Integrated Remote Sensing Modalities for Classification at a Legacy Test Site
NASA Astrophysics Data System (ADS)
Lee, D. J.; Anderson, D.; Craven, J.
2016-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.
Measurement Sets and Sites Commonly Used for Characterization
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists at NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center. This site enables the in-flight characterization of remote sensing systems and the data they acquire. The data are predominantly acquired by commercial, high spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active LIDAR systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible through long-wave infrared remote sensing systems and a description of the Stennis characterization. Other topics discussed include: 1) The use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations; 2) Additional sites used for radiometric, geometric, and spatial characterization in the continental United States; 3) The need for a standardized technique to be adopted by CEOS and other organizations.
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; ONeal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2005-01-01
Scientists within NASA s Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial and moderate resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
Measurement Sets and Sites Commonly used for Characterizations
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Blonski, Slawomir; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists with NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center (SSC). This site enables the in-flight characterization of remote sensing systems and the data that they require. The data are predominantly acquired by commercial, high-spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high-resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active Light Detection and Ranging (LIDAR) systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible-through-longwave infrared remote sensing systems, and a description of the Stennis characterization. Other topics discussed inslude: 1) use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations, 2) other sites used for radiometric, geometric, and spatial characterization in the continental United States,a nd 3) the need for a standardized technique to be adopted by the Committee on Earth Observation Satellites (CEOS) and other organizations.
Measurement Sets and Sites Commonly Used for High Spatial Resolution Image Product Characterization
NASA Technical Reports Server (NTRS)
Pagnutti, Mary
2006-01-01
Scientists within NASA's Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site has enabled the in-flight characterization of satellite high spatial resolution remote sensing system products form Space Imaging IKONOS, Digital Globe QuickBird, and ORBIMAGE OrbView, as well as advanced multispectral airborne digital camera products. SSC utilizes engineered geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment and their Instrument Validation Laboratory to characterize high spatial resolution remote sensing data products. This presentation describes the SSC characterization capabilities and techniques in the visible through near infrared spectrum and examples of calibration results.
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; O'Neal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2007-01-01
Scientists within NASA#s Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists have used the SSC V&V site to characterize thermal infrared systems. Enhancements are being considered to characterize active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. Similar techniques are used to characterize moderate spatial resolution sensing systems at selected nearby locations. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
Assessment of remote sensing technologies to discover and characterize waste sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-03-11
This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once the sites and problems have been located and characterized and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated waste forms in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirement for long-term monitoring.
Remote sensing for site characterization
Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.; Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.
2000-01-01
This volume, Remote Sensing for Site Characterization, describes the feasibility of aircraft- and satellite-based methods of revealing environmental-geological problems. A balanced ratio between explanations of the methodological/technical side and presentations of case studies is maintained. The comparison of case studies from North America and Germany show how the respective territorial conditions lead to distinct methodological approaches.
Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites
NASA Astrophysics Data System (ADS)
Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.
2015-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.
SUPERFUND REMOTE SENSING SUPPORT
This task provides remote sensing technical support to the Superfund program. Support includes the collection, processing, and analysis of remote sensing data to characterize hazardous waste disposal sites and their history. Image analysis reports, aerial photographs, and assoc...
NASA Technical Reports Server (NTRS)
Johnson, J. R.; Ruff, S. W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N. A.; Cockell, C.; Gazis, P.; Newsom, H. E.
2000-01-01
The 1999 Marsokhod Field Experiment (MFE) provided an opportunity to test the suitability of rover-borne visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site.
A teleoperated system for remote site characterization
NASA Technical Reports Server (NTRS)
Sandness, Gerald A.; Richardson, Bradley S.; Pence, Jon
1994-01-01
The detection and characterization of buried objects and materials is an important step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. By performing these tasks with remotely controlled sensors, it is possible to obtain improved data quality and consistency as well as enhanced safety for on-site workers. Therefore, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by a radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS).
A Web Service and Interface for Remote Electronic Device Characterization
ERIC Educational Resources Information Center
Dutta, S.; Prakash, S.; Estrada, D.; Pop, E.
2011-01-01
A lightweight Web Service and a Web site interface have been developed, which enable remote measurements of electronic devices as a "virtual laboratory" for undergraduate engineering classes. Using standard browsers without additional plugins (such as Internet Explorer, Firefox, or even Safari on an iPhone), remote users can control a Keithley…
Neu, Heather M; Jung, Jieun; Baglia, Regina A; Siegler, Maxime A; Ohkubo, Kei; Fukuzumi, Shunichi; Goldberg, David P
2015-04-15
The visible light-driven, catalytic aerobic oxidation of benzylic C-H bonds was mediated by a Mn(III) corrolazine complex. To achieve catalytic turnovers, a strict selective requirement for the addition of protons was established. The resting state of the catalyst was unambiguously characterized by X-ray diffraction as [Mn(III)(H2O)(TBP8Cz(H))](+), in which a single, remote site on the ligand is protonated. If two remote sites are protonated, however, reactivity with O2 is shut down. Spectroscopic methods revealed that the related Mn(V)(O) complex is also protonated at the same remote site at -60 °C, but undergoes valence tautomerization upon warming.
2011-05-01
Characterization of Test Sites 57 Appendix 4 – Interactive Maps and Images...issued by the tropical test study panel, reporting the results of work conducted at 24 sites. The evolution of tropical testing to the suite of sites...macrophylla, Terminalia amazonia, Virola brachycarpa, and the palm Astrocaryum mexicanum. The mangrove and littoral forest are ecologically important to the
Slonecker, E. Terrence; Fisher, Gary B.
2011-01-01
This report represents a remote sensing research effort conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (EPA) for the EPA Office of Inspector General. The objective of this investigation was to explore the efficacy of remote sensing as a technology for postclosure monitoring of hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (Public Law 96-510, 42 U.S.C. §9601 et seq.), also known as \\"Superfund.\\" Five delisted Superfund sites in Maryland and Virginia were imaged with a hyperspectral sensor and visited for collection of soil, water, and spectral samples and inspection of general site conditions. This report evaluates traditional and hyperspectral imagery and field spectroscopic measurement techniques in the characterization and analysis of fugitive (anthropogenic, uncontrolled) contamination at previously remediated hazardous waste disposal sites.
Remote-handled/special case TRU waste characterization summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.
1984-02-27
Remote-handled wastes are stored at Los Alamos, Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. The following will be a site by site discussion of RH waste handling, placement, and container data. This will be followed by a series of data tables that were compiled in the TRU Waste Systems Office. These tables are a compendium of data that is the most up to date and accurate data available today. 2 figures, 10 tables.
NASA Technical Reports Server (NTRS)
Dohm, J. M.; Cabrol, N. A.; Grin, E. A.; Moersch, J.; Diaz, G. Chong; Cockell, C.; Coppin, P.; Fisher, G.; Hock, A. N.; Ori, G. G.
2005-01-01
The "Life in the Atacama" (LITA) project included two field trials during the 2004 field season, each of which lasted about a week. The remote science team had no prior knowledge of the local geology, and relied entirely on orbital images and rover-acquired data to make interpretations. The sites for these trials were in different locations, and are designated "Site B" and "Site C" respectively. The primary objective of the experiment is to develop and test the means to locate, characterize, and identify habitats and life remotely through long-range roving, which included field testing the rover, named Zoe. Zoe has onboard autonomous navigation for long-range roving, a plow to overturn rocks and expose near-surface rock materials, and high-resolution imaging, spectral, and fluorescence sampling capabilities. Highlights from the experiment included characterizing the geology in and near the landing ellipse, assessing pre-mission, satellite-based hypotheses, and improving the approach and procedures used by the remote and field teams for upcoming experiments through combined satellite, field-based, and microscopic perspectives and long-range roving.
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPA′s Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
NASA Astrophysics Data System (ADS)
Rauhala, Anssi; Tuomela, Anne; Rossi, Pekka M.; Davids, Corine
2017-04-01
The management of vast amounts of tailings produced is one of the key issues in mining operations. The effective and economic disposal of the waste requires knowledge concerning both basic physical properties of the tailings as well as more complex aspects such as consolidation behavior. The behavior of tailings in itself is a very complex issue that can be affected by flocculation, sedimentation, consolidation, segregation, deposition, freeze-thaw, and desiccation phenomena. The utilization of remote sensing in an impoundment-scale monitoring of tailings could benefit the management of tailings, and improve our knowledge on tailings behavior. In order to gain better knowledge of tailings behavior in cold climate, we have utilized both modern remote sensing techniques and more traditional in situ and laboratory measurements in characterizing thickened gold tailings behavior at a Finnish gold mine site, where the production has been halted due to low gold prices. The remote sensing measurements consisted of elevation datasets collected from unmanned aerial vehicles during summers 2015 and 2016, and a further campaign is planned for the summer 2017. The ongoing traditional measurements include for example particle-size distribution, frost heave, frost depth, water retention, temperature profile, and rheological measurements. Initial results from the remote sensing indicated larger than expected settlements on parts of the tailings impoundment, and also highlighted some of the complexities related to data processing. The interpretation of the results and characterization of the behavior is in this case complicated by possible freeze-thaw effects and potential settlement of the impoundment bottom structure consisting of natural peat. Experiments with remote sensing and unmanned aerial vehicles indicate that they could offer potential benefits in frequent mine site monitoring, but there is a need towards more robust and streamlined data acquisition and processing. The gathered data and obtained results form the basis for further modelling efforts which aim at better management of tailings storage facilities.
DOT National Transportation Integrated Search
2016-04-01
The objectives of this research were to develop and utilize GST methodologies : including remote sensing, to characterize and determine the level of performance : of stormwater management (SWM) facilities (BMPs), resulting in the reduction of : highw...
Remotely controlled sensor apparatus for use in dig-face characterization system
Josten, N.E.; Svoboda, J.M.
1999-05-25
A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency. 13 figs.
Remotely controlled sensor apparatus for use in dig-face characterization system
Josten, Nicholas E.; Svoboda, John M.
1999-01-01
A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency.
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPAs Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
Linking Arctic plant biodiversity measurements with landscape heterogeneity
NASA Astrophysics Data System (ADS)
Gerber, F.; Schaepman-Strub, G.; Furrer, R.
2016-12-01
Climate warming in the Arctic region triggers changes in the vegetation productivity and species composition of the tundra. To investigate these changes and their feedback to climate, we consider species richness and abundance data of the International Tundra EXperiment (ITEX). As this information is very sparse in time and space, we aim to upscale available records to climatically relevant scales with a remote sensing based characterization of the study sites. More precisely, we relate species richness and evenness derived from the ITEX data to summary statistics describing the landscape heterogeneity, which are derived from an elevation model (ASTER GDEM) and spectral satellite observations (LANDSAT 5 and 7). Preliminary results from the statistical analysis using generalized linear mixed models show that no remote sensing based landscape characterization does significantly explain species richness. Reasons could be a mismatch of the spatial scales, an inappropriate characterization of the test sites through the satellite measurements, incomparable plot measurements from the different test sites and/or too few plot measurements. We are looking forward to presenting our results and getting your inputs.
Biogeochemical cycling in terrestrial ecosystems - Modeling, measurement, and remote sensing
NASA Technical Reports Server (NTRS)
Peterson, D. L.; Matson, P. A.; Lawless, J. G.; Aber, J. D.; Vitousek, P. M.
1985-01-01
The use of modeling, remote sensing, and measurements to characterize the pathways and to measure the rate of biogeochemical cycling in forest ecosystems is described. The application of the process-level model to predict processes in intact forests and ecosystems response to disturbance is examined. The selection of research areas from contrasting climate regimes and sites having a fertility gradient in that regime is discussed, and the sites studied are listed. The use of remote sensing in determining leaf area index and canopy biochemistry is analyzed. Nitrous oxide emission is investigated by using a gas measurement instrument. Future research projects, which include studying the influence of changes on nutrient cycling in ecosystems and the effect of pollutants on the ecosystems, are discussed.
Characterization of Seismic Noise at Selected Non-Urban Sites
2010-03-01
Field sites for seismic recordings: Scottish moor (upper left), Enfield, NH (upper right), and vicinity of Keele, England (bottom). ERDC...three sites. The sites are: a wind farm on a remote moor in Scotland, a ~13 acre field bounded by woods in a rural Enfield, NH neigh- borhood, and a site...in a rural Enfield, NH, neighborhood, and a site transitional from developed land to farmland within 1 km of the six-lane M6 motorway near Keele
NASA Astrophysics Data System (ADS)
Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.
2016-12-01
Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.
Wirth, Lisa; Rosenberger, Amanda; Prakash, Anupma; Gens, Rudiger; Margraf, F. Joseph; Hamazaki, Toshihide
2012-01-01
At northern limits of a species’ distribution, fish habitat requirements are often linked to thermal preferences, and the presence of overwintering habitat. However, logistical challenges and hydrologic processes typical of glacial systems could compromize the identification of these habitats, particularly in large river environments. Our goal was to identify and characterize spawning habitat for fall-run chum salmon Oncorhynchus keta and model habitat selection from spatial distributions of tagged individuals in the Tanana River, Alaska using an approach that combined ground surveys with remote sensing. Models included braiding, sinuosity, ice-free water surface area (indicating groundwater influence), and persistent ice-free water (i.e., consistent presence of ice-free water for a 12-year period according to satellite imagery). Candidate models containing persistent ice-free water were selected as most likely, highlighting the utility of remote sensing for monitoring and identifying salmon habitat in remote areas. A combination of ground and remote surveys revealed spatial and temporal thermal characteristics of these habitats that could have strong biological implications. Persistent ice-free sites identified using synthetic aperture radar appear to serve as core areas for spawning fall chum salmon, and the importance of stability through time suggests a legacy of successful reproductive effort for this homing species. These features would not be captured with a one-visit traditional survey but rather required remote-sensing monitoring of the sites through time.
Overview of the Mars Reconnaissance Orbiter mission
NASA Technical Reports Server (NTRS)
Mateer, B.; Graf, J.; Zurek, R.; Jones, R.; Eisen, H.; Johnston, M.; Jai, D. B.
2002-01-01
The Mars Reconnaissance Orbiter will deliver to Mars orbit a payload to conduct remote sensing science observations, characterize sites for future landers, and provide critical telecom/navigation relay capability for follow-on missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serrato, M.; Jungho, I.; Jensen, J.
2012-01-17
Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using threemore » different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.« less
NASA Astrophysics Data System (ADS)
Coppersmith, R.; Schultz-Fellenz, E. S.; Sussman, A. J.; Vigil, S.; Dzur, R.; Norskog, K.; Kelley, R.; Miller, L.
2015-12-01
While long-term objectives of monitoring and verification regimes include remote characterization and discrimination of surficial geologic and topographic features at sites of interest, ground truth data is required to advance development of remote sensing techniques. Increasingly, it is desirable for these ground-based or ground-proximal characterization methodologies to be as nimble, efficient, non-invasive, and non-destructive as their higher-altitude airborne counterparts while ideally providing superior resolution. For this study, the area of interest is an alluvial site at the Nevada National Security Site intended for use in the Source Physics Experiment's (Snelson et al., 2013) second phase. Ground-truth surface topographic characterization was performed using a DJI Inspire 1 unmanned aerial system (UAS), at very low altitude (< 5-30m AGL). 2D photographs captured by the standard UAS camera payload were imported into Agisoft Photoscan to create three-dimensional point clouds. Within the area of interest, careful installation of surveyed ground control fiducial markers supplied necessary targets for field collection, and information for model georectification. The resulting model includes a Digital Elevation Model derived from 2D imagery. It is anticipated that this flexible and versatile characterization process will provide point cloud data resolution equivalent to a purely ground-based LiDAR scanning deployment (e.g., 1-2cm horizontal and vertical resolution; e.g., Sussman et al., 2012; Schultz-Fellenz et al., 2013). In addition to drastically increasing time efficiency in the field, the UAS method also allows for more complete coverage of the study area when compared to ground-based LiDAR. Comparison and integration of these data with conventionally-acquired airborne LiDAR data from a higher-altitude (~ 450m) platform will aid significantly in the refinement of technologies and detection capabilities of remote optical systems to identify and detect surface geologic and topographic signatures of interest. This work includes a preliminary comparison of surface signatures detected from varying standoff distances to assess current sensor performance and benefits.
NASA Technical Reports Server (NTRS)
Ross, Kenton W.; McKellip, Rodney D.
2005-01-01
Topics covered include: Implementation and Validation of Sensor-Based Site-Specific Crop Management; Enhanced Management of Agricultural Perennial Systems (EMAPS) Using GIS and Remote Sensing; Validation and Application of Geospatial Information for Early Identification of Stress in Wheat; Adapting and Validating Precision Technologies for Cotton Production in the Mid-Southern United States - 2004 Progress Report; Development of a System to Automatically Geo-Rectify Images; Economics of Precision Agriculture Technologies in Cotton Production-AG 2020 Prescription Farming Automation Algorithms; Field Testing a Sensor-Based Applicator for Nitrogen and Phosphorus Application; Early Detection of Citrus Diseases Using Machine Vision and DGPS; Remote Sensing of Citrus Tree Stress Levels and Factors; Spectral-based Nitrogen Sensing for Citrus; Characterization of Tree Canopies; In-field Sensing of Shallow Water Tables and Hydromorphic Soils with an Electromagnetic Induction Profiler; Maintaining the Competitiveness of Tree Fruit Production Through Precision Agriculture; Modeling and Visualizing Terrain and Remote Sensing Data for Research and Education in Precision Agriculture; Thematic Soil Mapping and Crop-Based Strategies for Site-Specific Management; and Crop-Based Strategies for Site-Specific Management.
Spatial and temporal characterization of methane plumes from mobile platforms
NASA Astrophysics Data System (ADS)
O'Brien, A.; Wendt, L.; Miller, D. J.; Lary, D. J.; Zondlo, M. A.
2013-12-01
The spatial and temporal characterization of methane plumes from hydraulic fracturing well sites are presented. Methane measurements from the Marcellus shale region obtained using a commercial instrument on a motor vehicle are discussed. Over 100 well sites in the region were sampled and the methane signature in the vicinity of these wells is presented. Additionally, measurements of methane from our open-path instrument flown aboard the UT Dallas AMR Payload Master 100 remote-controlled, electric aircraft in the Barnett shale region are presented. Using our observations of aircraft surveys near well sites and a gaussian plume dispersion model emission estimates of fugitive methane are presented.
NASA Astrophysics Data System (ADS)
Davies, Gwendolyn E.
Acid mine drainage (AMD) resulting from the oxidation of sulfides in mine waste is a major environmental issue facing the mining industry today. Open pit mines, tailings ponds, ore stockpiles, and waste rock dumps can all be significant sources of pollution, primarily heavy metals. These large mining-induced footprints are often located across vast geographic expanses and are difficult to access. With the continuing advancement of imaging satellites, remote sensing may provide a useful monitoring tool for pit lake water quality and the rapid assessment of abandoned mine sites. This study explored the applications of laboratory spectroscopy and multi-season hyperspectral remote sensing for environmental monitoring of mine waste environments. Laboratory spectral experiments were first performed on acid mine waters and synthetic ferric iron solutions to identify and isolate the unique spectral properties of mine waters. These spectral characterizations were then applied to airborne hyperspectral imagery for identification of poor water quality in AMD ponds at the Leviathan Mine Superfund site, CA. Finally, imagery varying in temporal and spatial resolutions were used to identify changes in mineralogy over weathering overburden piles and on dry AMD pond liner surfaces at the Leviathan Mine. Results show the utility of hyperspectral remote sensing for monitoring a diverse range of surfaces associated with AMD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, A.I.; Pettersson, C.B.
1988-01-01
Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis ofmore » surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.« less
Ka-Band Atmospheric Phase Stability Measurements in Goldstone, CA; White Sands, NM; and Guam
NASA Technical Reports Server (NTRS)
Zemba, Michael J.; Morse, Jacquelynne Rose; Nessel, James A.
2014-01-01
As spacecraft communication links are driven to higher frequencies (e.g. Ka-band) both by spectrum congestion and the appeal of higher data rates, the propagation phenomena at these frequencies must be well characterized for effective system design. In particular, the phase stability of a site at a given frequency will govern whether or not the site is a practical location for an antenna array, particularly if uplink capabilities are desired. Propagation studies to characterize such phenomena must be done on a site-by-site basis due to the wide variety of climates and weather conditions at each ground terminal. Accordingly, in order to statistically characterize the atmospheric effects on Ka-Band links, site test interferometers (STIs) have been deployed at three of NASA's operational sites to directly measure each site's tropospheric phase stability. Using three years of results from these experiments, this paper will statistically characterize the simultaneous atmospheric phase noise measurements recorded by the STIs deployed at the following ground station sites: the Goldstone Deep Space Communications Complex near Barstow, CA; the White Sands Ground Terminal near Las Cruces, NM; and the Guam Remote Ground Terminal on the island of Guam.
The Environmental Photographic Interpretation Center (EPIC) is a field station of the Landscape Ecology Branch (LEB), Environmental Sciences Division - Las Vegas, Office of Research and Development EPIC provides remote sensing technical support to help the Agency achieve its mult...
Boundary layer pollution profiles from a rural site in South Korea
NASA Astrophysics Data System (ADS)
Sullivan, John; McGee, Thomas; Thompson, Anne; Twigg, Laurence; Sumnicht, Grant; Stauffer, Ryan
2018-04-01
During the NASA 2016 KORUS-AQ campaign, the ground based NASA GSFC ozone lidar and balloon borne instrumentation were deployed to the remote Taehwa Forest site (37.3 N, 127.3 E, 151 m AGL) to characterize the transport of pollution downwind of the Seoul metropolitan region. On most days from 02 May to 10 June 2016, continuous hours of lidar profiles of ozone were measured. Select days are shown to represent key ozone events that occurred at the rural site.
A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites
Karl, Jason W.
2017-01-01
Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral ‘fingerprint’ of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches. PMID:28414731
A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
Maynard, Jonathan J; Karl, Jason W
2017-01-01
Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral 'fingerprint' of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches.
Cellular phone enabled non-invasive tissue classifier.
Laufer, Shlomi; Rubinsky, Boris
2009-01-01
Cellular phone technology is emerging as an important tool in the effort to provide advanced medical care to the majority of the world population currently without access to such care. In this study, we show that non-invasive electrical measurements and the use of classifier software can be combined with cellular phone technology to produce inexpensive tissue characterization. This concept was demonstrated by the use of a Support Vector Machine (SVM) classifier to distinguish through the cellular phone between heart and kidney tissue via the non-invasive multi-frequency electrical measurements acquired around the tissues. After the measurements were performed at a remote site, the raw data were transmitted through the cellular phone to a central computational site and the classifier was applied to the raw data. The results of the tissue analysis were returned to the remote data measurement site. The classifiers correctly determined the tissue type with a specificity of over 90%. When used for the detection of malignant tumors, classifiers can be designed to produce false positives in order to ensure that no tumors will be missed. This mode of operation has applications in remote non-invasive tissue diagnostics in situ in the body, in combination with medical imaging, as well as in remote diagnostics of biopsy samples in vitro.
Cellular Phone Enabled Non-Invasive Tissue Classifier
Laufer, Shlomi; Rubinsky, Boris
2009-01-01
Cellular phone technology is emerging as an important tool in the effort to provide advanced medical care to the majority of the world population currently without access to such care. In this study, we show that non-invasive electrical measurements and the use of classifier software can be combined with cellular phone technology to produce inexpensive tissue characterization. This concept was demonstrated by the use of a Support Vector Machine (SVM) classifier to distinguish through the cellular phone between heart and kidney tissue via the non-invasive multi-frequency electrical measurements acquired around the tissues. After the measurements were performed at a remote site, the raw data were transmitted through the cellular phone to a central computational site and the classifier was applied to the raw data. The results of the tissue analysis were returned to the remote data measurement site. The classifiers correctly determined the tissue type with a specificity of over 90%. When used for the detection of malignant tumors, classifiers can be designed to produce false positives in order to ensure that no tumors will be missed. This mode of operation has applications in remote non-invasive tissue diagnostics in situ in the body, in combination with medical imaging, as well as in remote diagnostics of biopsy samples in vitro. PMID:19365554
Remote observing capability with Subaru Telescope
NASA Astrophysics Data System (ADS)
Kosugi, George; Sasaki, Toshiyuki; Yagi, Masafumi; Ogasawara, Ryusuke; Mizumoto, Yoshihiko; Noumaru, Junichi; Kawai, Jun A.; Koura, Norikazu; Kusumoto, Toyoaki; Yamamoto, Tadahiro; Watanabe, Noboru; Ukawa, Kentaro
2004-09-01
We've implemented remote observing function to Subaru telescope Observation Software system (SOSs). Subaru telescope has three observing-sites, i.e., a telescope local-site and two remote observing-sites, Hilo base facility in Hawaii and Mitaka NAOJ headquarter in Japan. Our remote observing system is designed to allow operations not only from one of three observing-sites, but also from more than two sites concurrently or simultaneously. Considering allowance for delay in observing operations and a bandwidth of the network between the telescope-site and the remote observing-sites, three types of interfaces (protocols) have been implemented. In the remote observing mode, we use socket interface for the command and the status communication, vnc for ready-made applications and pop-up windows, and ftp for the actual data transfer. All images taken at the telescope-site are transferred to both of two remote observing-sites immediately after the acquisition to enable the observers' evaluation of the data. We present the current status of remote observations with Subaru telescope.
Emission measurements from large area sources such as landfills are complicated by their spatial extent and heterogeneous nature. In recent years, an on-site optical remote sensing (ORS) technique for characterizing emissions from area sources was described in an EPA-published p...
Characteristics of Fine Particulate Carbonaceous Aerosol at Two Remote Sites in Central Asia
Central Asia is a relatively understudied region of the world in terms of characterizing ambient particulate matter (PM) and quantifying source impacts of PM at receptor locations, although it is speculated to have an important role as a source region for long-range transport of ...
Richardson, Andrew D; Hufkens, Koen; Milliman, Tom; Frolking, Steve
2018-04-09
Phenology is a valuable diagnostic of ecosystem health, and has applications to environmental monitoring and management. Here, we conduct an intercomparison analysis using phenological transition dates derived from near-surface PhenoCam imagery and MODIS satellite remote sensing. We used approximately 600 site-years of data, from 128 camera sites covering a wide range of vegetation types and climate zones. During both "greenness rising" and "greenness falling" transition phases, we found generally good agreement between PhenoCam and MODIS transition dates for agricultural, deciduous forest, and grassland sites, provided that the vegetation in the camera field of view was representative of the broader landscape. The correlation between PhenoCam and MODIS transition dates was poor for evergreen forest sites. We discuss potential reasons (including sub-pixel spatial heterogeneity, flexibility of the transition date extraction method, vegetation index sensitivity in evergreen systems, and PhenoCam geolocation uncertainty) for varying agreement between time series of vegetation indices derived from PhenoCam and MODIS imagery. This analysis increases our confidence in the ability of satellite remote sensing to accurately characterize seasonal dynamics in a range of ecosystems, and provides a basis for interpreting those dynamics in the context of tangible phenological changes occurring on the ground.
Duan, Zheng; Peng, Ting; Zhu, Shiming; Lian, Ming; Li, Yiyun; Wei, Fu; Xiong, Jiabao; Svanberg, Sune; Zhao, Quanzhi; Hu, Jiandong; Zhao, Guangyu
2018-05-01
Chinese hybrid rice of different varieties, growing in paddies in the Pingqiao district, north of Xinyang city, Henan province, China, was studied in detailed spectroscopic characteristics using laser-induced fluorescence. The base for the studies was the new South China Normal University mobile lidar laboratory, which was dispatched on site, providing facilities both for laboratory studies using a 405 nm excitation source as well as remote sensing measurements at ranges from around 40 m-120 m, mostly employing the 532 nm output from a Nd:YAG laser. We, in particular, studied the spectral influence of the species varieties as well as the level of nitrogen fertilization supplied. Specially developed contrast functions as well as multivariate techniques with principal components and Fisher's discriminate analyses were applied, and useful characterization of the rice could be achieved. The chlorophyll content mapping of the 30 zones was obtained with the remote sensing measurements.
Coupling fine-scale root and canopy structure using ground-based remote sensing
Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.; ...
2017-02-21
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less
Coupling fine-scale root and canopy structure using ground-based remote sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less
Spectral and Geological Characterization of Beach Components in Northern Puerto Rico
NASA Astrophysics Data System (ADS)
Caraballo Álvarez, I. O.; Torres-Perez, J. L.; Barreto, M.
2015-12-01
Understanding how changes in beach components may reflect beach processes is essential since variations along beach profiles can shed light on river and ocean processes influencing beach sedimentation and beachrock formation. It is likely these influences are related to beach proximity within the Río Grande de Manatí river mouth. Therefore, this study focuses on characterizing beach components at two sites in Manatí, Puerto Rico. Playa Machuca and Playa Tombolo, which are separated by eolianites, differ greatly in sediment size, mineralogy, and beachrock morphology. Several approaches were taken to geologically and spectrally characterize main beach components at each site. These approaches included field and microscopic laboratory identification, granulometry, and a comparison between remote sensing reflectance (Rrs) obtained with a field spectroradiometer and pre-existing spectral library signatures. Preliminary results indicate a positive correlation between each method. This study may help explore the possibility of using only Rrs to characterize beach and shallow submarine components for detailed image analysis and management of coastal features.This study focuses on characterizing beach components at two sites in Manatí, Puerto Rico. Playa Machuca and Playa Tombolo, two beaches that are separated by eolianites, differ greatly in sediment size and mineralogy, as well as in beachrock morphology. Understanding how changes in beach components may reflect beach processes is essential, since it is likely that differences are mostly related to each beaches' proximity to the Río Grande de Manatí river mouth. Hence, changes in components along beach profiles can shed light on the river's and the ocean's influence on beach sedimentation and beachrock formation. Several approaches were taken to properly geologically and spectrally characterize the main beach components at each site. These approaches included field and microscopic laboratory identification, granulometry, and a comparison between remote sensing reflectance (Rrs) obtained with a field spectroradiometer and the ENVI spectral library. Preliminary results show a positive correlation between each method. This study may help explore the possibility of using only Rrs to characterize beach and shallow submarine components for detailed image analysis and management of coastal features.
NASA Technical Reports Server (NTRS)
Podest, Erika; McDonald, Kyle; Kimball, John; Randerson, James
2003-01-01
We characterize differences in radar-derived freeze/thaw state, examining transitions over complex terrain and landscape disturbance regimes. In areas of complex terrain, we explore freezekhaw dynamics related to elevation, slope aspect and varying landcover. In the burned regions, we explore the timing of seasonal freeze/thaw transition as related to the recovering landscape, relative to that of a nearby control site. We apply in situ biophysical measurements, including flux tower measurements to validate and interpret the remotely sensed parameters. A multi-scale analysis is performed relating high-resolution SAR backscatter and moderate resolution scatterometer measurements to assess trade-offs in spatial and temporal resolution in the remotely sensed fields.
NASA Technical Reports Server (NTRS)
Hilbert, Kent; Pagnutti, Mary; Ryan, Robert; Zanoni, Vicki
2002-01-01
This paper discusses a method for detecting spatially uniform sites need for radiometric characterization of remote sensing satellites. Such information is critical for scientific research applications of imagery having moderate to high resolutions (<30-m ground sampling distance (GSD)). Previously published literature indicated that areas with the African Saharan and Arabian deserts contained extremely uniform sites with respect to spatial characteristics. We developed an algorithm for detecting site uniformity and applied it to orthorectified Landsat Thematic Mapper (TM) imagery over eight uniform regions of interest. The algorithm's results were assessed using both medium-resolution (30-m GSD) Landsat 7 ETM+ and fine-resolution (<5-m GSD) IKONOS multispectral data collected over sites in Libya and Mali. Fine-resolution imagery over a Libyan site exhibited less than 1 percent nonuniformity. The research shows that Landsat TM products appear highly useful for detecting potential calibration sites for system characterization. In particular, the approach detected spatially uniform regions that frequently occur at multiple scales of observation.
Validation of Airborne Visible-Infrared Imaging Spectrometer Data at Ray Mine, AZ
NASA Technical Reports Server (NTRS)
Lang, H.; Baloga, S.
1999-01-01
We validate 1997 Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) reflectance spectra covering 0.4 meu - 2.4 meu from a stable, flat mineralogically characterized man-made target at Ray Mine, AZ, the site for an EPA/NASA assessment of the utility of remote sensing for monitoring acid drainage from an active open pit mine.
Measurement and analysis of ambient atmospheric particulate matter in urban and remote environments
NASA Astrophysics Data System (ADS)
Hagler, Gayle S. W.
Atmospheric particulate matter pollution is a challenging environmental concern in both urban and remote locations worldwide. It is intrinsically difficult to control, given numerous anthropogenic and natural sources (e.g. fossil fuel combustion, biomass burning, dust, and seaspray) and atmospheric transport up to thousands of kilometers after production. In urban regions, fine particulate matter (particles with diameters under 2.5 mum) is of special concern for its ability to penetrate the human respiratory system and threaten cardiopulmonary health. A second major impact area is climate, with particulate matter altering Earth's radiative balance through scattering and absorbing solar radiation, modifying cloud properties, and reducing surface reflectivity after deposition in snow-covered regions. While atmospheric particulate matter has been generally well-characterized in populated areas of developed countries, particulate pollution in developing nations and remote regions is relatively unexplored. This thesis characterizes atmospheric particulate matter in locations that represent the extreme ends of the spectrum in terms of air pollution-the rapidly-developing and heavily populated Pearl River Delta Region of China, the pristine and climate-sensitive Greenland Ice Sheet, and a remote site in the Colorado Rocky Mountains. In China, fine particles were studied through a year-long field campaign at seven sites surrounding the Pearl River Delta. Fine particulate matter was analyzed for chemical composition, regional variation, and meteorological impacts. On the Greenland Ice Sheet and in the Colorado Rocky Mountains, the carbonaceous fraction (organic and elemental carbon) of particulate matter was studied in the atmosphere and snow pack. Analyses included quantifying particulate chemical and optical properties, assessing atmospheric transport, and evaluating post-depositional processing of carbonaceous species in snow.
Tunnel-Site Selection by Remote Sensing Techniques
A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave
Technology for Waste Treatment at Remote Army Sites
1986-09-01
Management "AD-A.17 6 801 i echnology for Waste Treatment at Remote Army Sites by * Richard J. Scholze James E. Alleinan Steve R. Struss EdD. Smith This...62720 IA896 A 1039 IT TITLE (include Security Classification) Technology for Waste Treatment at Remote Army Sites (Unclassified) 12 PERSONAL...management human wastes 13 02 waste treatment remote sites I I wastes (sanitary engineering)~ 19 ABSTRACT (Continue on reverse if necessary and identify by
Rock Statistics at the Mars Pathfinder Landing Site, Roughness and Roving on Mars
NASA Technical Reports Server (NTRS)
Haldemann, A. F. C.; Bridges, N. T.; Anderson, R. C.; Golombek, M. P.
1999-01-01
Several rock counts have been carried out at the Mars Pathfinder landing site producing consistent statistics of rock coverage and size-frequency distributions. These rock statistics provide a primary element of "ground truth" for anchoring remote sensing information used to pick the Pathfinder, and future, landing sites. The observed rock population statistics should also be consistent with the emplacement and alteration processes postulated to govern the landing site landscape. The rock population databases can however be used in ways that go beyond the calculation of cumulative number and cumulative area distributions versus rock diameter and height. Since the spatial parameters measured to characterize each rock are determined with stereo image pairs, the rock database serves as a subset of the full landing site digital terrain model (DTM). Insofar as a rock count can be carried out in a speedier, albeit coarser, manner than the full DTM analysis, rock counting offers several operational and scientific products in the near term. Quantitative rock mapping adds further information to the geomorphic study of the landing site, and can also be used for rover traverse planning. Statistical analysis of the surface roughness using the rock count proxy DTM is sufficiently accurate when compared to the full DTM to compare with radar remote sensing roughness measures, and with rover traverse profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyquist, J.E.
1996-10-01
The US DOE is endeavoring to clean up contamination created by the disposal of chemical and nuclear waste on the Oak Ridge Reservation (ORR), Tennessee, with an emphasis on minimizing off-site migration of contaminated surface and ground water. The task is complicated by inadequate disposal records and by the complexity of the local geology. Remote sensing data, including aerial photography and geophysics, have played an important role in the ORR site characterization. Are there advantages to collecting remote sensing data using Unmanned Aerial Vehicles (UAV`s)? In this paper, I will discuss the applications of UAV`s being explored at Oak Ridgemore » National Laboratory (ORNL) under the sponsorship of the Department of Energy`s Office of Science and technology. These applications are : aerial photography, magnetic mapping, and Very Low Frequency (VLF) electromagnetic mapping.« less
Remote detection of geobotanical anomalies associated with hydrocarbon microseepage
NASA Technical Reports Server (NTRS)
Rock, B. N.
1985-01-01
As part of the continuing study of the Lost River, West Virginia NASA/Geosat Test Case Site, an extensive soil gas survey of the site was conducted during the summer of 1983. This soil gas survey has identified an order of magnitude methane, ethane, propane, and butane anomaly that is precisely coincident with the linear maple anomaly reported previously. This and other maple anomalies were previously suggested to be indicative of anaerobic soil conditions associated with hydrocarbon microseepage. In vitro studies support the view that anomalous distributions of native tree species tolerant of anaerobic soil conditions may be useful indicators of methane microseepage in heavily vegetated areas of the United States characterized by deciduous forest cover. Remote sensing systems which allow discrimination and mapping of native tree species and/or species associations will provide the exploration community with a means of identifying vegetation distributional anomalies indicative of microseepage.
Remote geologic structural analysis of Yucca Flat
NASA Astrophysics Data System (ADS)
Foley, M. G.; Heasler, P. G.; Hoover, K. A.; Rynes, N. J.; Thiessen, R. L.; Alfaro, J. L.
1991-12-01
The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the U.S. Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures.
In situ radiological surveying at the Double Tracks site, Nellis Air Force Range, Tonopah, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riedhauser, S.R.; Tipton, W.J.
1996-04-01
A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the Double Tracks site on the Nellis Air Force Range just east of Goldfield, Nevada, during the periods of April 10-13 and June 5-9, 1995. The survey team measured the terrestrial gamma radiation at the site to determine the levels of natural and man-made radiation. This site includes the areas covered by previous surveys conducted from 1962 through 1993. The main purpose of the first expedition was to assess several new techniques for characterizing sites with dispersed plutonium. The two purposes of the secondmore » expedition were to characterize the distribution of transuranic contamination (primarily plutonium) at the site by measuring the gamma rays from americium-241 and to assess the performance of the two new detector platforms. Both of the new platforms performed well, and the characterization of the americium-241 activity at the site was completed. Several plots compare these ground-based system measurements and the 1993 aerial data. The agreement is good considering the systems are characterized and calibrated through independent means. During the April expedition, several methods for measuring the depth distribution of americium-241 in the field were conducted as a way of quickly and reliably obtaining depth profiles without the need to wait for laboratory analysis. Two of the methods were not very effective, but the results of the third method appear very promising.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-06
... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at Sandia..., remote-handled (RH), transuranic (TRU) waste characterization program implemented by the Central Characterization Project (CCP) at Sandia National Laboratory (SNL) in Albuquerque, New Mexico. This waste is...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at Bettis... radioactive remote-handled (RH) transuranic (TRU) waste characterization program implemented by the Central Characterization Project (CCP) at Bettis Atomic Power Laboratory (BAPL) in West Mifflin, Pennsylvania. This waste...
On validating remote sensing simulations using coincident real data
NASA Astrophysics Data System (ADS)
Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan
2016-05-01
The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.
On the search for extant life on Mars
NASA Technical Reports Server (NTRS)
Klein, H. P.
1996-01-01
Proposals for continuing the search for extant life on Mars are primarily predicated on the assumption that specialized environmental niches that could support a biota may exist on the planet. Before attempting any critical tests for extant organisms, either in situ or on returned samples, it is imperative to determine whether any such sites actually exist. If, through remote sensing and landed instrumentation, sites of potential biological interest are discovered and characterized, biological tests can then more effectively be planned to elicit the presence of organisms that are adapted to living in these particular environments.
Cornell University remote sensing program. [New York
NASA Technical Reports Server (NTRS)
Liang, T.; Mcnair, A. J.; Philipson, W. R. (Principal Investigator)
1978-01-01
The author has identified the following significant results. Available aerial photographs were used to characterize mosquito breeding sites in Oswego County, New York. Numerous wetlands are contained within this county; this area is the only inland area in North America to have confirmed outbreaks of eastern equine encephalitis. This photocharacterization of primary mosquito breeding sites will be used to develop effective spraying. Large scale color and color infrared aerial photographs were used to assess changes in aquatic vegetation that accompanied phosphorus reduction in an eutrophic lake in New York.
On the search for extant life on Mars.
Klein, H P
1996-01-01
Proposals for continuing the search for extant life on Mars are primarily predicated on the assumption that specialized environmental niches that could support a biota may exist on the planet. Before attempting any critical tests for extant organisms, either in situ or on returned samples, it is imperative to determine whether any such sites actually exist. If, through remote sensing and landed instrumentation, sites of potential biological interest are discovered and characterized, biological tests can then more effectively be planned to elicit the presence of organisms that are adapted to living in these particular environments.
46 CFR 160.151-49 - Approval of servicing facilities at remote sites.
Code of Federal Regulations, 2011 CFR
2011-10-01
... remote site, equipment needed for repair does not need to be available at that site. A facility must be... 46 Shipping 6 2011-10-01 2011-10-01 false Approval of servicing facilities at remote sites. 160.151-49 Section 160.151-49 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT...
System architecture for asynchronous multi-processor robotic control system
NASA Technical Reports Server (NTRS)
Steele, Robert D.; Long, Mark; Backes, Paul
1993-01-01
The architecture for the Modular Telerobot Task Execution System (MOTES) as implemented in the Supervisory Telerobotics (STELER) Laboratory is described. MOTES is the software component of the remote site of a local-remote telerobotic system which is being developed for NASA for space applications, in particular Space Station Freedom applications. The system is being developed to provide control and supervised autonomous control to support both space based operation and ground-remote control with time delay. The local-remote architecture places task planning responsibilities at the local site and task execution responsibilities at the remote site. This separation allows the remote site to be designed to optimize task execution capability within a limited computational environment such as is expected in flight systems. The local site task planning system could be placed on the ground where few computational limitations are expected. MOTES is written in the Ada programming language for a multiprocessor environment.
Yong, A.; Hough, S.E.; Cox, B.R.; Rathje, E.M.; Bachhuber, J.; Dulberg, R.; Hulslander, D.; Christiansen, L.; Abrams, M.J.
2011-01-01
We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, Vs30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available Vs30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data. ?? 2011 American Society for Photogrammetry and Remote Sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a netmore » groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.« less
On the feasibility of comprehensive high-resolution 3D remote dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juang, Titania; Grant, Ryan; Adamovics, John
2014-07-15
Purpose: This study investigates the feasibility of remote high-resolution 3D dosimetry with the PRESAGE®/Optical-CT system. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote institution for irradiation, then shipped back to the base institution for subsequent readout and analysis. Methods: Two nominally identical optical-CT scanners for 3D dosimetry were constructed and placed at the base (Duke University) and remote (Radiological Physics Center) institutions. Two formulations of PRESAGE® (SS1, SS2) radiochromic dosimeters were investigated. Higher sensitivity was expected in SS1, which had higher initiator content (0.25% bromotrichloromethane), while greater temporal stability was expected in SS2.more » Four unirradiated PRESAGE® dosimeters (two per formulation, cylindrical dimensions 11 cm diameter, 8.5–9.5 cm length) were imaged at the base institution, then shipped to the remote institution for planning and irradiation. Each dosimeter was irradiated with the same simple treatment plan: an isocentric 3-field “cross” arrangement of 4 × 4 cm open 6 MV beams configured as parallel opposed laterals with an anterior beam. This simple plan was amenable to accurate and repeatable setup, as well as accurate dose modeling by a commissioned treatment planning system (Pinnacle). After irradiation and subsequent (within 1 h) optical-CT readout at the remote institution, the dosimeters were shipped back to the base institution for remote dosimetry readout 3 days postirradiation. Measured on-site and remote relative 3D dose distributions were registered to the Pinnacle dose calculation, which served as the reference distribution for 3D gamma calculations with passing criteria of 5%/2 mm, 3%/3 mm, and 3%/2 mm with a 10% dose threshold. Gamma passing rates, dose profiles, and color-maps were all used to assess and compare the performance of both PRESAGE® formulations for remote dosimetry. Results: The best agreements between the Pinnacle plan and dosimeter readout were observed in PRESAGE® formulation SS2. Under 3%/3 mm 3D gamma passing criteria, passing rates were 91.5% ± 3.6% (SS1) and 97.4% ± 2.2% (SS2) for immediate on-site dosimetry, 96.7% ± 2.4% (SS1) and 97.6% ± 0.6% (SS2) for remote dosimetry. These passing rates are well within TG119 recommendations (88%–90% passing). Under the more stringent criteria of 3%/2 mm, there is a pronounced difference [8.0 percentage points (pp)] between SS1 formulation passing rates for immediate and remote dosimetry while the SS2 formulation maintains both higher passing rates and consistency between immediate and remote results (differences ≤ 1.2 pp) at all metrics. Both PRESAGE® formulations under study maintained high linearity of dose response (R{sup 2} > 0.996) for 1–8 Gy over 14 days with response slope consistency within 4.9% (SS1) and 6.6% (SS2), and a relative dose distribution that remained stable over time was demonstrated in the SS2 dosimeters. Conclusions: Remote 3D dosimetry was shown to be feasible with a PRESAGE® dosimeter formulation (SS2) that exhibited relative temporal stability and high accuracy when read off-site 3 days postirradiation. Characterization of the SS2 dose response demonstrated linearity (R{sup 2} > 0.998) over 14 days and suggests accurate readout over longer periods of time would be possible. This result provides a foundation for future investigations using remote dosimetry to study the accuracy of advanced radiation treatments. Further work is planned to characterize dosimeter reproducibility and dose response over longer periods of time.« less
Mars Exploration Rovers Launch Performance and TCM-1 Maneuver Design
NASA Technical Reports Server (NTRS)
Kangas, Julie A.; Potts, Christopher L.; Raofi, Behzad
2004-01-01
The Mars Exploration Rover (MER) project successfully landed two identical rovers on Mars in order to remotely conduct geologic investigations, including characterization of rocks and soils that may hold clues to past water activity. Two landing sites, Gusev crater and Meridiani Planum, were selected out of nearly 200 candidate sites after balancing science returns and flight system engineering and safety. Precise trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites within the flight system constraints. This paper discusses the expected and achieved launch vehicle performance and the impacts of that performance on the first Trajectory Correction Maneuver (TCM-1) while maintaining targeting flexibility in accommodating additional project concerns about landing site safety and possible in-flight retargeting to alternate landing sites.
Remote-handled/special case TRU waste characterization summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.
1984-03-30
TRU wastes are those (other than high level waste) contaminated with specified quantities of certain alpha-emitting radionuclides of long half-life and high specific radiotoxicity. TRU waste is defined as /sup 226/Ra isotopic sources and those other materials that, without regard to source or form, are contaminated with transuranic elements with half-lives greater than 20 years, and have TRU alpha contamination greater than 100 nCi/g. RH TRU waste has high beta and gamma radiation levels, up to 30,000 R/hr, and thermal output may be a few hundred watts per container. The radiation levels in most of this remotely handled (RH) TRUmore » waste, however, are below 100 R/hr. Remote-handled wastes are stored at Los Alamos, Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. This report presents a site by site discussion of RH waste handling, placement, and container data. This is followed by a series of data tables that were compiled in the TRU Waste Systems Office. These tables are a compendium of data that are the most up to date and accurate data available today. 10 tables.« less
Overview (northeast to southwest) of remote sprint launch site #4. ...
Overview (northeast to southwest) of remote sprint launch site #4. In center is limited area sentry station, just behind it can be seen the exhaust and intake shafts for the remote launch operations building, and to the far right is the exclusion area sentry station - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 4, North of State Highway 17, approximately 9 miles Northwest of Adams, ND, Nekoma, Cavalier County, ND
Laser long-range remote-sensing program experimental results
NASA Astrophysics Data System (ADS)
Highland, Ronald G.; Shilko, Michael L.; Fox, Marsha J.; Gonglewski, John D.; Czyzak, Stanley R.; Dowling, James A.; Kelly, Brian; Pierrottet, Diego F.; Ruffatto, Donald; Loando, Sharon; Matsuura, Chris; Senft, Daniel C.; Finkner, Lyle; Rae, Joe; Gallegos, Joe
1995-12-01
A laser long range remote sensing (LRS) program is being conducted by the United States Air Force Phillips Laboratory (AF/PL). As part of this program, AF/PL is testing the feasibility of developing a long path CO(subscript 2) laser-based DIAL system for remote sensing. In support of this program, the AF/PL has recently completed an experimental series using a 21 km slant- range path (3.05 km ASL transceiver height to 0.067 km ASL target height) at its Phillips Laboratory Air Force Maui Optical Station (AMOS) facility located on Maui, Hawaii. The dial system uses a 3-joule, (superscript 13)C isotope laser coupled into a 0.6 m diameter telescope. The atmospheric optical characterization incorporates information from an infrared scintillometer co-aligned to the laser path, atmospheric profiles from weather balloons launched from the target site, and meteorological data from ground stations at AMOS and the target site. In this paper, we report a description of the experiment configuration, a summary of the results, a summary of the atmospheric conditions and their implications to the LRS program. The capability of such a system for long-range, low-angle, slant-path remote sensing is discussed. System performance issues relating to both coherent and incoherent detection methods, atmospheric limitations, as well as, the development of advanced models to predict performance of long range scenarios are presented.
Characterization of ambient aerosol at a remote site and twin cities of Pakistan
NASA Astrophysics Data System (ADS)
Ghauri, B.; Lodhi, A.
The pollution controls have significantly decreased pollutant concentrations in the industrialized nations in the west while the concentrations are expected to grow in developing countries. In this study the concentrations of major ions i.e SO4 2 -, NO3 -, NO2 -, Cl- , NH4 + and trace metals i.e. Al, V, Cr, Mn, Cu, As, Se, Cd, Sb, Ba, Ti and Pb were determined in aerosols at a remote site of Northern Pakistan in July 1996. Later in May 1998, a comparative study of aerosols in two size fractions (bulk &PM10) at 14 sites enabled to understand the anomalous distribution of several constituents present in the ambient air of the twin cities, Islamabad / Rawalpindi 90 km from South East of earlier site. The suspended particulate matter concentrations (bulk and PM10) were 475 ug/m3, 175 ug/m3 respectively. For urban areas Pb, Cd, Zn and Ni are obviously contributed by steel and other allied industries besides vehicle's contribution of lead and cadmium. In Northern area concentrations of Al, K, Ca, and Fe exceeded 1000 ng/m3. The SO2 concentrations varied from 0.03 to 1.2 ppb. Mean SO4 2- and NO3 - concentrations were 5.2 ug/m3 and 3.6 ug/m3 respectively. Concentrations of Se, Ti, Pb, Cd, Sb, Zn and As in all aerosol samples were highly enriched relative to average crustal abundances indicating significant anthropogenic contributions. As the dominant flow pattern from the Arabian Sea through India (monsoon air pattern) this may transport pollution derived aerosol and moisture from distant sources in China or India. Key word index: Aerosol, trace metals , enrichment, anions, air pollution, Islamabad/Rawalpindi, remote site.
NASA Astrophysics Data System (ADS)
Nikolakopoulos, Konstantinos; Depountis, Nikolaos; Vagenas, Nikolaos; Kavoura, Katerina; Vlaxaki, Eleni; Kelasidis, George; Sabatakakis, Nikolaos
2015-06-01
In this paper a specific example of the synergistic use of geotechnical survey, remote sensing data and GIS for rockfall risk evaluation is presented. The study area is located in Western Greece. Extensive rockfalls have been recorded along Patras - Ioannina highway just after the cable-stayed bridge of Rio-Antirrio, at Klokova site. The rockfalls include medium- sized limestone boulders with volume up to 1.5m3. A detailed engineering geological survey was conducted including rockmass characterization, laboratory testing and geological - geotechnical mapping. Many Rockfall trajectory simulations were done. Rockfall risk along the road was estimated using spatial analysis in a GIS environment.
NASA Technical Reports Server (NTRS)
Clarke, V. C., Jr.
1978-01-01
The capability of a remotely piloted airplane as a Mars exploration vehicle in the aerial survey mode is assessed. Specific experiment areas covered include: visual imaging; gamma ray and infrared reflectance spectroscopy; gravity field; magnetic field and electromagnetic sounding; and atmospheric composition and dynamics. It is concluded that (1) the most important use of a plane in the aerial survey mode would be in topical studies and returned sample site characterization; (2) the airplane offers the unique capability to do high resolution, oblique imaging, and repeated profile measurements in the atmospheric boundary layer; and (3) it offers the best platform from which to do electromagnetic sounding.
Virtual Planetary Analysis Environment for Remote Science
NASA Technical Reports Server (NTRS)
Keely, Leslie; Beyer, Ross; Edwards. Laurence; Lees, David
2009-01-01
All of the data for NASA's current planetary missions and most data for field experiments are collected via orbiting spacecraft, aircraft, and robotic explorers. Mission scientists are unable to employ traditional field methods when operating remotely. We have developed a virtual exploration tool for remote sites with data analysis capabilities that extend human perception quantitatively and qualitatively. Scientists and mission engineers can use it to explore a realistic representation of a remote site. It also provides software tools to "touch" and "measure" remote sites with an immediacy that boosts scientific productivity and is essential for mission operations.
Chander, G.; Christopherson, J.B.; Stensaas, G.L.; Teillet, P.M.
2007-01-01
In an era when the number of Earth-observing satellites is rapidly growing and measurements from these sensors are used to answer increasingly urgent global issues, it is imperative that scientists and decision-makers can rely on the accuracy of Earth-observing data products. The characterization and calibration of these sensors are vital to achieve an integrated Global Earth Observation System of Systems (GEOSS) for coordinated and sustained observations of Earth. The U.S. Geological Survey (USGS), as a supporting member of the Committee on Earth Observation Satellites (CEOS) and GEOSS, is working with partners around the world to establish an online catalog of prime candidate test sites for the post-launch characterization and calibration of space-based optical imaging sensors. The online catalog provides easy public Web site access to this vital information for the global community. This paper describes the catalog, the test sites, and the methodologies to use the test sites. It also provides information regarding access to the online catalog and plans for further development of the catalog in cooperation with calibration specialists from agencies and organizations around the world. Through greater access to and understanding of these vital test sites and their use, the validity and utility of information gained from Earth remote sensing will continue to improve. Copyright IAF/IAA. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Nichols
2002-05-03
In this quarter we continued the processing of the Safford IP survey data. The processing identified a time shift problem between the sites that was caused by a GPS firmware error. A software procedure was developed to identify and correct the shift, and this was applied to the data. Preliminary estimates were made of the remote referenced MT parameters, and initial data quality assessment showed the data quality was good for most of the line. The multi-site robust processing code of Egbert was linked to the new data and processing initiated.
NASA Astrophysics Data System (ADS)
Deo, Ram K.
Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.
Ohta, Kunio; Kurosawa, Hiroshi; Shiima, Yuko; Ikeyama, Takanari; Scott, James; Hayes, Scott; Gould, Michael; Buchanan, Newton; Nadkarni, Vinay; Nishisaki, Akira
2017-08-01
To assess the effectiveness of pediatric simulation by remote facilitation. We hypothesized that simulation by remote facilitation is more effective compared to simulation by an on-site facilitator. We defined remote facilitation as a facilitator remotely (1) introduces simulation-based learning and simulation environment, (2) runs scenarios, and (3) performs debriefing with an on-site facilitator. A remote simulation program for medical students during pediatric rotation was implemented. Groups were allocated to either remote or on-site facilitation depending on the availability of telemedicine technology. Both groups had identical 1-hour simulation sessions with 2 scenarios and debriefing. Their team performance was assessed with behavioral assessment tool by a trained rater. Perception by students was evaluated with Likert scale (1-7). Fifteen groups with 89 students participated in a simulation by remote facilitation, and 8 groups with 47 students participated in a simulation by on-site facilitation. Participant demographics and previous simulation experience were similar. Both groups improved their performance from first to second scenario: groups by remote simulation (first [8.5 ± 4.2] vs second [13.2 ± 6.2], P = 0.003), and groups by on-site simulation (first [6.9 ± 4.1] vs second [12.4 ± 6.4], P = 0.056). The performance improvement was not significantly different between the 2 groups (P = 0.94). Faculty evaluation by students was equally high in both groups (7 vs 7; P = 0.65). A pediatric acute care simulation by remote facilitation significantly improved students' performance. In this pilot study, remote facilitation seems as effective as a traditional, locally facilitated simulation. The remote simulation can be a strong alternative method, especially where experienced facilitators are limited.
2016-07-15
AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER... electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study
2016-07-15
AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER...electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study
ERIC Educational Resources Information Center
Stokes, Alison; Collins, Trevor; Maskall, John; Lea, John; Lunt, Paul; Davies, Sarah
2012-01-01
This study considers the pedagogical effectiveness of remote access to fieldwork locations. Forty-one students from across the GEES disciplines (geography, earth and environmental sciences) undertook a fieldwork exercise, supported by two lecturers. Twenty students accessed the field site directly and the remainder accessed the site remotely using…
NASA Technical Reports Server (NTRS)
Vogelmann, J. E.; Rock, B. N.
1985-01-01
In an attempt to demonstrate the utility of remote sensing systems to monitor sites of suspected acid rain deposition damage, intensive field activities, coupled with aircraft overflights, were centered on red spruce stands in Vermont during August and September of 1984. Remote sensing data were acquired using the Airborne Imaging Spectrometer, Thematic Mapper Simulator, Barnes Model 12 to 1000 Modular Multiband Radiometer and Spectron Engineering Spectrometer (the former two flown on the NASA C-130; the latter two on A Bell UH-1B Iroquois Helicopter). Field spectral data were acquired during the week of the August overflights using a high spectral resolution spectrometer and two broad-band radiometers. Preliminary analyses of these data indicate a number of spectral differences in vegetation between high and low damage sites. Some of these differences are subtle, and are observable only with high spectral resolution sensors; others are less subtle and are observable using broad-band sensors.
Gong, Yin-Xi; He, Cheng; Yan, Fei; Feng, Zhong-Ke; Cao, Meng-Lei; Gao, Yuan; Miao, Jie; Zhao, Jin-Long
2013-10-01
Multispectral remote sensing data containing rich site information are not fully used by the classic site quality evaluation system, as it merely adopts artificial ground survey data. In order to establish a more effective site quality evaluation system, a neural network model which combined remote sensing spectra factors with site factors and site index relations was established and used to study the sublot site quality evaluation in the Wangyedian Forest Farm in Inner Mongolia Province, Chifeng City. Based on the improved back propagation artificial neural network (BPANN), this model combined multispectral remote sensing data with sublot survey data, and took larch as example, Through training data set sensitivity analysis weak or irrelevant factor was excluded, the size of neural network was simplified, and the efficiency of network training was improved. This optimal site index prediction model had an accuracy up to 95.36%, which was 9.83% higher than that of the neural network model based on classic sublot survey data, and this shows that using multi-spectral remote sensing and small class survey data to determine the status of larch index prediction model has the highest predictive accuracy. The results fully indicate the effectiveness and superiority of this method.
Reactor Decommissioning - Balancing Remote and Manual Activities - 12159
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Matt
2012-07-01
Nuclear reactors come in a wide variety of styles, size, and ages. However, during decommissioned one issue they all share is the balancing of remotely and manually activities. For the majority of tasks there is a desire to use manual methods because remote working can be slower, more expensive, and less reliable. However, because of the unique hazards of nuclear reactors some level of remote activity will be necessary to provide adequate safety to workers and properly managed and designed it does not need to be difficult nor expensive. The balance of remote versus manual work can also affect themore » amount and types of waste that is generated. S.A.Technology (SAT) has worked on a number of reactor decommissioning projects over the last two decades and has a range of experience with projects using remote methods to those relying primarily on manual activities. This has created a set of lessons learned and best practices on how to balance the need for remote handling and manual operations. Finding a balance between remote and manual operations on reactor decommissioning can be difficult but by following certain broad guidelines it is possible to have a very successfully decommissioning. It is important to have an integrated team that includes remote handling experts and that this team plans the work using characterization efforts that are efficient and realistic. The equipment need to be simple, robust and flexible and supported by an on-site team committed to adapting to day-to-day challenges. Also, the waste strategy needs to incorporate the challenges of remote activities in its planning. (authors)« less
Flexibility and mutagenic resiliency of glycosyltransferases.
Bay, Marie Lund; Cuesta-Seijo, Jose A; Weadge, Joel T; Persson, Mattias; Palcic, Monica M
2014-10-01
The human blood group A and B antigens are synthesized by two highly homologous enzymes, glycosyltransferase A (GTA) and glycosyltransferase B (GTB), respectively. These enzymes catalyze the transfer of either GalNAc or Gal from their corresponding UDP-donors to αFuc1-2βGal-R terminating acceptors. GTA and GTB differ at only four of 354 amino acids (R176G, G235S, L266M, G268A), which alter the donor specificity from UDP-GalNAc to UDP-Gal. Blood type O individuals synthesize truncated or non-functional enzymes. The cloning, crystallization and X-ray structure elucidations for GTA and GTB have revealed key residues responsible for donor discrimination and acceptor binding. Structural studies suggest that numerous conformational changes occur during the catalytic cycle. Over 300 ABO alleles are tabulated in the blood group antigen mutation database (BGMUT) that provides a framework for structure-function studies. Natural mutations are found in all regions of GTA and GTB from the active site, flexible loops, stem region and surfaces remote from the active site. Our characterizations of natural mutants near a flexible loop (V175M), on a remote surface site (P156L), in the metal binding motif (M212V) and near the acceptor binding site (L232P) demonstrate the resiliency of GTA and GTB to mutagenesis.
Overall view from south to north of remote sprint launch ...
Overall view from south to north of remote sprint launch sprint launch site #3. Remote launch operations building on left, exclusion area sentry station at distant center, and limited area sentry station on right - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 3, North of State Route 5, approximately 10 miles Southwest of Walhalla, ND, Nekoma, Cavalier County, ND
Remote telescope control of site testing with ASCOM
NASA Astrophysics Data System (ADS)
Ji, Kaifan; Liang, Bo; Peng, Yajie; Wang, Feng
2012-04-01
Remote telescope control is significant important for the astronomical site testing. Basing on ASCOM standard, a prototype of remote telescope control system has been implemented. In this paper, the details of the system design, both server end and client end, are introduced. We tested the prototype on a narrow-band dial-up networking and controlled a real remote telescope successfully. The result indicates that it is effective to control remote telescope and other devices with ASCOM.
Antibiotic-Resistant Escherichia coli in Migratory Birds Inhabiting Remote Alaska.
Ramey, Andrew M; Hernandez, Jorge; Tyrlöv, Veronica; Uher-Koch, Brian D; Schmutz, Joel A; Atterby, Clara; Järhult, Josef D; Bonnedahl, Jonas
2017-12-11
We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.
Bilevel Shared Control Of A Remote Robotic Manipulator
NASA Technical Reports Server (NTRS)
Hayati, Samad A.; Venkataraman, Subramanian T.
1992-01-01
Proposed concept blends autonomous and teleoperator control modes, each overcoming deficiencies of the other. Both task-level and execution-level functions performed at local and remote sites. Applicable to systems with long communication delay between local and remote sites or systems intended to function partly autonomously.
EPA's National Dioxin Air Monitoring Network (NDAMN): Design, implementation, and final results
NASA Astrophysics Data System (ADS)
Lorber, Matthew; Ferrario, Joseph; Byrne, Christian
2013-10-01
The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (dl-PCBs). NDAMN started with 10 sampling sites, adding more over time until the final count of 34 sites was reached by the beginning of 2003. Samples were taken quarterly, and the final sample count was 685. All samples were measured for 17 PCDD/PCDF congeners, 8 PCDD/PCDF homologue groups, and 7 dl-PCBs (note: 5 additional dl-PCBs were added for samples starting in the summer of 2002; 317 samples had measurements of 12 dl-PCBs). The overall average total toxic equivalent (TEQ) concentration in the United States was 11.2 fg TEQ m-3 with dl-PCBs contributing 0.8 fg TEQ m-3 (7%) to this total. The archetype dioxin and furan background air congener profile was seen in the survey averages and in most individual samples. This archetype profile is characterized by low and similar concentrations for tetra - through hexa PCDD/PCDF congeners, with elevations in four congeners - a hepta dioxin and furan congener, and both octa congeners. Sites were generally categorized as urban (4 sites), rural (23 sites), or remote (7 sites). The average TEQ concentrations over all sites and samples within these categories were: urban = 15.9 fg TEQ m-3, rural = 13.9 fg TEQ m-3, and remote = 1.2 fg TEQ m-3. Rural sites showed elevations during the fall or winter months when compared to the spring or summer months, and the same might be said for urban sites, but the remote sites appear to show little variation over time. The four highest individual moment measurements were 847, 292, 241, and 132 fg TEQ m-3. For the 847 and 292 fg TEQ m-3 samples, the concentrations of all congeners were elevated over their site averages, but for the 241 and 132 fg TEQ m-3 measurements, only the PCDD congeners were elevated while PCDF and dl-PCB concentrations were similar to the site averages.
NASA Technical Reports Server (NTRS)
Rock, B. N.; Vogelmann, J. E.; Williams, D. L.
1985-01-01
The utilization of remote sensing to monitor forest damage due to acid deposition is investigated. Spectral and water measurements and aircraft radiance data of red spruce and balsam fir, collected in Camels Hump Mountain and Ripton, Vermont between August 13-20, 1984, are analyzed to evaluate the damage levels of the trees. Variations in reflectance features and canopy moisture content are studied. It is observed that damage correlates with elevation (greater damage at higher elevations); xylem water column tension is greater at higher damage sites; and a 'blue shift' is indicated in the spectral data at high damage sites.
Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard A. Ferrare; David D. Turner
Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.
Marine optical characterizations
NASA Technical Reports Server (NTRS)
Clark, Dennis K.; Ge, Yuntao; Hovey, Phil; King, ED; Stengel, Eric; Yuen, Marilyn; Koval, Larisa
1995-01-01
During the past three months, the MOCE Team conducted two field experiments in Mill Creek,Chesapeake Bay, from July 24 to August 4, and at the MOBY operations site at Snug Harbor, Honolulu, Hawaii, from August 15-30, prepared two technical memoranda, and continued MOCE-2 and MOCE-3 data reduction. The primary purposes of the experiments were to test the SeaWiFS 'remote sensing reflectance' protocol, obtain turbid water data for ocean color satellite algorithm development, perform calibration for both Near Infrared (NIR) and Visible Rainbow Spectrometer system, continue assembling the operational Marine Optical Buoy, and to test the MOBY cellular phone communications link at the Lanai mooring site.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at the...-handled (RH), transuranic (TRU) waste characterization program implemented by the Central Characterization... Criteria, EPA evaluated the characterization of RH TRU debris waste from SRS-CCP during an inspection on...
Mobile Telemetry Van Remote Control Upgrade
2012-05-17
Advantages of Remote Control System Upgrade • Summary Overview • Remote control of Telemetry Mobile Ground Support ( TMGS ) Van proposed to allow...NWC) personnel provided valuable data for full-function remote control of telemetry tracking vans Background • TMGS Vans support Flight Test...control capability from main TM site at Building 5790 currently allows support via TMGS Van at nearby C- 15 Site, Plant 42 in Palmdale, and as far
Apollo 16 landing site: Summary of earth based remote sensing data, part W
NASA Technical Reports Server (NTRS)
Zisk, S. H.; Masursky, H.; Milton, D. J.; Schaber, G. G.; Shorthill, R. W.; Thompson, T. W.
1972-01-01
Infrared and radar studies of the Apollo 16 landing site are summarized. Correlations and comparisons between earth based remote sensing data, IR observations, and other data are discussed in detail. Remote sensing studies were devoted to solving two problems: (1) determining the physical difference between Cayley and Descartes geologic units near the landing site; and (2) determining the nature of the bright unit of Descartes mountain material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Sondrup; Gail Heath; Trent Armstrong
2011-04-01
This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define themore » topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.« less
Andréfouët, S; Wantiez, L
2010-01-01
Since 1972, the UNESCO "World Heritage Convention" offers an international canvas for conservation and management that targets areas of high cultural and environmental significance. To support the designation of areas within the 36.000 km(2) of New Caledonia coral reefs and lagoons as a World Heritage Site, the natural value and diversity of the proposed zones needed to be demonstrated. To exhaustively identify each configuration of shallow habitats, high resolution remote sensing images were used to select the sampling sites. This optimal scheme resulted in the selection of nearly 1300 sampling sites, and was then simplified to render its application realistic. In the final sampling plan, only the most common or the most remarkable coral zones were selected. Following this selection, in situ habitat and fish surveys were conducted in 2006-2008 in five large areas spanning a 600 km-long latitudinal gradient. Habitats were described using line-intercept transects in parallel with underwater visual census of indicator and commercial coral reef fish species. We report here on the results achieved in terms of: (i) the actual diversity of coral habitats captured by the remote sensing based sampling strategy, (ii) the different reef fish communities captured from the different sites, and (iii) how well they represent New Caledonia diversity. We discuss the possible generalization of this scheme to other sites, in the context of World Heritage Site selection and for other large-scale conservation planning activities. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Educational activities of remote sensing archaeology (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasilki; Themistocleous, Kyriacos; Cuca, Branka; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter
2016-10-01
Remote sensing science is increasingly being used to support archaeological and cultural heritage research in various ways. Satellite sensors either passive or active are currently used in a systematic basis to detect buried archaeological remains and to systematic monitor tangible heritage. In addition, airborne and low altitude systems are being used for documentation purposes. Ground surveys using remote sensing tools such as spectroradiometers and ground penetrating radars can detect variations of vegetation and soil respectively, which are linked to the presence of underground archaeological features. Education activities and training of remote sensing archaeology to young people is characterized of highly importance. Specific remote sensing tools relevant for archaeological research can be developed including web tools, small libraries, interactive learning games etc. These tools can be then combined and aligned with archaeology and cultural heritage. This can be achieved by presenting historical and pre-historical records, excavated sites or even artifacts under a "remote sensing" approach. Using such non-form educational approach, the students can be involved, ask, read, and seek to learn more about remote sensing and of course to learn about history. The paper aims to present a modern didactical concept and some examples of practical implementation of remote sensing archaeology in secondary schools in Cyprus. The idea was built upon an ongoing project (ATHENA) focused on the sue of remote sensing for archaeological research in Cyprus. Through H2020 ATHENA project, the Remote Sensing Science and Geo-Environment Research Laboratory at the Cyprus University of Technology (CUT), with the support of the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR) aims to enhance its performance in all these new technologies.
Antibiotic-resistant Escherichia coli in migratory birds inhabiting remote Alaska
Ramey, Andy M.; Hernandez, Jorge; Tyrlöv, Veronica; Uher-Koch, Brian D.; Schmutz, Joel A.; Atterby, Clara; Järhult, Josef D.; Bonnedahl, Jonas
2018-01-01
We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.
Site Characterization for Remote Minefield Detection Scanner (REMIDS) system Data Acquisition
1991-04-01
pattern - Standard A ) (US Army Engineer School 1988 ). This pattern dictates two straight rows of mines at each end of the area located 100 m apart...Westpoint, NY. Cespedes, E. R., Goodson, R. A ., and Ginsberg, I. W. 1988 (April). "Multi- sensor Image Processing Techniques for Real-Time Standoff...Monterey, CA. Gleason, H. A ., and Cronquist , A . 1963. Manual of Vascular Plants, D. Van Nostrand Co., New York. Goodson, R. A ., Cress, D. H., and
Software Suite to Support In-Flight Characterization of Remote Sensing Systems
NASA Technical Reports Server (NTRS)
Stanley, Thomas; Holekamp, Kara; Gasser, Gerald; Tabor, Wes; Vaughan, Ronald; Ryan, Robert; Pagnutti, Mary; Blonski, Slawomir; Kenton, Ross
2014-01-01
A characterization software suite was developed to facilitate NASA's in-flight characterization of commercial remote sensing systems. Characterization of aerial and satellite systems requires knowledge of ground characteristics, or ground truth. This information is typically obtained with instruments taking measurements prior to or during a remote sensing system overpass. Acquired ground-truth data, which can consist of hundreds of measurements with different data formats, must be processed before it can be used in the characterization. Accurate in-flight characterization of remote sensing systems relies on multiple field data acquisitions that are efficiently processed, with minimal error. To address the need for timely, reproducible ground-truth data, a characterization software suite was developed to automate the data processing methods. The characterization software suite is engineering code, requiring some prior knowledge and expertise to run. The suite consists of component scripts for each of the three main in-flight characterization types: radiometric, geometric, and spatial. The component scripts for the radiometric characterization operate primarily by reading the raw data acquired by the field instruments, combining it with other applicable information, and then reducing it to a format that is appropriate for input into MODTRAN (MODerate resolution atmospheric TRANsmission), an Air Force Research Laboratory-developed radiative transport code used to predict at-sensor measurements. The geometric scripts operate by comparing identified target locations from the remote sensing image to known target locations, producing circular error statistics defined by the Federal Geographic Data Committee Standards. The spatial scripts analyze a target edge within the image, and produce estimates of Relative Edge Response and the value of the Modulation Transfer Function at the Nyquist frequency. The software suite enables rapid, efficient, automated processing of ground truth data, which has been used to provide reproducible characterizations on a number of commercial remote sensing systems. Overall, this characterization software suite improves the reliability of ground-truth data processing techniques that are required for remote sensing system in-flight characterizations.
Desert Research and Technology Studies (RATS) Local and Remote Test Sites
NASA Technical Reports Server (NTRS)
Janoiko, Barbara; Kosmo, Joseph; Eppler, Dean
2007-01-01
Desert RATS (Research and Technology Studies) is a combined group of inter-NASA center scientists and engineers, collaborating with representatives of industry and academia, for the purpose of conducting remote field exercises. These exercises provide the capability to validate experimental hardware and software, to evaluate and develop mission operational techniques, and to identify and establish technical requirements applicable for future planetary exploration. D-RATS completed its ninth year of field testing in September 2006. Dry run test activities prior to testing at designated remote field site locations are initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. The majority of the remote field tests have been subsequently conducted in various high desert areas adjacent to Flagstaff, Arizona. Both the local JSC and remote field test sites have terrain conditions that are representative of both the Moon and Mars, such as strewn rock and volcanic ash fields, meteorite crater ejecta blankets, rolling plains, hills, gullies, slopes, and outcrops. Flagstaff is the preferred remote test site location for many reasons. First, there are nine potential test sites with representative terrain features within a 75-mile radius. Second, Flagstaff is the location of the United States Geologic Survey (USGS)/Astrogeology Branch, which historically supported Apollo astronaut geologic training and currently supports and provides host accommodations to the D-RATS team. Finally, in considering the importance of logistics in regard to providing the necessary level of support capabilities, the Flagstaff area provides substantial logistics support and lodging accommodations to take care of team members during long hours of field operations.
Remote video assessment for missile launch facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, G.G.; Stewart, W.A.
1995-07-01
The widely dispersed, unmanned launch facilities (LFs) for land-based ICBMs (intercontinental ballistic missiles) currently do not have visual assessment capability for existing intrusion alarms. The security response force currently must assess each alarm on-site. Remote assessment will enhance manpower, safety, and security efforts. Sandia National Laboratories was tasked by the USAF Electronic Systems Center to research, recommend, and demonstrate a cost-effective remote video assessment capability at missile LFs. The project`s charter was to provide: system concepts; market survey analysis; technology search recommendations; and operational hardware demonstrations for remote video assessment from a missile LF to a remote security center viamore » a cost-effective transmission medium and without using visible, on-site lighting. The technical challenges of this project were to: analyze various video transmission media and emphasize using the existing missile system copper line which can be as long as 30 miles; accentuate and extremely low-cost system because of the many sites requiring system installation; integrate the video assessment system with the current LF alarm system; and provide video assessment at the remote sites with non-visible lighting.« less
NASA Technical Reports Server (NTRS)
Welch, Richard V.; Edmonds, Gary O.
1994-01-01
The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.
Application of Thermal Infrared Remote Sensing for Quantitative Evaluation of Crop Characteristics
NASA Technical Reports Server (NTRS)
Shaw, J.; Luvall, J.; Rickman, D.; Mask, P.; Wersinger, J.; Sullivan, D.; Arnold, James E. (Technical Monitor)
2002-01-01
Evidence suggests that thermal infrared emittance (TIR) at the field-scale is largely a function of the integrated crop/soil moisture continuum. Because soil moisture dynamics largely determine crop yields in non-irrigated farming (85 % of Alabama farms are non-irrigated), TIR may be an effective method of mapping within field crop yield variability, and possibly, absolute yields. The ability to map yield variability at juvenile growth stages can lead to improved soil fertility and pest management, as well as facilitating the development of economic forecasting. Researchers at GHCC/MSFC/NASA and Auburn University are currently investigating the role of TIR in site-specific agriculture. Site-specific agriculture (SSA), or precision farming, is a method of crop production in which zones and soils within a field are delineated and managed according to their unique properties. The goal of SSA is to improve farm profits and reduce environmental impacts through targeted agrochemical applications. The foundation of SSA depends upon the spatial and temporal characterization of soil and crop properties through the creation of management zones. Management zones can be delineated using: 1) remote sensing (RS) data, 2) conventional soil testing and soil mapping, and 3) yield mapping. Portions of this research have concentrated on using remote sensing data to map yield variability in corn (Zea mays L.) and soybean (Glycine max L.) crops. Remote sensing data have been collected for several fields in the Tennessee Valley region at various crop growth stages during the last four growing seasons. Preliminary results of this study will be presented.
NASA Technical Reports Server (NTRS)
Miller, W. Frank; Sever, Thomas L.; Lee, C. Daniel
1991-01-01
The concept of integrating ecological perspectives on early man's settlement patterns with advanced remote sensing technologies shows promise for predictive site modeling. Early work with aerial imagery and ecosystem analysis is discussed with respect to the development of a major project in Maya archaeology supported by NASA and the National Geographic Society with technical support from the Mississippi State Remote Sensing Center. A preliminary site reconnaissance model will be developed for testing during the 1991 field season.
NASA Technical Reports Server (NTRS)
Grant, W. B.; Hinkley, E. D.
1984-01-01
Remote sensor uses laser radiation backscattered from natural targets. He/Ne Laser System for remote scanning of Methane leaks employs topographic target to scatter light to receiver near laser transmitter. Apparatus powered by 1.5kW generator transported to field sites and pointed at suspected methane leaks. Used for remote detection of natural-gas leaks and locating methane emissions in landfill sites.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... johnstonii will be implemented for 9 years, and will include habitat evaluation using remote sensing of 20 populations and on-site monitoring of 10 populations. Habitat assessments with remote sensing will occur about... site visit will be triggered from remote sensing analysis when a 30 percent loss of habitat is detected...
2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladden, J.B.
2003-08-28
Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is amore » United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay- caps on the Mixed Waste Management Facility (MWMF). This report first describes the principles of hyperspectral remote sensing. In situ measurement and hyperspectral remote sensing methods used to analyze hazardous waste sites on the Savannah River Site are then presented.« less
Continuous Water Vapor Profiles from Operational Ground-Based Active and Passive Remote Sensors
NASA Technical Reports Server (NTRS)
Turner, D. D.; Feltz, W. F.; Ferrare, R. A.
2000-01-01
The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote sensors as well as traditional in situ radiosonde measurements. Remote sensing technologies include an automated Raman lidar and an automated Atmospheric Emitted Radiance Interferometer (AERI), which are able to retrieve water vapor profiles operationally through the lower troposphere throughout the diurnal cycle. Comparisons of these two water vapor remote sensing methods to each other and to radiosondes over an 8-month period are presented and discussed, highlighting the accuracy and limitations of each method. Additionally, the AERI is able to retrieve profiles of temperature while the Raman lidar is able to retrieve aerosol extinction profiles operationally. These data, coupled with hourly wind profiles from a 915-MHz wind profiler, provide complete specification of the state of the atmosphere in noncloudy skies. Several case studies illustrate the utility of these high temporal resolution measurements in the characterization of mesoscale features within a 3-day time period in which passage of a dryline, warm air advection, and cold front occurred.
An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks
NASA Astrophysics Data System (ADS)
Holben, Brent N.; Kim, Jhoon; Sano, Itaru; Mukai, Sonoyo; Eck, Thomas F.; Giles, David M.; Schafer, Joel S.; Sinyuk, Aliaksandr; Slutsker, Ilya; Smirnov, Alexander; Sorokin, Mikhail; Anderson, Bruce E.; Che, Huizheng; Choi, Myungje; Crawford, James H.; Ferrare, Richard A.; Garay, Michael J.; Jeong, Ukkyo; Kim, Mijin; Kim, Woogyung; Knox, Nichola; Li, Zhengqiang; Lim, Hwee S.; Liu, Yang; Maring, Hal; Nakata, Makiko; Pickering, Kenneth E.; Piketh, Stuart; Redemann, Jens; Reid, Jeffrey S.; Salinas, Santo; Seo, Sora; Tan, Fuyi; Tripathi, Sachchida N.; Toon, Owen B.; Xiao, Qingyang
2018-01-01
Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.
Pazzinatto, Marcella Ferraz; de Oliveira Silva, Danilo; Barton, Christian; Rathleff, Michael Skovdal; Briani, Ronaldo Valdir; de Azevedo, Fábio Mícolis
2016-10-01
Compare pressure pain thresholds (PPTs) at the knee and a site remote to the knee in female adults with patellofemoral pain (PFP) to pain-free controls before and after a patellofemoral joint (PFJ) loading protocol designed to aggravate symptoms. Cross-sectional study SETTING: Participants were recruited via advertisements in fitness centers, public places for physical activity and universities. Thirty-eight females with patellofemoral pain, and 33 female pain-free controls. All participant performed a novel PFJ loading protocol involving stair negotiation with an extra load equivalent 35% of body mass. PPTs and current knee pain (measured on a visual analogue scale) was assessed before and after the loading protocol. PPTs were measured at four sites around the knee and one remote site on the upper contralateral limb. Females with PFP demonstrated significantly lower PPTs locally and remote to the knee, both before and after the PFJ loading protocol when compared to control group. Following the loading protocol, PPTs at knee were significantly reduced by 0.54 kgf (95%CI = 0.33; 0.74) for quadriceps tendon, 0.38 kgf (95%CI = 0.14; 0.63) for medial patella, and 0.44 kgf (95%CI = 0.18; 0.69) for lateral patella. No significant change in PPT remote to the knee was observed - 0.10 kgf (95%CI = -0.04; 0.24). Female adults with PFP have local and widespread hyperalgesia compared to pain free controls. A novel loading protocol designed to aggravate symptoms, lowers the PPTs locally at the knee but has no effect on PPT on the upper contralateral limb. This suggests widespread hyperalgesia is not affected by acute symptom aggravation. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Reeves, R. G. (Compiler)
1972-01-01
Recent studies conducted in the Bonanza Test Site, Colorado, area indicated that: (1) more geologic structural information is available from remote sensing data than from conventional techniques; (2) greater accuracy results from using remote sensing data; (3) all major structural features were detected; (4) of all structural interpretations, about 75% were correct; and (5) interpretation of remote sensing data will not supplant field work, but it enables field work to be done much more efficiently.
Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Dessay, Nadine
2018-01-01
The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field. PMID:29518988
Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Gurgel, Helen; Mangeas, Morgan; Seyler, Frédérique; Dessay, Nadine
2018-03-07
The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field.
NASA Astrophysics Data System (ADS)
Kibrick, Robert I.; Wirth, Gregory D.; Allen, Steven L.; Deich, William T. S.; Goodrich, Robert W.; Lanclos, Kyle; Lyke, James E.
2011-03-01
For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 9 years, WMKO remote observing has expanded to allow observing teams at dedicated sites located across California to observe via the Internet either in collaboration with colleagues in Waimea or entirely from California; this capability was extended to Swinburne University in Melbourne, Australia in 2010 and to Yale University in New Haven, Connecticut in early 2011. All Keck facility science instruments are currently supported. Observers distributed between as many as four sites can collaborate in the interactive operation of each instrument by means of shared VNC desktops and multipoint video and/or telephone conferencing. Automated routers at primary remote observing sites ensure continued connectivity during Internet outages. Each Keck remote observing facility is similarly equipped and configured so observers have the same operating environment. This architecture provides observers the flexibility to conduct observations from the location best suited to their needs and to adapt to last-minute changes. It also enhances the ability of off-site technical staff to provide remote support.
Manz, Kirsi M; Clowes, Petra; Kroidl, Inge; Kowuor, Dickens O; Geldmacher, Christof; Ntinginya, Nyanda E; Maboko, Leonard; Hoelscher, Michael; Saathoff, Elmar
2017-01-01
The intestinal nematode Trichuris trichiura is among the most common causes of human infectious disease worldwide. As for other soil-transmitted nematodes, its reproductive success and thus prevalence and intensity of infection in a given area strongly depend on environmental conditions. Characterization of the influence of environmental factors can therefore aid to identify infection hot spots for targeted mass treatment. We analyzed data from a cross-sectional survey including 6234 participants from nine distinct study sites in Mbeya region, Tanzania. A geographic information system was used to combine remotely sensed and individual data, which were analyzed using uni- and multivariable Poisson regression. Household clustering was accounted for and when necessary, fractional polynomials were used to capture non-linear relationships between T. trichiura infection prevalence and environmental variables. T. trichiura infection was restricted to the Kyela site, close to Lake Nyasa with only very few cases in the other eight sites. The prevalence of T. trichiura infection in Kyela was 26.6% (95% confidence interval (CI) 23.9 to 29.6%). Multivariable models revealed a positive association of infection with denser vegetation (prevalence ratio (PR) per 0.1 EVI units = 2.12, CI 1.28 to 3.50) and inverse associations with rainfall (PR per 100 mm = 0.54, CI 0.44 to 0.67) and elevation (PR per meter = 0.89, CI 0.86 to 0.93) while adjusting for age and previous worm treatment. Slope of the terrain was modelled non-linearly and also showed a positive association with T. trichiura infection (p-value p<0.001). Higher prevalences of T. trichiura infection were only found in Kyela, a study site characterized by denser vegetation, high rainfall, low elevation and flat terrain. But even within this site, we found significant influences of vegetation density, rainfall, elevation and slope on T. trichiura infection. The inverse association of rainfall with infection in Kyela is likely due to the fact, that rainfall in this site is beyond the optimum conditions for egg development. Our findings demonstrate that use of remotely sensed environmental data can aid to predict high-risk areas for targeted helminth control.
McBeth, Paul B; Crawford, Innes; Blaivas, Michael; Hamilton, Trevor; Musselwhite, Kimberly; Panebianco, Nova; Melniker, Lawrence; Ball, Chad G; Gargani, Luna; Gherdovich, Carlotta; Kirkpatrick, Andrew W
2011-12-01
Apnea (APN) and pneumothorax (PTX) are common immediately life-threatening conditions. Ultrasound is a portable tool that captures anatomy and physiology as digital information allowing it to be readily transferred by electronic means. Both APN and PTX are simply ruled out by visualizing respiratory motion at the visceral-parietal pleural interface known as lung sliding (LS), corroborated by either the M-mode or color-power Doppler depiction of LS. We thus assessed how economically and practically this information could be obtained remotely over a cellular network. Ultrasound images were obtained on handheld ultrasound machines streamed to a standard free internet service (Skype) using an iPhone. Remote expert sonographers directed remote providers (with variable to no ultrasound experience) to obtain images by viewing the transmitted ultrasound signal and by viewing the remote examiner over a head-mounted webcam. Examinations were conducted between a series of remote sites and a base station. Remote sites included two remote on-mountain sites, a small airplane in flight, and a Calgary household, with base sites located in Pisa, Rome, Philadelphia, and Calgary. In all lung fields (20/20) on all occasions, LS could easily and quickly be seen. LS was easily corroborated and documented through capture of color-power Doppler and M-mode images. Other ultrasound applications such as the Focused Assessment with Sonography for Trauma examination, vascular anatomy, and a fetal wellness assessment were also demonstrated. The emergent exclusion of APN-PTX can be immediately accomplished by a remote expert economically linked to almost any responder over cellular networks. Further work should explore the range of other physiologic functions and anatomy that could be so remotely assessed.
Remote observing environment using a KVM-over-IP for the OAO 188 cm telescope
NASA Astrophysics Data System (ADS)
Yanagisawa, Kenshi; Inoue, Goki; Kuroda, Daisuke; Ukita, Nobuharu; Mizumoto, Yoshihiko; Izumiura, Hideyuki
2016-08-01
We have prepared remote observing environment for the 188 cm telescope at Okayama Astrophysical Observatory. A KVM-over-IP and a VPN gateway are employed as core devices, which offer reliable, secure and fast link between on site and remote sites. We have confirmed the KVM-over-IP has ideal characteristics for serving the remote observing environment; the use is simple for both users and maintainer; access from any platform is available; multiple and simultaneous access is possible; and maintenance load is small. We also demonstrated that the degradation of observing efficiency specific to the remote observing is negligibly small. The remote observing environment has fully opened since the semester 2016A, about 30% of the total observing time in the last semester was occupied by remote observing.
Warmington, Kelly; Flewelling, Carol; Kennedy, Carol A; Shupak, Rachel; Papachristos, Angelo; Jones, Caroline; Linton, Denise; Beaton, Dorcas E; Lineker, Sydney
2017-01-01
Telemedicine-based approaches to health care service delivery improve access to care. It was recognized that adults with inflammatory arthritis (IA) living in remote areas had limited access to patient education and could benefit from the 1-day Prescription for Education (RxEd) program. The program was delivered by extended role practitioners with advanced training in arthritis care. Normally offered at one urban center, RxEd was adapted for videoconference delivery through two educator development workshops that addressed telemedicine and adult education best practices. This study explores the feasibility of and participant satisfaction with telemedicine delivery of the RxEd program in remote communities. Participants included adults with IA attending the RxEd program at one of six rural sites. They completed post-course program evaluations and follow-up interviews. Educators provided post-course feedback to identify program improvements that were later implemented. In total, 123 people (36 in-person and 87 remote, across 6 sites) participated, attending one of three RxEd sessions. Remote participants were satisfied with the quality of the video-conference (% agree/strongly agree): could hear the presenter (92.9%) and discussion between sites (82.4%); could see who was speaking at other remote sites (85.7%); could see the slides (95.3%); and interaction between sites adequately facilitated (94.0%). Educator and participant feedback were consistent. Suggested improvements included: use of two screens (speaker and slides); frontal camera angles; equal interaction with remote sites; and slide modifications to improve the readability on screen. Interview data included similar constructive feedback but highlighted the educational and social benefits of the program, which participants noted would have been inaccessible if not offered via telemedicine. Study findings confirm the feasibility of delivering the RxEd program to remote communities by using telemedicine. Future research with a focus on the sustainability of this and other models of technology-supported patient education for adults with IA across Ontario is warranted.
NASA Technical Reports Server (NTRS)
2002-01-01
Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes. Archaeology through Space: Experience in Indian Subcontinent. The creation of a GIS Archaeological Site Location Catalogue in Yucatan: A Tool to preserve its Cultural Heritage. Mapping the Ancient Anasazi Roads of Southeast Utah. Remote Sensing and GIS Technology for Identification of Conservation and Heritage sites in Urban Planning. Mapping Angkor: For a new appraisal of the Angkor region. Angkor and radar imaging: seeing a vast pre-industrial low-density, dispersed urban complex. Technical and methodological aspects of archaeological CRM integrating high resolution satellite imagery. The contribution of satellite imagery to archaeological survey: an example from western Syria. The use of satellite images, digital elevation models and ground truth for the monitoring of land degradation in the "Cinque Terre" National park. Remote Sensing and GIS Applications for Protection and Conservation of World Heritage Site on the coast - Case Study of Tamil Nadu Coast, India. Multispectral high resolution satellite imagery in combination with "traditional" remote sensing and ground survey methods to the study of archaeological landscapes. The case study of Tuscany. Use of Remotely-Sensed Imagery in Cultural Landscape. Characterisation at Fort Hood, Texas. Heritage Learning and Data Collection: Biodiversity & Heritage Conservation through Collaborative Monitoring & Research. A collaborative project by UNESCO's WHC (World Heritage Center) & The GLOBE Program (Global Learning and Observations to Benefit the Environment). Practical Remote Sensing Activities in an Interdisciplinary Master-Level Space Course.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Most, W. A.; Kehrman, R.; Gist, C.
2002-02-26
The U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) has developed draft documentation to present the proposed Waste Isolation Pilot Plant (WIPP) remote-handled (RH-) transuranic (TRU) waste characterization program to its regulators, the U.S. Environmental Protection Agency and the New Mexico Environment Department. Compliance with Title 40, Code of Federal Regulations, Parts 191 and 194; the WIPP Land Withdrawal Act (PL 102-579); and the WIPP Hazardous Waste Facility Permit, as well as the Certificates of Compliance for the 72-B and 10-160B Casks, requires that specific waste parameter limits be imposed on DOE sites disposing of TRU waste at WIPP. Themore » DOE-CBFO must control the sites' compliance with the limits by specifying allowable characterization methods. As with the established WIPP contact handled TRU waste characterization program, the DOE-CBFO has proposed a Remote-Handled TRU Waste Acceptance Criteria (RH-WAC) document consolidating the requirements from various regulatory drivers and proposed allowable characterization methods. These criteria are consistent with the recommendation of a recent National Academy Sciences/National Research Council to develop an RH-TRU waste characterization approach that removes current self imposed requirements that lack a legal or safety basis. As proposed in the draft RH-WAC and other preliminary documents, the DOE-CBFO RH-TRU waste characterization program proposes the use of acceptable knowledge (AK) as the primary method for obtaining required characterization information. The use of AK involves applying knowledge of the waste in light of the materials or processes used to generate the waste. Documentation, records, or processes providing information about various attributes of a waste stream, such as chemical, physical, and radiological properties, may be used as AK and may be applied to individual waste containers either independently or in conjunction with radiography, visual examination, assay, and other sampling and analytical data. RH-TRU waste cannot be shipped to WIPP on the basis of AK alone if documentation demonstrating that all of the prescribed limits in the RH-WAC are met is not available, discrepancies exist among AK source documents describing the same waste stream and the most conservative assumptions regarding those documents indicates that a limit will not be met, or all required data are not available for a given waste stream.« less
NASA Astrophysics Data System (ADS)
Hufkens, K.; Richardson, A. D.; Migliavacca, M.; Frolking, S. E.; Braswell, B. H.; Milliman, T.; Friedl, M. A.
2010-12-01
In recent years several studies have used digital cameras and webcams to monitor green leaf phenology. Such "near-surface" remote sensing has been shown to be a cost effective means of accurately capturing phenology. Specifically, it allows for accurate tracking of intra- and inter-annual phenological dynamics at high temporal frequency and over broad spatial scales compared to visual observations or tower-based fAPAR and broadband NDVI measurements. Near surface remote sensing measurements therefore show promise for bridging the gap between traditional in-situ measurements of phenology and satellite remote sensing data. For this work, we examined the relationship between phenophase estimates derived from satellite remote sensing (MODIS) and near-earth remote sensing derived from webcams for a select set of sites with high-quality webcam data. A logistic model was used to characterize phenophases for both the webcam and MODIS data. We documented model fit accuracy, phenophase estimates, and model biases for both data sources. Our results show that different vegetation indices (VI's) derived from MODIS produce significantly different phenophase estimates compared to corresponding estimates derived from webcam data. Different VI's showed markedly different radiometric properties, and as a result, influenced phenophase estimates. The study shows that phenophase estimates are not only highly dependent on the algorithm used but also depend on the VI used by the phenology retrieval algorithm. These results highlight the need for a better understanding of how near-earth and satellite remote data relate to eco-physiological and canopy changes during different parts of the growing season.
Remote sensing-based estimation of annual soil respiration at two contrasting forest sites
Gu, Lianhong; Huang, Ni; Black, T. Andrew; ...
2015-11-23
Soil respiration (R s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this article, we proposed a methodology for the remote estimation of annual R s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest).
Cervical lymph node metastases from remote primary tumor sites
López, Fernando; Rodrigo, Juan P.; Silver, Carl E.; Haigentz, Missak; Bishop, Justin A.; Strojan, Primož; Hartl, Dana M.; Bradley, Patrick J.; Mendenhall, William M.; Suárez, Carlos; Takes, Robert P.; Hamoir, Marc; Robbins, K. Thomas; Shaha, Ashok R.; Werner, Jochen A.; Rinaldo, Alessandra; Ferlito, Alfio
2016-01-01
Although most malignant lymphadenopathy in the neck represent lymphomas or metastases from head and neck primary tumors, occasionally, metastatic disease from remote, usually infraclavicular, sites presents as cervical lymphadenopathy with or without an obvious primary tumor. In general, these tumors metastasize to supraclavicular lymph nodes, but occasionally may present at an isolated higher neck level. A search for the primary tumor includes information gained by histology, immunohistochemistry, and evaluation of molecular markers that may be unique to the primary tumor site. In addition, 18F-fluoro-2-deoxyglocose positron emission tomography combined with CT (FDG-PET/CT) has greatly improved the ability to detect the location of an unknown primary tumor, particularly when in a remote location. Although cervical metastatic disease from a remote primary site is often incurable, there are situations in which meaningful survival can be achieved with appropriate local treatment. Management is quite complex and requires a truly multidisciplinary approach. PMID:26713674
Designing minimal space telerobotics systems for maximum performance
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Long, Mark K.; Steele, Robert D.
1992-01-01
The design of the remote site of a local-remote telerobot control system is described which addresses the constraints of limited computational power available at the remote site control system while providing a large range of control capabilities. The Modular Telerobot Task Execution System (MOTES) provides supervised autonomous control, shared control and teleoperation for a redundant manipulator. The system is capable of nominal task execution as well as monitoring and reflex motion. The MOTES system is minimized while providing a large capability by limiting its functionality to only that which is necessary at the remote site and by utilizing a unified multi-sensor based impedance control scheme. A command interpreter similar to one used on robotic spacecraft is used to interpret commands received from the local site. The system is written in Ada and runs in a VME environment on 68020 processors and initially controls a Robotics Research K1207 7 degree of freedom manipulator.
Energy and remote sensing. [satellite exploration, monitoring, siting
NASA Technical Reports Server (NTRS)
Summers, R. A.; Smith, W. L.; Short, N. M.
1977-01-01
Exploration for uranium, thorium, oil, gas and geothermal activity through remote sensing techniques is considered; satellite monitoring of coal-derived CO2 in the atmosphere, and the remote assessment of strip mining and land restoration are also mentioned. Reference is made to color ratio composites based on Landsat data, which may aid in the detection of uranium deposits, and to computer-enhanced black and white airborne scanning imagery, which may locate geothermal anomalies. Other applications of remote sensing to energy resources management, including mapping of transportation networks and power plant siting, are discussed.
Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A.
2009-01-01
Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing instruments. The NASA MODIS Characterization Support Team (MCST), in collaboration with members from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, has previously demonstrated the use of pseudo-invariant ground sites for the long-term stability monitoring of Terra MODIS and Landsat 7 ETM+ sensors. This paper focuses on the results derived from observations made over the Sonoran Desert. Additionally, Landsat 5 TM data over the Sonoran Desert site were used to evaluate the temporal stability of this site. Top-ofatmosphere (TOA) reflectances were computed for the closely matched TM, ETM+, and MODIS spectral bands over selected regions of interest. The impacts due to different viewing geometries, or the effect of test site Bi-directional Reflectance Distribution Function (BRDF), are also presented. ?? 2009 SPIE.
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.; Hillman, C. E., Jr.
1977-01-01
Automated self-contained portable device can be used by technicians with minimal training. Data acquired from patient at remote site are transmitted to centralized interpretation center using conventional telephone equipment. There, diagnostic information is analyzed, and results are relayed back to remote site.
A novel protocol for the production of recombinant LL-37 expressed as a thioredoxin fusion protein.
Li, Yifeng
2012-02-01
LL-37 is the only cathelicidin-derived antimicrobial peptide found in humans and it has a multifunctional role in host defense. The peptide has been shown to possess immunomodulatory functions in addition to antimicrobial activity. To provide sufficient material for biological and structural characterization of this important peptide, various systems were developed to produce recombinant LL-37 in Escherichia coli. In one previous approach, LL-37 coding sequence was cloned into vector pET-32a, allowing the peptide to be expressed as a thioredoxin fusion. The fusion protein contains two thrombin cleavage sites: a vector-encoded one that is 30-residue upstream of the insert and an engineered one that is immediately adjacent to LL-37. Cleavage at these two sites shall generate three fragments, one of which is the target peptide. However, when the fusion protein was treated with thrombin, cleavage only occurred at the remote upstream site. A plausible explanation is that the thrombin site adjacent to LL-37 is less accessible due to the peptide's aggregation tendency and cleavage at the remote site generates a fragment, which forms a large aggregate that buries the intended site. In this study, I deleted the vector-encoded thrombin site and S tag in pET-32a, and then inserted the coding sequence for LL-37 plus a thrombin site into the modified vector. Although removing the S tag did not change the oligomeric state of the fusion protein, deletion of the vector-encoded thrombin site allowed the fusion to be cleaved at the engineered site to release LL-37. The released peptide was separated from the carrier and cleavage enzyme by size-exclusion chromatography. This new approach enables a quick production of high quality active LL-37 with a decent amount. Copyright © 2011 Elsevier Inc. All rights reserved.
A low cost, high performance remotely controlled backhoe/excavator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, J.
1995-12-31
This paper addresses a state of the art, low cost, remotely controlled backhoe/excavator system for remediation use at hazardous waste sites. The all weather, all terrain, Remote Dig-It is based on a simple, proven construction platform and incorporates state of the art sensors, control, telemetry and other subsystems derived from advanced underwater remotely operated vehicle systems. The system can be towed to a site without the use of a trailer, manually operated by an on board operator or operated via a fiber optic or optional RF communications link by a remotely positioned operator. A proportional control system is piggy backedmore » onto the standard manual control system. The control system improves manual operation, allows rapid manual/remote mode selection and provides fine manual or remote control of all functions. The system incorporates up to 4 separate video links, acoustic obstacle proximity sensors, and stereo audio pickups and an optional differential GPS navigation. Video system options include electronic panning and tilting within a distortion-corrected wide angle field of view. The backhoe/excavator subsystem has a quick disconnect interface feature which allows its use as a manipulator with a wide variety of end effectors and tools. The Remote Dig-It was developed to respond to the need for a low-cost, effective remediation system for use at sites containing hazardous materials. The prototype system was independently evaluated for this purpose by the Army at the Jefferson Proving Ground where it surpassed all performance goals. At the time of this writing, the Remote Dig-It system is currently the only backhoe/excavator which met the Army`s goals for remediation systems for use at hazardous waste sites and it costs a fraction of any known competing offerings.« less
Forest Fires and Post - Fire Regeneration in Algeria Analysis with Satellite Data
NASA Astrophysics Data System (ADS)
Zegrar, Ahmed
2016-07-01
The Algerian forests are characterized by a particularly flammable material and fuel. The wind, the relief and the slope facilitates the propagation of fire. The use of remote sensing data multi-dates, combined with other types of data of various kinds on the environment and forest burned, opens up interesting perspectives for the management of post-fire regeneration. In this study the use of multi-temporal remote sensing image Alsat-1 and Landsat combined with other types of data concerning both background and burned down forest appears to be promising in evaluating and spatial and temporal effects of post fire regeneration. A spatial analysis taking into consideration the characteristics of the burned down site in the North West of Algeria, allowed to better account new factors to explain the regeneration and its temporal and spatial variation. We intended to show the potential use of remote sensing data from satellite ALSAT-1, of spatial resolution of 32 m. . This approach allows showing the contribution of the data of Algerian satellite ALSAT in the detection and the well attended some forest fires in Algeria.
Remote Sensing Product Verification and Validation at the NASA Stennis Space Center
NASA Technical Reports Server (NTRS)
Stanley, Thomas M.
2005-01-01
Remote sensing data product verification and validation (V&V) is critical to successful science research and applications development. People who use remote sensing products to make policy, economic, or scientific decisions require confidence in and an understanding of the products' characteristics to make informed decisions about the products' use. NASA data products of coarse to moderate spatial resolution are validated by NASA science teams. NASA's Stennis Space Center (SSC) serves as the science validation team lead for validating commercial data products of moderate to high spatial resolution. At SSC, the Applications Research Toolbox simulates sensors and targets, and the Instrument Validation Laboratory validates critical sensors. The SSC V&V Site consists of radiometric tarps, a network of ground control points, a water surface temperature sensor, an atmospheric measurement system, painted concrete radial target and edge targets, and other instrumentation. NASA's Applied Sciences Directorate participates in the Joint Agency Commercial Imagery Evaluation (JACIE) team formed by NASA, the U.S. Geological Survey, and the National Geospatial-Intelligence Agency to characterize commercial systems and imagery.
Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa; Rasmussen, Mads Olander; Huber, Silvia; Mbow, Cheikh; Garcia, Monica; Horion, Stéphanie; Sandholt, Inge; Holm-Rasmussen, Bo; Göttsche, Frank M; Ridler, Marc-Etienne; Olén, Niklas; Lundegard Olsen, Jørgen; Ehammer, Andrea; Madsen, Mathias; Olesen, Folke S; Ardö, Jonas
2015-01-01
The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~-7.5 g C m(-2) day(-1) during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350-1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics studies, global climate change related research and evaluation and parameterization of remote sensing products and dynamic vegetation models. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Gentry, Diana M.; Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Tan, George; Yin, Chang; Cullen, David C.; Geppert, Wolf
2017-10-01
We conducted an analog sampling expedition under simulated mission constraints to areas dominated by basaltic tephra of the Eldfell and Fimmvörðuháls lava fields (Iceland). Sites were selected to be "homogeneous" at a coarse remote sensing resolution (10-100 m) in apparent color, morphology, moisture, and grain size, with best-effort realism in numbers of locations and replicates. Three different biomarker assays (counting of nucleic-acid-stained cells via fluorescent microscopy, a luciferin/luciferase assay for adenosine triphosphate, and quantitative polymerase chain reaction (qPCR) to detect DNA associated with bacteria, archaea, and fungi) were characterized at four nested spatial scales (1 m, 10 m, 100 m, and >1 km) by using five common metrics for sample site representativeness (sample mean variance, group F tests, pairwise t tests, and the distribution-free rank sum H and u tests). Correlations between all assays were characterized with Spearman's rank test. The bioluminescence assay showed the most variance across the sites, followed by qPCR for bacterial and archaeal DNA; these results could not be considered representative at the finest resolution tested (1 m). Cell concentration and fungal DNA also had significant local variation, but they were homogeneous over scales of >1 km. These results show that the selection of life detection assays and the number, distribution, and location of sampling sites in a low biomass environment with limited a priori characterization can yield both contrasting and complementary results, and that their interdependence must be given due consideration to maximize science return in future biomarker sampling expeditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husler, R.O.; Weir, T.J.
1991-01-01
An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified tomore » include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husler, R.O.; Weir, T.J.
1991-12-31
An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to includemore » process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less
Analysis of Solar Census Remote Solar Access Value Calculation Methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nangle, J.; Dean, J.; Van Geet, O.
2015-03-01
The costs of photovoltaic (PV) system hardware (PV panels, inverters, racking, etc.) have fallen dramatically over the past few years. Nonhardware (soft) costs, however, have failed to keep pace with the decrease in hardware costs, and soft costs have become a major driver of U.S. PV system prices. Upfront or 'sunken' customer acquisition costs make up a portion of an installation's soft costs and can be addressed through software solutions that aim to streamline sales and system design aspects of customer acquisition. One of the key soft costs associated with sales and system design is collecting information on solar accessmore » for a particular site. Solar access, reported in solar access values (SAVs), is a measurement of the available clear sky over a site and is used to characterize the impacts of local shading objects. Historically, onsite shading studies have been required to characterize the SAV of the proposed array and determine the potential energy production of a photovoltaic system.« less
Remote terminal system evaluation
NASA Technical Reports Server (NTRS)
Phillips, T. L.; Grams, H. L.; Lindenlaub, J. C.; Schwingendorf, S. K.; Swain, P. H.; Simmons, W. R.
1975-01-01
An Earth Resources Data Processing System was developed to evaluate the system for training, technology transfer, and data processing. In addition to the five sites included in this project two other sites were connected to the system under separate agreements. The experience of these two sites is discussed. The results of the remote terminal project are documented in seven reports: one from each of the five project sites, Purdue University, and an overview report summarizing the other six reports.
Anisotropic energy flow and allosteric ligand binding in albumin
NASA Astrophysics Data System (ADS)
Li, Guifeng; Magana, Donny; Dyer, R. Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.
Anisotropic energy flow and allosteric ligand binding in albumin.
Li, Guifeng; Magana, Donny; Dyer, R Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.
Anisotropic energy flow and allosteric ligand binding in albumin
Li, Guifeng; Magana, Donny; Dyer, R. Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. PMID:24445265
Cavalli, Rosa Maria; Betti, Mattia; Campanelli, Alessandra; Di Cicco, Annalisa; Guglietta, Daniela; Penna, Pierluigi; Piermattei, Viviana
2014-01-01
This methodology assesses the accuracy with which remote data characterizes a surface, as a function of Full Width at Half Maximum (FWHM). The purpose is to identify the best remote data that improves the characterization of a surface, evaluating the number of bands in the spectral range. The first step creates an accurate dataset of remote simulated data, using in situ hyperspectral reflectances. The second step evaluates the capability of remote simulated data to characterize this surface. The spectral similarity measurements, which are obtained using classifiers, provide this capability. The third step examines the precision of this capability. The assumption is that in situ hyperspectral reflectances are considered the “real” reflectances. They are resized with the same spectral range of the remote data. The spectral similarity measurements which are obtained from “real” resized reflectances, are considered “real” measurements. Therefore, the quantity and magnitude of “errors” (i.e., differences between spectral similarity measurements obtained from “real” resized reflectances and from remote data) provide the accuracy as a function of FWHM. This methodology was applied to evaluate the accuracy with which CHRIS-mode1, CHRIS-mode2, Landsat5-TM, MIVIS and PRISMA data characterize three coastal waters. Their mean values of uncertainty are 1.59%, 3.79%, 7.75%, 3.15% and 1.18%, respectively. PMID:24434875
Method for Identifying Probable Archaeological Sites from Remotely Sensed Data
NASA Technical Reports Server (NTRS)
Tilton, James C.; Comer, Douglas C.; Priebe, Carey E.; Sussman, Daniel
2011-01-01
Archaeological sites are being compromised or destroyed at a catastrophic rate in most regions of the world. The best solution to this problem is for archaeologists to find and study these sites before they are compromised or destroyed. One way to facilitate the necessary rapid, wide area surveys needed to find these archaeological sites is through the generation of maps of probable archaeological sites from remotely sensed data. We describe an approach for identifying probable locations of archaeological sites over a wide area based on detecting subtle anomalies in vegetative cover through a statistically based analysis of remotely sensed data from multiple sources. We further developed this approach under a recent NASA ROSES Space Archaeology Program project. Under this project we refined and elaborated this statistical analysis to compensate for potential slight miss-registrations between the remote sensing data sources and the archaeological site location data. We also explored data quantization approaches (required by the statistical analysis approach), and we identified a superior data quantization approached based on a unique image segmentation approach. In our presentation we will summarize our refined approach and demonstrate the effectiveness of the overall approach with test data from Santa Catalina Island off the southern California coast. Finally, we discuss our future plans for further improving our approach.
Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China.
Zhang, Kai; Su, Jing; Xiong, Xiong; Wu, Xiang; Wu, Chenxi; Liu, Jiantong
2016-12-01
Tibetan Plateau is known as the world's third pole, which is characterized by a low population density with very limited human activities. Tibetan Plateau possesses the greatest numbers of high-altitude inland lakes in the world. However, no information is currently available on the characteristic of microplastic pollution in those lakes within this remote area. In this work, lakeshore sediments from four lakes within the Siling Co basin in northern Tibet were sampled and examined for microplastics (<5 mm). Microplastics were detected in six out of seven sampling sites with abundances ranging from 8 ± 14 to 563 ± 1219 items/m 2 . Riverine input might have contributed to the high abundance of microplastics observed in this remote area. Morphological features suggest that microplastics are derived from the breakdown of daily used plastic products. Polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and polyvinyl chloride were identified from the microplastic samples using laser Raman spectroscopy, and oxidative and mechanical weathering textures were observed on the surface of microplastics using scanning electron microscope. These results demonstrate the presence of microplastics even for inland lakes in remote areas under very low human impact, and microplastic pollution can be a global issue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Slonecker, E. Terrence; Fisher, Gary B.
2011-01-01
This report presents the overhead imagery and field sampling results used to prepare U.S. Geological Survey Open-File Report 2011-1050, 'Evaluation of Traditional and Emerging Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites'. These graphic products were used in the evaluation of remote sensing technology in postclosure monitoring of hazardous waste sites and represent an ongoing research effort. Soil sampling results presented here were accomplished with field portable x-ray fluoresence (XRF) technology and are used as screening tools only representing the current conditions of metals and other contaminants at selected Superfund hazardous waste sites.
Mobile inductively coupled plasma system
D'Silva, Arthur P.; Jaselskis, Edward J.
1999-03-30
A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.
DOE's Remote-Handled TRU Waste Characterization Program: Implementation Plan
Remote-handled (RH) transuranic (TRU) waste characterization, which involves obtaining chemical, radiological, and physical data, is a primary component of ensuring compliance of the Waste Isolation Pilot Plant (WIPP) with regulatory requirements.
Slonecker, E. Terrence; Fisher, Gary B.
2014-01-01
This evaluation was conducted to assess the potential for using both traditional remote sensing, such as aerial imagery, and emerging remote sensing technology, such as hyperspectral imaging, as tools for postclosure monitoring of selected hazardous waste sites. Sixteen deleted Superfund (SF) National Priorities List (NPL) sites in Pennsylvania were imaged with a Civil Air Patrol (CAP) Airborne Real-Time Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) sensor between 2009 and 2012. Deleted sites are those sites that have been remediated and removed from the NPL. The imagery was processed to radiance and atmospherically corrected to relative reflectance with standard software routines using the Environment for Visualizing Imagery (ENVI, ITT–VIS, Boulder, Colorado) software. Standard routines for anomaly detection, endmember collection, vegetation stress, and spectral analysis were applied.
Supervisory autonomous local-remote control system design: Near-term and far-term applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul
1993-01-01
The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.
Combined Delivery of Consolidating Pulps to the Remote Sites of Deposits
NASA Astrophysics Data System (ADS)
Golik, V. I.; Efremenkov, A. B.
2017-07-01
The problems of modern mining production include limitation of the scope of application of environmental and resource-saving technologies with application of consolidating pulps when developing the sites of the ore field remote from the stowing complexes which leads to the significant reduction of the performance indicators of underground mining of metallic ores. Experimental approach to the problem solution is characterized by the proof of technological capability and efficiency of the combined vibration-pneumatic-gravity-flowing method of pulps delivery at the distance exceeding the capacity of current delivery methods as it studies the vibration phenomenon in industrial special structure pipeline. The results of the full-scale experiment confirm the theoretical calculations of the capability of consolidating stowing delivery of common composition at the distance exceeding the capacity of usual pneumatic-gravity-flowing delivery method due to reduction of the friction-induced resistance of the consolidating stowing to the movement along the pipeline. The parameters of the interaction of the consolidating stowing components improve in the process of its delivery via the pipeline resulting in the stowing strength increase, completeness of subsurface use improves, the land is saved for agricultural application and the environmental stress is relieved.
Salamova, Amina; Peverly, Angela A; Venier, Marta; Hites, Ronald A
2016-12-20
The concentrations of six organophosphate esters (OPEs) in atmospheric particle phase samples collected once every 12 days at five sites in the North American Great Lakes basin over the period of March 2012 to December 2014, inclusive, are reported. These OPEs include tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP), and tris(1,3-dichloroisopropyl) phosphate (TDCIPP), tri-n-butyl phosphate (TNBP), triphenyl phosphate (TPHP), and 2-ethylhexyl diphenyl phosphate (EHDP). Median total OPE concentrations (∑OPE) ranged from 93 pg/m 3 at Sleeping Bear Dunes to 1046 pg/m 3 at Chicago. The ∑OPE levels were significantly (P < 0.05) higher at Chicago and Cleveland, our urban sites, than at our rural and remote sites. The composition profiles were dominated by chlorinated OPEs at the urban and rural sites and by nonchlorinated OPEs at the remote sites. The concentrations of all OPEs were significantly (P < 0.001) correlated to one another, suggesting that these compounds share similar sources. Most atmospheric ∑OPE concentrations were significantly (P < 0.05) decreasing over time, with halving times of about 3.5 years at the urban sites and about 1.5 years at the rural and remote sites. Interestingly, TCEP and EHDP concentrations were increasing over time at the rural and remote sites with doubling times of 2.2 and 3.7 years, respectively.
Operating a wide-area remote observing system for the W. M. Keck Observatory
NASA Astrophysics Data System (ADS)
Wirth, Gregory D.; Kibrick, Robert I.; Goodrich, Robert W.; Lyke, James E.
2008-07-01
For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 6 years, WMKO remote observing has expanded to allow teams at dedicated sites in California to observe either in collaboration with colleagues in Waimea or entirely from the U.S. mainland. Once an experimental effort, the Observatory's mainland observing capability is now fully operational, supported on all science instruments (except the interferometer) and regularly used by astronomers at eight mainland sites. Establishing a convenient and secure observing capability from those sites required careful planning to ensure that they are properly equipped and configured. It also entailed a significant investment in hardware and software, including both custom scripts to simplify launching the instrument interface at remote sites and automated routers employing ISDN backup lines to ensure continuation of observing during Internet outages. Observers often wait until shortly before their runs to request use of the mainland facilities. Scheduling these requests and ensuring proper system operation prior to observing requires close coordination between personnel at WMKO and the mainland sites. An established protocol for approving requests and carrying out pre-run checkout has proven useful in ensuring success. The Observatory anticipates enhancing and expanding its remote observing system. Future plans include deploying dedicated summit computers for running VNC server software, implementing a web-based tracking system for mainland-based observing requests, expanding the system to additional mainland sites, and converting to full-time VNC operation for all instruments.
NASA Remote Sensing Research as Applied to Archaeology
NASA Technical Reports Server (NTRS)
Giardino, Marco J.; Thomas, Michael R.
2002-01-01
The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.
Wang, Teng; Shi, Qibin; Nikkhoo, Mehdi; Wei, Shengji; Barbot, Sylvain; Dreger, Douglas; Bürgmann, Roland; Motagh, Mahdi; Chen, Qi-Fu
2018-05-10
Surveillance of clandestine nuclear tests relies on a global seismic network, but the potential of spaceborne monitoring has been underexploited. Here, we determined the complete surface displacement field of up to 3.5 m of divergent horizontal motion with 0.5 m of subsidence associated with North Korea's largest underground nuclear test using satellite radar imagery. Combining insight from geodetic and seismological remote sensing, we found that the aftermath of the initial explosive deformation involved subsidence associated with sub-surface collapse and aseismic compaction of the damaged rocks of the test site. The explosive yield from the nuclear detonation with seismic modeling for 450m depth was between 120-304 kt of TNT equivalent. Our results demonstrate the capability of spaceborne remote sensing to help characterize large underground nuclear tests. Copyright © 2018, American Association for the Advancement of Science.
The Joint Agency Commercial Imagery Evaluation Team and Product Characterization Approach
NASA Technical Reports Server (NTRS)
Zanoni, Vicki; Pagnutti, Mary; Ryan, Robert E.; Snyder, Greg; Lehman, William; Roylance, Spencer
2003-01-01
The Joint Agency Commercial Imagery Evaluation (JACIE) team is a collaborative interagency group focused on the characterization of commercial remote sensing data products. The team members - the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA), and the U.S. Geological Survey (USGS) - each have a vested interest in the purchase and use of commercial imagery to support government research and operational applications. For both research and applications, commercial products must be well characterized for precision, accuracy, and repeatability. Since commercial systems are built and operated with no government insight or oversight, the JACIE team provides an independent product characterization of delivered image and image-derived end products. End product characterization differs from the systems calibration approach that is typically used with government systems, where detailed system design information is available. The product characterization approach addresses three primary areas of product performance: geopositional accuracy, image quality, and radiometric accuracy. The JACIE team utilizes well-characterized test sites to support characterization activities. To characterize geopositional accuracy, the team utilizes sites containing several "photo-identifiable" targets and compares their precisely known locations with those defined by the commercial image product. In the area of image quality, spatial response is characterized using edge targets and pulse targets to measure edge response and to estimate image modulation transfer function. Additionally, imagery is also characterized using the National Imagery Interpretability Rating Scale, a means of quantifying the ability to identify certain targets (e.g., rail-cars, airplanes) within an image product. Radiometric accuracy is characterized using reflectance-based vicarious calibration methods at several uniform sites. Each JACIE agency performs an aspect of product characterization based on its area of expertise, thus minimizing duplication of effort. The JACIE team collaborated to perform comprehensive characterization of products from Space Imaging Inc.'s IKONOS satellite and from DigitalGlobe's QuickBird satellite and is currently characterizing products from OrbImage s OrbView-3. JACIE assessments have resulted in several improvements to commercial image product quality and have enhanced working relationships between government and industry. Assessment results are presented at an annual JACIE High Spatial Resolution Commercial Imagery Workshop.
Real-time, interactive, visually updated simulator system for telepresence
NASA Technical Reports Server (NTRS)
Schebor, Frederick S.; Turney, Jerry L.; Marzwell, Neville I.
1991-01-01
Time delays and limited sensory feedback of remote telerobotic systems tend to disorient teleoperators and dramatically decrease the operator's performance. To remove the effects of time delays, key components were designed and developed of a prototype forward simulation subsystem, the Global-Local Environment Telerobotic Simulator (GLETS) that buffers the operator from the remote task. GLETS totally immerses an operator in a real-time, interactive, simulated, visually updated artificial environment of the remote telerobotic site. Using GLETS, the operator will, in effect, enter into a telerobotic virtual reality and can easily form a gestalt of the virtual 'local site' that matches the operator's normal interactions with the remote site. In addition to use in space based telerobotics, GLETS, due to its extendable architecture, can also be used in other teleoperational environments such as toxic material handling, construction, and undersea exploration.
Weeks, Douglas L; Molsberry, Dianne M
2009-03-01
This study determined inter-rater agreement between skill assessments provided by on-site PALS evaluators with ratings from evaluators at a remote site viewing the same skill performance over a videoconferencing network. Judgments about feasibility of remote evaluation were also obtained from the evaluators and PALS course participants. Two remote and two on-site instructors independently rated performance of 27 course participants who performed cardiac and shock/respiratory emergency core cases. Inter-rater reliability was assessed with the intraclass correlation coefficient (ICC). Feasibility was assessed with surveys of evaluators and course participants. Core cases were under the direction of the remote evaluators. The ICC for overall agreement on pass/fail decisions was 0.997 for the cardiac cases and 0.998 for the shock/respiratory cases. Perfect agreement was reached on 52 of 54 pass/fail decisions. Across all evaluators, all core cases, and all participants, 2584 ratings of individual skill criteria were provided, of which 21 (0.8%) were ratings in which a single evaluator disagreed with the other three evaluators. No trends emerged for location of the disagreeing evaluator. Survey responses indicated that remote evaluation was acceptable and feasible to course participants and to the evaluators. Videoconferencing technology was shown to provide adequate spatial and temporal resolution for PALS evaluators at-a-distance from course participants to agree with ratings of on-site evaluators.
NASA Technical Reports Server (NTRS)
Perrier, R. (Principal Investigator)
1974-01-01
The author has identified the following significant results. The General Electric DCP has proven to be a versatile, rugged piece of hardware and has surpassed original expectation; it is very simple to use and does not require skilled staff for its use, installation, and operation. It is well suited for use in remote sites where no power is available. From this experience, it is concluded that the data collection system will be very useful in operating a network of hydrometeorological stations situated in sites remote from normal communication links.
Remote Sensing the Patterns of Vector-borne Disease in El Nino and non-El Nino Years
NASA Technical Reports Server (NTRS)
Wood, B. L.; Chang, J.; Lobitz, B.; Beck, L.; DAntoni, Hector (Technical Monitor)
1997-01-01
The relationship between El Nino and non-El Nino and the patterns of vector-borne disease can be viewed at a variety of spatial and temporal scales. At one extreme are long term predictions of changing precipitation and temperature patterns at continental and global scales. At the opposite extreme are the local or site specific ecological changes associated with the long term events. In order to understand and address the human health consequences of El Nino events, especially the patterns of vector-borne diseases, it is necessary to combine both scales of observation. At a local or regional scale the patterns of vector-borne diseases are determined by temperature, precipitation, and habitat availability. These factors, as well as disease incidence can be altered by El Nino events. Remote sensing data such as that acquired by the NOAA AVHRR and Landsat TM sensors can be used to characterize and monitor changing ecological conditions and therefore predict vector-borne disease patterns. The authors present the results of preliminary work on the analysis of historical AVHRR and TM data acquired during El Nino and nonfatal Nino years to characterize ecological conditions in Peru on a monthly basis. This information will then be combined with disease data to determine the relationship between changes in ecological conditions and disease incidence. Our goal is to produce a sequence of remotely sensed images which can be used to show the ecological and disease patterns associated with long term El Nino events and predictions.
Terrestrial reference standard sites for postlaunch sensor calibration
Teillet, P.M.; Chander, G.
2010-01-01
In an era when the number of Earth observation satellites is rapidly growing and measurements from satellite sensors are used to address increasingly urgent global issues, often through synergistic and operational combinations of data from multiple sources, it is imperative that scientists and decision-makers are able to rely on the accuracy of Earth observation data products. The characterization and calibration of these sensors, particularly their relative biases, are vital to the success of the developing integrated Global Earth Observation System of Systems (GEOSS) for coordinated and sustained observations of the Earth. This can only reliably be achieved in the postlaunch environment through the careful use of observations by multiple sensor systems over common, well-characterized terrestrial targets (i.e., on or near the Earth's surface). Through greater access to and understanding of these vital reference standard sites and their use, the validity and utility of information gained from Earth remote sensing will continue to improve. This paper provides a brief overview of the use of reference standard sites for postlaunch sensor radiometric calibration from historical, current, and future perspectives. Emphasis is placed on optical sensors operating in the visible, near-infrared, and shortwave infrared spectral regions.
NASA Astrophysics Data System (ADS)
Wang, Can; Bin, Chen; Christman, Lilianna E.; Glen, Jonathan M. G.; Klemperer, Simon L.; McPhee, Darcy K.; Kappler, Karl N.; Bleier, Tom E.; Dunson, J. Clark
2018-04-01
When working with ultra-low-frequency (ULF) magnetic datasets, as with most geophysical time-series data, it is important to be able to distinguish between cultural signals, internal instrument noise, and natural external signals with their induced telluric fields. This distinction is commonly attempted using simultaneously recorded data from a spatially remote reference site. Here, instead, we compared data recorded by two systems with different instrumental characteristics at the same location over the same time period. We collocated two independent ULF magnetic systems, one from the QuakeFinder network and the other from the United States Geological Survey (USGS)-Stanford network, in order to cross-compare their data, characterize data reproducibility, and characterize signal origin. In addition, we used simultaneous measurements at a remote geomagnetic observatory to distinguish global atmospheric signals from local cultural signals. We demonstrated that the QuakeFinder and USGS-Stanford systems have excellent coherence, despite their different sensors and digitizers. Rare instances of isolated signals recorded by only one system or only one sensor indicate that caution is needed when attributing specific recorded signal features to specific origins.[Figure not available: see fulltext.
Model-data integration for developing the Cropland Carbon Monitoring System (CCMS)
NASA Astrophysics Data System (ADS)
Jones, C. D.; Bandaru, V.; Pnvr, K.; Jin, H.; Reddy, A.; Sahajpal, R.; Sedano, F.; Skakun, S.; Wagle, P.; Gowda, P. H.; Hurtt, G. C.; Izaurralde, R. C.
2017-12-01
The Cropland Carbon Monitoring System (CCMS) has been initiated to improve regional estimates of carbon fluxes from croplands in the conterminous United States through integration of terrestrial ecosystem modeling, use of remote-sensing products and publically available datasets, and development of improved landscape and management databases. In order to develop these improved carbon flux estimates, experimental datasets are essential for evaluating the skill of estimates, characterizing the uncertainty of these estimates, characterizing parameter sensitivities, and calibrating specific modeling components. Experiments were sought that included flux tower measurement of CO2 fluxes under production of major agronomic crops. Currently data has been collected from 17 experiments comprising 117 site-years from 12 unique locations. Calibration of terrestrial ecosystem model parameters using available crop productivity and net ecosystem exchange (NEE) measurements resulted in improvements in RMSE of NEE predictions of between 3.78% to 7.67%, while improvements in RMSE for yield ranged from -1.85% to 14.79%. Model sensitivities were dominated by parameters related to leaf area index (LAI) and spring growth, demonstrating considerable capacity for model improvement through development and integration of remote-sensing products. Subsequent analyses will assess the impact of such integrated approaches on skill of cropland carbon flux estimates.
Geologic evaluation of remote sensing data, site 157, Awza-Borrego Desert, California
NASA Technical Reports Server (NTRS)
Wolfe, E. W.
1969-01-01
Remote sensing data were obtained at site 157 in May 1968 under mission 73 of the NASA aircraft program. The site is located in an area of high temperatures and extreme aridity immediately west of the Imperial Valley, Southern California. Site 157 is partially surrounded by pre-Cenozoic crystalline rocks exposed in the Fish Creek, Vallecito, and Tierra Blanca Mountains. The study area itself is underlain by more than 20,000 feet of sedimentary strata of late Cenozoic age.
Mobile inductively coupled plasma system
D`Silva, A.P.; Jaselskis, E.J.
1999-03-30
A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.
Documentation of archaeological sites in northern iraq using remote sensing methods
NASA Astrophysics Data System (ADS)
Matoušková, E.; Pavelka, K.; Nováček, K.; Starková, L.
2015-08-01
The MULINEM (The Medieval Urban Landscape in Northeastern Mesopotamia) project is aiming to investigate a Late Sasanian and Islamic urban network in the land of Erbil, historic province of Hidyab (Adiabene) that is located in the northern Iraq. The research of the hierarchical urban network in a defined area belongs to approaches rarely used in the study of the Islamic urbanism. The project focuses on the cluster of urban sites of the 6th-17th centuries A.D. This paper focuses on remote sensing analysis of historical sites with special interest of FORMOSAT-2 data that have been gained through a research announcement: Free FORMOSAT-2 satellite Imagery. Documentation of two archaeological sites (Makhmúr al-Qadima and Kushaf) are introduced. FORMOSAT-2 data results have been compared to historic CORONA satellite data of mentioned historical sites purchased earlier by the University of West Bohemia. Remote sensing methods were completed using in-situ measurements.
PHYSICAL SOLUTIONS FOR ACID ROCK DRAINAGE AT REMOTE SITES DEMONSTRATION PROJECT
This report summarizes the results of Mine Waste Technology Program, Activity III, Project 42, Physical Solutions for Acid Rock Drainage at Remote Sites, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy. A...
Audiographics for Distance Education: An Alternative Technology.
ERIC Educational Resources Information Center
Fredrickson, Scott
Audiographics is the merging of microcomputer graphics, telephone communications systems, and teaching strategies into a cost effective method of delivering distance education classes. The teacher creates visual images that are sent to and stored on computers at the remote sites. At the appropriate time the teacher and the remote site assistants…
Photographic copy of photograph, dated September 1971, (original print in ...
Photographic copy of photograph, dated September 1971, (original print in possession of CSSD-HO, Huntsville, AL). Photographer unknown. Aerial view looking north of remote sprint launch site #2, during construction. In the foreground is the remote launch operations building (RLOB); sprint silos are being installed in the background - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 2, West of Mile Marker 220 on State Route 1, 6.0 miles North of Langdon, ND, Nekoma, Cavalier County, ND
Allosteric Ligand Binding and Anisotropic Energy Flow in Albumin
NASA Astrophysics Data System (ADS)
Dyer, Brian
2014-03-01
Protein allostery usually involves propagation of local structural changes through the protein to a remote site. Coupling of structural changes at remote sites is thought to occur through anisotropic energy transport, but the nature of this process is poorly understood. We have studied the relationship between allosteric interactions of remote ligand binding sites of the protein and energy flow through the structure of bovine serum albumin (BSA). We applied ultrafast infrared spectroscopy to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic flow through the protein structure following input of thermal energy into the flexible ligand binding sites. We also observe anisotropic heat flow through the structure, without local heating of the rigid helix bundles that connect these sites. We will discuss the implications of this efficient energy transport mechanism with regard to the allosteric propagation of binding energy through the connecting helix structures.
Elison-Bowers, P; Snelson, Chareen; Casa de Calvo, Mario; Thompson, Heather
2008-02-05
This study compared the responses of on-site, remote-site, and traditional classroom students on measures of student/teacher interaction, course structure, physical learning environment, and overall course enjoyment/satisfaction. The sample population consisted of students taking undergraduate courses in medical terminology at two western colleges. The survey instrument was derived from Thomerson's questionnaire, which included closed- and open-ended questions assessing perceptions of students toward their courses. Controlling for grade expectations, results revealed no significant differences among the on-site, remote-site, and traditional classroom students in any of the four cluster domains. However, a nonsignificant (and continuing) trend suggested that students preferred the traditional classroom environment. When results were controlled for age, significant differences emerged between traditional and nontraditional students on measures of student/teacher interaction, physical learning environment, and overall enjoyment/satisfaction, as nontraditional students exhibited higher scores. Students' responses to open-ended questions indicated they enjoyed the convenience of online instruction, but reported finding frustration with technology itself.
NASA Technical Reports Server (NTRS)
Zanoni, Vicki; Ryan, Robert; Pagnutti, Mary; Baldridge, Braxton; Roylance, Spencer; Snyder, Greg; Lee, George; Stanley, Tom
2002-01-01
An overview of the Joint Agency Commercial Imagery Evalation (JACIE) team is presented. JACIE, composed of the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA), and the U.S. Geological Survey (USGS), was formed to leverage government agencies' capabilities for the characterization of commercial remote sensing data. Each JACIE agency purchases, or plans to purchase, commercial imagery to support its research and applications. It is critical that the data be assessed for its accuracy and utility. Through JACIE, NASA, NIMA, and USGS jointly characterized image products from Space Imaging's IKONOS satellite. Each JACIE agency performed an aspect of the characterization based on its expertise. NASA and its university partners performed a system characterization focusing on radiometric calibration, geopositional accuracy, and spatial resolution assessment; NIMA performed image interpretability and feature extraction evaluations; and USGS assessed geopositional accuracy of several IKONOS products. The JACIE team purchased IKONOS imagery of several study sites to perform the assessments and presented results at an industry-government workshop. Future plans for JACIE include the characterization of DigitalGlobe's QuickBird-2 image products.
Mirus, Benjamin B.; Perkins, Kim S.
2012-01-01
The bottomless bucket (BB) approach (Nimmo et al., 2009a) is a cost-effective method for rapidly characterizing field-saturated hydraulic conductivity Kfs of soils and alluvial deposits. This practical approach is of particular value for quantifying infiltration rates in remote areas with limited accessibility. A similar approach for bedrock outcrops is also of great value for improving quantitative understanding of infiltration and recharge in rugged terrain. We develop a simple modification to the BB method for application to bedrock outcrops, which uses a non-toxic, quick-drying silicone gel to seal the BB to the bedrock. These modifications to the field method require only minor changes to the analytical solution for calculating Kfs on soils. We investigate the reproducibility of the method with laboratory experiments on a previously studied calcarenite rock and conduct a sensitivity analysis to quantify uncertainty in our predictions. We apply the BB method on both bedrock and soil for sites on Pahute Mesa, which is located in a remote area of the Nevada National Security Site. The bedrock BB tests may require monitoring over several hours to days, depending on infiltration rates, which necessitates a cover to prevent evaporative losses. Our field and laboratory results compare well to Kfs values inferred from independent reports, which suggests the modified BB method can provide useful estimates and facilitate simple hypothesis testing. The ease with which the bedrock BB method can be deployed should facilitate more rapid in-situ data collection than is possible with alternative methods for quantitative characterization of infiltration into bedrock.
Johnson, J. R.; Ruff, S.W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N.A.; Cockell, C.; Gazis, P.; Newsom, Horton E.; Stoker, C.
2001-01-01
Upcoming Mars Surveyor lander missions will include extensive spectroscopic capabilities designed to improve interpretations of the mineralogy and geology of landing sites on Mars. The 1999 Marsokhod Field Experiment (MFE) was a Mars rover simulation designed in part to investigate the utility of visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site in the California Mojave Desert. The experiment simultaneously investigated the abilities of an off-site science team to effectively analyze and acquire useful imaging and spectroscopic data and to communicate efficiently with rover engineers and an on-site field team to provide meaningful input to rover operations and traverse planning. Experiences gained during the MFE regarding effective communication between different mission operation teams will be useful to upcoming Mars mission teams. Field spectra acquired during the MFE mission exhibited features interpreted at the time as indicative of carbonates (both dolomitic and calcitic), mafic rocks and associated weathering products, and silicic rocks with desert varnish-like coatings. The visible/near-infrared spectra also suggested the presence of organic compounds, including chlorophyll in one rock. Postmission laboratory petrologic and spectral analyses of returned samples confirmed that all rocks identified as carbonates using field measurements alone were calc-silicates and that chlorophyll associated with endolithic organisms was present in the one rock for which it was predicted. Rocks classified from field spectra as silicics and weathered mafics were recognized in the laboratory as metamorphosed monzonites and diorite schists. This discrepancy was likely due to rock coatings sampled by the field spectrometers compared to fresh rock interiors analyzed petrographically, in addition to somewhat different surfaces analyzed by laboratory thermal spectroscopy compared to field spectra. Copyright 2001 by the American Geophysical Union.
Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques
2010-09-01
panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors...observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along...and communication equipment, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedscheid, J.; Stahl, S.; Devarakonda, M.
2002-02-26
The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste priormore » to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to characterize radiological parameters for the small populations of the RH-TRU waste generated by the BCLDP. All characterization based on AK is verified. Per its design for comprehensive waste data collection, the BCLDP characterization program using AK and waste packaging procedures, including VE during packaging, meets the proposed WIPP RH-TRU waste characterization objectives. The conservative program design implemented generates certification data that will be adequate to meet any additional program requirements that may be imposed by the CBFO.« less
Analysis of Bright Harvest Remote Analysis for Residential Solar Installations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nangle, John; Simon, Joseph
Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.
NASA Technical Reports Server (NTRS)
Schwarz, D. E.; Ellefsen, R. E.
1981-01-01
Several general guidelines should be kept in mind when considering the selection of field sites for teaching remote sensing fundamentals. Proximity and vantage point are two very practical considerations. Only through viewing a broad enough area to place the site in context can one make efficient use of a site. The effects of inclement weather when selecting sites should be considered. If field work is to be an effective tool to illustrate remote sensing principles, the following criteria are critical: (1) the site must represent the range of class interest; (2) the site must have a theme or add something no other site offers; (3) there should be intrasite variation within the theme; (4) ground resolution and spectral signature distinction should be illustrated; and (5) the sites should not be ordered sequentially.
Gentry, Diana M; Amador, Elena S; Cable, Morgan L; Chaudry, Nosheen; Cullen, Thomas; Jacobsen, Malene B; Murukesan, Gayathri; Schwieterman, Edward W; Stevens, Adam H; Stockton, Amanda; Tan, George; Yin, Chang; Cullen, David C; Geppert, Wolf
2017-10-01
We conducted an analog sampling expedition under simulated mission constraints to areas dominated by basaltic tephra of the Eldfell and Fimmvörðuháls lava fields (Iceland). Sites were selected to be "homogeneous" at a coarse remote sensing resolution (10-100 m) in apparent color, morphology, moisture, and grain size, with best-effort realism in numbers of locations and replicates. Three different biomarker assays (counting of nucleic-acid-stained cells via fluorescent microscopy, a luciferin/luciferase assay for adenosine triphosphate, and quantitative polymerase chain reaction (qPCR) to detect DNA associated with bacteria, archaea, and fungi) were characterized at four nested spatial scales (1 m, 10 m, 100 m, and >1 km) by using five common metrics for sample site representativeness (sample mean variance, group F tests, pairwise t tests, and the distribution-free rank sum H and u tests). Correlations between all assays were characterized with Spearman's rank test. The bioluminescence assay showed the most variance across the sites, followed by qPCR for bacterial and archaeal DNA; these results could not be considered representative at the finest resolution tested (1 m). Cell concentration and fungal DNA also had significant local variation, but they were homogeneous over scales of >1 km. These results show that the selection of life detection assays and the number, distribution, and location of sampling sites in a low biomass environment with limited a priori characterization can yield both contrasting and complementary results, and that their interdependence must be given due consideration to maximize science return in future biomarker sampling expeditions. Key Words: Astrobiology-Biodiversity-Microbiology-Iceland-Planetary exploration-Mars mission simulation-Biomarker. Astrobiology 17, 1009-1021.
NASA Astrophysics Data System (ADS)
Dujardin, J.; Boel, S.; Anibas, C.; Batelaan, O.; Canters, F.
2009-04-01
Countries around the world have problems with contaminated brownfield sites as resulting from a relatively anarchic economical and industrial development during the 19th and 20th centuries. Since a few decades policy makers and stakeholders have become more aware of the risk posed by these sites because some of these sites present direct public hazards. Water is often the main vector of the mobility of contaminants. In order to propose remediation measures for the contaminated sites, it is required to describe and to quantify as accurately as possible the surface and subsurface water fluxes in the polluted site. In this research a modelling approach with integrated remote sensing analysis has been developed for accurately calculating water and contaminant fluxes on the polluted sites. Groundwater pollution in urban environments is linked to patterns of land use, so to identify the sources of contamination with great accuracy in urban environments it is essential to characterize the land cover in a detailed way. The use of high resolution spatial information is required because of the complexity of the urban land use. An object-oriented classification approach applied on high resolution satellite data has been adopted. Cluster separability analysis and visual interpretation of the image objects belonging to each cluster resulted in the selection of 8 land-cover categories (water, bare soil, meadow, mixed forest, grey urban surfaces, red roofs, bright roofs and shadow).To assign the image objects to one of the 8 selected classes a multiple layer perceptron (MLP) approach was adopted, using the NeuralWorks Predict software. After a post-classification shadow removal and a rule-based classification enhancement a kappa-value of 0.86 was obtained. Once the land cover was characterized, the groundwater recharge has been simulated using the spatially distributed WetSpass model and the subsurface water flow was simulated with GMS 6.0 in order to identify and budget the water fluxes on the brownfield. The obtained land use map shows to have a strong impact on the groundwater recharge, resulting in a high spatial variability. Simulated groundwater fluxes from brownfield to a receiving river where independently verified by measurements and simulation of groundwater-surface water interaction based on thermal gradients in the river bed. It is concluded that in order to better quantify total fluxes of contaminants from brownfields in the groundwater, remote sensing imagery can be operationally integrated in a modelling procedure. The developed methodology is applied to a case site in Vilvoorde, Brussels (Belgium).
The Most Remote Point Method for the Site Selection of the Future VGOS Network
NASA Astrophysics Data System (ADS)
Hase, Hayo; Pedreros, Felipe
2014-12-01
The VLBI Global Observing System (VGOS) will be part of the Global Geodetic Observing System (GGOS) and will consist of globally well distributed geodetic observatories. The most remote point (MRP) method is used to identify gaps in the network geometry. In each iteration step the identified most remote points are assumed to become new observatory sites improving the homogeneity of the global network. New locations for VGOS observatories have been found in La Plata, Tahiti, O'Higgins, Galapagos, Colombo, and Syowa. This contribution is an excerpt of a work published in Journal of Geodesy (DOI: 10.1007/s00190-014-0731-y) covering the site selection for the GGOS.%
Description of a Remote Ionospheric Scintillation Data Collection Facility
DOT National Transportation Integrated Search
1973-03-01
An experimental technique is described which measures L-band ionospheric scintillation at a remote, unmanned site. Details of an automatic data collection facility are presented. The remote facility comprises an L-band receiver, and a complete VHF co...
Robotic Telepresence: Perception, Performance, and User Experience
2012-02-01
defined as “a human-computer-machine condition in which a user receives sufficient information about a remote, real-world site through a machine so...that the user feels physically present at the remote, real-world site ” (Aliberti and Bruen, 2006). Telepresence often includes capabilities for a more...outdoor route reconnaissance course (figures 4 and 5) was located at the Molnar MOUT (Military Operations in Urban Terrain) site in Fort Benning, GA. It
Clinical Training at Remote Sites Using Mobile Technology: An India-USA Partnership
ERIC Educational Resources Information Center
Vyas, R.; Albright, S.; Walker, D.; Zachariah, A.; Lee, M. Y.
2010-01-01
Christian Medical College (CMC), India, and Tufts University School of Medicine, USA, have developed an "institutional hub and spokes" model (campus-based e-learning supporting m-learning in the field) to facilitate clinical education and training at remote secondary hospital sites across India. Iterative research, design, development,…
NASA Technical Reports Server (NTRS)
Graff, W. J. (Compiler)
1973-01-01
Remote sensing and aerial photographic interpretation are discussed along with the specific imagery techniques used for this research. The method used to select sites, the results of data analyses for the Houston metropolitan area, and the location of dredging sites along the Houston Ship Channel are presented. The work proposed for the second year of the project is described.
ERIC Educational Resources Information Center
Brinson, James R.
2017-01-01
This paper further characterizes recently reviewed literature related to student learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) science labs, as well as factors to consider when evaluating the state and progress of research in this field as a whole. Current research is characterized according to…
Jacob, Benjamin G; Novak, Robert J; Toe, Laurent D; Sanfo, Moussa; Griffith, Daniel A; Lakwo, Thomson L; Habomugisha, Peace; Katabarwa, Moses N; Unnasch, Thomas R
2013-01-01
Recently, most onchocerciasis control programs have begun to focus on elimination. Developing an effective elimination strategy relies upon accurately mapping the extent of endemic foci. In areas of Africa that suffer from a lack of infrastructure and/or political instability, developing such accurate maps has been difficult. Onchocerciasis foci are localized near breeding sites for the black fly vectors of the infection. The goal of this study was to conduct ground validation studies to evaluate the sensitivity and specificity of a remote sensing model developed to predict S. damnosum s.l. breeding sites. Remote sensing images from Togo were analyzed to identify areas containing signature characteristics of S. damnosum s.l. breeding habitat. All 30 sites with the spectral signature were found to contain S. damnosum larvae, while 0/52 other sites judged as likely to contain larvae were found to contain larvae. The model was then used to predict breeding sites in Northern Uganda. This area is hyper-endemic for onchocerciasis, but political instability had precluded mass distribution of ivermectin until 2009. Ground validation revealed that 23/25 sites with the signature contained S. damnosum larvae, while 8/10 sites examined lacking the signature were larvae free. Sites predicted to have larvae contained significantly more larvae than those that lacked the signature. This study suggests that a signature extracted from remote sensing images may be used to predict the location of S. damnosum s.l. breeding sites with a high degree of accuracy. This method should be of assistance in predicting communities at risk for onchocerciasis in areas of Africa where ground-based epidemiological surveys are difficult to implement.
Jacob, Benjamin G.; Novak, Robert J.; Toe, Laurent D.; Sanfo, Moussa; Griffith, Daniel A.; Lakwo, Thomson L.; Habomugisha, Peace; Katabarwa, Moses N.; Unnasch, Thomas R.
2013-01-01
Background Recently, most onchocerciasis control programs have begun to focus on elimination. Developing an effective elimination strategy relies upon accurately mapping the extent of endemic foci. In areas of Africa that suffer from a lack of infrastructure and/or political instability, developing such accurate maps has been difficult. Onchocerciasis foci are localized near breeding sites for the black fly vectors of the infection. The goal of this study was to conduct ground validation studies to evaluate the sensitivity and specificity of a remote sensing model developed to predict S. damnosum s.l. breeding sites. Methodology/Principal Findings Remote sensing images from Togo were analyzed to identify areas containing signature characteristics of S. damnosum s.l. breeding habitat. All 30 sites with the spectral signature were found to contain S. damnosum larvae, while 0/52 other sites judged as likely to contain larvae were found to contain larvae. The model was then used to predict breeding sites in Northern Uganda. This area is hyper-endemic for onchocerciasis, but political instability had precluded mass distribution of ivermectin until 2009. Ground validation revealed that 23/25 sites with the signature contained S. damnosum larvae, while 8/10 sites examined lacking the signature were larvae free. Sites predicted to have larvae contained significantly more larvae than those that lacked the signature. Conclusions/Significance This study suggests that a signature extracted from remote sensing images may be used to predict the location of S. damnosum s.l. breeding sites with a high degree of accuracy. This method should be of assistance in predicting communities at risk for onchocerciasis in areas of Africa where ground-based epidemiological surveys are difficult to implement. PMID:23936571
Robotic positioning of standard electrophysiology catheters: a novel approach to catheter robotics.
Knight, Bradley; Ayers, Gregory M; Cohen, Todd J
2008-05-01
Robotic systems have been developed to manipulate and position electrophysiology (EP) catheters remotely. One limitation of existing systems is their requirement for specialized catheters or sheaths. We evaluated a system (Catheter Robotics Remote Catheter Manipulation System [RCMS], Catheter Robotics, Inc., Budd Lake, New Jersey) that manipulates conventional EP catheters placed through standard introducer sheaths. The remote controller functions much like the EP catheter handle, and the system permits repeated catheter disengagement for manual manipulation without requiring removal of the catheter from the body. This study tested the hypothesis that the RCMS would be able to safely and effectively position catheters at various intracardiac sites and obtain thresholds and electrograms similar to those obtained with manual catheter manipulation. Two identical 7 Fr catheters (Blazer II; Boston Scientific Corp., Natick, Massachusetts) were inserted into the right femoral veins of 6 mongrel dogs through separate, standard 7 Fr sheaths. The first catheter was manually placed at a right ventricular endocardial site. The second catheter handle was placed in the mating holder of the RCMS and moved to approximately the same site as the first catheter using the Catheter Robotics RCMS. The pacing threshold was determined for each catheter. This sequence was performed at 2 right atrial and 2 right ventricular sites. The distance between the manually and robotically placed catheters tips was measured, and pacing thresholds and His-bundle recordings were compared. The heart was inspected at necropsy for signs of cardiac perforation or injury. Compared to manual positioning, remote catheter placement produced the same pacing threshold at 7/24 sites, a lower threshold at 11/24 sites, and a higher threshold at only 6/24 sites (p > 0.05). The average distance between catheter tips was 0.46 +/- 0.32 cm (median 0.32, range 0.13-1.16 cm). There was no difference between right atrial and right ventricular sites (p > 0.05). His-bundle electrograms were equal in amplitude and timing. Further, the remote navigation catheter was able to be disengaged, manually manipulated, then reengaged in the robot without issue. There was no evidence of perforation. The Catheter Robotics remote catheter manipulation system, which uses conventional EP catheters and introducer sheaths, appears to be safe and effective at directing EP catheters to intracardiac sites and achieving pacing thresholds and electrograms equivalent to manually placed catheters. Further clinical studies are needed to confirm these observations.
Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar
NASA Astrophysics Data System (ADS)
Chen, Qi
2015-08-01
Estimating tree aboveground biomass (AGB) and carbon (C) stocks using remote sensing is a critical component for understanding the global C cycle and mitigating climate change. However, the importance of allometry for remote sensing of AGB has not been recognized until recently. The overarching goals of this study are to understand the differences and relationships among three national-scale allometric methods (CRM, Jenkins, and the regional models) of the Forest Inventory and Analysis (FIA) program in the U.S. and to examine the impacts of using alternative allometry on the fitting statistics of remote sensing-based woody AGB models. Airborne lidar data from three study sites in the Pacific Northwest, USA were used to predict woody AGB estimated from the different allometric methods. It was found that the CRM and Jenkins estimates of woody AGB are related via the CRM adjustment factor. In terms of lidar-biomass modeling, CRM had the smallest model errors, while the Jenkins method had the largest ones and the regional method was between. The best model fitting from CRM is attributed to its inclusion of tree height in calculating merchantable stem volume and the strong dependence of non-merchantable stem biomass on merchantable stem biomass. This study also argues that it is important to characterize the allometric model errors for gaining a complete understanding of the remotely-sensed AGB prediction errors.
Characterization of water bodies for mosquito habitat using a multi-sensor approach
NASA Astrophysics Data System (ADS)
Midekisa, A.; Wimberly, M. C.; Senay, G. B.
2012-12-01
Malaria is a major health problem in Ethiopia. Anopheles arabiensis, which inhabits and breeds in a variety of aquatic habitats, is the major mosquito vector for malaria transmission in the region. In the Amhara region of Ethiopia, mosquito breeding sites are heterogeneously distributed. Therefore, accurate characterization of aquatic habitats and potential breeding sites can be used as a proxy to measure the spatial distribution of malaria risk. Satellite remote sensing provides the ability to map the spatial distribution and monitor the temporal dynamics of surface water. The objective of this study is to map the probability of surface water accumulation to identify potential vector breeding sites for Anopheles arabiensis using remote sensing data from sensors at multiple spatial and temporal resolutions. The normalized difference water index (NDWI), which is based on reflectance in the green and the near infrared (NIR) bands were used to estimate fractional cover of surface water. Temporal changes in surface water were mapped using NDWI indices derived from MODIS surface reflectance product (MOD09A1) for the period 2001-2012. Landsat TM and ETM+ imagery were used to train and calibrate model results from MODIS. Results highlighted interannual variation and seasonal changes in surface water that were observed from the MODIS time series. Static topographic indices that estimate the potential for water accumulation were generated from 30 meter Shuttle Radar Topography Mission (SRTM) elevation data. Integrated fractional surface water cover was developed by combining the static topographic indices and dynamic NDWI indices using Geographic Information System (GIS) overlay methods. Accuracy of the results was evaluated based on ground truth data that was collected on presence and absence of surface water immediately after the rainy season. The study provided a multi-sensor approach for mapping areas with a high potential for surface water accumulation that are potential breeding habitats for anopheline mosquitoes. The resulting products are useful for public health decision making towards effective prevention and control of the malaria burden in the Amhara region of Ethiopia.
Bright spots among the world’s coral reefs
NASA Astrophysics Data System (ADS)
Cinner, Joshua E.; Huchery, Cindy; MacNeil, M. Aaron; Graham, Nicholas A. J.; McClanahan, Tim R.; Maina, Joseph; Maire, Eva; Kittinger, John N.; Hicks, Christina C.; Mora, Camilo; Allison, Edward H.; D'Agata, Stephanie; Hoey, Andrew; Feary, David A.; Crowder, Larry; Williams, Ivor D.; Kulbicki, Michel; Vigliola, Laurent; Wantiez, Laurent; Edgar, Graham; Stuart-Smith, Rick D.; Sandin, Stuart A.; Green, Alison L.; Hardt, Marah J.; Beger, Maria; Friedlander, Alan; Campbell, Stuart J.; Holmes, Katherine E.; Wilson, Shaun K.; Brokovich, Eran; Brooks, Andrew J.; Cruz-Motta, Juan J.; Booth, David J.; Chabanet, Pascale; Gough, Charlie; Tupper, Mark; Ferse, Sebastian C. A.; Sumaila, U. Rashid; Mouillot, David
2016-07-01
Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation.
Remotely Operating a Fourier Transform Spectrometer for Atmospheric Remote Sensing
NASA Technical Reports Server (NTRS)
Blavier, J.-F.; Toon, G. C.; Sen, B.
2000-01-01
This paper describes how the MkIV instrument was adapted for remote operation from the Barcroft site, where the harsh winter conditions make access difficult. Some of the main technical challenges will be discussed including, (i) operation from solar panels and batteries, (ii) cooling the detectors with LN2, (iii) instrument control and monitoring over a cellular phone, and (iv) data storage, processing and analysis. Finally, MkIV spectra measured from Barcroft and compared with those measured from JPL to highlight the advantages of the higher altitude site.
Photographic copy of photograph, dated September 1973 (original in possession ...
Photographic copy of photograph, dated September 1973 (original in possession of CSSD-HO, Huntsville, AL). Photographer unknown. Aerial view (northwest to southeast) of remote sprint launch site #4 during construction. In the background are the waste stabilization ponds. In the foreground, left to right, are the remote launch operations building, the exclusion area sentry stations, and the sprint launch cells - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 4, North of State Highway 17, approximately 9 miles Northwest of Adams, ND, Nekoma, Cavalier County, ND
Synchronized computational architecture for generalized bilateral control of robot arms
NASA Technical Reports Server (NTRS)
Szakaly, Zoltan F. (Inventor)
1991-01-01
A master six degree of freedom Force Reflecting Hand Controller (FRHC) is available at a master site where a received image displays, in essentially real time, a remote robotic manipulator which is being controlled in the corresponding six degree freedom by command signals which are transmitted to the remote site in accordance with the movement of the FRHC at the master site. Software is user-initiated at the master site in order to establish the basic system conditions, and then a physical movement of the FRHC in Cartesean space is reflected at the master site by six absolute numbers that are sensed, translated and computed as a difference signal relative to the earlier position. The change in position is then transmitted in that differential signal form over a high speed synchronized bilateral communication channel which simultaneously returns robot-sensed response information to the master site as forces applied to the FRHC so that the FRHC reflects the feel of what is taking place at the remote site. A system wide clock rate is selected at a sufficiently high rate that the operator at the master site experiences the Force Reflecting operation in real time.
Automated training site selection for large-area remote-sensing image analysis
NASA Astrophysics Data System (ADS)
McCaffrey, Thomas M.; Franklin, Steven E.
1993-11-01
A computer program is presented to select training sites automatically from remotely sensed digital imagery. The basic ideas are to guide the image analyst through the process of selecting typical and representative areas for large-area image classifications by minimizing bias, and to provide an initial list of potential classes for which training sites are required to develop a classification scheme or to verify classification accuracy. Reducing subjectivity in training site selection is achieved by using a purely statistical selection of homogeneous sites which then can be compared to field knowledge, aerial photography, or other remote-sensing imagery and ancillary data to arrive at a final selection of sites to be used to train the classification decision rules. The selection of the homogeneous sites uses simple tests based on the coefficient of variance, the F-statistic, and the Student's i-statistic. Comparisons of site means are conducted with a linear growing list of previously located homogeneous pixels. The program supports a common pixel-interleaved digital image format and has been tested on aerial and satellite optical imagery. The program is coded efficiently in the C programming language and was developed under AIX-Unix on an IBM RISC 6000 24-bit color workstation.
Reconnaissance Strategy for Seep Chemosynthetic Communities in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
MacDonald, I. R.; Roberts, H. H.; Fisher, C. R.; Bernard, B. B.; Joye, S.; Carney, R.; Hunt, J.; Shedd, W.
2007-05-01
The Continental Slope of the Gulf of Mexico hosts diverse chemosynthetic communities at oil and gas seeps. Exploration is needed to extend knowledge of the Gulf of Mexico chemosynthetic ecosystem in the zones anticipated to receive energy exploration and production activities over the coming decades. A nested survey approach can be used to identify representative sampling sites within this vast offshore area. Potential sites where chemosynthetic community could occur are selected on the basis geophysical, geochemical, and satellite remote-sensing indicators. Photo-reconnaissance using cost-effective camera systems is then used to confirm the presences or absence of chemosynthetic communities at high-probability sites. Follow-up sampling can then proceed with submersibles or ROVs to acquire tissue and or geochemical samples. However, because access is limited, submersible dives may not be possible at all sites. Two examples of this approach have recently been applied in the northern and southern Gulf of Mexico, respectively. We compared community characterizations obtained from the initial reconnaissance with more detailed characterizations forthcoming from submersible sampling. Our results show that major differences in community type and geochemical substrata are evident from preliminary reconnaissance, while details of animal densities and species compositions require targeted sampling with submersibles. However, given the limited access to submersibles, cost-effective surveys with deep-sea camera systems would greatly expand understanding of the zoogeography of chemosynthetic fauna in the Gulf of Mexico and Caribbean Sea.
Land use classification utilizing remote multispectral scanner data and computer analysis techniques
NASA Technical Reports Server (NTRS)
Leblanc, P. N.; Johannsen, C. J.; Yanner, J. E.
1973-01-01
An airborne multispectral scanner was used to collect the visible and reflective infrared data. A small subdivision near Lafayette, Indiana was selected as the test site for the urban land use study. Multispectral scanner data were collected over the subdivision on May 1, 1970 from an altitude of 915 meters. The data were collected in twelve wavelength bands from 0.40 to 1.00 micrometers by the scanner. The results indicated that computer analysis of multispectral data can be very accurate in classifying and estimating the natural and man-made materials that characterize land uses in an urban scene.
Fundamentals and advances in the development of remote welding fabrication systems
NASA Technical Reports Server (NTRS)
Agapakis, J. E.; Masubuchi, K.; Von Alt, C.
1986-01-01
Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.
NASA Astrophysics Data System (ADS)
Young, K. E.; Rogers, D.; Dyar, M. D.; Ito, G.; Yant, M.; McAdam, A.; Bleacher, J. E.; Glotch, T. D.
2015-12-01
A major objective of the SSERVI RIS4E (Remote, In-situ, and Synchrotron Studies for Science and Exploration) investigation is to evaluate the performance of portable chemical and mineralogical instruments in a variety of planetary volcanic analog settings. To that end, we used a suite of true/proxy portable instruments (XRF, LIBS, XRD, near-IR and mid-IR spectrometers), to measure the chemical and spectral characteristics of young basaltic flows (erupted December 1974, or D1974) within the southwest rift zone of Kilauea, Hawaii. The D1974 lavas exhibit multiple flow morphologies and textures, and have undergone alteration by a variety of processes, including acid weathering, oxidation and devitrification. The mineralogy, chemistry and infrared spectral properties of select samples from these altered surfaces have been well characterized by previous groups using high resolution (e.g. SEM, TEM) and/or laboratory measurements (XRD, Mossbauer, infrared). Typical alteration products include coatings of Fe-Ti-oxide +/- an overlying silica-rich coating. Coatings are commonly discontinuous and vary in color. Oxidation fronts are also present, most visible as reddish brown discoloration along the edges of broken and uplifted flow crusts. The previous detailed characterizations provide the basis for evaluating instrument performance and also allow us to assess areas where portable instruments can contribute new information to current understanding. These areas include characterizing the spatial variability in alteration chemistry/mineralogy, relating chemical/mineralogical properties to texture and context, and comparing chemical/mineralogical variations with infrared spectral properties. Because infrared spectra are commonly used to assess compositional variations of a site remotely, either from the ground or from orbit, relating changes in chemistry and mineralogy to spectral variations is particularly important. Last, the D1974 site provides an excellent location to test the performance of portable chemical instruments on coated surfaces of variable texture. Results from this multi-technique approach will be presented at the meeting.
An Experimental Remote Question-Answer Scan Television and Student Evaluation System.
ERIC Educational Resources Information Center
Rigas, Anthony L.
Presented is a description of the development and use of a technical system designed to provide students (in this case, engineering students) situated at remote sites a means for better interaction with their instructors. For example, students at such sites cannot get their immediate questions answered because of the physical location of their…
The report describes automobile exhaust remote sensing data collected by EPA at a number of sites in the Research Triangle Park, NC area during 1997. Data were also collected at one site in Raleigh, NC from 1998 through 2001 for the Coordinating Research Council (CRC) study of re...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, Paul; Skeehan, Kirsten; Smith, Jerome
Report on the confirmation of Commercial Geothermal Resources in Colorado describing the on site testing and analysis to confirm remote sensing identified potential resources. A series of thermal gradient wells were drilled in the Pagosa Springs region and the data collected is analyzed within.
Application of airborne remote sensing to the ancient Pompeii site
NASA Astrophysics Data System (ADS)
Vitiello, Fausto; Giordano, Antonio; Borfecchia, Flavio; Martini, Sandro; De Cecco, Luigi
1996-12-01
The ancient Pompeii site is in the Sarno Valley, an area of about 400 km2 in the South of Italy near Naples, that was utilized by man since old time (thousands of years ago). Actually the valley is under critical environmental conditions because of the relevant industrial development. ENEA is conducting various studies and research in the valley. ENEA is employing historical research, ground campaigns, cartography and up-to-date airborne multispectral remote sensing technologies to make a geographical information system. Airborne remote sensing technologies are very suitable for situations as that of the Sarno Valley. The paper describes the archaeological application of the research in progress as regarding the ancient site of Pompeii and its fluvial port.
Thermal Remote Anemometer Device
NASA Technical Reports Server (NTRS)
Heyman, Joseph S.; Heath, D. Michele; Winfree, William P.; Miller, William E.; Welch, Christopher S.
1988-01-01
Thermal Remote Anemometer Device developed for remote, noncontacting, passive measurement of thermal properties of sample. Model heated locally by scanning laser beam and cooled by wind in tunnel. Thermal image of model analyzed to deduce pattern of airflow around model. For materials applications, system used for evaluation of thin films and determination of thermal diffusivity and adhesive-layer contact. For medical applications, measures perfusion through skin to characterize blood flow and used to determine viabilities of grafts and to characterize tissues.
NASA Astrophysics Data System (ADS)
Wright, S. A.; Bennett, G. E.; Andrews, T.; Melis, T. S.; Topping, D. J.
2005-05-01
Currently, in-situ monitoring of water quality parameters (e.g. water temperature, conductivity, turbidity) in the Colorado River ecosystem typically consists of deploying instruments in the river, retrieving them at a later date, downloading the datalogger, then examining the data; an arduous process in the remote settings of Grand Canyon. Under this protocol, data is not available real-time and there is no way to detect problems with the instrumentation until after retrieval. The next obvious stage in the development of in-situ monitoring in Grand Canyon was the advent of one-way telemetry, i.e. streaming data in real-time from the instrument to the office and/or the world-wide-web. This protocol allows for real-time access to data and the identification of instrumentation problems, but still requires a site visit to address instrument malfunctions, i.e. the user does not have the ability to remotely control the instrument. At some field sites, such as the Colorado River in Grand Canyon, site visitation is restricted by remoteness and lack of traditional access routes (i.e. roads). Even at less remote sites, it may still be desirable to have two-way communication with instruments in order to, for example, diagnose and potentially fix instrumentation problems, change sampling parameters to save battery power, etc., without having to visit the site. To this end, the U.S. Geological Survey, Grand Canyon Monitoring and Research Center, is currently developing and testing a high-speed, two-way communication system that allows for real-time data access and remote control of instrumentation. The approach tested relies on internet access and may be especially useful in areas where land-line or cellular connections are unavailable. The system is composed of off-the-shelf products, uses a commercial broadband satellite service, and is designed in a generic way such that any instrument that communicates through RS-232 communication (i.e. a serial port) is compatible with the system. We are currently testing the system at two sites on the Colorado River in Grand Canyon and at one critical monitoring site on the Paria River where we have deployed suites of instruments for monitoring flow, sediment concentration, temperature, and conductivity. One aspect of the system that may be particularly useful for ecohydrological applications is the ability to remotely control on-site pump samplers, which allows for the collection of a water sample by the press of a button in the office.
NASA Astrophysics Data System (ADS)
Palumbo, Gaetano; Powlesland, Dominic
1996-12-01
The Getty Conservation Institute is exploring the feasibility of using remote sensing associated with a geographic database management system (GDBMS) in order to provide archaeological and historic site managers with sound evaluations of the tools available for site and information management. The World Heritage Site of Chaco Canyon, New Mexico, a complex of archeological sites dating to the 10th to the 13th centuries AD, was selected as a test site. Information from excavations conducted there since the 1930s, and a range of documentation generated by the National Park Service was gathered. NASA's John C. Stennis Space Center contributed multispectral data of the area, and the Jet Propulsion Laboratory contributed data from ATLAS (airborne terrestrial applications sensor) and CAMS (calibrated airborne multispectral scanner) scanners. Initial findings show that while 'automatic monitoring systems' will probably never be a reality, with careful comparisons of historic and modern photographs, and performing digital analysis of remotely sensed data, excellent results are possible.
Assessment of Mars Exploration Rover Landing Site Predictions
NASA Technical Reports Server (NTRS)
Golombek, M. P.; Arvidson, R. E.; Bell, J. F., III; Christensen, P. R.; Crisp, J. A.; Ehlmann, B. L.; Fergason, R. L.; Grant, J. A.; Haldemann, A. F. C.; Parker, T. J.;
2005-01-01
The Mars Exploration Rover (MER) landing sites in Gusev crater and Meridiani Planum were selected because they appeared acceptably safe for MER landing and roving and had strong indicators of liquid water. The engineering constraints critical for safe landing were addressed via comprehensive evaluation of surface and atmospheric characteristics from existing and targeted remote sensing data and models that resulted in a number of predictions of the surface characteristics of the sites, which are tested more fully herein than a preliminary assessment. Relating remote sensing signatures to surface characteristics at landing sites allows these sites to be used as ground truth for the orbital data and is essential for selecting and validating landing sites for future missions.
Phenological Indicators of Vegetation Recovery in Wetland Ecosystems
NASA Astrophysics Data System (ADS)
Taddeo, S.; Dronova, I.
2017-12-01
Landscape phenology is increasingly used to measure the impacts of climatic and environmental disturbances on plant communities. As plants show rapid phenological responses to environmental changes, variation in site phenology can help characterize vegetation recovery following restoration treatments and qualify their resistance to environmental fluctuations. By leveraging free remote sensing datasets, a phenology-based analysis of vegetation dynamics could offer a cost-effective assessment of restoration progress in wetland ecosystems. To fulfill this objective, we analyze 20 years of free remote sensing data from NASA's Landsat archive to offer a landscape-scale synthesis of wetland restoration efforts in the Sacramento-San Joaquin Delta of California, USA. Through an analysis of spatio-temporal changes in plant phenology and greenness, we assess how 25 restored wetlands across the Delta have responded to restoration treatments, time, and landscape context. We use a spline smoothing approach to generate both site-wide and pixel-specific phenological curves and identify key phenological events. Preliminary results reveal a greater variability in greenness and growing season length during the initial post-restoration years and a significant impact of landscape context in the time needed to reach phenological stability. Well-connected sites seem to benefit from an increased availability of propagules enabling them to reach peak greenness and maximum growing season length more rapidly. These results demonstrate the potential of phenological analyses to measure restoration progress and detect factors promoting wetland recovery. A thorough understanding of wetland phenology is key to the quantification of ecosystem processes including carbon sequestration and habitat provisioning.
NASA Astrophysics Data System (ADS)
Bachmann, Charles M.; Gray, Deric; Abelev, Andrei; Philpot, William; Montes, Marcos J.; Fusina, Robert; Musser, Joseph; Li, Rong-Rong; Vermillion, Michael; Smith, Geoffrey; Korwan, Daniel; Snow, Charlotte; Miller, W. David; Gardner, Joan; Sletten, Mark; Georgiev, Georgi; Truitt, Barry; Killmon, Marcus; Sellars, Jon; Woolard, Jason; Parrish, Christopher; Schwarzscild, Art
2012-06-01
In June 2011, a multi-sensor airborne remote sensing campaign was flown at the Virginia Coast Reserve Long Term Ecological Research site with coordinated ground and water calibration and validation (cal/val) measurements. Remote sensing imagery acquired during the ten day exercise included hyperspectral imagery (CASI-1500), topographic LiDAR, and thermal infra-red imagery, all simultaneously from the same aircraft. Airborne synthetic aperture radar (SAR) data acquisition for a smaller subset of sites occurred in September 2011 (VCR'11). Focus areas for VCR'11 were properties of beaches and tidal flats and barrier island vegetation and, in the water column, shallow water bathymetry. On land, cal/val emphasized tidal flat and beach grain size distributions, density, moisture content, and other geotechnical properties such as shear and bearing strength (dynamic deflection modulus), which were related to hyperspectral BRDF measurements taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). This builds on our earlier work at this site in 2007 related to beach properties and shallow water bathymetry. A priority for VCR'11 was to collect and model relationships between hyperspectral imagery, acquired from the aircraft at a variety of different phase angles, and geotechnical properties of beaches and tidal flats. One aspect of this effort was a demonstration that sand density differences are observable and consistent in reflectance spectra from GOPHER data, in CASI hyperspectral imagery, as well as in hyperspectral goniometer measurements conducted in our laboratory after VCR'11.
Elison-Bowers, P.; Snelson, Chareen; Casa de Calvo, Mario; Thompson, Heather
2008-01-01
This study compared the responses of on-site, remote-site, and traditional classroom students on measures of student/teacher interaction, course structure, physical learning environment, and overall course enjoyment/satisfaction. The sample population consisted of students taking undergraduate courses in medical terminology at two western colleges. The survey instrument was derived from Thomerson's questionnaire, which included closed- and open-ended questions assessing perceptions of students toward their courses. Controlling for grade expectations, results revealed no significant differences among the on-site, remote-site, and traditional classroom students in any of the four cluster domains. However, a nonsignificant (and continuing) trend suggested that students preferred the traditional classroom environment. When results were controlled for age, significant differences emerged between traditional and nontraditional students on measures of student/teacher interaction, physical learning environment, and overall enjoyment/satisfaction, as nontraditional students exhibited higher scores. Students' responses to open-ended questions indicated they enjoyed the convenience of online instruction, but reported finding frustration with technology itself. PMID:18311326
NASA Astrophysics Data System (ADS)
Rouini, N.; Lepley, K. S.; Messaoudene, M.
2017-12-01
Remote sensing and dendrochronology are valuable tools in the face of climate change and land use change, yet the connection between these resources remains largely unexploited. Research on forest fragmentation is mainly focused on animal groups, while our work focuses on tree communities. We link tree-rings and remotely-sensed Normalized Difference Vegetation Index (NDVI) using seasonal correlation analysis to investigate forest primary productivity response to fragmentation. Tree core samples from Quercus afares have been taken from two sites within the Guerrouche Forest in northeastern Algeria. The first site is located within a very fragmented area while the second site is intact. Fragmentation is estimated to have occurred with the construction of a road in 1930. We find raw tree-ring width chronologies from each site reveal growth release in the disturbed site after 1930. The means of each chronology for the 1930 to 2016 period are statistically different (p < 0.01). Based on these preliminary results we hypothesize that reconstructed primary productivity (NDVI) will be higher in the fragmented site after fragmentation took place.
AN INVESTIGATION OF REMOTE SENSING DEVICES FOR CHEMICAL CHARACTERIZATION OF MOTOR VEHICLE EXHAUST
The report summarizes results of tests to (1) evaluate the accuracy and precision of two different remote sensing devices (RSDs) for measuring carbon monoxide (CO), hydrocarbons (HCs), and nitric oxide (NO) and (2) evaluate the capabilities of three RSDs for characterizing fleet ...
Characterizing tropical forests with multispectral imagery
Eileen Helmer; Nicholas R. Goodwin; Valery Gond; Carlos M. Souza, Jr.; Gregory P. Asner
2015-01-01
Multispectral satellite imagery, that is, remotely sensed imagery with discrete bands ranging from visible to shortwave infrared (SWIR) wavelengths, is the timeliest and most accessible remotely sensed data for monitoring tropical forests. Given this relevance, we summarize here how multispectral imagery can help characterize tropical forest attributes of widespread...
NASA Technical Reports Server (NTRS)
Neukum, G.; Lehmann, F.; Regner, P.; Jaumann, R.
1988-01-01
Remote sensing of the Martian surface from the ground and from orbiting spacecraft has provided some first-order insight into the mineralogical-chemical composition and the weathering state of Martian surface materials. Much more detailed information can be gathered from performing such measurements in situ at the landing sites or from a rover in combination with analogous measurements from orbit. Measurements in the wavelength range of approximately 0.3 to 12.0 micrometers appear to be suitable to characterize much of the physical, mineralogical, petrological, and chemical properties of Martian surface materials and the weathering and other alteration processes that have acted on them. It is of particular importance to carry out measurements at the same time over a broad wavelength range since the reflectance signatures are caused by different effects and hence give different and complementing information. It appears particularly useful to employ a combination of active and passive methods because the use of active laser spectroscopy allows the obtaining of specific information on thermal infrared reflectance of surface materials. It seems to be evident that a spectrometric survey of Martian materials has to be focused on the analysis of altered and fresh mafic materials and rocks, water-bearing silicates, and possibly carbonates.
NASA Astrophysics Data System (ADS)
Sassen, Kenneth; Arnott, W. Patrick; O'C. Starr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.
2003-04-01
Hurricane Nora traveled up the Baja Peninsula coast in the unusually warm El Niño waters of September 1997 until rapidly decaying as it approached southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western United States, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah, on 25 September. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized.Importantly, at both the FARS and CART sites the cirrus generated spectacular halos and arcs, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar depolarization data indicate widespread regions of uniform ice plate orientations, and in situ particle replicator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea salt nuclei in strong thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-salt-contaminated ice crystals during the extended period of cirrus cloud maintenance. The inference that marine microbiota are embedded in the replicas of some ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the implications for understanding cirrus radiative properties on a global scale, are discussed.
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Arnott, W. Patrick; OCStarr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.
2002-01-01
Hurricane Nora traveled up the Bala Peninsula coast in the unusually warm El Nino waters of September 1997, until rapidly decaying as it approached Southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western US, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the Southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized. Importantly, at both the FARS and CART sites the cirrus generated spectacular optical displays, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar polarization data indicate widespread regions of uniform ice plate orientations, and in situ particle masticator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea-salt nuclei in thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-saltcontaminated ice crystals during the extended period of cirrus cloud maintenance. The reference that marine microliters are embedded in the replicas of ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the implications for understanding cirrus radiative properties or a global scale, are discussed.
Exploring Pacific Seamounts through Telepresence Mapping on the NOAA Ship Okeanos Explorer
NASA Astrophysics Data System (ADS)
Lobecker, E.; Malik, M.; Sowers, D.; Kennedy, B. R.
2016-12-01
Telepresence utilizes modern computer networks and a high bandwidth satellite connection to enable remote users to participate virtually in ocean research and exploration cruises. NOAA's Office of Ocean Exploration and Research (OER) has been leveraging telepresence capabilities since the early 2000s. Through telepresence, remote users have provided support for operations planning and execution, troubleshooting hardware and software, and data interpretation during exploratory ocean mapping and remotely operated vehicle missions conducted by OER. The potential for this technology's application to immersive data acquisition and processing during mapping missions, however, has not yet been fully realized. We report the results of the application of telepresence to an 18-day 24 hour / day seafloor mapping expedition with the NOAA Ship Okeanos Explorer. The mapping team was split between shipboard and shore-based mission team members based at the Exploration Command Center at the University of New Hampshire. This cruise represented the third dedicated mapping cruise in a multi-year NOAA Campaign to Address the Pacific monument Science, Technology, and Ocean Needs (CAPSTONE). Cruise objectives included mapping several previously unmapped seamounts in the Wake Atoll Unit of the recently expanded Pacific Remote Islands Marine National Monument, and mapping of prominent seamount, ridge, and fracture zone features during transits. We discuss (1) expanded shore-based data processing of multiple sonar data streams leading to enhanced, rapid, initial site characterization, (2) remote access control of shipboard sonar data acquisition and processing computers, and (3) potential for broadening multidisciplinary applications of ocean mapping cruises including outreach, education, and communications efforts focused on expanding societal cognition and benefits of ocean exploration.
REMOTE SENSING AND GIS FOR WETLANDS
In identifying and characterizing wetland and adjacent features, the use of remote sensor and Geographic Information Systems (GIS) technologies has been valuable. Remote sensors such as photographs and computer-sensor generated images can illustrate conditions of hydrology, exten...
Murante, Lori J.; Moffett, Lisa M.
2014-01-01
Abstract Objectives: This retrospective cross-sectional study evaluated a telepharmacy service model using a conceptual framework to compare documented remote pharmacist interventions by year, hospital, and remote pharmacist and across rural hospitals with or without an on-site rural hospital pharmacist. Materials and Methods: Documented remote pharmacist interventions for patients at eight rural hospitals in the Midwestern United States during prospective prescription order review/entry from 2008 to 2011 were extracted from RxFusion® database (a home-grown system, i.e., internally developed program at The Nebraska Medical Center (TNMC) for capturing remote pharmacist-documented intervention data). The study authors conceptualized an analytical framework, mapping the 37 classes of remote pharmacist interventions to three broader-level definitions: (a) intervention, eight categories (interaction/potential interaction, contraindication, adverse effects, anticoagulation monitoring, drug product selection, drug regimen, summary, and recommendation), (b) patient medication management, two categories (therapy review and action), and (c) health system-centered medication use process, four categories (prescribing, transcribing and documenting, administering, and monitoring). Frequencies of intervention levels were compared by year, hospital, remote pharmacist, and hospital pharmacy status (with a remote pharmacist and on-site pharmacist or with a remote pharmacist only) using chi-squared test and univariate logistic regression analyses, as appropriate. Results: For 450,000 prescription orders 19,222 remote pharmacist interventions were documented. Frequency of interventions significantly increased each year (36% in 2009, 55% in 2010, and 7% in 2011) versus the baseline year (2008, 3%) when service started. The frequency of interventions also differed significantly across the eight hospitals and 16 remote pharmacists for the three defined intervention levels and categories. Remote pharmacist interventions at hospitals with an on-site and remote pharmacist (n=12,141) versus those with a remote pharmacist alone (n=7,081) were significantly more likely to be (1) patient-centered, (2) related to “actionable” medication management recommendations (unadjusted odds ratio [OR]=1.12), and (3) related to the “transcribing” (OR=1.47) and “prescribing” (OR=1.40) steps of the health system-centered medication use process level (all p<0.01). Conclusions: This is one of the first studies to demonstrate the patient- and health system-centered nature of pharmaceutical care delivered via a telepharmacy service model by evaluating documented remote pharmacist interventions with an analytical framework. PMID:24611489
Application of remote sensor data to geologic analysis of the Bonanza test site Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Compiler); Butler, R. W.; Fisher, J. C.; Huntley, D.; Hulstrom, R. L.; Knepper, D. H., Jr.; Muhm, J. R.; Sawatzky, D. L.; Worman, K. E.; Wychgram, D.
1973-01-01
Research activities on geologic remote sensing applications for Colorado are summarized. Projects include: regional and detailed geologic mapping, surficial and engineering geology, fracture studies, uranium exploration, hydrology, and data reduction and enhancement. The acquisition of remote sensor data is also discussed.
NASA Astrophysics Data System (ADS)
Thompson Alves de Souza, Carlos Eduardo
Application of Earth Sciencés Technology in Mapping the of Brazilian Coast: Localization, Analysis & Monitoring of the Archaeological Sites with Remote Sensing & LiDAR Carlos Eduardo Thompson Alves de Souza cethompsoniii@hotmail.com Archaeologist Member of the European Association of Archaeologists B.A.Archaeology MA.Remote Sensing Abstract The Archaeological Research in Urban Environment with the Air Light Detection and Ranging is problematic for the Overlay Layers mixed with contexts concerning the Interpretation of Archaeological Data. However, in the Underwater Archaeology the results are excellent. This paper considers the application of Remote Sensing and Air Light Detection and Ranging (LIDAR) as separate things as well as Land Archaeology and the Underwater Archaeology. European Archaeologists know very little about Brazil and the article presents an Overview of Research in Brazil with Remote Sensing in Archaeology and Light Detection and Ranging in Land Archaeology and Underwater Archaeology, because Brazil has Continental Dimensions. Braziliańs Methodology for Location, Analysis and Monitoring of Archaeological Sites is necessarily more Complex and Innovative and therefore can serve as a New Paradigm for other archaeologists involved in the Advanced Management Heritage.
Characterization of Vegetation Change in a Sub-Arctic Mire using Remotely Sensed Imagery
NASA Astrophysics Data System (ADS)
DelGreco, J. L.; McArthur, K. J.; Palace, M. W.; Herrick, C.; Garnello, A.; Finnell, D.; McCalley, C. K.; Anderson, S. M.; Varner, R. K.
2015-12-01
Climate change is impacting northern ecosystems through the thawing of the permafrost, which has resulted in changes to plant communities and greenhouse gas emissions, such as carbon dioxide (CO2) and methane (CH4). These greenhouse gases are of concern due to their potential feedbacks which create a warmer climate, thus increasing permafrost thawing. Our study focuses on how vegetation type differs in areas that have been impacted by thawing permafrost at Stordalen Mire located in Abisko, Sweden. To estimate change in vegetation communities, field-based measurements combined with remotely sensed image data was used. 75 randomized square-meter plots were measured for vegetation composition and classified into one of five site-types, each representing a different stage of permafrost degradation. New high-resolution imagery (1 cm) was collected using Unmanned Aerial Vehicles (UAV) providing insight into the spatial patterning, characterizations, and changes of these communities. The UAV imagery was georectified using high precision GPS points collected across the mire. The imagery was then examined using a neural network analysis to estimate cover type across the mire. This 2015 cover type classification was then compared to previous UAV imagery taken on July 2014 to analyze changes in vegetation distribution as an indication of permafrost thaw. Hummock sites represent intact permafrost and have lost 21.5% coverage since 2014, while tall gramminoid sites, which indicate fully thawed sites, have increased coverage by 12.1%. A discriminate function analysis showed that site types can be differentiated based on species composition, thus showing that vegetation differs significantly across the thaw gradient. Using average flux rates of CH4 from each cover type reported previously, the percent of CH4 emitted over the mire was estimated for 2014 and 2015. Comparing both estimates, CH4 emissions increased with a flux change of 5604.5 g CH4/day. Our estimates of vegetation change may be used to parameterize simulation models and create future scenarios of how the vegetation cover will change in response to climate change. Data from this study will also help to explain how the ecology of the subarctic peatlands, now a carbon sink, may be on its way to changing into a source of carbon.
Andrew D. George; Frank R. Thompson; John. Faaborg
2015-01-01
A spatial mismatch exists between regional climate models and conditions experienced by individual organisms. We demonstrate an approach to downscaling air temperatures for site-level studies using airborne LiDAR data and remote microclimate loggers. In 2012-2013, we established a temperature logger network in the forested region of central Missouri, USA, and obtained...
We used a combination of data from USDA Forest Service inventories, intensive
chronosequences, extensive sites, and satellite remote sensing, to estimate biomass
and net primary production (NPP) for the forested region of western Oregon. The
study area was divided int...
On-orbit characterization of hyperspectral imagers
NASA Astrophysics Data System (ADS)
McCorkel, Joel
Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne- and satellite-based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This dissertation presents a method for determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on a multispectral sensor, Moderate-resolution Imaging Spectroradiometer (MODIS), as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. A method to predict hyperspectral surface reflectance using a combination of MODIS data and spectral shape information is developed and applied for the characterization of Hyperion. Spectral shape information is based on RSG's historical in situ data for the Railroad Valley test site and spectral library data for the Libyan test site. Average atmospheric parameters, also based on historical measurements, are used in reflectance prediction and transfer to space. Results of several cross-calibration scenarios that differ in image acquisition coincidence, test site, and reference sensor are found for the characterization of Hyperion. These are compared with results from the reflectance-based approach of vicarious calibration, a well-documented method developed by the RSG that serves as a baseline for calibration performance for the cross-calibration method developed here. Cross-calibration provides results that are within 2% of those of reflectance-based results in most spectral regions. Larger disagreements exist for shorter wavelengths studied in this work as well as in spectral areas that experience absorption by the atmosphere.
Identifying optimal remotely-sensed variables for ecosystem monitoring in Colorado Plateau drylands
Poitras, Travis; Villarreal, Miguel; Waller, Eric K.; Nauman, Travis; Miller, Mark E.; Duniway, Michael C.
2018-01-01
Water-limited ecosystems often recover slowly following anthropogenic or natural disturbance. Multitemporal remote sensing can be used to monitor ecosystem recovery after disturbance; however, dryland vegetation cover can be challenging to accurately measure due to sparse cover and spectral confusion between soils and non-photosynthetic vegetation. With the goal of optimizing a monitoring approach for identifying both abrupt and gradual vegetation changes, we evaluated the ability of Landsat-derived spectral variables to characterize surface variability of vegetation cover and bare ground across a range of vegetation community types. Using three year composites of Landsat data, we modeled relationships between spectral information and field data collected at monitoring sites near Canyonlands National Park, UT. We also developed multiple regression models to assess improvement over single variables. We found that for all vegetation types, percent cover bare ground could be accurately modeled with single indices that included a combination of red and shortwave infrared bands, while near infrared-based vegetation indices like NDVI worked best for quantifying tree cover and total live vegetation cover in woodlands. We applied four models to characterize the spatial distribution of putative grassland ecological states across our study area, illustrating how this approach can be implemented to guide dryland ecosystem management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Grippo, Mark A.
2015-01-01
A monitoring plan that incorporates regional datasets and integrates cost-effective data collection methods is necessary to sustain the long-term environmental monitoring of utility-scale solar energy development in expansive, environmentally sensitive desert environments. Using very high spatial resolution (VHSR; 15 cm) multispectral imagery collected in November 2012 and January 2014, an image processing routine was developed to characterize ephemeral streams, vegetation, and land surface in the southwestern United States where increased utility-scale solar development is anticipated. In addition to knowledge about desert landscapes, the methodology integrates existing spectral indices and transformation (e.g., visible atmospherically resistant index and principal components); a newlymore » developed index, erosion resistance index (ERI); and digital terrain and surface models, all of which were derived from a common VHSR image. The methodology identified fine-scale ephemeral streams with greater detail than the National Hydrography Dataset and accurately estimated vegetation distribution and fractional cover of various surface types. The ERI classified surface types that have a range of erosive potentials. The remote-sensing methodology could ultimately reduce uncertainty and monitoring costs for all stakeholders by providing a cost-effective monitoring approach that accurately characterizes the land resources at potential development sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branagan, P.T.; Peterson, R.E.; Warpinski, N.R.
A deviated observation or {open_quotes}intersection{close_quotes} well (IW 1-B) was drilled, cored, logged and tested through an area in a fluvial sandstone reservoir that had previously been hydraulically fractured. The point of intersection with the fractured interval was located 126 ft from the fracture well along one wing of the fracture(s) at a measured depth of 4,675 ft. Direct observations from core and borehole imagery logs in IW 1-B indicate that a total of 11 far-field vertical fractures were created. Clustered in a narrow 2.6-ft-wide interval, these 11 fractures are the direct result of 6 experimental fracture treatments executed in themore » distant frac well over a 4-month period. Diagnostic data acquired through IW I-B included direct core observations and measurements, borehole log imagery, gamma ray (GR) tracer identification, well-to-well pressure transient and fracture conductivity tests, and production logging surveys. The explicit intent in the emplacement of IW 1-B was to provide direct observations and information to characterize the hydraulic fracture(s) in support of a remote-sensing fracture diagnostic program that included microseismic monitoring and inclinometer measurements.« less
NASA Astrophysics Data System (ADS)
Hand, J. L.; White, W. H.; Hyslop, N. P.; Schichtel, B. A.; Gill, T. E.
2016-12-01
Mineral dust influences air quality, visibility, health, hydrology, heterogeneous chemistry, biogeochemistry, ecology, and climate. The spatial and seasonal variability of fine (PM2.5) mineral dust (FD, mineral particles with diameters less than 2.5 µm) and coarse mass (CM, mass of particles with diameters between 2.5 and 10 µm) were characterized at over 160 rural and remote sites in the United States from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Monthly, seasonal, and annual means were computed for 2011 through 2014 to investigate the spatial and seasonal variability of FD and CM. Regions with significant FD included the Southwest in spring (≥ 50% contributions to PM2.5 mass) and in the Midwest, Midsouth, and Southeast regions in summer (20-30% of PM2.5 mass). The seasonality of FD and CM decoupled farther from local source regions suggesting long-range transport of FD or non-dust related CM. FD mineralogy was also explored and confirmed the seasonal and regional impacts of long-range transport. Temporal trends in FD from 2000-2014 revealed regions and seasons with significantly increased FD, especially the Southwest during spring months, the central United States during summer and fall, and the Southeast in summer—all regions that were associated with significant contributions of FD to PM2.5 mass. Positive trends in FD contrast negative trends in other major aerosol species over the same time periods, further enhancing the relative importance of FD to PM2.5 mass. Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and causal mechanisms for dust episodes in order to better inform resource management decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinqiang; Li, Jun; Xia, Xiangao
In this study, long-term (10 years) radiosonde-based cloud data are compared with the ground-based active remote sensing product under six prevailing large-scale synoptic patterns, i.e., cyclonic center (CC), weak pressure pattern (WP), the southeast bottom of cyclonic center (CB), cold front (CF), anticyclone edge (AE) and anticyclone center (AC) over the Southern Great Plains (SGP) site. The synoptic patterns are generated by applying the self-organizing map weather classification method to the daily National Centers for Environmental Protection mean sea level pressure records from the North American Regional Reanalysis. It reveals that the large-scale synoptic circulations can strongly influence the regionalmore » cloud formation, and thereby have impact on the consistency of cloud retrievals from the radiosonde and ground-based cloud product. The total cloud cover at the SGP site is characterized by the least in AC and the most in CF. The minimum and maximum differences between the two cloud methods are 10.3% for CC and 13.3% for WP. Compared to the synoptic patterns characterized by scattered cloudy and clear skies (AE and AC), the agreement of collocated cloud boundaries between the two cloud approaches tends to be better under the synoptic patterns dominated by overcast and cloudy skies (CC, WP and CB). The rainy and windy weather conditions in CF synoptic pattern influence the consistency of the two cloud retrieval methods associated with the limited capabilities inherent to the instruments. As a result, the cloud thickness distribution from the two cloud datasets compares favorably with each other in all synoptic patterns, with relative discrepancy of ≤0.3 km.« less
Zhang, Jinqiang; Li, Jun; Xia, Xiangao; ...
2016-11-28
In this study, long-term (10 years) radiosonde-based cloud data are compared with the ground-based active remote sensing product under six prevailing large-scale synoptic patterns, i.e., cyclonic center (CC), weak pressure pattern (WP), the southeast bottom of cyclonic center (CB), cold front (CF), anticyclone edge (AE) and anticyclone center (AC) over the Southern Great Plains (SGP) site. The synoptic patterns are generated by applying the self-organizing map weather classification method to the daily National Centers for Environmental Protection mean sea level pressure records from the North American Regional Reanalysis. It reveals that the large-scale synoptic circulations can strongly influence the regionalmore » cloud formation, and thereby have impact on the consistency of cloud retrievals from the radiosonde and ground-based cloud product. The total cloud cover at the SGP site is characterized by the least in AC and the most in CF. The minimum and maximum differences between the two cloud methods are 10.3% for CC and 13.3% for WP. Compared to the synoptic patterns characterized by scattered cloudy and clear skies (AE and AC), the agreement of collocated cloud boundaries between the two cloud approaches tends to be better under the synoptic patterns dominated by overcast and cloudy skies (CC, WP and CB). The rainy and windy weather conditions in CF synoptic pattern influence the consistency of the two cloud retrieval methods associated with the limited capabilities inherent to the instruments. As a result, the cloud thickness distribution from the two cloud datasets compares favorably with each other in all synoptic patterns, with relative discrepancy of ≤0.3 km.« less
NASA Astrophysics Data System (ADS)
Verma, Manish K.
Terrestrial gross primary productivity (GPP) is the largest and most variable component of the carbon cycle and is strongly influenced by phenology. Realistic characterization of spatio-temporal variation in GPP and phenology is therefore crucial for understanding dynamics in the global carbon cycle. In the last two decades, remote sensing has become a widely-used tool for this purpose. However, no study has comprehensively examined how well remote sensing models capture spatiotemporal patterns in GPP, and validation of remote sensing-based phenology models is limited. Using in-situ data from 144 eddy covariance towers located in all major biomes, I assessed the ability of 10 remote sensing-based methods to capture spatio-temporal variation in GPP at annual and seasonal scales. The models are based on different hypotheses regarding ecophysiological controls on GPP and span a range of structural and computational complexity. The results lead to four main conclusions: (i) at annual time scale, models were more successful capturing spatial variability than temporal variability; (ii) at seasonal scale, models were more successful in capturing average seasonal variability than interannual variability; (iii) simpler models performed as well or better than complex models; and (iv) models that were best at explaining seasonal variability in GPP were different from those that were best able to explain variability in annual scale GPP. Seasonal phenology of vegetation follows bounded growth and decay, and is widely modeled using growth functions. However, the specific form of the growth function affects how phenological dynamics are represented in ecosystem and remote sensing-base models. To examine this, four different growth functions (the logistic, Gompertz, Mirror-Gompertz and Richards function) were assessed using remotely sensed and in-situ data collected at several deciduous forest sites. All of the growth functions provided good statistical representation of in-situ and remote sensing time series. However, the Richards function captured observed asymmetric dynamics that were not captured by the other functions. The timing of key phenophase transitions derived using the Richards function therefore agreed best with observations. This suggests that ecosystem models and remote-sensing algorithms would benefit from using the Richards function to represent phenological dynamics.
ERIC Educational Resources Information Center
Heiens, Richard A.; Hulse, Deborah B.
1996-01-01
An organizational behavior course was delivered via two-way interactive television to a campus site (71 students) and three remote locations (48 students). Remote students were slightly older and predominantly female. There were no significant differences in academic performance between on-campus and remote students. (SK)
Predictions of malaria vector distribution in Belize based on multispectral satellite data.
Roberts, D R; Paris, J F; Manguin, S; Harbach, R E; Woodruff, R; Rejmankova, E; Polanco, J; Wullschleger, B; Legters, L J
1996-03-01
Use of multispectral satellite data to predict arthropod-borne disease trouble spots is dependent on clear understandings of environmental factors that determine the presence of disease vectors. A blind test of remote sensing-based predictions for the spatial distribution of a malaria vector, Anopheles pseudopunctipennis, was conducted as a follow-up to two years of studies on vector-environmental relationships in Belize. Four of eight sites that were predicted to be high probability locations for presence of An. pseudopunctipennis were positive and all low probability sites (0 of 12) were negative. The absence of An. pseudopunctipennis at four high probability locations probably reflects the low densities that seem to characterize field populations of this species, i.e., the population densities were below the threshold of our sampling effort. Another important malaria vector, An. darlingi, was also present at all high probability sites and absent at all low probability sites. Anopheles darlingi, like An. pseudopunctipennis, is a riverine species. Prior to these collections at ecologically defined locations, this species was last detected in Belize in 1946.
Predictions of malaria vector distribution in Belize based on multispectral satellite data
NASA Technical Reports Server (NTRS)
Roberts, D. R.; Paris, J. F.; Manguin, S.; Harbach, R. E.; Woodruff, R.; Rejmankova, E.; Polanco, J.; Wullschleger, B.; Legters, L. J.
1996-01-01
Use of multispectral satellite data to predict arthropod-borne disease trouble spots is dependent on clear understandings of environmental factors that determine the presence of disease vectors. A blind test of remote sensing-based predictions for the spatial distribution of a malaria vector, Anopheles pseudopunctipennis, was conducted as a follow-up to two years of studies on vector-environmental relationships in Belize. Four of eight sites that were predicted to be high probability locations for presence of An. pseudopunctipennis were positive and all low probability sites (0 of 12) were negative. The absence of An. pseudopunctipennis at four high probability locations probably reflects the low densities that seem to characterize field populations of this species, i.e., the population densities were below the threshold of our sampling effort. Another important malaria vector, An. darlingi, was also present at all high probability sites and absent at all low probability sites. Anopheles darlingi, like An. pseudopunctipennis, is a riverine species. Prior to these collections at ecologically defined locations, this species was last detected in Belize in 1946.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, M. L.; Sweeney, C.
The vertical distributions of CO 2, CH 4, and other gases provide important constraints when determining terrestrial and ocean sources and sinks of carbon and other biogeochemical processes in the Earth system. The U.S. Department of Energy's (DOE) Office of Biological and Environmental Research and the National Oceanic and Atmospheric Administration's Earth System Research Laboratory to quantify the vertically resolved distribution of atmospheric carbon-cycle gases(CO 2, CH 4 ) within approximately 99% of the atmospheric column at the DOE ’s Atmospheric Radiation Measurement Southern Great Plains (SGP) site in Oklahoma . During the 2012 to 2014 campaign period, 12 successfulmore » Air C ore flights were conducted from the SGP site . In addition to providing critical data for evaluating remote sensing and earth system models, valuable lessons were learned that motivate improvements to the sampling and recovery systems and campaign logistics . With the launch of the Orbiting Carbon Observatory - 2 (OCO - 2) and Greenhouse gases Observing Satellite ( GOSAT ) satellites, we look forward to proposing additional sampling and analysis efforts at the SGP site and at other sites to characterize the vertical distribution of CO 2, CH 4 over time and space.« less
Yong, Alan; Hough, Susan E.; Cox, Brady R.; Rathje, Ellen M.; Bachhuber, Jeff; Dulberg, Ranon; Hulslander, David; Christiansen, Lisa; and Abrams, Michael J.
2011-01-01
We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, VS30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available VS30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data.
Ecosystem functioning is enveloped by hydrometeorological variability.
Pappas, Christoforos; Mahecha, Miguel D; Frank, David C; Babst, Flurin; Koutsoyiannis, Demetris
2017-09-01
Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon cycle is not yet well constrained and the resulting climate-biosphere feedbacks are highly uncertain. Here we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way for new model-data integration opportunities in Earth system sciences.
Vitousek, Peter; Asner, Gregory P; Chadwick, Oliver A; Hotchkiss, Sara
2009-11-01
We compared forest canopy heights and nitrogen concentrations in long-term research sites and in 2 x 2 km landscapes surrounding these sites along a substrate age gradient in the Hawaiian Islands. Both remote airborne and ground-based measurements were used to characterize processes that control landscape-level variation in canopy properties. We integrated a waveform light detection and ranging (LiDAR) system, a high-resolution imaging spectrometer, and a global positioning system/inertial measurement unit to provide highly resolved images of ground topography, canopy heights, and canopy nitrogen concentrations (1) within a circle 50 m in radius focused on a long-term study site in the center of each landscape; (2) for the entire 2 x 2 km landscape regardless of land cover; and (3) after stratification, for our target cover class, native-dominated vegetation on constructional geomorphic surfaces throughout each landscape. Remote measurements at all scales yielded the same overall patterns as did ground-based measurements in the long-term sites. The two younger landscapes supported taller trees than did older landscapes, while the two intermediate-aged landscapes had higher canopy nitrogen (N) concentrations than did either young or old landscapes. However, aircraft-based analyses detected substantial variability in canopy characteristics on the landscape level, even within the target cover class. Canopy heights were more heterogeneous on the older landscapes, with coefficients of variation increasing from 23-41% to 69-78% with increasing substrate age. This increasing heterogeneity was associated with a larger patch size of canopy turnover and with dominance of most secondary successional stands by the mat-forming fern Dicranopteris linearis in the older landscapes.
Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K.; Utzinger, Jürg; Raso, Giovanna
2015-01-01
Background Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. Methodology We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d’Ivoire and validated against readily available survey data from school-aged children. Principal Findings Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d’Ivoire. Conclusions/Significance A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data. PMID:26587839
Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Vounatsou, Penelope; Poda, Jean-Noël; N'Goran, Eliézer K; Utzinger, Jürg; Raso, Giovanna
2015-11-01
Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d'Ivoire and validated against readily available survey data from school-aged children. Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d'Ivoire. A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data.
Zhou, Yu; Fu, Lixin; Cheng, Linglin
2007-09-01
China's national government and Beijing city authorities have adopted additional control measures to reduce the negative impact of vehicle emissions on Beijing's air quality. An evaluation of the effectiveness of these measures may provide guidance for future vehicle emission control strategy development. In-use emissions from light-duty gasoline vehicles (LDGVs) were investigated at five sites in Beijing with remote sensing instrumentation. Distance-based mass emission factors were derived with fuel consumption modeled on real world data. The results show that the recently implemented aggressive control strategies are significantly reducing the emissions of on-road vehicles. Older vehicles are contributing substantially to the total fleet emissions. An earlier program to retrofit pre-Euro cars with three-way catalysts produced little emission reduction. The impact of model year and driving conditions on the average mass emission factors indicates that the durability of vehicles emission controls may be inadequate in Beijing.
Hyperspectral landcover classification for the Yakima Training Center, Yakima, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinmaus, K.L.; Perry, E.M.; Petrie, G.M.
1998-04-01
The US Department of Energy`s (DOE`s) Pacific Northwest National Laboratory (PNNL) was tasked in FY97-98 to conduct a multisensor feature extraction project for the Terrain Modeling Project Office (TMPO) of the National Imagery and Mapping Agency (NIMA). The goal of this research is the development of near-autonomous methods to remotely classify and characterize regions of military interest, in support of the TMPO of NIMA. These methods exploit remotely sensed datasets including hyperspectral (HYDICE) imagery, near-infrared and thermal infrared (Daedalus 3600), radar, and terrain datasets. The study site for this project is the US Army`s Yakima Training Center (YTC), a 326,741-acremore » training area located near Yakima, Washington. Two study areas at the YTC were selected to conduct and demonstrate multisensor feature extraction, the 2-km x 2-km Cantonment Area and the 3-km x 3-km Choke Point area. Classification of the Cantonment area afforded a comparison of classification results at different scales.« less
Calleja, Felipe; Galván, Cristina; Silió-Calzada, Ana; Juanes, José A; Ondiviela, Bárbara
2017-09-01
Long-term studies are necessary to establish trends and to understand seagrasses' spatial and temporal dynamic. Nevertheless, this type of research is scarce, as the required databases are often unavailable. The objectives of this study are to create a method for mapping the seagrass Zostera noltei using remote sensing techniques, and to apply it to the characterization of the meadows' extension trend and the potential drivers of change. A time series was created using a novel method based on remote sensing techniques that proved to be adequate for mapping the seagrass in the emerged intertidal. The meadows seem to have a decreasing trend between 1984 and the early 2000s, followed by an increasing tendency that represents a recovery in the extension area of the species. This 30-year analysis demonstrated the Z. noltei's recovery in the study site, similar to that in other estuaries nearby and contrary to the worldwide decreasing behavior of seagrasses. Copyright © 2017 Elsevier Ltd. All rights reserved.
USGS remote sensing coordination for the 2010 Haiti earthquake
Duda, Kenneth A.; Jones, Brenda
2011-01-01
In response to the devastating 12 January 2010, earthquake in Haiti, the US Geological Survey (USGS) provided essential coordinating services for remote sensing activities. Communication was rapidly established between the widely distributed response teams and data providers to define imaging requirements and sensor tasking opportunities. Data acquired from a variety of sources were received and archived by the USGS, and these products were subsequently distributed using the Hazards Data Distribution System (HDDS) and other mechanisms. Within six weeks after the earthquake, over 600,000 files representing 54 terabytes of data were provided to the response community. The USGS directly supported a wide variety of groups in their use of these data to characterize post-earthquake conditions and to make comparisons with pre-event imagery. The rapid and continuing response achieved was enabled by existing imaging and ground systems, and skilled personnel adept in all aspects of satellite data acquisition, processing, distribution and analysis. The information derived from image interpretation assisted senior planners and on-site teams to direct assistance where it was most needed.
Ran, Weiguang; Wang, Lili; Tan, Lingling; Qu, Dan; Shi, Jinsheng
2016-01-01
Luminescent properties are affected by lattice environment of luminescence centers. The lattice environment of emission centers can be effectively changed due to the diversity of lattice environment in multiple site structure. But how precisely control the doped ions enter into different sites is still very difficult. Here we proposed an example to demonstrate how to control the doped ions into the target site for the first time. Alkali metal ions doped ZnMoO4:Bi3+, Eu3+ phosphors were prepared by the conventional high temperature solid state reaction method. The influence of alkali metal ions as charge compensators and remote control devices were respectively observed. Li+ and K+ ions occupy the Zn(2) sites, which impede Eu and Bi enter the adjacent Zn(2) sites. However, Na+ ions lie in Zn(1) sites, which greatly promoted the Bi and Eu into the adjacent Zn(2) sites. The Bi3+ and Eu3+ ions which lie in the immediate vicinity Zn(2) sites set off intense exchange interaction due to their short relative distance. This mechanism provides a mode how to use remote control device to enhance the energy transfer efficiency which expected to be used to design efficient luminescent materials. PMID:27278286
Method of determining forest production from remotely sensed forest parameters
Corey, J.C.; Mackey, H.E. Jr.
1987-08-31
A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.
Medium Spatial Resolution Satellite Characterization
NASA Technical Reports Server (NTRS)
Stensaas, Greg
2007-01-01
This project provides characterization and calibration of aerial and satellite systems in support of quality acquisition and understanding of remote sensing data, and verifies and validates the associated data products with respect to ground and and atmospheric truth so that accurate value-added science can be performed. The project also provides assessment of new remote sensing technologies.
Lidar: shedding new light on habitat characterization and modeling.
Kerri T. Vierling; Lee A. Vierling; William A. Gould; Sebastian Martinuzzi; Rick M. Clawges
2008-01-01
Ecologists need data on animalâhabitat associations in terrestrial and aquatic environments to design and implement effective conservation strategies. Habitat characteristics used in models typically incorporate (1) field data of limited spatial extent and/or (2) remote sensing data that do not characterize the vertical habitat structure. Remote sensing tools that...
Lessons from UNSCOM and IAEA regarding remote monitoring and air sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupree, S.A.
1996-01-01
In 1991, at the direction of the United Nations Security Council, UNSCOM and IAEA developed plans for On-going Monitoring and Verification (OMV) in Iraq. The plans were accepted by the Security Council and remote monitoring and atmospheric sampling equipment has been installed at selected sites in Iraq. The remote monitoring equipment consists of video cameras and sensors positioned to observe equipment or activities at sites that could be used to support the development or manufacture of weapons of mass destruction, or long-range missiles. The atmospheric sampling equipment provides unattended collection of chemical samples from sites that could be used tomore » support the development or manufacture of chemical weapon agents. To support OMV in Iraq, UNSCOM has established the Baghdad Monitoring and Verification Centre. Imagery from the remote monitoring cameras can be accessed in near-real time from the Centre through RIF communication links with the monitored sites. The OMV program in Iraq has implications for international cooperative monitoring in both global and regional contexts. However, monitoring systems such as those used in Iraq are not sufficient, in and of themselves, to guarantee the absence of prohibited activities. Such systems cannot replace on-site inspections by competent, trained inspectors. However, monitoring similar to that used in Iraq can contribute to openness and confidence building, to the development of mutual trust, and to the improvement of regional stability.« less
Ground cover changes resulting from low-level camping stress on a remote site
R. E. Leonard; J. M. McBride; P. W. Conkling; J. L. McMahon
1983-01-01
This study reports the effects of low-level camping stress on vegetation in a remote site. South Big Garden Island in Penobscot Bay, Maine, was studied because (1) it had no prior recreational use; thus, comprehensive base line data could be obtained; and (2) the exact number of campers could be monitored throughout the study period. The continuous line-intercept...
Airborne Remote Sensing of Trafficability in the Coastal Zone
2009-01-01
validation instruments: Analytical Spectral Devices (ASD) full-range spectrometer; light weight deflectometer ( LWD ), which measures dynamic deflection...liquid water absorption features. The corresponding bearing strength measured by the LWD was high at the shoreline site and low at the backdune site...REVIEW REMOTE SENSING FIGURE 7 Correlation of in situ grain size, moisture, and bearing strength measurements. Scatterplot of percent moisture vs LWD
Online Remote Sensing Interface
NASA Technical Reports Server (NTRS)
Lawhead, Joel
2007-01-01
BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.
Airborne and satellite remote sensors for precision agriculture
USDA-ARS?s Scientific Manuscript database
Remote sensing provides an important source of information to characterize soil and crop variability for both within-season and after-season management despite the availability of numerous ground-based soil and crop sensors. Remote sensing applications in precision agriculture have been steadily inc...
Remote sensing and reflectance profiling in entomology
USDA-ARS?s Scientific Manuscript database
Remote sensing is about characterizing the status of objects and/or classifies their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be ground-based, and therefore acquired at a high spatial resolutio...
NASA Technical Reports Server (NTRS)
Liang, T.; Mcnair, A. J.; Philipson, W. R.
1977-01-01
Aircraft and satellite remote sensing technology were applied in the following areas: (1) evaluation of proposed fly ash disposal sites; (2) development of priorities for drainage improvements; (3) state park analysis for rehabilitation and development; (4) watershed study for water quality planning; and (5) assistance project-landfill site selection. Results are briefly summarized. Other projects conducted include: (1) assessment of vineyard-related problems; (2) LANDSAT analysis for pheasant range management; (3) photo-historic evaluation of Revolutionary War sites; and (4) thermal analysis of building insulation. The objectives, expected benefits and actions, and status of these projects are described.
A remote laboratory for USRP-based software defined radio
NASA Astrophysics Data System (ADS)
Gandhinagar Ekanthappa, Rudresh; Escobar, Rodrigo; Matevossian, Achot; Akopian, David
2014-02-01
Electrical and computer engineering graduates need practical working skills with real-world electronic devices, which are addressed to some extent by hands-on laboratories. Deployment capacity of hands-on laboratories is typically constrained due to insufficient equipment availability, facility shortages, and lack of human resources for in-class support and maintenance. At the same time, at many sites, existing experimental systems are usually underutilized due to class scheduling bottlenecks. Nowadays, online education gains popularity and remote laboratories have been suggested to broaden access to experimentation resources. Remote laboratories resolve many problems as various costs can be shared, and student access to instrumentation is facilitated in terms of access time and locations. Labs are converted to homeworks that can be done without physical presence in laboratories. Even though they are not providing full sense of hands-on experimentation, remote labs are a viable alternatives for underserved educational sites. This paper studies remote modality of USRP-based radio-communication labs offered by National Instruments (NI). The labs are offered to graduate and undergraduate students and tentative assessments support feasibility of remote deployments.
The Economics of Remote Sensing for Planning and Construction
ERIC Educational Resources Information Center
Rottweiler, Kurt A.; Wilson, Jerry C.
1971-01-01
Discusses the latest in remote sensing technology including multispectral scanners, thermal scanners, aero magnetometers and side looking radar. Describes the application of this technology to preconstruction site surveys. (JF)
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.; Gordon, H. H.; Welch, C. S.; Williams, G.
1976-01-01
Projects for sewage outfall siting for pollution control in the lower Chesapeake Bay wetlands are reported. A dye-buoy/photogrammetry and remote sensing technique was employed to gather circulation data used in outfall siting. This technique is greatly favored over alternate methods because it is inexpensive, produces results quickly, and reveals Lagrangian current paths which are preferred in making siting decisions. Wetlands data were obtained by interpretation of color and color infrared photographic imagery from several altitudes. Historical sequences of photographs are shown that were used to document wetlands changes. Sequential infrared photography of inlet basins was employed to determine tidal prisms, which were input to mathematical models to be used by state agencies in pollution control. A direct and crucial link between remote sensing and management decisions was demonstrated in the various projects.
Exploring Ocean-World Habitability within the Planned Europa Clipper Mission
NASA Astrophysics Data System (ADS)
Pappalardo, R. T.; Senske, D.; Korth, H.; Blaney, D. L.; Blankenship, D. D.; Collins, G. C.; Christensen, P. R.; Gudipati, M. S.; Kempf, S.; Lunine, J. I.; Paty, C. S.; Raymond, C. A.; Rathbun, J.; Retherford, K. D.; Roberts, J. H.; Schmidt, B. E.; Soderblom, J. M.; Turtle, E. P.; Waite, J. H., Jr.; Westlake, J. H.
2017-12-01
A key driver of planetary exploration is to understand the processes that lead to potential habitability across the solar system, including within oceans hosted by some icy satellites of the outer planets. In this context, it is the overarching science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three mission objectives: (1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; (2) Understand the habitability of Europa's ocean through composition and chemistry; and (3) Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. Folded into these objectives is the desire to search for and characterize any current activity, notably plumes and thermal anomalies. A suite of nine remote-sensing and in-situ observing instruments is being developed that synergistically addresses these objectives. The remote-sensing instruments are the Europa UltraViolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS), the Mapping Imaging Spectrometer for Europa (MISE), the Europa THErMal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The instruments providing in-situ observations are the Interior Characterization of Europa using Magnetometry (ICEMAG), the Plasma Instrument for Magnetic Sounding (PIMS), the MAss Spectrometer for Planetary EXploration (MASPEX), and the SUrface Dust Analyzer (SUDA). In addition, gravity science can be achieved via the spacecraft's telecommunication system, and the planned radiation monitoring system could provide information on Europa's energetic particle environment. Working together, the mission's robust investigation suite can be used to test hypotheses and enable discoveries relevant to the interior, composition, and geology of Europa, thereby addressing the potential habitability of this intriguing ocean world.
Nuclear power: Siting and safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Openshaw, S.
1986-01-01
By 2030, half, or even two-thirds, of all electricity may be generated by nuclear power. Major reactor accidents are still expected to be rare occurrences, but nuclear safety is largely a matter of faith. Terrorist attacks, sabotage, and human error could cause a significant accident. Reactor siting can offer an additional, design-independent margin of safety. Remote geographical sites for new plants would minimize health risks, protect the industry from negative changes in public opinion concerning nuclear energy, and improve long-term public acceptance of nuclear power. U.K. siting practices usually do not consider the contribution to safety that could be obtainedmore » from remote sites. This book discusses the present trends of siting policies of nuclear power and their design-independent margin of safety.« less
Mapping wildfire burn severity in the Arctic Tundra from downsampled MODIS data
Kolden, Crystal A.; Rogan, John
2013-01-01
Wildfires are historically infrequent in the arctic tundra, but are projected to increase with climate warming. Fire effects on tundra ecosystems are poorly understood and difficult to quantify in a remote region where a short growing season severely limits ground data collection. Remote sensing has been widely utilized to characterize wildfire regimes, but primarily from the Landsat sensor, which has limited data acquisition in the Arctic. Here, coarse-resolution remotely sensed data are assessed as a means to quantify wildfire burn severity of the 2007 Anaktuvuk River Fire in Alaska, the largest tundra wildfire ever recorded on Alaska's North Slope. Data from Landsat Thematic Mapper (TM) and downsampled Moderate-resolution Imaging Spectroradiometer (MODIS) were processed to spectral indices and correlated to observed metrics of surface, subsurface, and comprehensive burn severity. Spectral indices were strongly correlated to surface severity (maximum R2 = 0.88) and slightly less strongly correlated to substrate severity. Downsampled MODIS data showed a decrease in severity one year post-fire, corroborating rapid vegetation regeneration observed on the burned site. These results indicate that widely-used spectral indices and downsampled coarse-resolution data provide a reasonable supplement to often-limited ground data collection for analysis and long-term monitoring of wildfire effects in arctic ecosystems.
Testing a small UAS for mapping artisanal diamond mining sites in Africa
Malpeli, Katherine C.; Chirico, Peter G.
2015-01-01
Remote sensing technology is advancing at an unprecedented rate. At the forefront of the new technological developments are unmanned aircraft systems (UAS). The advent of small, lightweight, low-cost, and user-friendly UAS is greatly expanding the potential applications of remote sensing technology and improving the set of tools available to researchers seeking to map and monitor terrain from above. In this article, we explore the applications of a small UAS for mapping informal diamond mining sites in Africa. We found that this technology provides aerial imagery of unparalleled resolution in a data-sparse, difficult to access, and remote terrain.
Photographic copy of photograph, dated September 1973 (original in the ...
Photographic copy of photograph, dated September 1973 (original in the possession of CSSD-HO, Huntsville AL). Photographer unknown. Aerial photograph (west to 0 east) of remote sprint launch site #1. In background are waste stabilization pounds. On next row are the sprint cells. In foreground are the remote launch operations building on left and the limited area sentry station on right. The view illustrates the relatively flat topography of the SRMSC area Benjamin Halpern, 5-18 October 1992 - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 1, Just South of Ramsey-Cavalier County line & 3 miles West of Hampden, ND, Nekoma, Cavalier County, ND
Characterizing meadow vegetation with multitemporal Landsat thematic mapper remote sensing.
Alan A. Ager; Karen E. Owens
2004-01-01
Wet meadows are important biological components in the Blue Mountains of eastern Oregon. Many meadows in the Blue Mountains and elsewhere in the Western United States are in a state of change owing to grazing, mining, logging, road development, and other factors. This project evaluated the utility of remotely sensed data to characterize and monitor meadow vegetation...
Remote sensing-based estimation of annual soil respiration at two contrasting forest sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Ni; Gu, Lianhong; Black, T. Andrew
Here, soil respiration (R s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual R s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual R s estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zonemore » soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites.« less
1982-06-01
usefulness to the Untted States Antarctic mission as managed by the National Science Foundation. Various statistical measures were applied to the reported... statistical procedures that would evolve a general meteorological picture of each of these remote sites. Primary texts used as a basis for...processed by station for monthly, seasonal and annual statistics , as appropriate. The following outlines the evaluations completed for both
A combined field/remote sensing approach for characterizing landslide risk in coastal areas
NASA Astrophysics Data System (ADS)
Francioni, Mirko; Coggan, John; Eyre, Matthew; Stead, Doug
2018-05-01
Understanding the key factors controlling slope failure mechanisms in coastal areas is the first and most important step for analyzing, reconstructing and predicting the scale, location and extent of future instability in rocky coastlines. Different failure mechanisms may be possible depending on the influence of the engineering properties of the rock mass (including the fracture network), the persistence and type of discontinuity and the relative aspect or orientation of the coastline. Using a section of the North Coast of Cornwall, UK, as an example we present a multi-disciplinary approach for characterizing landslide risk associated with coastal instabilities in a blocky rock mass. Remotely captured terrestrial and aerial LiDAR and photogrammetric data were interrogated using Geographic Information System (GIS) techniques to provide a framework for subsequent analysis, interpretation and validation. The remote sensing mapping data was used to define the rock mass discontinuity network of the area and to differentiate between major and minor geological structures controlling the evolution of the North Coast of Cornwall. Kinematic instability maps generated from aerial LiDAR data using GIS techniques and results from structural and engineering geological surveys are presented. With this method, it was possible to highlight the types of kinematic failure mechanism that may generate coastal landslides and highlight areas that are more susceptible to instability or increased risk of future instability. Multi-temporal aerial LiDAR data and orthophotos were also studied using GIS techniques to locate recent landslide failures, validate the results obtained from the kinematic instability maps through site observations and provide improved understanding of the factors controlling the coastal geomorphology. The approach adopted is not only useful for academic research, but also for local authorities and consultancy's when assessing the likely risks of coastal instability.
Ball, Aaron; Sanchez-Azofeifa, Arturo; Portillo-Quintero, Carlos; Rivard, Benoit; Castro-Contreras, Saulo; Fernandes, Geraldo
2015-01-01
Aim The general goal of this study is to investigate and analyze patterns of ecophysiological leaf traits and spectral response among life forms (trees, shrubs and lianas) in the Cerrado ecosystem. In this study, we first tested whether life forms are discriminated through leaf level functional traits. We then explored the correlation between leaf-level plant functional traits and spectral reflectance. Location Serra do Cipo National Park, Minas Gerais, Brazil. Methods Six ecophysiological leaf traits were selected to best characterize differences between life forms in the woody plant community of the Cerrado. Results were compared to spectral vegetation indices to determine if plant groups provide means to separate leaf spectral responses. Results Values obtained from leaf traits were similar to results reported from other tropical dry sites. Trees and shrubs significantly differed from lianas in terms of the percentage of leaf water content and Specific Leaf Area. Spectral indices were insufficient to capture the differences of these key traits between groups, though indices were still adequately correlated to overall trait variation. Conclusion The importance of life forms as biochemical and structurally distinctive groups is a significant finding for future remote sensing studies of vegetation, especially in arid and semi-arid environments. The traits we found as indicative of these groups (SLA and water content) are good candidates for spectral characterization. Future studies need to use the full wavelength (400 nm–2500 nm) in order to capture the potential response of these traits. The ecological linkage to water balance and life strategies encourages these traits as starting points for modeling plant communities using hyperspectral remote sensing. PMID:25692675
The Thirty Meter Telescope Site Testing Robotic Computer System
NASA Astrophysics Data System (ADS)
Riddle, Reed L.; Schöck, M.; Skidmore, W.; Els, S.; Travouillon, T.
2008-03-01
The Thirty Meter Telescope (TMT) project is currently testing five remote sites as candidates for the final location of the telescope. Each site has several instruments, including seeing monitors, weather stations, and turbulence profile measuring systems, each of which is computer controlled. As the sites are remote, they require a control system that can automatically manage the operations of all the varied subsystems, keep the systems safe from damage and recover from errors during operation. The robotic system must also be robust enough to operate without human intervention and when internet connections are lost. It is also critical that a data archiving system diligently records all data as gathered. This is a discussion of the TMT site testing robotic computer system as implemented.
Using Terrain Analysis and Remote Sensing to Improve Snow Mass Balance and Runoff Prediction
NASA Astrophysics Data System (ADS)
Venteris, E. R.; Coleman, A. M.; Wigmosta, M. S.
2010-12-01
Approximately 70-80% of the water in the international Columbia River basin is sourced from snowmelt. The demand for this water has competing needs, as it is used for agricultural irrigation, municipal, hydro and nuclear power generation, and environmental in-stream flow requirements. Accurate forecasting of water supply is essential for planning current needs and prediction of future demands due to growth and climate change. A significant limitation on current forecasting is spatial and temporal uncertainty in snowpack characteristics, particularly snow water equivalent. Currently, point measurements of snow mass balance are provided by the NRCS SNOTEL network. Each site consists of a snow mass sensor and meteorology station that monitors snow water equivalent, snow depth, precipitation, and temperature. There are currently 152 sites in the mountains of Oregon and Washington. An important step in improving forecasts is determining how representative each SNOTEL site is of the total mass balance of the watershed through a full accounting of the spatiotemporal variability in snowpack processes. This variation is driven by the interaction between meteorological processes, land cover, and landform. Statistical and geostatistical spatial models relate the state of the snowpack (characterized through SNOTEL, snow course measurements, and multispectral remote sensing) to terrain attributes derived from digital elevation models (elevation, aspect, slope, compound topographic index, topographic shading, etc.) and land cover. Time steps representing the progression of the snow season for several meteorologically distinct water years are investigated to identify and quantify dominant physical processes. The spatially distributed snow balance data can be used directly as model inputs to improve short- and long-range hydrologic forecasts.
NASA Astrophysics Data System (ADS)
Hobson, V. R.; Shervais, J. W.
2004-12-01
Developing a method to characterize the physical, chemical and temporal aspects of terrestrial volcanics is a necessary step toward studying volcanics on other planetary bodies. Volcanoes and flows close to populated centers have been studied to varying degree, but remote volcanics remain largely unstudied. Remotely sensed data and derived information can be used to select field sites on Earth and on other planets. Scientists studying volcanics in dangerous areas would benefit from as much advance knowledge of the area as possible before beginning fieldwork. By using satellites and other remote sensing methods, information about the eruptive history can be derived and potentially, the hazard these remote volcanic areas may pose to current and future generations can be estimated. Using Landsat TM, ASTER and other remotely sensed data, the extent and characteristics of lava flows can be examined, but verification and refinement of these methods requires collection of data on the ground. Young lava flows at Craters of the Moon National Park were selected to test methods for remote mapping of recent volcanics. These late Pleistocene to Holocene basalt flows have been mapped to 1:100,000 scale (Kuntz et al, 1988) and have only minor vegetative cover. A range of remotely sensed spectral images were combined to optimize recovery of the mapped flows. Major flow units can be distinguished from each other using unsupervised classification of Landsat TM Bands 1-7, but differentiation of flows within these units presents greater difficulty. Principal component analyses revealed that during the daytime, thermal infrared variations outweigh variations in all other bands. Larger-scale features were observed like edge effects attributable to changes in surface roughness or texture that might occur at flow fronts or at boundaries between flows. Using a digitized version of the geologic map, TM and ASTER data for individual flows were isolated and examined for changes with distance from the source vent or fissure. Several flows were selected for further examination in the field, based on accessibility and scientific interest.
Malaria Modeling using Remote Sensing and GIS Technologies
NASA Technical Reports Server (NTRS)
Kiang, Richard
2004-01-01
Malaria has been with the human race since the ancient time. In spite of the advances of biomedical research and the completion of genomic mapping of Plasmodium falciparum, the exact mechanisms of how the various strains of parasites evade the human immune system and how they have adapted and become resistant to multiple drugs remain elusive. Perhaps because of these reasons, effective vaccines against malaria are still not available. Worldwide, approximately one to three millions deaths are attributed to malaria annually. With the increased availability of remotely sensed data, researchers in medical entomology, epidemiology and ecology have started to associate environmental and ecological variables with malaria transmission. In several studies, it has been shown that transmission correlates well with certain environmental and ecological parameters, and that remote sensing can be used to measure these determinants. In a NASA project, we have taken a holistic approach to examine how remote sensing and GIs can contribute to vector and malaria controls. To gain a better understanding of the interactions among the possible promoting factors, we have been developing a habitat model, a transmission model, and a risk prediction model, all using remote sensing data as input. Our objectives are: 1) To identify the potential breeding sites of major vector species and the locations for larvicide and insecticide applications in order to reduce costs, lessen the chance of developing pesticide resistance, and minimize the damage to the environment; 2) To develop a malaria transmission model characterizing the interactions among hosts, vectors, parasites, landcover and environment in order to identify the key factors that sustain or intensify malaria transmission, and 3) To develop a risk model to predict the occurrence of malaria and its transmission intensity using epidemiological data and satellite-derived or ground-measured environmental and meteorological data.
NASA Technical Reports Server (NTRS)
Vaughan, Greg R.; Calvin, Wendy M.
2005-01-01
To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of acidic drainage that were identified remotely.
NASA Astrophysics Data System (ADS)
Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriakos; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter; Hadjimitsis, Diofantos
2016-08-01
The landscape of Cyprus is characterized by transformations that occurred during the 20th century, with many of such changes being still active today. Landscapes' changes are due to a variety of reasons including war conflicts, environmental conditions and modern development that have often caused the alteration or even the total loss of important information that could have assisted the archaeologists to comprehend the archaeo-landscape. The present work aims to provide detailed information regarding the different existing datasets that can be used to support archaeologists in understanding the transformations that the landscape in Cyprus undergone, from a remote sensing perspective. Such datasets may help archaeologists to visualize a lost landscape and try to retrieve valuable information, while they support researchers for future investigations. As such they can further highlight in a predictive manner and consequently assess the impacts of landscape transformation -being of natural or anthropogenic cause- to cultural heritage. Three main datasets are presented here: aerial images, satellite datasets including spy satellite datasets acquired during the Cold War, and cadastral maps. The variety of data is provided in a chronological order (e.g. year of acquisitions), while other important parameters such as the cost and the accuracy are also determined. Individual examples of archaeological sites in Cyprus are also provided for each dataset in order to underline both their importance and performance. Also some pre- and post-processing remote sensing methodologies are briefly described in order to enhance the final results. The paper within the framework of ATHENA project, dedicated to remote sensing archaeology/CH, aims to fill a significant gap in the recent literature of remote sensing archaeology of the island and to assist current and future archaeologists in their quest for remote sensing information to support their research.
Approaching a universal scaling relationship between fracture stiffness and fluid flow
NASA Astrophysics Data System (ADS)
Pyrak-Nolte, Laura J.; Nolte, David D.
2016-02-01
A goal of subsurface geophysical monitoring is the detection and characterization of fracture alterations that affect the hydraulic integrity of a site. Achievement of this goal requires a link between the mechanical and hydraulic properties of a fracture. Here we present a scaling relationship between fluid flow and fracture-specific stiffness that approaches universality. Fracture-specific stiffness is a mechanical property dependent on fracture geometry that can be monitored remotely using seismic techniques. A Monte Carlo numerical approach demonstrates that a scaling relationship exists between flow and stiffness for fractures with strongly correlated aperture distributions, and continues to hold for fractures deformed by applied stress and by chemical erosion as well. This new scaling relationship provides a foundation for simulating changes in fracture behaviour as a function of stress or depth in the Earth and will aid risk assessment of the hydraulic integrity of subsurface sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Michael; Kollias, Pavlos; Giangrande, Scott
The Mid-latitude Continental Convective Clouds Experiment (MC3E) took place from April 22 through June 6, 2011, centered at the ARM Southern Great Plains site (http://www.arm.gov/sites/sgp) in northcentral Oklahoma. MC3E was a collaborative effort between the ARM Climate Research Facility and the National Aeronautics and Space Administration’s (NASA’s) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The campaign leveraged the largest ground-based observing infrastructure available in the central United States, including recent upgrades through the American Recovery and Reinvestment Act of 2009, combined with an extensive sounding array, remote sensing and in situ aircraft observations, and additional radar and inmore » situ precipitation instrumentation. The overarching goal of the campaign was to provide a three-dimensional characterization of convective clouds and precipitation for the purpose of improving the representation of convective lifecycle in atmospheric models and the reliability of satellite-based retrievals of precipitation.« less
Remote identification of polar bear maternal den habitat in northern Alaska
Durner, George M.; Amstrup, Steven C.; Ambrosius, Ken J.
2001-01-01
Polar bears (Ursus maritimus) give birth in dens of ice and snow to protect their altricial young. During the snow-free season, we visited 25 den sites located previously by radiotelemetry and characterized the den site physiognomy. Seven dens occurred in habitats with minimal relief. Eighteen dens (72%) were in coastal and river banks. These "banks" were identifiable on aerial photographs. We then searched high-resolution aerial photographs (n = 3000) for habitats similar to those of the 18 dens. On aerial photos, we mapped 1782 km of bank habitats suitable for denning. Bank habitats comprised 0.18% of our study area between the Colville River and the Tamayariak River in northern Alaska. The final map, which correctly identified 88% of bank denning habitat in this region, will help minimize the potential for disruptions of maternal dens by winter petroleum exploration activities.
NASA Remote Sensing Applications for Archaeology and Cultural Resources Management
NASA Technical Reports Server (NTRS)
Giardino, Marco J.
2008-01-01
NASA's Earth Science Mission Directorate recently completed the deployment of the Earth Observation System (EOS) which is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. One of the many applications derived from EOS is the advancement of archaeological research and applications. Using satellites, manned and unmanned airborne platform, NASA scientists and their partners have conducted archaeological research using both active and passive sensors. The NASA Stennis Space Center (SSC) located in south Mississippi, near New Orleans, has been a leader in space archaeology since the mid-1970s. Remote sensing is useful in a wide range of archaeological research applications from landscape classification and predictive modeling to site discovery and mapping. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, including commercial instruments, offer significantly improved spatial and spectral resolutions. Paired with new techniques of image analysis, this technology provides for the direct detection of archaeological sites. As in all archaeological research, the application of remote sensing to archaeology requires a priori development of specific research designs and objectives. Initially targeted at broad archaeological issues, NASA space archaeology has progressed toward developing practical applications for cultural resources management (CRM). These efforts culminated with the Biloxi Workshop held by NASA and the University of Mississippi in 2002. The workshop and resulting publication specifically address the requirements of cultural resource managers through the use of remote sensing. In 2007, NASA awarded six competitively chosen projects in Space Archaeology through an open solicitation whose purpose, among several, was to addresses the potential benefits to modern society that can be derived through a better understanding of how past cultures succeeded or failed to adapt to local, regional, and global change. A further objective of NASA's space archaeology is the protection and preservation of cultural heritage sites while planning for the sustainable development of cultural resources. NASA s archaeological approach through remote sensing builds on traditional methods of aerial archaeology (i.e. crop marks) and utilizes advanced technologies for collecting and analyzing archaeological data from digital imagery. NASA s archaeological research and application projects using remote sensing have been conducted throughout the world. In North America, NASA has imaged prehistoric mound sites in Mississippi; prehistoric shell middens in Louisiana, Puebloan sites in New Mexico and more recently the sites associated with the Lewis and Clark Corps of Discovery Expedition (1804-1806). In Central America, NASA archaeologists have researched Mayan sites throughout the region, including the Yucatan and Costa Rica, as well as Olmec localities in Veracruz. Other data has been collected over Angkor, Cambodia, Giza in Egypt, the lost city of Ubar on the Arabian Peninsula.
Teletoxicology: Patient Assessment Using Wearable Audiovisual Streaming Technology.
Skolnik, Aaron B; Chai, Peter R; Dameff, Christian; Gerkin, Richard; Monas, Jessica; Padilla-Jones, Angela; Curry, Steven
2016-12-01
Audiovisual streaming technologies allow detailed remote patient assessment and have been suggested to change management and enhance triage. The advent of wearable, head-mounted devices (HMDs) permits advanced teletoxicology at a relatively low cost. A previously published pilot study supports the feasibility of using the HMD Google Glass® (Google Inc.; Mountain View, CA) for teletoxicology consultation. This study examines the reliability, accuracy, and precision of the poisoned patient assessment when performed remotely via Google Glass®. A prospective observational cohort study was performed on 50 patients admitted to a tertiary care center inpatient toxicology service. Toxicology fellows wore Google Glass® and transmitted secure, real-time video and audio of the initial physical examination to a remote investigator not involved in the subject's care. High-resolution still photos of electrocardiograms (ECGs) were transmitted to the remote investigator. On-site and remote investigators recorded physical examination findings and ECG interpretation. Both investigators completed a brief survey about the acceptability and reliability of the streaming technology for each encounter. Kappa scores and simple agreement were calculated for each examination finding and electrocardiogram parameter. Reliability scores and reliability difference were calculated and compared for each encounter. Data were available for analysis of 17 categories of examination and ECG findings. Simple agreement between on-site and remote investigators ranged from 68 to 100 % (median = 94 %, IQR = 10.5). Kappa scores could be calculated for 11/17 parameters and demonstrated slight to fair agreement for two parameters and moderate to almost perfect agreement for nine parameters (median = 0.653; substantial agreement). The lowest Kappa scores were for pupil size and response to light. On a 100-mm visual analog scale (VAS), mean comfort level was 93 and mean reliability rating was 89 for on-site investigators. For remote users, the mean comfort and reliability ratings were 99 and 86, respectively. The average difference in reliability scores between on-site and remote investigators was 2.6, with the difference increasing as reliability scores decreased. Remote evaluation of poisoned patients via Google Glass® is possible with a high degree of agreement on examination findings and ECG interpretation. Evaluation of pupil size and response to light is limited, likely by the quality of streaming video. Users of Google Glass® for teletoxicology reported high levels of comfort with the technology and found it reliable, though as reported reliability decreased, remote users were most affected. Further study should compare patient-centered outcomes when using HMDs for consultation to those resulting from telephone consultation.
Improving UK Chalk hydrometeorology across spatial scales using a small hydrometeorological network
NASA Astrophysics Data System (ADS)
Rosolem, Rafael; Iwema, Joost; Rahman, Mostaquimur; Desilets, Darin; Koltermann da Silva, Juliana
2016-04-01
Chalk in the UK acts as a primary aquifer providing up to 80% of the public water supply locally. Chalk outcrops are located over most of southern and eastern England. Despite its importance, the characterization of Chalk in hydrometeorological models is still very limited. There is a need for a comprehensive and coherent integration of observations and modeling efforts across spatial scales for better understanding Chalk hydrometeorology. Here we introduce the "A MUlti-scale Soil moisture-Evapotranspiration Dynamics" (AMUSED) project. AMUSED goal is to better identify the key dominant processes controlling changes in soil moisture and surface fluxes (e.g., evapotranspiration) across spatial scales by combining ground-based observations with hydrometeorological models and satellite remote sensing products. The AMUSED observational platform consists of three sites located in Upper Chalk region of the Lambourn Catchment located in southern England covering approximately 2 square-km characterized by distinct combinations of soil and vegetation types. The network includes standard meteorological measurements, an eddy covariance system for turbulent fluxes and cosmic-ray neutron sensors for integrated soil moisture estimates at intermediate scales. Here we present our initial results from our three sites.
NASA Technical Reports Server (NTRS)
Christensen, P. R.; Edgett, Kenneth S.
1994-01-01
Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites.
Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A
2016-02-01
Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Bandyopadhyay, M.; Chakraborty, A.
2016-02-15
Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the samemore » authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.« less
The design of remote temperature monitoring system
NASA Astrophysics Data System (ADS)
Li, Biqing; Li, Zhao; Wei, Liuren
2017-08-01
This design is made on the basis of the single-chip microcomputer remote temperature monitoring system. STC89C51RC is the main core part, this design use the sensor DHT11 of temperature or humidity and wireless transceiver NRF24L01 the temperature of the test site for long-range wireless measurement and monitoring. The design contains the main system and the small system, of which the main system can show the actual test site temperature and humidity values, voice broadcast, out of control and receive data alarm function; The small system has the function of temperature and humidity, temperature monitoring and sending data. After debugging, the user customizable alarm upper and lower temperature, when the temperature exceeds limit value, the main system of buzzer alarm immediately. The system has simple structure, complete functions and can alarm in time, it can be widely used remote temperature acquisition and monitoring of the site.
Assessment of radioisotope heaters for remote terrestrial applications
NASA Astrophysics Data System (ADS)
Uherka, Kenneth L.
This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold-region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaskan installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radio-isotopic heaters for freeze-up protection of water storage tanks and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.
Controlling mechanisms over the internet
NASA Astrophysics Data System (ADS)
Lumia, Ronald
1997-01-01
The internet, widely available throughout the world, can be used to control robots, machine tools, and other mechanisms. This paper will describe a low-cost virtual collaborative environment (VCE) which will connect users with distant equipment. The system is based on PC technology, and incorporates off-line-programming with on-line execution. A remote user programs the systems graphically and simulates the motions and actions of the mechanism until satisfied with the functionality of the program. The program is then transferred from the remote site to the local site where the real equipment exists. At the local site, the simulation is run again to check the program from a safety standpoint. Then, the local user runs the program on the real equipment. During execution, a camera in the real workspace provides an image back to the remote user through a teleconferencing system. The system costs approximately 12,500 dollars and represents a low-cost alternative to the Sandia National Laboratories VCE.
de Ruiter, Graham; Carsch, Kurtis M.; Gul, Sheraz; ...
2017-03-24
In this paper, we report the synthesis, characterization, and reactivity of [LFe 3(PhPz) 3OMn( sPhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene–metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2Fe IIMn II vs. Fe III 3Mn II) influence oxygen atom transfer in tetranuclear Fe 3Mn clusters. Finally, in particular, a one-electron redox change atmore » a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude.« less
de Ruiter, Graham; Carsch, Kurtis M; Gul, Sheraz; Chatterjee, Ruchira; Thompson, Niklas B; Takase, Michael K; Yano, Junko; Agapie, Theodor
2017-04-18
We report the synthesis, characterization, and reactivity of [LFe 3 (PhPz) 3 OMn( s PhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene-metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57 Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2 Fe II Mn II vs. Fe III 3 Mn II ) influence oxygen atom transfer in tetranuclear Fe 3 Mn clusters. In particular, a one-electron redox change at a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mohammedshum, A. A.; Gebresilassie, M. A.; Rulinda, C. M.; Kahsay, G. H.; Tesfay, M. S.
2014-11-01
Identifying solid waste disposal sites and appropriately managing them is a challenging task to many developing countries. This is a critical problem too in Ethiopia in general and in Wukro town in particular. The existing site for Wukro town is not sufficient in its capacity and it is damaging the environment due to its location, and the type of waste dumped, while the surrounding area is being irrigated. Due to the swift expansion and urbanization developments in Wukro town, it badly needs to develop controlled solid waste dumping site to prevent several contamination problems. This study was conducted first, to assess the existing waste management strategies in Wukro town; and second, to find out the potential waste disposal sites for the town, using GIS and Remote Sensing techniques. The study exploited the Multi-Criteria Evaluation (MCE) methods to combine necessary factors considered for dumping site selection. The selected method also uses various geographical data including remote sensing data, with GIS spatial analysis tools. Accordingly, site suitability maps for each of the factors were developed in a GIS environment. Results indicate that 12 dumping sites were appropriate and they were further ranked against their suitability in terms of wind direction, proximity to settlement area and distance from the center of the town. Finally, two sites are the best suitable for dumping site. This study indicated that the application of Geographic Information System and Remote Sensing techniques are efficient and low cost tools to study and select appropriate dumping site so as to facilitate decision making processes.
NASA Astrophysics Data System (ADS)
Chinery, G. T.; Wood, J. M.
1985-08-01
This paper describes the Tennessee Valley Authority's (TVA) current photovoltaic (PV) activities. These include four roof-mounted 4 kWp residential arrays (which are also Southeast Residential Station field sites) and two 5-6 kWp commercial sites, all grid connected with no battery storage. Also included are approximately 30 kWp of non-grid-connected remote sites with storage (remote lighting, weather stations, etc.). Monitoring results from the two 'online' residential systems are presented. Finally, TVA's future PV plans are discussed, both with respect to interfacing with a multitude of residential and commercial cogenerators and with regard to possible TVA PV central station plans.
Remote sensing-based estimation of annual soil respiration at two contrasting forest sites
NASA Astrophysics Data System (ADS)
Huang, Ni; Gu, Lianhong; Black, T. Andrew; Wang, Li; Niu, Zheng
2015-11-01
Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual Rs estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zone soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites. In addition, a multicollinearity problem among LST-night, root-zone soil moisture, and plant photosynthesis factor was effectively avoided by selecting the LST-night-driven model. Cross validation showed that temporal variation in Rs was captured by the LST-night-driven model with a mean absolute error below 1 µmol CO2 m-2 s-1 at both forest sites. An obvious overestimation that occurred in 2005 and 2007 at the Missouri Ozark site reduced the evaluation accuracy of cross validation because of summer drought. However, no significant difference was found between the Arrhenius-type function driven by LST-night and the function considering LST-night and root-zone soil moisture. This finding indicated that the contribution of soil moisture to Rs was relatively small at our multiyear data set. To predict intersite Rs, maximum leaf area index (LAImax) was used as an upscaling factor to calibrate the site-specific reference respiration rates. Independent validation demonstrated that the model incorporating LST-night and LAImax efficiently predicted the spatial and temporal variabilities of Rs. Based on the Arrhenius-type function using LST-night as an input parameter, the rates of annual C release from Rs were 894-1027 g C m-2 yr-1 at the BC-Campbell River 1949 Douglas-fir site and 818-943 g C m-2 yr-1 at the Missouri Ozark site. The ratio between annual Rs estimates based on remotely sensed data and the total annual ecosystem respiration from eddy covariance measurements fell within the range reported in previous studies. Our results demonstrated that estimating annual Rs based on remote sensing data products was possible at deciduous and evergreen forest sites.
NASA Astrophysics Data System (ADS)
Lee, G.; Ahn, J. Y.; Chang, L. S.; Kim, J.; Park, R.
2017-12-01
During the KORUS-AQ, extensive sets of chemical measurements for reactive gases and aerosol species were made at 3 major sites on upwind island (Baengyeong Island), urban (Olympic Park in Seoul) and downwind rural forest location (Taewha Forest). Also, intensive aerosol size and composition observations from 5 NIER super sites, 3 NIMR monitoring sites, and 5 other university sites were currently facilitated in the KORUS-AQ data set. In addition, air quality criteria species data from 264 nation-wide ground monitoring sites with 5 minute temporal resolution during the whole campaign period were supplemented to cover mostly in densely populated urban areas, but sparsely in rural areas. The specific objectives of these ground sites were to provide highly comprehensive data set to coordinate the close collaborations among other research platforms including airborne measurements, remote sensing, and model studies. The continuous measurements at ground sites were well compared with repetitive low-level aircraft observations of NASA's DC-8 over Olympic Park and Taewha Forest site. Similarly, many ground measurements enabled the validation of chemical transport models and the remote sensing observations from ground and NASA's King Air. The observed results from inter-comparison studies in many reactive gases and aerosol compositions between different measurement methods and platforms will be presented. Compiling data sets from ground sites, source-wise analysis for ozone and aerosol, their in-situ formations, and transport characteristics by local/regional circulation will be discussed, too.
Woolf, Celia; Caute, Anna; Haigh, Zula; Galliers, Julia; Wilson, Stephanie; Kessie, Awurabena; Hirani, Shashi; Hegarty, Barbara; Marshall, Jane
2016-04-01
To test the feasibility of a randomised controlled trial comparing face to face and remotely delivered word finding therapy for people with aphasia. A quasi-randomised controlled feasibility study comparing remote therapy delivered from a University lab, remote therapy delivered from a clinical site, face to face therapy and an attention control condition. A University lab and NHS outpatient service. Twenty-one people with aphasia following left hemisphere stroke. Eight sessions of word finding therapy, delivered either face to face or remotely, were compared to an attention control condition comprising eight sessions of remotely delivered supported conversation. The remote conditions used mainstream video conferencing technology. Feasibility was assessed by recruitment and attrition rates, participant observations and interviews, and treatment fidelity checking. Effects of therapy on word retrieval were assessed by tests of picture naming and naming in conversation. Twenty-one participants were recruited over 17 months, with one lost at baseline. Compliance and satisfaction with the intervention was good. Treatment fidelity was high for both remote and face to face delivery (1251/1421 therapist behaviours were compliant with the protocol). Participants who received therapy improved on picture naming significantly more than controls (mean numerical gains: 20.2 (remote from University); 41 (remote from clinical site); 30.8 (face to face); 5.8 (attention control); P <.001). There were no significant differences between groups in the assessment of conversation. Word finding therapy can be delivered via mainstream internet video conferencing. Therapy improved picture naming, but not naming in conversation. © The Author(s) 2015.
Using oblique digital photography for alluvial sandbar monitoring and low-cost change detection
Tusso, Robert B.; Buscombe, Daniel D.; Grams, Paul E.
2015-01-01
The maintenance of alluvial sandbars is a longstanding management interest along the Colorado River in Grand Canyon. Resource managers are interested in both the long-term trend in sandbar condition and the short-term response to management actions, such as intentional controlled floods released from Glen Canyon Dam. Long-term monitoring is accomplished at a range of scales, by a combination of annual topographic survey at selected sites, daily collection of images from those sites using novel, autonomously operating, digital camera systems (hereafter referred to as 'remote cameras'), and quadrennial remote sensing of sandbars canyonwide. In this paper, we present results from the remote camera images for daily changes in sandbar topography.
The Thirty Meter Telescope site testing robotic computer system
NASA Astrophysics Data System (ADS)
Riddle, Reed L.; Schöck, Matthias; Skidmore, Warren
2006-06-01
The Thirty Meter Telescope (TMT) project is currently testing six remote sites as candidates for the final location of the telescope. Each site has several instruments, including seeing monitors, weather stations, and turbulence profile measuring systems, each of which is computer controlled. As the sites are remote (usually hours from the nearest town), they requires a system that can control the operations of all the varied subsystems, keep the systems safe from damage and recover from errors during operation. The robotic system must also be robust enough to operate without human intervention and when internet connections are lost. It is also critical that a data archiving system diligently records all data as gathered. This paper is a discussion of the TMT site testing robotic computer system as implemented.
Simultaneous Ka-Band Site Characterization: Goldstone, CA, White Sands, NM, and Guam, USA
NASA Technical Reports Server (NTRS)
Acosta, Roberto; Morse, Jacquelynne; Zemba, Michael; Nessel, James; Morabito, David; Caroglanian, Armen
2011-01-01
To statistically characterize atmospheric effects on Ka-band links at NASA operational sites, NASA has constructed site test interferometers (STI s) which directly measure the tropospheric phase stability and rain attenuation. These instruments observe an unmodulated beacon signal broadcast from a geostationary satellite (e.g., Anik F2) and measure the phase difference between the signals received by the two antennas and its signal attenuation. Three STI s have been deployed so far: the first one at the NASA Deep Space Network Tracking Complex in Goldstone, California (May 2007); the second at the NASA White Sands Complex, in Las Cruses, New Mexico (February 2009); and the third at the NASA Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam (May 2010). Two station-years of simultaneous atmospheric phase fluctuation data have been collected at Goldstone and White Sands, while one year of data has been collected in Guam. With identical instruments operating simultaneously, we can directly compare the phase stability and rain attenuation at the three sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric induced time delay fluctuations over 10 minute blocks. For two years, the time delay fluctuations at the DSN site in Goldstone, CA, have been better than 2.5 picoseconds (ps) for 90% of the time (with reference to zenith), meanwhile at the White Sands, New Mexico site, the time delay fluctuations have been better than 2.2 ps with reference to zenith) for 90% of time. For Guam, the time delay fluctuations have been better than 12 ps (reference to zenith) at 90% of the time, the higher fluctuations are as expected from a high humidity tropical rain zone. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.) will be used to determine the suitability of all the sites for NASA s future communication services at Ka-band.
The Effect of Remote Sensor Spatial Resolution in Monitoring U.S. Army Training Maneuver Sites
1990-12-01
THE EFFECT OF REMOTE SENSOR SPATIAL RESOLUTION IN MONITORING U.S. ARMY...Multispectral Scanner with 6.5 meter spatial resolution provided the most effective digital data set for enhancing tank trails. However, this Airborne Scanner...primary objective of this research was to determine the capabilities and limitations of remote sensor systems having different spatial resolutions to
Assessing indicators of rangeland health with remote sensing in southeast Arizona
Jared Buono; Philip Heilman; David Williams; Phillip Guertin
2005-01-01
The goal of this study was to scale up ground-based range assessments to ranch and landscape scales in southeast Arizona using remote sensing and minimum amount of field data collection. Remotely sensed metrics of canopy cover, biomass, and mesquite composition were used to assess soil and site stability and biotic integrity. Ground-based assessments were conducted on...
NASA Technical Reports Server (NTRS)
Summers, R. A.; Smith, W. L.; Short, N. M.
1977-01-01
Effective implementation of the President's National Energy Plan and the Nuclear Power Policy Statement require application of the best remote sensing tools available. The potential contributions of remote sensing, particularly LANDSAT data, have yet to be clearly identified and exploited. These contributions investigated fall into the following categories: (1) exploration; (2) exploitation; (3) power plant siting; (4) environmental assessment and monitoring; and (5) transportation infrastructure.
Callas, Peter W; Bertsch, Tania F; Caputo, Michael P; Flynn, Brian S; Doheny-Farina, Stephen; Ricci, Michael A
2004-01-01
Interactive videoconferencing may be an effective way for medical students on remote rotations to attend teaching sessions at the main campus. To compare medical student evaluations of lectures for those attending in person and those attending through interactive videoconferencing. Lecture evaluations were completed by medical students on University of Vermont College of Medicine clinical clerkship rotations. Students on clerkships at rural sites attended lectures using our telemedicine network. Responses from in-person and remote attendees were compared. Evaluation forms for 110 lectures were received from 648 in-person and 255 remote attendees. All evaluation items were rated "good" or "excellent" by at least 95% of in-person attendees. Over 90% of remote attendees rated nontelemedicine evaluation items, such as appropriateness of lecture topic for students, as good or excellent. Ratings of telemedicine-specific questions, such as ability to hear the lecturer, were lower. Level of satisfaction was high for most aspects of remote lecture attendance, although not quite as high as for in-person attendance. Improved technical reliability would likely increase remote attendee satisfaction. Overall, lecture attendance using videoconferencing was found to be an acceptable alternative to travel for medical students in rural clerkships.
Scott, C
1988-04-15
Remote viewing is the supposed faculty which enables a percipient, sited in a closed room, to describe the perceptions of a remote agent visiting an unknown target site. To provide convincing demonstration of such a faculty poses a range of experimental and practical problems, especially if feedback to the percipient is allowed after each trial. The precautions needed are elaborate and troublesome; many potential loopholes have to be plugged and there will be strong temptations to relax standards, requiring exceptional discipline and dedication by the experimenters. Most reports of remote viewing experiments are rather superficial and do not permit assessment of the experimental procedures with confidence; in many cases there is clear evidence of particular loopholes left unclosed. Any serious appraisal of the evidence would have to go beyond the reports. Meanwhile the published evidence is far from compelling, and certainly insufficient to justify overthrow of well-established scientific principles.
Bringing "Scientific Expeditions" Into the Schools
NASA Technical Reports Server (NTRS)
Watson, Val; Lasinski, T. A. (Technical Monitor)
1995-01-01
Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as simulations or measurements of fluid dynamics). The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics (CFD) and wind tunnel testing. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualiZation of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: 1. The visual is much higher in resolution (1280xl024 pixels with 24 bits of color) than typical video format transmitted over the network. 2. The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). 3. A rich variety of guided expeditions through the data can be included easily. 4. A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of the analysis can be passed from site to site. 5. The scenes can be viewed in 3D using stereo vision. 6. The network bandwidth used for the visualization using this new technology is much smaller than when using video format. (The measured peak bandwidth used was 1 Kbit/sec whereas the measured bandwidth for a small video picture was 500 Kbits/sec.)
Fast 3D Net Expeditions: Tools for Effective Scientific Collaboration on the World Wide Web
NASA Technical Reports Server (NTRS)
Watson, Val; Chancellor, Marisa K. (Technical Monitor)
1996-01-01
Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D (three dimensional), high resolution, dynamic, interactive viewing of scientific data. The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG (Motion Picture Expert Group) movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewers local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: (1) The visual is much higher in resolution (1280x1024 pixels with 24 bits of color) than typical video format transmitted over the network. (2) The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). (3) A rich variety of guided expeditions through the data can be included easily. (4) A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of the analysis can be passed from site to site. (5) The scenes can be viewed in 3D using stereo vision. (6) The network bandwidth for the visualization using this new technology is much smaller than when using video format. (The measured peak bandwidth used was 1 Kbit/sec whereas the measured bandwidth for a small video picture was 500 Kbits/sec.) This talk will illustrate the use of these new technologies and present a proposal for using these technologies to improve science education.
Wang, Shaorui; Salamova, Amina; Hites, Ronald A; Venier, Marta
2018-06-05
The authors analyzed spatial and seasonal variations of current use pesticides (CUPs) levels in the atmospheric particulate phase in the Great Lakes basin. Twenty-four hour air samples were collected at six sites (two urban, two rural, and two remote) in 2015. The concentrations of 15 CUPs, including nine pyrethroid insecticides, four herbicides, one organophosphate insecticide, and one fungicide, were measured. The total CUPs concentrations were higher at the urban sites (0.38-1760 pg/m 3 ) than at the rural and remote sites (0.07-530 pg/m 3 ). The most abundant CUPs were pyrethroid insecticides at the urban sites. The levels of the other CUPs did not vary much among the six sites, except at the most remote site at Eagle Harbor, where the levels were significantly lower. Chlorothalonil was the most frequently detected CUP, which was detected in more than 76% of the samples. The atmospheric concentrations of total pyrethroid insecticides and total herbicides were correlated with local human population and developed land use. Significantly higher concentrations of most CUPs were observed in the warmer months than in the colder months at all sites. In addition to agricultural applications, which occur during the warmer months, the CUPs atmospheric concentrations may also be influenced by nonagricultural activities and the urban development.
Telerobot local-remote control architecture for space flight program applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John
1993-01-01
The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.
Bringing an ecological view of change to Landsat-based remote sensing
Robert E. Kennedy; Serge Andrefouet; Warren B. Cohen; Cristina Gomez; Patrick Griffiths; Martin Hais; Sean P. Healey; Eileen H. Helmer; Patrick Hostert; Mitchell B. Lyons; Garrett W. Meigs; Dirk Pflugmacher; Stuart R. Phinn; Scott L. Powell; Peter Scarth; Susmita Sen; Todd A. Schroeder; Annemarie Schneider; Ruth Sonnenschein; James E. Vogelmann; Michael A. Wulder; Zhe Zhu
2014-01-01
When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more...
Remote Control Childhood: Combating the Hazards of Media Culture in Schools
ERIC Educational Resources Information Center
Levin, Diane
2010-01-01
Background: Media culture touches most aspects of the lives of children growing up today, beginning at the earliest ages. It is profoundly the lessons children learn as well as how they learn, thereby contributing to what this article characterizes as "remote control childhood." Educators need to understand remote control childhood so…
NASA Astrophysics Data System (ADS)
Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre
2010-05-01
This study has been carried out in the framework of the GLOBAM -Global Agricultural Monitoring system by integration of earth observation and modeling techniques- project whose objective is to fill the methodological gap between the state of the art of local crop monitoring and the operational requirements of the global monitoring system programs. To achieve this goal, the research aims to develop an integrated approach using remote sensing and crop growth modeling. Evapotranspiration (ET) is a valuable parameter in the crop monitoring context since it provides information on the plant water stress status, which strongly influences crop development and, by extension, crop yield. To assess crop evapotranspiration over the GLOBAM study areas (300x300 km sites in Northern Europe and Central Ethiopia), a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced with remote sensing and numerical weather prediction data has been used. This model runs at pre-operational level in the framework of the EUMETSAT LSA-SAF (Land Surface Analysis Satellite Application Facility) using SEVIRI and ECMWF data, as well as the ECOCLIMAP database to characterize the vegetation. The model generates ET images at the Meteosat Second Generation (MSG) spatial resolution (3 km at subsatellite point),with a temporal resolution of 30 min and monitors the entire MSG disk which covers Europe, Africa and part of Sud America . The SVAT model was run for 2007 using two approaches. The first approach is at the standard pre-operational mode. The second incorporates remote sensing information at various spatial resolutions going from LANDSAT (30m) to SEVIRI (3-5 km) passing by AWIFS (56m) and MODIS (250m). Fine spatial resolution data consists of crop type classification which enable to identify areas where pure crop specific MODIS time series can be compiled and used to derive Leaf Area Index estimations for the most important crops (wheat and maize). The use of this information allowed to characterize the type of vegetation and its state of development in a more accurate way than using the ECOCLIMAP database. Finally, the CASA method was applied using the evapotranspiration images with FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) images from LSA-SAF to obtain Dry Matter Productivity (DMP) and crop yield. The potential of using evapotranspiration obtained from remote sensing in crop growth modeling is studied and discussed. Results of comparing the evapotranspiration obtained with ground truth data are shown as well as the influence of using high resolution information to characterize the vegetation in the evapotranspiration estimation. The values of DMP and yield obtained with the CASA method are compared with those obtained using crop growth modeling and field data, showing the potential of using this simplified remote sensing method for crop monitoring and yield forecasting. This methodology could be applied in an operative way to the entire MSG disk, allowing the continuous crop growth monitoring.
2016-01-01
supportive of this work from the start . This research would not have been possible without the contributions made by a number of individuals throughout...and funding structures. We started with these questions in particular based on the primary concerns at AMOS identified in the results of Phase I...from the start . Keck maintains connections with a series of other sites within a remote observing network. Remote observing from the mainland
Alternate Hybrid Power Sources for Remote Site Applications.
1981-02-01
Fuel for remote LORAN-C sites is often acquired at higher costs in foreign spot markets . The effective fuel cost including the expense associated with...primary purpose of FPUP is to provide market support for manufacturers of solar cells and systems by encouraging federal agencies to utilize photo...supplied to them. 84 If 10,000 units were manufactured each year for the residential market with 10 kWh peak power and 25 kWh of usable energy stored in
Nevada National Security Site Environmental Report 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Wills, ed.
2011-09-13
This NNSSER was prepared to satisfy DOE Order DOE O 231.1B, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSER summarizes data and compliance status for calendar year 2010 at the Nevada Nationalmore » Security Site (NNSS) (formerly the Nevada Test Site) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory–Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.« less
Hydrocarbon concentrations at the Alpine mountain sites Jungfraujoch and Arosa
NASA Astrophysics Data System (ADS)
Li, Yingshi; Campana, Mike; Reimann, Stefan; Schaub, Daniel; Stemmler, Konrad; Staehelin, Johannes; Peter, Thomas
Volatile hydrocarbons have been measured for 1 yr at Arosa (2010 m asl) to determine the contribution of European emissions to the trace gas concentrations at this remote site. Results are compared to concurrent hydrocarbon concentrations at the high Alpine background site Jungfraujoch (3580 m asl). Hydrocarbon concentrations at Arosa are generally much higher than at Jungfraujoch. The influence of the Alpine boundary layer air was studied based on the diurnal variation of hydrocarbon concentrations, i.e. rising pollutant concentrations in the morning at Arosa and in the afternoon at Jungfraujoch. Different hydrocarbon emission sources of the uplifting air were found at the two sites. At Jungfraujoch, several transatlantic events were detected from October 2001 to January 2002 based on analysis of hydrocarbon ratios and air parcel trajectories. The OH concentration during the transatlantic transport was estimated to be around 5×10 5 cm -3, derived from simultaneous hydrocarbon oxidation and dilution in the free troposphere. These transatlantic transport events were tracked back to warm conveyor belts, characterized by uniform dynamics and relatively uniform surface sources. In addition, ozone production in the free tropospheric transport was also documented in these events.
Modelisation de l'architecture des forets pour ameliorer la teledetection des attributs forestiers
NASA Astrophysics Data System (ADS)
Cote, Jean-Francois
The quality of indirect measurements of canopy structure, from in situ and satellite remote sensing, is based on knowledge of vegetation canopy architecture. Technological advances in ground-based, airborne or satellite remote sensing can now significantly improve the effectiveness of measurement programs on forest resources. The structure of vegetation canopy describes the position, orientation, size and shape of elements of the canopy. The complexity of the canopy in forest environments greatly limits our ability to characterize forest structural attributes. Architectural models have been developed to help the interpretation of canopy structural measurements by remote sensing. Recently, the terrestrial LiDAR systems, or TLiDAR (Terrestrial Light Detection and Ranging), are used to gather information on the structure of individual trees or forest stands. The TLiDAR allows the extraction of 3D structural information under the canopy at the centimetre scale. The methodology proposed in my Ph.D. thesis is a strategy to overcome the weakness in the structural sampling of vegetation cover. The main objective of the Ph.D. is to develop an architectural model of vegetation canopy, called L-Architect (LiDAR data to vegetation Architecture), and to focus on the ability to document forest sites and to get information on canopy structure from remote sensing tools. Specifically, L-Architect reconstructs the architecture of individual conifer trees from TLiDAR data. Quantitative evaluation of L-Architect consisted to investigate (i) the structural consistency of the reconstructed trees and (ii) the radiative coherence by the inclusion of reconstructed trees in a 3D radiative transfer model. Then, a methodology was developed to quasi-automatically reconstruct the structure of individual trees from an optimization algorithm using TLiDAR data and allometric relationships. L-Architect thus provides an explicit link between the range measurements of TLiDAR and structural attributes of individual trees. L-Architect has finally been applied to model the architecture of forest canopy for better characterization of vertical and horizontal structure with airborne LiDAR data. This project provides a mean to answer requests of detailed canopy architectural data, difficult to obtain, to reproduce a variety of forest covers. Because of the importance of architectural models, L-Architect provides a significant contribution for improving the capacity of parameters' inversion in vegetation cover for optical and lidar remote sensing. Mots-cles: modelisation architecturale, lidar terrestre, couvert forestier, parametres structuraux, teledetection.
Study of geographical trends of polycyclic aromatic hydrocarbons using pine needles
NASA Astrophysics Data System (ADS)
Amigo, José Manuel; Ratola, Nuno; Alves, Arminda
2011-10-01
In this work, pine needles were used as polycyclic aromatic hydrocarbons (PAHs) markers to study the PAHs distribution over several geographical locations in Portugal and over time. Four pine needle sampling campaigns (winter, spring, summer and autumn 2007) were carried out in 29 sites, covering the major urban centres, some industrial points, smaller cities, rural areas and remote locations. Needles from Pinus pinaster Ait. and Pinus pinea L. trees were collected from 2005 and 2006 shoots, corresponding to one up to three years of exposure. Spatial trends of the incidence of PAHs indicate an increase from the remote to the urban and industrial sites. The mean values for the sum of 16 PAHs ranged from 96 ± 30 ng g -1 (dry weight) for remote sites to 866 ± 304 ng g -1 (dw) for industrial sites for P. pinaster needles and from 188 ± 117 ng g -1 (dw) for rural sites to 337 ± 153 ng g -1 (dw) for urban sites for P. pinea. Geographic information system tools and principal component analysis revealed that the contamination patterns of PAHs are somehow related to several socio-geographic parameters of the sampling sites. The geographical trend for the PAHs is similar between seasons in terms of PAH levels, but some diverse behaviour is found on the separation of lighter and heavier PAHs. Differences between P. pinaster and P. pinea needles are stronger in terms of PAH uptake loads than in the site type fingerprints.
Use of telemedicine in the remote programming of cochlear implants.
Ramos, Angel; Rodriguez, Carina; Martinez-Beneyto, Paz; Perez, Daniel; Gault, Alexandre; Falcon, Juan Carlos; Boyle, Patrick
2009-05-01
Remote cochlear implant (CI) programming is a viable, safe, user-friendly and cost-effective procedure, equivalent to standard programming in terms of efficacy and user's perception, which can complement the standard procedures. The potential benefits of this technique are outlined. We assessed the technical viability, risks and difficulties of remote CI programming; and evaluated the benefits for the user comparing the standard on-site CI programming versus the remote CI programming. The Remote Programming System (RPS) basically consists of completing the habitual programming protocol in a regular CI centre, assisted by local staff, although guided by a remote expert, who programs the CI device using a remote programming station that takes control of the local station through the Internet. A randomized prospective study has been designed with the appropriate controls comparing RPS to the standard on-site CI programming. Study subjects were implanted adults with a HiRes 90K(R) CI with post-lingual onset of profound deafness and 4-12 weeks of device use. Subjects underwent two daily CI programming sessions either remote or standard, on 4 programming days separated by 3 month intervals. A total of 12 remote and 12 standard sessions were completed. To compare both CI programming modes we analysed: program parameters, subjects' auditory progress, subjects' perceptions of the CI programming sessions, and technical aspects, risks and difficulties of remote CI programming. Control of the local station from the remote station was carried out successfully and remote programming sessions were achieved completely and without incidents. Remote and standard program parameters were compared and no significant differences were found between the groups. The performance evaluated in subjects who had been using either standard or remote programs for 3 months showed no significant difference. Subjects were satisfied with both the remote and standard sessions. Safety was proven by checking emergency stops in different conditions. A very small delay was noticed that did not affect the ease of the fitting. The oral and video communication between the local and the remote equipment was established without difficulties and was of high quality.
Remote sensing at the NASA Kennedy Space Center: a perspective from the ground up
NASA Astrophysics Data System (ADS)
Huddleston, Lisa H.; Roeder, William P.; Morabito, David D.; D'Addario, Larry R.; Morgan, Jennifer G.; Barbré, Robert E.; Decker, Ryan K.; Geldzahler, Barry; Seibert, Mark A.; Miller, Michael J.
2014-10-01
This paper provides an overview of ground based operational remote sensing activities that enable a broad range of missions at the Eastern Range (ER), which includes the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) and U.S. Air Force Cape Canaveral Air Force Station (CCAFS). Many types of sensors are in use by KSC and across the ER. We examine remote sensors for winds, lightning and electric fields, precipitation and storm hazards. These sensors provide data that are used in real-time to evaluate launch commit criteria during space launches, major ground processing operations in preparation for space launches, issuing weather warnings/watches/advisories to protect over 25,000 people and facilities worth over $20 billion, and routine weather forecasts. The data from these sensors are archived to focus NASA launch vehicle design studies, to develop forecast techniques, and for incident investigation. The wind sensors include the 50-MHz and 915-MHz Doppler Radar Wind Profilers (DRWP) and the Doppler capability of the weather surveillance radars. The atmospheric electricity sensors include lightning aloft detectors, cloud-to-ground lightning detectors, and surface electric field mills. The precipitation and storm hazards sensors include weather surveillance radars. Next, we discuss a new type of remote sensor that may lead to better tracking of near-Earth asteroids versus current capabilities. The Ka Band Objects Observation and Monitoring (KaBOOM) is a phased array of three 12 meter (m) antennas being built as a technology demonstration for a future radar system that could be used to track deep-space objects such as asteroids. Transmissions in the Ka band allow for wider bandwidth than at lower frequencies, but the signals are also far more susceptible to de-correlation from turbulence in the troposphere, as well as attenuation due to water vapor, which is plentiful in the Central Florida atmosphere. If successful, KaBOOM will have served as the pathfinder for a larger and more capable instrument that will enable tracking 15 m asteroids up to 72 million kilometers (km) away, about half the distance to the Sun and five times further than we can track today. Finally, we explore the use of Site Test Interferometers (STI) as atmospheric sensors. The STI antennas continually observe signals emitted by geostationary satellites and produce measurements of the phase difference between the received signals. STIs are usually located near existing or candidate antenna array sites to statistically characterize atmospheric phase delay fluctuation effects for the site. An STI measures the fluctuations in the difference of atmospheric delay from an extraterrestrial source to two or more points on the Earth. There is a three-element STI located at the KaBOOM site at KSC.
New York State Police remote communications site small wind energy conversion system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-03-01
This report concludes a year-long demonstration and study of the use of a North Wind Model HR2 wind energy conversion system to supply the power for a remote New York State Police microwave repeater site at Mt. Morris in the Adirondack Mountains. Data were collected on a multi-channel digital strip chart recorder which provided a printout of the real-time relation between windspeed, power output, battery capacity and voltage, and contribution from backup power. These data proved that the site could be run on wind power alone and predictions can now be made on the performance of an HR2 or similarmore » wind system at other sites. 5 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
Cushwa, C. T.; Laroche, G.; Dubrock, C. W.
1982-01-01
The U.S. Fish and Wildlife Service developed a statewide fish and wildlife data base for the Pennsylvania Game Commission that includes 125 categories of information on each of the 844 species. This species data base is integrated with geobased and remotely-sensed land use/land cover data from two sites in Pennsylvania. One site is an energy development project; the other is a high-energy use area. Analyses using the combined animal and land use data bases can be demonstrated for a variety of land use/land cover types at both sites. The ability to make "what if" analysis prior to project implementation is presented.
Spectroscopic Results from the Life in the Atacama (LITA) Project 2004 Field Season
NASA Technical Reports Server (NTRS)
Piatek, J. L.; Moersch, J. E.; Wyatt, M.; Rampey, M.; Cabrol, N. A.; Wettergreen, D. S.; Whittaker, R.; Grin, E. A.; Diaz, G. Chong
2005-01-01
Introduction: The Life in the Atacama (LITA) project includes rover field tests designed to look for life in the arid environment of the Atacama Desert (Chile). Field instruments were chosen to help remote observers identify potential habitats and the presence of life in these habitats, and included two spectrometers for help in identifying the mineralogy of the field sites. Two field trials were undertaken during the 2004 field season. The remote science team had no prior knowledge of the local geology, and relied entirely on orbital images and rover-acquired data to make interpretations. Each field trial lasted approximately one week: the sites for these trials were in different locations, and are designated "Site B" and "Site C."
A Study on the Deriving Requirements of ARGO Operation System
NASA Astrophysics Data System (ADS)
Seo, Yoon-Kyung; Rew, Dong-Young; Lim, Hyung-Chul; Park, In-Kwan; Yim, Hong-Suh; Jo, Jung Hyun; Park, Jong-Uk
2009-12-01
Korea Astronomy and Space Science Institute (KASI) has been developing one mobile and one stationary SLR system since 2008 named as ARGO-M and ARGO-F, respectively. KASI finished the step of deriving the system requirements of ARGO. The requirements include definitions and scopes of various software and hardware components which are necessary for developing the ARGO-M operation system. And the requirements define function, performance, and interface requirements. The operation system consisting of ARGO-M site, ARGO-F site, and Remote Operation Center (ROC) inside KASI is designed for remote access and the automatic tracking and control system which are the main operation concept of ARGO system. To accomplish remote operation, we are considering remote access to ARGO-F and ARGO-M from ROC. The mobile-phone service allows us to access the ARGO-F remotely and to control the system in an emergency. To implement fully automatic tracking and control function in ARGO-F, we have investigated and described the requirements about the automatic aircraft detection system and the various meteorological sensors. This paper addresses the requirements of ARGO Operation System.
Field Data Collection: an Essential Element in Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Pettinger, L. R.
1971-01-01
Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.
Type 1 Adenylyl Cyclase is Essential for Maintenance of Remote Contextual Fear Memory
Shan, Qiang; Chan, Guy C.-K.; Storm, Daniel R.
2008-01-01
Although molecular mechanisms for hippocampus-dependent memory have been extensively studied, much less is known about signaling events important for remote memory. Here we report that mice lacking type 1 adenylyl cyclase (AC1) are able to establish and retrieve remote contextual memory but unable to sustain it as long as wild type mice. Interestingly, mice over-expressing AC1 show superior remote contextual memory even though they exhibit normal hippocampus-dependent contextual memory. These data illustrate that calcium coupling to cAMP contributes to the stability of remote memory and identifies AC1 as a potential drug target site to improve long-term remote memory. PMID:19036980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mark Alan
This report documents progress on DOE Grant# DE-FG02-08ER64531 funded by the Department of Energy’s Atmospheric Systems Research (ASR) program covering the period between its inception in 2008 and its conclusion in 2014. The Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility #1 (AMF#1) is a collection of state-of-the art atmospheric sensing systems including remote and in situ instrumentation designed to characterize the atmospheric column above and in the immediate vicinity of the deployment location. The grant discussed in this report funded the activities of the AMF#1 Site Scientist Team. Broad responsibilities of this team included examining new deployment sites and recommendingmore » instrument deployment configurations; data quality control during the early stages of deployments and for certain instruments through the course of the deployment; scientific outreach in the host country or location (particularly international deployments); scientific research oriented toward basic questions about cloud physics and radiation transfer in the deployment region; and training of Ph.D. students to conduct future research relevant to the Atmospheric Systems Research (ASR) program.« less
NASA Astrophysics Data System (ADS)
Manzke, Nina; Kada, Martin; Kastler, Thomas; Xu, Shaojuan; de Lange, Norbert; Ehlers, Manfred
2016-06-01
Urban sprawl and the related landscape fragmentation is a Europe-wide challenge in the context of sustainable urban planning. The URBan land recycling Information services for Sustainable cities (URBIS) project aims for the development, implementation, and validation of web-based information services for urban vacant land in European functional urban areas in order to provide end-users with site specific characteristics and to facilitate the identification and evaluation of potential development areas. The URBIS services are developed based on open geospatial data. In particular, the Copernicus Urban Atlas thematic layers serve as the main data source for an initial inventory of sites. In combination with remotely sensed data like SPOT5 images and ancillary datasets like OpenStreetMap, detailed site specific information is extracted. Services are defined for three main categories: i) baseline services, which comprise an initial inventory and typology of urban land, ii) update services, which provide a regular inventory update as well as an analysis of urban land use dynamics and changes, and iii) thematic services, which deliver specific information tailored to end-users' needs.
NASA Astrophysics Data System (ADS)
Seiferlin, K.; Spohn, T.; Spice Team
The Netlander mission offers a unique opportunity to study the surface and the inte- rior of Mars at four different locations at the same time. In addition to real "network"- science, where the presence of four stations is a 'must' to address global science as- pects, local, landing site-related instruments can more than double our knowledge of the surface of Mars, compared to the three landing sites (Viking 1 and 2, Pathfinder) we are currently familiar with. The SPICE instrument will characterize the soil at the landing sites. Force sensors integrated into the seismometer legs (three per station) will determine the mechanical strength of the soil. Thermal sensors will measure the local soil temperature, the thermal inertia and the thermal diffusivity independently, thus allowing us to determine the thermal conductivity and the volumetric heat capac- ity of the soil. These properties will tell us about (1) soil cementation ("duricrust"), (2) volatile exchange with the atmosphere, (3) grain size, (4) near-surface stratigra- phy, and (5) will finally provide ground truth for remote sensing data such as that from Mars Global Surveyor's thermal emission spectrometer.
NASA Astrophysics Data System (ADS)
Hudson, E. D.; Ariya, P. A.
2005-12-01
The photochemical degradation of dissolved organic matter (DOM) in surface ocean waters is thought to be a source of volatile organic compounds (VOC) (including non-methane hydrocarbons and low MW carbonyl compounds) to the remote marine troposphere. We report on the characterization of DOM sampled at over 30 sites in the far North Atlantic (Greenland and Norwegian seas, Fram strait) during the summer of 2004, and on experiments to identify factors responsible for the photochemical generation of VOCs in these samples. The results will be discussed in the context of VOC profiles of whole air samples taken to match the seawater samples in time and space.
ERIC Educational Resources Information Center
Faulkner, Kathryn; McClelland, Linda
2002-01-01
A seminar on menopausal health was presented to a live audience and remote audiences at 10 sites in rural Queensland (Australia) via videoconferencing. Questionnaires completed by 128 audience members indicated positive reception of the content and delivery method. Similar replies from live and remote audience members indicated that the…
Ozone in remote areas of the Southern Rocky Mountains
Robert C. Musselman; John L. Korfmacher
2014-01-01
Ozone (O3) data are sparse for remote, non-urban mountain areas of the western U.S. Ozone was monitored 2007e2011 at high elevation sites in national forests in Colorado and northeastern Utah using a portable battery-powered O3 monitor. The data suggest that many of these remote locations already have O3 concentrations that would contribute to exceedance of the current...
ERIC Educational Resources Information Center
Newton, Robert; Marcella, Rita; Middleton, Iain; McConnell, Michael
This paper reports on ReMOTE (Research Methods Online Teaching Environment), a Robert Gordon University (Scotland) project focusing on the development of a World Wide Web (WWW) site devoted to the teaching of research methods. The aim of ReMOTE is to provide an infrastructure that allows direct links to specialist sources in order to enable the…
Improving the safety of remote site emergency airway management.
Wijesuriya, Julian; Brand, Jonathan
2014-01-01
Airway management, particularly in non-theatre settings, is an area of anaesthesia and critical care associated with significant risk of morbidity & mortality, as highlighted during the 4th National Audit Project of the Royal College of Anaesthetists (NAP4). A survey of junior anaesthetists at our hospital highlighted a lack of confidence and perceived lack of safety in emergency airway management, especially in non-theatre settings. We developed and implemented a multifaceted airway package designed to improve the safety of remote site airway management. A Rapid Sequence Induction (RSI) checklist was developed; this was combined with new advanced airway equipment and drugs bags. Additionally, new carbon dioxide detector filters were procured in order to comply with NAP4 monitoring recommendations. The RSI checklists were placed in key locations throughout the hospital and the drugs and advanced airway equipment bags were centralised in the Intensive Care Unit (ICU). It was agreed with the senior nursing staff that an appropriately trained ICU nurse would attend all emergency situations with new airway resources upon request. Departmental guidelines were updated to include details of the new resources and the on-call anaesthetist's responsibilities regarding checks and maintenance. Following our intervention trainees reported higher confidence levels regarding remote site emergency airway management. Nine trusts within the Northern Region were surveyed and we found large variations in the provision of remote site airway management resources. Complications in remote site airway management due lack of available appropriate drugs, equipment or trained staff are potentially life threatening and completely avoidable. Utilising the intervention package an anaesthetist would be able to safely plan and prepare for airway management in any setting. They would subsequently have the drugs, equipment, and trained assistance required to manage any difficulties or complications. We suggest that this should be the gold standard of airway resource provision and is in line with NAP4 recommendations.
NASA Technical Reports Server (NTRS)
McDonald, K. C.; Zimmerman, R.; Way, J. B.
1994-01-01
The occurrence and magnitude of temporal and spatial tree water status changes in the boreal environment were studied in a floodplain forest in Alaska and in four forest types of Central Canada. Under limited water supply conditions from the rooted soil zone in early spring (freeze/thaw transition) and during summer, trees show declining water potentials. Coincidental change in tree water potential, tree transpiration and tree dielectric constant had been observed in previous studies performed in Mediterranean ecotones. If radar is sensitive to chances in tree water status as reflected through changes in dielectric constant, then radar remote sensing could be used to monitor the water status of forests. The SAR imagery is examined to determine the response of the radar backscatter to the ground based observations of the water status of forest canopies. Comparisons are made between stands and also along the large North-South gradient between sites. Data from SAR are used to examine the radar response to canopy physiological state as related to vegetation freeze/thaw and growing season length.
NASA Astrophysics Data System (ADS)
Brownlow, R.; Lowry, D.; Thomas, R. M.; Fisher, R. E.; France, J. L.; Cain, M.; Richardson, T. S.; Greatwood, C.; Freer, J.; Pyle, J. A.; MacKenzie, A. R.; Nisbet, E. G.
2016-11-01
Ascension Island is a remote South Atlantic equatorial site, ideal for monitoring tropical background CH4. In September 2014 and July 2015, octocopters were used to collect air samples in Tedlar bags from different heights above and below the well-defined Trade Wind Inversion (TWI), sampling a maximum altitude of 2700 m above mean sea level. Sampling captured both remote air in the marine boundary layer below the TWI and also air masses above the TWI that had been lofted by convective systems in the African tropics. Air above the TWI was characterized by higher CH4, but no distinct shift in δ13C was observed compared to the air below. Back trajectories indicate that lofted CH4 emissions from Southern Hemisphere Africa have bulk δ13CCH4 signatures similar to background, suggesting mixed emissions from wetlands, agriculture, and biomass burning. The campaigns illustrate the usefulness of unmanned aerial system sampling and Ascension's value for atmospheric measurement in an understudied region.
Exobiological exploration of Mars.
Klein, H P; DeVincenzi, D L
1995-03-01
Of all the other planets in the solar system, Mars remains the most promising for further elucidating concepts about chemical evolution and the origin of life. Strategies were developed to pursue three exobiological objectives for Mars exploration: determining the abundance and distribution of the biogenic elements and organic compounds, detecting evidence of an ancient biota on Mars, and determining whether indigenous organisms exist anywhere on the planet. The three strategies are quite similar and, in fact, share the same sequence of phases. In the first phase, each requires global reconnaissance and remote sensing by orbiters to select sites of interest for detailed in situ analyses. In the second phase, lander missions are conducted to characterize the chemical and physical properties of the selected sites. The third phase involves conducting "critical" experiments at sites whose properties make them particularly attractive for exobiology. These critical experiments would include, for example, identification of organics, detection of fossils, and detection of extant life. The fourth phase is the detailed analysis of samples returned from these sites in Earth-based laboratories to confirm and extend previous discoveries. Finally, in the fifth phase, human exploration is needed to establish the geological settings for the earlier findings or to discover and explore sites that are not accessible to robotic spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, Howard A.
This report presents results of multiple research projects, new and ongoing, funded under the Site-Directed Research and Development Program for the Nevada National Security Site during federal fiscal year 2015. The Site's legacy capabilities in remote sensing combined with new paradigms for emergency response and consequence management help drive the need to develop advanced aerial sensor platforms. Likewise, dynamic materials science is a critical area of scientific research for which basic physics issues are still unresolved. New methods of characterizing materials in extreme states are vitally needed, and these efforts are paving the way with new knowledge. Projects selected inmore » FY 2015 for the Exploratory Research portfolio exhibit a strong balance of NNSS mission relevance. Geoscience, seismology, and techniques for detecting underground nuclear events are still essential focus areas. Many of the project reports in the second major section of this annual report are ongoing continuations in multi-year lifecycles. Diagnostic techniques for stockpile and nuclear security science figured prominently as well, with a few key efforts coming to fruition, such as phase transition detection. In other areas, modeling efforts toward better understanding plasma focus physics has also started to pay dividends for major program needs.« less
Schutte, Jamie L; McCue, Michael P; Parmanto, Bambang; McGonigle, John; Handen, Benjamin; Lewis, Allen; Pulantara, I Wayan; Saptono, Andi
2015-03-01
The Autism Diagnostic Observation Schedule (ADOS) Module 4 is an autism assessment designed for verbally fluent adolescents and adults. Because of a shortage of available clinical expertise, it can be difficult for adults to receive a proper autism spectrum disorder (ASD) diagnostic assessment. A potential option to address this shortage is remote assessment. The objective of this study was to examine the feasibility, usability, and reliability of administering the ADOS Module 4 remotely using the Versatile and Integrated System for Telerehabilitation (VISYTER). VISYTER consists of computer stations at the client site and clinician site for video communication and a Web portal for managing and coordinating the assessment process. Twenty-three adults with an ASD diagnosis participated in a within-subject crossover design study in which both a remote ADOS and a face-to-face ADOS were administered. After completing the remote ADOS, participants completed a satisfaction survey. Participant satisfaction with the remote ADOS delivery system was high. The kappa value was greater than 0.61 on 21 of 31 ADOS items. There was substantial agreement on ADOS classification (i.e., diagnosis) between assessments delivered face-to-face versus assessments delivered remotely (interclass coefficient=0.92). Non-agreement may have been due to outside factors or practice effect despite a washout period. The results of this study demonstrate that an autism assessment designed to be delivered face to face can be administered remotely using an integrated Web-based system with high levels of usability and reliability.
AVIRIS data and neural networks applied to an urban ecosystem
NASA Technical Reports Server (NTRS)
Ridd, Merrill K.; Ritter, Niles D.; Bryant, Nevin A.; Green, Robert O.
1992-01-01
Urbanization is expanding on every continent. Although urban/industrial areas occupy a small percentage of the total landscape of the earth, their influence extends far beyond their borders, affecting terrestrial, aquatic, and atmospheric systems globally. Yet little has been done to characterize urban ecosystems of their linkages to other systems horizontally or vertically. With remote sensing we now have the tools to characterize, monitor, and model urban landscapes world-wide. However, the remote sensing performed on cities so far has concentrated on land-use patterns as distinct from land-cover or composition. The popular Anderson system is entirely land-use oriented in urban areas. This paper begins with the premise that characterizing the biophysical composition of urban environments is fundamental to understanding urban/industrial ecosystems, and, in turn, supports the modeling of other systems interfacing with urban systems. Further, it is contended that remote sensing is a tool poised to provide the biophysical composition data to characterize urban landscapes.
Datla, R. U.; Rice, J. P.; Lykke, K. R.; Johnson, B. C.; Butler, J. J.; Xiong, X.
2011-01-01
The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented. PMID:26989588
Use of remote-sensing techniques to survey the physical habitat of large rivers
Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.; Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffrey W.; Kennedy, Gregory W.; Smith, Stephen B.
1997-01-01
Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.
Datla, R U; Rice, J P; Lykke, K R; Johnson, B C; Butler, J J; Xiong, X
2011-01-01
The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oney, Stephen K.; Hogan, Timothy; Steinbeck, John
Ocean thermal energy conversion (OTEC) is a marine renewable energy technology with the potential to contribute significantly to the baseload power needs of tropical island communities and remote U.S. military installations. As with other renewable energy technologies, however, there are potential challenges to its commercialization: technological, financial, social, and environmental. Given the large volumes of seawater required to drive the electricity-producing cycle, there is potential for the intakes to negatively impact the marine resources of the source waterbody through the impingement and entrainment of marine organisms. The goal of this project was to identify feasible warm water intake designs formore » a land-based OTEC facility proposed for development in Port Allen, Kauai and to characterize the populations of ichthyoplankton near the proposed warm water intake location that could be at risk of entrainment. The specific objectives of this project were to: • Complete a site-specific assessment of available and feasible warm water intake technologies to determine the best intake designs for minimizing impacts to aquatic organisms at the proposed land-based OTEC site in Port Allen, Kauai. • Complete a field sampling program to collect biological data to characterize the baseline populations of ichthyoplankton near the sites being considered for the warm water intake at the proposed land-based OTEC site in Port Allen, Kauai. Various intake design options are presented with the focus on providing adequate environmental protection to the local ichthyoplankton population while providing an economically viable intake option to the OTEC developer. Further definition by NOAA and other environmental regulators is required to further refine the designs presented to meet all US regulations for future OTEC development.« less
Los Alamos National Laboratory Research Library Search Site submit Contact Us | Remote Access | Subject Guides Los Alamos National Laboratory Menu Contacts Remote Catalog About Awards Electronic Public Research Library: delivering essential knowledge services for national security sciences since 1947 Los
Remote sensing of rangeland biodiversity
USDA-ARS?s Scientific Manuscript database
Rangelands are managed based on state and transition models for an ecological site. Transitions to alternative ecological states are indicative of degrading rangelands. Three key variables may be remotely sensed to detect transitions between alternative states: amount of bare soil, presence of inva...
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.
1976-01-01
A self-contained and portable device which permits clinical electroencephalography (EEG) to be conducted in remote locations by minimally trained, nontechnical personnel was developed and tested. The unit accomplishes semiautomatic acquisition of EEG data from the patient, simultaneous transmission of eight data channels to a central hospital facility over conventional telephone equipment, and automatic printing (at the remote site) of the EEG report generated at the central location. Consequently, this system enables the delivery of high-quality EEG diagnostic services in a geographically remote site with the accuracy and speed formerly possible only in certain large medical centers. Beside obvious potential clinical applications, this system serves as an initial prototype of a unit which could provide inflight EEG during future space missions.
Offshore Wind Resource Characterization | Wind | NREL
identify critical data needed. Remote Sensing and Modeling Photo of the SeaZephIR Prototype at sea. 2009 techniques such as remote sensing and modeling to provide data on design conditions. Research includes comparing the data provided by remote sensing devices and models to data collected by traditional methods
NASA Astrophysics Data System (ADS)
Bressler, R. D.
1981-11-01
This quarterly technical report describes work on the development of and experimentation with packet broadcast by satellite; on development of Pluribus Satellite IMPs; on a study of the technology of Remote Site Maintenance; on Internetwork monitoring; on shipboard satellite communications; and on the development of Transmission Control Protocols for the HP3000, TAC, and VAX-UNIX.
Echo the Bat and the Pigeon Adventure
NASA Technical Reports Server (NTRS)
Butcher, Ginger
2000-01-01
A multimedia, CD ROM to teach 2nd graders about remote sensing was created and developed into a web site. Distribution was expanded for Grades K-4 or 5-8. The idea was to have a story introduction, interactive story and a teacher's website. Interactive Multimedia Adventures in Grade School Education using Remote Sensing (I.M.A.G.E.R.S.) was created. The lessons are easy to use, readily available and aligned with national standards. This resource combines hands-on activities with an interactive web site
Applications of remote sensing to estuarine problems. [estuaries of Chesapeake Bay
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.
1975-01-01
A variety of siting problems for the estuaries of the lower Chesapeake Bay have been solved with cost beneficial remote sensing techniques. Principal techniques used were repetitive 1:30,000 color photography of dye emitting buoys to map circulation patterns, and investigation of water color boundaries via color and color infrared imagery to scales of 1:120,000. Problems solved included sewage outfall siting, shoreline preservation and enhancement, oil pollution risk assessment, and protection of shellfish beds from dredge operations.
NASA Technical Reports Server (NTRS)
Hypes, W. D.; Ohlhorst, C. W.
1977-01-01
Two remote sensor evaluation experiments are discussed. One experiment was conducted at the DuPont acid-dump site off the Delaware coast. The second was conducted at an organic waste outfall in the Delaware River. The operational objective of obtaining simultaneous sea truth sampling with remote sensors overpasses was met. Descriptions of the test sites, sensors, sensor platforms, flight lines, sea truth data collected, and operational chronology are presented.
NASA Technical Reports Server (NTRS)
Hypes, W. D.; Wallace, J. W.; Gurganus, E. A.
1977-01-01
A remote sensor experiment was conducted at a sewage sludge dump site off the Delaware/Maryland coast. Two aircraft serving as remote sensor platforms flew over the dump site during a sludge dump. One aircraft carried a multispectral scanner and the other aircraft carried a rapid scanning spectrometer. Data from sea-truth stations were collected concurrent with overpasses of the aircraft. All sensors were operational and produced good digital data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revercomb, Henry; Tobin, David; Knuteson, Robert
2009-06-17
This grant began with the development of the Atmospheric Emitted Radiance Interferometer (AERI) for ARM. The AERI has provided highly accurate and reliable observations of downwelling spectral radiance (Knuteson et al. 2004a, 2004b) for application to radiative transfer, remote sensing of boundary layer temperature and water vapor, and cloud characterization. One of the major contributions of the ARM program has been its success in improving radiation calculation capabilities for models and remote sensing that evolved from the multi-year, clear-sky spectral radiance comparisons between AERI radiances and line-by-line calculations (Turner et al. 2004). This effort also spurred us to play amore » central role in improving the accuracy of water vapor measurements, again helping ARM lead the way in the community (Turner et al. 2003a, Revercomb et al. 2003). In order to add high-altitude downlooking AERI-like observations over the ARM sites, we began the development of an airborne AERI instrument that has become known as the Scanning High-resolution Interferometer Sounder (Scanning-HIS). This instrument has become an integral part of the ARM Unmanned Aerospace Vehicle (ARM-UAV) program. It provides both a cross-track mapping view of the earth and an uplooking view from the 12-15 km altitude of the Scaled Composites Proteus aircraft when flown over the ARM sites for IOPs. It has successfully participated in the first two legs of the “grand tour” of the ARM sites (SGP and NSA), resulting in a very good comparison with AIRS observations in 2002 and in an especially interesting data set from the arctic during the Mixed-Phase Cloud Experiment (M-PACE) in 2004.« less
Object-Oriented Image Clustering Method Using UAS Photogrammetric Imagery
NASA Astrophysics Data System (ADS)
Lin, Y.; Larson, A.; Schultz-Fellenz, E. S.; Sussman, A. J.; Swanson, E.; Coppersmith, R.
2016-12-01
Unmanned Aerial Systems (UAS) have been used widely as an imaging modality to obtain remotely sensed multi-band surface imagery, and are growing in popularity due to their efficiency, ease of use, and affordability. Los Alamos National Laboratory (LANL) has employed the use of UAS for geologic site characterization and change detection studies at a variety of field sites. The deployed UAS equipped with a standard visible band camera to collect imagery datasets. Based on the imagery collected, we use deep sparse algorithmic processing to detect and discriminate subtle topographic features created or impacted by subsurface activities. In this work, we develop an object-oriented remote sensing imagery clustering method for land cover classification. To improve the clustering and segmentation accuracy, instead of using conventional pixel-based clustering methods, we integrate the spatial information from neighboring regions to create super-pixels to avoid salt-and-pepper noise and subsequent over-segmentation. To further improve robustness of our clustering method, we also incorporate a custom digital elevation model (DEM) dataset generated using a structure-from-motion (SfM) algorithm together with the red, green, and blue (RGB) band data for clustering. In particular, we first employ an agglomerative clustering to create an initial segmentation map, from where every object is treated as a single (new) pixel. Based on the new pixels obtained, we generate new features to implement another level of clustering. We employ our clustering method to the RGB+DEM datasets collected at the field site. Through binary clustering and multi-object clustering tests, we verify that our method can accurately separate vegetation from non-vegetation regions, and are also able to differentiate object features on the surface.
NASA Astrophysics Data System (ADS)
Wang, Xun; Lin, Che-Jen; Lu, Zhiyun; Zhang, Hui; Zhang, Yiping; Feng, Xinbin
2016-08-01
Forest ecosystems play an important role in the global cycling of mercury (Hg). In this study, we characterized the Hg cycling at a remote evergreen broadleaf (EB) forest site in southwest China (Mount Ailao). The annual Hg input via litterfall is estimated to be 75.0 ± 24.2 µg m-2 yr-1 at Mount Ailao. Such a quantity is up to 1 order of magnitude greater than those observed at remote temperate/boreal (T/B) forest sites. Production of litter biomass is found to be the most influential factor causing the high Hg input to the EB forest. Given their large areal coverage, Hg deposition through litterfall in EB forests is appropriately 9 ± 5 Mg yr-1 in China and 1086 ± 775 Mg yr-1 globally. The observed wet Hg deposition at Mount Ailao is 4.9 ± 4.5 µg m-2 yr-1, falling in the lower range of those observed at 49 T/B forest sites in North America and Europe. Given the data, the Hg deposition flux through litterfall is approximately 15 times higher than the wet Hg deposition at Mount Ailao. Steady Hg accumulation in decomposing litter biomass and Hg uptake from the environment were observed during 25 months of litter decomposition. The size of the Hg pool in the organic horizon of EB forest floors is estimated to be up to 2-10 times the typical pool size in T/B forests. This study highlights the importance of EB forest ecosystems in global Hg cycling, which requires further assessment when more data become available in tropical forests.
Environmental studies of the World Trade Center area after the September 11, 2001 attack
Clark, Roger N.; Green, Robert O.; Swayze, Gregg A.; Meeker, Greg; Sutley, Steve; Hoefen, Todd M.; Livo, K. Eric; Plumlee, Geoff; Pavri, Betina; Sarture, Chuck; Wilson, Steve; Hageman, Phil; Lamothe, Paul; Vance, J. Sam; Boardman, Joe; Brownfield, Isabelle; Gent, Carol; Morath, Laurie C.; Taggart, Joseph; Theodorakos, Peter M.; Adams, Monique
2001-01-01
This web site describes the results of an interdisciplinary environmental characterization of the World Trade Center (WTC) area after September 11, 2001.Information presented in this site was first made available to the World Trade Center emergency response teams on September 18, 2001 (Thermal hot spot information), and September 27, 2001 (maps and compositional results).The Airborne Visible / Infrared Imaging Spectrometer (AVIRIS), a hyperspectral remote sensing instrument, was flown by JPL/NASA over the World Trade Center (WTC) area on September 16, 18, 22, and 23, 2001 ( Link to the AVIRIS JPL data facility). A 2-person USGS crew collected samples of dusts and airfall debris from more than 35 localities within a 1-km radius of the World trade Center site on the evenings of September 17 and 18, 2001. Two samples were collected of indoor locations that were presumably not affected by rainfall (there was a rainstorm on September 14). Two samples of material coating a steel beam in the WTC debris were also collected. The USGS ground crew also carried out on-the-ground reflectance spectroscopy measurements during daylight hours to field calibrate AVIRIS remote sensing data. Radiance calibration and rectification of the AVIRIS data were done at JPL/NASA. Surface reflectance calibration, spectral mapping, and interpretation were done at the USGS Imaging Spectroscopy Lab in Denver. The dust/debris and beam-insulation samples were analyzed for a variety of mineralogical and chemical parameters using Reflectance Spectroscopy (RS), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), chemical analysis, and chemical leach test techniques in U.S. Geological Survey laboratories in Denver, Colorado.
Soil Sampling Techniques For Alabama Grain Fields
NASA Technical Reports Server (NTRS)
Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.
2003-01-01
Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.
NASA Astrophysics Data System (ADS)
Bang, Jisu
Field-scale characterization of soil spatial variability using remote sensing technology has potential for achieving the successful implementation of site-specific management (SSM). The objectives of this study were to: (i) examine the spatial relationships between apparent soil electrical conductivity (EC a) and soil chemical and physical properties to determine if EC a could be useful to characterize soil properties related to crop productivity in the Coastal Plain and Piedmont of North Carolina; (ii) evaluate the effects of in-situ soil moisture variation on ECa mapping as a basis for characterization of soil spatial variability and as a data layer in cluster analysis as a means of delineating sampling zones; (iii) evaluate clustering approaches using different variable sets for management zone delineation to characterize spatial variability in soil nutrient levels and crop yields. Studies were conducted in two fields in the Piedmont and three fields in the Coastal Plain of North Carolina. Spatial measurements of ECa via electromagnetic induction (EMI) were compared with soil chemical parameters (extractable P, K, and micronutrients; pH, cation exchange capacity [CEC], humic matter or soil organic matter; and physical parameters (percentage sand, silt, and clay; and plant-available water [PAW] content; bulk density; cone index; saturated hydraulic conductivity [Ksat] in one of the coastal plain fields) using correlation analysis across fields. We also collected ECa measurements in one coastal plain field on four days with significantly different naturally occurring soil moisture conditions measured in five increments to 0.75 m using profiling time-domain reflectometry probes to evaluate the temporal variability of ECa associated with changes in in-situ soil moisture content. Nonhierarchical k-means cluster analysis using sensor-based field attributes including vertical ECa, near-infrared (NIR) radiance of bare-soil from an aerial color infrared (CIR) image, elevation, slope, and their combinations was performed to delineate management zones. The strengths and signs of the correlations between ECa and measured soil properties varied among fields. Few strong direct correlations were found between ECa and the soil chemical and physical properties studied (r2 < 0.50), but correlations improved considerably when zone mean ECa and zone means of selected soil properties among ECa zones were compared. The results suggested that field-scale ECa survey is not able to directly predict soil nutrient levels at any specific location, but could delimit distinct zones of soil condition among which soil nutrient levels differ, providing an effective basis for soil sampling on a zone basis. (Abstract shortened by UMI.)
Studied the geomorphogy, soil and water resources in south Egypt using geoinformation technology
NASA Astrophysics Data System (ADS)
Fayed, Abdalla; Abdel Aziz, Belal
2010-05-01
The mean objective of this study was to study the geomorphology, soil and water resources in the studied area using remote sensing techniques and GIS. The studied located in between latitudes 24o 20' and 24o 40' N and longitudes 32o 45' and 33o 40' E in Kom Ombo , Aswan governorate. The climatic situation of the studied area is characterized by a long hot dry summer, a short mild winter with little rainfall, high evaporation and low relative humidity. Based on the interpretation of ETM remote data, GIS and 3Dview the following natural resources were detected. The geomorpholical unites in the studied were Nile valley and Kom Ombo plain. Soil types were clay soil is occurred in the old cultivated land. But it is medium to coarse grained fluvial sand with gravel in the reclaimed areas. The land use and land cover for the studied area were old cultivated land, urban area and channels. Three main groundwater aquifers were confirmed, these are the Nubian sandstones aquifer, the Eocene fissured limestone aquifer and the Quaternary alluvial aquifer. Kom Ombo is the ancient site of Ombos, which is from the ancient Egyptian word ‘nubt', or ‘City of Gold'. In ancient Egypt, the city was important to the caravan routes from Nubia and various gold mines. Keywords: Remote sensing, GIS, 3D model, Natural Resources Kom Ombo
Concepts in Electromagnetic Scattering for Particulate-Systems Characterization
2013-04-29
scientists attended and 19 presentations were given. Specific topics included remote sensing, polarimetry , analytic and numeric electromagnetic...presentations were given. Specific topics included remote sensing, polarimetry , ana- lytic and numeric electromagnetic theory, camouflage in nature
Practical lessons in remote connectivity.
Kouroubali, A.; Starren, J.; Barrows, R. C.; Clayton, P. D.
1997-01-01
Community Health Information Networks (CHINs) require the ability to provide computer network connections to many remote sites. During the implementation of the Washington Heights and Inwood Community Health Management Information System (WHICHIS) at the Columbia-Presbyterian Medical Center (CPMC), a number of remote connectivity issues have been encountered. Both technical and non-technical issues were significant during the installation. We developed a work-flow model for this process which may be helpful to any health care institution attempting to provide seamless remote connectivity. This model is presented and implementation lessons are discussed. PMID:9357643
Extending IPsec for Efficient Remote Attestation
NASA Astrophysics Data System (ADS)
Sadeghi, Ahmad-Reza; Schulz, Steffen
When establishing a VPN to connect different sites of a network, the integrity of the involved VPN endpoints is often a major security concern. Based on the Trusted Platform Module (TPM), available in many computing platforms today, remote attestation mechanisms can be used to evaluate the internal state of remote endpoints automatically. However, existing protocols and extensions are either unsuited for use with IPsec or impose considerable additional implementation complexity and protocol overhead.
Vegetation shifts observed in arctic tundra 17 years after fire
Barrett, Kirsten; Rocha, Adrian V.; van de Weg, Martine Janet; Shaver, Gaius
2012-01-01
With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote-sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared with the control site, whereas the late-season signal is slightly higher. The range and maximum vegetation index are greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of moss in the unburned site, which may account for the high early growing season normalized difference vegetation index (NDVI) anomaly relative to the burn. The abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites may also be responsible for the spectral differences observed in the remotely sensed imagery. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate and vegetation succession.
American black bear denning behavior: Observations and applications using remote photography
Bridges, A.S.; Fox, J.A.; Olfenbuttel, C.; Vaughan, M.B.
2004-01-01
Researchers examining American black bear (Ursus americanus) denning behavior have relied primarily on den-site visitation and radiotelemetry to gather data. Repeated den-site visits are time-intensive and may disturb denning bears, possibly causing den abandonment, whereas radiotelemetry is sufficient only to provide gross data on den emergence. We used remote cameras to examine black bear denning behavior in the Allegheny Mountains of western Virginia during March-May 2003. We deployed cameras at 10 den sites and used 137 pictures of black bears. Adult female black bears exhibited greater extra-den activity than we expected prior to final den emergence, which occurred between April 12 and May 6, 2003. Our technique provided more accurate den-emergence estimation than previously published methodologies. Additionally, we observed seldom-documented behaviors associated with den exits and estimated cub age at den emergence. Remote cameras can provide unique insights into denning ecology, and we describe their potential application to reproductive, survival, and behavioral research.
Development and demonstration of a telerobotic excavation system
NASA Technical Reports Server (NTRS)
Burks, Barry L.; Thompson, David H.; Killough, Stephen M.; Dinkins, Marion A.
1994-01-01
Oak Ridge National Laboratory is developing remote excavation technologies for the Department of Energy's Office (DOE) of Technology Development, Robotics Technology Development Program, and also for the Department of Defense (DOD) Project Manager for Ammunition Logistics. This work is being done to meet the need for remote excavation and removal of radioactive and contaminated buried waste at several DOE sites and unexploded ordnance at DOD sites. System requirements are based on the need to uncover and remove waste from burial sites in a way that does not cause unnecessary personnel exposure or additional environmental contamination. Goals for the current project are to demonstrate dexterous control of a backhoe with force feedback and to implement robotic operations that will improve productivity. The Telerobotic Small Emplacement Excavator is a prototype system that incorporates the needed robotic and telerobotic capabilities on a commercially available platform. The ability to add remote dexterous teleoperation and robotic operating modes is intended to be adaptable to other commercially available excavator systems.
Shannon, Gary William; Buker, Carol Marie
2010-01-01
Teledermatology provides a partial solution to the problem of accessibility to dermatology services in underserved areas, yet methodologies to determine the locations and geographic dimensions of these areas and the locational efficiency of remote teledermatology sites have been found wanting. This article illustrates an innovative Geographic Information Systems approach using dermatologists' addresses, U.S. Census population data, and the Topologically Integrated Geographic Encoding and Referencing System. Travel-time-based service areas were calculated and mapped for each dermatologist in the state of Kentucky and for possible locations of several remote teledermatology sites. Populations within the current and possible remote service areas were determined. These populations and associated maps permit assessment of the locational efficiency of the current distribution of dermatologists, location of underserved areas, and the potential contribution of proposed hypothetical teledermatology sites. This approach is a valuable and practical tool for evaluating access to current distributions of dermatologists as well as planning for and implementing teledermatology.
AmeriFlux US-Blo Blodgett Forest
Goldstein, Allen [University of California, Berkeley
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Blo Blodgett Forest. Site Description - The flux tower site at Blodgett Forest is on a 1200 ha parcel of land owned by Sierra Pacific Industries in the Sierra Nevada range near Georgetown, California. The field site was established in May 1997 with continuous operation since May 1999. The site is situated in a ponderosa pine plantation, mixed-evergreen coniferous forest, located adjacent to Blodgett Forest Research Station. The Mediterranean-type climate of California is characterized by a protracted summer drought, with precipitation occurring mainly from October through May. The infrastructure for the ecosystem scale flux measurements includes a walkup measurement tower, two temperature controlled instrument buildings, and an electrical generation system powered by a diesel generator. Typical wind patterns at the site include upslope flow during the day (from the west) and downslope flow at night (from the east). The plantation is relatively flat, and contains a homogenous mixture of evenly aged ponderosa pine with other trees and shrubs scattered throughout the ecosystem making up less than 30% of the biomass. The daytime fetch for the tower measurements extends approximately 200 m to the southwest of the tower (this region contributes ~90% of the daytime flux), thus remote sensing images to be used for modeling should probably be centered approximately 100 m from the tower at an angle of 225 deg.
People, Places and Pixels: Remote Sensing in the Service of Society
NASA Technical Reports Server (NTRS)
Lulla, Kamlesh
2003-01-01
What is the role of Earth remote sensing and other geospatial technologies in our society? Recent global events have brought into focus the role of geospatial science and technology such as remote sensing, GIS, GPS in assisting the professionals who are responsible for operations such as rescue and recovery of sites after a disaster or a terrorist act. This paper reviews the use of recent remote sensing products from satellites such as IKONOS in these efforts. Aerial and satellite imagery used in land mine detection has been evaluated and the results of this evaluation will be discussed. Synopsis of current and future ISS Earth Remote Sensing capabilities will be provided. The role of future missions in humanitarian use of remote sensing will be explored.
CommServer: A Communications Manager For Remote Data Sites
NASA Astrophysics Data System (ADS)
Irving, K.; Kane, D. L.
2012-12-01
CommServer is a software system that manages making connections to remote data-gathering stations, providing a simple network interface to client applications. The client requests a connection to a site by name, and the server establishes the connection, providing a bidirectional channel between the client and the target site if successful. CommServer was developed to manage networks of FreeWave serial data radios with multiple data sites, repeaters, and network-accessed base stations, and has been in continuous operational use for several years. Support for Iridium modems using RUDICS will be added soon, and no changes to the application interface are anticipated. CommServer is implemented on Linux using programs written in bash shell, Python, Perl, AWK, under a set of conventions we refer to as ThinObject.
NASA Astrophysics Data System (ADS)
Zhang, Xinghua; Xu, Jianzhong; Kang, Shichang; Liu, Yanmei; Zhang, Qi
2018-04-01
An intensive field measurement was conducted at a remote, background, high-altitude site (Qomolangma Station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from 12 April to 12 May 2016 to chemically characterize the high time-resolved submicron particulate matter (PM1) and obtain the dynamic processes (emissions, transport, and chemical evolution) of biomass burning (BB), frequently transported from South Asia to the Himalayas during pre-monsoon season. Overall, the average (±1σ) PM1 mass concentration was 4.44 (±4.54) µg m-3 for the entire study, which is comparable with those observed at other remote sites worldwide. Organic aerosol (OA) was the dominant PM1 species (accounting for 54.3 % of total PM1 on average) followed by black carbon (BC) (25.0 %), sulfate (9.3 %), ammonium (5.8 %), nitrate (5.1 %), and chloride (0.4 %). The average size distributions of PM1 species all peaked at an overlapping accumulation mode (˜ 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transport. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a BB-related OA (BBOA, 43.7 %), a nitrogen-containing OA (NOA, 13.9 %) and a more-oxidized oxygenated OA (MO-OOA, 42.4 %). Two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions from the west and southwest of QOMS during the study were observed. A typical BB plume was investigated in detail to illustrate the chemical evolution of aerosol characteristics under distinct air mass origins, meteorological conditions, and atmospheric oxidation processes.
NASA Astrophysics Data System (ADS)
Pisek, Jan; He, Liming; Chen, Jing; Govind, Ajit; Sprintsin, Michael; Ryu, Youngryel; Arndt, Stefan; Hocking, Darren; Wardlaw, Timothy; Kuusk, Joel; Oliphant, Andrew; Korhonen, Lauri; Fang, Hongliang; Matteucci, Giorgio; Longdoz, Bernard; Raabe, Kairi
2015-04-01
Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m in particular can provide good quality clumping index estimates at pertinent scales for modeling local carbon and energy fluxes.
NASA Astrophysics Data System (ADS)
Pisek, J.; He, L.; Chen, J. M.; Govind, A.; Sprintsin, M.; Ryu, Y.; Arndt, S. K.; Hocking, D.; Wardlaw, T.; Kuusk, J.; Oliphant, A. J.; Korhonen, L.; Fang, H.; Matteucci, G.; Longdoz, B.; Raabe, K.
2015-12-01
Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m resolution in particular can provide good quality clumping index estimates at pertinent scales for modeling local carbon and energy fluxes.
Characterization and analysis of pasture degradation in Rondonia using remote sensing
NASA Astrophysics Data System (ADS)
Numata, Izaya
2006-04-01
Although pasture degradation has been a regional concern in Amazonian ecosystems, our ability to characterize and monitor pasture degradation under different environmental and human-related conditions is still limited. This dissertation evaluated pasture degradation as it varied due to environmental and human factors across different scales by combining field measures, ancillary data, and remote sensing. To better understand the link between pasture nutrients and soil chemistry, samples were analyzed in the laboratory demonstrating that pasture soil fertility and grass nutrients varied significantly according to soil order. Pastures established on Alfisols, nutrient-rich soils, had higher levels of Phosphorus in soil and grass compared to pastures established on Oxisols and Ultisols. To evaluate remote sensing measures of pasture biophysical properties related to pasture degradation, remote sensing analysis focused on a variety of sensors that provide a range in spatial, spectral and temporal scales, including Landsat Thematic Mapper (TM), a field spectrometer, Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). Of the measures derived from Landsat, degraded pastures were best characterized by high non-photosynthetic vegetation (NPV) and low shade fractions, while pastures with high biomass were characterized by high green vegetation and low NPV fractions. Absorption features calculated from hyperspectral spectra collected in the field, including water and ligno-cellulose absorption depth and area, provided the best estimates of field grass measures. Temporal MODIS Normalized Difference Vegetation Index (NDVI) data were used to characterize changes in pasture quality across the region and through time. Degraded pastures were characterized by low temporal NDVI variation and occurred in dry or very wet climate conditions and on nutrient poor soils. Productive pastures were characterized by high temporal NDVI variation, were predominantly found more in the central part of the state, and were located in areas with milder climate conditions and relatively more fertile soils. As a general trend of regional pasture change in Rondonia, the proportions of productive pastures decreased and degraded pastures increased as pastures aged. The results obtained in this dissertation will contribute to understanding pasture sustainability needs for the future of Rondonia and provide the first step in monitoring pasture degradation in the Amazon using remote sensing.
NASA Technical Reports Server (NTRS)
Giardino, Marco J.; Haley, Bryan S.
2005-01-01
Cultural resource management consists of research to identify, evaluate, document and assess cultural resources, planning to assist in decision-making, and stewardship to implement the preservation, protection and interpretation of these decisions and plans. One technique that may be useful in cultural resource management archaeology is remote sensing. It is the acquisition of data and derivative information about objects or materials (targets) located on the Earth's surface or in its atmosphere by using sensor mounted on platforms located at a distance from the targets to make measurements on interactions between the targets and electromagnetic radiation. Included in this definition are systems that acquire imagery by photographic methods and digital multispectral sensors. Data collected by digital multispectral sensors on aircraft and satellite platforms play a prominent role in many earth science applications, including land cover mapping, geology, soil science, agriculture, forestry, water resource management, urban and regional planning, and environmental assessments. Inherent in the analysis of remotely sensed data is the use of computer-based image processing techniques. Geographical information systems (GIS), designed for collecting, managing, and analyzing spatial information, are also useful in the analysis of remotely sensed data. A GIS can be used to integrate diverse types of spatially referenced digital data, including remotely sensed and map data. In archaeology, these tools have been used in various ways to aid in cultural resource projects. For example, they have been used to predict the presence of archaeological resources using modern environmental indicators. Remote sensing techniques have also been used to directly detect the presence of unknown sites based on the impact of past occupation on the Earth's surface. Additionally, remote sensing has been used as a mapping tool aimed at delineating the boundaries of a site or mapping previously unknown features. All of these applications are pertinent to the goals of site discovery and assessment in cultural resource management.
Emergence of the Green’s Functions from Noise and Passive Acoustic Remote Sensing of Ocean Dynamics
2009-09-30
Acoustic Remote Sensing of Ocean Dynamics Oleg A. Godin CIRES/Univ. of Colorado and NOAA/OAR/Earth System Research Lab., R/PSD99, 325 Broadway...characterization of a time-varying ocean where ambient acoustic noise is utilized as a probing signal. • To develop a passive remote sensing technique for...inapplicable. 3. To quantify degradation of performance of passive remote sensing techniques due to ocean surface motion and other variations of underwater
Remote sensing measurements of real world high exhaust emitters
DOT National Transportation Integrated Search
1999-03-12
Remote Sensing measurements were taken at five primary sites in the Denver Area between April 1997 and March 1998 using an RS2000 unit capable of measuring HC, CO, and NO. The RD unit also measures vehicle speed and acceleration to permit determinati...
U.S. EPA High-Field NMR Facility with Remote Accessibility
EPA’s High-Field Nuclear Magnetic Resonance Research Facility housed in Athens, GA has two Varian 600 MHz NMR spectrometers used for conducting sophisticated experiments in environmental science. Off-site users can ship their samples and perform their NMR experiments remotely fr...
Pest measurement and management
USDA-ARS?s Scientific Manuscript database
Pest scouting, whether it is done only with ground scouting methods or using remote sensing with some ground-truthing, is an important tool to aid site-specific crop management. Different pests may be monitored at different times and using different methods. Remote sensing has the potential to provi...
Role of remote sensing in Bay measurements
NASA Technical Reports Server (NTRS)
Mugler, J. P., Jr.; Godfrey, J. P.; Hickman, G. D.; Hovis, W. G.; Pearson, A. O.; Weaver, K. N.
1978-01-01
Remote measurements of a number of surface or near surface parameters for baseline definition and specialized studies, remote measurements of episodic events, and remote measurements of the Bay lithosphere are considered in terms of characterizing and understanding the ecology of the Chesapeake Bay. Geologic processes and features best suited for information enhancement by remote sensing methods are identified. These include: (1) rates of sedimentation in the Bay; (2) rates of erosion of Bay shorelines; (3) spatial distribution and geometry of aquifers; (4) mapping of Karst terrain (sinkholes); and (5) mapping of fracture patterns. Recommendations for studying problem areas identified are given.
Digital Reef Rugosity Estimates Coral Reef Habitat Complexity
Dustan, Phillip; Doherty, Orla; Pardede, Shinta
2013-01-01
Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity. PMID:23437380
Digital reef rugosity estimates coral reef habitat complexity.
Dustan, Phillip; Doherty, Orla; Pardede, Shinta
2013-01-01
Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity.
NASA Technical Reports Server (NTRS)
Labovitz, M. L.; Masuoka, E. J.; Bell, R.; Nelson, R. F.; Larsen, C. A.; Hooker, L. K.; Troensegaard, K. W.
1985-01-01
It is pointed out that in many regions of the world, vegetation is the predominant factor influencing variation in reflected energy in the 0.4-2.5 micron region of the spectrum. Studies have, therefore, been conducted regarding the utility of remote sensing for detecting changes in vegetation which could be related to the presence of mineralization. The present paper provides primarily a report on the results of the second year of a multiyear study of geobotanical-remote-sensing relationships as developed over areas of sulfide mineralization. The field study has a strong experimental design basis. It is proceeded by first delineating the boundaries of a large geographic region which satisfied a set of previously enumerated field-site criteria. Within this region, carefully selected pairs of mineralized and nonmineralized test sites were examined over the growing season. The experiment is to provide information about the spectral and temporal resolutions required for remote-sensing-geobotanical exploration. The obtained results are evaluated.
NASA Astrophysics Data System (ADS)
Arvidson, R. E.; Squyres, S. W.; Baumgartner, E. T.; Schenker, P. S.; Niebur, C. S.; Larsen, K. W.; SeelosIV, F. P.; Snider, N. O.; Jolliff, B. L.
2002-08-01
The Field Integration Design and Operations (FIDO) prototype Mars rover was deployed and operated remotely for 2 weeks in May 2000 in the Black Rock Summit area of Nevada. The blind science operation trials were designed to evaluate the extent to which FIDO-class rovers can be used to conduct traverse science and collect samples. FIDO-based instruments included stereo cameras for navigation and imaging, an infrared point spectrometer, a color microscopic imager for characterization of rocks and soils, and a rock drill for core acquisition. Body-mounted ``belly'' cameras aided drill deployment, and front and rear hazard cameras enabled terrain hazard avoidance. Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, a high spatial resolution IKONOS orbital image, and a suite of descent images were used to provide regional- and local-scale terrain and rock type information, from which hypotheses were developed for testing during operations. The rover visited three sites, traversed 30 m, and acquired 1.3 gigabytes of data. The relatively small traverse distance resulted from a geologically rich site in which materials identified on a regional scale from remote-sensing data could be identified on a local scale using rover-based data. Results demonstrate the synergy of mapping terrain from orbit and during descent using imaging and spectroscopy, followed by a rover mission to test inferences and to make discoveries that can be accomplished only with surface mobility systems.
Outfall siting with dye-buoy remote sensing of coastal circulation
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.; Welch, C. S.; Gordon, H. H.
1978-01-01
A dye-buoy remote sensing technique has been applied to estuarine siting problems that involve fine-scale circulation. Small hard cakes of sodium fluorescein and polyvinyl alcohol, in anchored buoys and low-windage current followers, dissolve to produce dye marks resolvable in 1:60,000 scale color and color infrared imagery. Lagrangian current vectors are determined from sequential photo coverage. Careful buoy placement reveals surface currents and submergence near fronts and convergence zones. The technique has been used in siting two sewage outfalls in Hampton Roads, Virginia: In case one, the outfall region during flood tide gathered floating materials in a convergence zone, which then acted as a secondary source during ebb; for better dispersion during ebb, the proposed outfall site was moved further offshore. In case two, flow during late flood was found to divide, with one half passing over shellfish beds; the proposed outfall site was consequently moved to keep effluent in the other half.
Remote site-selective C–H activation directed by a catalytic bifunctional template
Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan
2017-01-01
Converting C–H bonds directly into carbon-carbon and carbon-heteroatom bonds can significantly improve step-economy in synthesis by providing alternative disconnections to traditional functional group manipulations. In this context, directed C–H activation reactions have been extensively explored for regioselective functionalization1-5. Though applicability can be severely curtailed by distance from the directing group and the shape of the molecule, a number of approaches have been developed to overcome this limitation6-12. For instance, recognition of the distal and geometric relationship between an existing functional group and multiple C–H bonds has recently been exploited to achieve meta-selective C–H activation by use of a covalently attached U-shaped template13-17. However, stoichiometric installation of the template is not feasible in the absence of an appropriate functional group handle. Here we report the design of a catalytic, bifunctional template that binds heterocyclic substrate via reversible coordination instead of covalent linkage, allowing remote site-selective C–H olefination of heterocycles. The two metal centers coordinated to this template play different roles; anchoring substrates to the proximity of catalyst and cleaving the remote C–H bonds respectively. Using this strategy, we demonstrate remote site-selective C–H olefination of heterocyclic substrates which do not have functional group handles for covalently attaching templates. PMID:28273068
Biomonitoring of PAHs by using Quercus ilex leaves: Source diagnostic and toxicity assessment
NASA Astrophysics Data System (ADS)
De Nicola, Flavia; Claudia, Lancellotti; MariaVittoria, Prati; Giulia, Maisto; Anna, Alfani
2011-03-01
Quercus ilex L. leaves were sampled at nineteen urban sites and two remote sites in order to evaluate PAH contamination degree. One-, two- and three-year-old leaves were collected and leaf lipid content was measured to investigate the influence of leaf age and lipids in PAH accumulation. Some PAH diagnostic ratios, such as Ant/Ant + Phen, Flt/Flt + Pyr, B[a]A/B[a]A + Crys and IP/IP + B[g,h,i]P, were calculated. The results suggest that Q. ilex leaves are effective biomonitors of PAH air contamination: in fact, a great PAH accumulation in leaves from the urban areas, until 30-time higher compared to those from the remote sites, has been observed. At each site, the similar total PAH concentrations in leaves of different age, probably due to a canopy effect, indicate an ability of all leaf age classes to monitor local PAH concentrations in air, remarking practical implications for air biomonitoring. The findings suggest that PAH adsorption in Q. ilex leaves does not result limited by leaf lipid content. Moreover, this study demonstrates the source-diagnostic potential of Q. ilex leaves, because, in particular, the Flt/Flt + Pyr and IP/IP + B[g,h,i]P ratios indicate vehicular traffic as the main source of PAHs in the urban areas and wood combustion in the remote areas. Moreover, to distinguish biomass combustion source, a promising tracer PAH as DB[a,h]A could be used. The high contribution of DB[a,h]A to total PAH concentrations at the remote sites determines a high carcinogenic potential in this area, similar to that calculated for the urban area where the carcinogenic PAH concentrations in absolute values are often higher.
Geology of Lunar Landing Sites and Origin of Basin Ejecta from a Clementine Perspective
NASA Technical Reports Server (NTRS)
Jolliff, Bradley L.; Haskin, Larry A.
1998-01-01
The goals of this research were to examine Clementine multispectral data covering the Apollo landing sites in order to: (1) provide ground truth for the remotely sensed observations, (2) extend our understanding of the Apollo landing sites to the surrounding regions using the empirically calibrated Clementine data, and (3) investigate the composition and distribution of impact-basin ejecta using constraints based upon the remotely sensed data and the Apollo samples. Our initial efforts (in collaboration with P. Lucey and coworkers) to use the Apollo soil compositions to "calibrate" information derived from the remotely sensed data resulted in two extremely useful algorithms for computing estimates of the concentrations of FeO and TiO2 from the UV-VIS 5-band data. In this effort, we used the average surface soil compositions from 37 individual Apollo and 3 Luna sample stations that could be resolved using the Clementine data. We followed this work with a detailed investigation of the Apollo 17 landing site, where the sampling traverses were extensive and the spectral and compositional contrast between different soils covers a wide range. We have begun to investigate the nature and composition of basin ejecta by comparing the thick deposits on the rim of Imbrium in the vicinity of the Apollo 15 site and those occurring southeast of the Serenitatis basin, in the Apollo 17 region. We continue this work under NAG5-6784, "Composition, Lithology, and Heterogeneity of the lunar crust using remote sensing of impact-basin uplift structures and ejecta as probes. The main results of our work are given in the following brief summaries of major tasks. Detailed accounts of these results are given in the attached papers, manuscripts, and extended abstracts.
Remote preenrollment checking of consent forms to reduce nonconformity.
Journot, Valérie; Pérusat-Villetorte, Sophie; Bouyssou, Caroline; Couffin-Cadiergues, Sandrine; Tall, Aminata; Chêne, Geneviève
2013-01-01
In biomedical research, the signed consent form must be checked for compliance with regulatory requirements. Checking usually is performed on site, most frequently after a participant's final enrollment. We piloted a procedure for remote preenrollment consent forms checking. We applied it in five trials and assessed its efficiency to reduce form nonconformity before participant enrollment. Our clinical trials unit (CTU) routinely uses a consent form with an additional copy that contains a pattern that partially masks the participant's name and signature. After completion and signatures by the participant and investigator, this masked copy is faxed to the CTU for checking. In case of detected nonconformity, the CTU suspends the participant's enrollment until the form is brought into compliance. We checked nonconformities of consent forms both remotely before enrollment and on site in five trials conducted in our CTU. We tabulated the number and nature of nonconformities by location of detection: at the CTU or on site. We used these data for a pseudo before-and-after analysis and estimated the efficiency of this remote checking procedure in terms of reduction of nonconformities before enrollment as compared to the standard on-site checking procedure. We searched for nonconformity determinants among characteristics of trials, consent forms, investigator sites, and participants through multivariate logistic regression so as to identify opportunities for improvement in our procedure. Five trials, starting sequentially but running concurrently, with remote preenrollment and on-site checking of consent forms from 415 participants screened in 2006-2009 led to 518 consent forms checked; 94 nonconformities were detected in 75 forms, 75 (80%) remotely and 19 more (20%) on site. Nonconformities infrequently concerned dates of signatures (7%) and information about participants (12%). Most nonconformities dealt with investigator information (76%), primarily contact information (54%). The procedure reduced nonconformities by 81% (95% confidence interval (CI): 73%-89%) before enrollment. Nonconforming consent forms dropped from 25% to 0% over the period, indicating a rapid learning effect between trials. Fewer nonconformities were observed for participants screened later in a trial (odds ratio (95% CI): 0.5 (0.3-0.8); p = 0.004), indicating a learning effect within trials. Nonconformities were more common for participants enrolled after screening (2.4 (1.1-5.3); p = 0.03), indicating a stricter scrutiny by form checkers. Although our study had a pseudo before-and-after design, no major bias was identified. Power and generalizability of our findings were sufficient to support implementation in future trials. This procedure substantially limited nonconformity of consent forms with regulatory requirements before enrollment, thus proving a key component of a risk-based monitoring strategy that has been recommended to optimize resources for clinical research.
Pacheco-Labrador, Javier; Martín, M. Pilar
2015-01-01
Field spectroradiometers integrated in automated systems at Eddy Covariance (EC) sites are a powerful tool for monitoring and upscaling vegetation physiology and carbon and water fluxes. However, exposure to varying environmental conditions can affect the functioning of these sensors, especially if these cannot be completely insulated and stabilized. This can cause inaccuracy in the spectral measurements and hinder the comparison between data acquired at different sites. This paper describes the characterization of key sensor models in a double beam spectroradiometer necessary to calculate the Hemispherical-Conical Reflectance Factor (HCRF). Dark current, temperature dependence, non-linearity, spectral calibration and cosine receptor directional responses are modeled in the laboratory as a function of temperature, instrument settings, radiation measured or illumination angle. These models are used to correct the spectral measurements acquired continuously by the same instrument integrated outdoors in an automated system (AMSPEC-MED). Results suggest that part of the instrumental issues cancel out mutually or can be controlled by the instrument configuration, so that changes induced in HCFR reached about 0.05 at maximum. However, these corrections are necessary to ensure the inter-comparison of data with other ground or remote sensors and to discriminate instrumentally induced changes in HCRF from those related with vegetation physiology and directional effects. PMID:25679315
Marciniuk, Darcy
2016-01-01
The challenges of providing quality respiratory care to persons living in rural or remote communities can be daunting. These populations are often vulnerable in terms of both health status and access to care, highlighting the need for innovation in service delivery. The rapidly expanding options available using telehealthcare technologies have the capacity to allow patients in rural and remote communities to connect with providers at distant sites and to facilitate the provision of diagnostic, monitoring, and therapeutic services. Successful implementation of telehealthcare programs in rural and remote settings is, however, contingent upon accounting for key technical, organizational, social, and legal considerations at the individual, community, and system levels. This review article discusses five types of telehealthcare delivery that can facilitate respiratory care for residents of rural or remote communities: remote monitoring (including wearable and ambient systems; remote consultations (between providers and between patients and providers), remote pulmonary rehabilitation, telepharmacy, and remote sleep monitoring. Current and future challenges related to telehealthcare are discussed. PMID:26902542
Application of remote sensor data to geologic analysis of the Bonanza Test Site Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Compiler)
1973-01-01
A geologic map of the Bonanza Test Site is nearing completion. Using published large scale geologic maps from various sources, the geology of the area is being compiled on a base scaled at 1:250,000. Sources of previously published geologic mapping include: (1) USGS Bulletins; (2) professional papers and geologic quadrangle maps; (3) Bureau of Mines reports; (4) Colorado School of Mines quarterlies; and (5) Rocky Mountain Association of Geologist Guidebooks. This compilation will be used to evaluate ERTS, Skylab, and remote sensing underflight data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuli, J.K.; Sonzogni,A.
The National Nuclear Data Center has provided remote access to some of its resources since 1986. The major databases and other resources available currently through NNDC Web site are summarized. The National Nuclear Data Center (NNDC) has provided remote access to the nuclear physics databases it maintains and to other resources since 1986. With considerable innovation access is now mostly through the Web. The NNDC Web pages have been modernized to provide a consistent state-of-the-art style. The improved database services and other resources available from the NNOC site at www.nndc.bnl.govwill be described.
Stratocumulus Precipitation and Entrainment Experiment (SPEE) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Bruce; Ghate, Virendra; CADeddu, Maria
2016-06-01
The scientific focus of this project was to examine precipitation and entrainment processes in marine stratocumulus clouds. The entrainment studies focused on characterizing cloud turbulence at cloud top using Doppler cloud radar observations. The precipitation studies focused on characterizing the precipitation and the macroscopic properties (cloud thickness, and liquid water path) of the clouds. This project will contribute to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s overall objective of providing the remote-sensing observations needed to improve the representation of key cloud processes in climate models. It will be of direct relevance to the componentsmore » of ARM dealing with entrainment and precipitation processes in stratiform clouds. Further, the radar observing techniques that will be used in this study were developed using ARM Southern Great Plains (SGP) facility observations under Atmospheric System Research (ASR) support. The observing systems operating automatously from a site located just north of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) aircraft hangar in Marina, California during the period of 1 May to 4 November 2015 included: 1. Microwave radiometer: ARM Microwave Radiometer, 3-Channel (MWR3C) with channels centered at 23.834, 30, and 89 GHz; supported by Dr. Maria Cadeddu. 2. Cloud Radar: CIRPAS 95 GHz Frequency Modulated Continuous Wave (FMCW) Cloud Radar (Centroid Frequency Chirp Rate [CFCR]); operations overseen by Drs. Ghate and Albrecht. 3. Ceilometer: Vaisala CK-14; operations overseen by Drs. Ghate and Albrecht.« less
Spectral distance decay: Assessing species beta-diversity by quantile regression
Rocchinl, D.; Nagendra, H.; Ghate, R.; Cade, B.S.
2009-01-01
Remotely sensed data represents key information for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance may allow us to quantitatively estimate how beta-diversity in species changes with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological datasets are characterized by a high number of zeroes that can add noise to the regression model. Quantile regression can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this paper, we used ordinary least square (ols) and quantile regression to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.05) considering both ols and quantile regression. Nonetheless, ols regression estimate of mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when spectral distance approaches zero, was very low compared with the intercepts of upper quantiles, which detected high species similarity when habitats are more similar. In this paper we demonstrated the power of using quantile regressions applied to spectral distance decay in order to reveal species diversity patterns otherwise lost or underestimated by ordinary least square regression. ?? 2009 American Society for Photogrammetry and Remote Sensing.
NASA Technical Reports Server (NTRS)
Schieldge, John
2000-01-01
Wavelet and fractal analyses have been used successfully to analyze one-dimensional data sets such as time series of financial, physical, and biological parameters. These techniques have been applied to two-dimensional problems in some instances, including the analysis of remote sensing imagery. In this respect, these techniques have not been widely used by the remote sensing community, and their overall capabilities as analytical tools for use on satellite and aircraft data sets is not well known. Wavelet and fractal analyses have the potential to provide fresh insight into the characterization of surface properties such as temperature and emissivity distributions, and surface processes such as the heat and water vapor exchange between the surface and the lower atmosphere. In particular, the variation of sensible heat flux density as a function of the change In scale of surface properties Is difficult to estimate, but - in general - wavelets and fractals have proved useful in determining the way a parameter varies with changes in scale. We present the results of a limited study on the relationship between spatial variations in surface temperature distribution and sensible heat flux distribution as determined by separate wavelet and fractal analyses. We analyzed aircraft imagery obtained in the thermal infrared (IR) bands from the multispectral TIMS and hyperspectral MASTER airborne sensors. The thermal IR data allows us to estimate the surface kinetic temperature distribution for a number of sites in the Midwestern and Southwestern United States (viz., San Pedro River Basin, Arizona; El Reno, Oklahoma; Jornada, New Mexico). The ground spatial resolution of the aircraft data varied from 5 to 15 meters. All sites were instrumented with meteorological and hydrological equipment including surface layer flux measuring stations such as Bowen Ratio systems and sonic anemometers. The ground and aircraft data sets provided the inputs for the wavelet and fractal analyses, and the validation of the results.
Journal Article: EPA's National Dioxin Air Monitoring Network ...
The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (dl-PCBs). NDAMN started with 10 sampling sites, adding more over time until the final count of 34 sites was reached by the beginning of 2003. Samples were taken quarterly, and the final sample count was 685. All samples were measured for 17 PCDD/PCDF congeners, 8 PCDD/PCDF homologue groups, and 7 dl-PCBs (note: 5 additional dl-PCBs were added for samples starting in the summer of 2002; 317 samples had measurements of 12 dl-PCBs). The overall average total toxic equivalent (TEQ) concentration in the United States was 11.2 fg TEQ m−3 with dl-PCBs contributing 0.8 fg TEQ m−3 (7%) to this total. The archetype dioxin and furan background air congener profile was seen in the survey averages and in most individual samples. This archetype profile is characterized by low and similar concentrations for tetra – through hexa PCDD/PCDF congeners, with elevations in four congeners – a hepta dioxin and furan congener, and both octa congeners. Sites were generally categorized as urban (4 sites), rural (23 sites), or remote (7 sites). The average TEQ concentrations over all sites and samples within these cat
Valentine, Marla M; Benfield, Mark C
2013-12-15
The Deepwater Horizon Oil Spill resulted in the release of a large quantity of oil and gas into the northern Gulf of Mexico from a bathypelagic source. Due to a lack of pre-spill quantitative data the baseline condition of the communities near the spill site is unknown. This makes it difficult to determine the impact of the spill on deepwater megafauna. Remotely operated vehicles were used to quantify megafauna at five study sites during August and September 2010:2000 m north, west, south, and east, and 500 m north of the Macondo well. Comparisons of animal abundances indicated that 2000 m-N and 2000 m-W had the greatest taxonomic richness and highest abundances while 2000 m-E had slightly lower values. In contrast 500 m-N and 2000 m-S had the lowest taxonomic richness and abundances. Our study also suggests that certain taxa were potentially more resistant or sensitive to the spill. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rock, B. N.; Vogelmann, J. E.
1985-01-01
The effects of acid deposition on Picea rubens are studied. The Picea rubens located at Camels Hump Mt., Mt. Ascutney, and Ripton, VT were analyzed using stress level evaluations, in situ spectral data, pressure bomb analysis, and aircraft sensors. Spruce stress per circular plot and percent spruce mortality are calculated. The relation between stress levels and elevation and exposure and weather patterns is examined. It is observed that variations in the reflectance curves of the foliage and branches are related to cellular health, the type of cellular arrangement, and the degree of leaf tissue hydration; the leaf and twig specimens from high stress sites are more reflective in the red portion of the visible and less reflective in the NIR portion of the spectrum. The pressure bomb data reveal that the xylem water tension is higher in specimens from high stress sites. It is noted that remote sensing permits discrimination and mapping of suspected acid deposition damage.
Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.
2012-01-01
agebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change – adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.
Investigating the thermophysical properties of indurated materials on Mars
NASA Astrophysics Data System (ADS)
Murphy, Nathaniel William
Indurated materials have been observed on the surface of Mars at every landing site and inferred from orbital remote-sensing data by the Viking, Mars Global Surveyor, and Mars Odyssey spacecraft. However, indurated materials on Mars are poorly understood because there is no ground truth for the indurated surfaces inferred from thermal remote-sensing data. I adopted two approaches to investigate indurated materials on Mars: (1) remote-sensing analysis of the Isidis basin, which shows some of the highest thermal inertia values derived from TES 1 observations, and (2) laboratory analyses of terrestrial indurated materials. To characterize the surface of the Isidis basin, I combined a variety of remote-sensing datasets, including thermal inertia data derived from TES and MO-THEMIS, TES albedo, THEMIS thermal and visible imaging, and Earth-based radar observations. From these observations I concluded that the thermal inertia values in the Isidis basin are likely the result of variations in the degree of cementation of indurated materials. To examine the thermophysical properties of indurated materials I collected four examples of terrestrial indurated materials. These included two types of gypcrete collected from a gypcrete deposit near Upham Hills, NM, clay-materials from Lunar Lake Playa, NV, and a pyroclastic material from the Bandelier Tuff near Los Alamos, NM. Despite significant differences in their physical properties and origins, all of these materials have thermal inertia values consistent with inferred indurated surfaces on Mars. There are no strong correlations between the thermal and physical properties of the collected samples due to thermal effects of the fabrics of the indurated materials. 1 Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft. 2 Thermal Emission Imaging System onboard the Mars Odyssey spacecraft
Comprehensive studies of the dynamics of geosystems with the use of remote sensing techniques
NASA Astrophysics Data System (ADS)
Vasilev, L. N.; Kaczyński, R.; Ney, B. I.
The described research programme for comprehensive studies of changes occuring within geosystems is a part of scientific activity of INTERKOSMOS, which will be executed mainly with the use of remote sensing methods and techniques. The main aim of the programme is to get an insight into the seasonal rithm of environmental changes on both regional and global level. The work will consist of gathering systematized information concerning quantitative and qualitative relations between various components of the environment. The application of remote sensing methods enables the acquisition of such environmental data in dynamic setting. Research will be conducted for areas comprising distinct geosystems and will lead to the detection of diurnal, seasonal and yearly dynamics of geosystems as well as long-term trends. Except cognitive, the programme will also serve the methodological purpose. The first aim will be realized with respect to individual geosystems; the resulting sets of data will consist of matrixes of statistical data characterizing relations between various components of geosystems. The methodological aim will be achieved through the process of practical verification of the preliminary assumptions. Information will be collected from different data acquisition levels namely from satellite and aerial platforms and through ground measurements. Different types of data, such as multispectral photography (SALYUT, KOSMOS), multispectral scanner images (LANDSAT THEMATIC MAPPER, SPOT), infrared photography, radar imagery and spectrometric measurements will be gathered during simultaneous data acquisition projects. All types of observations will be timed in accordance with the natural rithm of the observed phenomena. The paper contains the description of geosystems under anthropogenic stress based on the previous research of the authors. The presented multifactor characteristics of soil and crops is a part of completed studies on agricultural geosystems. The results of comprehensive remote sensing experiments already completed within the framework of INTERKOSMOS programme on test sites in member countries fully support the approved programme for studying the dynamics of geosystems with the use of remote sensing.
NASA Astrophysics Data System (ADS)
Kielkopf, John F.; Carter, B.; Brown, C.; Hart, R.; Hay, J.; Waite, I.
2007-12-01
The Digital Science Partnership, a collaboration of the University of Louisville and the University of Southern Queensland, operates a pair of 0.5-meter telescopes for teaching, research, and informal education. The instruments were installed at sites near Toowoomba, Australia, and Louisville, Kentucky in 2006. The Planewave Instruments optical systems employ a unique Dall-Kirkham design incorporating a two-element corrector that demagnifies the image, flattens the focal plane, and reduces coma. These instruments have a moderately fast f/6.8 focal ratio and maintain image quality with little vignetting over a field 42 mm in diameter (0.7 degree). With a 9-micron pixel CCD such as the KAF-6303E, the image scale of 0.55 seconds of arc per pixel typically yields seeing-limited image quality at our sites. The telescopes and their enclosure are operated in a live remote observing mode through Linux-based software, including a dome-control system that uses RFID tags for absolute rotation encoding. After several months of testing and development we have examples of images and photometry from both sites that illustrate the performance of the system. We will discuss image quality, as well as practical matters such as pointing accuracy and field acquisition, auto-guiding, communication latency in large file transfer, and our experience with remote observing assisted by teleconferencing. Time-delay-integration (TDI) imaging, in which the telescope is stationary while the CCD is clocked to track in right ascension, is under study. The technique offers wide fields of view with very high signal-to-noise ratio, and can be implemented in robotically operated instruments used in monitoring, rapid-response, and educational programs. Results for conventional and TDI imaging from the dark site in Australia compared to the brighter suburban site in Kentucky show the benefits of access to dark sites through international partnerships that remote operation technology offers.
Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET
NASA Astrophysics Data System (ADS)
Horowitz, Hannah M.; Garland, Rebecca M.; Thatcher, Marcus; Landman, Willem A.; Dedekind, Zane; van der Merwe, Jacobus; Engelbrecht, Francois A.
2017-11-01
The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM) with ground-based remote retrievals across Africa, and additionally provide an analysis of observed aerosol optical depth at 550 nm (AOD550 nm) and Ångström exponent data from 34 Aerosol Robotic Network (AERONET) sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550 nm across the continent and the transport of these emissions to regions outside of the continent. In general, CCAM captures the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multiyear monthly average AOD550 nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except the Réunion St Denis Island site (Réunion St. Denis). The timing of modeled peak AOD550 nm in southern Africa occurs 1 month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula) are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550 nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon, and sulfate aerosols. The model's performance provides confidence for using the model to estimate large-scale regional impacts of African aerosols on radiative forcing, but local feedbacks between dust aerosols and climate over northern Africa and the Mediterranean may be overestimated.
Mingot, José-Manuel; Tilburn, Joan; Diez, Eliecer; Bignell, Elaine; Orejas, Margarita; Widdick, David A.; Sarkar, Sovan; Brown, Christopher V.; Caddick, Mark X.; Espeso, Eduardo A.; Arst, Herbert N.; Peñalva, Miguel A.
1999-01-01
The Aspergillus nidulans transcription factor PacC, which mediates pH regulation, is proteolytically processed to a functional form in response to ambient alkaline pH. The full-length PacC form is unstable in the presence of an operational pH signal transduction pathway, due to processing to the relatively stable short functional form. We have characterized and used an extensive collection of pacC mutations, including a novel class of “neutrality-mimicking” pacC mutations having aspects of both acidity- and alkalinity-mimicking phenotypes, to investigate a number of important features of PacC processing. Analysis of mutant proteins lacking the major translation initiation residue or truncated at various distances from the C terminus showed that PacC processing does not remove N-terminal residues, indicated that processing yields slightly heterogeneous products, and delimited the most upstream processing site to residues ∼252 to 254. Faithful processing of three mutant proteins having deletions of a region including the predicted processing site(s) and of a fourth having 55 frameshifted residues following residue 238 indicated that specificity determinants reside at sequences or structural features located upstream of residue 235. Thus, the PacC protease cuts a peptide bond(s) remote from these determinants, possibly thereby resembling type I endonucleases. Downstream of the cleavage site, residues 407 to 678 are not essential for processing, but truncation at or before residue 333 largely prevents it. Ambient pH apparently regulates the accessibility of PacC to proteolytic processing. Alkalinity-mimicking mutations L259R, L266F, and L340S favor the protease-accessible conformation, whereas a protein with residues 465 to 540 deleted retains a protease-inaccessible conformation, leading to acidity mimicry. Finally, not only does processing constitute a crucial form of modulation for PacC, but there is evidence for its conservation during fungal evolution. Transgenic expression of a truncated PacC protein, which was processed in a pH-independent manner, showed that appropriate processing can occur in Saccharomyces cerevisiae. PMID:9891072
NASA Technical Reports Server (NTRS)
Deering, D. W.; Leone, P.
1984-01-01
A unique field instrument, called the PARABOLA, a collapsable support boom, which is self contained and easily transportable to remote sites to enable the acquisition of radiance data for almost the complete (4 pi) sky and ground-looking hemispheres in only 11 seconds was designed. The PARABOLA samples in 15 deg instantaneous field of view sectors in three narrow bandpass spectral channels simultaneously. Field measurement on a variety of earth surface cover types using a truck boom, a specially designed pickup truck mounting system, and a hot air balloon were studied. The PARABOLA instrument has potential for climatological and other studies which require characterization of the distribution of diffuse solar radiation within the sky hemisphere.
NASA Astrophysics Data System (ADS)
Deering, D. W.; Leone, P.
1984-11-01
A unique field instrument, called the PARABOLA, a collapsable support boom, which is self contained and easily transportable to remote sites to enable the acquisition of radiance data for almost the complete (4 pi) sky and ground-looking hemispheres in only 11 seconds was designed. The PARABOLA samples in 15 deg instantaneous field of view sectors in three narrow bandpass spectral channels simultaneously. Field measurement on a variety of earth surface cover types using a truck boom, a specially designed pickup truck mounting system, and a hot air balloon were studied. The PARABOLA instrument has potential for climatological and other studies which require characterization of the distribution of diffuse solar radiation within the sky hemisphere.
Olivo, Giorgio; Farinelli, Giulio; Barbieri, Alessia; Lanzalunga, Osvaldo; Di Stefano, Stefano; Costas, Miquel
2017-12-18
Site-selective C-H functionalization of aliphatic alkyl chains is a longstanding challenge in oxidation catalysis, given the comparable relative reactivity of the different methylenes. A supramolecular, bioinspired approach is described to address this challenge. A Mn complex able to catalyze C(sp 3 )-H hydroxylation with H 2 O 2 is equipped with 18-benzocrown-6 ether receptors that bind ammonium substrates via hydrogen bonding. Reversible pre-association of protonated primary aliphatic amines with the crown ether selectively exposes remote positions (C8 and C9) to the oxidizing unit, resulting in a site-selective oxidation. Remarkably, such control of selectivity retains its efficiency for a whole series of linear amines, overriding the intrinsic reactivity of C-H bonds, no matter the chain length. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Remote sensing of environmental disturbance
NASA Technical Reports Server (NTRS)
Latham, J. P.
1972-01-01
Color, color infrared, and minus-blue films obtained by RB-57 remote sensing aircraft at an altitude of 60,000 feet over Boca Raton and Southeast Florida Earth Resources Test Site were analyzed for nine different types of photographic images of the geographic patterns of the surface. Results of these analyses are briefly described.
Identification of expansive soils using remote sensing and in-situ field measurements : phase I.
DOT National Transportation Integrated Search
2012-10-01
Researchers at the University of Arkansas have conducted research on the suitability of using remote sensing techniques (radar and LIDAR) to monitor the shrink-swell behavior of an expansive clay material in a field test site as part of the Mack Blac...
Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop
NASA Technical Reports Server (NTRS)
2006-01-01
Topics covered include: NASA Applied Sciences Program; USGS Land Remote Sensing: Overview; QuickBird System Status and Product Overview; ORBIMAGE Overview; IKONOS 2004 Calibration and Validation Status; OrbView-3 Spatial Characterization; On-Orbit Modulation Transfer Function (MTF) Measurement of QuickBird; Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season; Image Quality Evaluation of QuickBird Super Resolution and Revisit of IKONOS: Civil and Commercial Application Project (CCAP); On-Orbit System MTF Measurement; QuickBird Post Launch Geopositional Characterization Update; OrbView-3 Geometric Calibration and Geopositional Accuracy; Geopositional Statistical Methods; QuickBird and OrbView-3 Geopositional Accuracy Assessment; Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images; Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps; Stennis Space Center Verification and Validation Capabilities; Joint Agency Commercial Imagery Evaluation (JACIE) Team; Adjacency Effects in High Resolution Imagery; Effect of Pulse Width vs. GSD on MTF Estimation; Camera and Sensor Calibration at the USGS; QuickBird Geometric Verification; Comparison of MODTRAN to Heritage-based Results in Vicarious Calibration at University of Arizona; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Estimating Sub-Pixel Proportions of Sagebrush with a Regression Tree; How Do YOU Use the National Land Cover Dataset?; The National Map Hazards Data Distribution System; Recording a Troubled World; What Does This-Have to Do with This?; When Can a Picture Save a Thousand Homes?; InSAR Studies of Alaska Volcanoes; Earth Observing-1 (EO-1) Data Products; Improving Access to the USGS Aerial Film Collections: High Resolution Scanners; Improving Access to the USGS Aerial Film Collections: Phoenix Digitizing System Product Distribution; System and Product Characterization: Issues Approach; Innovative Approaches to Analysis of Lidar Data for the National Map; Changes in Imperviousness near Military Installations; Geopositional Accuracy Evaluations of QuickBird and OrbView-3: Civil and Commercial Applications Project (CCAP); Geometric Accuracy Assessment: OrbView ORTHO Products; QuickBird Radiometric Calibration Update; OrbView-3 Radiometric Calibration; QuickBird Radiometric Characterization; NASA Radiometric Characterization; Establishing and Verifying the Traceability of Remote-Sensing Measurements to International Standards; QuickBird Applications; Airport Mapping and Perpetual Monitoring Using IKONOS; OrbView-3 Relative Accuracy Results and Impacts on Exploitation and Accuracy Improvement; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Applying High-Resolution Satellite Imagery and Remotely Sensed Data to Local Government Applications: Sioux Falls, South Dakota; Automatic Co-Registration of QuickBird Data for Change Detection Applications; Developing Coastal Surface Roughness Maps Using ASTER and QuickBird Data Sources; Automated, Near-Real Time Cloud and Cloud Shadow Detection in High Resolution VNIR Imagery; Science Applications of High Resolution Imagery at the USGS EROS Data Center; Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research; Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems; Determining Regional Arctic Tundra Carbon Exchange: A Bottom-Up Approach; Using IKONOS Imagery to Assess Impervious Surface Area, Riparian Buffers and Stream Health in the Mid-Atlantic Region; Commercial Remote Sensing Space Policy Civil Implementation Update; USGS Commercial Remote Sensing Data Contracts (CRSDC); and Commercial Remote Sensing Space Policy (CRSSP): Civil Near-Term Requirements Collection Update.
Bioprocesses. [in the marine environment
NASA Technical Reports Server (NTRS)
Ditoro, D. M.; Iverson, R. L.; Mccarthy, J. J.
1980-01-01
The application of remote sensing techniques to the study of eutrophication in natural waters and the location and characterization of fronts is considered. The specific problem to be studied is examined along with the feasibility and capabability of remote sensing techniques for each application.
[Use of Remote Sensing for Crop and Soil Analysis
NASA Technical Reports Server (NTRS)
Johannsen, Chris J.
1997-01-01
The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.
Remote sensing for vineyard management
NASA Technical Reports Server (NTRS)
Philipson, W. R.; Erb, T. L.; Fernandez, D.; Mcleester, J. N.
1980-01-01
Cornell's Remote Sensing Program has been involved in a continuing investigation to assess the value of remote sensing for vineyard management. Program staff members have conducted a series of site and crop analysis studies. These include: (1) panchromatic aerial photography for planning artificial drainage in a new vineyard; (2) color infrared aerial photography for assessing crop vigor/health; and (3) color infrared aerial photography and aircraft multispectral scanner data for evaluating yield related factors. These studies and their findings are reviewed.
Progress and needs in agricultural research, development, and applications programs
NASA Technical Reports Server (NTRS)
Moore, D. G.; Myers, V. I.
1977-01-01
The dynamic nature of agriculture requires repetitive resource assessments such as those from remote sensing. Until recently, the use of remote sensing in agriculture has been limited primarily to site specific investigations without large-scale evaluations. Examples of successful applications at various user levels are provided. The stage of development for applying remote sensing to many agricultural problems is assessed, and goals for planning future data characteristics for increased use in agriculture are suggested.
Hendy, Jane; Chrysanthaki, Theopisti; Barlow, James; Knapp, Martin; Rogers, Anne; Sanders, Caroline; Bower, Peter; Bowen, Robert; Fitzpatrick, Ray; Bardsley, Martin; Newman, Stanton
2012-11-15
To investigate organisational factors influencing the implementation challenges of redesigning services for people with long term conditions in three locations in England, using remote care (telehealth and telecare). Case-studies of three sites forming the UK Department of Health's Whole Systems Demonstrator (WSD) Programme. Qualitative research techniques were used to obtain data from various sources, including semi-structured interviews, observation of meetings over the course programme and prior to its launch, and document review. Participants were managers and practitioners involved in the implementation of remote care services. The implementation of remote care was nested within a large pragmatic cluster randomised controlled trial (RCT), which formed a core element of the WSD programme. To produce robust benefits evidence, many aspect of the trial design could not be easily adapted to local circumstances. While remote care was successfully rolled-out, wider implementation lessons and levels of organisational learning across the sites were hindered by the requirements of the RCT. The implementation of a complex innovation such as remote care requires it to organically evolve, be responsive and adaptable to the local health and social care system, driven by support from front-line staff and management. This need for evolution was not always aligned with the imperative to gather robust benefits evidence. This tension needs to be resolved if government ambitions for the evidence-based scaling-up of remote care are to be realised.
Light-switchable systems for remotely controlled drug delivery.
Shim, Gayong; Ko, Seungbeom; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Lee, Jaiwoo; Kwon, Taekhyun; Choi, Han-Gon; Kim, Young Bong; Oh, Yu-Kyoung
2017-12-10
Light-switchable systems have recently received attention as a new mode of remotely controlled drug delivery. In the past, a multitude of nanomedicine studies have sought to enhance the specificity of drug delivery to target sites by focusing on receptors overexpressed on malignant cells or environmental features of diseases sites. Despite these immense efforts, however, there are few clinically available nanomedicines. We need a paradigm shift in drug delivery. One strategy that may overcome the limitations of pathophysiology-based drug delivery is the use of remotely controlled delivery technology. Unlike pathophysiology-based active drug targeting strategies, light-switchable systems are not affected by the heterogeneity of cells, tissue types, and/or microenvironments. Instead, they are triggered by remote light (i.e., near-infrared) stimuli, which are absorbed by photoresponsive molecules or three-dimensional nanostructures. The sequential conversion of light to heat or reactive oxygen species can activate drug release and allow it to be spatio-temporally controlled. Light-switchable systems have been used to activate endosomal drug escape, modulate the release of chemical and biological drugs, and alter nanoparticle structures to control the release rates of drugs. This review will address the limitations of pathophysiology-based drug delivery systems, the current status of light-based remote-switch systems, and future directions in the application of light-switchable systems for remotely controlled drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
Oil Slick Characterization with UAVSAR
NASA Astrophysics Data System (ADS)
Jones, C. E.; Holt, B.
2017-12-01
Although radar has long been used for mapping the spatial extent of oil slicks, its capability for characterizing oil, e.g., to discriminate thicker from thinner oil or mineral slicks from look-alikes, is far less well defined. In fact, the capability of SAR to quantify the oil-to-water ratio of emulsions within slicks on the open water was first demonstrated using UAVSAR data acquired over the 2010 Deepwater Horizon spill in the Gulf of Mexico [Minchew et al., 2012]. UAVSAR's capability was made possible by the airborne instrument's high signal-to-noise ratio, which enabled it to measure low backscatter signals from oil-smoothed water that are often near or below the noise floor of satellite SAR instruments. Since 2010, UAVSAR has been used to study oil slicks through experiments in Norway (2015) and the Gulf of Mexico. In November 2016, UAVSAR took part in a NOAA-led experiment to study remote sensing of oil slicks, which took place at the site of a persistent seep in the Gulf of Mexico. The goal was to use remote sensing to identify zones of thicker oil, which is the type of information that could direct emergency responders for more effective clean-up. The objectives of the experiment were to validate and compare different remote sensing methods' capabilities for measuring the thickness of oil within a slick on open water under environmental conditions typical of oil spills. In this presentation, we show the results from UAVSAR for determining oil thickness within a slick, and relate them to the standard method of oil slick classification, the Bonn Agreement oil appearance code used by trained observers in the field. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contracts with the California Dept. of Water Resources and with the National Aeronautics and Space Administration.
Virtual Reality Robotic Operation Simulations Using MEMICA Haptic System
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Mavroidis, C.; Bouzit, M.; Dolgin, B.; Harm, D. L.; Kopchok, G. E.; White, R.
2000-01-01
There is an increasing realization that some tasks can be performed significantly better by humans than robots but, due to associated hazards, distance, etc., only a robot can be employed. Telemedicine is one area where remotely controlled robots can have a major impact by providing urgent care at remote sites. In recent years, remotely controlled robotics has been greatly advanced. The robotic astronaut, "Robonaut," at NASA Johnson Space Center is one such example. Unfortunately, due to the unavailability of force and tactile feedback capability the operator must determine the required action using only visual feedback from the remote site, which limits the tasks that Robonaut can perform. There is a great need for dexterous, fast, accurate teleoperated robots with the operator?s ability to "feel" the environment at the robot's field. Recently, we conceived a haptic mechanism called MEMICA (Remote MEchanical MIrroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace system. Our team is developing novel MEMICA gloves and virtual reality models to allow the simulation of telesurgery and other applications. The MEMICA gloves are designed to have a high dexterity, rapid response, and large workspace and intuitively mirror the conditions at a virtual site where a robot is simulating the presence of the human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and Electrically Controlled Force and Stiffness (ECFS) actuators that are based on the sue of Electro-Rheological Fluids (ERF). In this paper the design of the MEMICA system and initial experimental results are presented.
Application of remote sensing to water resources problems
NASA Technical Reports Server (NTRS)
Clapp, J. L.
1972-01-01
The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.
Yingst, R A; Berger, J; Cohen, B A; Hynek, B; Schmidt, M E
2017-03-01
We tested science operations strategies developed for use in remote mobile spacecraft missions, to determine whether reconnoitering a site of potential habitability prior to in-depth study (a walkabout-first strategy) can be a more efficient use of time and resources than the linear approach commonly used by planetary rover missions. Two field teams studied a sedimentary sequence in Utah to assess habitability potential. At each site one team commanded a human "rover" to execute observations and conducted data analysis and made follow-on decisions based solely on those observations. Another team followed the same traverse using traditional terrestrial field methods, and the results of the two teams were compared. Test results indicate that for a mission with goals similar to our field case, the walkabout-first strategy may save time and other mission resources, while improving science return. The approach enabled more informed choices and higher team confidence in choosing where to spend time and other consumable resources. The walkabout strategy may prove most efficient when many close sites must be triaged to a smaller subset for detailed study or sampling. This situation would arise when mission goals include finding, identifying, characterizing or sampling a specific material, feature or type of environment within a certain area.
Remote sensing of the Canadian Arctic: Modelling biophysical variables
NASA Astrophysics Data System (ADS)
Liu, Nanfeng
It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic overestimation of 0.08, which was attributed to PAR absorption by soil that could not be excluded from the fAPAR calculation. This research clearly demonstrates that high spectral and spatial resolution remote sensing VIs can be used to successfully model Arctic biophysical variables. The methods and results presented in this research provided a guide for future studies aiming to model other Arctic biophysical variables through remote sensing data.
Monitoring CCS Sites: Lessons Learned Studying Natural Laboratories.
NASA Astrophysics Data System (ADS)
Tartarello, M. C.; Beaubien, S. E.; Graziani, S.; Lombardi, S.; Ruggiero, L.
2016-12-01
Monitoring is one of the most important aspects of Carbon Capture and Storage (CCS), both for early recognition of leaks from the reservoir and for public safety. Natural analogues could be useful to understand the potential impact of a leakage on the local ecosystem and to develop new techniques of monitoring. These sites, called also "natural laboratories", are characterized by natural, geologically-produced CO2 constantly leaking from the seafloor or from the groundsurface. In the last 10 years, our group as partner of some EC funded projects focused on CCS (NASCENT (2000-2003), CO2GeoNet (2004-2009), CO2ReMoVe (2006-2011), RISCS (2010-2013), and ECO2 (2011-2015)), studied gas migration mechanisms in these "natural laboratories", applying near-surface geochemistry to monitoring. This method provides one of the most powerful tools to assess whether a CCS site is leaking and, if it is, to quantify that leakage. This is because rather than being a remote method that estimates amounts based on proxy associations, such as some geophysical tools, it is an exact measurement of the item of interest (in this case CO2) in the accessible biosphere where there is concern regarding its potential impact. In particular, we have been studied two sites in Italy, characterized by significant emissions of CO2, related to volcanic emissions: the Latera Caldera (in Central Italy) and the offshore emissions near Panarea Island. We combined continuous and discontinuous monitoring, structural surveys and gas flux measurements. The results show a strong correlation between fault architecture and leakage rates. Moreover, the monitoring of an area for long periods allows defining the baseline, which is the fluctuation of gas concentrations both spatially and temporally as a function of biological, chemical, geological, land-use and meteorological processes.
New information technology tools for a medical command system for mass decontamination.
Fuse, Akira; Okumura, Tetsu; Hagiwara, Jun; Tanabe, Tomohide; Fukuda, Reo; Masuno, Tomohiko; Mimura, Seiji; Yamamoto, Kaname; Yokota, Hiroyuki
2013-06-01
In a mass decontamination during a nuclear, biological, or chemical (NBC) response, the capability to command, control, and communicate is crucial for the proper flow of casualties at the scene and their subsequent evacuation to definitive medical facilities. Information Technology (IT) tools can be used to strengthen medical control, command, and communication during such a response. Novel IT tools comprise a vehicle-based, remote video camera and communication network systems. During an on-site verification event, an image from a remote video camera system attached to the personal protective garment of a medical responder working in the warm zone was transmitted to the on-site Medical Commander for aid in decision making. Similarly, a communication network system was used for personnel at the following points: (1) the on-site Medical Headquarters; (2) the decontamination hot zone; (3) an on-site coordination office; and (4) a remote medical headquarters of a local government office. A specially equipped, dedicated vehicle was used for the on-site medical headquarters, and facilitated the coordination with other agencies. The use of these IT tools proved effective in assisting with the medical command and control of medical resources and patient transport decisions during a mass-decontamination exercise, but improvements are required to overcome transmission delays and camera direction settings, as well as network limitations in certain areas.
USDA-ARS?s Scientific Manuscript database
The development of ecological sites as management units has emerged as a highly effective land management framework, but its utility has been limited by spatial ambiguity of ecological site locations in the U.S., lack of ecological site concepts in many other parts of the world, and the inability to...
Potential for remote sensing of agriculture from the international space station
NASA Astrophysics Data System (ADS)
Morgenthaler, George W.; Khatib, Nader
1999-01-01
Today's spatial resolution of orbital sensing systems is too coarse to economically serve the yield-improvement/contamination-reduction needs of the small to mid-size farm enterprise. Remote sensing from aircraft is being pressed into service. However, satellite remote sensing constellations with greater resolution and more spectral bands, i.e., with resolutions of 1 m in the panchromatic, 4 m in the multi-spectral, and 8 m in the hyper-spectral are expected to be in orbit by the year 2000. Such systems coupled with Global Positioning System (GPS) capability will make ``precision agriculture,'' i.e., the identification of specific and timely fertilizer, irrigation, herbicide, and insecticide needs on an acre-by-acre basis and the ability to meet these needs with precision delivery systems at affordable costs, is what is needed and can be achieved. Current plans for remote sensing systems on the International Space Station (ISS) include externally attached payloads and a window observation platform. The planned orbit of the Space Station will result in overflight of a specific latitude and longitude at the same clock time every 3 months. However, a pass over a specific latitude and longitude during ``daylight hours'' could occur much more frequently. The ISS might thus be a space platform for experimental and developmental testing of future commercial space remote sensing precision agriculture systems. There is also a need for agricultural ``truth'' sites so that predictive crop yield and pollution models can be devised and corrective suggestions delivered to farmers at affordable costs. In Summer 1998, the University of Colorado at Boulder and the Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) at Howard University, under NASA Goddard Space Flight Center funding, established an agricultural ``truth'' site in eastern Colorado. The ``truth'' site was highly instrumented for measuring trace gas concentrations (NOx, SOx, CO2, O3, organics, and aerosols), ground water contamination via drain-tile catch from the fields, and Leaf Area Index (LAI). Also, a tethered balloon flight sampled the site's vertical air column and both aerial infrared photography and satellite imagery were acquired. This paper summarizes the 1998 activities in establishing and operating the ``truth'' site. The goal of such a ``truth'' site is to develop and validate precision agriculture predictive models to improve farming practices. ISS sensor testing can greatly accelerate development of such systems.
2013-03-01
holo- graphic recording on photo-thermo-plastic structure ,” J. Modern Opt. 57(10), 854–858 (2010). 6. N. Kukhtarev and T. Kukhtareva, “ Dynamic ...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 21-10-2013 Journal Article Remote Sensing and Characterization of Oil on Water Using...green-blue region can also degrade oil. This finding indicates that properly structured laser clean-up can be an alternative method of decontamination
System design package for the solar heating and cooling central data processing system
NASA Technical Reports Server (NTRS)
1978-01-01
The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.
Teleoperated position control of a PUMA robot
NASA Technical Reports Server (NTRS)
Austin, Edmund; Fong, Chung P.
1987-01-01
A laboratory distributed computer control teleoperator system is developed to support NASA's future space telerobotic operation. This teleoperator system uses a universal force-reflecting hand controller in the local iste as the operator's input device. In the remote site, a PUMA controller recieves the Cartesian position commands and implements PID control laws to position the PUMA robot. The local site uses two microprocessors while the remote site uses three. The processors communicate with each other through shared memory. The PUMA robot controller was interfaced through custom made electronics to bypass VAL. The development status of this teleoperator system is reported. The execution time of each processor is analyzed, and the overall system throughput rate is reported. Methods to improve the efficiency and performance are discussed.
NASA Astrophysics Data System (ADS)
Ripoll, A.; Minguillón, M. C.; Pey, J.; Jimenez, J. L.; Day, D. A.; Sosedova, Y.; Canonaco, F.; Prévôt, A. S. H.; Querol, X.; Alastuey, A.
2015-03-01
Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols (particles with an aerodynamic diameter of less than 1 μm) from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011-April 2012). An aerosol chemical speciation monitor (ACSM) was co-located with other online and offline PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time, for this region. Seasonal trends in PM1 components are attributed to variations in evolution of the planetary boundary layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM1 components and causes the formation of reservoir layers at relatively high altitudes. The combination of all these atmospheric processes results in a high variability of PM1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly composed (up to 90%) of oxygenated organic aerosol (OOA), split in two types: semivolatile (SV-OOA) and low-volatility (LV-OOA), the rest being hydrocarbon-like OA (HOA). The marked diurnal cycles of OA components regardless of the air mass origin indicates that they are not only associated with anthropogenic and long-range-transported secondary OA (SOA) but also with recently produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere most of the day, being affected by PBL air masses only after midday, when the mountain breezes transport emissions from the adjacent valleys and plains to the top of the mountain. This results in clear diurnal patterns of both organic and inorganic concentrations. OA was also mainly composed (71%) of OOA, with contributions from HOA (5%) and biomass burning OA (BBOA; 24%). Moreover, in winter sporadic long-range transport from mainland Europe is observed. The results obtained in the present study highlight the importance of SOA formation processes at a remote site such as MSC, especially in summer. Additional research is needed to characterize the sources and processes of SOA formation at remote sites.
NASA Astrophysics Data System (ADS)
Ripoll, A.; Minguillón, M. C.; Pey, J.; Jimenez, J. L.; Day, D. A.; Querol, X.; Alastuey, A.
2014-11-01
Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the Western Mediterranean Basin (WMB) were conducted for 10 months (July 2011-April 2012). An Aerosol Chemical Speciation Monitor (ACSM) was co-located with other on-line and off-line PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time for this region. Seasonal trends in PM1 components are attributed to variations in: evolution of the planetary boundary layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM1 components and causes the formation of reserve strata at relatively high altitudes. Sporadically, MSC is affected by air masses from North Africa. The combination of all these atmospheric processes at local, regional and continental scales results in a high variability of PM1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly oxygenated organic aerosol (OOA), with two different types: semi-volatile (SV-OOA) and low-volatile (LV-OOA), and both showed marked diurnal cycles regardless of the air mass origin, especially SV-OOA. This different diurnal variation compared to inorganic aerosols suggested that OA components at MSC are not only associated with anthropogenic and long-range-transported secondary OA (SOA), but also with recently-produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere most of the day, being affected by PBL air masses only after midday, when the mountain breezes transport emissions from the adjacent valleys and plains to the top of the mountain. This results in clear diurnal patterns of both organic and inorganic concentrations. Moreover, in winter sporadic long-range transport from mainland Europe is observed and leads to less marked diurnal patterns. The results obtained in the present study highlight the importance of SOA formation processes at a remote site such as MSC, especially in summer. Additional research is needed to characterize the sources of SOA at remote sites.
Ripoll, Anna; Minguillon, M. C.; Pey, J.; ...
2015-03-16
Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols (particles with an aerodynamic diameter of less than 1 μm) from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011–April 2012). An aerosol chemical speciation monitor (ACSM) was co-located with other online and offline PM 1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time, for this region. Seasonal trends in PM 1 components are attributed to variations in evolution of the planetary boundarymore » layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM 1 components and causes the formation of reservoir layers at relatively high altitudes. The combination of all these atmospheric processes results in a high variability of PM 1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly composed (up to 90%) of oxygenated organic aerosol (OOA), split in two types: semivolatile (SV-OOA) and low-volatility (LV-OOA), the rest being hydrocarbon-like OA (HOA). The marked diurnal cycles of OA components regardless of the air mass origin indicates that they are not only associated with anthropogenic and long-range-transported secondary OA (SOA) but also with recently produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere most of the day, being affected by PBL air masses only after midday, when the mountain breezes transport emissions from the adjacent valleys and plains to the top of the mountain. This results in clear diurnal patterns of both organic and inorganic concentrations. OA was also mainly composed (71%) of OOA, with contributions from HOA (5%) and biomass burning OA (BBOA; 24%). Moreover, in winter sporadic long-range transport from mainland Europe is observed. The results obtained in the present study highlight the importance of SOA formation processes at a remote site such as MSC, especially in summer. Furthermore, additional research is needed to characterize the sources and processes of SOA formation at remote sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ripoll, Anna; Minguillon, M. C.; Pey, J.
Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols (particles with an aerodynamic diameter of less than 1 μm) from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011–April 2012). An aerosol chemical speciation monitor (ACSM) was co-located with other online and offline PM 1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time, for this region. Seasonal trends in PM 1 components are attributed to variations in evolution of the planetary boundarymore » layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM 1 components and causes the formation of reservoir layers at relatively high altitudes. The combination of all these atmospheric processes results in a high variability of PM 1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly composed (up to 90%) of oxygenated organic aerosol (OOA), split in two types: semivolatile (SV-OOA) and low-volatility (LV-OOA), the rest being hydrocarbon-like OA (HOA). The marked diurnal cycles of OA components regardless of the air mass origin indicates that they are not only associated with anthropogenic and long-range-transported secondary OA (SOA) but also with recently produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere most of the day, being affected by PBL air masses only after midday, when the mountain breezes transport emissions from the adjacent valleys and plains to the top of the mountain. This results in clear diurnal patterns of both organic and inorganic concentrations. OA was also mainly composed (71%) of OOA, with contributions from HOA (5%) and biomass burning OA (BBOA; 24%). Moreover, in winter sporadic long-range transport from mainland Europe is observed. The results obtained in the present study highlight the importance of SOA formation processes at a remote site such as MSC, especially in summer. Furthermore, additional research is needed to characterize the sources and processes of SOA formation at remote sites.« less
DOT National Transportation Integrated Search
1971-06-01
An analysis has been made of the potentialities and problems involved in assigning some computer processing and control functions to the remote sites in an upgraded third generation air traffic control system. Interrogator sites offer the most fruitf...
EVALUATION OF FUGITIVE EMISSIONS USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY
EPA has developed and evaluated a method for characterizing fugitive emissions from large area sources. The method, known as radial plume mapping (RPM) uses multiple-beam, scanning, optical remote sensing (ORS) instrumentation such as open-path Fourier transform infrared spectro...
NASA Astrophysics Data System (ADS)
Kielkopf, John F.; Hart, R.; Carter, B.; Collins, K. A.; Brown, C.; Hay, J.; Hons, A.; Marsden, S.
2014-01-01
The University of Southern Queensland's Mt. Kent Observatory in Queensland, Australia, and the University of Louisville's Moore Observatory in Kentucky, USA, are collaborating in the development of live remote observing for research, student training, and education. With a focus on flexible operation assisted by semi-autonomous controllers, rather than completely robotic data acquisition, the partnership provides interactive hands-on experience to students at all levels, optimized performance based on real-time observations, and flexible scheduling for transient events and targets of opportunity. Two sites on opposites sides of the globe cover the entire sky, and for equatorial regions allow nearly continuous coverage. The facilites include 0.5-m corrected Dall-Kirkham (CDK) telescopes at both sites, a 0.6 m Ritchie-Chretien telescope at Moore, and a new Nasmyth design 0.7-meter CDK at Mt. Kent instrumented for milli-magnitude precision photometry and wide field imaging, with spectrographs under development. We will describe the operational and data acquisition software, recent research results, and how remote access is being made available to students and observers.
a Hyperspectral Based Method to Detect Cannabis Plantation in Inaccessible Areas
NASA Astrophysics Data System (ADS)
Houmi, M.; Mohamadi, B.; Balz, T.
2018-04-01
The increase in drug use worldwide has led to sophisticated illegal planting methods. Most countries depend on helicopters, and local knowledge to identify such illegal plantations. However, remote sensing techniques can provide special advantages for monitoring the extent of illegal drug production. This paper sought to assess the ability of the Satellite remote sensing to detect Cannabis plantations. This was achieved in two stages: 1- Preprocessing of Hyperspectral data EO-1, and testing the capability to collect the spectral signature of Cannabis in different sites of the study area (Morocco) from well-known Cannabis plantation fields. 2- Applying the method of Spectral Angle Mapper (SAM) based on a specific angle threshold on Hyperion data EO-1 in well-known Cannabis plantation sites, and other sites with negative Cannabis plantation in another study area (Algeria), to avoid any false Cannabis detection using these spectra. This study emphasizes the benefits of using hyperspectral remote sensing data as an effective detection tool for illegal Cannabis plantation in inaccessible areas based on SAM classification method with a maximum angle (radians) less than 0.03.
A Systems Analysis of Food Service at Army Remote and Isolated Sites
1985-06-01
operational support such as cleaning supplies , plateware, silverware, and pots and pans. Of these eight sites, one site was supported by the Belgique, one...8217.^ Army TISA Army Commissary AF Local Other (specify) Non-Foo Items Cleaning Supplies Location & % Solvent Resupply schedule NIS -82- "A
ERIC Educational Resources Information Center
Descy, Don E.
1993-01-01
This introduction to the Internet with examples for Macintosh computer users demonstrates the ease of using e-mail, participating on discussion group listservs, logging in to remote sites using Telnet, and obtaining resources using the File Transfer Protocol (FTP). Included are lists of discussion groups, Telnet sites, and FTP Archive sites. (EA)
NASA Astrophysics Data System (ADS)
Yao, N. A.
2015-12-01
The classified forest of TENE located in the department of OUME has a role of timber production characterized by a high logging. This operation requires a measure of preservation of sensitive sites to exploitation in order to maintain ecological functions, ecosystem and biodiversity living there. The parameters such as streams, slopes, wetlands and rivers are indicators of the existence of sensitive sites to preserve. However, no knowledge of the location, boundaries and the surface of these natural habitats makes its protection difficult. Thus, knowledge of the natural and conceptual environment at the forest of TENE is necessary for the preservation of the ecosystem and biodiversity, prerequisite for its sustainability. Furthermore, Remote Sensing and GIS are less expensive techniques for synthetic and fast analysis of these parameters at different scales as well as spatially and temporally. It should be noted that this study is focused on wetlands mapping in the forest of TENE for a sustainable management. The satellite image of December 2014 from Landsat 8 carried on the Operational Land Imager (OLI) sensor was used for analysis. The methodological approach is based primarily on prior knowledge of the spectral signatures of different elements on the image in different wavelengths. Then the thematic layers extraction of hydromorphic soil without and with vegetation are made by thresholding associated luminance values. The combination of the obtained layers allowed to map all wetlands in the forest of TENE. Finally, the superimposition of this layer with the water system was used to assess the conformity of the result with the reality on the ground. The result showed that the wetlands subject of sensitive sites are mainly found in the western part of the forest of TENE. They are also encountered along the rivers. These wetlands extend over a total area of 12,915 ha against 16,898.22 ha for the non wetlands with a coverage rate of 43.32 %. These areas should be protected against logging in order to do not disturb them because they are refuge environments for fauna as well as flora conservation. This study will enable the manager of the classified forest of TENE to target those sites considered sensitive to preserve for a sustainable management. Keywords: Spectral signature, Forest, Wetland, Remote Sensing, GIS, Côte d'Ivoire.
NASA Astrophysics Data System (ADS)
Black, S.; Hynek, B. M.; Kierein-Young, K. S.; Avard, G.; Alvarado-Induni, G.
2015-12-01
Proper characterization of mineralogy is an essential part of geologic interpretation. This process becomes even more critical when attempting to interpret the history of a region remotely, via satellites and/or landed spacecraft. Orbiters and landed missions to Mars carry with them a wide range of analytical tools to aid in the interpretation of Mars' geologic history. However, many instruments make a single type of measurement (e.g., APXS: elemental chemistry; XRD: mineralogy), and multiple data sets must be utilized to develop a comprehensive understanding of a sample. Hydrothermal alteration products often exist in intimate mixtures, and vary widely across a site due to changing pH, temperature, and fluid/gas chemistries. These characteristics require that we develop a detailed understanding regarding the possible mineral mixtures that may exist, and their detectability in different instrument data sets. This comparative analysis study utilized several analytical methods on existing or planned Mars rovers (XRD Raman, LIBS, Mössbauer, and APXS) combined with additional characterization (thin section, VNIR, XRF, SEM-EMP) to develop a comprehensive suite of data for hydrothermal alteration products collected from Poás and Turrialba volcanoes in Costa Rica. Analyzing the same samples across a wide range of instruments allows for direct comparisons of results, and identification of instrumentation "blind spots." This provides insight into the ability of in-situ analyses to comprehensively characterize sites on Mars exhibiting putative hydrothermal characteristics, such as the silica and sulfate deposits at Gusev crater [eg: Squyres et al., 2008], as well as valuable information for future mission planning and data interpretation. References: Squyres et al. (2008), Detection of Silica-Rich Deposits on Mars, Science, 320, 1063-1067, doi:10.1126/science.1155429.
Experience with a proposed teleradiology system for digital mammography
NASA Astrophysics Data System (ADS)
Saulnier, Emilie T.; Mitchell, Robert J.; Abdel-Malek, Aiman A.; Dudding, Kathryn E.
1995-05-01
Teleradiology offers significant improvement in efficiency and effectiveness over current practices in traditional film/screen-based diagnosis. In the context of digital mammography, the increasing number of women who need to be screened for breast cancer, including those in remote rural regions, make the advantages of teleradiology especially attractive for digital mammography. At the same time, the size and resolution of digital mammograms are among the most challenging to support in a cost effective teleradiology system. This paper describes a teleradiology architecture developed for use with digital mammography by GE Corporate Research and Development in collaboration with Massachusetts General Hospital under National Cancer Institute (NCI/NIH) grant number R01 CA60246-01. Experience with a testbed prototype is described. The telemammography architecture is intended to consist of a main mammography diagnostic site serving several remote screening sites. As patient exams become available, they are forwarded by an image server to the diagnostic site over a WAN communications link. A radiologist at the diagnostic site views a patient exam as it arrives, interprets it, and then relays a report back to the technician at the remote site. A secondary future scenario consists of mobile units which forward images to a remote site, which then forwards them to the main diagnostic site. The testbed architecture is based on the Digital Imaging and Communications in Medicine (DICOM) standard, created by the American College of Radiology (ACR) and National Electrical Manufacturers Association (NEMA). A specification of vendor-independent data formats and data transfer services for digital medical images, DICOM specifies a protocol suite starting at the application layer downward, including the TCP/IP layers. The current DICOM definition does not provide an information element that is specifically tailored to mammography, so we have used the DICOM secondary capture data format for the mammography images. In conclusion, experience with the testbed is described, as is performance analysis related to selection of network components needed to extend this architecture to clinical evaluation. Recommendations are made as to the critical areas for future work.
Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Compiler)
1972-01-01
A variety of remote sensor data has aided geologic mapping in central Colorado. This report summarizes the application of sensor data to both regional and local geologic mapping and presents some conclusions on the practical use of remote sensing for solving geologic mapping problems. It is emphasized that this study was not conducted primarily to test or evaluate remote sensing systems or data, but, rather, to apply sensor data as an accessory tool for geologic mapping. The remote sensor data used were acquired by the NASA Earth Observations Aircraft Program. Conclusions reached on the utility of the various sensor data and interpretation techniques for geologic mapping were by-products of attempts to use them.
The Mixed-Phase Arctic Cloud Experiment (M-PACE)
NASA Technical Reports Server (NTRS)
Verlinde, J.; Harrington, J. Y.; McFarquhar, G. M.; Yannuzzi, V. T.; Avramov, A.; Greenberg, S.; Johnson, N.; Zhang, G.; Poellot, M. R.; Mather, J. H.;
2007-01-01
The Mixed-Phase Arctic Cloud Experiment (M-PACE) was conducted September 27 through October 22, 2004 on the North Slope of Alaska. The primary objective was to collect a data set suitable to study interactions between microphysics, dynamics and radiative transfer in mixed-phase Arctic clouds. Observations taken during the 1997/1998 Surface Heat and Energy Budget of the Arctic (SHEBA) experiment revealed that Arctic clouds frequently consist of one (or more) liquid layers precipitating ice. M-PACE sought to investigate the physical processes of these clouds utilizing two aircraft (an in situ aircraft to characterize the microphysical properties of the clouds and a remote sensing aircraft to constraint the upwelling radiation) over the Department of Energy s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) on the North Slope of Alaska. The measurements successfully documented the microphysical structure of Arctic mixed-phase clouds, with multiple in situ profiles collected in both single-layer and multi-layer clouds over two ground-based remote sensing sites. Liquid was found in clouds with temperatures down to -30 C, the coldest cloud top temperature below -40 C sampled by the aircraft. Remote sensing instruments suggest that ice was present in low concentrations, mostly concentrated in precipitation shafts, although there are indications of light ice precipitation present below the optically thick single-layer clouds. The prevalence of liquid down to these low temperatures could potentially be explained by the relatively low measured ice nuclei concentrations.
Development and evaluation of a water level proportional water sampler
NASA Astrophysics Data System (ADS)
Schneider, P.; Lange, A.; Doppler, T.
2013-12-01
We developed and adapted a new type of sampler for time-integrated, water level proportional water quality sampling (e.g. nutrients, contaminants and stable isotopes). Our samplers are designed for sampling small to mid-size streams based on the law of Hagen-Poiseuille, where a capillary (or a valve) limits the sampling aliquot by reducing the air flux out of a submersed plastic (HDPE) sampling container. They are good alternatives to battery-operated automated water samplers when working in remote areas, or at streams that are characterized by pronounced daily discharge variations such as glacier streams. We evaluated our samplers against standard automated water samplers (ISCO 2900 and ISCO 6712) during the snowmelt in the Black Forest and the Alps and tested them in remote glacial catchments in Iceland, Switzerland and Kyrgyzstan. The results clearly showed that our samplers are an adequate tool for time-integrated, water level proportional water sampling at remote test sites, as they do not need batteries, are relatively inexpensive, lightweight, and compact. They are well suited for headwater streams - especially when sampling for stable isotopes - as the sampled water is perfectly protected against evaporation. Moreover, our samplers have a reduced risk of icing in cold environments, as they are installed submersed in water, whereas automated samplers (typically installed outside the stream) may get clogged due to icing of hoses. Based on this study, we find these samplers to be an adequate replacement for automated samplers when time-integrated sampling or solute load estimates are the main monitoring tasks.
Assessing the use of remotely sensed measurements for characterizing rangeland condition
NASA Astrophysics Data System (ADS)
Folker, Geoffrey P.
There are over 233 million hectares (ha) of nonfederal grazing lands in the United States. Conventional field observation and sampling techniques are insufficient methods to monitor such large areas frequently enough to confidently quantify the biophysical state and assess rangeland condition over large geographic areas. In an attempt to enhance rangeland resource managers' abilities to monitor and assess these factors, remote sensing scientists and land resource managers have worked together to determine whether remotely sensed measurements can improve the ability to measure rangeland response to land management practices. The relationship between spectral reflectance patterns and plant species composition was investigated on six south-central Kansas ranches. Airborne multispectral color infrared images for 2002 through 2004 were collected at multiple times in the growing season over the study area. Concurrent with the image acquisition periods, ground cover estimates of plant species composition and biomass by growth form were collected. Correlation analysis was used to examine relationships among spectral and biophysical field measurements. Results indicate that heavily grazed sites exhibited the highest spectral vegetation index values. This was attributed to increases in low forage quality broadleaf forbs such as annual ragweed (Ambrosia artemisiifolia L.). Although higher vegetation index values have a positive correlation with overall above ground primary productivity, species composition may be the best indicator of healthy rangeland condition. A Weediness Index, which was found to be correlated with range condition, was also strongly linked to spectral reflectance patterns recorded in the airborne imagery.
Remote Sensing and Reflectance Profiling in Entomology.
Nansen, Christian; Elliott, Norman
2016-01-01
Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.
On-demand provisioning of HEP compute resources on cloud sites and shared HPC centers
NASA Astrophysics Data System (ADS)
Erli, G.; Fischer, F.; Fleig, G.; Giffels, M.; Hauth, T.; Quast, G.; Schnepf, M.; Heese, J.; Leppert, K.; Arnaez de Pedro, J.; Sträter, R.
2017-10-01
This contribution reports on solutions, experiences and recent developments with the dynamic, on-demand provisioning of remote computing resources for analysis and simulation workflows. Local resources of a physics institute are extended by private and commercial cloud sites, ranging from the inclusion of desktop clusters over institute clusters to HPC centers. Rather than relying on dedicated HEP computing centers, it is nowadays more reasonable and flexible to utilize remote computing capacity via virtualization techniques or container concepts. We report on recent experience from incorporating a remote HPC center (NEMO Cluster, Freiburg University) and resources dynamically requested from the commercial provider 1&1 Internet SE into our intitute’s computing infrastructure. The Freiburg HPC resources are requested via the standard batch system, allowing HPC and HEP applications to be executed simultaneously, such that regular batch jobs run side by side to virtual machines managed via OpenStack [1]. For the inclusion of the 1&1 commercial resources, a Python API and SDK as well as the possibility to upload images were available. Large scale tests prove the capability to serve the scientific use case in the European 1&1 datacenters. The described environment at the Institute of Experimental Nuclear Physics (IEKP) at KIT serves the needs of researchers participating in the CMS and Belle II experiments. In total, resources exceeding half a million CPU hours have been provided by remote sites.
NASA Technical Reports Server (NTRS)
Jolliff, B.; Moersch, J.; Knoll, A.; Morris, R.; Arvidson, R.; Gilmore, M.; Greeley, R.; Herkenhoff, K.; McSween, H.; Squyres, S.
2000-01-01
Tests of the FIDO (Field Integration Design and Operations) rover and Athena-like operational scenarios were conducted May 7-16, 2000. A group located at the Jet Propulsion Lab, Pasadena, CA, formed the Core Operations Team (COT) that designed experiments and command sequences while another team tracked, maintained, and secured the rover in the field. The COT had no knowledge of the specific field location, thus the tests were done "blind." In addition to FIDO rover instrumentation, the COT had access to LANDSAT 7, TIMS, and AVIRIS regional coverage and color descent images. Using data from the FIDO instruments, primarily a color microscopic imager (CMI), infrared point spectrometer (IPS; 1.5-2.4 microns), and a three-color stereo panoramic camera (Pancam), the COT correlated lithologic features (mineralogy, rock types) from the simulated landing site to a regional scale. The May test results provide an example of how to relate site geology from landed rover investigations to the regional geology using remote sensing. The capability to relate mineralogic signatures using the point IR spectrometer to remotely sensed, multispectral or hyperspectral data proved to be key to integration of the in-situ and remote data. This exercise demonstrated the potential synergy between lander-based and orbital data, and highlighted the need to investigate a landing site in detail and at multiple scales.
Heumann, F.K.; Wilkinson, J.C.; Wooding, D.R.
1997-12-16
A remote appliance for supporting a tool for performing work at a work site on a substantially circular bore of a work piece and for providing video signals of the work site to a remote monitor comprises: a base plate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the base plate and positioned to roll against the bore of the work piece when the base plate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the base plate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the base plate such that the working end of the tool is positioned on the inner face side of the base plate; a camera for providing video signals of the work site to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the base plate, the camera holding means being adjustably attached to the outer face of the base plate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris. 5 figs.
Differences Between S/X and VLBI2010 Operation
NASA Technical Reports Server (NTRS)
Hase, Hayo; Himwich, Ed; Neidhardt, Alexander
2010-01-01
The intended VLBI2010 operation has some significant differences to the current S/X operation. The presentation focuses on the problem of extending the operation of a global VLBI network to continuous operation within the frame of the same given amount of human resources. Remote control operation is a suitable solution to minimize operational expenses. The implementation of remote control operation requires more site specific information. A concept of a distributed-centralized remote control of the operation and its implications is presented.
Dyson, Kate; Kruger, Estie; Tennant, Marc
2012-12-01
This study examines the cost effectiveness of a model of remote area oral health service. Retrospective financial analysis. Rural and remote primary health services. Clinical activity data and associated cost data relating to the provision of a networked visiting oral health service by the Centre for Rural and Remote Oral Health formed the basis of the study data frameset. The cost-effectiveness of the Centre's model of service provision at five rural and remote sites in Western Australia during the calendar years 2006, 2008 and 2010 was examined in the study. Calculations of the service provision costs and value of care provided were made using data records and the Fee Schedule of Dental Services for Dentists. The ratio of service provision costs to the value of care provided was determined for each site and was benchmarked against the equivalent ratios applicable to large scale government sector models of service provision. The use of networked models have been effective in other disciplines but this study is the first to show a networked hub and spoke approach of five spokes to one hub is cost efficient in remote oral health care. By excluding special cost-saving initiatives introduced by the Centre, the study examines easily translatable direct service provision costs against direct clinical care outcomes in some of Australia's most challenging locations. This study finds that networked hub and spoke models of care can be financially efficient arrangements in remote oral health care. © 2012 The Authors. Australian Journal of Rural Health © National Rural Health Alliance Inc.
Doi, Ryoichi
2012-09-01
Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Boyd, T. J.; Anastasiou, C. J.; Thao, P. T. P.; Reid, J. S.
2016-02-01
Optical measurements (absorbance, EEM fluorescence, remote sensing reflectance) and concurrently-collected sensor-based data (CDOM, chlorophyll-a, salinity, turbidity, and temperature) were used to link optical properties to water mass characteristics. Data and samples were collected during four field events in the Philippines (SEP2011, SEP2012 - transects from Manila to Palawan Island), Thailand (MAR2012 - Pattaya Beach area) and Vietnam (MAR2012 - Nha Trang and Ha Long Bay). EEM fluorescence spectra from each site were modeled using PARAFAC to identify representative fluorophores. Remote sensing reflectance was modeled using PCA, determining spectral loadings showing variation in samples from each site. These synthesized model data and sensor-based measurements were collated and ordinated using PCA to determine if optical properties could be linked to water quality and biogeochemical measures. PCA models at each site showed stations nearest to the coastline falling near or outside 95% confidence regions. Initial results indicate protein-like fluorophores were found in lower salinity waters and more heavily-impacted regions (Manila Bay - Philippines, Nha Trang River - Vietnam, Bang Pakong River - Thailand). Spectral slope and an component loading from remote sensing reflectance appeared to co-vary with sensor-derived CDOM fluorescence. Results from intra- and inter-site comparisons and linkages to biogeochemical parameters will be presented.
Rodway-Dyer, Sue; Ellis, Nicola
2018-06-01
Footpaths are a prominent consequence of natural area tourism and reflect damage caused to valuable, sensitive habitats by people pressure. Degradation impacts on vegetation, wildlife, on and off-site soil movement and loss, creation of additional informal off-path footpaths (desire lines), and visual destruction of landscapes. Impacts need to be measured and monitored on a large temporal and spatial scale to aid in land management to maintain access and preserve natural environments. This study combined remote sensing (Light Detection and Ranging [LiDAR] and aerial photography) with on-site measurement of footpaths within a sensitive heathland habitat (Land's End, Cornwall, UK). Soil loss, slope angle change, vegetation damage and a hydrology model were combined to comprehensively study the site. Results showed 0.09 m mean soil loss over five years, footpath widening, increasing grass cover into heathland, and water channelling on the footpaths exacerbating erosion. The environments surrounding the footpaths were affected with visitors walking off path, requiring further management and monitoring. Multiple remote sensing techniques were highly successful in comprehensively assessing the area, particularly the hydrology model, demonstrating the potential of providing a valuable objective and quantitative monitoring and management tool. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cavagnaro, D. B.; Doughty, A. M.; Hatchett, B.
2016-12-01
The Rwenzori Mountains of Uganda and Democratic Republic of the Congo are one of only three remaining glaciated sites in Africa. Because of their remoteness and sparsity of meteorological data, the climate patterns are not well-known or well understood, which may lead to high uncertainty in glacier mass-balance estimates and paleoclimate reconstructions. This project uses remotely-sensed precipitation data, automatic weather station data, and back-trajectory modeling of air parcels to characterize the diurnal and seasonal climate patterns at the Rwenzori. Of the two wet seasons, we estimate that the short-rains (SON) provide up to 500% more snow accumulation. Precipitation is highly diurnal and driven by convection to the east of the Rwenzori as well as local up-valley convection (Mölg et al., 2003). Back-trajectory modeling shows that precipitation tends to occur at the Rwenzori when airstreams are able to pick up moisture during peak daytime convection on the East African Plateau the day before arriving at the Rwenzori. This relationship is supported by the fact that precipitation rates at the western end of the plateau follow a stronger diurnal cycle than precipitation rates at the eastern end, at Mount Kenya.
Overview of Mount Washington Icing Sensors Project
NASA Technical Reports Server (NTRS)
Ryerson, Charles C.; Politovich, Marcia K.; Rancourt, Kenneth L.; Koenig, George G.; Reinking, Roger F.; Miller, Dean R.
2003-01-01
NASA, the FAA, the Department of Defense, the National Center for Atmospheric Research and NOAA are developing techniques for retrieving cloud microphysical properties from a variety of remote sensing technologies. The intent is to predict aircraft icing conditions ahead of aircraft. The Mount Washington Icing Sensors Project MWISP), conducted in April, 1999 at Mt. Washington, NH, was organized to evaluate technologies for the prediction of icing conditions ahead of aircraft in a natural environment, and to characterize icing cloud and drizzle environments. April was selected for operations because the Summit is typically in cloud, generally has frequent freezing precipitation in spring, and the clouds have high liquid water contents. Remote sensing equipment, consisting of radars, radiometers and a lidar, was placed at the base of the mountain, and probes measuring cloud particles, and a radiometer, were operated from the Summit. NASA s Twin Otter research aircraft also conducted six missions over the site. Operations spanned the entire month of April, which was dominated by wrap-around moisture from a low pressure center stalled off the coast of Labrador providing persistent upslope clouds with relatively high liquid water contents and mixed phase conditions. Preliminary assessments indicate excellent results from the lidar, radar polarimetry, radiosondes and summit and aircraft measurements.
Greenland iceberg melt variability from high-resolution satellite observations
NASA Astrophysics Data System (ADS)
Enderlin, Ellyn M.; Carrigan, Caroline J.; Kochtitzky, William H.; Cuadros, Alexandra; Moon, Twila; Hamilton, Gordon S.
2018-02-01
Iceberg discharge from the Greenland Ice Sheet accounts for up to half of the freshwater flux to surrounding fjords and ocean basins, yet the spatial distribution of iceberg meltwater fluxes is poorly understood. One of the primary limitations for mapping iceberg meltwater fluxes, and changes over time, is the dearth of iceberg submarine melt rate estimates. Here we use a remote sensing approach to estimate submarine melt rates during 2011-2016 for 637 icebergs discharged from seven marine-terminating glaciers fringing the Greenland Ice Sheet. We find that spatial variations in iceberg melt rates generally follow expected patterns based on hydrographic observations, including a decrease in melt rate with latitude and an increase in melt rate with iceberg draft. However, we find no longitudinal variations in melt rates within individual fjords. We do not resolve coherent seasonal to interannual patterns in melt rates across all study sites, though we attribute a 4-fold melt rate increase from March to April 2011 near Jakobshavn Isbræ to fjord circulation changes induced by the seasonal onset of iceberg calving. Overall, our results suggest that remotely sensed iceberg melt rates can be used to characterize spatial and temporal variations in oceanic forcing near often inaccessible marine-terminating glaciers.
A review of progress in identifying and characterizing biocrusts using proximal and remote sensing
NASA Astrophysics Data System (ADS)
Rozenstein, Offer; Adamowski, Jan
2017-05-01
Biocrusts are critical components of desert ecosystems, significantly modifying the surfaces they occupy. The mixture of biological components and soil particles that form the crust, in conjunction with moisture, determines the biocrusts' spectral signatures. Proximal and remote sensing in complementary spectral regions, namely the reflective region, and the thermal region, have been used to study biocrusts in a non-destructive manner, in the laboratory, in the field, and from space. The objectives of this review paper are to present the spectral characteristics of biocrusts across the optical domain, and to discuss significant developments in the application of proximal and remote sensing for biocrust studies in the last few years. The motivation for using proximal and remote sensing in biocrust studies is discussed. Next, the application of reflectance spectroscopy to the study of biocrusts is presented followed by a review of the emergence of high spectral resolution thermal remote sensing, which facilitates the application of thermal spectroscopy for biocrust studies. Four specific topics at the forefront of proximal and remote sensing of biocrusts are discussed: (1) The use of remote sensing in determining the role of biocrusts in global biogeochemical cycles; (2) Monitoring the inceptive establishment of biocrusts; (3) Identifying and characterizing biocrusts using Longwave infrared spectroscopy; and (4) Diurnal emissivity dynamics of biocrusts in a sand dune environment. The paper concludes by identifying innovative technologies such as low altitude and high resolution imagery that are increasingly used in remote sensing science, and are expected to be used in future biocrusts studies.
Kleptoparasitic behavior and species richness at Mt. Graham red squirrel middens
Andrew J. Edelman; John L. Koprowski; Jennifer L. Edelman
2005-01-01
We used remote photography to assess the frequency of inter- and intra-specific kleptoparasitism and species richness at Mt. Graham red squirrel (Tamiasciurus hudsonicus grahamensis) middens. Remote cameras and conifer cones were placed at occupied and unoccupied middens, and random sites. Species richness of small mammals was higher at red squirrel...
Remote Instrumentation for Teaching Laboratory
ERIC Educational Resources Information Center
Baran, Jit; Currie, Ron; Kennepohl, Dietmar
2004-01-01
The feasibility of using current software, such as PC-Duo, PCAnywhere or LabVIEW, in training students in instrumental analysis from a remote location is investigated. Findings show that creation of online features is crucial to the use and learning by students and the development of a suitable Web site, which provides an easy-to-use interface to…
ERIC Educational Resources Information Center
Osborne, Sam
2015-01-01
Remote Australian Aboriginal and Torres Strait Islander schools and communities are diverse and complex sites shaped by contrasting geographies, languages, histories and cultures, including historical and ongoing relationships with colonialism, and connected yet contextually unique epistemologies, ontologies and cosmologies. This paper explores…
Engineering Education Using a Remote Laboratory through the Internet
ERIC Educational Resources Information Center
Axaopoulos, Petros J.; Moutsopoulos, Konstantinos N.; Theodoridis, Michael P.
2012-01-01
An experiment using real hardware and under real test conditions can be remotely conducted by engineering students and other interested individuals in the world via the Internet and with the capability of live video streaming from the test site. The presentation of this innovative experiment refers to the determination of the current voltage…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-19
... apply to Streaming Quote Traders (``SQTs''), \\5\\ Remote Streaming Quote Traders (``RSQTs'') \\6\\ and... generate and submit option quotations electronically in options to which such SQT is assigned. \\6\\ A Remote....C. 552, will be available for Web site viewing and printing in the Commission's Public Reference...
USDA-ARS?s Scientific Manuscript database
Satellite-based passive microwave remote sensing typically involves a scanning antenna that makes measurements at irregularly spaced locations. These locations can change on a day to day basis. Soil moisture products derived from satellite-based passive microwave remote sensing are usually resampled...
Remote sensing techniques in cultural resource management archaeology
NASA Astrophysics Data System (ADS)
Johnson, Jay K.; Haley, Bryan S.
2003-04-01
Cultural resource management archaeology in the United States concerns compliance with legislation set in place to protect archaeological resources from the impact of modern activities. Traditionally, surface collection, shovel testing, test excavation, and mechanical stripping are used in these projects. These methods are expensive, time consuming, and may poorly represent the features within archaeological sites. The use of remote sensing techniques in cultural resource management archaeology may provide an answer to these problems. Near-surface geophysical techniques, including magnetometry, resistivity, electromagnetics, and ground penetrating radar, have proven to be particularly successful at efficiently locating archaeological features. Research has also indicated airborne and satellite remote sensing may hold some promise in the future for large-scale archaeological survey, although this is difficult in many areas of the world where ground cover reflect archaeological features in an indirect manner. A cost simulation of a hypothetical data recovery project on a large complex site in Mississippi is presented to illustrate the potential advantages of remote sensing in a cultural resource management setting. The results indicate these techniques can save a substantial amount of time and money for these projects.
River Platform for Monitoring Erosion (RIPLE) in mountainous rivers
NASA Astrophysics Data System (ADS)
Michielin, Yoann; Nord, Guillaume; Esteves, Michel; Geay, Thomas; Hauet, Alexandre
2017-04-01
The RIPLE platform has been developed to allow a continuous monitoring at high temporal frequency ( 10 min) of water and solid fluxes in mountainous rivers. The scientific context of this development is defined as follows: (i) the simultaneous measurements of water discharge, bedload, suspension load and river bed topography contribute to the establishment of comprehensive mass balance at the catchment scale; (ii) measurements of the physical properties of fine sediments (size, shape, composition) provide information on the spatial origin of sediments within the catchment, the conditions for erosion and sedimentation processes within the river and the potential to transport other substances such as nutrients, metals, microorganisms. For the design of the platform, priority has been given to non-intrusive instruments due to their robustness. The basic prototype of the platform integrates the following instruments: water level and surface velocity radars, turbidimeters, conductivity probe, hydrophone, cameras, automatic water sampler and depth sounder. Other instruments are progressively integrated, such as the SCAF (system characterizing the sediment's settling velocity), an acoustic Doppler profiler and a spectrophotometer. A wireless telecommunication has been set up to allow remote interactions with the platform and data transmission. The RIPLE platform has been designed to facilitate its use and maintenance: user interface allowing data monitoring and remote configuration, sending alerts (SMS, mail) according to programmed conditions, flexibility of on-site installation and energy autonomy allowing to easily move the platform from one site to another site. In September 2016, the RIPLE platform was installed on a bridge across the Romanche river at Bourg d'Oisans (45.1159 °N, 6.0135 °E) for a testing period. After a presentation of the architecture of the platform, the first results derived from in situ measurements are discussed: the intercomparison of surface velocity measurements (velocity radar versus Large Scale Particle Image Velocimetry), the direct estimation of water discharge using the surface velocity and water level measurements and the comparison with the historical stage-discharge rating curve, the intercomparison of turbidity measurements and the calibration of the turbidity-SSC (suspended sediment concentration) relationships, the investigation of periods with bedload transport and the characterization of the corresponding hydraulic conditions. The next steps in the exploitation of the results of the RIPLE platform are finally addressed.
Dendrometer studies in urban and rural environments in Stockholm, Sweden
NASA Astrophysics Data System (ADS)
Rocha, Eva; Holzkämper, Steffen
2017-04-01
With this study we investigate growth performances of Pinus sylvestris growing under the influence of the Urban Heat Island of the city of Stockholm, Sweden, and trees growing in the rural surrounding of the city. The aims of this investigation are to see whether and how much the growth performances differ, and which climatic parameters control the tree growth at the respective locations. Stockholm holds one of the world's longest observational climate records, reaching back to AD 1756. Since climate data are collected at a location which today is well within the Urban Heat Island, it is relevant to quantify the correlation differences between climate and tree growth data from trees which actually grow under the same climate conditions and trees growing under natural, rural climate conditions. Applied methods include Remote Sensing and GIS for identification and characterization of the Urban Heat Island, monitoring of tree growth at 30 min-resolution with point dendrometers (Ecomatik) and monitoring of local climate directly at the tree sites. First results indicate emphasized growth differences between the urban and the rural sites, with distinctively higher daily diameter change amplitudes at the urban sites compared to the rural sites, which can be explained by differences in relative humidity and temperature ranges between the sites. We will present and discuss results from 1 year of measurements, focusing on correlation analysis between climate and tree growth data from urban and rural sites, as well as practical issues with dendrometer measurements.
NASA Astrophysics Data System (ADS)
Zhang, Jie-Lin; Wang, Jun-hu; Zhou, Mi; Huang, Yan-ju; Xuan, Yan-xiu; Wu, Ding
2011-11-01
The modern Earth Observation System (EOS) technology takes important role in the uranium geological exploration, and high resolution remote sensing as one of key parts of EOS is vital to characterize spectral and spatial information of uranium mineralization factors. Utilizing satellite high spatial resolution and hyperspectral remote sensing data (QuickBird, Radarsat2, ASTER), field spectral measurement (ASD data) and geological survey, this paper established the spectral identification characteristics of uranium mineralization factors including six different types of alaskite, lower and upper marble of Rössing formation, dolerite, alkali metasomatism, hematization and chloritization in the central zone of Damara Orogen, Namibia. Moreover, adopted the texture information identification technology, the geographical distribution zones of ore-controlling faults and boundaries between the different strata were delineated. Based on above approaches, the remote sensing geological anomaly information and image interpretation signs of uranium mineralization factors were extracted, the metallogenic conditions were evaluated, and the prospective areas have been predicted.
Ground Truth Sampling and LANDSAT Accuracy Assessment
NASA Technical Reports Server (NTRS)
Robinson, J. W.; Gunther, F. J.; Campbell, W. J.
1982-01-01
It is noted that the key factor in any accuracy assessment of remote sensing data is the method used for determining the ground truth, independent of the remote sensing data itself. The sampling and accuracy procedures developed for nuclear power plant siting study are described. The purpose of the sampling procedure was to provide data for developing supervised classifications for two study sites and for assessing the accuracy of that and the other procedures used. The purpose of the accuracy assessment was to allow the comparison of the cost and accuracy of various classification procedures as applied to various data types.
Public health applications of remote sensing of vector borne and parasitic diseases
NASA Technical Reports Server (NTRS)
1976-01-01
Results of an investigation of the potential application of remote sensing to various fields of public health are presented. Specific topics discussed include: detection of snail habitats in connection with the epidemiology of schistosomiasis; the detection of certain Anopheles breeding sites, and location of transient human populations, both in connection with malaria eradication programs; and detection of overwintering population sites for the primary screwworm (Cochliomyia americana). Emphasis was placed on the determination of ground truth data on the biological, chemical, and physical characteristics of ground waters which would or would not support the growth of significant populations of mosquitoes.
Slonecker, E. Terrence; Fisher, Gary B.
2009-01-01
This project is a research collaboration between the U.S. Environmental Protection Agency (EPA) Office of Inspector General (OIG) and the U.S. Geological Survey (USGS) Eastern Geographic Science Center (EGSC), for the purpose of evaluating the utility of hyperspectral remote sensing technology for post-closure monitoring of residual contamination at delisted and closed hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act [CERCLA (also known as 'Superfund')] of 1980 and the Superfund Amendments and Reauthorization Act (SARA) of 1986.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
This bibliography contains general studies as well as chemical analysis of archaeological specimens. The chemical analysis is mainly activation analysis of articles such as metals, pottery, coins, paintings, soils, glass and paper from Medieval, Grecian, Egyptian, Mayan, and prehistoric times. The general studies include results of excavation from the United States. Also covered is work on preservation of artifacts and remote sensing for the site location. (This updated bibliography contains 237 citations, none of which are new entries to the previous edition.)
Della Mea, Vincenzo; Carbone, Antonino; Greatti, Ermes; Beltrami, Carlo A
2003-01-01
We used set-top videoconferencing equipment connected by ISDN at 384 kbit/s for six educational seminars held between the University of Udine (the local site) and the National Cancer Institute in Aviano (the remote site), 60 km away. User satisfaction was evaluated by questionnaire. The median length of seminars was 58 min (range 48-61 min), followed by a 20 min (15-26 min) discussion. Eighty-two users answered the questionnaire (a 43% response rate): 56 in Udine (a median of 11 per seminar) and 26 in Aviano (a median of 5 per seminar). Answers to the questions were similar at the two sites. Videoconferencing did not affect the users' experience of attending the seminars, as both interest and clarity were similar at the local and remote site. The results suggested that videoconferencing is a viable method for delivering seminars in oncopathology, where image quality is important.
The HEPiX Virtualisation Working Group: Towards a Grid of Clouds
NASA Astrophysics Data System (ADS)
Cass, Tony
2012-12-01
The use of virtual machine images, as for example with Cloud services such as Amazon's Elastic Compute Cloud, is attractive for users as they have a guaranteed execution environment, something that cannot today be provided across sites participating in computing grids such as the Worldwide LHC Computing Grid. However, Grid sites often operate within computer security frameworks which preclude the use of remotely generated images. The HEPiX Virtualisation Working Group was setup with the objective to enable use of remotely generated virtual machine images at Grid sites and, to this end, has introduced the idea of trusted virtual machine images which are guaranteed to be secure and configurable by sites such that security policy commitments can be met. This paper describes the requirements and details of these trusted virtual machine images and presents a model for their use to facilitate the integration of Grid- and Cloud-based computing environments for High Energy Physics.
The relationship between orbital, earth-based, and sample data for lunar landing sites
NASA Technical Reports Server (NTRS)
Clark, P. E.; Hawke, B. R.; Basu, A.
1990-01-01
Results are reported of a detailed examination of data available for the Apollo lunar landing sites, including the Apollo orbital measurements of six major elements derived from XRF and gamma-ray instruments and geochemical parameters derived from earth-based spectral reflectivity data. Wherever orbital coverage for Apollo landing sites exist, the remote data were correlated with geochemical data derived from the soil sample averages for major geological units and the major rock components associated with these units. Discrepancies were observed between the remote and the soil-anlysis elemental concentration data, which were apparently due to the differences in the extent of exposure of geological units, and, hence, major rock eomponents, in the area sampled. Differences were observed in signal depths between various orbital experiments, which may provide a mechanism for explaining differences between the XRF and other landing-site data.
Energy Remote Sensing Applications Projects at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Norman, S. D.; Likens, W. C.; Mouat, D. A.
1982-01-01
The NASA Ames Research Center is active in energy projects primarily in the role of providing assistance to users in the solution of a number of problems related to energy. Data bases were produced which can be used, in combination with other sources of information, to solve spatially related energy problems. Six project activities at Ames are described which relate to energy and remote sensing. Two projects involve power demand forecasting and estimations using remote sensing and geographic information systems; two others involve transmission line routing and corridor analysis; one involves a synfuel user needs assessment through remote sensing; and the sixth involves the siting of energy facilities.
NASA Technical Reports Server (NTRS)
Birnie, R. W.; Stoiber, R. E. (Principal Investigator)
1983-01-01
Computer classification of LANDSAT data was used for forest type mapping in New England. The ability to classify areas of hardwood, softwood, and mixed tree types was assessed along with determining clearcut regions and gypsy moth defoliation. Applications of the information to forest management and locating potential deer yards were investigated. The principal activities concerned with remote sensing of volcanic emissions centered around the development of remote sensors for SO2 and HCl gas, and their use at appropriate volcanic sites. Two major areas were investigated (Masaya, Nicaragua, and St. Helens, Washington) along with several minor ones.
Real-Time and Post-Processed Georeferencing for Hyperpspectral Drone Remote Sensing
NASA Astrophysics Data System (ADS)
Oliveira, R. A.; Khoramshahi, E.; Suomalainen, J.; Hakala, T.; Viljanen, N.; Honkavaara, E.
2018-05-01
The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.
Communication network for decentralized remote tele-science during the Spacelab mission IML-2
NASA Technical Reports Server (NTRS)
Christ, Uwe; Schulz, Klaus-Juergen; Incollingo, Marco
1994-01-01
The ESA communication network for decentralized remote telescience during the Spacelab mission IML-2, called Interconnection Ground Subnetwork (IGS), provided data, voice conferencing, video distribution/conferencing and high rate data services to 5 remote user centers in Europe. The combination of services allowed the experimenters to interact with their experiments as they would normally do from the Payload Operations Control Center (POCC) at MSFC. In addition, to enhance their science results, they were able to make use of reference facilities and computing resources in their home laboratory, which typically are not available in the POCC. Characteristics of the IML-2 communications implementation were the adaptation to the different user needs based on modular service capabilities of IGS and the cost optimization for the connectivity. This was achieved by using a combination of traditional leased lines, satellite based VSAT connectivity and N-ISDN according to the simulation and mission schedule for each remote site. The central management system of IGS allows minimization of staffing and the involvement of communications personnel at the remote sites. The successful operation of IGS for IML-2 as a precursor network for the Columbus Orbital Facility (COF) has proven the concept for communications to support the operation of the COF decentralized scenario.
Smolyakov, Boris S; Makarov, Valeriy I; Shinkorenko, Marina P; Popova, Svetlana A; Bizin, Mikhail A
2014-05-01
Extensive forest fires occurred during the summer of 2012 in Siberia. This work presents the influence of long-range atmospheric smoke on the aerosol properties at urban, suburban and background sites, which are located 400-800 km from the fire source. The higher levels of submicron particles (PM1), organic (OC), secondary organic (SOC) and elemental (EC) carbon were observed at all sampling sites, whereas an increase in ionic species HCOO(-), K(+), NO3(-), and Cl(-) and a decrease in pH was higher at the background and suburban sites in comparison with the urban site. Other natural and anthropogenic factors appear to be more significant for ions Ca(2+) + Mg(2+), HCO3(-), NH4(+), SO4(2-) and Na(+). The present study indicates that the impact of remote fires on the aerosol characteristics depends on their background (without fires) levels at the sampling sites. Copyright © 2014 Elsevier Ltd. All rights reserved.
Case report: teledermatology and epiluminescence microscopy for the diagnosis of scabies.
Weinstock, M A; Kempton, S A
2000-07-01
We wish to share images from a patient seen in our teledermatology program. Due to the absence of on-site dermatology services at the Togus, Maine, Department of Veterans Affairs, and associated community clinics for veterans in Aroostook, Bangor, Calais, and Rumford, we created a program to provide dermatologic expertise from Providence, Rhode Island. Patients referred for this service were evaluated by a nurse practitioner, who obtained a history, performed a physical examination, and captured digital images of the affected area of skin, including epiluminescence microscopic images where indicated. These data were then retrieved at the Providence (host) site and reviewed by a dermatologist, who formulated an impression and plan that was then implemented by the remote site in Maine. This approach, which involves image capture at the remote site and later review of images at the host site, is the "store-and-forward" method, which appears to be a relatively cost-effective means of providing this service from a distance.
2010-04-01
frequency monitoring, target control, and electronic warfare and networked operations. Kokee supports tracking radars, telemetry, communications, and...owned island of Niihau provide support and sites for a remotely operated PMRF surveillance radar, a Test Vehicle Recovery Site, an electronic warfare...site, multiple electronic warfare portable simulator sites, a marker for aircraft mining exercise programs, and a helicopter terrain-following
Recent Characterization of the Night-Sky Irradiance in the Visible/Near-Infrared Spectral Band
NASA Astrophysics Data System (ADS)
Moore, Carolynn; Wood, Michael; Bender, Edward; Hart, Steve
2018-01-01
The U.S. Army RDECOM CERDEC NVESD has made numerous characterizations of the night sky over the past 45 years. Up until the last four years, the measurement devices were highly detector-limited, which led to low spectral resolution, marginal sensitivity in no-moon conditions, and the need for inferential analysis of the resulting data. In 2014, however, the PhotoResearch Model PR-745 spectro-radiometer established a new state of the art for measurement of the integrated night-sky irradiance over the Visible-to-Near-Infrared (VNIR) spectral band (400-1050nm). This has enabled characterization of no-moon night-sky irradiance with a spectral bandwidth less than 15 nanometers, even when this irradiance is attenuated by heavy clouds or forest canopy. Since 2014, we have conducted a series of night-sky data collections at remote sites across the United States. The resulting data has provided new insights into natural radiance variations, cultural lighting impacts, and the spectrally-varying attenuation caused by cloud cover and forest canopy. Several new metrics have also been developed to provide insight into these newly-found components and temporal variations. The observations, findings and conclusions of the above efforts will be presented, including planned near-term efforts to further characterize the night-sky irradiance in the Visible/Near-Infrared spectral band.
Digital Holographic Interferometry for Airborne Particle Characterization
2015-03-19
Interferometry and polarimetry for aerosol particle characterization, Bioaerosols: Characterization and Environmental Impact, Austin, TX (2014) [organizer...and conference chair]. 6. Invited talk: Holographic Interferometry and polarimetry for aerosol particle characterization, Optical...Stokes parameters, NATO Advanced Science Institute on Special Detection Technique ( Polarimetry ) and Remote Sensing, Kyiv, Ukraine (2010). (c
Remote FLS testing in the real world: ready for "prime time".
Okrainec, Allan; Vassiliou, Melina; Jimenez, M Carolina; Henao, Oscar; Kaneva, Pepa; Matt Ritter, E
2016-07-01
Maintaining the existing FLS test centers requires considerable investment in human and financial resources. It can also be particularly challenging for those outside of North America to become certified due to the limited number of international test centers. Preliminary work suggests that it is possible to reliably score the FLS manual skills component remotely using low-cost videoconferencing technology. Significant work remains to ensure that testing procedures adhere to standards defined by SAGES for this approach to be considered equivalent to standard on-site testing. To validate the integrity and validity of the FLS manual skills examination administered remotely in a real-world environment according to FLS testing protocols and to evaluate participants' experience with the setting. Individuals with various levels of training from the University of Toronto completed a pre- and a post-test questionnaire. Participants presented to one of the two FLS testing rooms available for the study, each connected via Skype to a separate room with a FLS proctor who administered and scored the test remotely (RP). An on-site proctor (OP) was present in the room as a control. An invigilator was also present in the testing room to follow directions from the RP and ensure the integrity of test materials. Twenty-one participants were recruited, and 20 completed the test. There was no significant difference between scores by RP and OP. Interrater reliability between the RP and OP was excellent. One critical error was missed by the RP, but this would not have affected the test outcome. Participants reported being highly satisfied. We demonstrate that proctors located remotely can administer the FLS skills test in a secure and reliable fashion, with excellent interrater reliability compared to an on-site proctor. Remote proctoring of the FLS examination could become a strategy to increase certification rates while containing costs.
NASA Astrophysics Data System (ADS)
Hulslander, D.; Warren, J. N.; Weintraub, S. R.
2017-12-01
Hyperspectral imaging systems can be used to produce spectral reflectance curves giving rich information about composition, relative abundances of materials, mixes and combinations. Indices based on just a few spectral bands have been used for over 40 years to study vegetation health, mineral abundance, and more. These indices are much simpler to visualize and use than a full hyperspectral data set which may contain over 400 bands. Yet historically, it has been difficult to directly relate remotely sensed spectral indices to quantitative biophysical properties significant to forest ecology such as canopy nitrogen, lignin, and chlorophyll. This linkage is a critical piece in enabling the detection of high value ecological information, usually only available from labor-intensive canopy foliar chemistry sampling, to the geographic and temporal coverage available via remote sensing. Previous studies have shown some promising results linking ground-based data and remotely sensed indices, but are consistently limited in time, geographic extent, and land cover type. Moreover, previous studies are often focused on tuning linkage algorithms for the purpose of achieving good results for only one study site or one type of vegetation, precluding development of more generalized algorithms. The National Ecological Observatory Network (NEON) is a unique system of 47 terrestrial sites covering all of the major eco-climatic domains of the US, including AK, HI, and Puerto Rico. These sites are regularly monitored and sampled using uniform instrumentation and protocols, including both foliar chemistry sampling and remote sensing flights for high resolution hyperspectral, LiDAR, and digital camera data acquisition. In this study we compare the results of foliar chemistry analysis to the remote sensing vegetation indices and investigate possible sources for variance and difference through the use of the larger hyperspectral dataset as well as ground based spectrometer measurements of samples subsequently analyzed for foliar chemistry.
NASA Astrophysics Data System (ADS)
Grosse, G.; Tillapaugh, M.; Romanovsky, V. E.; Walter, K. M.; Plug, L. J.
2008-12-01
Formation, growth, and drainage of thermokarst lakes in ice-rich permafrost deposits are important factors of landscape dynamics in extent Arctic lowlands. Monitoring of spatial and temporal dynamics of such lakes will allow an assessment of permafrost stability and enhance the capabilities for modelling and quantifying biogeochemical processes related to permafrost degradation in a warming Arctic. In this study we use high-resolution remote sensing and GIS to analyze the development of thermokarst lakes and ponds in two study regions in North Siberia and Northwest Alaska. The sites are 1) the Cherskii region in the Kolyma lowland (Siberia) and 2) the Kitluk River area on the northern Seward Peninsula (Alaska). Both regions are characterized by continuous permafrost, a highly dissected and dynamic thermokarst landscape, uplands of Late Pleistocene permafrost deposits with high excess ice contents, and a large total volume of permafrost-stored carbon. These ice-rich Yedoma or Yedoma-like deposits are highly vulnerable to permafrost degradation forced by climate warming or other surface disturbance. Time series of high- resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Time series of high-resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Processes identified include thaw slumping, wave undercutting of frozen sediments or peat blocks and subsequent mass wasting, thaw collapse of near-shore zones, sinkhole formation and ice-wedge tunnelling, and gully formation by thermo-erosion. We use GIS-based tools to relate the remote sensing results to field data (ground ice content, topography, lithology, and relative age of landscape units). Results exhibit a very dynamic lake environment at both sites strongly related to landscape history and past cryolithological development. Lake shore erosion rates reach values of more than 1 m per year over the 50 year observation period at some sites. Permafrost degradation processes are identified as a key driver of both lake expansion and drainage.
NASA Astrophysics Data System (ADS)
Friedlander, L. R.; Garb, Y.
2017-12-01
Electronic waste (e-waste) is one of today's fastest growing waste streams. Made up of discarded electronics, e-waste disposal is complex. However, e-waste also provides economic opportunity through the processing and extraction of precious metals. Sometimes referred to as "urban mining," this recycling operates informally or illegally and is characterized by dangerous practices such as, open-pit burning, acid leaching, and burning of low value wastes. Poorly controlled e-waste recycling releases dangerous contaminants, especially heavy metals, directly to the surface environment where they can infiltrate water resources and spread through precipitation events. Despite growing recognition of the prevalence of unregulated e-waste processing, systematic data on the extent and persistence of the released contamination is still limited. In general, contamination is established through techniques that provide only a snapshot in time and in a limited geographic area. Here we present preliminary results from attempts to combine field, laboratory, and remote sensing studies toward a systematic remote sensing methodology for e-waste contamination detection and monitoring. The ongoing work utilizes a tragic "natural experiment," in which over 500 e-waste burn sites were active over more than a decade in a variety of agricultural, residential, and natural contexts. We have collected over 100 soil samples for which we have both XRF and ICP-AES measurements showing soil Pb concentrations as high as 14000 ppm. We have also collected 480 in-situ reflectance spectra with corresponding soil samples over 4 field transects of areas with long-term burn activity. The most heavily contaminated samples come from within the burn sites and are made up of ash. Field spectra of these samples reflect their dark color with low overall reflectance and shallow spectral features. These spectra are challenging to use for image classification due to their similarity with other low-reflectance parts of the image (e.g., shadows). We have begun to distinguish shadows from the dark burn site centers by automatically detecting and masking shadows. This will allow us to utilize images taken at different times and our in-situ field spectral results to develop a method for monitoring contaminant spread from these complex point sources.
Development of a remote spectroelectrochemical sensor for technetium as pertechnetate
NASA Astrophysics Data System (ADS)
Monk, David James
Subsurface contamination by technetium (Tc) is of particular concern in the monitoring, characterization, and remediation of underground nuclear waste storage tanks, processing areas, and associated surroundings at the Hanford Site and other U.S. DOE sites nationwide. The concern over this radioactive element arises for two reasons. First, its most common isotope, 99Tc, has an extremely long lifetime of 2.15 x 105 years. Second, it's most common chemical form in environmental conditions, pertechnetate (TcO4-), exhibits very fast migration through soils and readily presents itself to any nearby aquifer. Standard procedures of sampling and analysis in a laboratory prove to be slow and costly in the case of subsurface contamination by radioactive materials. It is highly desirable to develop sensors for these materials that possess the capability of either in-situ or on-site placement for continuous monitoring or immediate analysis of collected samples. These sensors need to possess adequate detection limit and selectivity, rapid response, reversibility (many measurements with one sensor), the ability to perform remotely, and ruggedness. This dissertation describes several areas of the continued work toward a sensor for 99Tc as TcO4-. Research initially focused on developing spectroelectrochemical instrumentation and a disposable sensing element, engineered to address the need to perform remote measurements. The instrument was then tested using samples containing 99Tc, resulting in the development of ancillary equipment and techniques to address concerns associated with performing experiments on radioactive materials. In these tests, the electrochemistry of TcO4 - was demonstrated to be irreversible. Electrochemical reduction of TcO4- on a bare or polymer modified electrode resulted in the continuous build up of technetium oxide (TcO2) on the electrode surface. This TcO2 formed in visual quantities in these films during electrochemistry, and proved to be non-ideal for spectroelectrochemical sensing. In the most recent work described, the development of metal templating techniques using complexes synthesized with rhenium (Re) was investigated as one means to circumvent this irreversibility. In an extension of the metal templating research, custom ligands were being designed which will impart structural rigidity and fluorescence to the template complexes, to facilitate selectivity and sensitivity at levels previously unprecedented for optical techniques.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.
2004-01-01
Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.
NASA Astrophysics Data System (ADS)
Nomokonova, Tatiana; Ebell, Kerstin; Löhnert, Ulrich; Maturilli, Marion
2017-04-01
Clouds are one of the crucial components of the hydrological and energy cycles and thus affecting the global climate. Their special importance in Arctic regions is defined by cloud's influence on the radiation budget. Arctic clouds usually occur at low altitudes and often contain highly concentrated tiny liquid drops. During winter, spring, and autumn periods such clouds tend to conserve the long-wave radiation in the atmosphere and, thus, produce warming of the Arctic climate. In summer though clouds efficiently scatter the solar radiation back to space and, therefore, induce a cooling effect. An accurate characterization of the net effect of clouds on the Arctic climate requires long-term and precise observations. However, only a few measurement sites exist which perform continuous, vertically resolved observations of clouds in the Arctic, e.g. in Alaska, Canada, and Greenland. These sites typically make use of a combination of different ground-based remote sensing instruments, e.g. cloud radar, ceilometer and microwave radiometer in order to characterize clouds. Within the Transregional Collaborative Research Center (TR 172) "Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3" comprehensive observations of the atmospheric column are performed at the German-French Research Station AWIPEV at Ny-Ålesund, Svalbard. Ny-Ålesund is located in the warmest part of the Arctic where climate is significantly influenced by adiabatic heating from the warm ocean. Thus, measurements at Ny-Ålesund will complement our understanding of cloud formation and development in the Arctic. This particular study is devoted to the characterization of the cloud macro- and microphysical properties at Ny-Ålesund and of the atmospheric conditions, under which these clouds form and develop. To this end, the information of the various instrumentation at the AWIPEV observatory is synergistically analysed: information about the thermodynamic structure of the atmosphere is obtained from long-term radiosonde launches. In addition, continuous vertical profiles of temperature and humidity are provided by the microwave radiometer HATPRO. A set of active remote sensing instruments performs cloud observations at Ny-Ålesund: a ceilometer and a Doppler lidar operating since 2011 and 2013, respectively, are now complemented with a novel 94 GHz FMCW cloud radar. As a first step, the CLOUDNET algorithms, including a target categorization and classification, are applied to the observations. In this study, we will present a first analysis of cloud properties at Ny-Ålesund including for example cloud occurrence, cloud geometry (cloud base, cloud top, and thickness) and cloud type (liquid, ice, mixed-phase). The different types of clouds are set into context to the environmental conditions such as temperature, amount of water vapour, and liquid water. We also expect that the cloud properties strongly depend on the wind direction. The first results of this analysis will be also shown.
NASA Astrophysics Data System (ADS)
Rubas, L. C.
2012-12-01
Forest resources sequester and store carbon, and serve as a natural brake on climate change. In the tropics, the largest source of greenhouse emission is from deforestation and forest degradation (Gibbs et al 2007). This paper attempts to compile sixty (60) existing studies on using remote sensing to measure key environmental forest indicators at two levels of scales: biome and landscape level. At the tropical forest biome level, there is not as much remote sensing studies that have been done as compared to other forest biomes. Also, existing studies on tropical Asia is still sparse compared to other tropical regions in Latin America and Africa. Biomass map is also produced for the tropical biome using keyhole macro language (KML) which is projected on Google Earth. The compiled studies showed there are four indicators being measured using remote sensors in tropical forest. These are biomass, landcover classification, deforestation and cloud cover. The landscape level will focus on Mount Apo National Park in the Philippines which is encompassing a total area of 54,974.87 hectares. It is one of the ten priority sites targeted in the World Bank-assisted Biodiversity Conservation Program. This park serves as the major watershed for the three provinces with 19 major rivers emanating from the montane formations. Only a small fraction of the natural forest that once covered the country remains. In spite of different policies that aim to reduce logging recent commercial deforestation, illegal logging and agricultural expansion pose an important threat to the remaining forest areas. In some locations in the country, these hotspots of deforestation overlap with the protected areas (Verburg et al 2006). The study site was clipped using ArcGIS from the forest biomass carbon density map produced by Gibbs and Brown (2007). Characterization on this national park using vegetation density, elevation, slope, land cover and precipitation will be conducted to determine factors that would affect the magnitude of stored carbon. Vegetation density will be derived from 5m SPOT imagery. Digital elevation model at a resolution of 90m will be obtained as part of NASA's Shuttle Radar Topography Mission (SRTM). Land cover data will be sourced from Landsat imagery. Mean annual precipitation data (MAP) will be collected from Worldclim dataset. Change detection analysis will be made using 2-time period of Landsat imagery. Accuracy assessment will be conducted following image classification. Changes in land cover will further be related to recommending necessary land use policies for reducing deforestation and the preservation of this protected area.
An Integrated Approach To Offshore Wind Energy Assessment: Great Lakes 3D Wind Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barthelmie, R. J.; Pryor, S. C.
This grant supported fundamental research into the characterization of flow parameters of relevance to the wind energy industry focused on offshore and the coastal zone. A major focus of the project was application of the latest generation of remote sensing instrumentation and also integration of measurements and numerical modeling to optimize characterization of time-evolving atmospheric flow parameters in 3-D. Our research developed a new data-constrained Wind Atlas for the Great Lakes, and developed new insights into flow parameters in heterogeneous environments. Four experiments were conducted during the project: At a large operating onshore wind farm in May 2012; At themore » National Renewable Energy Laboratory National Wind Technology Center (NREL NWTC) during February 2013; At the shoreline of Lake Erie in May 2013; and At the Wind Energy Institute of Canada on Prince Edward Island in May 2015. The experiment we conducted in the coastal zone of Lake Erie indicated very complex flow fields and the frequent presence of upward momentum fluxes and resulting distortion of the wind speed profile at turbine relevant heights due to swells in the Great Lakes. Additionally, our data (and modeling) indicate the frequent presence of low level jets at 600 m height over the Lake and occasions when the wind speed profile across the rotor plane may be impacted by this phenomenon. Experimental data and modeling of the fourth experiment on Prince Edward Island showed that at 10-14 m escarpment adjacent to long-overseas fetch the zone of wind speed decrease before the terrain feature and the increase at (and slightly downwind of) the escarpment is ~3–5% at turbine hub-heights. Additionally, our measurements were used to improve methods to compute the uncertainty in lidar-derived flow properties and to optimize lidar-scanning strategies. For example, on the basis of the experimental data we collected plus those from one of our research partners we advanced a new methodology to estimate a priori the uncertainty in wind speed retrievals from arc scans based on site characteristics such as wind velocity, turbulence intensity and proposed scan geometry. Insights regarding use of remote sensing technologies deriving from project experiments were used to compile a best practice document http://doi.org/10.7298/X4QV3JGF for measuring wind speeds and turbulence offshore through in-situ and remote sensing technologies. A project-specific web-site was developed and is available at: http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/spryor/DoE_AIATOWEA/index.html« less