-Density Plasmas [Stimulated Scattering as a Remote Laser Power Sensor in High-Density and Temperature Plasmas

    DOE PAGES

    Moody, J. D.; Strozzi, D. J.; Divol, L.; ...

    2013-07-09

    Stimulated Raman backscatter is used as a remote sensor to quantify the instantaneous laser power after transfer from outer to inner cones that cross in a National Ignition Facility (NIF) gas-filled hohlraum plasma. By matching stimulated Raman backscatter between a shot reducing outer versus a shot reducing inner power we infer that about half of the incident outer-cone power is transferred to inner cones, for the specific time and wavelength configuration studied. Furthermore, this is the first instantaneous nondisruptive measure of power transfer in an indirect drive NIF experiment using optical measurements.

  16. A multi-parameter remote system to monitoring active landslides by using middle-low cost sensors

    NASA Astrophysics Data System (ADS)

    Londono, J.; Vega, C. A.; Maya, L. M.

    2010-12-01

    We have developed a remote system to monitoring active landslides, by using a multi-parameter device, middle-low cost sensors, and an expert system based on rules. The system consists of six (6) analogue sensors: geophone, hygrometer, rain gauge, thermocouple, tiltmeter, and piezometer. All the sensors are connected to a A/D converter board of our own design of variable rate sampling, which stores, packs and transmit digitally the information to a remote device (PC or computer server). At the remote device, an expert system based on rules, and developed in open source code, processes the data and analyses the information, given a state or activity level of the landslide continuously. The expert system based on rules, can be adapted according user needs. New rules and states or activity levels of landslide can be added as well. Information is stored in a data base. A processing module allows to analyze in a friendly way the results in both, online and offline modes. Averages, tendencies, moving averages, cumulative curves, and other basic time series processing are available. A technique of changes in slope of cumulative normalized curves of the data set for each sensor and a combination of them, is used as a one of the parameters to evaluate the level of activity of the landslide, as well as a scheme of decision based on weights and rules for each sensor. Alerts can be sent by email or SMS to a group of users. The system was installed in an active landslide at Manizales city (2100 masl), located in the central part of Colombia, at the Andean zone. The system collected data for 1 month. Preliminary results showed that the system is able to detect temporal changes in several parameters, allowing to have an idea of the level of activity of the monitored landslide. Calibration or adjusting of the detection levels for each sensor is necessary when the system is installed in different landslide. The system can be useful for monitoring zones with very active landslides at

  17. Theory and analysis of statistical discriminant techniques as applied to remote sensing data

    NASA Technical Reports Server (NTRS)

    Odell, P. L.

    1973-01-01

    Classification of remote earth resources sensing data according to normed exponential density statistics is reported. The use of density models appropriate for several physical situations provides an exact solution for the probabilities of classifications associated with the Bayes discriminant procedure even when the covariance matrices are unequal.

  18. Reasons and Motivations of School Leaders Who Apply for Rural, Regional and Remote Locations in Australia

    ERIC Educational Resources Information Center

    Halsey, R. John; Drummond, Aaron

    2014-01-01

    Evidence suggests that there are significant difficulties associated with the attraction and retention of appropriately qualified, high quality teachers and educational leaders (e.g., principals) for rural, regional and remote locations in Australia. Further, educational leadership in these areas carries complex demands, and educational leaders…

  19. FTIR remote sensor measurements of air pollutants in the petrochemical industrial park

    NASA Astrophysics Data System (ADS)

    Wu, Rong T.; Chang, Shih-Yi; Chung, Y. W.; Tzou, H. C.; Tso, Tai-Ly

    1995-09-01

    As FT-IR remote sensing techniques become more accessible, there are increasing interests to apply this open-path measurement method to detect and measure airborne pollutants. Thus a research for VOCs emission pollutants in the petrochemical industry park is conducted. In this study, we focused on the identification of the gaseous pollutants as well as the location of the VOCs pollutants from different factories. Measurement is sampled at every half hour period to obtain the time series plots of observed gas concentration for the gaseous pollutants. Besides the inherent components in ambient air such as carbon monoxide, methane, and ozone, the results of the measurement indicate that the major pollutants detected in this industrial park include vinyl chloride, chloroform, hydrogen chloride, 1,2-dichloroethane, 1,3-butadiene, ethylene, propylene, n-hexane, acetic acid, methyl acetate and ammonia. Some of these toxic pollutants are carcinogens and also the chloride related compounds are potentially a threat to the depletion of ozone. All of these measurements indicate that the pattern of the pollutants for each location is significantly different from each other pattern. In addition, the concentrations and the presence of absence of pollutants were dramatically affected by wind directions. Under this case, suspicious polluting plants are successfully being identified by examining the pattern of compounds, pollutant's concentration time series, metrology, and manufacturing process.

  20. The ASPRS Remote Sensing Industry Forecast: Phase II & III - Digital Sensor Compilation

    NASA Technical Reports Server (NTRS)

    Mondello, Charles

    2007-01-01

    In August 1999, ASPRS and NASA's (then) Commercial Remote Sensing Program (CRSP) entered into a 5-year Space Act Agreement (SAA), combining resources and expertise to: (a) Baseline the Remote Sensing Industry (RSI) based on GEIA Model; (b) Develop a 10-Year RSI market forecast and attendant processes; and (c) Provide improved information for decision makers.

  1. Monitoring and modeling of wetland environment using time-series bi-sensor remotely sensed data

    NASA Astrophysics Data System (ADS)

    Michishita, Ryo

    More than half of the wetlands in the world have been lost in the last century mainly due to human activities. Since natural wetlands receive a significant amount of untreated runoff from urban and agricultural areas, it is necessary to account for other landscapes adjacent to wetlands, such as water bodies, agricultural areas, and urban areas, in the protection and restoration of the wetlands. The goal of this dissertation is to monitor and model land cover changes using the time-series Landsat-5 TM and Terra MODIS data in the Poyang Lake area of China from two perspectives: wetland cover changes and urbanization. A bi-scale monitoring approach was adopted in the monitoring and modeling of wetland cover changes to examine the similarities and differences derived from remotely sensed imagery with different spatial resolutions. The effect of different modeling settings of multiple endmember spectral mixture analysis (MESMA) were examined utilizing a single pair of TM and MODIS scenes. MESMA applied to nine pairs of TM and MODIS scenes acquired from July 2004 to October 2005 captured phenological and hydrological trends of land cover fractions (LCFs) and LCF agreement between the image pairs. Ground surface reflectance, rather than LCFs, was chosen as the key parameter in the blending of bi-scale remotely sensed data that utilized the spatial details of one data type and temporal details of the other. This research customized an existing fusion model to overcome the problem with the unobserved pixels in MODIS data acquired on TM data acquisition dates. It is interesting that the input data combination considering water level change achieved higher accuracy. In the monitoring of urbanization, this research investigated the relationship between urban land cover and human activities, and detected the areas of new urban development and redevelopment of built-up areas. Different urbanization processes largely influenced by the economic reforms of China were demonstrated

  2. A simulation of air pollution model parameter estimation using data from a ground-based LIDAR remote sensor

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.; Suttles, J. T.

    1977-01-01

    One way to obtain estimates of the unknown parameters in a pollution dispersion model is to compare the model predictions with remotely sensed air quality data. A ground-based LIDAR sensor provides relative pollution concentration measurements as a function of space and time. The measured sensor data are compared with the dispersion model output through a numerical estimation procedure to yield parameter estimates which best fit the data. This overall process is tested in a computer simulation to study the effects of various measurement strategies. Such a simulation is useful prior to a field measurement exercise to maximize the information content in the collected data. Parametric studies of simulated data matched to a Gaussian plume dispersion model indicate the trade offs available between estimation accuracy and data acquisition strategy.

  3. A simulation of air pollution model parameter estimation using data from a ground-based LIDAR remote sensor

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.; Suttles, J. T.

    1977-01-01

    One way to obtain estimates of the unknown parameters in a pollution dispersion model is to compare the model predictions with remotely sensed air quality data. A ground-based LIDAR sensor provides relative pollution concentration measurements as a function of space and time. The measured sensor data are compared with the dispersion model output through a numerical estimation procedure to yield parameter estimates which best fit the data. This overall process is tested in a computer simulation to study the effects of various measurement strategies. Such a simulation is useful prior to a field measurement exercise to maximize the information content in the collected data. Parametric studies of simulated data matched to a Gaussian plume dispersion model indicate the trade offs available between estimation accuracy and data acquisition strategy.

  4. Characteristics of a New MSK-Demodulator Applied to VLF Remote Sensing

    NASA Astrophysics Data System (ADS)

    Mitchell, M.; Moore, R. C.

    2013-12-01

    Very Low Frequency (VLF) transmitters operate around the globe primarily for communications with submarines. These signals propagate in the Earth-ionosphere waveguide with relatively low attenuation, and they make excellent signal probes for ionospheric remote sensing. Many VLF transmitter signals are modulated using Minimum-Shift Keying (MSK). In this work, we present a complete analysis of a new signal processing method for MSK-modulated VLF signals with the purpose to produce reliable amplitude and phase measurements for ionospheric remote sensing. We analyze the bit-error rate and the resulting amplitude and phase measurements as a function of signal-to-noise ratio under different background noise environments. We also compare the new method to other methods presently in use. We highlight the transient response characteristics by analyzing naturally occurring ionospheric events observed in the Northern and Southern hemispheres.

  5. Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity

    NASA Astrophysics Data System (ADS)

    Leyequien, Euridice; Verrelst, Jochem; Slot, Martijn; Schaepman-Strub, Gabriela; Heitkönig, Ignas M. A.; Skidmore, Andrew

    2007-02-01

    Amongst many ongoing initiatives to preserve biodiversity, the Millennium Ecosystem Assessment again shows the importance to slow down the loss of biological diversity. However, there is still a gap in the overview of global patterns of species distributions. This paper reviews how remote sensing has been used to assess terrestrial faunal diversity, with emphasis on proxies and methodologies, while exploring prospective challenges for the conservation and sustainable use of biodiversity. We grouped and discussed papers dealing with the faunal taxa mammals, birds, reptiles, amphibians, and invertebrates into five classes of surrogates of animal diversity: (1) habitat suitability, (2) photosynthetic productivity, (3) multi-temporal patterns, (4) structural properties of habitat, and (5) forage quality. It is concluded that the most promising approach for the assessment, monitoring, prediction, and conservation of faunal diversity appears to be the synergy of remote sensing products and auxiliary data with ecological biodiversity models, and a subsequent validation of the results using traditional observation techniques.

  6. Airborne Geophysics and Remote Sensing Applied to Study Greenland Ice Dynamics

    NASA Technical Reports Server (NTRS)

    Csatho, Beata M.

    2003-01-01

    Overview of project: we combined and jointly analysed geophysical, remote sensing and glaciological data for investigating the temporal changes in ice flow and the role of geologic control on glacial drainage. The project included two different studies, the investigation of recent changes of the Kangerlussuaq glacier and the study of geologic control of ice flow in NW Greenland, around the Humboldt, Petermann and Ryder glaciers.

  7. Airborne Geophysics and Remote Sensing Applied to Study Greenland Ice Dynamics

    NASA Technical Reports Server (NTRS)

    Csatho, Beata M.

    2003-01-01

    Overview of project: we combined and jointly analysed geophysical, remote sensing and glaciological data for investigating the temporal changes in ice flow and the role of geologic control on glacial drainage. The project included two different studies, the investigation of recent changes of the Kangerlussuaq glacier and the study of geologic control of ice flow in NW Greenland, around the Humboldt, Petermann and Ryder glaciers.

  8. Application and state of development for remote chemical sensors in environmental monitoring: A literature review

    SciTech Connect

    Schabron, J.F.; Niss, N.D.; Hart, B.K.

    1991-09-01

    A study was performed on chemical sensor technology currently available and under development. The information was compiled into a format wherein information on the sensors is listed in a comparable manner. As introductory section is provided to illustrate the regulatory environment in which such sensor technology will be used. This information should allow corporations or federal agencies ready access to useful information for the potential licensing of sensor technology for commercial development or specific environmental monitoring operations. Although every attempt was made to identify as many chemical sensors as possible, we recognize that some may be missed inadvertently. The accuracy of the information provided by the various sources regarding the state of development for the various sensors was not verified. Judgments or opinions regarding the actual state of development or utility of these devices are not included in this report. However, we feel that this report accurately reflects the state of the art at the present time.

  9. Application and state of development for remote chemical sensors in environmental monitoring: A literature review

    SciTech Connect

    Schabron, J.F.; Niss, N.D.; Hart, B.K.

    1991-09-01

    A study was performed on chemical sensor technology currently available and under development. The information was compiled into a format wherein information on the sensors is listed in a comparable manner. An introductory section is provided to illustrate the regulatory environment in which such sensor technology will be used. This information should allow corporations or federal agencies ready access to useful information for the potential licensing of sensor technology for commercial development or specific environmental monitoring operations. Although every attempt was made to identify as many chemical sensors as possible, we recognize that some may be missed inadvertently. The accuracy of the information provided by the various sources regarding the state of development for the various sensors was not verified. Judgments or opinions regarding the actual state of development or utility of these devices are not included in this report. However, we feel that this report accurately reflects the state of the art at the present time.

  10. Remote Monitoring of Post-eruption Volcano Environment Based-On Wireless Sensor Network (WSN): The Mount Sinabung Case

    NASA Astrophysics Data System (ADS)

    Soeharwinto; Sinulingga, Emerson; Siregar, Baihaqi

    2017-01-01

    An accurate information can be useful for authorities to make good policies for preventive and mitigation after volcano eruption disaster. Monitoring of environmental parameters of post-eruption volcano provides an important information for authorities. Such monitoring system can be develop using the Wireless Network Sensor technology. Many application has been developed using the Wireless Sensor Network technology, such as floods early warning system, sun radiation mapping, and watershed monitoring. This paper describes the implementation of a remote environment monitoring system of mount Sinabung post-eruption. The system monitor three environmental parameters: soil condition, water quality and air quality (outdoor). Motes equipped with proper sensors, as components of the monitoring system placed in sample locations. The measured value from the sensors periodically sends to data server using 3G/GPRS communication module. The data can be downloaded by the user for further analysis.The measurement and data analysis results generally indicate that the environmental parameters in the range of normal/standard condition. The sample locations are safe for living and suitable for cultivation, but awareness is strictly required due to the uncertainty of Sinabung status.

  11. Technical Survey and Evaluation of Underwater Sensors and Remotely Operated Vehicles

    DTIC Science & Technology

    1993-05-01

    and sensor technologies. "* An evaluation of how well each vehicle system would be able to meet operational and environmental requirements for sensor...delivery. "" An evaluation af how well each sensor would be able to meet the overall inspection requirements. "* The development of a conceptual...of damaged areas as well as crew efficiency and safety. 8 Precipitation (heavy snowfall, rain, or hail) contributes to low visibility, operator error

  12. Spatial Estimation of Sub-Hour Global Horizontal Irradiance Based on Official Observations and Remote Sensors

    PubMed Central

    Gutierrez-Corea, Federico-Vladimir; Manso-Callejo, Miguel-Angel; Moreno-Regidor, María-Pilar; Velasco-Gómez, Jesús

    2014-01-01

    This study was motivated by the need to improve densification of Global Horizontal Irradiance (GHI) observations, increasing the number of surface weather stations that observe it, using sensors with a sub-hour periodicity and examining the methods of spatial GHI estimation (by interpolation) with that periodicity in other locations. The aim of the present research project is to analyze the goodness of 15-minute GHI spatial estimations for five methods in the territory of Spain (three geo-statistical interpolation methods, one deterministic method and the HelioSat2 method, which is based on satellite images). The research concludes that, when the work area has adequate station density, the best method for estimating GHI every 15 min is Regression Kriging interpolation using GHI estimated from satellite images as one of the input variables. On the contrary, when station density is low, the best method is estimating GHI directly from satellite images. A comparison between the GHI observed by volunteer stations and the estimation model applied concludes that 67% of the volunteer stations analyzed present values within the margin of error (average of ±2 standard deviations). PMID:24732102

  13. Spatial estimation of sub-hour Global Horizontal Irradiance based on official observations and remote sensors.

    PubMed

    Gutierrez-Corea, Federico-Vladimir; Manso-Callejo, Miguel-Angel; Moreno-Regidor, María-Pilar; Velasco-Gómez, Jesús

    2014-04-11

    This study was motivated by the need to improve densification of Global Horizontal Irradiance (GHI) observations, increasing the number of surface weather stations that observe it, using sensors with a sub-hour periodicity and examining the methods of spatial GHI estimation (by interpolation) with that periodicity in other locations. The aim of the present research project is to analyze the goodness of 15-minute GHI spatial estimations for five methods in the territory of Spain (three geo-statistical interpolation methods, one deterministic method and the HelioSat2 method, which is based on satellite images). The research concludes that, when the work area has adequate station density, the best method for estimating GHI every 15 min is Regression Kriging interpolation using GHI estimated from satellite images as one of the input variables. On the contrary, when station density is low, the best method is estimating GHI directly from satellite images. A comparison between the GHI observed by volunteer stations and the estimation model applied concludes that 67% of the volunteer stations analyzed present values within the margin of error (average of ±2 standard deviations).

  14. Nonlinear and non-Hermitian optical systems applied to the development of filters and optical sensors

    NASA Astrophysics Data System (ADS)

    Amaro de Faria Júnior, A. C.

    2015-09-01

    In this work we present a method of investigation of nonlinear optical beams generated from non-Hermitian optical systems1 . This method can be applied in the development of optical filters and optical sensors to process, analyze and choose the passband of the propagation modes of an optical pulse from an non-Hermitian optical system. Non-Hermitian optical systems can be used to develop optical fiber sensors that suppress certain propagation modes of optical pulses that eventually behave as quantum noise. Such systems are described by the Nonlinear Schrödinger-like Equation with Parity-Time (PT) Symmetric Optical Potentials. There are optical fiber sensors that due to high laser intensity and frequency can produce quantum noise, such as Raman and Brillouin scattering. However, the optical fiber, for example, can be designed so that its geometry suppress certain propagation modes of the beam. We apply some results of non- Hermitian optical systems with PT symmetry to simulate optical lattice by a appropriate potential function, which among other applications, can naturally suppress certain propagation modes of an optical beam propagating through a waveguide. In other words, the optical system is modeled by a potential function in the Nonlinear Schrödinger-like Equation that one relates with the geometric aspects of the wave guides and with the optical beam interacting with the waveguide material. The paper is organized as follows: sections 1 and 2 present a brief description about nonlinear optical systems and non-Hermitian optical systems with PT symmetry. Section 3 presents a description of the dynamics of nonlinear optical pulses propagating through optical networks described by a optical potential non-Hermitian. Sections 4 and 5 present a general description of this non-Hermitian optical systems and how to get them from a more general model. Section 6 presents some conclusions and comment and the final section presents the references. Begin the abstract two

  15. Ground-based imaging remote sensing of ice clouds: uncertainties caused by sensor, method and atmosphere

    NASA Astrophysics Data System (ADS)

    Zinner, Tobias; Hausmann, Petra; Ewald, Florian; Bugliaro, Luca; Emde, Claudia; Mayer, Bernhard

    2016-09-01

    In this study a method is introduced for the retrieval of optical thickness and effective particle size of ice clouds over a wide range of optical thickness from ground-based transmitted radiance measurements. Low optical thickness of cirrus clouds and their complex microphysics present a challenge for cloud remote sensing. In transmittance, the relationship between optical depth and radiance is ambiguous. To resolve this ambiguity the retrieval utilizes the spectral slope of radiance between 485 and 560 nm in addition to the commonly employed combination of a visible and a short-wave infrared wavelength.An extensive test of retrieval sensitivity was conducted using synthetic test spectra in which all parameters introducing uncertainty into the retrieval were varied systematically: ice crystal habit and aerosol properties, instrument noise, calibration uncertainty and the interpolation in the lookup table required by the retrieval process. The most important source of errors identified are uncertainties due to habit assumption: Averaged over all test spectra, systematic biases in the effective radius retrieval of several micrometre can arise. The statistical uncertainties of any individual retrieval can easily exceed 10 µm. Optical thickness biases are mostly below 1, while statistical uncertainties are in the range of 1 to 2.5.For demonstration and comparison to satellite data the retrieval is applied to observations by the Munich hyperspectral imager specMACS (spectrometer of the Munich Aerosol and Cloud Scanner) at the Schneefernerhaus observatory (2650 m a.s.l.) during the ACRIDICON-Zugspitze campaign in September and October 2012. Results are compared to MODIS and SEVIRI satellite-based cirrus retrievals (ACRIDICON - Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems; MODIS - Moderate Resolution Imaging Spectroradiometer; SEVIRI - Spinning Enhanced Visible and Infrared Imager). Considering the identified

  16. Mapping crop distribution in administrative districts of southwest Germany using multi-sensor remote sensing data

    NASA Astrophysics Data System (ADS)

    Conrad, Christopher; Goessl, Achim; Lex, Sylvia; Metz, Annekatrin; Esch, Thomas; Konrad, Christoph; Goettlicher, Gerold; Dech, Stefan

    2010-10-01

    In the face of global change, concepts for sustainable land management are increasingly requested, among others to cope with the rapidly increasing energy demand. High resolution land use classifications can contribute spatially explicit information suitable for land use planning. In this study, the coverage of cereal crops was derived for two regions in Baden-Wuerttemberg and Rhineland-Palatinate - Germany, as well as in the Alsace - France, by classifying multitemporal and multi-scale remote sensing data. The presented methodology shall be used as basic input for high resolution bio-energy potential calculations. Segmentation of pan-merged 15 m Landsat 7 ETM+ data and pre-classification with CORINE data was applied to derive homogenous objects assumed to approximate the field boundaries of agricultural areas. Seven acquisitions of moderate resolution IRS-P6 AWiFS data (60 m) recorded during the vegetation period of 2007 were used for the subsequent classification of the objects. Multiple classification and regression trees (random forest) were selected as classification algorithm due to their ability to consider non-linear distributions of class values in the feature space. Training and validation was based on a subset of 1724 samplings of the official European land use survey LUCAS (Land Use/ Cover Area Frame Statistical Survey). Altogether, the object based approach resulted in an overall accuracy of 74 %. The use of 15 m Landsat for mapping field objects were identified to be one major obstacle caused by the characteristically small agricultural units in Southwest Germany. Improvements were also achieved by correcting the LUCAS samples for location errors.

  17. The Archaeological Application of Multi-Sensor Remote Sensing Data in Qin Yongcheng Site

    NASA Astrophysics Data System (ADS)

    Wang, M.; Wan, Y.; Zhao, Z.

    2017-09-01

    Remote sensing archaeology bases on the use of remote sensing images and interpretation of the principles. The historic relics and sites are resulted from human activities and have constantly caused influences on the soil component, moisture content, temperature, vegetation growth and so on. Based on this thought, this paper proposed a new remote sensing model and approach that integrates optical and thermal infrared remote sensing data for archaeology. Taking the Qin Yongcheng site as the example, this method conducts a comprehensive analysis of key factors affecting archaeological application, that is, LST estimated with Landsat TM data, soil brightness, humidity and greenness obtained from GF-1 data, and then interprets the potential site targets. By conducting the field verification, it is shown that the interpreted potential sites are well consisted with the field investigations and have a high interpretation precision. It can provide a guide for further archaeological research.

  18. Remote sensing aids geologic mapping

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1972-01-01

    Remote sensing techniques were applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area.

  19. Development of a multi-sensor based urban discharge forecasting system using remotely sensed data: A case study of extreme rainfall in South Korea

    NASA Astrophysics Data System (ADS)

    Yoon, Sunkwon; Jang, Sangmin; Park, Kyungwon

    2017-04-01

    Extreme weather due to changing climate is a main source of water-related disasters such as flooding and inundation and its damage will be accelerated somewhere in world wide. To prevent the water-related disasters and mitigate their damage in urban areas in future, we developed a multi-sensor based real-time discharge forecasting system using remotely sensed data such as radar and satellite. We used Communication, Ocean and Meteorological Satellite (COMS) and Korea Meteorological Agency (KMA) weather radar for quantitative precipitation estimation. The Automatic Weather System (AWS) and McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) were used for verification of rainfall accuracy. The optimal Z-R relation was applied the Tropical Z-R relationship (Z=32R1.65), it has been confirmed that the accuracy is improved in the extreme rainfall events. In addition, the performance of blended multi-sensor combining rainfall was improved in 60mm/h rainfall and more strong heavy rainfall events. Moreover, we adjusted to forecast the urban discharge using Storm Water Management Model (SWMM). Several statistical methods have been used for assessment of model simulation between observed and simulated discharge. In terms of the correlation coefficient and r-squared discharge between observed and forecasted were highly correlated. Based on this study, we captured a possibility of real-time urban discharge forecasting system using remotely sensed data and its utilization for real-time flood warning. Acknowledgement This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korean government.

  20. Monitoring grazing intensity: an experiment with canopy spectra applied to satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Li, Fei; Zhao, Ying; Zheng, Jiajia; Luo, Juhua; Zhang, Xiaoqiang

    2016-04-01

    The quantification of grassland grazing intensity (GI) and its detailed spatial distribution are important for grassland management and ecological protection. Remote sensing has great potential in these areas, but its use is still limited. This study analyzed the impacts of grazing on biophysical properties of vegetation and suggested using biomass to quantify GI because of its stability and interpretability. In comparison to a single spectral index, such as the red edge index (REI), combining REI and a cellulose absorption ratio index calculated from hyperspectral data performs better for biomass estimation. Further, an auxiliary spectral index, called the grazing monitoring index (GMI), was developed based on differences in spectral reflectance in the infrared range. Experiments in a grazing area of the Inner Mongolia grassland indicated that GMI can identify GI, with three range intervals (GMI <0, 0-1, and ≥1) used to describe the biomass distribution. The results showed that combining GMI and biomass was more successful than existing approaches for identifying the grassland variability resulting from the spatial heterogeneity of grazing behavior. The thresholds of biomass for four GI levels (ungrazed, lightly grazed, moderately grazed, and heavily grazed) could be determined by the intersections of biomass distributions. In addition, the approach developed at the on-ground canopy scale was extended to remotely sensed Hyperion data. The results showed that the approach could successfully identify the grazing treatments of blocks in the experimental grazing area. Overall, our study provides inspiration and ideas for using satellite remote sensing for evaluating plant production, standing biomass, and livestock impacts.

  1. Introduction to the Special Session on Thermal Remote Sensing Data for Earth Science Research: The Critical Need for Continued Data Collection and Development of Future Thermal Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale a.; Luvall, Jeffrey C.; Anderson, Martha; Hook, Simon

    2006-01-01

    There is a rich and long history of thermal infrared (TIR) remote sensing data for multidisciplinary Earth science research. The continuity of TIR data collection, however, is now in jeopardy given there are no planned future Earth observing TIR remote sensing satellite systems with moderately high spatial resolutions to replace those currently in orbit on NASA's Terra suite of sensors. This session will convene researchers who have actively worked in the field of TIR remote sensing to present results that elucidate the importance of thermal remote sensing to the wider Earth science research community. Additionally, this session will also exist as a forum for presenting concepts and ideas for new thermal sensing systems with high spatial resolutions for future Earth science satellite missions, as opposed to planned systems such as the Visible/Infrared Imager/Radiometer (VIIRS) suite of sensors on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) that will collect TIR data at very coarse iairesolutions.

  2. Introduction to the Special Session on Thermal Remote Sensing Data for Earth Science Research: The Critical Need for Continued Data Collection and Development of Future Thermal Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale a.; Luvall, Jeffrey C.; Anderson, Martha; Hook, Simon

    2006-01-01

    There is a rich and long history of thermal infrared (TIR) remote sensing data for multidisciplinary Earth science research. The continuity of TIR data collection, however, is now in jeopardy given there are no planned future Earth observing TIR remote sensing satellite systems with moderately high spatial resolutions to replace those currently in orbit on NASA's Terra suite of sensors. This session will convene researchers who have actively worked in the field of TIR remote sensing to present results that elucidate the importance of thermal remote sensing to the wider Earth science research community. Additionally, this session will also exist as a forum for presenting concepts and ideas for new thermal sensing systems with high spatial resolutions for future Earth science satellite missions, as opposed to planned systems such as the Visible/Infrared Imager/Radiometer (VIIRS) suite of sensors on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) that will collect TIR data at very coarse iairesolutions.

  3. Recent advances in sensors, radiometry, and data processing for remote sensing; Proceedings of the Meeting, Orlando, FL, Apr. 6-8, 1988

    NASA Astrophysics Data System (ADS)

    Slater, Philip N.

    1988-01-01

    The conference presents papers on new developments in aircraft and satellite sensors, radiometric calibration of remote sensing systems, ground-based and aircraft remote sensing measurement techniques, and applications of data compression and AI in remote sensing. Consideration is given to the high-resolution imaging spectrometer, an airborne laser polarimeter system for terrestrial physics research, the role of calibration in remote sensing for the earth observing system, and in-flight calibration of solar irradiance measurements. Other topics include the absolute radiometric calibration of the NOAA AVHRR sensors, calibration of long-term data sets from operational satellites using the Space Shuttle, and the use of self-calibrated detectors in radiometric instruments.

  4. The exploitation of data from remote and human sensors for environment monitoring in the SMAT project.

    PubMed

    Meo, Rosa; Roglia, Elena; Bottino, Andrea

    2012-12-17

    In this paper, we outline the functionalities of a system that integrates and controls a fleet of Unmanned Aircraft Vehicles (UAVs). UAVs have a set of payload sensors employed for territorial surveillance, whose outputs are stored in the system and analysed by the data exploitation functions at different levels. In particular, we detail the second level data exploitation function whose aim is to improve the sensors data interpretation in the post-mission activities. It is concerned with the mosaicking of the aerial images and the cartography enrichment by human sensors--the social media users. We also describe the software architecture for the development of a mash-up (the integration of information and functionalities coming from the Web) and the possibility of using human sensors in the monitoring of the territory, a field in which, traditionally, the involved sensors were only the hardware ones.

  5. Wireless Sensor Node for Autonomous Monitoring and Alerts in Remote Environments

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor); Panangadan, Anand V. (Inventor)

    2015-01-01

    A method, apparatus, system, and computer program products provides personal alert and tracking capabilities using one or more nodes. Each node includes radio transceiver chips operating at different frequency ranges, a power amplifier, sensors, a display, and embedded software. The chips enable the node to operate as either a mobile sensor node or a relay base station node while providing a long distance relay link between nodes. The power amplifier enables a line-of-sight communication between the one or more nodes. The sensors provide a GPS signal, temperature, and accelerometer information (used to trigger an alert condition). The embedded software captures and processes the sensor information, provides a multi-hop packet routing protocol to relay the sensor information to and receive alert information from a command center, and to display the alert information on the display.

  6. Remote sensing techniques applied to multispectral recognition of the Aranjuez pilot zone

    NASA Technical Reports Server (NTRS)

    Lemos, G. L.; Salinas, J.; Rebollo, M.

    1977-01-01

    A rectangular (7 x 14 km) area 40 km S of Madrid was remote-sensed with a three-stage recognition process. Ground truth was established in the first phase, airborne sensing with a multispectral scanner and photographic cameras were used in the second phase, and Landsat satellite data were obtained in the third phase. Agronomic and hydrological photointerpretation problems are discussed. Color, black/white, and labeled areas are displayed for crop recognition in the land-use survey; turbidity, concentrations of pollutants and natural chemicals, and densitometry of the water are considered in the evaluation of water resources.

  7. Plagioclase feldspars - Visible and near infrared diffuse reflectance spectra as applied to remote sensing

    NASA Technical Reports Server (NTRS)

    Adams, J. B.; Goullaud, L. H.

    1978-01-01

    Visible and near IR diffuse reflectance spectra of plagioclase feldspars are characterized by absorption features caused by minor amounts of Fe(2+) that occur bound in the crystal structure. It is found that identification of terrestrial feldspars by remote sensing appears to be feasible for the compositional range An50 to An80, providing that other minerals do not mask the feldspar signatures. Determination of plagioclase composition using the wavelength of the Fe(2+) band may be possible for lunar samples, where the plagioclase can be assumed to be more calcic than An65.

  8. Validation and qualification of surface-applied fibre optic strain sensors using application-independent optical techniques

    NASA Astrophysics Data System (ADS)

    Schukar, Vivien G.; Kadoke, Daniel; Kusche, Nadine; Münzenberger, Sven; Gründer, Klaus-Peter; Habel, Wolfgang R.

    2012-08-01

    Surface-applied fibre optic strain sensors were investigated using a unique validation facility equipped with application-independent optical reference systems. First, different adhesives for the sensor's application were analysed regarding their material properties. Measurements resulting from conventional measurement techniques, such as thermo-mechanical analysis and dynamic mechanical analysis, were compared with measurements resulting from digital image correlation, which has the advantage of being a non-contact technique. Second, fibre optic strain sensors were applied to test specimens with the selected adhesives. Their strain-transfer mechanism was analysed in comparison with conventional strain gauges. Relative movements between the applied sensor and the test specimen were visualized easily using optical reference methods, digital image correlation and electronic speckle pattern interferometry. Conventional strain gauges showed limited opportunities for an objective strain-transfer analysis because they are also affected by application conditions.

  9. Satellite Remote Sensing of Global Vegetation Phenology: Comparison of Optical-Infrared and Microwave Sensors

    NASA Astrophysics Data System (ADS)

    Jones, M. O.; Kimball, J. S.; Jones, L. A.; McDonald, K. C.

    2009-12-01

    Satellite optical-infrared remote sensing has long been used to monitor vegetation phenology at continental to global scales. Models incorporating the optical-infrared vegetation indices (VI), EVI and NDVI, have been applied to measure phenological events including growing season start, peak, end and duration. These indices are sensitive to signal degradation from reduced solar illumination, clouds, smoke and other atmospheric effects reducing temporal fidelity and accuracy of observations. However, satellite microwave remote sensing at lower frequencies (≤ 10 GHz) is largely insensitive to solar illumination and atmospheric effects. The AMSR-E radiometer offers multifrequency microwave observations at moderate (~25-60 km) spatial scales with near-daily global sampling. We recently developed an algorithm for global retrieval of vegetation optical depth (VOD), which is sensitive to phenological changes in canopy biomass and water content. We examined phenology signals using three approaches. First, linear correlations between six years (2003-2008) of MODIS VI, AMSR-E VOD, and a bioclimatic phenology model were derived globally. Second, correlations were summarized by land cover type and spatially contiguous regions to assess regional patterns in the results. Finally, we compared MODIS VI and AMSR-E VOD series with the bioclimatic phenology model and tower eddy covariance CO2 flux measurements across a network of Ameriflux sites representing the major global biomes. Our results show reduced VI-VOD correspondence over cloudy regions, including tropical forests, due to VI related signal degradation. VOD phenology sensitivity coincided with seasonal changes in meteorological conditions, vegetation greenness, ecosystem respiration and net ecosystem CO2 exchange. Correlation means by land cover (pixels≥80% homogeneous) ranged from 0.66 (NDVI; Savannas; 97% of pixels p<0.01) to -0.07 (EVI; Evergreen Broadleaf; 70% of pixels p>0.10). The majority of insignificant

  10. Pulsed remote field eddy current technique applied to non-magnetic flat conductive plates

    NASA Astrophysics Data System (ADS)

    Yang, Binfeng; Zhang, Hui; Zhang, Chao; Zhang, Zhanbin

    2013-12-01

    Non-magnetic metal plates are widely used in aviation and industrial applications. The detection of cracks in thick plate structures, such as multilayered structures of aircraft fuselage, has been challenging in nondestructive evaluation societies. The remote field eddy current (RFEC) technique has shown advantages of deep penetration and high sensitivity to deeply buried anomalies. However, the RFEC technique is mainly used to evaluate ferromagnetic tubes. There are many problems that should be fixed before the expansion and application of this technique for the inspection of non-magnetic conductive plates. In this article, the pulsed remote field eddy current (PRFEC) technique for the detection of defects in non-magnetic conducting plates was investigated. First, the principle of the PRFEC technique was analysed, followed by the analysis of the differences between the detection of defects in ferromagnetic and non-magnetic plain structures. Three different models of the PRFEC probe were simulated using ANSYS. The location of the transition zone, defect detection sensitivity and the ability to detect defects in thick plates using three probes were analysed and compared. The simulation results showed that the probe with a ferrite core had the highest detecting ability. The conclusions derived from the simulation study were also validated by conducting experiments.

  11. PIXE and receptor models applied to remote aerosol source apportionment in Brazil

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Orsini, Celso

    1987-03-01

    We have used PIXE together with receptor modeling for quantiative source apportionment of remote aerosols. The Sao Paulo PIXE system uses an 8 MeV alpha particle beam, and it can detect elements with Z > 11 with a detection limit between 1 and 30 ng m 3 . We sampled atmospheric aerosols in six remote sites: Amazon Basin. Atlantic Forest, Arembepe, Fernando de Noronha, Firminopolis and Itaherai. Sampling was performed using stacked filter units, cascade impactors with 6 or 10 stages and linear streakers. Source apportionment of the coarse mode aerosols was done using three receptor models: chemical mass balance, principal factor analysis and stepwise multiple regression analysis. Three sources of aerosols were quantiatively distinguished: marine aerosols, soil dust and aerosols released by plants. The emission of aerosols by vegetation is very clear for all sampling sites and with all three receptor models. In the Amazon Basin and Atlantic Forest the aerosol released by plants is the major source and accounts for 60-80% of airborne concentrations.

  12. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors

    PubMed Central

    Zheng, Guang; Moskal, L. Monika

    2009-01-01

    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels. PMID:22574042

  13. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.

    PubMed

    Zheng, Guang; Moskal, L Monika

    2009-01-01

    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels.

  14. Remote sensing applied to the detection of heavy metals in potable water sources

    NASA Astrophysics Data System (ADS)

    Singh, Aimee

    2003-06-01

    High resolution satellite data were used to assess the hazardous heavy metals seeping into potable water sources from refuse resulting from the coal cleaning and refining process. Remote sensing data from different NASA Earth Observing Satellite and instruments aboard these satellites were utilized in developing a three-dimensional visualization (flythrough). These were mapped on the specialized graphics of the West Virginia region to detect metal concentrations in the water bodies around coal impoundments. An integration of EDGE Viewer, ArcView Geological Information Systems (GIS), and Bryce 5 software were used to construct the visualization. The communities surrounding the particular geographical locations will be able to use this tool for posting an alert of unusually high and potentially harmful concentrations of heavy metals in the water reservoir.

  15. The Exploitation of Data from Remote and Human Sensors for Environment Monitoring in the SMAT Project

    PubMed Central

    Meo, Rosa; Roglia, Elena; Bottino, Andrea

    2012-01-01

    In this paper, we outline the functionalities of a system that integrates and controls a fleet of Unmanned Aircraft Vehicles (UAVs). UAVs have a set of payload sensors employed for territorial surveillance, whose outputs are stored in the system and analysed by the data exploitation functions at different levels. In particular, we detail the second level data exploitation function whose aim is to improve the sensors data interpretation in the post-mission activities. It is concerned with the mosaicking of the aerial images and the cartography enrichment by human sensors—the social media users. We also describe the software architecture for the development of a mash-up (the integration of information and functionalities coming from the Web) and the possibility of using human sensors in the monitoring of the territory, a field in which, traditionally, the involved sensors were only the hardware ones. PMID:23247415

  16. Spatial and Temporal knowledge representation techniques for traditional machine learning classifiers applied to remote sensing data.

    NASA Astrophysics Data System (ADS)

    Cervone, G.; Kafatos, M.

    2005-12-01

    Formulating general hypotheses from limited observations is one of the fundamental principles of scientific discovery. The data mining approach consists, among others, in generating new knowledge analyzing massive amounts of data and using background knowledge. Knowledge representation is one of the fundamental topics of data mining, because the representation language dictates which algorithms to use, as well as the effective usefulness of the learned hypotheses. Programs that use richer representation languages have the advantage of generating hypotheses that are compact and easy to understand, and the disadvantage of being more complex, slower and ususally with more control parameters. On the other hand, programs that use simpler representaiton languages overcome these shortcomings, but fail to generate hypotheses that can be easily interpreted and used for problem solving and decision making. Symbolic machine learning methods, such as decision rule classifiers, use a complex representation language which can be used to describe difficult concepts, and allow to cope with spatial and temporal data, such as remote sensing data. Because data are usually collected as a sequence of observations over time and in specific locations, very often it is necessary to find relations not only in the data per se, but also in the temporal and spatial distribution of the observations. Due to the increasingly large amount of spatial and temporal data collected and analyzed in several fields such as remote sensing, geographical information systems (GIS), bioinformatics, medicine, bank transactions, etc, spatial and temporal knowledge representaion has become a problem of crucial importance. Present research investigates methods to use existing symbolic machine learning classifiers with temporal and spatial data. The data are converted in a representation language which is suitable to learn spatial and temporal relationship without modifying the existing algorithms. Results from

  17. Data processing method applying principal component analysis and spectral angle mapper for imaging spectroscopic sensors

    NASA Astrophysics Data System (ADS)

    García-Allende, P. B.; Conde, O. M.; Mirapeix, J.; Cubillas, A. M.; López-Higuera, J. M.

    2007-07-01

    A data processing method for hyperspectral images is presented. Each image contains the whole diffuse reflectance spectra of the analyzed material for all the spatial positions along a specific line of vision. This data processing method is composed of two blocks: data compression and classification unit. Data compression is performed by means of Principal Component Analysis (PCA) and the spectral interpretation algorithm for classification is the Spectral Angle Mapper (SAM). This strategy of classification applying PCA and SAM has been successfully tested on the raw material on-line characterization in the tobacco industry. In this application case the desired raw material (tobacco leaves) should be discriminated from other unwanted spurious materials, such as plastic, cardboard, leather, candy paper, etc. Hyperspectral images are recorded by a spectroscopic sensor consisting of a monochromatic camera and a passive Prism- Grating-Prism device. Performance results are compared with a spectral interpretation algorithm based on Artificial Neural Networks (ANN).

  18. Remote sensing of plant trait responses to field-based plant-soil feedback using UAV-based optical sensors

    NASA Astrophysics Data System (ADS)

    van der Meij, Bob; Kooistra, Lammert; Suomalainen, Juha; Barel, Janna M.; De Deyn, Gerlinde B.

    2017-02-01

    Plant responses to biotic and abiotic legacies left in soil by preceding plants is known as plant-soil feedback (PSF). PSF is an important mechanism to explain plant community dynamics and plant performance in natural and agricultural systems. However, most PSF studies are short-term and small-scale due to practical constraints for field-scale quantification of PSF effects, yet field experiments are warranted to assess actual PSF effects under less controlled conditions. Here we used unmanned aerial vehicle (UAV)-based optical sensors to test whether PSF effects on plant traits can be quantified remotely. We established a randomized agro-ecological field experiment in which six different cover crop species and species combinations from three different plant families (Poaceae, Fabaceae, Brassicaceae) were grown. The feedback effects on plant traits were tested in oat (Avena sativa) by quantifying the cover crop legacy effects on key plant traits: height, fresh biomass, nitrogen content, and leaf chlorophyll content. Prior to destructive sampling, hyperspectral data were acquired and used for calibration and independent validation of regression models to retrieve plant traits from optical data. Subsequently, for each trait the model with highest precision and accuracy was selected. We used the hyperspectral analyses to predict the directly measured plant height (RMSE = 5.12 cm, R2 = 0.79), chlorophyll content (RMSE = 0.11 g m-2, R2 = 0.80), N-content (RMSE = 1.94 g m-2, R2 = 0.68), and fresh biomass (RMSE = 0.72 kg m-2, R2 = 0.56). Overall the PSF effects of the different cover crop treatments based on the remote sensing data matched the results based on in situ measurements. The average oat canopy was tallest and its leaf chlorophyll content highest in response to legacy of Vicia sativa monocultures (100 cm, 0.95 g m-2, respectively) and in mixture with Raphanus sativus (100 cm, 1.09 g m-2, respectively), while the lowest values (76 cm, 0.41 g m-2, respectively

  19. Coastal and Estuarine Waters: Light Behavior. Coastal and Estuarine Waters: Optical Sensors and Remote Sensing.

    EPA Science Inventory

    This article summarizes the use of remote sensing techniques and technology to monitor coastal and estuarine waters. These waters are rich in mineral particles stirred up from the seabed by tides and waves and dissolved organic matter transported by rivers. The majority of the li...

  20. Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors

    USGS Publications Warehouse

    Steenweg, Robin; Hebblewhite, Mark; Kays, Roland; Ahumada, Jorge A.; Fisher, Jason T.; Burton, Cole; Townsend, Susan E.; Carbone, Chris; Rowcliffe, J. Marcus; Whittington, Jesse; Brodie, Jedediah; Royle, Andy; Switalski, Adam; Clevenger, Anthony P.; Heim, Nicole; Rich, Lindsey N.

    2017-01-01

    Countries committed to implementing the Convention on Biological Diversity's 2011–2020 strategic plan need effective tools to monitor global trends in biodiversity. Remote cameras are a rapidly growing technology that has great potential to transform global monitoring for terrestrial biodiversity and can be an important contributor to the call for measuring Essential Biodiversity Variables. Recent advances in camera technology and methods enable researchers to estimate changes in abundance and distribution for entire communities of animals and to identify global drivers of biodiversity trends. We suggest that interconnected networks of remote cameras will soon monitor biodiversity at a global scale, help answer pressing ecological questions, and guide conservation policy. This global network will require greater collaboration among remote-camera studies and citizen scientists, including standardized metadata, shared protocols, and security measures to protect records about sensitive species. With modest investment in infrastructure, and continued innovation, synthesis, and collaboration, we envision a global network of remote cameras that not only provides real-time biodiversity data but also serves to connect people with nature.

  1. Comparison of remote sensors for soil moisture and other hydrologic studies

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R.

    1972-01-01

    Progress in lake temperature and soil moisture remote sensing during 1971. The use of satellite data and imagery for improved flood and low flow forecasts, improved water level and ice reports for the Great Lakes, and better and faster coastal zone storm damage assessment is considered.

  2. Coastal and Estuarine Waters: Light Behavior. Coastal and Estuarine Waters: Optical Sensors and Remote Sensing.

    EPA Science Inventory

    This article summarizes the use of remote sensing techniques and technology to monitor coastal and estuarine waters. These waters are rich in mineral particles stirred up from the seabed by tides and waves and dissolved organic matter transported by rivers. The majority of the li...

  3. Best Practices for Improving Capacity Building Outcomes through Professional Training: Insights from NASA's Applied Remote Sensing Training (ARSET) Program

    NASA Astrophysics Data System (ADS)

    Blevins, B.; Mehta, A. V.; Gupta, P.; Prados, A. I.; McCullum, A. J. K.; Schmidt, C.

    2015-12-01

    NASA's Applied Remote Sensing Training Program (ARSET), http://arset.gsfc.nasa.gov, has been providing applied remote sensing training since 2008. To date, the program has reached over 3500 participants, with 1600 stakeholders from 100 countries in 2015 alone. The goals of the program are to develop the technical and analytical skills necessary to utilize NASA resources for decision-support, and to help end-users navigate through the vast, freely available and open data resources. We discuss ARSET's best practices and training approach to improved data access and application of NASA satellite and model data for air quality, water resources, disasters, land, and wildfire management. ARSET follows an iterative approach where the end user community is engaged and data needs input is solicited throughout the training process. End-user data needs and feedback are also incorporated into current and future training content and communicated to NASA Applied Sciences Program principal investigators and data centers responsible for developing NASA tools, portals, data formats, and other data delivery structures. ARSET's success has relied upon 1) targeting outreach to applied science professionals both as training participants and collaborators in developing training activities 2) developing training content tailored to a specific to community's decision support activities and unique environmental challenges 3) promoting interactive forums during trainings to capture and assess end-user needs 4) training scientists within the program in science communication 5) adopting a contextualized gradual learning approach through online and hands-on instruction, and 6) conducting program evaluation, used to assess the benefit of ARSET to program participants and to plan and adapt future training content, methods, and outreach activities.

  4. Applied gamma ray spectrometry and remote sensing in delineation of nepheline syenites in rift tectonic settings

    NASA Astrophysics Data System (ADS)

    Chiwona, Annock Gabriel; Manning, David A. C.; Gaulton, Rachel; Cortes, Joaquin A.

    2017-04-01

    The United Nations (2016) observes that 'Neglected Development Minerals' including industrial minerals such as nepheline syenites have great potential for sustainable development, yet their exploitation has not been equally promoted like high value minerals. Nepheline syenites have great potential as alternative potassium (K) silicate fertiliser, as well as a source of Rare Earths. Demand for K fertiliser keeps rising by 3-3.5% annually (Jena et al., 2014) due to increased need to replace K removal from the soil (Sheldrick et al., 2002). The situation is most critical in Sub-Sahara Africa where nutrient loss due to intensive farming accounts to 22kg N, 2.5 kg P and 15 kg of K per hectare annually (Keeble, 2012). Ironically, Africa with 15% of global population, which is also expected to double by 2040 (Manning, 2015), uses only 1.5% of global K fertiliser. In this study, we use recently acquired countrywide airborne geophysical gamma ray data of Malawi (Bates & Mechennef, 2013) and satellite remote sensing data to identify nepheline syenites, suitable as sources of K silicate fertilizer, in rift tectonic settings. Initial focus was on the East African Rift System (EARS) starting with Malawi. Results from these two techniques are compared with X-ray fluorescence (XRF) geochemical analyses of sample collected from fieldwork in some potential areas of Malawi. With lessons from the Rochagem movement (Theodoro & Leonardos, 2006), identification of novel alternative potash sources in Africa will greatly benefit millions of farmers in developing countries, especially in Sub Sahara Africa where fertiliser costs are very high. Considering that high-resolution airborne geophysical data is not available in many African countries due to high costs associated with data acquisition campaigns, alternative and effective remote sensing approaches for delineating nepheline syenite rocks are necessary. References: [1] Bates M & Mechennef, F (2013) Data Acquisition Report, Sander

  5. Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott; Heberle, Jay

    2010-01-01

    This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.

  6. A fluorescence LIDAR sensor for hyper-spectral time-resolved remote sensing and mapping.

    PubMed

    Palombi, Lorenzo; Alderighi, Daniele; Cecchi, Giovanna; Raimondi, Valentina; Toci, Guido; Lognoli, David

    2013-06-17

    In this work we present a LIDAR sensor devised for the acquisition of time resolved laser induced fluorescence spectra. The gating time for the acquisition of the fluorescence spectra can be sequentially delayed in order to achieve fluorescence data that are resolved both in the spectral and temporal domains. The sensor can provide sub-nanometric spectral resolution and nanosecond time resolution. The sensor has also imaging capabilities by means of a computer-controlled motorized steering mirror featuring a biaxial angular scanning with 200 μradiant angular resolution. The measurement can be repeated for each point of a geometric grid in order to collect a hyper-spectral time-resolved map of an extended target.

  7. Future European and Japanese remote-sensing sensors and programs; Proceedings of the Meeting, Orlando, FL, Apr. 1, 2, 1991

    SciTech Connect

    Slater, P.N.

    1991-01-01

    Consideration is given to the METEOSAT second-generation program, the ESA earth observation polar platform program, a new satellite for a climatology study in the tropics, a medium-resolution imaging spectrometer, a Michelson interferometer for passive atmosphere sounding, an optical mapping instrument, an optical sensor system for Japanese earth resources satellite 1, a synthetic aperture radar of JERS-1, an ocean color and temperature scanner for Advanced Earth-Observing Satellite (ADEOS), an interferometric monitor for greenhouse gasses for ADEOS. Attention is also given to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for EOS-A, short-wave infrared subsystem design status of ASTER, ASTER calibration concept, Japanese polar orbit platform program, and airborne and spaceborne thermal multispectral remote sensing.

  8. Personalized Technologies in Chronic Gastrointestinal Disorders: Self-monitoring and Remote Sensor Technologies

    PubMed Central

    Riaz, Muhammad Safwan; Atreja, Ashish

    2016-01-01

    With increased access to high-speed Internet and smartphone devices, patients have started to use mobile applications (apps) for various health needs. These mobile apps are now increasingly used in integration with telemedicine and wearables to support fitness, health education, symptom tracking, and collaborative disease management and care coordination. More recently, evidence (especially around remote patient monitoring) has started to build in some chronic diseases, and some of the digital health technologies have received approval from the Food and Drug Administration. With the changing healthcare landscape and push for value-based care, adoption of these digital health initiatives among providers is bound to increase. Although so far there is a dearth of published evidence about effectiveness of these apps in gastroenterology care, there are ongoing trials to determine whether remote patient monitoring can lead to improvement in process metrics or outcome metrics for patients with chronic gastrointestinal diseases. PMID:27189911

  9. Performance evaluation of a Wireless Body Area sensor network for remote patient monitoring.

    PubMed

    Khan, Jamil Y; Yuce, Mehmet R; Karami, Farbood

    2008-01-01

    In recent years, interests in the application of Wireless Body Area Network (WBAN) have grown considerably. A WBAN can be used to develop a patient monitoring system which offers flexibility and mobility to patients. Use of a WBAN will also allow the flexibility of setting up a remote monitoring system via either the internet or an intranet. For such medical systems it is very important that a WBAN can collect and transmit data reliably, and in a timely manner to the monitoring entity. In this paper we examine the performance of an IEEE802.15.4/Zigbee MAC based WBAN operating in different patient monitoring environment. We study the performance of a remote patient monitoring system using an OPNET based simulation model.

  10. Interpretation of air pollution data as measured by an airborne remote sensor

    NASA Technical Reports Server (NTRS)

    Smith, G. L.; Young, G. R.; Green, R. N.

    1974-01-01

    The investigation described is a continuation of the work reported by Smith et al. (1974) in which a single source was studied. In the current study, multiple sources of known location are considered. The study is concerned with the strength of each source and the resulting pollution concentration field. The characteristics of the remotely sensed data are discussed along with the parameter estimation procedure, the estimation of pollution parameters, and a numerical example.

  11. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.

    2012-01-01

    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  12. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.

    2012-01-01

    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  13. Comparison of chlorophyll a concentration detected by remote sensors and other chlorophyll indices in inhomogeneous turbid waters.

    PubMed

    Sokoletsky, Leonid G; Yacobi, Yosef Z

    2011-10-20

    A new analytical approach for retrieval of the vertically weighted chlorophyll a concentration (Chl(rs)) detected by remote sensors is presented. Model calculations were carried out for the turbid waters of Lake Kinneret, Israel, and showed that Chl(rs) may be replaced by the average chlorophyll a concentration (Chl(p)) within the upper "penetration layer" 0-Z(p). The study also showed a high correlation between Chl(rs) and Chl concentration averaged in the other depth layers, namely, the 0-1 m layer, the euphotic layer (0-Z(e)), and the production layer (0-Z(pr)). Our findings are closely related to models developed for the world ocean, with the exception of periods when the dinoflagellate Peridinium gatunense blooms in the lake. We showed the effect of the pattern of vertical Chl distributions within the penetration layer on the difference between Chl(rs) and other Chl indices was conspicuous when the Chl maximum was in the uppermost 0- m layer of the water column. We assume that the presented approaches are instrumental for further development of optimal, locally adapted algorithms for remote sensing of Chl in any type of natural waters.

  14. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    NASA Astrophysics Data System (ADS)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  15. Soil moisture measurement techniques for remote sensing ground truth: evaluation and performance test of soil moisture sensors

    NASA Astrophysics Data System (ADS)

    Tsegaye, Teferi D.; Laymon, Charles A.; Crosson, William L.; Coleman, Tommy L.; Rajbhandari, Narayan B.

    1997-12-01

    Remote sensing technology requires fast and sufficiently accurate devices to take repetitive and less destructive soil moisture measurement techniques for validation of remotely sensed data. This study was conducted at Winfred Thomas Agricultural Research Station (WTARS) in Hazel Green, Alabama. The objectives of this study were to compare volumetric water content values measured with the time domain reflectometry (TDR) and water content reflectometry (WCR) instruments to the values obtained by the standard gravimetric technique for the upper soil depth and to examine the performance of the different types of soil moisture sensors and the effect of the probe length on the accuracy of soil moisture determination. From Huntsville '96 field research, we found that the emitting depth is 5 cm or less, possibly as low as 1 cm. This suggests that, in order to validate remotely sensed data, it is necessary to have fast and sufficiently accurate instruments to take repetitive and non-destructive soil moisture measurement to measure soil moisture. Our results indicated no significance difference between the Delta-T 6 cm probe output with GSM, MESA 10 cm probe output with GSM, and WCR30 and 20 cm probe output with GSM measurements. Even though the standard gravimetric technique is very reliable to measure soil moisture content, it is relatively time consuming and very destructive. Therefore, it may not be used for repetitive measurement at exactly the same location. The different types of TDR and WCR probes we tested can be used for measuring the moisture content. Except the WCR 5 and 10 cm probes, all probes tested in this experiment provided similar results. Therefore, this probe can replace the traditional gravimetric technique as long as the proper calibration is performed for a range of soil moisture and soil types.

  16. Land Cover Change Using Change Vector Analysis of Landsat 5 Remote Sensor Data: Texas During the 2011 Drought Event

    NASA Astrophysics Data System (ADS)

    Rahman, Shoumik

    Accurate and replicable measurements of changes to land cover from drought conditions are essential for monitoring ecosystem disturbances. Techniques designed to measure land cover changes have been developed using data from remote sensing but with variable success. In my three study areas of southeastern parts of the American State of Texas, the change vector analysis (CVA) technique was tested on remote sensing data captured by the Landsat TM sensor taken in the years 2009, 2010, and 2011. This study monitors land use/land cover (LULC) changes due to the extreme Texas drought of 2011; the worst single year drought ever recorded in the state. The Landsat data are converted to vegetation indices; the normalized difference vegetation index (NDVI), bare soil index (BI), normalized difference moisture index (NDMI), as well as Tasseled Cap Transformations (TCT) brightness, greenness and wetness. CVA was used to determine the intensity of change (magnitude) and the type of changes that occurred (direction) between the multi-temporal data. This represents a new and improved method for calculating the direction component. Additionally, the relationship between NDVI and NDMI and between TCT variables and their application in CVA are further explored. The results show that land cover changes occurred due to an increase in precipitation in 2010 as well as considerable decrease of precipitation in 2011 resulting in the devastating drought. Validation procedures show that the CVA method was effective in capturing both magnitude of change and type of change that occurred. The remote sensing approach to monitoring drought-induced land cover changes is systematic, replicable and globally available at any time. Such a reliable methodology is essential for measuring ecosystem threats and human population vulnerability.

  17. ERTS-B (Earth Resources Technology Satellite). [spacecraft design remote sensor description, and technology utilization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Mission plans and objectives of the ERTS 2 Satellite are presented. ERTS 2 follow-on investigations in various scientific disciplines including agriculture, meteorology, land-use, geology, water resources, oceanography, and environment are discussed. Spacecraft design and its sensors are described along with the Delta launch vehicle and launch operations. Applications identified from ERTS 1 investigations are summarized.

  18. Sensor Node for Remote Monitoring of Waterborne Disease-Causing Bacteria

    PubMed Central

    Kim, Kyukwang; Myung, Hyun

    2015-01-01

    A sensor node for sampling water and checking for the presence of harmful bacteria such as E. coli in water sources was developed in this research. A chromogenic enzyme substrate assay method was used to easily detect coliform bacteria by monitoring the color change of the sampled water mixed with a reagent. Live webcam image streaming to the web browser of the end user with a Wi-Fi connected sensor node shows the water color changes in real time. The liquid can be manipulated on the web-based user interface, and also can be observed by webcam feeds. Image streaming and web console servers run on an embedded processor with an expansion board. The UART channel of the expansion board is connected to an external Arduino board and a motor driver to control self-priming water pumps to sample the water, mix the reagent, and remove the water sample after the test is completed. The sensor node can repeat water testing until the test reagent is depleted. The authors anticipate that the use of the sensor node developed in this research can decrease the cost and required labor for testing samples in a factory environment and checking the water quality of local water sources in developing countries. PMID:25951340

  19. Fiber Optic-Fluorescence Sensors for Remote Detection of Chemical Species in Seawater

    DTIC Science & Technology

    1989-09-01

    from the viewing volume by diffusive/convective mass transport processes and replaced by uncomplexed indicator from the reservoir. Because the flow...Morin as Fluorescence sensor for Determination of Aluminum(III) ." Anal. Chem., 1983, 55, 667-670. (10) Urbano , E., H. Offenbacher, and O.S. Wolfbeis

  20. Fully networked remote intrusion detection sensors for border monitoring and protection

    NASA Astrophysics Data System (ADS)

    Jones, Barry; McQuiddy, John; McQuiddy, Brian

    2006-05-01

    Protection of the Nation's borders in the post-911 era has taken on increased importance while it has become more technically challenging due to dramatic increases in the number of illegal aliens attempting unauthorized border crossings. Unattended ground sensors, used in large numbers, have been a key element of the US Border Patrol's inventory of sensing systems that are deployed along the borders to alert agents to intrusions. The legacy sensors are based upon decades old technology and limited in their ability to be networked and integrated into a cohesive web that can provide timely information that can be readily integrated into the Border Patrol and DHS information networks. This paper presents an introduction to a system developed by McQ for border monitoring and intrusion detection that provides full networked capability, from the sensor to the display. The paper also includes results of testing and integration with DHS information systems. The significance of Internet protocol based information generation at the sensor level and real time distribution of data is emphasized, including resource and infrastructure sharing and scalability to nationwide scope will also be discussed.

  1. GPS interferometric reflectometry: Forward and inverse modeling of GPS signal strength data applied to remote sensing of snow

    NASA Astrophysics Data System (ADS)

    Nievinski, F. G.; Larson, K. M.; Zavorotny, V.; Williams, M. W.; Gutmann, E. D.

    2010-12-01

    GPS interferometric reflectometry (GPS-IR) is a method that exploits multipath for ground-based remote sensing. It has been demonstrated to be capable of retrieving a number of environmental parameters of importance to the study of the water and carbon cycle, including surface soil moisture, snow depth, and vegetation. GPS-IR could be used to provide validation of spaceborne sensors. It also provides an intermediate-scale footprint that augments other measurement systems. Initial results for GPS-IR adopted a mostly empirical data processing approach: changes in observation frequencies and amplitudes have been correlated with changes in environmental parameters. In parallel, a theoretical model based on the physics of electromagnetic scattering was proposed, but has not been used directly in aiding the environmental retrievals. We will present results seeking to bridge these two efforts. We have utilized the physically-based model as a forward step, in conjunction with a statistical inverse model; the former is based on geometrical optics, while the latter is based on non-linear least squares. We will examine time series of inverted parameters as well as post-fit residuals to illustrate and discuss model fitting issues in GPS-IR, such as biases, uncertainty quantification, and quality control. We will compare our model-based results to in situ observations of snow depth and snow water equivalent.

  2. System Analysis Applied to Autonomy: Application to High-Altitude Long-Endurance Remotely Operated Aircraft

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Yetter, Jeffrey A.; Guynn, Mark D.

    2006-01-01

    Maturation of intelligent systems technologies and their incorporation into aerial platforms are dictating the development of new analysis tools and incorporation of such tools into existing system analysis methodologies in order to fully capture the trade-offs of autonomy on vehicle and mission success. A first-order "system analysis of autonomy" methodology is outlined in this paper. Further, this analysis methodology is subsequently applied to notional high-altitude long-endurance (HALE) aerial vehicle missions.

  3. Observing the Earth from an Astronaut's View - Applied Remote Sensing in Schools

    NASA Astrophysics Data System (ADS)

    Rienow, Andreas; Hodam, Henryk; Menz, Gunter; Kerstin, Voß

    2015-04-01

    Since spring 2014, NASA conducts the High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS). HDEV consists of four cameras mounted at ESA's Columbus laboratory. They continuously observe our earth in three different perspectives. Hence, they provide not only footage showing the Sun and the Moon rising and setting but also regular images of landscapes that are difficult to access, such as mountain ranges, deserts, and tropical rainforests. The German educational project "Columbus Eye", which is executed by the University of Bonn and is funded by the German Aerospace Center (DLR), aims at the implementation of the HDEV imagery and videos in a teaching portal: www.columbuseye.uni-bonn.de. Pupils should be motivated to work with the footage in order to learn about pattern and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (www.fis.uni-bonn.de/en). Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents in German and English have been created throughout the last 7 years since FIS' kickoff. The talk presents the educational valorization of ISS and satellite borne imagery data as well as their interactive implementation for teachers and pupils in both learning portals. It will be shown which possibilities the topic of earth observation from space holds ready for teaching the regular STEM curricula. A report of first experiences of a nationwide road show accompanying the mission of the ESA astronaut Alexander Gerst will be given. Among others it involved an event during which pupils from a secondary school in North Rhine-Westphalia have talked to the astronaut via ham radio. Accordingly, the presentation addresses the question of how synergies of human

  4. The Global Youth Service Team: students applying science and technology in remote, developing region of the world

    NASA Astrophysics Data System (ADS)

    Hollinger, Doug

    2012-03-01

    Eh Kalu, director of the Karen Department of Health and Welfare along the border region between Thailand and Burma said, ``It is very difficult to attend to a medical emergency at night when all you have are candles for light.'' The Global Youth Service Team (GYST) provides high school and college students with the opportunity to apply science that they have learned in the performance of international humanitarian service. Volunteers with the GYST build solar powered electrical systems, ultraviolet water purifiers, provide training and education to people who are most in need due to energy poverty, lack access to resources, natural disasters or human rights violations. GYST volunteers train with photovoltaic materials and equipment to become solar energy technicians. They then travel to remote communities in developing countries where we are able to catalyze improvements in education and health care, promote sustainable energy initiatives and help communities develop the capacity to use their own resources by which to create opportunity.

  5. Smart Sensors for Smart Hands

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1978-01-01

    Proximity, force-torque, touch and slippage sensors developed or applied by the JPL Teleoperator Project for remote manipulator control are described, including sensor data handling by computers for display and control. Examples are quoted showing the significance of these sensors for manual or computer control of manipulators. An interesting example is a proximity sensor system implemented for a four-claw JSC end effector and tested at the Shuttle Manipulator Training Facility of JSC. New sensing concepts aimed at simplifying the implementation of 'Smart Sensors for Smart Hands' in the space environment are discussed.

  6. Unattended Radiation Sensor Systems for Remote Terrestrial Applications and Nuclear Nonproliferation

    NASA Astrophysics Data System (ADS)

    van den Berg, Lodewijk; Proctor, Alan E.; Pohl, Ken R.; Bolozdynya, Alex; De Vito, Raymond

    2002-10-01

    The design of instrumentation for remote sensing presents special requirements in the areas of power consumption, long-term stability, and compactness. At the same time, the high sensitivity and resolution of the devices needs to be preserved. This paper will describe several instruments suitable for remote sensing developed under the sponsorship of the Defense Threat Reduction Agency (DTRA). The first is a system consisting of a mechanical cryocooler coupled with a high-purity germanium (HPGe) detector. The system is portable and can be operated for extended periods of time at remote locations without servicing. The second is a hand-held radiation intensity meter with high sensitivity that can operate for several months on two small batteries. Intensity signals above a set limit can be transmitted to a central monitoring station by cable or radio transmission. The third is a small module incorporating one or more high resolution mercuric iodide detectors and front end electronics. This unit can be operated using standard electronic systems, or it can be connected to a separately designed, pocket-size module that can provide power to any detector system and can process detector signals. It incorporates a shaping amplifier, a multichannel analyzer, and gated integrator electronics to process the slow signal pulses generated by room temperature solid state detectors. The fourth is a high pressure xenon (HPXe) ionization chamber filled with very pure xenon gas at high pressure, so that the efficiency and spectral resolution are increased above the normally available gas-filled tubes. The performance of these systems will be described and discussed.

  7. Delineation of geological problems for use in urban planning. [in Alabama using remote sensors

    NASA Technical Reports Server (NTRS)

    Hughes, T. H.; Bloss, P.; Fambrough, R.; Stow, S. H.; Hooks, W. G.; Freehafer, D.; Sutley, D.

    1976-01-01

    Activities of the University of Alabama in support of state and local planning commissions are reported. Demonstrations were given of the various types of remotely sensed images available from U-2, Skylab, and LANDSAT; and their uses and limitations were discussed. Techniques to be used in determining flood prone areas were provided for environmental studies. A rapid, inexpensive method for study was developed by which imagery is copied on 35 mm film and projected on existing topographic maps for measuring delta volume and growth.

  8. Remote detection of riverine traffic using an ad hoc wireless sensor network

    NASA Astrophysics Data System (ADS)

    Athan, Stephan P.

    2005-05-01

    Trafficking of illegal drugs on riverine and inland waterways continues to proliferate in South America. While there has been a successful joint effort to cut off overland and air trafficking routes, there exists a vast river network and Amazon region consisting of over 13,000 water miles that remains difficult to adequately monitor, increasing the likelihood of narcotics moving along this extensive river system. Hence, an effort is underway to provide remote unattended riverine detection in lieu of manned or attended detection measures.

  9. Remote diffuse reflectance spectroscopy sensor for tissue engineering monitoring based on blind signal separation.

    PubMed

    Martín-Mateos, Pedro; Crespo-Garcia, Sergio; Ruiz-Llata, Marta; Lopez-Fernandez, José Ramón; Jorcano, José Luis; Del Rio, Marcela; Larcher, Fernando; Acedo, Pablo

    2014-09-01

    In this study the first results on evaluation and assessment of grafted bioengineered skin substitutes using an optical Diffuse Reflectance Spectroscopy (DRS) system with a remote optical probe are shown. The proposed system is able to detect early vascularization of skin substitutes expressing the Vascular Endothelial Growth Factor (VEGF) protein compared to normal grafts, even though devitalized skin is used to protect the grafts. Given the particularities of the biological problem, data analysis is performed using two Blind Signal Separation (BSS) methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). These preliminary results are the first step towards point-of-care diagnostics for skin implants early assessment.

  10. Basic forest cover mapping using digitized remote sensor data and automated data processing techniques

    NASA Technical Reports Server (NTRS)

    Coggeshall, M. E.; Hoffer, R. M.

    1973-01-01

    Remote sensing equipment and automatic data processing techniques were employed as aids in the institution of improved forest resource management methods. On the basis of automatically calculated statistics derived from manually selected training samples, the feature selection processor of LARSYS selected, upon consideration of various groups of the four available spectral regions, a series of channel combinations whose automatic classification performances (for six cover types, including both deciduous and coniferous forest) were tested, analyzed, and further compared with automatic classification results obtained from digitized color infrared photography.

  11. Application of remote sensor data to geologic analysis of the Bonanza Test Site Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1973-01-01

    A geologic map of the Bonanza Test Site is nearing completion. Using published large scale geologic maps from various sources, the geology of the area is being compiled on a base scaled at 1:250,000. Sources of previously published geologic mapping include: (1) USGS Bulletins; (2) professional papers and geologic quadrangle maps; (3) Bureau of Mines reports; (4) Colorado School of Mines quarterlies; and (5) Rocky Mountain Association of Geologist Guidebooks. This compilation will be used to evaluate ERTS, Skylab, and remote sensing underflight data.

  12. Application of remote sensor data to geologic analysis of the Bonanza test site Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1975-01-01

    Selected samples of anomalous surface features commonly associated with the various types of uranium deposits are presented and recommendations for sensor applications are given. The features studied include: epigenetic uranium ore roll type; precambrian basal conglomerate type; vein-type uranium deposits; pipe-structure or diatreme deposits; evaporitic uranium deposits. The hydrogeology of the Mosquito Range and the San Luis Valley is also examined.

  13. New Airborne Sensors and Platforms for Solving Specific Tasks in Remote Sensing

    NASA Astrophysics Data System (ADS)

    Kemper, G.

    2012-07-01

    A huge number of small and medium sized sensors entered the market. Today's mid format sensors reach 80 MPix and allow to run projects of medium size, comparable with the first big format digital cameras about 6 years ago. New high quality lenses and new developments in the integration prepared the market for photogrammetric work. Companies as Phase One or Hasselblad and producers or integrators as Trimble, Optec, and others utilized these cameras for professional image production. In combination with small camera stabilizers they can be used also in small aircraft and make the equipment small and easy transportable e.g. for rapid assessment purposes. The combination of different camera sensors enables multi or hyper-spectral installations e.g. useful for agricultural or environmental projects. Arrays of oblique viewing cameras are in the market as well, in many cases these are small and medium format sensors combined as rotating or shifting devices or just as a fixed setup. Beside the proper camera installation and integration, also the software that controls the hardware and guides the pilot has to solve much more tasks than a normal FMS did in the past. Small and relatively cheap Laser Scanners (e.g. Riegl) are in the market and a proper combination with MS Cameras and an integrated planning and navigation is a challenge that has been solved by different softwares. Turnkey solutions are available e.g. for monitoring power line corridors where taking images is just a part of the job. Integration of thermal camera systems with laser scanner and video capturing must be combined with specific information of the objects stored in a database and linked when approaching the navigation point.

  14. An intelligent wireless sensor network applied research on dynamic physiological data monitoring of athletes

    NASA Astrophysics Data System (ADS)

    Xie, Ying; Wu, Fei-qing; Li, Lin-gong

    2008-12-01

    A wireless sensor network (WSN) monitoring system was designed, because of the big labour, time-consumption, and non-real-time monitoring of the true physiological data of athlete for wire communication, which were very important for their coach. The coach, who obtained the first material, can know the physiological sports status of althletes according to these data, can intervene on them and formulate a scientific training plan. The system has the characteristic of a random layout, arbitrary additions and combined network nodes. The performance of the system for 24 athletes who were trained has been tested in the system improved LEACH-c protocol and a threshold sensitive energy efficient protocol has been applied. The experimental results showed that, while the interval time of the contact was more than 15 seconds, the network packet loss rate was less than 3 percent. The operation of the network can be considered to be relatively stable. During the test, the MAC network capacity obtained by the actual tests in the implicit terminal mode was three packets per second. Considering the costs of a node sending routing maintenance packet, a network capacity of 2 was reasonable. Based on the performance of the system for testing, the results showed that the system was stable and reliable

  15. Luminescence Sensors Applied to Water Analysis of Organic Pollutants—An Update

    PubMed Central

    Ibañez, Gabriela A.; Escandar, Graciela M.

    2011-01-01

    The development of chemical sensors for environmental analysis based on fluorescence, phosphorescence and chemiluminescence signals continues to be a dynamic topic within the sensor field. This review covers the fundamentals of this type of sensors, and an update on recent works devoted to quantifying organic pollutants in environmental waters, focusing on advances since about 2005. Among the wide variety of these contaminants, special attention has been paid polycyclic aromatic hydrocarbons, pesticides, explosives and emerging organic pollutants. The potential of coupling optical sensors with multivariate calibration methods in order to improve the selectivity is also discussed. PMID:22247654

  16. Remote electrocardiograph monitoring using a novel adhesive strip sensor: A pilot study

    PubMed Central

    Bruce, Charles J; Ladewig, Dorothy J; Somers, Virend K; Bennet, Kevin E; Burrichter, Scott; Scott, Christopher G; Olson, Lyle J; Friedman, Paul A

    2016-01-01

    The increase in health care costs is not sustainable and has heightened the need for innovative low cost effective strategies for delivering patient care. Remote monitoring holds great promise for preventing or shortening duration of hospitalization even while improving quality of care. We therefore conducted a proof of concept study to examine the quality of electrocardiograph (ECG) recordings obtained remotely and to test its potential utility in detecting harmful rhythms such as atrial fibrillation. We tested a novel adhesive strip ECG monitor and assessed the ECG quality in ambulatory individuals. 2630 ECG strips were analyzed and classified as: Sinus, atrial fibrillation (AF), indeterminate, or other. Four readers independently rated ECG quality: 0: Noise; 1: QRS complexes seen, but P-wave indeterminate; 2: QRS complexes seen, P-waves seen but poor quality; and 3: Clean QRS complexes and P-waves. The combined average rating was: Noise 12%; R-R, no P-wave 10%; R-R, no PR interval 18%; and R-R with PR interval 60% (if Sinus). If minimum diagnostic quality was a score of 1, 88% of strips were diagnostic. There was moderate to high agreement regarding quality (weighted Kappa statistic values; 0.58 to 0.76) and high level of agreement regarding ECG diagnosis (ICC = 0.93). A highly variable RR interval (HRV ≥ 7) predicted AF (AUC = 0.87). The monitor acquires and transmits diagnostic high quality ECG data and permits characterization of AF. PMID:27847556

  17. The Effects of Applying Game-Based Learning to Webcam Motion Sensor Games for Autistic Students' Sensory Integration Training

    ERIC Educational Resources Information Center

    Li, Kun-Hsien; Lou, Shi-Jer; Tsai, Huei-Yin; Shih, Ru-Chu

    2012-01-01

    This study aims to explore the effects of applying game-based learning to webcam motion sensor games for autistic students' sensory integration training for autistic students. The research participants were three autistic students aged from six to ten. Webcam camera as the research tool wad connected internet games to engage in motion sensor…

  18. Application of the remote-sensing communication model to a time-sensitive wildfire remote-sensing system

    Treesearch

    Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan

    2016-01-01

    Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...

  19. A study and evaluation of image analysis techniques applied to remotely sensed data

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.; Dasarathy, B. V.; Lybanon, M.; Ramapriyan, H. K.

    1976-01-01

    An analysis of phenomena causing nonlinearities in the transformation from Landsat multispectral scanner coordinates to ground coordinates is presented. Experimental results comparing rms errors at ground control points indicated a slight improvement when a nonlinear (8-parameter) transformation was used instead of an affine (6-parameter) transformation. Using a preliminary ground truth map of a test site in Alabama covering the Mobile Bay area and six Landsat images of the same scene, several classification methods were assessed. A methodology was developed for automatic change detection using classification/cluster maps. A coding scheme was employed for generation of change depiction maps indicating specific types of changes. Inter- and intraseasonal data of the Mobile Bay test area were compared to illustrate the method. A beginning was made in the study of data compression by applying a Karhunen-Loeve transform technique to a small section of the test data set. The second part of the report provides a formal documentation of the several programs developed for the analysis and assessments presented.

  20. Bi-Fi: an embedded sensor/system architecture for REMOTE biological monitoring.

    PubMed

    Farshchi, Shahin; Pesterev, Aleksey; Nuyujukian, Paul H; Mody, Istvan; Judy, Jack W

    2007-11-01

    Wireless-enabled processor modules intended for communicating low-frequency phenomena (i.e., temperature, humidity, and ambient light) have been enabled to acquire and transmit multiple biological signals in real time, which has been achieved by using computationally efficient data acquisition, filtering, and compression algorithms, and interfacing the modules with biological interface hardware. The sensor modules can acquire and transmit raw biological signals at a rate of 32 kb/s, which is near the hardware limit of the modules. Furthermore, onboard signal processing enables one channel, sampled at a rate of 4000 samples/s at 12-bit resolution, to be compressed via adaptive differential-pulse-code modulation (ADPCM) and transmitted in real time. In addition, the sensors can be configured to filter and transmit individual time-referenced "spike" waveforms, or to transmit the spike height and width for alleviating network traffic and increasing battery life. The system is capable of acquiring eight channels of analog signals as well as data via an asynchronous serial connection. A back-end server archives the biological data received via networked gateway sensors, and hosts them to a client application that enables users to browse recorded data. The system also acquires, filters, and transmits oxygen saturation and pulse rate via a commercial-off-the-shelf interface board. The system architecture can be configured for performing real-time nonobtrusive biological monitoring of humans or rodents. This paper demonstrates that low-power, computational, and bandwidth-constrained wireless-enabled platforms can indeed be leveraged for wireless biosignal monitoring.

  1. Fiber-remote reflectance spectroscopy with an optimized diffuse reflectance sensor system

    SciTech Connect

    Driver, R.D.; Grim, K.P.; Dewey, G.; Brubaker, M.L.

    1995-12-31

    A diffuse reflectance spectroscopy system is described which can operate in a contact and non-contact mode on powders, slurries and other diffusely scattering materials. Diffuse reflectance spectra are presented for a number of samples including common household materials. A comparison is made of the probe with a Bio-Rad diffuse reflectance accessory. Second derivative spectra are shown of a calibration mixture of polymer additives. The use of the diffuse reflectance system for non-destructive tablet hardness measurements is discussed. Sensor multiplexing for diffuse reflectance spectroscopy, is reviewed.

  2. Fiber-remote reflectance spectroscopy with an optimized diffuse reflectance sensor system

    NASA Astrophysics Data System (ADS)

    Driver, Richard D.; Grim, Kirk P.; Dewey, G.; Brubaker, M. L.

    1995-01-01

    A diffuse reflectance spectroscopy system is described which can operate in a contact and non- contact mode on powders, slurries and other diffusely scattering materials. Diffuse reflectance spectra are presented for a number of samples including common household materials. A comparison is made of the probe with a Bio-Rad diffuse reflectance accessory. Second derivative spectra are shown of a calibration mixture of polymer additives. The use of the diffuse reflectance system for non-destructive tablet hardness measurements is discussed. Sensor multiplexing for diffuse reflectance spectroscopy is reviewed.

  3. Radiation effects on optical components of a laser radar sensor designed for remote metrology in ITER

    SciTech Connect

    Menon, M.M.; Grann, E.B.; Slotwinski, A.

    1997-09-01

    A frequency modulated laser radar is being developed for in-vessel metrology and viewing of plasma-facing surfaces. Some optical components of this sensor must withstand intense gamma radiation (3 {times} 10{sup 6} rad/h) during operation. The authors have tested the effect of radiation on a silica core polarization maintaining optical fiber and on TeO{sub 2} crystals at doses up to {approximately} 10{sup 9} rad. Additional tests are planned for evaluating the performance of a complete acousto-optic (AO) scanning device. The progress made in these tests is also described.

  4. Remote sensing applied to the exploration for uranium-mineralized breccia pipes in northwestern Arizona

    SciTech Connect

    Kwarteng, A.M.Y.

    1988-01-01

    Exploration for uranium-mineralized breccia pipes in northwestern Arizona has been active because of the high-grade ore they contain, which may also include such by-products as Ag, Au, Cu, Pb, Zn, and V. These breccia pipes were formed from the collapse of the overlying sedimentary strata into karst caverns developed in the Mississippian Redwall Limestone; mineralization occurred between 200 and 220 m.y. ago as determined previously by U-Pb isotopic analyses. Spectroscopic and statistical analyses of field, laboratory, and digital Landsat Thermatic Mapper (TM) data were carried out to determine the fundamental spectral and mineralogical differences between samples on the surface of breccia pipes and their background areas. Spectroscopic and XRD mineralogical studies clearly demonstrate that hydrothermally altered rocks associated with mineralized breccia pipes are distinguished from the surrounding rocks by the Fe{sup 3+}, hydroxyl, and carbonate minerals content. Discriminant analyses of field, laboratory, and TM data indicates that 64-80% of the samples collected on the surfaces of breccia pipes and their immediately surrounding areas were correctly classified. Digitally enhanced TM images printed at the scale of 1:100,000 resulted in the recognition of more than 80% of previously known orebodies as well as additional anomalies identified in the study areas. Digital image processing techniques were applied to airborne geophysical data consisting of apparent resistivity, total-field magnetics, derived overburden thickness, and very low-frequency electromagnetics (VLF-EM) to evaluate the utility of the data sets for breccia pipe exploration. The processing and critical analysis of the geophysical data is apparently the most promising approach to breccia pipe exploration in this study.

  5. Surface and Column Variations of CO2 using Weighting Functions for Future Active Remote CO2 sensors and Data from DISCOVER-AQ Field Campaign

    NASA Astrophysics Data System (ADS)

    Yang, M. M.; Choi, Y.; Kooi, S. A.; Browell, E. V.

    2014-12-01

    Fast response (1 Hz) and high precision (< 0.1 ppmv) in situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaign, to investigate the ability of space-based observations to accurately assess near surface conditions related to air quality. The campaign spanned 4 years and took place over four geographically different locations. These included, Washington DC/Baltimore, MD (July 2011), San Joaquin Valley, CA (January - February 2013), Houston, TX (September 2013), and Denver, CO (July-August 2014). With the objective of obtaining better CO2 column calculations, each of these campaigns consisted of missed approaches and approximately two hundred vertical soundings of CO2 (from the surface to about 5 km). In this study, surface and column-averaged CO2 mixing ratio values from the vertical soundings in the four different urban areas are used to examine the temporal and spatial variability of CO2 within the lower troposphere. Tracers such as CO, CH2O, NOx, and NMHCs will be used to identify the source of variations observed in these urban sites. Additionally, we apply nominal CO2 column weighting functions for potential future active remote CO2 sensors operating in the 1.57-mm and 2.05-mm measurement regions to convert the in situ CO2 vertical mixing ratio profiles to variations in CO2 column optical depths, which is what the active remote sensors actually measure. Using statistics calculated from the optical depths at each urban site measured during the DISCOVER-AQ field campaign and for each nominal weighting function, we compare the natural variability of CO2 columns in the lower troposphere; relate the CO2 column variability to surface emissions; and show the measurement requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) in the continental U.S. urban areas.

  6. Relation of NDVI obtained from different remote sensing at different space and resolutions sensors in Spanish Dehesas

    NASA Astrophysics Data System (ADS)

    Escribano Rodríguez, Juan; Tarquis, Ana M.; Saa-Requejo, Antonio; Díaz-Ambrona, Carlos G. H.

    2015-04-01

    Satellite data are an important source of information and serve as monitoring crops on large scales. There are several indexes, but the most used for monitoring vegetation is NDVI (Normalized Difference Vegetation Index), calculated from the spectral bands of red (RED) and near infrared (NIR), obtaining the value according to relationship: [(NIR - RED) / (NIR + RED)]. During the years 2010-2013 monthly monitoring was conducted in three areas of Spain (Salamanca, Caceres and Cordoba). Pasture plots were selected and satellite images of two different sensors, DEIMOS-1 and MODIS were obtained. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is designed for imaging the Earth with a resolution good enough to study terrestrial vegetation cover (20x20 m), although with a wide range of visual field (600 km) to get those images with high temporal resolution. By contrast, MODIS images present a much lower spatial resolution (500x500 m). Indices obtained from both sensors to the same area and date are compared and the results show r2 = 0.56; r2 = 0.65 and r2 = 0.90 for the areas of Salamanca, Cáceres and Cordoba respectively. According to the results obtained show that the NDVI obtained by MODIS is slightly larger than that obtained by the sensor for DEIMOS for same time and area. References J.A. Escribano, C.G.H. Diaz-Ambrona, L. Recuero, M. Huesca, V. Cicuendez, A. Palacios-Orueta y A.M. Tarquis. Aplicacion de Indices de Vegetacion para evaluar la falta de produccion de pastos y montaneras en dehesas. I Congreso Iberico de la Dehesa y el Montado. 6-7 Noviembre, 2013, Badajoz. J.A. Escribano Rodriguez, A.M. Tarquis, C.G. Hernandez Diaz-Ambrona. Pasture Drought Insurance Based on NDVI and SAVI. Geophysical Research Abstracts, 14, EGU2012-13945, 2012. EGU General Assembly 2012. Juan Escribano Rodriguez, Carmelo Alonso, Ana Maria Tarquis, Rosa Maria Benito, Carlos Hernandez Diaz-Ambrona. Comparison of NDVI fields obtained from different remote sensors

  7. The analytical design of spectral measurements for multispectral remote sensor systems

    NASA Technical Reports Server (NTRS)

    Wiersma, D. J.; Landgrebe, D. A. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. In order to choose a design which will be optimal for the largest class of remote sensing problems, a method was developed which attempted to represent the spectral response function from a scene as accurately as possible. The performance of the overall recognition system was studied relative to the accuracy of the spectral representation. The spectral representation was only one of a set of five interrelated parameter categories which also included the spatial representation parameter, the signal to noise ratio, ancillary data, and information classes. The spectral response functions observed from a stratum were modeled as a stochastic process with a Gaussian probability measure. The criterion for spectral representation was defined by the minimum expected mean-square error.

  8. Beach erosion control study at Pass Christian. [using remote sensors and satellite observation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The methods of measuring the existence of erosion and the effects of sand stabilization control systems are described. The mechanics of sand movement, the nature of sand erosion, and the use of satellite data to measure these factors and their surrogates are discussed using the locational and control aspects of aeolian and litoral erosion zones along the sand beach of the Mississippi coast. The aeolian erosion is highlighted due to the redeposition of the sand which causes high cleanup costs, property damage, and safety and health hazards. The areas of differential erosion and the patterns of beach sand movement are illustrated and the use of remote sensing methods to identify the areas of erosion are evaluated.

  9. An infrared remote sensor with high integration and multi-spectral bands

    NASA Astrophysics Data System (ADS)

    Zhang, Lisha; Liu, Zhaojun; Ma, Wenpo; Tang, Shaofan; Hu, Bin

    2014-11-01

    Along with the further application of optical remote sensing, it becomes main trend to realize high spatial resolution, high time resolution, high spectrum resolution and high irradiance sensitivity simultaneously. We present a new satellite-based imaging system that will provide images with these high performances. The structure of the system is compact with small size and light weight. The IR imager, a new generation of high resolution optical remote sensing, is universally acknowledged as the most effective approach to surveil dynamic changes in the environment on the earth. Pushbroom imaging fashion with high efficiency and long-array focal plane detector with passive cooling are adopted to realize area imaging relevant to the flight direction of satellite. The instrument is a dual-optical-path system with long-wave infrared (LWIR) and mid-short-wave infrared (MW-SWIR) bands - which has 4 narrow spectrum bands respectively. An IR dichroic beam-splitter is use to divide wideband incident infrared into LWIR and MW-SWIR. Then two pieces of joint filters, which are integrated in front of detectors and then enveloped by IR Dewars, are used to divide the LWIR and MWIR into 4 spectral bands separately. The focal plane arrays (FPA) are fixed on the optical imaging plane of the lens. The LWIR and MW-SWIR FPA are cooled around 80K or even below. For cooled FPA, optical system must provide a real, accessible exit pupil coupled with a fast f/number refractive component in a Dewar and very close to the FPA. Compared to traditional infrared instruments, high spatial resolution and spectrum resolution can be obtained simultaneously within mass, volume and performance constraints.

  10. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    PubMed

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-07-31

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development.

  11. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor

    PubMed Central

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-01-01

    The reflectance of the Earth’s surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE’s, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development. PMID:26263996

  12. A FPGA embedded web server for remote monitoring and control of smart sensors networks.

    PubMed

    Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique

    2013-12-27

    This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.

  13. A FPGA Embedded Web Server for Remote Monitoring and Control of Smart Sensors Networks

    PubMed Central

    Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique

    2014-01-01

    This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology. PMID:24379047

  14. REMOTE SENSING AND GIS FOR WETLANDS

    EPA Science Inventory

    In identifying and characterizing wetland and adjacent features, the use of remote sensor and Geographic Information Systems (GIS) technologies has been valuable. Remote sensors such as photographs and computer-sensor generated images can illustrate conditions of hydrology, exten...

  15. REMOTE SENSING AND GIS FOR WETLANDS

    EPA Science Inventory

    In identifying and characterizing wetland and adjacent features, the use of remote sensor and Geographic Information Systems (GIS) technologies has been valuable. Remote sensors such as photographs and computer-sensor generated images can illustrate conditions of hydrology, exten...

  16. A Synchronized Sensor Array for Remote Monitoring of Avian and Bat Interactions with Offshore Renewable Energy Facilities

    SciTech Connect

    Suryan, Robert; Albertani, Roberto; Polagye, Brian

    2016-07-15

    Wind energy production in the U.S. is projected to increase to 35% of our nation’s energy by 2050. This substantial increase in the U.S. is only a portion of the global wind industry growth, as many countries strive to reduce greenhouse gas emissions. A major environmental concern and potential market barrier for expansion of wind energy is bird and bat mortality from impacts with turbine blades, towers, and nacelles. Carcass surveys are the standard protocol for quantifying mortality at onshore sites. This method is imperfect, however, due to survey frequency at remote sites, removal of carcasses by scavengers between surveys, searcher efficiency, and other biases as well as delays of days to weeks or more in obtaining information on collision events. Furthermore, carcass surveys are not feasible at offshore wind energy sites. Near-real-time detection and quantification of interaction rates is possible at both onshore and offshore wind facilities using an onboard, integrated sensor package with data transmitted to central processing centers. We developed and experimentally tested an array of sensors that continuously monitors for interactions (including impacts) of birds and bats with wind turbines. The synchronized array includes three sensor nodes: (1) vibration (accelerometers and contact microphones), (2) optical (visual and infrared spectrum cameras), and (3) bioacoustics (acoustic and ultrasonic microphones). Accelerometers and contact acoustic microphones are placed at the root of each blade to detect impact vibrations and sound waves propagating through the structure. On-board data processing algorithms using wavelet analysis detect impact signals exceeding background vibration. Stereo-visual and infrared cameras were placed on the nacelle to allow target tracking, distance, and size calculations. On-board image processing and target detection algorithms identify moving targets within the camera field of view. Bioacoustic recorders monitor vocalizations

  17. Remote sensing in hydrology: A survey of applications with selected bibliography and abstracts

    NASA Technical Reports Server (NTRS)

    Sers, S. W. (Compiler)

    1971-01-01

    Remote infrared sensing as a water exploration technique is demonstrated. Various applications are described, demonstrating that infrared sensors can locate aquifers, geothermal water, water trapped by faults, springs and water in desert regions. The potentiality of airborne IR sensors as a water prospecting tool is considered. Also included is a selected bibliography with abstracts concentrating on those publications which will better acquaint the hydrologist with investigations using thermal remote sensors as applied to water exploration.

  18. Machine Learning Techniques Applied to Sensor Data Correction in Building Technologies

    SciTech Connect

    Smith, Matt K; Castello, Charles C; New, Joshua Ryan

    2013-01-01

    Since commercial and residential buildings account for nearly half of the United States' energy consumption, making them more energy-efficient is a vital part of the nation's overall energy strategy. Sensors play an important role in this research by collecting data needed to analyze performance of components, systems, and whole-buildings. Given this reliance on sensors, ensuring that sensor data are valid is a crucial problem. Solutions being researched are machine learning techniques, namely: artificial neural networks and Bayesian Networks. Types of data investigated in this study are: (1) temperature; (2) humidity; (3) refrigerator energy consumption; (4) heat pump liquid pressure; and (5) water flow. These data are taken from Oak Ridge National Laboratory's (ORNL) ZEBRAlliance research project which is composed of four single-family homes in Oak Ridge, TN. Results show that for the temperature, humidity, pressure, and flow sensors, data can mostly be predicted with root-mean-square error (RMSE) of less than 10% of the respective sensor's mean value. Results for the energy sensor are not as good; RMSE are centered about 100% of the mean value and are often well above 200%. Bayesian networks have RSME of less than 5% of the respective sensor's mean value, but took substantially longer to train.

  19. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber

    SciTech Connect

    Zeltner, R.; Russell, P. St.J.; Bykov, D. S.; Xie, S.; Euser, T. G.

    2016-06-06

    We report an irradiation sensor based on a fluorescent “flying particle” that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ∼10 μm. The spectral response can be readily adjusted by appropriate choice of particle material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.

  20. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Zeltner, R.; Bykov, D. S.; Xie, S.; Euser, T. G.; Russell, P. St. J.

    2016-06-01

    We report an irradiation sensor based on a fluorescent "flying particle" that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ˜10 μm. The spectral response can be readily adjusted by appropriate choice of particle material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.

  1. Multi-sensor time series of remote sensing data indicate rapid warming trend for lakes in California and Nevada

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Hook, S. J.; Radocinski, R. R.; Corlett, G. K.; Hulley, G. C.; Schladow, S. G.; Steissberg, T. E.

    2009-12-01

    The temperature of large lakes is a potential indicator of climate change. However, its usefulness is limited by the paucity of in situ measurements and lack of long-term data records. Thermal infrared (TIR) satellite imagery can be used to obtain frequent and accurate remote observations of lake surface temperatures. The archive of TIR imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS), the series of Along-Track Scanning Radiometers (ATSR/ATSR-2/AATSR) sensors, as well as from the series of Advanced Very High Resolution Radiometers (AVHRR), now spans nearly three decades and together these data sets can provide continuous time series of global lake surface temperatures. As part of an ongoing project involving the construction of 30-year time series of lake temperatures for 164 large lakes worldwide, we present the results of a case study for six lakes in California and Nevada. Seventeen years of data from the ATSR series was processed in combination with nine years of MODIS data in order to obtain time series of lake skin temperature. The accuracy of the skin temperature retrievals was tested against automated in situ measurements from buoys at the Lake Tahoe test site. The results indicate that nighttime skin temperatures can be estimated with mean errors as low as 0.2 °C. An analysis of average summer lake temperatures retrieved from the ATSR sensors shows that the six case study sites have exhibited average warming trends of 0.11 ± 0.026 °C yr-1 (p < 0.002) since 1992. The magnitude of the trend is confirmed by the shorter time series of MODIS data as well as by in situ measurements at Lake Tahoe. A comparison with air temperature observations suggests that the lake surface is warming more rapidly than the surface air temperature.

  2. An optical fiber sensor for remote pH sensing and imaging.

    PubMed

    Wang, Jian; Wang, Lili

    2012-03-01

    A fiber-optical probe for pH sensing and real-time imaging is successfully fabricated by connecting a polymer imaging fiber and a gradient index (GRIN) lens rod which was modified with a sensing film. By employing an improved metallographic microscope, an optical system is designed to cooperate with the probe. This novel technique has high-quality imaging capabilities for observing remote samples while measuring pH. The linear range of the probe is pH 1.2-3.5. This technique overcomes the difficulty that high-quality images cannot be obtained when directly using conventional imaging bundles for pH sensing and imaging. As preliminary applications, the corrosion behavior of an iron screw and the reaction process of rust were investigated in buffer solutions of pH 2.0 and 2.9, respectively. The experiment demonstrated that the pH values of the analytes' surface were higher than that of buffer solutions due to the chemical reaction. It provides great potential for applications in optical multifunctional detection, especially in chemical sensing and biosensing.

  3. Synthetic vision to augment sensor-based vision for remotely piloted vehicles

    NASA Astrophysics Data System (ADS)

    Tadema, Jochum; Koeners, Joris; Theunissen, Erik

    2006-05-01

    In the past fifteen years, several research programs have demonstrated potential advantages of synthetic vision technology for manned aviation. More recently, some research programs have focused on integrating synthetic vision technology into control stations for remotely controlled aircraft. The contribution of synthetic vision can be divided into two categories. The depiction of the environment and all relevant constraints contributes to the pilot's situation awareness, while the depiction of the planned path and its constraints allows the pilot to control or monitor the aircraft with high precision. This paper starts with an overview of the potential opportunities provided by synthetic vision technology. A distinction is made between the presentation domain and the function domain. In the presentation domain, the benefits are obtained from making the invisible visible. In the function domain, benefits are obtained from the possibility to integrate data from the synthetic vision system into other functions. The paper continues with a number of examples of situation awareness support concepts which have been explored in the current research. After this, the potential contribution of synthetic vision technology to the manual control task is discussed and it is indicated how these potential advantages will be explored in the next research phase.

  4. Medical diagnosis and remote sensing at fiber-tip: picosecond resolved FRET sensor

    NASA Astrophysics Data System (ADS)

    Polley, Nabarun; Pal, Samir Kumar

    2016-03-01

    Förster Resonance Energy Transfer (FRET) strategy in popular in fiber-optic sensing. However, the steady state emission quenching of the donor is inadequate to conclude FRET. The resonance type energy transfer from one molecule (donor) to other (acceptor) should meet few key properties including donor to acceptor energy migration in non-radiative way. In the present study, we have coupled the evanescent field of an optical fiber to the covalently attached donor (dansyl) molecules at the fiber tip. By using picosecond resolved time correlated single photon counting (TCSPC) we have demonstrated that dansyl at the fiber tip transfers energy to a well known DNA-intercalating dye ethidium. Our ultrafast detection scheme selectively distinguishes the probe (dansyl) emission from the intrinsic emission of the fiber. We have also used the setup for the remote sensing of the dielectric constant (polarity) of an environment. We have finally implemented the detection mechanism to detect an industrial synthetic dye methylene blue (MB) in water.

  5. Two-Hydrophone Heading and Range Sensor Applied to Formation-Flying for AUVs

    DTIC Science & Technology

    2004-01-01

    explain why variations in formation are observed in leader - follower type experiments [9,10]. II. SENSOR MODEL A. Heading and Range Determination...algorithm used for the simulations presented in this paper was based on the hybrid leader - follower algorithm given in [4]. The controller consists...with the sensor as predicted. Fig. 5: Definition of distance for formation control. Leader Follower ry x Fig. 4: Definition of variables. F v

  6. The association between the geographic distribution of Triatoma pseudomaculata and Triatoma wygodzinskyi (Hemiptera: Reduviidae) with environmental variables recorded by remote sensors.

    PubMed

    Carbajal de la Fuente, A L; Porcasi, X; Noireau, F; Diotaiuti, L; Gorla, D E

    2009-01-01

    In this study, predictive models of geographic distribution patterns of Triatoma pseudomaculata (Tps) and T. wygodzinskyi (Twy) were carried out. They were based on biophysical variables estimated from information provided by the satellite remote sensors AVHRR (Advanced Very High Resolution Radiometer) and MODIS (MODerate-resolution Imaging Spectroradiometer). Our goal was to analyze the potential geographic distribution of Tps and Twy and to assess the performance of three predictive models (one for each species and one for both species together) based on temperature, vapour pressure deficit, vegetation and altitude. The geographic distribution analysis shows that all models performed well (>85.7% of overall correct classification of presence and absence point data). The MODIS-based models showed lower correct classifications than the AVHRR-based models. The results strongly suggest that environmental information provided by remote sensors can be successfully used in studies on the geographic distribution of poorly understood Chagas disease vector species.

  7. In situ correlative measurements for the ultraviolet differential absorption lidar and the high spectral resolution lidar air quality remote sensors: 1980 PEPE/NEROS program

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Beck, S. M.; Mathis, J. J., Jr.

    1981-01-01

    In situ correlative measurements were obtained with a NASA aircraft in support of two NASA airborne remote sensors participating in the Environmental Protection Agency's 1980persistent elevated pollution episode (PEPE) and Northeast regional oxidant study (NEROS) field program in order to provide data for evaluating the capability of two remote sensors for measuring mixing layer height, and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure temperature, dewpoint temperature, ozone concentrations, and light scattering coefficient. In situ measurements for ten correlative missions are given and discussed. Each data set is presented in graphical and tabular format aircraft flight plans are included.

  8. Applying aerial digital photography as a spectral remote sensing technique for macrophytic cover assessment in small rural streams

    NASA Astrophysics Data System (ADS)

    Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.

    2011-12-01

    Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (<3m width). In the current study, a remote sensing approach for monitoring and research of small ecosystem was developed. The method is based on differentiation between two indicative vegetation species out of the ecosystem flora. Since when studied, the channel was covered mostly by a filamentous green alga (Cladophora glomerata) and watercress (Nasturtium officinale), these species were chosen as indicative; nonetheless, common reed (Phragmites australis) was also classified in order to exclude it from the stream ROI. The procedure included: A. For both section and habitat scales classifications, acquisition of aerial digital RGB datasets. B. For section scale classification, hyperspectral (HSR) dataset acquisition. C. For calibration, HSR reflectance measurements of specific ground targets, in close proximity to each dataset acquisition swath. D. For habitat scale classification, manual, in-stream flora grid transects classification. The digital RGB datasets were converted to reflectance units by spectral calibration against colored reference plates. These red, green, blue, white, and black EVA foam reference plates were measured by an ASD field spectrometer and each was given a spectral value. Each spectral value was later applied to the spectral calibration and radiometric correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB

  9. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    PubMed Central

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-01-01

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292

  10. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios.

    PubMed

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-09-03

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.

  11. Wearability Assessment of a Wearable System for Parkinson's Disease Remote Monitoring Based on a Body Area Network of Sensors

    PubMed Central

    Cancela, Jorge; Pastorino, Matteo; Tzallas, Alexandros T.; Tsipouras, Markos G.; Rigas, Giorgios; Arredondo, Maria T.; Fotiadis, Dimitrios I.

    2014-01-01

    Wearable technologies for health monitoring have become a reality in the last few years. So far, most research studies have focused on assessments of the technical performance of these systems, as well as the validation of the clinical outcomes. Nevertheless, the success in the acceptance of these solutions depends not only on the technical and clinical effectiveness, but on the final user acceptance. In this work the compliance of a telehealth system for the remote monitoring of Parkinson's disease (PD) patients is presented with testing in 32 PD patients. This system, called PERFORM, is based on a Body Area Network (BAN) of sensors which has already been validated both from the technical and clinical point for view. Diverse methodologies (REBA, Borg and CRS scales in combination with a body map) are employed to study the comfort, biomechanical and physiological effects of the system. The test results allow us to conclude that the acceptance of this system is satisfactory with all the levels of effect on each component scoring in the lowest ranges. This study also provided useful insights and guidelines to lead to redesign of the system to improve patient compliance. PMID:25230307

  12. EXTENDED PERFORMANCE HANDHELD AND MOBILE SENSORS FOR REMOTE DETECTION OF NATURAL GAS LEAKS

    SciTech Connect

    Michael B. Frish; B. David Green; Richard T. Wainner; Francesca Scire-Scappuzzo; Paul Cataldi; Matthew C. Laderer

    2005-05-01

    This report summarizes work performed by Physical Sciences Inc. (PSI) to advance the state-of-the-art of surveying for leaks of natural gas from transmission and distribution pipelines. The principal project goal was to develop means of deploying on an automotive platform an improved version of the handheld laser-based standoff natural gas leak detector previously developed by PSI and known as the Remote Methane Leak Detector or RMLD. A laser beam which interrogates the air for methane is projected from a spinning turret mounted upon a van. As the van travels forward, the laser beam scans an arc to the front and sides of the van so as to survey across streets and to building walls from a moving vehicle. When excess methane is detected within the arc, an alarm is activated. In this project, we built and tested a prototype Mobile RMLD (MRMLD) intended to provide lateral coverage of 10 m and one lateral scan for every meter of forward motion at forward speeds up to 10 m/s. Using advanced detection algorithms developed as part of this project, the early prototype MRMLD, installed on the back of a truck, readily detected simulated gas leaks of 50 liters per hour. As a supplement to the originally planned project, PSI also participated in a DoE demonstration of several gas leak detection systems at the Rocky Mountain Oilfield Testing Center (RMOTC) during September 2004. Using a handheld RMLD upgraded with the advanced detection algorithms developed in this project, from within a moving vehicle we readily detected leaks created along the 7.4 mile route of a virtual gas transmission pipeline.

  13. [Remote sensing of chlorophyll fluorescence at airborne level based on unmanned airship platform and hyperspectral sensor].

    PubMed

    Yang, Pei-Qi; Liu, Zhi-Gang; Ni, Zhuo-Ya; Wang, Ran; Wang, Qing-Shan

    2013-11-01

    The solar-induced chlorophyll fluorescence (ChlF) has a close relationship with photosynthetic and is considered as a probe of plant photosynthetic activity. In this study, an airborne fluorescence detecting system was constructed by using a hyperspectral imager on board an unmanned airship. Both Fraunhofer Line Discriminator (FLD) and 3FLD used to extract ChlF require the incident solar irradiance, which is always difficult to receive at airborne level. Alternative FLD (aFLD) can overcome the problem by selecting non-fluorescent emitter in the image. However, aFLD is based on the assumption that reflectance is identical around the Fraunhofer line, which is not realistic. A new method, a3FLD, is proposed, which assumes that reflectance varies linearly with the wavelength around Fraunhofer line. The result of simulated data shows that ChlF retrieval error of a3FLD is significantly lower than that of aFLD when vegetation reflectance varies near the Fraunhofer line. The results of hyperspectral remote sensing data with the airborne fluorescence detecting system show that the relative values of retrieved ChlF of 5 kinds of plants extracted by both aFLD and a3FLD are consistent with vegetation growth stage and the ground-level ChlF. The ChlF values of aFLD are about 15% greater than a3FLD. In addition, using aFLD, some non-fluorescent objects have considerable ChlF value, while a3FLD can effectively overcome the problem.

  14. A land use classification scheme for use with remote sensor data

    USGS Publications Warehouse

    ,

    1972-01-01

    The needs of Federal agencies for a broad overview of national land use patterns, trends, and environmental impacts, with data inputs from both conventional sources and some of the more exotic sensors in high altitude aircraft and satellite platforms led to the formation in early 1971 of an Inter-Agency Steering Committee on Land Use Information and Classification. The work of this Committee, composed of representatives from the Geological Survey of the U.S. Department of the Interior, the Earth Observations Program of the National Aeronautics and Space Administration, the Soil Conservation Service of the U.S. Department of Agriculture, as well as the Association of American Geographers and the International Geographical Union, has been supported by NASA and the EROS Program of the Interior Department and coordinated by the USGS Geographic Applications Program. The Chairman of the Inter-Agency Committee was Dr. Arch C. Gerlach, Chief Geographer of the Geological Survey until his death in May 1972. Shortly before Dr. Gerlach's death, Dr. James R. Anderson was appointed Acting Chairman of the Committee.

  15. Criteria for Space-Based Sensor Applied to Bt Crop Monitoring

    EPA Science Inventory

    A joint agro-ecosystem research effort of NASA and USEPA has focused on the development of a decision support system designed to predict the development of insect pest resistance to transgenic toxins in maize. The use of NASA-developed remote sensing technologies that significant...

  16. Criteria for Space-Based Sensor Applied to Bt Crop Monitoring

    EPA Science Inventory

    A joint agro-ecosystem research effort of NASA and USEPA has focused on the development of a decision support system designed to predict the development of insect pest resistance to transgenic toxins in maize. The use of NASA-developed remote sensing technologies that significant...

  17. A Sensor Fault Detection Methodology applied to Piezoelectric Active Systems in Structural Health Monitoring Applications

    NASA Astrophysics Data System (ADS)

    Tibaduiza, D.; Anaya, M.; Forero, E.; Castro, R.; Pozo, F.

    2016-07-01

    Damage detection is the basis of the damage identification task in Structural Health Monitoring. A good damage detection process can ensure the adequate work of a SHM System because allows to know early information about the presence of a damage in a structure under evaluation. However this process is based on the premise that all sensors are well installed and they are working properly, however, it is not true all the time. Problems such as debonding, cuts and the use of the sensors under different environmental and operational conditions result in changes in the vibrational response and a bad functioning in the SHM system. As a contribution to evaluate the state of the sensors in a SHM system, this paper describes a methodology for sensor fault detection in a piezoelectric active system. The methodology involves the use of PCA for multivariate analysis and some damage indices as pattern recognition technique and is tested in a blade from a wind turbine where different scenarios are evaluated including sensor cuts and debonding.

  18. Dynamic optimization of ISR sensors using a risk-based reward function applied to ground and space surveillance scenarios

    NASA Astrophysics Data System (ADS)

    DeSena, J. T.; Martin, S. R.; Clarke, J. C.; Dutrow, D. A.; Newman, A. J.

    2012-06-01

    As the number and diversity of sensing assets available for intelligence, surveillance and reconnaissance (ISR) operations continues to expand, the limited ability of human operators to effectively manage, control and exploit the ISR ensemble is exceeded, leading to reduced operational effectiveness. Automated support both in the processing of voluminous sensor data and sensor asset control can relieve the burden of human operators to support operation of larger ISR ensembles. In dynamic environments it is essential to react quickly to current information to avoid stale, sub-optimal plans. Our approach is to apply the principles of feedback control to ISR operations, "closing the loop" from the sensor collections through automated processing to ISR asset control. Previous work by the authors demonstrated non-myopic multiple platform trajectory control using a receding horizon controller in a closed feedback loop with a multiple hypothesis tracker applied to multi-target search and track simulation scenarios in the ground and space domains. This paper presents extensions in both size and scope of the previous work, demonstrating closed-loop control, involving both platform routing and sensor pointing, of a multisensor, multi-platform ISR ensemble tasked with providing situational awareness and performing search, track and classification of multiple moving ground targets in irregular warfare scenarios. The closed-loop ISR system is fullyrealized using distributed, asynchronous components that communicate over a network. The closed-loop ISR system has been exercised via a networked simulation test bed against a scenario in the Afghanistan theater implemented using high-fidelity terrain and imagery data. In addition, the system has been applied to space surveillance scenarios requiring tracking of space objects where current deliberative, manually intensive processes for managing sensor assets are insufficiently responsive. Simulation experiment results are presented

  19. Autonomous Correction of Sensor Data Applied to Building Technologies Using Filtering Methods

    SciTech Connect

    Castello, Charles C; New, Joshua Ryan; Smith, Matt K

    2013-01-01

    Sensor data validity is extremely important in a number of applications, particularly building technologies where collected data are used to determine performance. An example of this is Oak Ridge National Laboratory s ZEBRAlliance research project, which consists of four single-family homes located in Oak Ridge, TN. The homes are outfitted with a total of 1,218 sensors to determine the performance of a variety of different technologies integrated within each home. Issues arise with such a large amount of sensors, such as missing or corrupt data. This paper aims to eliminate these problems using: (1) Kalman filtering and (2) linear prediction filtering techniques. Five types of data are the focus of this paper: (1) temperature; (2) humidity; (3) energy consumption; (4) pressure; and (5) airflow. Simulations show the Kalman filtering method performed best in predicting temperature, humidity, pressure, and airflow data, while the linear prediction filtering method performed best with energy consumption data.

  20. Electrostatic sensors applied to the measurement of electric charge transfer in gas solids pipelines

    NASA Astrophysics Data System (ADS)

    Woodhead, S. R.; Denham, J. C.; Armour-Chelu, D. I.

    2005-01-01

    This paper describes the development of a number of electric charge sensors. The sensors have been developed specifically to investigate triboelectric charge transfer which takes place between particles and the pipeline wall, when powdered materials are conveyed through a pipeline using air. A number of industrial applications exist for such gas solids pipelines, including pneumatic conveyors, vacuum cleaners and dust extraction systems. The build-up of electric charge on pipelines and powdered materials can lead to electrostatic discharge and so is of interest from a safety viewpoint. The charging of powders can also adversely affect their mechanical handling characteristics and so is of interest to handling equipment engineers. The paper presents the design of the sensors, the design of the electric charge test rig and electric charge measurement test results.