Science.gov

Sample records for remote surface mapping

  1. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    NASA Technical Reports Server (NTRS)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  2. Impervious Surface Mapping of Jungnang-cheon Basin of Korea Using Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Kim, S.; Heo, J.

    2007-12-01

    Impervious surface is the important index for the estimation of urbanization and environmental change. In addition, impervious surface affects on various hydrological process such as the short-term rainfall runoff modeling, water balance analysis, and groundwater estimation in urban area. Therefore, the estimation of impervious surface is an important factor to analyze urban flood. The main objective of this study is the impervious surface mapping of case study area using remote sensing images. Case study area is Jungnang- cheon basin in South Korea. Remote sensing images for the impervious surface mapping are landsat-7 ETM+ and high resolution satellite image of Jungnang-cheon basin. Moreover, a tasseled cap transformation and NDVI transformation apply to landsat-7 ETM+ for considering various predicted parameters. Impervious surface is estimated by using regression tree algorithm which is a binary recursive partitioning process and a rule-based model for the prediction of continuous variables based on training data. Regression tree algorithm is applied to training data sets which are collected by overlaying between landsat-7 ETM+ and high resolution satellite image with different spatial resolution. Then, the predicted variables such as band 3(red), band 4(nearIR), band 5(midIR), and band 7(nearIR) of landsat-7 ETM+ and TC2(greenness) and TC3(wetness) of a tasseled cap transformed image and NDVI transformed image are selected for the efficient and fast prediction modeling. The independent variable of model is a continuous impervious index represented by percentage. The accuracy of variables combination is compared by the average error(AE), the relative error(RE), and correlation coefficient. As the results, the selected test composes with band 3, 4, 5 and 7 of landsat-7 ETM+, the greenness of a tasseled cap transformed image and NDVI. It shows the highest correlation coefficient(0.92) and the smallest the total average error(9.2). In addition, 10-folds cross

  3. Mapping Surface Soil Organic Carbon for Crop Fields with Remote Sensing

    NASA Technical Reports Server (NTRS)

    Chen, Feng; Kissel, David E.; West, Larry T.; Rickman, Doug; Luvall, J. C.; Adkins, Wayne

    2004-01-01

    The organic C concentration of surface soil can be used in agricultural fields to vary crop production inputs. Organic C is often highly spatially variable, so that maps of soil organic C can be used to vary crop production inputs using precision farming technology. The objective of this research was to demonstrate the feasibility of mapping soil organic C on three fields, using remotely sensed images of the fields with a bare surface. Enough soil samples covering the range in soil organic C must be taken from each field to develop a satisfactory relationship between soil organic C content and image reflectance values. The number of soil samples analyzed in the three fields varied from 22 to 26. The regression equations differed between fields, but gave highly significant relationships with R2 values of 0.93, 0.95, and 0.89 for the three fields. A comparison of predicted and measured values of soil organic C for an independent set of 2 soil samples taken on one of the fields gave highly satisfactory results, with a comparison equation of % organic C measured + 1.02% organic C predicted, with r2 = 0.87.

  4. Mapping the surface characteristics of the Mojave with remote sensing for terrestrial habitat modeling

    NASA Astrophysics Data System (ADS)

    Nowicki, S. A.; Skuse, R. J.

    2012-12-01

    High-resolution ecological and climate modeling requires quantification of surface characteristics such as rock abundance, soil induration and surface roughness at fine-scale, since these features can affect the micro and macro habitat of a given area and ultimately determine the assemblage of plant and animal species that may occur there. Our objective is to develop quantitative data layers of thermophysical properties of the entire Mojave Desert Ecoregion for applications to habitat modeling being conducted by the USGS Western Ecological Research Center. These research efforts are focused on developing habitat models and a better physical understanding of the Mojave Desert, which have implications the development of solar and wind energy resources, military installation expansion and residential development planned for the Mojave. Thus there is a need to improve our understanding of the mechanical composition and thermal characteristics of natural and modified surfaces in the southwestern US at as high-resolution as possible. Since the Mojave is a sparsely-vegetated, arid landscape with little precipitation, remote sensing-based thermophysical analyses using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) day and nighttime imagery are ideal for determining the physical properties of the surface. New mosaicking techniques for thermal imagery acquired at different dates, seasons and temperatures have allowed for the highest-resolution mosaics yet generated at 100m/pixel for thermal infrared wavelengths. Among our contributions is the development of seamless day and night ASTER mosaics of land surface temperatures that are calibrated to Moderate Resolution Imaging Spectroradiometer (MODIS) coincident observations to produce both a seamless mosaic and quantitative temperatures across the region that varies spectrally and thermophysically over a large number of orbit tracks. Products derived from this dataset include surface rock abundance

  5. Estimation of land surface evaporation map over large areas using remote sensing data

    NASA Astrophysics Data System (ADS)

    Jiang, Le

    Accurate estimation of surface energy fluxes is essential for various hydrological, meteorological, agricultural and ecological applications. Over the years, a wide variety of instrument systems and estimation methodologies have been developed to measure and estimate surface fluxes. In this study, a simple scheme is proposed to estimate surface evaporation over large heterogeneous areas using remote sensing data. This approach is based on an extension of the Priestley-Taylor equation and a relationship between remotely sensed surface temperature and vegetation index. Further simplification by using more generalized form for remotely sensed surface parameters set leads to a simpler formulation for evaporative fraction within a trapezoid/triangle space of remotely sensed vegetation index and surface temperature parameter space. Compared to ground flux observations by the Atmospheric Radiation Measurement (ARM) program, six case studies varying from early spring to late summer over the central United States show that the proposed method provides better estimation accuracy for surface evaporation than the original Priestley-Taylor method. Detailed comparison with the widely used aerodynamic resistance energy balance residual method suggests that the proposed method can achieve similar or better estimation of latent heat flux over large areas with much less input parameters. The residual method, on the other hand, requires estimation of aerodynamic resistance to heat transfer that necessitates the measurements of several ground-based observations including land surface vegetation height and surface wind.

  6. Mapping surface energy flux partitioning at large scales with optical and microwave remote sensing data from Washita '92

    NASA Astrophysics Data System (ADS)

    Kustas, William P.; Zhan, Xiwu; Jackson, Thomas J.

    1999-01-01

    A model evaluating the energy balance of the soil/substrate and vegetation (i.e., two-source) was applied to remotely sensed near-surface soil moisture maps generated from passive microwave data collected during the Washita '92 experiment. Model parameters were derived from a soil texture and a land-use/land cover database along with a normalized difference vegetation index map created from a SPOT satellite image. The Bowen ratio (BO, ratio of sensible to latent heat flux) was used for investigating the temporal and spatial variability in model output. Comparisons between predicted and observed heat fluxes were made with values summed over the daytime period. Daily maps of midday BO indicated areas with low vegetation cover or bare soil and senescent vegetation were drying out significantly (i.e., dramatic increases in BO), while other areas with higher vegetation cover showed smaller increases in BO in response to a drying soil surface. This result agrees with the profile soil moisture and surface flux observations indicating adequate moisture was available to the vegetation for meeting atmospheric demand. The predicted daytime fluxes agreed to within 1 mm of the observations with ≈25% difference between modeled and observed daytime evapotranspiration. Differences between modeled and measured surface temperatures averaged ≈2 K. The discrepancies between model output and observations are similar to the uncertainty in these measurements, indicating that the model provided reliable daytime energy flux maps for the Washita '92 study area using remotely sensed near-surface soil moisture.

  7. Mapping land water and energy balance relations through conditional sampling of remote sensing estimates of atmospheric forcing and surface states

    NASA Astrophysics Data System (ADS)

    Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido

    2016-04-01

    In this study, we develop and apply a mapping estimation capability for key unknown parameters that link the surface water and energy balance equations. The method is applied to the Gourma region in West Africa. The accuracy of the estimation method at point scale was previously examined using flux tower data. In this study, the capability is scaled to be applicable with remotely sensed data products and hence allow mapping. Parameters of the system are estimated through a process that links atmospheric forcing (precipitation and incident radiation), surface states, and unknown parameters. Based on conditional averaging of land surface temperature and moisture states, respectively, a single objective function is posed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to parameters to identify evapotranspiration and drainage models and estimate water and energy balance flux components. The uncertainty of the estimated parameters (and associated statistical confidence limits) is obtained through the inverse of Hessian of the objective function, which is an approximation of the covariance matrix. This calibration-free method is applied to the mesoscale region of Gourma in West Africa using multiplatform remote sensing data. The retrievals are verified against tower-flux field site data and physiographic characteristics of the region. The focus is to find the functional form of the evaporative fraction dependence on soil moisture, a key closure function for surface and subsurface heat and moisture dynamics, using remote sensing data.

  8. Surface mineral mapping at Virginia City and Steamboat Springs, Nevada with multi-wavelength infrared remote sensing image data

    NASA Astrophysics Data System (ADS)

    Vaughan, R. Greg

    The purpose of this study was to use a combination of high spatial resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data to remotely identify and map exposed alteration minerals around both active and ancient hydrothermal systems, and the mineral by-products of weathered mine tailings. Three case study areas were evaluated: (1) Steamboat Springs, as an active geothermal system; (2) Geiger Grade and Virginia City, as ancient hydrothermal systems; and (3) Virginia City, as a historic mining district. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), as well as data from newly developed airborne imaging spectrometers: SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopic methods. In all of the case study areas the minerals mapped included sinter, quartz/chalcedony, albite, calcite, dolomite, hydrous sulfate minerals (tamarugite, alunogen, gypsum and hexahydrite), jarosite, hematite, goethite, alunite, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. The results were synthesized into single thematic mineral maps and indicate that the combination of multi-channel infrared remote sensing data is an effective technique for the unique identification and mapping of weathering and alteration minerals that are characteristic of active and fossil hydrothermal systems, as well as acid mine drainage potential. This study provides many examples of the advantages of high spatial and

  9. Remote sensing aids geologic mapping.

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1973-01-01

    Remote sensing techniques have been applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is to be used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area. Regional and local geologic mapping can be aided by the proper application of remote sensing techniques. Conventional color and color infrared photos contain a large amount of easily-extractable general geologic information and are easily used by geologists untrained in the field of remote sensing. Other kinds of sensor data used in this study, with the exception of SLAR imagery, were generally found to be impractical or unappropriate for broad-scale general geologic mapping.

  10. Evaluation of Surface Energy Balance models for mapping evapotranspiration using very high resolution airborne remote sensing data

    NASA Astrophysics Data System (ADS)

    Paul, George

    Agriculture is the largest (90%) consumer of all fresh water in the world. The consumptive use of water by vegetation represented by the process evapotranspiration (ET) has a vital role in the dynamics of water, carbon and energy fluxes of the biosphere. Consequently, mapping ET is essential for making water a sustainable resource and also for monitoring ecosystem response to water stress and changing climate. Over the past three decades, numerous thermal remote sensing based ET mapping algorithms were developed and these have brought a significant theoretical and technical advancement in the spatial modeling of ET. Though these algorithms provided a robust, economical, and efficient tool for ET estimations at field and regional scales, yet the uncertainties in flux estimations were large, making evaluation a difficult task. The main objective of this study was to evaluate and improve the performance of widely used remote sensing based energy balance models, namely: the Surface Energy Balance Algorithm for Land (SEBAL), Mapping Evapotranspiration at high Resolution and with Internalized Calibration (METRIC), and Surface Energy Balance System (SEBS). Data used in this study was collected as part of a multi-disciplinary and multi-institutional field campaign BEAREX (Bushland Evapotranspiration and Agricultural Remote Sensing Experiment) that was conducted during 2007 and 2008 summer cropping seasons at the USDA-ARS Conservation and Production Research Laboratory (CPRL) in Bushland, Texas. Seventeen high resolution remote sensing images taken from multispectral sensors onboard aircraft and field measurements of the agro-meteorological variables from the campaign were used for model evaluation and improvement. Overall relative error measured in terms of mean absolute percent difference (MAPD) for instantaneous ET (mm h -1) were 22.7%, 23.2%, and 12.6% for SEBAL, METRIC, and SEBS, respectively. SEBAL and METRIC performances for irrigated fields representing higher ET

  11. Mapping and Assessing Surface Morphology of Holocene Lava Field in Krafla (NE Iceland) Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Aufaristama, M.; Höskuldsson, A.; Jónsdóttir, I.; Ólafsdóttir, R.

    2016-01-01

    Iceland is well known for its volcanic activity due to its location on the spreading Mid Atlantic Ridge and one of the earth's hot spot. In the past 1000 years there were about 200 eruptions occurring in Iceland, meaning volcanic eruptions occurred every four to five years, on average. Iceland currently has 30 active volcano systems, distributed evenly throughout the so- called Neovolcanic Zone. One of these volcanic systems is the Krafla central volcano, which is located in the northern Iceland at latitude 65°42'53'' N and longitude 16°43'40'' W. Krafla has produced two volcanic events in historic times: 1724-1729 (Myvatn Fires) and 1975-1984 (Krafla Fires). The Krafla Fires began in December 1975 and lasted until September 1984. This event covered about 36-km2 surrounding area with lava, having a total volume of 0.25-0.3 km3. Previous studies of lava surface morphology at Krafla focused on an open channel area by remote sensing are essential as a complementary tool to the previous investigations and to extend the area of mapping. Using Spectral Angle Mapper (SAM) classification approach by selecting spectral reflectance end members, this study has successfully produced a detailed map of the surface morphology in Krafla lava field EO-1 Hyperion (Hyperspectral) satellite images. The overall accuracy of lava morphology map is 61.33% (EO-1 Hyperion). These results show that hyperspectral remote sensing is an acceptable alternative to field mapping and assessing the lava surface morphology in the Krafla lava field. In order to get validation of the satellite image's spectral reflectance, in-situ measurements of the lava field's spectral reflectance using ASD FieldSpec3 is essential.

  12. Mapping Surface Cover Parameters Using Aggregation Rules and Remotely Sensed Cover Classes. Version 1.9

    NASA Technical Reports Server (NTRS)

    Arain, Altaf M.; Shuttleworth, W. James; Yang, Z-Liang; Michaud, Jene; Dolman, Johannes

    1997-01-01

    A coupled model, which combines the Biosphere-Atmosphere Transfer Scheme (BATS) with an advanced atmospheric boundary-layer model, was used to validate hypothetical aggregation rules for BATS-specific surface cover parameters. The model was initialized and tested with observations from the Anglo-Brazilian Amazonian Climate Observational Study and used to simulate surface fluxes for rain forest and pasture mixes at a site near Manaus in Brazil. The aggregation rules are shown to estimate parameters which give area-average surface fluxes similar to those calculated with explicit representation of forest and pasture patches for a range of meteorological and surface conditions relevant to this site, but the agreement deteriorates somewhat when there are large patch-to-patch differences in soil moisture. The aggregation rules, validated as above, were then applied to remotely sensed 1 km land cover data set to obtain grid-average values of BATS vegetation parameters for 2.8 deg x 2.8 deg and 1 deg x 1 deg grids within the conterminous United States. There are significant differences in key vegetation parameters (aerodynamic roughness length, albedo, leaf area index, and stomatal resistance) when aggregate parameters are compared to parameters for the single, dominant cover within the grid. However, the surface energy fluxes calculated by stand-alone BATS with the 2-year forcing, data from the International Satellite Land Surface Climatology Project (ISLSCP) CDROM were reasonably similar using aggregate-vegetation parameters and dominant-cover parameters, but there were some significant differences, particularly in the western USA.

  13. Remote sensing. [land use mapping

    NASA Technical Reports Server (NTRS)

    Jinich, A.

    1979-01-01

    Various imaging techniques are outlined for use in mapping, land use, and land management in Mexico. Among the techniques discussed are pattern recognition and photographic processing. The utilization of information from remote sensing devices on satellites are studied. Multispectral band scanners are examined and software, hardware, and other program requirements are surveyed.

  14. The application of remotely sensed data to pedologic and geomorphic mapping on alluvial fan and playa surfaces in Saline Valley, California

    NASA Technical Reports Server (NTRS)

    Miller, D. A.; Petersen, G. W.; Kahle, A. B.

    1986-01-01

    Arid and semiarid regions yield excellent opportunities for the study of pedologic and geomorphic processes. The dominance of rock and soil exposure over vegetation not only provides the ground observer with observational possibilities but also affords good opportunities for measurement by aircraft and satellite remote sensor devices. Previous studies conducted in the area of pedologic and geomorphic mapping in arid regions with remotely sensed data have utilized information obtained in the visible to near-infrared portion of the spectrum. Thermal Infrared Multispectral Scanner (TIMS) and Thematic Mapping (TM) data collected in 1984 are being used in comjunction with maps compiled during a Bureau of Land Management (BLM) soil survey to aid in a detailed mapping of alluvial fan and playa surfaces within the valley. The results from this study may yield valuable information concerning the application of thermal data and thermal/visible data combinations to the problem of dating pedologic and geomorphic features in arid regions.

  15. Remote surface inspection system

    NASA Technical Reports Server (NTRS)

    Hayati, S.; Balaram, J.; Seraji, H.; Kim, W. S.; Tso, K.; Prasad, V.

    1993-01-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  16. Mapping products of Titan's surface

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouelic, Stephane; Lorenz, Ralf D.; Perry, Jason; Brown, Robert H.; Lebreton, Jean-Pierre

    2009-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  17. Neural maps in remote sensing image analysis.

    PubMed

    Villmann, Thomas; Merényi, Erzsébet; Hammer, Barbara

    2003-01-01

    We study the application of self-organizing maps (SOMs) for the analyses of remote sensing spectral images. Advanced airborne and satellite-based imaging spectrometers produce very high-dimensional spectral signatures that provide key information to many scientific investigations about the surface and atmosphere of Earth and other planets. These new, sophisticated data demand new and advanced approaches to cluster detection, visualization, and supervised classification. In this article we concentrate on the issue of faithful topological mapping in order to avoid false interpretations of cluster maps created by an SOM. We describe several new extensions of the standard SOM, developed in the past few years: the growing SOM, magnification control, and generalized relevance learning vector quantization, and demonstrate their effect on both low-dimensional traditional multi-spectral imagery and approximately 200-dimensional hyperspectral imagery.

  18. Development of a Silicon Drift Detector Array: An X-Ray Fluorescence Spectrometer for Remote Surface Mapping

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Carini, Gabriella A.; Wei, Chen; Elsner, Ronald F.; Kramer, Georgiana; De Geronimo, Gianluigi; Keister, Jeffrey W.; Zheng, Li; Ramsey, Brian D.; Rehak, Pavel; Siddons, D. Peter

    2009-01-01

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  19. Sensitivity of thermal inertia calculations to variations in environmental factors. [in mapping of Earth's surface by remote sensing

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Alley, R. E.; Schieldge, J. P.

    1984-01-01

    The sensitivity of thermal inertia (TI) calculations to errors in the measurement or parameterization of a number of environmental factors is considered here. The factors include effects of radiative transfer in the atmosphere, surface albedo and emissivity, variations in surface turbulent heat flux density, cloud cover, vegetative cover, and topography. The error analysis is based upon data from the Heat Capacity Mapping Mission (HCMM) satellite for July 1978 at three separate test sites in the deserts of the western United States. Results show that typical errors in atmospheric radiative transfer, cloud cover, and vegetative cover can individually cause root-mean-square (RMS) errors of about 10 percent (with atmospheric effects sometimes as large as 30-40 percent) in HCMM-derived thermal inertia images of 20,000-200,000 pixels.

  20. Using the Bidirectional Reflectance Distribution Function (BRDF) for remotely mapping surface roughness on alluvial fans: A comparison of Death Valley, CA to Mojave Crater on Mars

    NASA Astrophysics Data System (ADS)

    Doyle, S. L.; Wilkinson, M. J.; Scuderi, L. A.; Weissmann, G. S.; Scuderi, L. J.

    2011-12-01

    resulting surface roughness maps are strikingly similar in classes and patterns to many fans within Death Valley. The surfaces interpreted by Williams and Malin (2008) to be evidence of multiple flow events are clearly classified using BRDF. In addition to age differences, possible locations of materials with different grain size and sorting are also identified. Since the BRDF classes of certain surface features on Earth and Mars fans largely overlap, field observations for each class type made for Death Valley fan surfaces may be useful for understanding the past fluvial processes on Mars and their similarities with fan forming processes in arid regions on Earth. This remote sensing approach has the potential to provide a tool for studying fans that may be inaccessible or too large for extensive fieldwork.

  1. Land cover mapping from remote sensing data

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Saleh, N. M.; Wong, C. J.; AlSultan, Sultan

    2006-04-01

    Remote sensing data have been widely used for land cover mapping using supervised and unsupervised methods. The produced land cover maps are useful for various applications. This paper examines the use of remote sensing data for land cover mapping over Saudi Arabia. Three supervised classification techniques Maximum Likelihood, ML, Minimum Distance-to-Mean, MDM, and Parallelepiped, P were applied to the imageries to extract the thematic information from the acquired scene by using PCI Geomatica software. Training sites were selected within each scene. This study shows that the ML classifier was the best classifier and produced superior results and achieved a high degree of accuracy. The preliminary analysis gave promising results of land cover mapping over Saudi Arabia by using Landsat TM imageries.

  2. Paleovalleys mapping using remote sensing

    NASA Astrophysics Data System (ADS)

    Baibatsha, A. B.

    2014-06-01

    For work materials used multispectral satellite imagery Landsat (7 channels), medium spatial resolution (14,25-90 m) and a digital elevation model (data SRTM). For interpretation of satellite images and especially their infrared and thermal channels allocated buried paleovalleys pre-paleogene age. Their total length is 228 km. By manifestation of the content of remote sensing paleovalleys distinctly divided into two types, long ribbon-like read in materials and space survey highlights a network of small lakes. By the nature of the relationship established that the second type of river paleovalleys flogs first. On this basis, proposed to allocate two uneven river paleosystem. The most ancient paleovalleys first type can presumably be attributed to karst erosion, blurry chalk and carbon deposits foundation. Paleovalleys may include significant groundwater resources as drinking and industrial purposes. Also we can control the position paleovalleys zinc and bauxite mineralization area and alluvial deposits include uranium mineralization valleys infiltration type and placer gold. Direction paleovalleys choppy, but in general they have a north-east orientation, which is controlled by tectonic zones of the foundation. These zones are defined as the burial place themselves paleovalleys and position of karst cavities in areas interfacing with other structures orientation. The association of mineralization to the caverns in the beds paleovalleys could generally present conditions of formation of mineralization and carry it to the "Niagara" type. The term is obviously best reflects the mechanism of formation of these ores.

  3. Remote Sensing of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    2001-01-01

    Our efforts have been focused on understanding the physical properties of planetary surfaces using remote sensing techniques. Specific application has been to the surfaces of the Moon and Mars. Our approach has been to use thermal-infrared emission and radar reflectance and scattering as a way of exploring the decimeter-scale structure of these surfaces. At this scale, the techniques are sensitive to physical parameters such as the average or effective particle size of surface materials, the degree of induration or physical bonding between individual regolith grains, and the abundance of rocks of different sizes resting on or admixed in to the surface. The results are relevant to understanding the geological processes that have affected the surface and, in the case of Mars, determining site safety and scientific relevance for planning upcoming lander, rover, and sample-return spacecraft missions. Specific results are discussed below, and publications that have resulted are listed at the end.

  4. remote sensing data combinations - global AOD maps

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2009-04-01

    More accurate and more complete measurement-based data-sets are needed to constrain the freedom of global modeling and raise confidence in model predictions. In remote sensing, different methods and sensors frequently yield estimates for the same (or a strongly related) atmospheric property. For maximum benefit to data-users (e.g. input or evaluation data to modeling) - in the context of differences in sensor capabilities and retrieval limitations - there is a desire to combine the strengths of these individual data sources for superior products. In a demonstration, different multi-annual global monthly maps for aerosol optical depth (AOD) from satellite remote sensing been compared and scored against local quality reference data from ground remote sensing. The regionally best performing satellite data-sets have been combined into global monthly AOD maps. As expected, this satellite composite scores better than any individual satellite retrieval. Further improvements are achieved by merging statistics of ground remote sensing into the composite. The global average mid-visible AOD of this remote sensing composite is near 0.13 annually, with lower values during northern hemispheric fall and winter (0.12) and larger values during northern hemispheric spring and summer (0.14). This measurement based data composite also reveals characteristic deficiencies in global modeling: Modeling tends to overestimates AOD over the northern mid-latitudes and to underestimate AOD over tropical and sub-tropical land regions. Also noteworthy are AOD underestimates by modeling in remote oceanic regions, though only in relative sense as AOD values in that region as small. The AOD remote sensing data composite is far from perfect, but it demonstrates the extra value of data-combinations.

  5. Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Operational application of a remote sensing-based two source energy balance model (TSEB) to estimate evaportranspiration (ET) and the components evaporation (E), transpiration (T) at a range of space and time scales is very useful for managing water resources in arid and semiarid watersheds. The TSE...

  6. Mapping products of Titan's surface: Chapter 19

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Kirk, Randolph L.; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouélic, Stéphane; Lorenz, Ralph D.; Perry, Jason; Brown, Robert; Lebreton, Jean-Pierre; Waite, J. Hunter

    2010-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  7. Benthic habitat mapping using hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Vélez-Reyes, Miguel; Goodman, James A.; Castrodad-Carrau, Alexey; Jiménez-Rodriguez, Luis O.; Hunt, Shawn D.; Armstrong, Roy

    2006-09-01

    Benthic habitats are the different bottom environments as defined by distinct physical, geochemical, and biological characteristics. Remote sensing is increasingly being used to map and monitor the complex dynamics associated with estuarine and nearshore benthic habitats. Advantages of remote sensing technology include both the qualitative benefits derived from a visual overview, and more importantly, the quantitative abilities for systematic assessment and monitoring. Advancements in instrument capabilities and analysis methods are continuing to expand the accuracy and level of effectiveness of the resulting data products. Hyperspectral sensors in particular are rapidly emerging as a more complete solution, especially for the analysis of subsurface shallow aquatic systems. The spectral detail offered by hyperspectral instruments facilitates significant improvements in the capacity to differentiate and classify benthic habitats. This paper reviews two techniques for mapping shallow coastal ecosystems that both combine the retrieval of water optical properties with a linear unmixing model to obtain classifications of the seafloor. Example output using AVIRIS hyperspectral imagery of Kaneohe Bay, Hawaii is employed to demonstrate the application potential of the two approaches and compare their respective results.

  8. Remote sensing sensors and applications in environmental resources mapping and modeling

    USGS Publications Warehouse

    Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.

  9. Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling

    PubMed Central

    Melesse, Assefa M.; Weng, Qihao; S.Thenkabail, Prasad; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.

  10. NIMS Ganymede Surface Map

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Galileo has eyes that can see more than ours can. By looking at what we call the infrared wavelengths, the NIMS (Near Infrared Mapping Spectrometer) instrument can determine what type and size of material is on the surface of a moon. Here, 3 images of Ganymede are shown.

    Left: Voyager's camera.

    Middle: NIMS, showing water ice on the surface. Dark is less water, bright is more.

    Right: NIMS, showing the locations of minerals in red, and the size of ice grains in shades of blue.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  11. Spectroscopic remote sensing for material identification, vegetation characterization, and mapping

    USGS Publications Warehouse

    Kokaly, Raymond F.; Lewis, Paul E.; Shen, Sylvia S.

    2012-01-01

    Identifying materials by measuring and analyzing their reflectance spectra has been an important procedure in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow materials to be mapped across the landscape. With many existing airborne sensors and new satellite-borne sensors planned for the future, robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral feature analyses of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described. MICA is a module of the PRISM (Processing Routines in IDL for Spectroscopic Measurements) software, available to the public from the U.S. Geological Survey (USGS) at http://pubs.usgs.gov/of/2011/1155/. The core concepts of MICA include continuum removal and linear regression to compare key diagnostic absorption features in reference laboratory/field spectra and the spectra being analyzed. The reference spectra, diagnostic features, and threshold constraints are defined within a user-developed MICA command file (MCF). Building on several decades of experience in mineral mapping, a broadly-applicable MCF was developed to detect a set of minerals frequently occurring on the Earth's surface and applied to map minerals in the country-wide coverage of the 2007 Afghanistan HyMap data set. MICA has also been applied to detect sub-pixel oil contamination in marshes impacted by the Deepwater Horizon incident by discriminating the C-H absorption features in oil residues from background vegetation. These two recent examples demonstrate the utility of a spectroscopic approach to remote sensing for identifying and mapping the distributions of materials in imaging spectrometer data.

  12. Spectroscopic remote sensing for material identification, vegetation characterization, and mapping

    NASA Astrophysics Data System (ADS)

    Kokaly, Raymond F.

    2012-06-01

    Identifying materials by measuring and analyzing their reflectance spectra has been an important procedure in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow materials to be mapped across the landscape. With many existing airborne sensors and new satellite-borne sensors planned for the future, robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral feature analyses of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described. MICA is a module of the PRISM (Processing Routines in IDL for Spectroscopic Measurements) software, available to the public from the U.S. Geological Survey (USGS) at http://pubs.usgs.gov/of/2011/1155/. The core concepts of MICA include continuum removal and linear regression to compare key diagnostic absorption features in reference laboratory/field spectra and the spectra being analyzed. The reference spectra, diagnostic features, and threshold constraints are defined within a user-developed MICA command file (MCF). Building on several decades of experience in mineral mapping, a broadly-applicable MCF was developed to detect a set of minerals frequently occurring on the Earth's surface and applied to map minerals in the country-wide coverage of the 2007 Afghanistan HyMap data set. MICA has also been applied to detect sub-pixel oil contamination in marshes impacted by the Deepwater Horizon incident by discriminating the C-H absorption features in oil residues from background vegetation. These two recent examples demonstrate the utility of a spectroscopic approach to remote sensing for identifying and mapping the distributions of materials in imaging spectrometer data.

  13. Mapping of submerged vegetation using remote sensing technology

    NASA Technical Reports Server (NTRS)

    Savastano, K. J.; Faller, K. H.; Mcfadin, L. W.; Holley, H.

    1981-01-01

    Techniques for mapping submerged sea grasses using aircraft supported remote sensors are described. The 21 channel solid state array spectroradiometer was successfully used as a remote sensor in the experiment in that the system operated without problem and obtained data. The environmental conditions of clear water, bright sandy bottom and monospecific vegetation (Thalassia) were ideal.

  14. Remote sensing of land surface phenology

    USGS Publications Warehouse

    Meier, G.A.; Brown, J.F.

    2014-01-01

    Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at http://phenology.cr.usgs.gov/index.php.

  15. Shallow water substrate mapping using hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Fearns, P. R. C.; Klonowski, W.; Babcock, R. C.; England, P.; Phillips, J.

    2011-08-01

    During April 2004 the airborne hyperspectral sensor, HyMap, collected data over a shallow coastal region of Western Australia. These data were processed by inversion of a semi-analytical shallow water optical model to classify the substrate. Inputs to the optical model include water column constituent specific inherent optical properties (SIOPs), view and illumination geometry, surface condition (based on wind speed) and normalised reflectance spectra of substrate types. A sub-scene of the HyMap data covering approximately 4 km 2 was processed such that each 3×3 m 2 pixel was classed as sand, seagrass, brown algae or various mixtures of these three components. Coincident video data were collected and used to estimate substrate types. We present comparisons of the habitat classifications determined by these two methods and show that the percentage validation of the remotely sensed habitat map may be optimised by selection of appropriate optical model parameters. The optical model was able to retrieve classes for approximately 80% of all pixels in the scene, with validation percentages of approximately 50% for sand and seagrass classification, and 90% for brown algae classification. The semi-analytical model inversion approach to classification can be expected to be applied to any shallow water region where substrate reflectance spectra and SIOPs are known or can be inferred.

  16. Mapping stellar surface features

    SciTech Connect

    Noah, P.V.

    1987-01-01

    New photometric and spectroscopic observations of the RS Canum Venaticorum binaries Sigma Geminorum and UX Arietis are reported along with details of the Doppler-imaging program SPOTPROF. The observations suggest that the starspot activity on Sigma Gem has decreased to 0.05 magnitude in two years. A photometric spot model for September 1984 to January 1985 found that a single spot covering 2% of the surface and 1000 K cooler than the surrounding photosphere could model the light variations. Equivalent-width observations contemporaneous with the photometric observations did not show any significant variations. Line-profile models from SPOTPROF predict that the variation of the equivalent width of the 6393 A Fe I line should be approx. 1mA. Photometric observations of UX Ari from January 1984 to March 1985 show an 0.3 magnitude variation indicating a large spot group must cover the surface. Contemporaneous spectroscopic observations show asymmetric line profiles. The Doppler imaging and the photometric light-curve models were used in an iterative method to describe the stellar surface-spot distribution and successfully model both the photometric and the spectroscopic variations.

  17. Multidata remote sensing approach to regional geologic mapping in Venezuela

    SciTech Connect

    Baker, R.N.

    1996-08-01

    Remote Sensing played an important role in evaluating the exploration potential of selected lease blocks in Venezuela. Data sets used ranged from regional Landsat and airborne radar (SLAR) surveys to high-quality cloud-free air photos for local but largely inaccessible terrains. The resulting data base provided a framework for the conventional analyses of surface and subsurface information available to the project team. (1) Regional surface geology and major structural elements were interpreted from Landsat MSS imagery supplemented by TM and a regional 1:250,000 airborne radar (SLAR) survey. Evidence of dextral offset, en echelon folds and major thoroughgoing faults suggest a regional transpressional system modified by local extension and readjustment between small-scale crustal blocks. Surface expression of the major structural elements diminishes to the east, but can often be extended beneath the coastal plain by drainage anomalies and subtle geomorphic trends. (2) Environmental conditions were mapped using the high resolution airborne radar images which were used to relate vegetation types to surface texture and elevation; wetlands, outcrop and cultural features to image brightness. Additional work using multispectral TM or SPOT imagery is planned to more accurately define environmental conditions and provide a baseline for monitoring future trends. (3) Offshore oil seeps were detected using ERS-1 satellite radar (SAR) and known seeps in the Gulf of Paria as analogs. While partially successful, natural surfactants, wind shadow and a surprising variety of other phenomena created {open_quotes}false alarms{close_quotes} which required other supporting data and field sampling to verify the results. Key elements of the remote sensing analyses will be incorporated into a comprehensive geographic information (GIS) which will eventually include all of Venezuela.

  18. Red squirrel habitat mapping using remote sensing

    NASA Astrophysics Data System (ADS)

    Flaherty, Silvia Susana

    This study investigated the relationship between squirrel feeding activity and structural characteristics of Scots pine forests. Field data were collected from two study areas: Abernethy and Aberfoyle Forests. Canopy closure, diameter at breast height, height and number of trees were measured in 56 plots. Abundance of squirrel feeding signs was used as an index of habitat use. A GLM was used to model the response of cones stripped by squirrels in relation to the field collected structural variables. Results show that forest structural characteristics are significant predictors of feeding sign presence, with canopy closure, number of trees and tree height explaining 43% of the variation in stripped cones. The GLM was also implemented using LiDAR data to assess at wider scales the number of cones stripped by squirrels. . The use of remote sensing -in particular Light Detection and Ranging (LiDAR) - enables cost efficient assessments of forest structure at large scales and can be used to retrieve the three variables explored in this study; canopy cover, tree height and number of trees, that relate to red squirrel feeding behaviour. Correlation between field-predicted and LiDAR-predicted number of stripped cones was performed to assess LiDAR-based model performance. LiDAR data acquired at Aberfoyle and Abernethy Forests had different characteristics (in particular pulse density), which influences the accuracy of LiDAR derived metrics. Therefore correlations between field predicted and LiDAR predicted number of cones (LSC) were assessed for each study area separately. Strong correlations (rs=0.59 for Abernethy and 0.54 for Aberfoyle) suggest that LiDAR-based model performed relatively well over the study areas. The LiDAR-based model was not expected to provide absolute numbers of cones stripped by squirrels but a relative measure of habitat use. This can be interpreted as different levels of habitat suitability for red squirrels. LiDAR-based GLM maps were classified

  19. Surface Energy Heat Fluxes Using Remotely Sensed Parameters

    NASA Technical Reports Server (NTRS)

    Toll, David L.; Vukovich, Fred M.; Pontikes, Elizabeth G.

    1997-01-01

    Realistic estimates of surface energy heat fluxes are needed for the study of water and energy interactions between the land and atmosphere. The primary objective of this work is to study the estimation of surface heat energy fluxes using remote sensing derived parameters under different spatial and temporal conditions. Surface energy fluxes and remote sensing derived data from two sources were analyzed. First, we used surface heat flux, remote sensing, and ancillary data from the International Satellite Land Surface Climatology Project (ISLSCP), mapped at a 1 deg. x 1 deg. grid. Second, we used NOAA AVHRR (1 km), weather station, and ancillary data to derive estimates of surface latent and sensible heat energy fluxes over a 100 sq kilometers area for three test sites: 1) First ISLSCP Field Experiment (FIFE) grassland site, Konza Prairie, Kansas; 2) Howland, Maine Forest Ecosystem Dynamics Site; and 3) Walnut Gulch, scrubland site, surrounding Tombstone, Arizona. Satellite derived estimates of land surface temperature, surface albedo, and spectral vegetation index are used in selected models to provide estimates of surface heat fluxes. Analysis of results from the 1 deg. x 1 deg. grid for North America indicated there were similar, overall correlations between sensible and latent heat energy fluxes versus remotely sensed vegetation index and ground temperature during dry and wet year conditions. However, there were significant differences in correlations between years when stratified by land cover class. Analysis of 100 km x 100 km data (1 km resolution) indicated partitioning the areas in to primary versus secondary cover, with the secondary cover comprising less than 5% of the area, significantly improved surface heat energy flux estimates.

  20. Use of Spatial Variance Information From Remote Sensing Imagery to Map Vegetation Foliage Density

    NASA Astrophysics Data System (ADS)

    Walthall, C. L.; Timlin, D.; Pachepsky, Y.; Dulaney, W.; Daughtry, C.

    2002-12-01

    Maps of foliage density expressed as leaf area index (LAI) are used for natural resources inventories, land surface-atmosphere interaction modeling, and hydrologic modeling. Remote sensing imagery can be used to produce these maps by relating spectral vegetation indexes (SVIs) to LAI calibration samples acquired at selected locations on the surface. This approach traditionally uses ordinary least squares (OLS) relationships between the surface measurements and the SVIs, and does not fully take advantage of the spatial information content of the imagery. Spatial information inherent in a semivariogram of the imagery may provide additional information for mapping LAI patterns. This is demonstrated using a spatially dense sample of corn LAI and calibrated airborne imagery. An LAI map is produced by interpolating surface measurements with a semivariogram from the imagery. The resulting LAI map captures the main spatial features of a LAI map produced by interpolating the surface LAI data with its semivariogram. The image semivariogram approach also provides a product that has less noise characteristic of OLS-based remote sensing methods. The use of the image semivariogram with the surface LAI calibration samples suggests that the spatial domain information can complement spectral information for improving LAI maps especially at high spatial resolution where OLS methods may not perform well.

  1. Remote sensing of the Martian surface

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.; Henderson, Bradley G.; Randall, Cora E.; Alexander, M. Joan; Mccollom, Thomas M.

    1991-01-01

    Researchers investigated the physical properties of the Martian surface as inferred from a combination of orbiting and earth-based remote sensing observations and in-situ observations. This approach provides the most detailed and self-consistent view of the global and regional nature of the surface. Results focus on the areas of modeling the diurnal variation of the surface temperature of Mars, incorporating the effects of atmospheric radiation, with implications for the interpretation of surface thermal inertia; modeling the thermal emission from particulate surfaces, with application to observations of the surfaces of the Earth, Moon, and Mars; modeling the reflectance spectrum of Mars in an effort to understand the role of particle size in the difference between the bright and dark regions; and determining the slope properties of different terrestrial surfaces and comparing them with planetary slopes derived from radar observations.

  2. Remote sensing of tidal wetlands - Mapping and beyond

    NASA Technical Reports Server (NTRS)

    Bartlett, D. S.

    1982-01-01

    Remote sensing, by means of aerial photography, is an accepted method for the mapping and inventory of tidal wetlands, enjoying considerable advantages in speed, flexibility and cost per area mapped over conventional techniques. Initially employed for the identification of wetlands and their boundaries, new applications concern the effective sensing of functional processes within the wetlands environment, such as plant biomass and the production of biogenic gases. The availability of accurate hand-held radiometers has produced increased efforts to quantitatively relate remote measurements to environmental parameters for these processes, expanding the information derivable from aerial and orbital multispectral scanners.

  3. MULTI-SCALE REMOTE SENSING MAPPING OF ANTHROPOGENIC IMPERVIOUS SURFACES: SPATIAL AND TEMPORAL SCALING ISSUES RELATED TO ECOLOGICAL AND HYDROLOGICAL LANDSCAPE ANALYSES

    EPA Science Inventory

    Anthropogenic impervious surfaces are leading contributors to non-point-source water pollution in urban watersheds. These human-created surfaces include such features as roads, parking lots, rooftops, sideways, and driveways. Aerial photography provides a historical vehicle for...

  4. Remote sensing image subpixel mapping based on adaptive differential evolution.

    PubMed

    Zhong, Yanfei; Zhang, Liangpei

    2012-10-01

    In this paper, a novel subpixel mapping algorithm based on an adaptive differential evolution (DE) algorithm, namely, adaptive-DE subpixel mapping (ADESM), is developed to perform the subpixel mapping task for remote sensing images. Subpixel mapping may provide a fine-resolution map of class labels from coarser spectral unmixing fraction images, with the assumption of spatial dependence. In ADESM, to utilize DE, the subpixel mapping problem is transformed into an optimization problem by maximizing the spatial dependence index. The traditional DE algorithm is an efficient and powerful population-based stochastic global optimizer in continuous optimization problems, but it cannot be applied to the subpixel mapping problem in a discrete search space. In addition, it is not an easy task to properly set control parameters in DE. To avoid these problems, this paper utilizes an adaptive strategy without user-defined parameters, and a reversible-conversion strategy between continuous space and discrete space, to improve the classical DE algorithm. During the process of evolution, they are further improved by enhanced evolution operators, e.g., mutation, crossover, repair, exchange, insertion, and an effective local search to generate new candidate solutions. Experimental results using different types of remote images show that the ADESM algorithm consistently outperforms the previous subpixel mapping algorithms in all the experiments. Based on sensitivity analysis, ADESM, with its self-adaptive control parameter setting, is better than, or at least comparable to, the standard DE algorithm, when considering the accuracy of subpixel mapping, and hence provides an effective new approach to subpixel mapping for remote sensing imagery.

  5. CONFIRMING THE RESULTS: AN ACCURACY ASSESSMENT OF REMOTE PRODUCTS, AN EXAMPLE COMPARING MULTIPLE MID-ATLANTIC SUB-PIXEL IMPERVIOUS SURFACE MAPS

    EPA Science Inventory

    Anthropogenic impervious surfaces have an important relationship with non-point source pollution (NPS) in urban watersheds. The amount of impervious surface area in a watershed is a key indicator of landscape change. As a single variable, it serves to intcgrate a number of concur...

  6. A selected bibliography: Remote sensing techniques for evaluating the effects of surface mining

    USGS Publications Warehouse

    Carneggie, David M.; Ohlen, Donald O.

    1979-01-01

    This bibliography contains 39 citations of technical papers and other publications dealing with the applications of remote sensing techniques for analyzing and monitoring surface mining. These references summarize recent developments in methods used to identify, map, analyze, and monitor surface mining, particularly coal surface mining.

  7. Verification of vegetation maps made from remote sensing

    NASA Technical Reports Server (NTRS)

    Botkin, Daniel B.; Estes, John E.; Star, Jeffrey L.; Woods, Kerry

    1985-01-01

    Verification of vegetation maps is discussed, including a map of the vegetation of the Mt. Washington area of New Hampshire. This area was chosen to determine the accuracy of mapping by remote sensing at the boundary between two major forest biomass. Verification was carried out by ground observation and through the use of low altitude 70 mm infrared photographs. Two verification sampling schemes were used: a point method and a transect method. Resulting confidence limits gave an area weighted sampling accuracy of 89 pct. Spatial patterns in terrestrial vegetation must be understood in order to choose appropriate spatial resolutions required for remote sensing instruments, and to relate vegetation dynamics to climate dynamics and biogeochemical cycles.

  8. Surface reconstruction for 3D remote sensing

    NASA Astrophysics Data System (ADS)

    Baran, Matthew S.; Tutwiler, Richard L.; Natale, Donald J.

    2012-05-01

    This paper examines the performance of the local level set method on the surface reconstruction problem for unorganized point clouds in three dimensions. Many laser-ranging, stereo, and structured light devices produce three dimensional information in the form of unorganized point clouds. The point clouds are sampled from surfaces embedded in R3 from the viewpoint of a camera focal plane or laser receiver. The reconstruction of these objects in the form of a triangulated geometric surface is an important step in computer vision and image processing. The local level set method uses a Hamilton-Jacobi partial differential equation to describe the motion of an implicit surface in threespace. An initial surface which encloses the data is allowed to move until it becomes a smooth fit of the unorganized point data. A 3D point cloud test suite was assembled from publicly available laser-scanned object databases. The test suite exhibits nonuniform sampling rates and various noise characteristics to challenge the surface reconstruction algorithm. Quantitative metrics are introduced to capture the accuracy and efficiency of surface reconstruction on the degraded data. The results characterize the robustness of the level set method for surface reconstruction as applied to 3D remote sensing.

  9. Map-guided image database system for remotely sensed data

    SciTech Connect

    Kondo, T.; Shinoda, H.; Sawada, N.; Numagami, H.; Kidode, M.

    1982-01-01

    The authors describes an image database system designed for the management of Landsat image data. In this system, all images are stored under a unique coordinate system (the goedesic coordinate system), accompanied with map information. The user can retrieve any part of the images in terms of geographical names and/or their attributes. This system is implemented on a high-performance interactive image processing system, where remotely sensed data analysis programs can be performed with the aid of a high speed image processor. Experimental results have proved that this system is useful enough to perform remote sensing studies. 5 references.

  10. Vesta surface thermal properties map

    USGS Publications Warehouse

    Capria, Maria Teresa; Tosi, F.; De Santis, Maria Cristina; Capaccioni, F.; Ammannito, E.; Frigeri, A.; Zambon, F; Fonte, S.; Palomba, E.; Turrini, D.; Titus, T.N.; Schroder, S.E.; Toplis, M.J.; Liu, J.Y.; Combe, J.-P.; Raymond, C.A.; Russell, C.T.

    2014-01-01

    The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.

  11. Remote landslide mapping using a laser rangefinder binocular and GPS

    NASA Astrophysics Data System (ADS)

    Santangelo, M.; Cardinali, M.; Rossi, M.; Mondini, A. C.; Guzzetti, F.

    2010-12-01

    We tested a high-quality laser rangefinder binocular coupled with a GPS receiver connected to a Tablet PC running dedicated software to help recognize and map in the field recent rainfall-induced landslides. The system was tested in the period between March and April 2010, in the Monte Castello di Vibio area, Umbria, Central Italy. To test the equipment, we measured thirteen slope failures that were mapped previously during a visual reconnaissance field campaign conducted in February and March 2010. For reference, four slope failures were also mapped by walking the GPS receiver along the landslide perimeter. Comparison of the different mappings revealed that the geographical information obtained remotely for each landslide by the rangefinder binocular and GPS was comparable to the information obtained by walking the GPS around the landslide perimeter, and was superior to the information obtained through the visual reconnaissance mapping. Although our tests were not exhaustive, we maintain that the system is effective to map recent rainfall induced landslides in the field, and we foresee the possibility of using the same (or similar) system to map landslides, and other geomorphological features, in other areas.

  12. GIS and Remote Sensing for Malaria Risk Mapping, Ethiopia

    NASA Astrophysics Data System (ADS)

    Ahmed, A.

    2014-11-01

    Integrating malaria data into a decision support system (DSS) using Geographic Information System (GIS) and remote sensing tool can provide timely information and decision makers get prepared to make better and faster decisions which can reduce the damage and minimize the loss caused. This paper attempted to asses and produce maps of malaria prone areas including the most important natural factors. The input data were based on the geospatial factors including climatic, social and Topographic aspects from secondary data. The objective of study is to prepare malaria hazard, Vulnerability, and element at risk map which give the final output, malaria risk map. The malaria hazard analyses were computed using multi criteria evaluation (MCE) using environmental factors such as topographic factors (elevation, slope and flow distance to stream), land use/ land cover and Breeding site were developed and weighted, then weighted overlay technique were computed in ArcGIS software to generate malaria hazard map. The resulting malaria hazard map depicts that 19.2 %, 30.8 %, 25.1 %, 16.6 % and 8.3 % of the District were subjected to very high, high, moderate, low and very low malaria hazard areas respectively. For vulnerability analysis, health station location and speed constant in Spatial Analyst module were used to generate factor maps. For element at risk, land use land cover map were used to generate element at risk map. Finally malaria risk map of the District was generated. Land use land cover map which is the element at risk in the District, the vulnerability map and the hazard map were overlaid. The final output based on this approach is a malaria risk map, which is classified into 5 classes which is Very High-risk area, High-risk area, Moderate risk area, Low risk area and Very low risk area. The risk map produced from the overlay analysis showed that 20.5 %, 11.6 %, 23.8 %, 34.1 % and 26.4 % of the District were subjected to very high, high, moderate, low and very low

  13. Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)

    NASA Astrophysics Data System (ADS)

    Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.

    2016-04-01

    Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project

  14. Remote mineralogical and vegetation mapping using imaging spectrometry

    NASA Astrophysics Data System (ADS)

    King, James

    The Jet Propulsion Laboratory (JPL) has developed an Imaging Spectrometer Program which consists of aircraft and space-borne instruments for remote mineralogical and vegetation mapping of the Earth's surface. The JPL program grew out of the Landsat Project and was developed in response to NASA's interest in follow-on sensors to the Thematic Mapper on Landsat. NASA encouraged development of advanced multispectral line array detectors directed at Landsat applications. The JPL program takes advantage of several recent breakthroughs in infrared detectors which make it possible to significantly improve the quality of information that can be derived from terrestrial remote sensing. Since the mid-1970s, geologists have recognized that important mineralogical information could be obtained through the use of high-resolution spectral reflectance data in the 0.4 to 2.5 micrometer region. Vibrational and electronic transitions in the crystal lattices play a role in the reflectance behavior of layered silicates, carbonates, and oxide minerals. These are the materials that are most often exposed and make up the weathering products of many rocks; hence they are the most important in geologic remote sensing. Imaging spectrometry can also be used to discriminate, identify, and map vegetation units, as well as determine their state of health and vigor. With the recent development of new techniques for measuring and quantifying the amount of plant cover on soil surfaces, imaging spectroscopy can contribute to soil erosion forecasts and geologic studies in arid lands. In the past, the application of spectral imaging to the identification of materials has been greatly hampered by insufficient spectral resolution. The imaging spectrometer program at JPL was designed to improve the spectral resolution by an order of magnitude from that of the Thematic Mapper on Landsat. The JPL program focuses on technology development and includes optical design studies, the development of area array

  15. Map-based hypermedia display of remote-sensing data

    SciTech Connect

    Rubin, T.; Lanz, K.; Lyon, R.J.P.; McKnight, C. )

    1990-05-01

    The authors present an interactive, map-based search program to help geologists find out what remote-sensing data exists in institutional data files, to provide full details of the image quality (location of clouds, etc.), and to present selected frames in black and white or color on an adjacent high-resolution monitor. A series of maps is presented in a hierarchical sequence-from global, continental, national, and regional down to district and play levels - by which the user can pinpoint the location desired using a familiar map-based point-and-click strategy. When the desired region has been chosen, a secondary menu offers the choice of image type: Landsat MSS, TM, SPOT, radar, aircraft scanner, or aerial photography coverage. Using the selected image type, the user is then presented with the primary level of detail: date, percent cloud cover, spectral bands, etc. Additional requests from a tertiary menu allow more complete details to be shown, together with the location of the imagery within the institution's files. Additionally, nonimaging remotely sensed data such as spectral measurements, other geophysical coverage such as seismic and gravity surveys, and geochemical survey locations can be similarly indexed, located and presented on the color monitor, either as map overlays (GIS) or as spot locations. A Macintosh Plus, SE/30, or Mac II using Hypercard is used to activate an IBM PC/AT-based image processor card and a high-resolution color RGB monitor. The image data are stored at the IBM PC/AT on a WORM optical disk, from which the images and other bit-mapped data are displayed.

  16. Application of remote sensors in mapping rice area and forecasting its production: a review.

    PubMed

    Mosleh, Mostafa K; Hassan, Quazi K; Chowdhury, Ehsan H

    2015-01-05

    Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ~19% of the global dietary energy in recent times and its annual average consumption per capita was ~65 kg during 2010-2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield were

  17. A remote sensing research agenda for mapping and monitoring biodiversity

    NASA Technical Reports Server (NTRS)

    Stoms, D. M.; Estes, J. E.

    1993-01-01

    A remote sensing research agenda designed to expand the knowledge of the spatial distribution of species richness and its ecological determinants and to predict its response to global change is proposed. Emphasis is placed on current methods of mapping species richness of both plants and animals, hypotheses concerning the biophysical factors believed to determine patterns of species richness, and anthropogenic processes causing the accelerating rate of extinctions. It is concluded that biodiversity should be incorporated more prominently into the global change and earth system science paradigms.

  18. Global Energetic Neutral Atom Map of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Vorburger, Audrey; Wurz, Peter; Barabash, Stas; Wieser, Martin; Futaana, Yoshifumi; Lue, Charles; Holmström, Mats; Bhardwaj, Anil; Dhanya, Mb; Asamura, Kazushi

    2013-04-01

    Until recently, it was tacitly assumed that the solar wind ions that impinge onto the lunar surface are almost completely absorbed ( < 1% reflection). This assumption has been invalidated by recent observations made by IBEX and SARA/Chandrayaan-1, which showed an average global energetic neutral atom (ENA) albedo of 10% - 20% (e.g. McComas et al. [GRL 2009] and Wieser et al. [PSS, 2009]). Having analysed all available measurements from the Chandrayaan-1 Energetic Neutral Analyzer (SARA/CENA), we present two global ENA maps of the lunar surface. The low energy map contains ENAs in the energy range (7 eV - 169 eV) and the high energy map contains ENAs in the energy range (169 eV - 3.5 keV). Together, the maps contain all ENAs within SARA/CENA's complete energy range (7 eV - 3.5 keV). The maps cover ~82% of the lunar surface, with almost complete coverage of the lunar farside. In the high energy part of the lunar ENA map several magnetic anomalies can be identified, whereas in the low energy part only the large magnetic anomaly associated with the South Pole-Aitken basin is clearly observed. By comparing SARA/CENA ENA maps to different lunar magnetic field maps, we found that they correlate better with the surface crustal magnetic field map than with the map showing the magnetic field at an altitude of 30 km. This implies that the main interaction between the solar wind plasma and the Moon occurs close to surface. Our high energy ENA map exhibits a strong anti-correlation with the map showing the flux of lunar deflected protons (Lue et al. [GRL 2011]) and appears to be an inverted image thereof. In addition, features in the ENA maps correlate with albedo features of swirls in the South Pole-Aitken basin. No obvious correlation with either the lunar topography or lunar geology map was found. The strength of ENA imaging together with ion reflection imaging lies in the fact that details of solar wind interaction with surfaces in the presence of electric and magnetic

  19. High resolution remote sensing of water surface patterns

    NASA Astrophysics Data System (ADS)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  20. Using Remotely Sensed Data to Map Urban Vulnerability to Heat

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2010-01-01

    This slide presentation defines remote sensing, and presents examples of remote sensing and astronaut photography, which has been a part of many space missions. The presentation then reviews the project aimed at analyzing urban vulnerability to climate change, which is to test the hypotheses that Exposure to excessively warm weather threatens human health in all types of climate regimes; Heat kills and sickens multitudes of people around the globe every year -- directly and indirectly, and Climate change, coupled with urban development, will impact human health. Using Multiple Endmember Spectral Mixing Analysis (MESMA), and the Phoenix urban area as the example, the Normalized Difference Vegetation Index (NDVI) is calculated, a change detection analysis is shown, and surface temperature is shown.

  1. Assessing map accuracy in a remotely sensed, ecoregion-scale cover map

    USGS Publications Warehouse

    Edwards, T.C.; Moisen, G.G.; Cutler, D.R.

    1998-01-01

    Landscape- and ecoregion-based conservation efforts increasingly use a spatial component to organize data for analysis and interpretation. A challenge particular to remotely sensed cover maps generated from these efforts is how best to assess the accuracy of the cover maps, especially when they can exceed 1000 s/km2 in size. Here we develop and describe a methodological approach for assessing the accuracy of large-area cover maps, using as a test case the 21.9 million ha cover map developed for Utah Gap Analysis. As part of our design process, we first reviewed the effect of intracluster correlation and a simple cost function on the relative efficiency of cluster sample designs to simple random designs. Our design ultimately combined clustered and subsampled field data stratified by ecological modeling unit and accessibility (hereafter a mixed design). We next outline estimation formulas for simple map accuracy measures under our mixed design and report results for eight major cover types and the three ecoregions mapped as part of the Utah Gap Analysis. Overall accuracy of the map was 83.2% (SE=1.4). Within ecoregions, accuracy ranged from 78.9% to 85.0%. Accuracy by cover type varied, ranging from a low of 50.4% for barren to a high of 90.6% for man modified. In addition, we examined gains in efficiency of our mixed design compared with a simple random sample approach. In regard to precision, our mixed design was more precise than a simple random design, given fixed sample costs. We close with a discussion of the logistical constraints facing attempts to assess the accuracy of large-area, remotely sensed cover maps.

  2. Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.

    2013-01-01

    This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.

  3. Mapping land degradation and desertification using remote sensing data

    NASA Astrophysics Data System (ADS)

    Saha, S. K.; Kumar, Munish; Lal, Bhajan; Barman, Alok Kumar; Das, Satyendra Nath

    2006-12-01

    Land degradation is the result of both natural and biotic forces operating on the earth. Natural calamities, over exploitation of land resources, unwise land use and the consequences of high inputs agriculture on soil and water resource are of great concern both at national and international level. It aggravated food insecurity in the world especially in the developing countries that calls for combating land degradation and desertification with scientific means. Development of degraded lands in India is one of the options to enhance food production and to restore the fragile ecosystem. The scientific information and spatial distribution of various kinds of degraded lands is thus essential for formulation of strategic plan to arrest the menace of land degradation. Remote sensing provides an opportunity for rapid inventorying of degraded lands to generate realistic database by virtue of multi-spectral and multi-temporal capabilities in the country. The satellite data provides subtle manifestations of degradation of land due to water and wind erosion, water-logging, salinity and alkalinity, shifting cultivation, etc., that facilitate mapping. All India Soil and Land Use Survey (AISLUS) has undertaken the task of land degradation mapping using remotely sensed data and developed a methodology accordingly. The mapping has been conceptualized as a four-tier approach comprising kind of degradation, severity of degradation, degradation under major landform and major land use. Visual mode of interpretation technique based on image characteristics followed by ground verification has been employed for mapping of degraded lands. Image interpretation key has been formulated based on the spectral signatures of various causative factors of different kinds of degraded lands. The mapping legend has been made systematic and connotative. The extent and spatial distribution of different kinds of degraded lands with degree of severity under major landform and major land use in a

  4. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A continuous monitoring of daily evapotranspiration (ET) at field scale can be achieved by combining thermal infrared remote sensing data information from multiple satellite platforms. Here, an integrated approach to field scale ET mapping is described, combining multi-scale surface energy balance e...

  5. Sea Surface Salinity: The Next Remote Sensing Challenge

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary S. E.; Swift, Calvin T.; LeVine, David M.

    1995-01-01

    A brief history of salinity remote sensing is presented. The role of sea surface salinity (SSS) in the far north Atlantic and the influence of salinity variations on upper ocean dynamics in the tropics are described. An assessment of the present state of the technology of the SSS satellite remote sensing is given.

  6. Mapping wave breaking and residual foam using infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Carini, R. J.; Jessup, A. T.; Chickadel, C.

    2012-12-01

    Quantifying wave breaking in the surfzone is important for the advancement of models that seek to accurately predict energy dissipation, near-shore circulation, wave-current interactions, and air-sea gas transfer. Electro-optical remote sensing has been used to try to identify breaking waves. However, the residual foam, left over after the wave has broken, is indistinguishable from active foam in the visible band, which makes identification of active breaking difficult. Here, we explore infrared remote sensing of breaking waves at near-grazing incidence angles to differentiate between active and residual foam in the surfzone. Measurements were made at two field sites: Duck, NC, in September 2010 (Surf Zone Optics) and New River Inlet, NC, in May 2012 (RIVET). At both sites, multiple IR cameras were mounted to a tower onshore, viewing the surfzone at near-grazing incidence angles. For near-grazing incidence angles, small changes in viewing angle, such as those produced by the slope of a wave face, cause large modulations of the infrared signal. Therefore, the passage of waves can be seen in IR imagery. Wave breaking, however, is identified by the resulting foam. Foam has a higher emissivity than undisturbed water and thus appears warmer in an IR image. Residual foam cools quickly [Marmorino and Smith, 2005], thereby making its signal distinct from that of foam produced during active wave breaking. We will use these properties to develop a technique to produce spatial and temporal maps of active breaking and residual foam. These products can then be used to validate current models of surfzone bubbles and foam coverage. From the maps, we can also estimate energy dissipation due to wave breaking in the surfzone and compare this to estimates made with in situ data.; Infrared image of the surfzone at Duck, NC. Examples of actively breaking foam and cool residual foam are labeled.

  7. A New Computational Framework for Atmospheric and Surface Remote Sensing

    NASA Technical Reports Server (NTRS)

    Timucin, Dogan A.

    2004-01-01

    A Bayesian data-analysis framework is described for atmospheric and surface retrievals from remotely-sensed hyper-spectral data. Some computational techniques are high- lighted for improved accuracy in the forward physics model.

  8. Orbital remote sensing for geological mapping in southern Tunisia: Implication for oil and gas exploration

    NASA Astrophysics Data System (ADS)

    Peña, Sherrie A.; Abdelsalam, Mohamed G.

    2006-02-01

    Southern Tunisia is dominated by early to middle Triassic continental sandstones inter-bedded with shales and conglomerates followed by late Triassic shallow marine carbonates, lower Jurassic evaporates, and upper Jurassic to lower Cretaceous clastic sedimentary rocks. These constitute the Dahar Plateau (which is part of the Ghadames Basin and it is the focus of this study) that was developed in association with regional uplift of the Saharan Platform. Efforts in mapping the details of surface geology in southern Tunisia are hindered by the lack of continuous bedrock outcrops, where some of the formations are buried under the sand of the Sahara Desert. Remote sensing data including multi-spectral optical (Landsat Enhanced Thematic Mapper (ETM+) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)), radar (RADARSAT), and Digital Elevation Models (DEMs) extracted from the Shuttle Radar Topography Mission (SRTM) data are used to trace along strike continuity of different lithological units as well as mapping morphologically defined structures in southern Tunisia. Landsat ETM+ and ASTER Red-Green-Blue (RGB) color combination images (both band and band-ratio images) have been used for the identification of various lithological units when they are exposed on the surface. On the other hand, RADARSAT images have been utilized for tracing geological formations and geological structures that are buried under thin (˜1 m) sand. Fusion of optical and radar remote sensing data using Color Normalization Transformation (CNT) has been effectively implemented to further identify lithological units and geological structures. Hill-shading techniques are applied to SRTM DEMs to enhance terrain perspective views and to extract geomorphological features and morphologically defined structures through the means of lineament analysis. Results from remote sensing analysis are in good agreement with results obtained from in situ investigations including geological

  9. Applications of remote sensing techniques to county land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Clark, R. B.; Conn, J. S.; Miller, D. A.; Mouat, D. A.

    1975-01-01

    The application of remote sensing in Arizona is discussed. Land use and flood hazard mapping completed by the Applied Remote Sensing Program is described. Areas subject to periodic flood inundation are delineated and land use maps monitoring the growth within specific counties are provided.

  10. A methodology for mapping forest latent heat flux densities using remote sensing

    NASA Technical Reports Server (NTRS)

    Pierce, Lars L.; Congalton, Russell G.

    1988-01-01

    Surface temperatures and reflectances of an upper elevation Sierran mixed conifer forest were monitored using the Thematic Mapper Simulator sensor during the summer of 1985 in order to explore the possibility of using remote sensing to determine the distribution of solar energy on forested watersheds. The results show that the method is capable of quantifying the relative energy allocation relationships between the two cover types defined in the study. It is noted that the method also has the potential to map forest latent heat flux densities.

  11. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  12. Multibeam Mapping of Remote Fjords in Southeast-Greenland

    NASA Astrophysics Data System (ADS)

    Weinrebe, W.; Kjaer, K. H.; Kjeldsen, K. K.; Bjork, A. A.

    2015-12-01

    The fjords of Southeast-Greenland are among the most remote areas of the Northern Hemisphere. Access to this area is hampered by a broad belt of sea ice floating along the East-Greenland coast from North to South. Consequently, the majority of those fjords have never been surveyed in detail until now. During an expedition by the Center of GeoGenetics of the University of Copenhagen in summer of 2014 we were able to map the Skjoldungen Fjord system with multibeam bathymetry. The topsail schooner ACTIV, built 1951 as a cargo ship to supply remote settlements in Greenland was chosen for the expedition. Though a vintage vessel, the ACTIV was well suited to cross the belt of sea ice and to cruise the ice covered fjords. A portable ELAC-Seabeam 1050 multibeam system was temporarily installed on the vessel. The two transducer of the system were mounted at the lower end of a 6 m long pole attached outboard at port side to the hull of the vessel. Though the installation was quite demanding without any winches or cranes, the construction was sufficiently stable and easy to manage throughout the entire cruise. Nearly the entire fjord system, leaving only a small gap of 5 km at the innermost part and small stripes close to the shorelines could be surveyed during the cruise. For the first time, a comprehensive map of Skjoldungen Fjord is now available. The map displays water depths from close to zero up to 800 m, the deepest part along a stretch of about 10 km in the Southwest. The bathymetry of the northern fjord is remarkably different from the southern fjord: the southern fjord features an outer deep part showing water depths between 500 m and 800 m and a shallow inner part with depths less than 300 m and a prominent sill in between. The northern fjord shows a more gradual increase of water depths from 200 m in the inner part to 600 m at the entrance.

  13. On selecting a body surface mapping procedure.

    PubMed

    Hoekema, R; Uijen, G J; van Oosterom, A

    1999-04-01

    Throughout the world, various procedures related to body surface mapping have evolved. The large differences in these procedures make multicenter studies difficult. This paper discusses the problems involved in selecting the number of leads, lead placement, and map format. Methods are highlighted that have been developed for pooling of the data as obtained by different centers. Recommendations are included to newcomers in the field. (The work stems from an international study, the Noninvasive Evaluation of the Myocardium, a study group sponsored by the European Commission, which has as one of its objectives the standardization of body surface mapping procedures.)

  14. Optical remote sensing of asteroid surfaces from spacecraft

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.

    1978-01-01

    Reflectance spectroscopy and multispectral mapping are the techniques likely to be most useful for determining asteroid surfaces. Several other techniques should be considered for providing complementary information.

  15. Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review

    PubMed Central

    Mosleh, Mostafa K.; Hassan, Quazi K.; Chowdhury, Ehsan H.

    2015-01-01

    Rice is one of the staple foods for more than three billion people worldwide. Rice paddies accounted for approximately 11.5% of the World's arable land area during 2012. Rice provided ∼19% of the global dietary energy in recent times and its annual average consumption per capita was ∼65 kg during 2010–2011. Therefore, rice area mapping and forecasting its production is important for food security, where demands often exceed production due to an ever increasing population. Timely and accurate estimation of rice areas and forecasting its production can provide invaluable information for governments, planners, and decision makers in formulating policies in regard to import/export in the event of shortfall and/or surplus. The aim of this paper was to review the applicability of the remote sensing-based imagery for rice area mapping and forecasting its production. Recent advances on the resolutions (i.e., spectral, spatial, radiometric, and temporal) and availability of remote sensing imagery have allowed us timely collection of information on the growth and development stages of the rice crop. For elaborative understanding of the application of remote sensing sensors, following issues were described: the rice area mapping and forecasting its production using optical and microwave imagery, synergy between remote sensing-based methods and other developments, and their implications as an operational one. The overview of the studies to date indicated that remote sensing-based methods using optical and microwave imagery found to be encouraging. However, there were having some limitations, such as: (i) optical remote sensing imagery had relatively low spatial resolution led to inaccurate estimation of rice areas; and (ii) radar imagery would suffer from speckles, which potentially would degrade the quality of the images; and also the brightness of the backscatters were sensitive to the interacting surface. In addition, most of the methods used in forecasting rice yield

  16. Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...

  17. Absorption mapping for characterization of glass surfaces.

    PubMed

    Commandré, M; Roche, P; Borgogno, J P; Albrand, G

    1995-05-01

    The surface quality of bare substrates and preparation procedures take on an important role in optical coating performances. The most commonly used techniques of characterization generally give information about roughness and local defects. A photothermal deflection technique is used for mapping surface absorption of fused-silica and glass substrates. We show that absorption mapping gives specific information on surface contamination of bare substrates. We present experimental results concerning substrates prepared by different cleaning and polishing techniques. We show that highly polished surfaces lead to the lowest values of residual surface absorption. Moreover the cleaning behavior of surfaces of multicomponent glasses and their optical performance in terms of absorption are proved to be different from those of fused silica.

  18. Determining suitability of Large Aperture Scintillometer for validating remote sensing based evapotranspiration maps

    NASA Astrophysics Data System (ADS)

    Paul, G.; Gowda, P. H.; Howell, T. A.; Basu, S.; Colaizzi, P. D.; Marek, T.

    2013-12-01

    Scintillation method is a relatively new technique for measuring the sensible heat and water fluxes over land surfaces. Path integrating capabilities of scintillometer over heterogeneous landscapes make it a potential tool for comparing the energy fluxes derived from remote sensing based energy balance algorithms. For this reason, scintillometer-derived evapotranspiration (ET) fluxes are being used to evaluate remote sensing based energy balance algorithms for their ability to estimate ET fluxes. However, LAS' (Large Aperture Scintillometer) ability to derive ET fluxes is not thoroughly tested. The objective of this study was to evaluate LAS- and Surface Energy Balance System (SEBS)-derived fluxes against lysimetric data to determine LAS' suitability for validating remote sensing based evapotranspiration (ET) maps. The study was conducted during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment - 2008 (BEAREX-08) at the USDA-ARS Conservation and Production Research Laboratory (CPRL), Bushland, Texas. SEBS was coded in a GIS environment to retrieve ET fluxes from the high resolution imageries acquired using airborne multispectral sensors. The CPRL has four large weighing lysimeters (3 m long x 3 m wide x 2.4 m deep), each located in the middle of approximately 5 ha fields, arranged in a block pattern. The two lysimeter fields located on the east (NE and SE) were managed under irrigated conditions, and the other two lysimeters on the west (NW and SW) were under dryland management. Each lysimeter field was equipped with an automated weather station that provided measurements for net radiation (Rn), Ts, soil heat flux (Go), Ta, relative humidity, and wind speed. During BEAREX08, the NE and SE fields were planted to cotton on May 21, and the NW and SW dryland lysimeters fields were planted to cotton on June 5. One LAS each was deployed across two large dryland lysimeter fields (NW and SW) and two large irrigated lysimeter fields (NE and SE). The

  19. COMPLETE SURFACE MAPPING OF ICF SHELLS

    SciTech Connect

    STEPHENS,R.B; OLSON,D; HUANG,H; GIBSON,J.B

    2003-06-01

    OAK-B135 Inertial confinement fusion shells have previously been evaluated on the basis of microscopic examination for local defects and limited surface profiling to represent their average fluctuation power. Since defects are local, and don't always have visible edges, this approach both misses some important fluctuations and doesn't properly represent the spatially dependent surface fluctuation power. they have taken the first step toward correcting this problem by demonstrating the capability to completely map the surface of a NIF shell with the resolution to account for all modes. This allows complete accounting of all the surface fluctuations. In the future this capability could be used for valuable shells to generate a complete r({theta},{psi}) surface map for accurate 3-D modeling of a shot.

  20. Complete Surface Mapping of ICF Shells

    SciTech Connect

    Stephens, R.B.; Olson, D.; Huang, H.; Gibson, J.B.

    2004-03-15

    Inertial confinement fusion shells have previously been evaluated on the basis of microscopic examination for local defects and limited surface profiling to represent their average fluctuation power. Since defects are local, and don't always have visible edges, this approach both misses some important fluctuations and doesn't properly represent the spatially dependent surface fluctuation power. We have taken the first step toward correcting this problem by demonstrating the capability to completely map the surface of a NIF shell with the resolution to account for all modes. This allows complete accounting of all the surface fluctuations. In the future this capability could be used for valuable shells to generate a complete r({theta}, {phi}) surface map for accurate 3-D modeling of a shot.

  1. Use of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research

    PubMed Central

    MAXWELL, SUSAN K.; MELIKER, JAYMIE R.; GOOVAERTS, PIERRE

    2015-01-01

    In recent years, geographic information systems (GIS) have increasingly been used for reconstructing individual-level exposures to environmental contaminants in epidemiological research. Remotely sensed data can be useful in creating space-time models of environmental measures. The primary advantage of using remotely sensed data is that it allows for study at the local scale (e.g., residential level) without requiring expensive, time-consuming monitoring campaigns. The purpose of our study was to identify how land surface remotely sensed data are currently being used to study the relationship between cancer and environmental contaminants, focusing primarily on agricultural chemical exposure assessment applications. We present the results of a comprehensive literature review of epidemiological research where remotely sensed imagery or land cover maps derived from remotely sensed imagery were applied. We also discuss the strengths and limitations of the most commonly used imagery data (aerial photographs and Landsat satellite imagery) and land cover maps. PMID:19240763

  2. Use of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research

    USGS Publications Warehouse

    Maxwell, S.K.; Meliker, J.R.; Goovaerts, P.

    2010-01-01

    In recent years, geographic information systems (GIS) have increasingly been used for reconstructing individual-level exposures to environmental contaminants in epidemiological research. Remotely sensed data can be useful in creating space-time models of environmental measures. The primary advantage of using remotely sensed data is that it allows for study at the local scale (e.g., residential level) without requiring expensive, time-consuming monitoring campaigns. The purpose of our study was to identify how land surface remotely sensed data are currently being used to study the relationship between cancer and environmental contaminants, focusing primarily on agricultural chemical exposure assessment applications. We present the results of a comprehensive literature review of epidemiological research where remotely sensed imagery or land cover maps derived from remotely sensed imagery were applied. We also discuss the strengths and limitations of the most commonly used imagery data (aerial photographs and Landsat satellite imagery) and land cover maps. ?? 2010 Nature Publishing Group All rights reserved.

  3. Using remotely-sensed multispectral imagery to build age models for alluvial fan surfaces

    NASA Astrophysics Data System (ADS)

    D'Arcy, Mitch; Mason, Philippa J.; Roda Boluda, Duna C.; Whittaker, Alexander C.; Lewis, James

    2016-04-01

    Accurate exposure age models are essential for much geomorphological field research, and generally depend on laboratory analyses such as radiocarbon, cosmogenic nuclide, or luminescence techniques. These approaches continue to revolutionise geomorphology, however they cannot be deployed remotely or in situ in the field. Therefore other methods are still needed for producing preliminary age models, performing relative dating of surfaces, or selecting sampling sites for the laboratory analyses above. With the widespread availability of detailed multispectral imagery, a promising approach is to use remotely-sensed data to discriminate surfaces with different ages. Here, we use new Landsat 8 Operational Land Imager (OLI) multispectral imagery to characterise the reflectance of 35 alluvial fan surfaces in the semi-arid Owens Valley, California. Alluvial fans are useful landforms to date, as they are widely used to study the effects of tectonics, climate and sediment transport processes on source-to-sink sedimentation. Our target fan surfaces have all been mapped in detail in the field, and have well-constrained exposure ages ranging from modern to ~ 125 ka measured using a high density of 10Be cosmogenic nuclide samples. Despite all having similar granitic compositions, the spectral properties of these surfaces vary systematically with their exposure ages. Older surfaces demonstrate a predictable shift in reflectance across the visible and short-wave infrared spectrum. Simple calculations, such as the brightness ratios of different wavelengths, generate sensitive power law relationships with exposure age that depend on post-depositional alteration processes affecting these surfaces. We investigate what these processes might be in this dryland location, and evaluate the potential for using remotely-sensed multispectral imagery for developing surface age models. The ability to remotely sense relative exposure ages has useful implications for preliminary mapping, selecting

  4. A revised surface resistance parameterisation for estimating latent heat flux from remotely sensed data

    NASA Astrophysics Data System (ADS)

    Song, Yi; Wang, Jiemin; Yang, Kun; Ma, Mingguo; Li, Xin; Zhang, Zhihui; Wang, Xufeng

    2012-07-01

    Estimating evapotranspiration (ET) is required for many environmental studies. Remote sensing provides the ability to spatially map latent heat flux. Many studies have developed approaches to derive spatially distributed surface energy fluxes from various satellite sensors with the help of field observations. In this study, remote-sensing-based λE mapping was conducted using a Landsat Thematic Mapper (TM) image and an Enhanced Thematic Mapper Plus (ETM+) image. The remotely sensed data and field observations employed in this study were obtained from Watershed Allied Telemetry Experimental Research (WATER). A biophysics-based surface resistance model was revised to account for water stress and temperature constraints. The precision of the results was validated using 'ground truth' data obtained by eddy covariance (EC) system. Scale effects play an important role, especially for parameter optimisation and validation of the latent heat flux (λE). After considering the footprint of EC, the λE derived from the remote sensing data was comparable to the EC measured value during the satellite's passage. The results showed that the revised surface resistance parameterisation scheme was useful for estimating the latent heat flux over cropland in arid regions.

  5. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  6. Shadows for bump-mapped surfaces

    SciTech Connect

    Max, N.L.

    1985-11-05

    Bump mapping produces realistic shading by perturbing normal vectors to a surface, but does not show the shadows that the bumps cast on nearby parts of the same surface. In this paper, these shadows are found from precomputed tables of horizon angles, listing, for each position entry, the elevation of the horizon in a sampled collection of directions. These tables are made for bumps on a standard flat surface, and then a transformation is developed so that the same tables can be used for an arbitrary curved parameterized surface patch. This necessitates a new method for scaling the bump size to the patch size. 7 refs., 8 figs.

  7. A multi-analysis remote-sensing approach for mapping groundwater resources in the karstic Meo Vac Valley, Vietnam

    NASA Astrophysics Data System (ADS)

    Tam, Vu T.; Batelaan, Okke

    2011-03-01

    Remote sensing data can be integrated with analyses of topography, structural geology, hydrogeology and geophysics. The integration gives premises for the delineation of zones of potential groundwater resources in strongly fractured and karstified deep aquifers in the uplifted Meo Vac Highland, northern Vietnam. Remote sensing analysis outlines geological faults with hydrogeological significance. These faults are combined with a derived lineament density map, interpreted analysis of surface flow direction and existing hydrogeological data, resulting in indications of groundwater flow direction. An analysis of the SPOT 5 band ratio 4/1, together with indications of surface-flow direction in low terrains, results in a determination of underground cavern passages. The delineated zones of potential groundwater resources are verified by detailed hydrogeological field surveys and geophysical measurements. Remote sensing analysis is shown to effectively contribute to the investigation of groundwater resources for a hydrogeologically complex area.

  8. A remote characterization system for subsurface mapping of buried waste sites

    SciTech Connect

    Sandness, G.A.; Bennett, D.W.

    1992-10-01

    Mapping of buried objects and regions of chemical and radiological contamination is required at US Department of Energy (DOE) buried waste sites. The DOE Office of Technology Development Robotics Integrated Program has initiated a project to develop and demonstrate a remotely controlled subsurface sensing system, called the Remote Characterization System (RCS). This project, a collaborative effort by five of the National Laboratories, involves the development of a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface. To minimize interference with on-board sensors, the survey vehicle has been constructed predominatantly of non-metallic materials. The vehicle is self-propelled and will be guided by an operator located at a remote base station. The RCS sensors will be environmentally sealed and internally cooled to preclude contamination during use. Ground-penetrating radar, magnetometers, and conductivity devices are planned for geophysical surveys. Chemical and radiological sensors will be provided to locate hot spots and to provide isotopic concentration data.

  9. Impervious surface mapping with Quickbird imagery

    PubMed Central

    Lu, Dengsheng; Hetrick, Scott; Moran, Emilio

    2010-01-01

    This research selects two study areas with different urban developments, sizes, and spatial patterns to explore the suitable methods for mapping impervious surface distribution using Quickbird imagery. The selected methods include per-pixel based supervised classification, segmentation-based classification, and a hybrid method. A comparative analysis of the results indicates that per-pixel based supervised classification produces a large number of “salt-and-pepper” pixels, and segmentation based methods can significantly reduce this problem. However, neither method can effectively solve the spectral confusion of impervious surfaces with water/wetland and bare soils and the impacts of shadows. In order to accurately map impervious surface distribution from Quickbird images, manual editing is necessary and may be the only way to extract impervious surfaces from the confused land covers and the shadow problem. This research indicates that the hybrid method consisting of thresholding techniques, unsupervised classification and limited manual editing provides the best performance. PMID:21643434

  10. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling

    USGS Publications Warehouse

    Keane, R.E.; Burgan, R.; van Wagtendonk, J.

    2001-01-01

    Fuel maps are essential for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. However, fuel mapping is an extremely difficult and complex process requiring expertise in remotely sensed image classification, fire behavior, fuels modeling, ecology, and geographical information systems (GIS). This paper first presents the challenges of mapping fuels: canopy concealment, fuelbed complexity, fuel type diversity, fuel variability, and fuel model generalization. Then, four approaches to mapping fuels are discussed with examples provided from the literature: (1) field reconnaissance; (2) direct mapping methods; (3) indirect mapping methods; and (4) gradient modeling. A fuel mapping method is proposed that uses current remote sensing and image processing technology. Future fuel mapping needs are also discussed which include better field data and fuel models, accurate GIS reference layers, improved satellite imagery, and comprehensive ecosystem models.

  11. Mapping wildland fuels for fire management across multiple scales: integrating remote sensing, GIS, and biophysical modeling

    USGS Publications Warehouse

    Keane, Robert E.; Burgan, Robert E.; Van Wagtendonk, Jan W.

    2001-01-01

    Fuel maps are essential for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. However, fuel mapping is an extremely difficult and complex process requiring expertise in remotely sensed image classification, fire behavior, fuels modeling, ecology, and geographical information systems (GIS). This paper first presents the challenges of mapping fuels: canopy concealment, fuelbed complexity, fuel type diversity, fuel variability, and fuel model generalization. Then, four approaches to mapping fuels are discussed with examples provided from the literature: (1) field reconnaissance; (2) direct mapping methods; (3) indirect mapping methods; and (4) gradient modeling. A fuel mapping method is proposed that uses current remote sensing and image processing technology. Future fuel mapping needs are also discussed which include better field data and fuel models, accurate GIS reference layers, improved satellite imagery, and comprehensive ecosystem models.

  12. Updating Historical Maps of Malaria Transmission Intensity in East Africa Using Remote Sensing

    PubMed Central

    Omumbo, J.A.; Hay, S.I.; Goetz, S.J.; Snow, R.W.; Rogers, D.J.

    2013-01-01

    Remotely sensed imagery has been used to update and improve the spatial resolution of malaria transmission intensity maps in Tanzania, Uganda, and Kenya. Discriminant analysis achieved statistically robust agreements between historical maps of the intensity of malaria transmission and predictions based on multitemporal meteorological satellite sensor data processed using temporal Fourier analysis. The study identified land surface temperature as the best predictor of transmission intensity. Rainfall and moisture availability as inferred by cold cloud duration (ccd) and the normalized difference vegetation index (ndvi), respectively, were identified as secondary predictors of transmission intensity. Information on altitude derived from a digital elevation model significantly improved the predictions. “Malaria-free” areas were predicted with an accuracy of 96 percent while areas where transmission occurs only near water, moderate malaria areas, and intense malaria transmission areas were predicted with accuracies of 90 percent, 72 percent, and 87 percent, respectively. The importance of such maps for rationalizing malaria control is discussed, as is the potential contribution of the next generation of satellite sensors to these mapping efforts. PMID:23814324

  13. High Resolution Camera for Mapping Titan Surface

    NASA Technical Reports Server (NTRS)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  14. Hyperspectral remote sensing data maps minerals in Afghanistan

    NASA Astrophysics Data System (ADS)

    King, Trude V. V.; Kokaly, Raymond F.; Hoefen, Todd M.; Johnson, Michaela R.

    2012-08-01

    Although Afghanistan has abundant mineral resources, including gold, silver, copper, rare earth elements, uranium, tin, iron ore, mercury, lead-zinc, bauxite, and industrial minerals, most have not been successfully developed or explored using modern methods. The U.S. Geological Survey (USGS) with cooperation from the Afghan Geological Survey (AGS) and support from the Department of Defense's Task Force for Business and Stability Operations (TFBSO) has used new imaging spectroscopy surface material maps to help refine the geologic signatures of known but poorly understood mineral deposits and identify previously unrecognized mineral occurrences. To help assess the potential mineral deposit types, the high-resolution hyperspectral data were analyzed to detect the presence of selected minerals that may be indicative of past mineralization processes. This legacy data set is providing tangible support for economic decisions by both the government of Afghanistan and other public and private sector parties interested in the development of the nation's natural resources.

  15. Remotely and Conclusively Mapping One Finite Set of Qudit States onto Another Assisted by Qubit Entanglements

    NASA Astrophysics Data System (ADS)

    Chen, Li-Bing; Lu, Hong

    2016-05-01

    Alice and Bob are two remote parties. We propose a probabilistic method which allows Alice to map remotely and conclusively Bob's set of nonorthogonal symmetric d-level quantum states onto another. The procedure we use is a remote positive operator valued measurement (POVM) in Bob's (2 d-1)-level direct sum space. We construct a quantum network for implementing this (2 d-1)-level remote nonunitary POVM with ( d-1) two-level remote unitary rotations. The fact that the two-level remote rotation, which is hired to rotate remotely a basis vector, can been implementing rapidly using only one ebit (a two-level Einstein-Podolsky-Rosen (EPR) pair) and one cbit (classical communication) is notable. This scheme is simpler but with less resource, which will make it more feasible and suitable for large-scale quantum network.

  16. Comparative mineral mapping in the Colorado Mineral Belt using AVIRIS and ASTER remote sensing data

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2013-01-01

    This report presents results of interpretation of spectral remote sensing data covering the eastern Colorado Mineral Belt in central Colorado, USA, acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors. This study was part of a multidisciplinary mapping and data integration project at the U.S. Geological Survey that focused on long-term resource planning by land-managing entities in Colorado. The map products were designed primarily for the regional mapping and characterization of exposed surface mineralogy, including that related to hydrothermal alteration and supergene weathering of pyritic rocks. Alteration type was modeled from identified minerals based on standard definitions of alteration mineral assemblages. Vegetation was identified using the ASTER data and subdivided based on per-pixel chlorophyll content (depth of 0.68 micrometer absorption band) and dryness (fit and depth of leaf biochemical absorptions in the shortwave infrared spectral region). The vegetation results can be used to estimate the abundance of fire fuels at the time of data acquisition (2002 and 2003). The AVIRIS- and ASTER-derived mineral mapping results can be readily compared using the toggleable layers in the GeoPDF file, and by using the provided GIS-ready raster datasets. The results relating to mineral occurrence and distribution were an important source of data for studies documenting the effects of mining and un-mined, altered rocks on aquatic ecosystems at the watershed level. These studies demonstrated a high correlation between metal concentrations in streams and the presence of hydrothermal alteration and (or) pyritic mine waste as determined by analysis of the map products presented herein. The mineral mapping results were also used to delineate permissive areas for various mineral deposit types.

  17. Sea surface and remotely sensed temperatures off Cape Mendocino, California

    NASA Technical Reports Server (NTRS)

    Breaker, L. C.; Arvesen, J. C.; Frydenlund, D.; Myers, J. S.; Short, K.

    1985-01-01

    During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field.

  18. A desktop GIS approach to topographic mapping of surface saturation

    NASA Astrophysics Data System (ADS)

    Garroway, K.; Hopkinson, C.; Jamieson, R.; Boxall, J.

    2009-05-01

    Agricultural watersheds are generally highly modified environments. Accurately modelling topographic features in these environments can be difficult due to surface modifications inherent to agricultural practice, this was addressed by collecting high resolution topographic data. Airborne Laser Scanning (ALS) is a remote sensing technique whereby high resolution and high accuracy elevation data is collected throughout a landscape. In March of 2006 an ALS dataset was collected in the Thomas Brook Watershed located in Annapolis Valley, Nova Scotia. This data was collected over the watershed for high resolution modelling. Multiple topographic indices including topographic position index, topographic wetness index, slope gradient, curvature, and catchment area were modelled using 1m, 5m, and 10m DEM resolutions. The models were then compared to ground sampled soil surface moisture data that were collected during the 2006 and 2007 field seasons. A Student's T- test revealed that the topographic models agreed with the theories of surface wetness prediction, although the direct correlation between the models and the ground data was weak. A landform classification algorithm was augmented to incorporate the topographic models based on the theories of surface wetness prediction and a surface saturation map was generated. Tests revealed that the 5m DEM resolution yielded the most accurate results when compared directly to the surficial sampled surface moisture data. It was shown that the Surface Saturation Landform Classification algorithm can be used to predict zones of surface moisture throughout an agricultural watershed.

  19. Remote Mapping of River Gravel Interstitial Spaces Availability for Juvenile Salmon Sheltering (Invited)

    NASA Astrophysics Data System (ADS)

    Bergeron, N.; Calsamiglila, A.; Dugdale, S. J.; Bérubé, F.

    2013-12-01

    Juvenile salmonid use interstitial gravel spaces to shelter from predators and adverse hydroclimatic conditions. Shelter availability is therefore a key habitat factor to consider in habitat quality mapping. Finstad et al. (2007) developed a method for the measurement of shelter availability in the field using PVC tubes of various diameter and length. The method, which involves probing the bed with the tubes, provides high quality measurements of shelter abundance and size distribution but it is laborious and exceedingly time consuming to apply at large spatial scales. We tested two different remote methods for estimating substrate shelter availability at a large number of sampled locations over a test gravel bed reach of the Restigouche river, an Atlantic salmon river of the Gaspésie peninsula, Québec, Canada. At each sampled location, Finstad's method was first used to measure "true" reference shelter characteristics. Then, the two remote methods were used to estimate shelter characteristics over the same sampled locations. The first remote method used Agisoft Photoscan to produce hi-resolution 3D models of river bed surfaces from close-range (<150 cm from the bed) digital images of the sampled bed areas. Various methods were developed and tested for extracting shelters from these models. The second remote method used high-resolution airborne imagery to extract textural properties of the images over the sampled locations and to calibrate relationships between texture values and shelter characteristics as measured with Finstad's method. In this presentation, the performance of these two methods is analysed with regards to their ability to provide adequate estimates of shelter availability over large spatial scales.

  20. Fermi surface mapping: Techniques and visualization

    SciTech Connect

    Rotenberg, E.; Denlinger, J. D.; Kevan, S. D.; Goodman, K. W.; Tobin, J. G.; Mankey, G. J.

    1997-04-01

    Angle-resolved photoemission (ARP) of valence bands is a mature technique that has achieved spectacular success in band-mapping metals, semiconductors, and insulators. The purpose of the present study was the development of experimental and analytical techniques in ARP which take advantage of third generation light sources. Here the authors studied the relatively simple Cu surface in preparation for other metals. Copper and related metals themselves are of current interest, especially due to its role as an interlayer in spin valves and other magnetic heterostructures. A major goal of this study was the development of a systematic technique to quickly (i.e. in a few hours of synchrotron beamtime) measure the FS and separate it into bulk and surface FS`s. Often, one needs to avoid bulk features altogether, which one can achieve by carefully mapping their locations in k-space. The authors will also show how they systematically map Fermi surfaces throughout large volumes of k-space, and, by processing the resulting volume data sets, provide intuitive pictures of FS`s, both bulk and surface.

  1. Remote Sensing and Geochemistry of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    2002-01-01

    We have been examining the resources required to support potential life on Mars, as a way of understanding the possible abundance and distribution of life. Based on our understanding of the Earth, the necessary requirements for the environment to allow it to support life are (i) presence of liquid water, (ii) access to the biogenic elements (C, H, O, N, S, P, Ca, Fe, etc.), and (iii) a source of energy to drive chemical disequilibrium, such that the reactions back toward equilibrium can release energy to support metabolism. While even demonstrating that all of these requirements have been met would not mean that life would necessarily exist on Mars, they provide the context in which a search for life or analysis of geochemical characteristics that might be indicative of life might be carried out. Our previous work has focused on the first and third of these characteristics determine where and when liquid water might have been present, and understanding the availability of chemical energy from weathering reactions that might ID support life. In the analysis supported by this grant (covering the time period 2/15/01-2/14/02), we have been examining the second requirement--the abundance of the necessary biogenic elements, their geographical distribution on Mars and the information on the possible vertical distribution within the crust, and their geochemical accessibility and mobility within the crust and at the surface. In particular, our work during the performance period has emphasized phosphorous.

  2. Satellite image maps are an inexpensive source of geologic and remote sensing teaching aids

    SciTech Connect

    Gunther, F.J.

    1985-01-01

    Inexpensive, even free, printed copies of images and image maps provide Earth Science, Geology, and Remote Sensing teachers with an alternative to expensive photoproducts for classroom and student use. Printed images and image maps are available free, or at costs ranging from $3 to $20. In addition to urban and agricultural features, images and image maps in the author's collection display features suitable for teaching a variety of topics. Examples are: 1) linear features (lineaments) for structural mapping (i.e. San Francisco, Grand Canyon, Medicine Bow River, Southern New England Mosaic, The Adirondacks Mosaic); 2) coastal erosion and deposition; 3) formation and outcrop mapping (Dry Rock Cheyene River, Medicine Bow River, Grand Canyon); 4) glaciers and sea ice; and 5) volcanic features. Almost all image maps show fluvial and lacustrine features. Printed images and image maps may be ordered from many sources: USGS Map Distribution Centers; the American Society of Photogrammetry and Remote Sensing, Grand Canyon National Park, and The World Bank map outlet. Free maps and printed images are often distributed by exhibitors at remote sensing conferences.

  3. GIS Surface Effects Map Archive, Nevada Test Site, Nevada

    SciTech Connect

    Grasso, Dennis N.

    2003-08-28

    The GIS Surface Effects Map Archive contains a comprehensive collection of maps showing the surface effects produced by underground nuclear testing at the Nevada Test Site. From 1951 to 1992, scientists with the U.S. Geological Survey and agencies of the U.S. Department of Energy used field and aerial-photo mapping techniques to painstakingly map such surface effects as collapse sinks, craters, cracks, fractures, faults, and pressure ridges. Shortly after each test, a complex surface effects map was produced. Of the more than 920 underground detonations conducted at the Nevada Test Site, 688 were mapped for surface effects. This archive preserves these original maps in digital format. A Geographic Information System (GIS) was used to digitally reproduce each original, hand-drawn surface effects map and to assemble these maps into the digital data sets of this archive. The archive was designed to allow easy access to the maps, while preserving the original maps for perpetuity. Users can query the detonation sites database; prepare, view, and print individual or composite maps; and perform various types of scientific analysis and management tasks. Spatial analyses and queries can be performed on detonation sites and related surface effects in conjunction with other chronological, geographical, geological, or hydrological information via links to external maps and databases. This browser interface provides information about the archive, the history of surface effects mapping at the Nevada Test Site, the methods used to produce the digital surface effects maps, and links to published reports, data tables, and maps. Location maps show testing areas, operational areas, and detonation sites. Demonstration maps illustrate the methods used to produce the digital surface effects maps and exhibit some of the characteristics and uses for these data. Use the links below to view and print individual surface effects maps, retrieve information about the detonations and types of

  4. Charge heterogeneity of surfaces: mapping and effects on surface forces.

    PubMed

    Drelich, Jaroslaw; Wang, Yu U

    2011-07-11

    The DLVO theory treats the total interaction force between two surfaces in a liquid medium as an arithmetic sum of two components: Lifshitz-van der Waals and electric double layer forces. Despite the success of the DLVO model developed for homogeneous surfaces, a vast majority of surfaces of particles and materials in technological systems are of a heterogeneous nature with a mosaic structure composed of microscopic and sub-microscopic domains of different surface characteristics. In such systems, the heterogeneity of the surface can be more important than the average surface character. Attractions can be stronger, by orders of magnitude, than would be expected from the classical mean-field DLVO model when area-averaged surface charge or potential is employed. Heterogeneity also introduces anisotropy of interactions into colloidal systems, vastly ignored in the past. To detect surface heterogeneities, analytical tools which provide accurate and spatially resolved information about material surface chemistry and potential - particularly at microscopic and sub-microscopic resolutions - are needed. Atomic force microscopy (AFM) offers the opportunity to locally probe not only changes in material surface characteristic but also charges of heterogeneous surfaces through measurements of force-distance curves in electrolyte solutions. Both diffuse-layer charge densities and potentials can be calculated by fitting the experimental data with a DLVO theoretical model. The surface charge characteristics of the heterogeneous substrate as recorded by AFM allow the charge variation to be mapped. Based on the obtained information, computer modeling and simulation can be performed to study the interactions among an ensemble of heterogeneous particles and their collective motions. In this paper, the diffuse-layer charge mapping by the AFM technique is briefly reviewed, and a new Diffuse Interface Field Approach to colloid modeling and simulation is briefly discussed.

  5. Mapping Drought Impacts in the Krishna Basin with Remote Sensing

    NASA Astrophysics Data System (ADS)

    Messina, A. T.

    2011-12-01

    Hydrologic shocks like droughts can cause a change in spatial distribution of water use in water scarce basins, but assessment of this reallocation at the scales of river basins is complicated by data availability. The Surface Energy Balance Algorithm for Land (SEBAL) using data from MODIS and NASA's Surface Radiation Budget (SRB) is used to map actual evapotranspiration (ET) in the Krishna River Basin during the post-monsoon season in order to assess the impact of a drought in 2002-04 on the spatial distribution of ET. A SEBAL time series of this length was made possible by using an automated pixel selection approach and a time series processing algorithm that significantly reduced processing time and operator effort. Drought impacts are assessed over the whole Krishna Basin, by major sub-basin, and in select canal irrigation projects. Validation approaches were limited by data availability and include comparison of SEBAL with evaporation pans, comparison to NDVI and Land Surface Temperature (LST) trends, and a water balance over a large irrigated area. Pan evaporation compared favorably with SEBAL evaporation over water bodies near the meteorological station, and NDVI and LST trends in areas of strong drought or ET increase support the SEBAL ET results. Drought effects at the sub-basin scale were not apparent, with most sub-basins showing increased ET in the drought year, likely due to increased net radiation. Strong drought impact was evident in some upstream and far downstream irrigation projects and less drought impact in projects and sub-basins in the middle reaches of the basin. A sensitivity analysis was conducted to test the main assumptions of the SEBAL model at the regional scale, comparing SEBAL results over the whole basin with SEBAL results over each sub-basin. Disaggregating the basin for SEBAL analysis doesn't affect the results significantly, however, in sub-basins where the dry/wet pixel assumptions of the algorithm are likely not met the two

  6. Assessment Of Accuracies Of Remote-Sensing Maps

    NASA Technical Reports Server (NTRS)

    Card, Don H.; Strong, Laurence L.

    1992-01-01

    Report describes study of accuracies of classifications of picture elements in map derived by digital processing of Landsat-multispectral-scanner imagery of coastal plain of Arctic National Wildlife Refuge. Accuracies of portions of map analyzed with help of statistical sampling procedure called "stratified plurality sampling", in which all picture elements in given cluster classified in stratum to which plurality of them belong.

  7. Surface charge mapping with a nanopipette.

    PubMed

    McKelvey, Kim; Kinnear, Sophie L; Perry, David; Momotenko, Dmitry; Unwin, Patrick R

    2014-10-01

    Nanopipettes are emerging as simple but powerful tools for probing chemistry at the nanoscale. In this contribution the use of nanopipettes for simultaneous surface charge mapping and topographical imaging is demonstrated, using a scanning ion conductance microscopy (SICM) format. When a nanopipette is positioned close to a surface in electrolyte solution, the direct ion current (DC), driven by an applied bias between a quasi-reference counter electrode (QRCE) in the nanopipette and a second QRCE in the bulk solution, is sensitive to surface charge. The charge sensitivity arises because the diffuse double layers at the nanopipette and the surface interact, creating a perm-selective region which becomes increasingly significant at low ionic strengths (10 mM 1:1 aqueous electrolyte herein). This leads to a polarity-dependent ion current and surface-induced rectification as the bias is varied. Using distance-modulated SICM, which induces an alternating ion current component (AC) by periodically modulating the distance between the nanopipette and the surface, the effect of surface charge on the DC and AC is explored and rationalized. The impact of surface charge on the AC phase (with respect to the driving sinusoidal signal) is highlighted in particular; this quantity shows a shift that is highly sensitive to interfacial charge and provides the basis for visualizing charge simultaneously with topography. The studies herein highlight the use of nanopipettes for functional imaging with applications from cell biology to materials characterization where understanding surface charge is of key importance. They also provide a framework for the design of SICM experiments, which may be convoluted by topographical and surface charge effects, especially for small nanopipettes.

  8. Dawn Maps the Surface Composition of Vesta

    NASA Technical Reports Server (NTRS)

    Prettyman, T.; Palmer, E.; Reedy, R.; Sykes, M.; Yingst, R.; McSween, H.; DeSanctis, M. C.; Capaccinoni, F.; Capria, M. T.; Filacchione, G.; Magni, G.; Ammannito, E.; Carraro, F.; Coradini, A.; Fonte, S.; Noschese, R.; Tosi, F.; Blewett, D.; Denevi, B.; Lawrence, D.; Buratti, B.; Raymond, C. A.; Combe, J. P.; McCord, T.; Forni, O.

    2011-01-01

    By 7-October-2011, the Dawn mission will have completed Survey orbit and commenced high altitude mapping of 4-Vesta. We present a preliminary analysis of data acquired by Dawn's Framing Camera (FC) and the Visual and InfraRed Spectrometer (VIR) to map mineralogy and surface temperature, and to detect and quantify surficial OH. The radiometric calibration of VIR and FC is described. Background counting data acquired by GRaND are used to determine elemental detection limits from measurements at low altitude, which will commence in November. Geochemical models used in the interpretation of the data are described. Thermal properties, mineral-, and geochemical-data are combined to provide constraints on Vesta s formation and thermal evolution, the delivery of exogenic materials, space weathering processes, and the origin of the howardite, eucrite, and diogenite (HED) meteorites.

  9. Status of remote sensing algorithms for estimation of land surface state parameters

    SciTech Connect

    Hall, F.G.; Engman, E.T.; Townshend, J.R.

    1995-01-01

    Ecosystem process, biosphere-atmosphere transfer, and carbon exchange models all require parameterization of the land surface, including land vegetation cover and soil moisture. Although not yet a demonstrated global capability, the most feasible method for obtaining these parameters and updating them periodically, is satellite remote sensing. In this paper the authors will summarize their understanding of the desired land surface parameters, including soil moisture, and provide an assessment of the state of the art of surface state remote sensing algorithms to infer those parameters on a global basis. First, the authors will consider (a) modeling requirements for land cover parameters, including vegetation community composition and biophysical parameters, for example, leaf area index (LAI), biomass density, fraction of photo-synthetically active radiation (Fpar) absorbed by the vegetated land surface, and (b) modeling requirements for soil moisture. The authors will then review the status of remote sensing algorithms for obtaining these parameters and examine a number of issues involved in the global implementation and testing of these algorithms. Finally, they will look at future needs to make global mapping of land cover parameters a reality.

  10. Mapping carbon dioxide flux in semiarid grasslands using optical remote sensing

    NASA Astrophysics Data System (ADS)

    Holifield Collins, Chandra Deberta

    Increasing atmospheric levels of carbon dioxide (CO2) and the potential impact on climate change has caused an increased effort to more accurately quantify terrestrial sources and sinks. Semiarid grasslands cover a significant portion of the Earth's land surface and may be an important sink for atmospheric CO2. This study was conducted to examine the role semiarid grasslands play in the carbon cycle. The relation between surface reflectance and temperature obtained from satellite imagery was used to determine a Water Deficit Index (WDI) to estimate distributed plant transpiration rates for a point in time. Due to the relationship between transpiration and plant CO2 uptake, WDI was directly related to CO2 flux. Satellite images were acquired for a five-year period (1996-2000) during which transpiration and net CO2 flux were measured for a semiarid grassland site in southeastern Arizona. Manual and automatic chamber data were also collected in 2005 and 2006 and used to assess the spatial variability of nighttime soil respiration. Spatial analysis showed the most influential factor affecting nighttime respiration was aspect, where flux from North-facing slopes was significantly (P < 0.05) higher than on South-facing slopes. A strong linear relationship (R2 = 0.97) existed between WDI-derived instantaneous net CO2 flux and daytime net CO2 flux estimates, and was used to generate maps of distributed daytime net CO2 flux. A linear relationship (R2 = 0.88) was also found between daytime and nighttime net CO2 flux, and used in combination with maps of daytime net CO2 flux to create maps of daily net CO2 flux. This study indicated that remote sensing offers an operational, physically-based means of obtaining daily net CO2 flux in semiarid grasslands.

  11. Aquarius and Remote Sensing of Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Lagerloef, G. S. E.; Torrusio, S.

    2012-01-01

    Aquarius is an L-band radiometer and scatterometer instrument combination designed to map the salinity field at the surface of the ocean from space. The instrument is designed to provide global salinity maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. The science objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This data will promote understanding of ocean circulation and its role in the global water cycle and climate.

  12. Optimizing a remote sensing instrument to measure atmospheric surface pressure

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Gatley, C.; Flower, D. A.

    1983-01-01

    Atmospheric surface pressure can be remotely sensed from a satellite by an active instrument which measures return echoes from the ocean at frequencies near the 60 GHz oxygen absorption band. The instrument is optimized by selecting its frequencies of operation, transmitter powers and antenna size through a new procedure baesd on numerical simulation which maximizes the retrieval accuracy. The predicted standard deviation error in the retrieved surface pressure is 1 mb. In addition the measurements can be used to retrieve water vapor, cloud liquid water and sea state, which is related to wind speed.

  13. Lunar Prospector: a Preliminary Surface Remote Sensing Resource Assessment for the Moon

    NASA Technical Reports Server (NTRS)

    Mardon, A. A.

    1992-01-01

    The potential existence of lunar volatiles is a scientific discovery that could distinctly change the direction of pathways of inner solar system human expansion. With a dedicated germanium gamma ray spectrometer launched in the early 1990's, surface water concentrations of 0.7 percent could be detected immediately upon full lunar polar orbit operations. The expense of lunar base construction and operation would be dramatically reduced over a scenario with no lunar volatile resources. Global surface mineral distribution could be mapped out and integrated into a GIS database for lunar base site selection. Extensive surface lunar mapping would also result in the utilization of archived Apollo images. A variety of remote sensing systems and their parameters have been proposed for use in the detection of these lunar ice masses. The detection or nondetection of subsurface and surface ice masses in lunar polar crater floors could dramatically direct the development pathways that the human race might follow in its radiation from the Earth to habitable locales in the inner terran solar system. Potential sources of lunar volatiles are described. The use of remote sensing to detect lunar volatiles is addressed.

  14. Theoretical Foundations of Remote Sensing for Glacier Assessment and Mapping

    NASA Technical Reports Server (NTRS)

    Bishop, Michael P.; Bush, Andrew B. G.; Furfaro, Roberto; Gillespie, Alan R.; Hall, Dorothy K.; Haritashya, Umesh K.; Shroder, John F., Jr.

    2014-01-01

    The international scientific community is actively engaged in assessing ice sheet and alpine glacier fluctuations at a variety of scales. The availability of stereoscopic, multitemporal, and multispectral satellite imagery from the optical wavelength regions of the electromagnetic spectrum has greatly increased our ability to assess glaciological conditions and map the cryosphere. There are, however, important issues and limitations associated with accurate satellite information extraction and mapping, as well as new opportunities for assessment and mapping that are all rooted in understanding the fundamentals of the radiation transfer cascade. We address the primary radiation transfer components, relate them to glacier dynamics and mapping, and summarize the analytical approaches that permit transformation of spectral variation into thematic and quantitative parameters. We also discuss the integration of satellite-derived information into numerical modeling approaches to facilitate understandings of glacier dynamics and causal mechanisms.

  15. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria

    USGS Publications Warehouse

    Stumpf, Rick P; Davis, Timothy W.; Wynne, Timothy T.; Graham, Jennifer; Loftin, Keith A.; Johengen, T.H.; Gossiaux, D.; Palladino, D.; Burtner, A.

    2016-01-01

    Using satellite imagery to quantify the spatial patterns of cyanobacterial toxins has several challenges. These challenges include the need for surrogate pigments – since cyanotoxins cannot be directly detected by remote sensing, the variability in the relationship between the pigments and cyanotoxins – especially microcystins (MC), and the lack of standardization of the various measurement methods. A dual-model strategy can provide an approach to address these challenges. One model uses either chlorophyll-a (Chl-a) or phycocyanin (PC) collected in situ as a surrogate to estimate the MC concentration. The other uses a remote sensing algorithm to estimate the concentration of the surrogate pigment. Where blooms are mixtures of cyanobacteria and eukaryotic algae, PC should be the preferred surrogate to Chl-a. Where cyanobacteria dominate, Chl-a is a better surrogate than PC for remote sensing. Phycocyanin is less sensitive to detection by optical remote sensing, it is less frequently measured, PC laboratory methods are still not standardized, and PC has greater intracellular variability. Either pigment should not be presumed to have a fixed relationship with MC for any water body. The MC-pigment relationship can be valid over weeks, but have considerable intra- and inter-annual variability due to changes in the amount of MC produced relative to cyanobacterial biomass. To detect pigments by satellite, three classes of algorithms (analytic, semi-analytic, and derivative) have been used. Analytical and semi-analytical algorithms are more sensitive but less robust than derivatives because they depend on accurate atmospheric correction; as a result derivatives are more commonly used. Derivatives can estimate Chl-a concentration, and research suggests they can detect and possibly quantify PC. Derivative algorithms, however, need to be standardized in order to evaluate the reproducibility of parameterizations between lakes. A strategy for producing useful estimates

  16. Quantitative mapping of chlorophyll a distributions in coastal zones by remote sensing

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1977-01-01

    Results of experiments conducted in the James River, Virginia and the New York Bight indicate that concurrently collected sea-truth measurements may be used to calibrate remotely sensed multispectral scanner data collected over each of these environmentally different scenes. Statistical stepwise regression analysis was used in both experiments to incorporate significant bands of MSS data into regression equations that quantitatively relate remotely sensed data to water quality parameters, such as chlorophyll a and suspended sediment. These regression equations are used to map synoptic distributions of chlorophyll a in the remotely sensed scenes.

  17. New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities

    NASA Astrophysics Data System (ADS)

    Roy, P. S.; Behera, M. D.; Murthy, M. S. R.; Roy, Arijit; Singh, Sarnam; Kushwaha, S. P. S.; Jha, C. S.; Sudhakar, S.; Joshi, P. K.; Reddy, Ch. Sudhakar; Gupta, Stutee; Pujar, Girish; Dutt, C. B. S.; Srivastava, V. K.; Porwal, M. C.; Tripathi, Poonam; Singh, J. S.; Chitale, Vishwas; Skidmore, A. K.; Rajshekhar, G.; Kushwaha, Deepak; Karnatak, Harish; Saran, Sameer; Giriraj, A.; Padalia, Hitendra; Kale, Manish; Nandy, Subrato; Jeganathan, C.; Singh, C. P.; Biradar, C. M.; Pattanaik, Chiranjibi; Singh, D. K.; Devagiri, G. M.; Talukdar, Gautam; Panigrahy, Rabindra K.; Singh, Harnam; Sharma, J. R.; Haridasan, K.; Trivedi, Shivam; Singh, K. P.; Kannan, L.; Daniel, M.; Misra, M. K.; Niphadkar, Madhura; Nagabhatla, Nidhi; Prasad, Nupoor; Tripathi, O. P.; Prasad, P. Rama Chandra; Dash, Pushpa; Qureshi, Qamer; Tripathi, S. K.; Ramesh, B. R.; Gowda, Balakrishnan; Tomar, Sanjay; Romshoo, Shakil; Giriraj, Shilpa; Ravan, Shirish A.; Behera, Soumit Kumar; Paul, Subrato; Das, Ashesh Kumar; Ranganath, B. K.; Singh, T. P.; Sahu, T. R.; Shankar, Uma; Menon, A. R. R.; Srivastava, Gaurav; Neeti; Sharma, Subrat; Mohapatra, U. B.; Peddi, Ashok; Rashid, Humayun; Salroo, Irfan; Krishna, P. Hari; Hajra, P. K.; Vergheese, A. O.; Matin, Shafique; Chaudhary, Swapnil A.; Ghosh, Sonali; Lakshmi, Udaya; Rawat, Deepshikha; Ambastha, Kalpana; Malik, Akhtar H.; Devi, B. S. S.; Gowda, Balakrishna; Sharma, K. C.; Mukharjee, Prashant; Sharma, Ajay; Davidar, Priya; Raju, R. R. Venkata; Katewa, S. S.; Kant, Shashi; Raju, Vatsavaya S.; Uniyal, B. P.; Debnath, Bijan; Rout, D. K.; Thapa, Rajesh; Joseph, Shijo; Chhetri, Pradeep; Ramachandran, Reshma M.

    2015-07-01

    A seamless vegetation type map of India (scale 1: 50,000) prepared using medium-resolution IRS LISS-III images is presented. The map was created using an on-screen visual interpretation technique and has an accuracy of 90%, as assessed using 15,565 ground control points. India has hitherto been using potential vegetation/forest type map prepared by Champion and Seth in 1968. We characterized and mapped further the vegetation type distribution in the country in terms of occurrence and distribution, area occupancy, percentage of protected area (PA) covered by each vegetation type, range of elevation, mean annual temperature and precipitation over the past 100 years. A remote sensing-amenable hierarchical classification scheme that accommodates natural and semi-natural systems was conceptualized, and the natural vegetation was classified into forests, scrub/shrub lands and grasslands on the basis of extent of vegetation cover. We discuss the distribution and potential utility of the vegetation type map in a broad range of ecological, climatic and conservation applications from global, national and local perspectives. We used 15,565 ground control points to assess the accuracy of products available globally (i.e., GlobCover, Holdridge's life zone map and potential natural vegetation (PNV) maps). Hence we recommend that the map prepared herein be used widely. This vegetation type map is the most comprehensive one developed for India so far. It was prepared using 23.5 m seasonal satellite remote sensing data, field samples and information relating to the biogeography, climate and soil. The digital map is now available through a web portal (http://bis.iirs.gov.in).

  18. Surface-enhanced Raman fiberoptic sensors for remote monitoring

    SciTech Connect

    Stokes, D.L.; Alarie, J.P.; Vo-Dinh, T.

    1995-09-01

    A new sensor design for remote surface-enhanced Raman scattering (SERS) measurements has been developed for environmental applications. The design features the modification of an optical fiber using layers of alumina microparticles and silver coatings for inducing the SERS effect at the sensing probe. A single fiber carries both the laser excitation and the SERS signal radiation, keeping optical parameters at the remote tip simple and consistent. The small tip size achievable with this configuration also demonstrates potential of this new design as a microsensor for in-situ measurement in microenvironments. Details of sensor tip fabrication and optical system design are described. SERS spectra of aqueous environmental samples acquired in-situ using the SERS sensor are also presented to illustrate the effectiveness of the SERS sensor.

  19. Evaluating Thermal Infrared Remote Sensing of Evapotranspiration over Cotton with Two Surface Energy Balance Models

    NASA Astrophysics Data System (ADS)

    French, A. N.; Hunsaker, D.; Thorp, K.

    2014-12-01

    Thermal infrared remote sensing can be used to map evapotranspiration (ET) over irrigated crops, which provides a way to estimate plant water use, detect water stress, and improve water management decision support systems. Multiple thermal infrared surface energy balance models that estimate ET have been developed and refined over recent years and are actively being used at local to continental scales. However, relatively few intensive, field-based studies have been conducted to evaluate model estimates and their relative merits. To help resolve ET estimation accuracy with differing remote sensing models, a study was conducted over an irrigated crop in Central Arizona in 2009 and 2011. Using extensive ground moisture measurements over a 4.9 ha cotton field and seven airborne remote sensing flights, this study evaluated ET provided by two prominent approaches: the two-source energy balance model (TSEB) and the 'Satellite-based energy balance for mapping evapotranspiration with internalized calibration' model (METRIC). Both use thermal infrared data as essential inputs. However, TSEB is characterized by strong linkage to biophysics, while METRIC is distinguished by its use of contextual information. Based on soil moisture profile observations at 112 locations, and the same input remote sensing data, METRIC was found accurate to 2 mm/day in a majority of cases, while TSEB was similarly accurate at a 1.5 mm/day threshold. These accuracies were representative for emergent, full canopy, and late season cotton growth phases. TSEB and METRIC were similarly biased, ~ -0.7 mm/day. Considering similarity of results at field scale, model complexity, input data requirements, and ease of implementation, TSEB would be preferred for well-instrumented sites. In the case of data sparse sites, METRIC would be recommended as a robust ET approach. The role of land surface temperature uncertainty for modeling ET will be discussed.

  20. Remote Sensing for Mapping Soybean Crop in the Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Trabaquini, K.; Bernardes, T.; Mello, M. P.; Formaggio, A.; Rosa, V. G.

    2011-12-01

    The soybean expansion in the Brazilian Cerrado has been strongly affected by internal and external markets. The main factors driving that expansion are the climatic conditions, the development of technologies and genetic improvement. Recent studies have shown that the soybean expansion has become a major cause of reduction of native vegetation in Mato Grosso State - Brazil, responding for 17% of deforestation from 2000 to 2004. This work aims to map soybean areas in the Brazilian Cerrado in Mato Grosso State, using MODIS data. Thirteen MODIS images (MOD13 - 16 days composition), acquired from September, 2005 to March, 2006, were used to run principal component analysis (PCA) in order to reduce the dimensionality of the data. The first three components (PC1, PC2 and PC3), which contained about 90% of data variability were segmented and utilized as input for an unsupervised classification using the ISOSEG classifier, implemented in the SPRING software. Eighty field work points were randomly selected for the accuracy assessment. An intersection between the soybean map and a map generated by the "Project Monitoring Deforestation of Brazilian Biomes Satellite - PMDBBS", which aimed at identifying anthropic areas, was conducted in order to evaluate the distribution of soybeans within those areas. Moreover a soil map was used in order to evaluate the soybean distribution over the classes of soil. The classification result presented overall index of 83% and the kappa coefficient of 0.64 for the soybean map, which presented a total soybean area of about 42,317 square kilometers. Furthermore, it was verified that 27% of anthropic area was covered by soybean. In relation to the soil analysis, 87% of the total soybean area was planted in Oxisoils. Despite the economic gain related to the soybean production, an adequate management is needed to avoid soil acidification, soil erosion and pollution, aiming at providing a sustainable environment.

  1. Hydrologic Remote Sensing and Land Surface Data Assimilation

    PubMed Central

    Moradkhani, Hamid

    2008-01-01

    Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in land surface–atmosphere interactions affecting surface energy fluxes, runoff and the radiation balance. Snow processes also have a large influence on land-atmosphere energy exchanges due to snow high albedo, low thermal conductivity and considerable spatial and temporal variability resulting in the dramatic change on surface and ground temperature. Measurement of these two variables is possible through variety of methods using ground-based and remote sensing procedures. Remote sensing, however, holds great promise for soil moisture and snow measurements which have considerable spatial and temporal variability. Merging these measurements with hydrologic model outputs in a systematic and effective way results in an improvement of land surface model prediction. Data Assimilation provides a mechanism to combine these two sources of estimation. Much success has been attained in recent years in using data from passive microwave sensors and assimilating them into the models. This paper provides an overview of the remote sensing measurement techniques for soil moisture and snow data and describes the advances in data assimilation techniques through the ensemble filtering, mainly Ensemble Kalman filter (EnKF) and Particle filter (PF), for improving the model prediction and reducing the uncertainties involved in prediction process. It is believed that PF provides a complete representation of the probability distribution of state variables of interests (according to sequential Bayes law) and could be a strong alternative to EnKF which is subject to some limitations including the linear

  2. The Application of Aperture Synthesis to the Remote Sensing of Sea Surface Salinity From Space

    NASA Technical Reports Server (NTRS)

    LeVine, David M.

    1998-01-01

    Sea surface salinity is measured optimally at the long wavelength end of the microwave spectrum in order to maximize radiometric sensitivity to changes in salinity. Long wavelengths (e.g. L-band) mean large antennas in space, and because of the technological challenge associated with putting large scanning antennas in orbit, no system currently exists to measure salinity. Aperture synthesis is an interferometric technique to make deployment of large antenna apertures in space feasible. It uses pairs of small antennas and signal processing to achieve the resolution of a single large aperture. Aperture synthesis has been demonstrated successfully for remote sensing by the aircraft prototype radiometer, ESTAR. ESTAR is an L-band instrument which employs aperture synthesis in the cross track dimension. Recent measurements with ESTAR of the fresh water outflow from the Delaware River are in good agreement (about 1 psu) with shipboard thermosalinograph measurements. Synthetic aperture radiometers are currently being developed for remote sensing from space. HYDROSTAR is an instrument for remote sensing from space based on the design of ESTAR. It employs aperture synthesis in one dimension and is being proposed as a pathfinder instrument to make global maps of soil moisture and sea surface salinity and to demonstrate the feasibility of aperture synthesis for remote sensing from space. Instruments which use remote sensing in two dimensions are currently being developed by the European Space Agency. These instruments include additional channels (frequencies and polarizations) and may be able to achieve radiometric sensitivity and spatial resolution to meet the diverse needs of the coastal zone and open ocean oceanographic communities.

  3. Remote visual detection of impacts on the lunar surface

    NASA Technical Reports Server (NTRS)

    Melosh, H. Jay; Artemjeva, N. A.; Golub, A. P.; Nemchinov, I. V.; Shuvalov, V. V.; Trubetskaya, I. A.

    1993-01-01

    We propose a novel method of remotely observing impacts on the airless Moon that may extend the present data base on meteoroids down to 1 m in diameter. Meteorites or comets of radius approximately 1-100 m are burnt away or dispersed in the atmospheres of the Earth and Venus. However, when such objects strike the Moon they deposit their energy in a small initial volume, forming a plasma plume whose visible and infrared radiation may be visible from the Earth. We consider impacts of model SiO2 projectiles on the surface of an SiO2 model Moon.

  4. PRELIMINARY INVESTIGATION OF SUBMERGED AQUATIC VEGETATION MAPPING USING HYPERSPECTRAL REMOTE SENSING

    EPA Science Inventory

    The use of airborne hyperspectral remote sensing imagery for automated mapping of submersed aquatic vegetation in the tidal Potomac River was investigated for near to real-time resource assessment and monitoring. Airborne hyperspectral imagery, together with in-situ spectral refl...

  5. Remote sensing soil salinity map for the San Joaquin Valley, California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil salinization is a major natural hazard to worldwide agriculture. We present a remote imagery approach that maps salinity within a range (i.e., salinities less than 20 dS m-1, when measured as the electrical conductivity of the soil saturation extract), accuracy, and resolution most relevant to ...

  6. Protein Flexibility in Docking and Surface Mapping

    PubMed Central

    Lexa, Katrina W.; Carlson, Heather A.

    2012-01-01

    Structure-based drug design has become an essential tool for rapid lead discovery and optimization. As available structural information has increased, researchers have become increasingly aware of the importance of protein flexibility for accurate description of the native state. Typical protein–ligand docking efforts still rely on a single rigid receptor, which is an incomplete representation of potential binding conformations of the protein. These rigid docking efforts typically show the best performance rates between 50 and 75%, while fully flexible docking methods can enhance pose prediction up to 80–95%. This review examines the current toolbox for flexible protein–ligand docking and receptor surface mapping. Present limitations and possibilities for future development are discussed. PMID:22569329

  7. Rapid Mapping of Surface Rupture from the South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Trexler, C. C.; Morelan, A. E., III; Oskin, M. E.

    2014-12-01

    Rapid documentation (<1 day) of co-seismic surface rupture location and slip is essential for scientific and emergency response. We demonstrate how social media (text messaging and Twitter) and the emerging 3D data collection technique known as Structure from Motion (SfM), used in conjunction with traditional field reconnaissance, enabled us to rapidly locate and document surface ruptures from the Mw 6.0 South Napa earthquake. On the morning of the event, our field team used information available on social media to identify locations with potential surface rupture. Preliminary observations of surface rupture (measurements and geo-tagged photographs) were texted to the office-based team member who created digital maps of the rupture trace and shared them online via Twitter in near-real time. We documented many ephemeral features (such as offset roads, curbs, and driveways) along the rupture trace within 12 hours of the event, before these features were destroyed by road and infrastructure repair. We were able to return to most sites again within several days, allowing us to document continuing slip and create time-series datasets of offset features. After the collection and re-collection of data at selected sites, we made detailed measurements remotely using 3D models constructed with SfM. The ability to quantitatively project features into the fault plane using these models allows for accurate measurements of small features often difficult to observe and quantify in the field. Traditionally, even preliminary maps of rupture extent and offset magnitudes are not available for several days after an event because office-based processing and compilation is required. Because we were able to compile our data in real time, we distributed our results while they were still valuable for ongoing scientific response. Our work helped other science teams efficiently target fieldwork and instrument deployment; for example, one geodetic survey team used our surface rupture map to

  8. Image enhancement and understanding for remote visual inspection of aircraft surface

    NASA Astrophysics Data System (ADS)

    Gunatilake, Priyan; Siegel, Mel; Jordan, Angel G.; Podnar, Gregg W.

    1996-11-01

    We describe a library of image enhancement and understanding algorithms developed to enhance and recognize surface defects from remote live imagery of an aircraft surface. Also described are the supporting mobile robot platform that generates the remote stereoscopic imagery and the inspection console containing a graphical user interface, through which the inspector accesses the live imagery for remote inspection. We will discuss initial results of the remote imaging process and the image processing library, and speculate on their future application in aircraft inspection.

  9. Application of Remote Sensing for Generation of Groundwater Prospect Map

    NASA Astrophysics Data System (ADS)

    Inayathulla, Masool

    2016-07-01

    In developing accurate hydrogeomorphological analysis, monitoring, ability to generate information in spatial and temporal domain and delineation of land features are crucial for successful analysis and prediction of groundwater resources. However, the use of RS and GIS in handling large amount of spatial data provides to gain accurate information for delineating the geological and geomorphological characteristics and allied significance, which are considered as a controlling factor for the occurrence and movement of groundwater used IRS LISS II data on 1: 50000 scale along with topographic maps in various parts of India to develop integrated groundwater potential zones. The present work is an attempt to integrate RS and GIS based analysis and methodology in groundwater potential zone identification in the Arkavathi Basin, Bangalore, study area. The information on geology, geomorphology, soil, slope, rainfall, water level and land use/land cover was gathered, in addition, GIS platform was used for the integration of various themes. The composite map generated was further classified according to the spatial variation of the groundwater potential. Five categories of groundwater potential zones namely poor, moderate to poor, moderate, good and very good were identified and delineated. The hydrogeomorphological units like valley fills and alluvial plain and are potential zones for groundwater exploration and development and valley fills associated with lineaments is highly promising area for ground water recharging. The spatial variation of the potential indicates that groundwater occurrence is controlled by geology, land use / land cover, slope and landforms.

  10. Synergistic using medium-resolution and high-resolution remote sensing imagery to extract impervious surface for Dianci Basin

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Yang, Kun; Deng, Ming; Liu, Cun

    2014-03-01

    The knowledge of impervious surfaces, especially the magnitude, location, geometry, spatial pattern of impervious surfaces, is significant to urban ecosystem studies, including urban hydrology, urban climate, land use planning and resource management.Impervious surface area (ISA) is considered a key indicator of environmental quality and can be used to address complex urban environmental issues, particularly those related to the health of urban watersheds. ISA is also an indicator of non-point source pollution or polluted runoff. Remote sensing offers a consistent framework for representing spatial patterns and rates of urbanization over time through accurate observations of impervious surface area. Most of the existing methods of extracting impervious surface based on remote sensing concentrate on an urban scale, but the rapid and accurate methods of extracting impervious surfaces in a basin scale are nearly nonexistent in China and abroad. In recent years,with the rapid urbanization especially surrounding the Dianchi water body, the impervious surface coverage rate also grows rapidly and results in severe degradation of basin water environment within Dianchi watershed. In this study, we developed an approach to extract impervious surface for Dianci Basin by synergistic using medium-resolution and high-resolution remote sensing imagery. Subpixel percent impervious surfaces at Thematic Mapper (TM) images were mapped using the classification and regression tree(CART) algorithm. Sub-pixel impervious surfaces at 30m resolution were mapped in this study area through regression tree models. The estimated ISA results were evaluated through independent ISA reference data derived from high resolution QuickBird. The results prove the suitability of the approach for a widely automated and mapping of impervious surfaces in a basin scale.

  11. Spatial Distribution and Pattern Persistence of Surface Soil Moisture and Temperature Over Prairie from Remote Sensing

    NASA Technical Reports Server (NTRS)

    Chen, Daoyi; Engman, Edwin T.; Brutsaert, Wilfried

    1997-01-01

    Images remotely sensed aboard aircraft during FIFE, namely, PBMR (microwave) soil moisture and NS001 thermal infrared surface temperature, were mapped on the same coordinate system covering the 20 km x 20 km experimental site. For both kinds of image data, the frequency distributions were close to symmetric, and the area average compared reasonably well with the ground based measurements. For any image on any given day, the correlation between the remotely sensed values and collocated ground based measurements over the area was usually high in the case of NS001 surface temperature but low in the case of PBMR soil moisture. On the other hand, at any given flux station the correlation between the PBMR and gravimetric soil moisture over all available days was usually high. The correlation pixel by pixel between images of PBMR on different days was generally high. The preservation of the spatial patterns of soil moisture was also evaluated by considering the correlation station by station between ground-based soil moisture measurements on different days; no persistence of spatial pattern was apparent during wet periods, but a definite pattern gradually established itself toward the end of each drying episode. The spatial patterns of surface temperature revealed by NS001 were not preserved even within a single day. The cross-correlations among the two kinds of images and the vegetation index NDVI were normally poor. This suggests that different processes of vegetation growth, and of the near-surface soil water and energy budgets.

  12. Estimation of spatially distributed surface energy fluxes using remotely-sensed data for agricultural fields

    NASA Astrophysics Data System (ADS)

    Melesse, Assefa M.; Nangia, Vijay

    2005-09-01

    Land surface energy fluxes are required in many environmental studies, including hydrology, agronomy and meteorology. Surface energy balance models simulate microscale energy exchange processes between the ground surface and the atmospheric layer near ground level. Spatial variability of energy fluxes limits point measurements to be used for larger areas. Remote sensing provides the basis for spatial mapping of energy fluxes. Remote-sensing-based surface energy flux-mapping was conducted using seven Landsat images from 1997 to 2002 at four contiguous crop fields located in Polk County, northwestern Minnesota. Spatially distributed surface energy fluxes were estimated and mapped at 30 m pixel level from Landsat Thematic Mapper and Enhanced Thematic Mapper images and weather information. Net radiation was determined using the surface energy balance algorithm for land (SEBAL) procedure. Applying the two-source energy balance (TSEB) model, the surface temperature and the latent and sensible heat fluxes were partitioned into vegetation and soil components and estimated at the pixel level. Yield data for wheat and soybean from 1997 to 2002 were mapped and compared with latent heat (evapotranspiration) for four of the fields at pixel level. The spatial distribution and the relation of latent heat flux and Bowen ratio (ratio of sensible heat to latent heat) to crop yield were studied. The root-mean-square error and the mean absolute percentage of error between the observed and predicted energy fluxes were between 7 and 22 W m-2 and 12 and 24% respectively. Results show that latent heat flux and Bowen ratio were correlated (positive and negative) to the yield data. Wheat and soybean yields were predicted using latent heat flux with mean R2 = 0.67 and 0.70 respectively, average residual means of -4.2 bushels/acre and 0.11 bushels/acre respectively, and average residual standard deviations of 16.2 bushels/acre and 16.6 bushels/acre respectively (1 bushel/acre 0.087 m3 ha-1

  13. a Framework for Capacity Building in Mapping Coastal Resources Using Remote Sensing in the Philippines

    NASA Astrophysics Data System (ADS)

    Tamondong, A.; Cruz, C.; Ticman, T.; Peralta, R.; Go, G. A.; Vergara, M.; Estabillo, M. S.; Cadalzo, I. E.; Jalbuena, R.; Blanco, A.

    2016-06-01

    Remote sensing has been an effective technology in mapping natural resources by reducing the costs and field data gathering time and bringing in timely information. With the launch of several earth observation satellites, an increase in the availability of satellite imageries provides an immense selection of data for the users. The Philippines has recently embarked in a program which will enable the gathering of LiDAR data in the whole country. The capacity of the Philippines to take advantage of these advancements and opportunities is lacking. There is a need to transfer the knowledge of remote sensing technology to other institutions to better utilize the available data. Being an archipelagic country with approximately 36,000 kilometers of coastline, and most of its people depending on its coastal resources, remote sensing is an optimal choice in mapping such resources. A project involving fifteen (15) state universities and colleges and higher education institutions all over the country headed by the University of the Philippines Training Center for Applied Geodesy and Photogrammetry and funded by the Department of Science and Technology was formed to carry out the task of capacity building in mapping the country's coastal resources using LiDAR and other remotely sensed datasets. This paper discusses the accomplishments and the future activities of the project.

  14. Suitability of spectral remote sensing for coral reef surveying, monitoring and mapping

    NASA Astrophysics Data System (ADS)

    Gomez, Richard B.; Kafatos, Menas; Lewis, Ambrose J.

    2003-03-01

    Many researchers consider coral reefs the 'rainforests of the oceans' because they cover such a small area and yet provide homes for literally thousands of unique marine species. A multispectral or hyperspectral remote sensing satellite, with its spectral coverage, offers iadvantages over traditional methodologies for coral reef surveying, monitoring, and mapping. This apper presents research into the suitabilty of spectral remote sensing for coral reed surveying, monitoring and mapping. This paper presents research into the suitability of spectral remote sensing for coral reef surveying, monitoring and mapping using the SeaWiFS multispectral ocean color data for illustration. We describe the information technology developed to support this research and provide an overview of the database driven web application, which was developed to allow live interaction with the data. A database of in situ observations from the ReefBase web site was used as validation data as part of this investigation. This discussion includes details on the XML representation of the satellite and in situ data and metadat. It also introduces a dynamic Java Visualization applet developed to allow the users to visually interact wiht the data. The paper concludes wiht a discussion of the suitability and additional advantages of using hyperspectral remote sensing technology for this application that exploits the full spectral characteristics of submerged coral reefs.

  15. Added value products for imaging remote sensing by processing actual GNSS reflectometry delay doppler maps

    NASA Astrophysics Data System (ADS)

    Schiavulli, Domenico; Frappart, Frédéric; Ramilien, Guillaume; Darrozes, José; Nunziata, Ferdinando; Migliaccio, Maurizio

    2016-04-01

    Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative and promising tool for remote sensing. It is based on the exploitation of GNSS signals reflected off Earth's surface as signals of opportunity to infer geophysical information of the reflecting surface. The main advantages of GNSS-R with respect dedicated sensors are: the unprecedented spatial-temporal coverage due to the availability of a great amount of transmitting satellite, e.g. GPS, Galileo, Glonass, etc…, long term GNSS mission life and cost effectiveness. In fact only a simple receiver is needed. In the last years several works demonstrated the meaningful of this technique in several Earth Observation applications. All these applications presented results obtained by using a receiver mounted on an aircraft or on a fixed platform. Moreover, space borne missions have been launched or are planned: UK-DMC, TechDemoSat-1 (TDS-1), NASA CYGNSS, Geros ISS. Practically, GNSS-R can be seen as a bistatic radar system where the GNSS satellites continuously transmit the L-band all-weather night-and-day signals that are reflected off a surface, called Glistening Zone (GZ), and a receiver measures the scattered microwave signals in terms of Delay-Doppler maps (DDMs) or delay waveforms. These two products have been widely studied in the literature to extract compact parameters for different remote sensing applications. However, products measured in the Delay Doppler (DD) domain are not able to provide any spatial information of the scattering scene. This could represent a drawback for applications related to imaging remote sensing, e.g. target detection, sea/land and sea/ice transition, oil spill detection, etc…. To overcome these limitations some deconvolution techniques have been proposed in the state of the art aiming at the reconstruction of a radar image of the observed scene by processing the measured DDMs. These techniques have been tested on DDMs related to simulated marine scenario

  16. A Remote Characterization System for subsurface mapping of buried waste sites

    SciTech Connect

    Sandness, G.A.; Bennett, D.W.; Martinson, L.

    1992-06-01

    This paper describes a development project that will provide new technology for characterizing hazardous waste burial sites. The project is a collaborative effort by five of the national laboratories, involving the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface.

  17. Correcting for Atmospheric Spatial Variability When Estimating Surface Fluxes from Remotely Sensed Land Surface Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to monitor the terrestrial water cycle require accurate estimates of evapotranspiration over the global land area. Flux towers provide valuable site-level data, but their collective footprints cover only a very small fraction of the land surface. Satellite remote sensing instruments, on th...

  18. Mapping radiation transfer through sea ice using a remotely operated vehicle (ROV)

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Katlein, C.

    2012-09-01

    Light (solar short-wave radiation) transmission into and through sea ice is of high importance for various processes in Polar Regions. The amount of energy transferred through the ice determines formation and melt of sea ice and finally contributes to warming of the uppermost ocean. At the same time the amount and distribution of light, as the primary source of energy, is of critical importance for sea-ice associated organisms and bio-geochemical processes. However, our current understanding of these processes and their interdisciplinary interactions is still sparse. The main reason is that the under-ice environment is difficult to access and measurements require large logistical and instrumental efforts. Particularly, it was not possible to map light conditions under sea ice over larger areas. Here we present a detailed methodical description of operating spectral radiometers on a remotely operated vehicle (ROV) in the Central Arctic under sea ice. This new measurement concept resulted in a~most comprehensive data set of spectral radiance and irradiance under and above sea ice, complemented through various additional in-situ measurements of sea-ice, snow, and surface properties. Finally, such data sets allow quantifying the spatial variability of light under sea ice, especially highlighting differences between ponded and white ice as well as different ice types.

  19. Use of remotely sensed evapotranspiration maps for monitoring drought impacts at field to continental scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Evaporative Stress Index (ESI) describes temporal anomalies in evapotranspiration (ET), highlighting areas with anomalously high or low rates of water use across the land surface. ET is retrieved via energy balance using remotely sensed land-surface temperature (LST) time-change signals. LST ...

  20. Development and Evaluation of Global Wetlands Mappings from Coarse-Resolution Satellite Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Schroeder, R.; McDonald, K. C.; Podest, E.; Willacy, K.; Jones, L. A.; Kimball, J. S.; Zimmermann, R.

    2010-12-01

    Wetlands exert major impacts on global biogeochemistry, hydrology, and biological diversity. The extent and seasonal, interannual, and decadal variation of inundated wetland area play key roles in ecosystem dynamics. Wetlands contribute approximately one fourth of the total methane annually emitted to the atmosphere and are identified as the primary contributor to interannual variations in the growth rate of atmospheric methane concentrations. Despite the importance of these environments in the global cycling of carbon and water and to current and future climate, the extent and dynamics of global wetlands remain poorly characterized and modeled, primarily because of the scarcity of suitable regional-to-global remote-sensing data for characterizing their distribution and dynamics. We present a satellite-based approach for mapping wetlands globally at coarse-resolution (25km). The approach employs a mixture model applied to ~8 years (2002-2009) of daily 18.7 GHz, V and H polarization brightness temperature (Tb) data from the Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and daily Ku-band (13.4 GHz) radar backscatter data from SeaWinds-on-QuikSCAT. The combined passive-active microwave mixture model approach utilizes site-specific MODIS IGBP land cover information to account for the effect of vegetation structure on the microwave remote sensing-based retrieval of surface inundation dynamics. A comparison with coarse-resolution global maps of fractional open water cover (Fw) derived from radiometric inversion of daily AMSR-E 18.7 GHz, V and H polarized Tb observations demonstrates agreement in terms of both spatial distribution and temporal variability of the major global wetland complexes, but differences in the magnitudes of the Fw retrievals. Wetlands products obtained from both satellite-based methods are compared with the high-resolution (250m) land water mask developed from MODIS and SRTM L3 (MOD44W) as well as the global lake and wetland database (GLWD

  1. Estimating Active Layer Thickness from Remotely Sensed Surface Deformation

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K. M.; Zhang, T.; Wahr, J. M.

    2010-12-01

    We estimate active layer thickness (ALT) from remotely sensed surface subsidence during thawing seasons derived from interferometric synthetic aperture radar (InSAR) measurements. Ground ice takes up more volume than ground water, so as the soil thaws in summer and the active layer deepens, the ground subsides. The volume of melted ground water during the summer thaw determines seasonal subsidence. ALT is defined as the maximum thaw depth at the end of a thawing season. By using InSAR to measure surface subsidence between the start and end of summer season, one can estimate the depth of thaw over a large area (typically 100 km by 100 km). We developed an ALT retrieval algorithm integrating InSAR-derived surface subsidence, observed soil texture, organic matter content, and moisture content. We validated this algorithm in the continuous permafrost area on the North Slope of Alaska. Based on InSAR measurements using ERS-1/2 SAR data, our estimated values match in situ measurements of ALT within 1--10 cm at Circumpolar Active Layer Monitoring (CALM) sites within the study area. The active layer plays a key role in land surface processes in cold regions. Current measurements of ALT using mechanical probing, frost/thaw tubes, or inferred from temperature measurements are of high quality, but limited in spatial coverage. Using InSAR to estimate ALT greatly expands the spatial coverage of ALT observations.

  2. Compact remote multisensing instrument for planetary surfaces and atmospheres characterization.

    PubMed

    Nurul Abedin, M; Bradley, Arthur T; Ismail, Syed; Sharma, Shiv K; Sandford, Stephen P

    2013-05-10

    This paper describes a prototype feasibility demonstration system of a multipurpose Raman-fluorescence spectrograph and compact lidar system suitable for planetary sciences missions. The key measurement features of this instrument are its abilities to: i) detect minerals and organics at low levels in the dust constituents of surface, subsurface material and rocks on Mars, ii) determine the distribution of trace fluorescent ions with time-resolved fluorescence spectroscopy to learn about the geological conditions under which these minerals formed, iii) inspect material toxicity from a mobile robotic platform during local site characterization, iv) measure dust aerosol and cloud distributions, v) measure near-field atmospheric carbon dioxide, and vi) identify surface CO(2)-ice, surface water ice, and surface or subsurface methane hydrate. This prototype instrument and an improved follow-on design are described and have the capability for scientific investigations discussed above, to remotely investigate geological processes from a robotic platform at more than a 20-m radial distance with potential to go beyond 100 m. It also provides single wavelength (532 nm) aerosol/cloud profiling over very long ranges (>10 km with potential to 20 km). Measurement results obtained with this prototype unit from a robotic platform and calculated potential performance are presented in this paper. PMID:23669823

  3. Compact remote multisensing instrument for planetary surfaces and atmospheres characterization.

    PubMed

    Nurul Abedin, M; Bradley, Arthur T; Ismail, Syed; Sharma, Shiv K; Sandford, Stephen P

    2013-05-10

    This paper describes a prototype feasibility demonstration system of a multipurpose Raman-fluorescence spectrograph and compact lidar system suitable for planetary sciences missions. The key measurement features of this instrument are its abilities to: i) detect minerals and organics at low levels in the dust constituents of surface, subsurface material and rocks on Mars, ii) determine the distribution of trace fluorescent ions with time-resolved fluorescence spectroscopy to learn about the geological conditions under which these minerals formed, iii) inspect material toxicity from a mobile robotic platform during local site characterization, iv) measure dust aerosol and cloud distributions, v) measure near-field atmospheric carbon dioxide, and vi) identify surface CO(2)-ice, surface water ice, and surface or subsurface methane hydrate. This prototype instrument and an improved follow-on design are described and have the capability for scientific investigations discussed above, to remotely investigate geological processes from a robotic platform at more than a 20-m radial distance with potential to go beyond 100 m. It also provides single wavelength (532 nm) aerosol/cloud profiling over very long ranges (>10 km with potential to 20 km). Measurement results obtained with this prototype unit from a robotic platform and calculated potential performance are presented in this paper.

  4. Integrating field sampling, spatial statistics and remote sensing to map wetland vegetation in the Pantanal, Brazil

    NASA Astrophysics Data System (ADS)

    Arieira, J.; Karssenberg, D.; de Jong, S. M.; Addink, E. A.; Couto, E. G.; Nunes da Cunha, C.; Skøien, J. O.

    2010-09-01

    To improve the protection of wetlands, it is imperative to have a thorough understanding of their structuring elements and of the identification of efficient methods to describe and monitor them. This article uses sophisticated statistical classification, interpolation and error propagation techniques, in order to describe vegetation spatial patterns, map plant community distribution and evaluate the capability of statistical approaches to produce high-quality vegetation maps. The approach results in seven vegetation communities with a known floral composition that can be mapped over large areas using remotely sensed data. The relations between remotely sensing data and vegetation patterns, captured in four factorial axes, were formalized mathematically in multiple linear regression models and used in a universal kriging procedure to reduce the uncertainty in mapped communities. Universal kriging has shown to be a valuable interpolation technique because parts of vegetation variability not explained by the images could be modeled as spatially correlated residuals, increasing prediction accuracy. Differences in spatial dependence of the vegetation gradients evidenced the multi-scale nature of vegetation communities. Cross validation procedures and Monte Carlo simulations were used to quantify the uncertainty in the resulting map. Cross-validation showed that accuracy in classification varies according with the community type, as a result of sampling density and configuration. A map of uncertainty resulted from Monte Carlo simulations displayed the spatial variation in classification accuracy, showing that the quality of classification varies spatially, even though the proportion and arrangement of communities observed in the original map is preserved to a great extent. These results suggested that mapping improvement could be achieved by increasing the number of field observations of those communities with a scattered and small patch size distribution; or by

  5. Improving Distributed Runoff Prediction in Urbanized Catchments with Remote Sensing based Estimates of Impervious Surface Cover

    PubMed Central

    Chormanski, Jaroslaw; Van de Voorde, Tim; De Roeck, Tim; Batelaan, Okke; Canters, Frank

    2008-01-01

    The amount and intensity of runoff on catchment scale are strongly determined by the presence of impervious land-cover types, which are the predominant cover types in urbanized areas. This paper examines the impact of different methods for estimating impervious surface cover on the prediction of peak discharges, as determined by a fully distributed rainfall-runoff model (WetSpa), for the upper part of the Woluwe River catchment in the southeastern part of Brussels. The study shows that detailed information on the spatial distribution of impervious surfaces, as obtained from remotely sensed data, produces substantially different estimates of peak discharges than traditional approaches based on expert judgment of average imperviousness for different types of urban land use. The study also demonstrates that sub-pixel estimation of imperviousness may be a useful alternative for more expensive high-resolution mapping for rainfall-runoff modelling at catchment scale.

  6. Remote Sensing by Spaceborne Lidar Aided by Surface Returns

    NASA Technical Reports Server (NTRS)

    Reagan, J. A.; Cooley, T. W.

    1992-01-01

    Spaceborne lidar offers the possibility of global mapping of clouds and atmospheric aerosols. Mapping of cloud-top heights, multiple layers of thin clouds and the depth of the planetary boundary layer (PBL), given sufficient aerosols, are applications that should be fairly easy to accomplish from space with even a modest lidar system. However, the constraints imposed on spaceborne lidar by large ranging distances, limited available power/weight, and fast moving platforms present significant challenges to achieving more quantitative retrievals such as extracting aerosol extinction profiles, PBL optical depths and cloud optical depths. Ways to take advantage of the strong signals available from ground/sea reflections to improve upon atmospheric aerosol and cloud retrievals as well as to distinguish certain surface types are explored.

  7. Multispectral remote sensing contribution to land surface evaporation

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1990-01-01

    The global water cycle is perhaps the most important of all the biogeochemical cycles and evaporation, which is a significant component of the water cycle, is also linked with the energy and carbon cycles. Long-term evaporation over large areas has generally been computed as the difference of precipitation and river runoff. Analysis of short-term evaporation rate and its spatial pattern, however, is extremely complex, and multispectral remotely sensed data could aid in such analysis. Multispectral data considered here are visible and near-infrared reflectances, infrared surface temperature and the 37 GHz brightness temperatures. These observations are found to be not totally independent of each other. A few of their relationships are established and discussed considering physically-based models.

  8. Mapping mine tailings using airborne geophysical and hyperspectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Shang, Jiali

    Mine tailings are the waste products from mining operations. Most mine tailings contain a considerable amount of reactive sulphides which can cause acid mine drainage (AMD) when exposed to air and water. AMD constitutes a threat both to the environment and to public health. Increased awareness of AMD has led to growing activities in mine-tailing monitoring and reclamation worldwide. Mining companies in Canada are required to provide information to provincial governments about their waste disposal and control activities. There is an urgent need to develop new automated ways to provide information on short- to long-term evolution of tailings, thus enabling the mining companies to monitor their tailings more effectively. The overall goal of the thesis is to explore the potential of hyperspectral remote sensing and geophysical techniques for mapping variations within and immediately outside of the tailings. Data used for this study are from three sources: airborne geophysical data, hyperspectral casi and Probe-1 data, and field data. This study has contributed to both the remote sensing data analysis techniques and the understanding of mine-tailing surface and subsurface processes. Specifically, this study has the following important findings: (1) Airborne magnetic and electromagnetic data can provide information regarding the subsurface distribution of mine tailings on the basis of sulphide mineral content. A procedure has been developed in this study to use these data sources for rapidly surveying large tailings areas. This procedure can minimize expenditures for mining companies when designing remedial plans for the closure of the mines. This study has also identified regions of enhanced conductivity that extend beyond the tailing containment area. This information indicates seepage pathways, and is important for monitoring the effectiveness of tailing containment structures. (2) High-spatial-resolution hyperspectral casi (Compact Airborne Spectrographic Imagery

  9. Investigation of remote sensing to detect near-surface groundwater on irrigated lands

    NASA Technical Reports Server (NTRS)

    Ryland, D. W.; Schmer, F. A.; Moore, D. G.

    1975-01-01

    The application of remote sensing techniques was studied for detecting areas with high water tables in irrigated agricultural lands. Aerial data were collected by the LANDSAT-1 satellite and aircraft over the Kansas/Bostwick Irrigation District in Republic and Jewell Counties, Kansas. LANDSAT-1 data for May 12 and August 10, 1973, and aircraft flights (midday and predawn) on August 10 and 11, 1973, and June 25 and 26, 1974, were obtained. Surface and water table contour maps and active observation well hydrographs were obtained from the Bureau of Reclamation for use in the analysis. Results of the study reveal that LANDSAT-1 data (May MSS band 6 and August MSS band 7) correlate significantly (0.01 level) with water table depth for 144 active observation wells located throughout the Kansas/Bostwick Irrigation District. However, a map of water table depths of less than 1.83 meters prepared from the LANDSAT-1 data did not compare favorably with a map of seeped lands of less than 1.22 m (4 feet) to the water table. Field evaluation of the map is necessary for a complete analysis. Analysis of three fields on a within or single-field basis for the 1973 LANDSAT-1 data also showed significant correlation results.

  10. Photoelectric scanner makes detailed work function maps of metal surface

    NASA Technical Reports Server (NTRS)

    Rasor, N. S.

    1966-01-01

    Photoelectric scanning device maps the work function of a metal surface by scanning it with a light spot and measuring the resulting photocurrent. The device is capable of use over a range of surface temperatures.

  11. Rapid Mapping of Soil Electrical Conductivity by Radar Satellite Remote Sensing for Landmine Detection

    NASA Astrophysics Data System (ADS)

    McNairn, H.; Katsube, T. J.; Das, Y.; Holt, R. M.

    2005-05-01

    Many soil physical and chemical properties interfere with landmine detector signals. It has been shown that prior knowledge of the distribution of these properties would allow appropriate technology selection and increased demining operation effectiveness/efficiency. For this reason, economic and rapid mapping techniques using remote sensing for these properties over wide areas are considered. Since soil electrical conductivity (EC) interferes with the most widely used landmine detection systems, such as metal detectors and ground penetrating radar, it has been proposed to start with developing a rapid mapping technique for EC using remote sensing. Although airborne, ground EM systems, and laboratory analyses are proven methods for mapping EC, they generally lack the appropriate resolution required. In addition surveys by such methods are costly and time consuming for mapping large areas such as entire countries. Therefore, EC prediction by satellite imaging of soil moisture change using RADARSAT is being tested in eastern Alberta (Canada) and northern Mississippi (U.S.A.). Areas of little soil moisture change with time can be associated with high moisture retention and higher clay content, suggesting an association with higher EC. However, use of airborne and ground EM systems and laboratory analyses are recommended for validation of EC distributions mapped by remote sensing. Fusion of RADARSAT soil moisture images at varied dates are used to identify boundaries between high and low moisture retention areas in both the northern Mississippi and Alberta test sites to predict areas of high and low EC. These predictions are being validated by ground EM surveys, laboratory analyses and, in some cases, by various other methods such as soil and military traficability maps. Soil sample are collected across the high-low EC boundaries for laboratory analyses. Laboratory analyses consist of soil texture/mineralogy, moisture versus spectral EC, and strength tests.

  12. A procedure for automated land use mapping using remotely sensed multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Whitley, S. L.

    1975-01-01

    A system of processing remotely sensed multispectral scanner data by computer programs to produce color-coded land use maps for large areas is described. The procedure is explained, the software and the hardware are described, and an analogous example of the procedure is presented. Detailed descriptions of the multispectral scanners currently in use are provided together with a summary of the background of current land use mapping techniques. The data analysis system used in the procedure and the pattern recognition software used are functionally described. Current efforts by the NASA Earth Resources Laboratory to evaluate operationally a less complex and less costly system are discussed in a separate section.

  13. A method of spatial mapping and reclassification for high-spatial-resolution remote sensing image classification.

    PubMed

    Wang, Guizhou; Liu, Jianbo; He, Guojin

    2013-01-01

    This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy.

  14. Groundwater prospective mapping: remote sensing and a GIS-based index model approach

    NASA Astrophysics Data System (ADS)

    Shetty, Amba; Nandagiri, Lakshman; Ramachandra, Padami

    2009-01-01

    The present study is concerned with the development and test of an integrated remote sensing and GIS based methodology for identification of groundwater potential areas in a humid tropical river basin. Indian Remote Sensing Satellite (IRS 1C-LISS-III) data along with other collateral data such as existing maps and field observations was utilized to extract information on the hydro-geomorphic features of the terrain. The study involves two components: (a) demarcation of groundwater potential zones (b) validation of sites with yield data. In order to demarcate potential groundwater zones, six pertinent thematic layers were integrated and assigned appropriate rankings. Layers considered were: geology, geomorphology, drainage density, slope, rainfall with infiltration factor and land cover map. The layer parameters were also rated according to their importance relative to other classes in the same theme. All the layers were superimposed and analyzed in ARC GIS environment. A linear additive model based on the DRASTIC model concept was used to find the groundwater potential index (GPI). The map comprised of six categories of groundwater yield. To carry out more focused investigations on the potential zones, lineament maps were superimposed over it. The validity of different potential zones identified using the GIS-based model was compared with available borewell yield data and found to be in good agreement. The map generated can be used in future as a preliminary screening tool in selecting well sites and as a basic tool in land use planning for groundwater protection.

  15. Mapping of Coral Reef Environment in the Arabian Gulf Using Multispectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ben-Romdhane, H.; Marpu, P. R.; Ghedira, H.; Ouarda, T. B. M. J.

    2016-06-01

    Coral reefs of the Arabian Gulf are subject to several pressures, thus requiring conservation actions. Well-designed conservation plans involve efficient mapping and monitoring systems. Satellite remote sensing is a cost-effective tool for seafloor mapping at large scales. Multispectral remote sensing of coastal habitats, like those of the Arabian Gulf, presents a special challenge due to their complexity and heterogeneity. The present study evaluates the potential of multispectral sensor DubaiSat-2 in mapping benthic communities of United Arab Emirates. We propose to use a spectral-spatial method that includes multilevel segmentation, nonlinear feature analysis and ensemble learning methods. Support Vector Machine (SVM) is used for comparison of classification performances. Comparative data were derived from the habitat maps published by the Environment Agency-Abu Dhabi. The spectral-spatial method produced 96.41% mapping accuracy. SVM classification is assessed to be 94.17% accurate. The adaptation of these methods can help achieving well-designed coastal management plans in the region.

  16. Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data

    USGS Publications Warehouse

    Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A.

    2011-01-01

    Maps of irrigated areas are essential for Ghana's agricultural development. The goal of this research was to map irrigated agricultural areas and explain methods and protocols using remote sensing. Landsat Enhanced Thematic Mapper (ETM+) data and time-series Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to map irrigated agricultural areas as well as other land use/land cover (LULC) classes, for Ghana. Temporal variations in the normalized difference vegetation index (NDVI) pattern obtained in the LULC class were used to identify irrigated and non-irrigated areas. First, the temporal variations in NDVI pattern were found to be more consistent in long-duration irrigated crops than with short-duration rainfed crops due to more assured water supply for irrigated areas. Second, surface water availability for irrigated areas is dependent on shallow dug-wells (on river banks) and dug-outs (in river bottoms) that affect the timing of crop sowing and growth stages, which was in turn reflected in the seasonal NDVI pattern. A decision tree approach using Landsat 30 m one time data fusion with MODIS 250 m time-series data was adopted to classify, group, and label classes. Finally, classes were tested and verified using ground truth data and national statistics. Fuzzy classification accuracy assessment for the irrigated classes varied between 67 and 93%. An irrigated area derived from remote sensing (32,421 ha) was 20-57% higher than irrigated areas reported by Ghana's Irrigation Development Authority (GIDA). This was because of the uncertainties involved in factors such as: (a) absence of shallow irrigated area statistics in GIDA statistics, (b) non-clarity in the irrigated areas in its use, under-development, and potential for development in GIDA statistics, (c) errors of omissions and commissions in the remote sensing approach, and (d) comparison involving widely varying data types, methods, and approaches used in determining irrigated area statistics

  17. Use of Satellite Remote Sensing Data in the Mapping of Global Landslide Susceptibility

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2007-01-01

    Satellite remote sensing data has significant potential use in analysis of natural hazards such as landslides. Relying on the recent advances in satellite remote sensing and geographic information system (GIS) techniques, this paper aims to map landslide susceptibility over most of the globe using a GIs-based weighted linear combination method. First , six relevant landslide-controlling factors are derived from geospatial remote sensing data and coded into a GIS system. Next, continuous susceptibility values from low to high are assigned to each of the six factors. Second, a continuous scale of a global landslide susceptibility index is derived using GIS weighted linear combination based on each factor's relative significance to the process of landslide occurrence (e.g., slope is the most important factor, soil types and soil texture are also primary-level parameters, while elevation, land cover types, and drainage density are secondary in importance). Finally, the continuous index map is further classified into six susceptibility categories. Results show the hot spots of landslide-prone regions include the Pacific Rim, the Himalayas and South Asia, Rocky Mountains, Appalachian Mountains, Alps, and parts of the Middle East and Africa. India, China, Nepal, Japan, the USA, and Peru are shown to have landslide-prone areas. This first-cut global landslide susceptibility map forms a starting point to provide a global view of landslide risks and may be used in conjunction with satellite-based precipitation information to potentially detect areas with significant landslide potential due to heavy rainfall. 1

  18. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these

  19. Remote sensing of directional wave spectra using the surface contour radar

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Hancock, D. W., III; Hines, D. E.; Kenney, J. E.

    1985-01-01

    A unique radio-oceanographic remote sensing instrument was developed. The 36 GHz airborne Surface Contour Radar (SCR) remotely produces a real-time topographical map of the sea surface beneath the aircraft. It can routinely produce ocean directional wave spectra with off-line data processing. The transmitter is a coherent dual-frequency device that uses pulse compression to compensate for the limited available power at Ka band. The radar has selectable pulse widths of 1, 2, 4, and 10 nanoseconds. The transmitting antenna is a 58 lambda horn fed dielectric lens whose axis is parallel to the longitudinal axis of the aircraft. It illuminates an elliptical mirror which is oriented 45 deg to the lens' longitudinal axis to deflect the beam towards the region beneath the aircraft. The mirror is oscillated in a sinusoidal fashion through mechanical linkages driven to a variable speed motor to scan the transmitter beam (1.2 deg X 1.2 deg) with + or - 16 deg of the perpendicular to the aircraft wings in the plane perpendicular to the aircraft flight direction.

  20. Remote sensing of impervious surface growth: A framework for quantifying urban expansion and re-densification mechanisms

    NASA Astrophysics Data System (ADS)

    Shahtahmassebi, Amir Reza; Song, Jie; Zheng, Qing; Blackburn, George Alan; Wang, Ke; Huang, Ling Yan; Pan, Yi; Moore, Nathan; Shahtahmassebi, Golnaz; Sadrabadi Haghighi, Reza; Deng, Jing Song

    2016-04-01

    A substantial body of literature has accumulated on the topic of using remotely sensed data to map impervious surfaces which are widely recognized as an important indicator of urbanization. However, the remote sensing of impervious surface growth has not been successfully addressed. This study proposes a new framework for deriving and summarizing urban expansion and re-densification using time series of impervious surface fractions (ISFs) derived from remotely sensed imagery. This approach integrates multiple endmember spectral mixture analysis (MESMA), analysis of regression residuals, spatial statistics (Getis_Ord) and urban growth theories; hence, the framework is abbreviated as MRGU. The performance of MRGU was compared with commonly used change detection techniques in order to evaluate the effectiveness of the approach. The results suggested that the ISF regression residuals were optimal for detecting impervious surface changes while Getis_Ord was effective for mapping hotspot regions in the regression residuals image. Moreover, the MRGU outputs agreed with the mechanisms proposed in several existing urban growth theories, but importantly the outputs enable the refinement of such models by explicitly accounting for the spatial distribution of both expansion and re-densification mechanisms. Based on Landsat data, the MRGU is somewhat restricted in its ability to measure re-densification in the urban core but this may be improved through the use of higher spatial resolution satellite imagery. The paper ends with an assessment of the present gaps in remote sensing of impervious surface growth and suggests some solutions. The application of impervious surface fractions in urban change detection is a stimulating new research idea which is driving future research with new models and algorithms.

  1. Automated methodology for selecting hot and cold pixel for remote sensing based evapotranspiration mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface energy fluxes, especially the latent heat flux from evapotranspiration (ET), determine exchanges of energy and mass between the hydrosphere, atmosphere, and biosphere. There are numerous remote sensing-based energy balance approaches such as METRIC and SEBAL that use hot and cold pixels from...

  2. Mapping Early Speech: Prescriptive Developmental Profiles for Very Remote Aboriginal Students in the First Two Years of School

    ERIC Educational Resources Information Center

    Kenny, Lawrence

    2011-01-01

    This article examines the issues surrounding the mapping of the oral language development of Standard Australian English (SAE) in the early school years of remote and very remote Aboriginal education in the Northern Territory (NT). Currently, teachers in this context have 2 mandated documents as guides that chart the development of SAE oracy.…

  3. Mapping Weathering and Alteration Minerals in the Comstock and Geiger Grade Areas using Visible to Thermal Infrared Airborne Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Vaughan, Greg R.; Calvin, Wendy M.

    2005-01-01

    To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of

  4. Preliminary investigation of submerged aquatic vegetation mapping using hyperspectral remote sensing

    USGS Publications Warehouse

    Williams, D.J.; Rybicki, N.B.; Lombana, A.V.; O'Brien, T. M.; Gomez, R.B.

    2003-01-01

    The use of airborne hyperspectral remote sensing imagery for automated mapping of submerged aquatic vegetation (SAV) in the tidal Potomac River was investigated for near to realtime resource assessment and monitoring. Airborne hyperspectral imagery and field spectrometer measurements were obtained in October of 2000. A spectral library database containing selected ground-based and airborne sensor spectra was developed for use in image processing. The spectral library is used to automate the processing of hyperspectral imagery for potential real-time material identification and mapping. Field based spectra were compared to the airborne imagery using the database to identify and map two species of SAV (Myriophyllum spicatum and Vallisneria americana). Overall accuracy of the vegetation maps derived from hyperspectral imagery was determined by comparison to a product that combined aerial photography and field based sampling at the end of the SAV growing season. The algorithms and databases developed in this study will be useful with the current and forthcoming space-based hyperspectral remote sensing systems.

  5. Ground Surface Visualization Using Red Relief Image Map for a Variety of Map Scales

    NASA Astrophysics Data System (ADS)

    Chiba, T.; Hasi, B.

    2016-06-01

    There are many methods to express topographical features of ground surface. In which, contour map has been the traditional method and along with development of digital data, surface model such as shaded relief map has been using for ground surface expression. Recently, data acquisition has been developed very much quick, demanding more advanced visualization method to express ground surface so as to effectively use the high quality data. In this study, the authors using the Red Relief Image Map (RRIM, Chiba et al., 2008) to express ground surface visualization for a variety of map scales. The authors used 30 m mesh data of SRTM to show the topographical features of western Mongolian and micro-topographical features of ground surface in tectonically active regions of Japan. The results show that, compared to traditional and other similar methods, the RRIM can express ground surface more precisely and 3-dimensionally, suggested its advanced usage for many fields of topographical visualization.

  6. Surface-material maps of Viking landing sites on Mars

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Keller, J. M.

    1991-01-01

    Researchers mapped the surface materials at the Viking landing sites on Mars to gain a better understanding of the materials and rock populations at the sites and to provide information for future exploration. The maps extent to about 9 m in front of each lander and are about 15 m wide - an area comparable to the area of a pixel in high resolution Viking Orbiter images. The maps are divided into the near and far fields. Data for the near fields are from 1/10 scale maps, umpublished maps, and lander images. Data for the far fields are from 1/20 scale contour maps, contoured lander camera mosaics, and lander images. Rocks are located on these maps using stereometric measurements and the contour maps. Frequency size distribution of rocks and the responses of soil-like materials to erosion by engine exhausts during landings are discussed.

  7. Surface-material maps of Viking landing sites on Mars

    NASA Astrophysics Data System (ADS)

    Moore, H. J.; Keller, J. M.

    1991-06-01

    Researchers mapped the surface materials at the Viking landing sites on Mars to gain a better understanding of the materials and rock populations at the sites and to provide information for future exploration. The maps extent to about 9 m in front of each lander and are about 15 m wide - an area comparable to the area of a pixel in high resolution Viking Orbiter images. The maps are divided into the near and far fields. Data for the near fields are from 1/10 scale maps, umpublished maps, and lander images. Data for the far fields are from 1/20 scale contour maps, contoured lander camera mosaics, and lander images. Rocks are located on these maps using stereometric measurements and the contour maps. Frequency size distribution of rocks and the responses of soil-like materials to erosion by engine exhausts during landings are discussed.

  8. Mapping composition in dust-producing regions: Extending geochemical measurements over large scales with remote sensing

    NASA Astrophysics Data System (ADS)

    Tollerud, H. J.; Elmore, A. J.; Fantle, M. S.

    2009-12-01

    Dust is a critical, yet understudied, component of geochemical cycles. Dust inputs to the ocean have been deemed especially significant in the iron cycle, for instance, since dust stimulates natural iron fertilization and thus potentially affects climate. Dust may also be important to the cycles of other elements, such as calcium (Ca). To determine the importance of dust relative to other geochemical inputs, some estimate must be made of the mass flux of Ca from dust-producing regions. However, understanding the spatial distribution of Ca within terrain known to generate dust has been problematic. Remote sensing may offer a critical perspective with measurement at landscape scales instead of extrapolation from a few point measurements, allowing for investigation closer to the scale at which dust is produced. This study investigates the elemental geochemistry of surface sediments and the distribution of non-silicate bound Ca in a large playa system (Black Rock Desert) in northwestern Nevada (USA). We used satellite-derived hyperspectral data, field-collected ground spectra, surface sediment samples, and Synthetic Aperture Radar (SAR) in our analysis. We collected approximately 50 samples and their spectra from the Black Rock Desert in July/August 2007. We measured the bulk and soluble Ca by ICP-OES and mineralogy by x-ray diffraction (XRD). Assuming all Ca in weak HCl (0.5 N) leaches is derived from calcite, we found that calcite concentrations in a subset of collected samples range from 5 to 15 wt. %. Acid-soluble calcite, which was generally 90 to 100 mol % of the total Ca in sediments (determined by lithium metaborate fusion), correlates well with the relative abundance of calcite determined by XRD analyses. Using hyperspectral measurements of surface reflectance, we found that acid soluble Ca concentration is correlated with the depth of a calcite absorption feature at 2335 nm. We then mapped this depth in satellite hyperspectral data from the Hyperion

  9. Quantitative mapping by remote sensing of an ocean acid-waste dump

    NASA Technical Reports Server (NTRS)

    Ohlhorst, C. W.

    1978-01-01

    Results from quantitative analysis show that airplane remotely sensed spectral data can be used to quantify and map an acid-waste dump in terms of its particulate iron concentration. These same data, however, could not be used to map the dump in terms of total suspended solids, organic suspended solids, or inorganic suspended solids concentrations. A single-variable equation using the ratio of band 2 (440 to 490 nm) radiance to band 4 (540 to 580 nm) radiance was used to quantify the iron concentration in the acid-waste dump. The acid waste that was mapped varied in age from freshly dumped to 31/2 hr. Particulate iron concentrations in the acid waste were estimated to range up to 1.1 mg/l at a depth of 0.46 m. A classification technique was developed to identify pixels in the data set affected by sun glitter.

  10. Modeling spatial surface energy fluxes of agricultural and riparian vegetation using remote sensing

    NASA Astrophysics Data System (ADS)

    Geli, Hatim Mohammed Eisa

    Modeling of surface energy fluxes and evapotranspiration (ET ) requires the understanding of the interaction between land and atmosphere as well as the appropriate representation of the associated spatial and temporal variability and heterogeneity. This dissertation provides new methodology showing how to rationally and properly incorporate surface features characteristics/properties, including the leaf area index, fraction of cover, vegetation height, and temperature, using different representations as well as identify the related effects on energy balance flux estimates including ET. The main research objectives were addressed in Chapters 2 through 4 with each presented in a separate paper format with Chapter 1 presenting an introduction and Chapter 5 providing summary and recommendations. Chapter 2 discusses a new approach of incorporating temporal and spatial variability of surface features. We coupled a remote sensing-based energy balance model with a traditional water balance method to provide improved estimates of ET. This approach was tested over rainfed agricultural fields ˜ 10 km by 30 km in Ames, Iowa. Before coupling, we modified the water balance method by incorporating a remote sensing-based estimate for one of its parameters to ameliorate its performance on a spatial basis. Promising results were obtained with indications of improved estimates of ET and soil moisture in the root zone. The effects of surface features heterogeneity on measurements of turbulence were investigated in Chapter 3. Scintillometer-based measurements/estimates of sensible heat flux (H) were obtained over the riparian zone of the Cibola National Wildlife Refuge (CNWR), California. Surface roughness including canopy height (hc), roughness length, and zero-plane displacement height were incorporated in different ways, to improve estimates of H. High resolution, 1-m maps of ground surface digital elevation model and canopy height, hc, were derived from airborne LiDAR sensor data

  11. Direct Mapping of Hippocampal Surfaces with Intrinsic Shape Context

    PubMed Central

    Shi, Yonggang; Thompson, Paul M.; de Zubicaray, Greig I.; Rose, Stephen E.; Tu, Zhuowen; Dinov, Ivo; Toga, Arthur W.

    2007-01-01

    We propose in this paper a new method for the mapping of hippocampal (HC) surfaces to establish correspondences between points on HC surfaces and enable localized HC shape analysis. A novel geometric feature, the intrinsic shape context, is defined to capture the global characteristics of the HC shapes. Based on this intrinsic feature, an automatic algorithm is developed to detect a set of landmark curves that are stable across population. The direct map between a source and target HC surface is then solved as the minimizer of a harmonic energy function defined on the source surface with landmark constraints. For numerical solutions, we compute the map with the approach of solving partial differential equations on implicit surfaces. The direct mapping method has the following properties: 1) it has the advantage of being automatic; 2) it is invariant to the pose of HC shapes. In our experiments, we apply the direct mapping method to study temporal changes of HC asymmetry in Alzheimer disease (AD) using HC surfaces from 12 AD patients and 14 normal controls. Our results show that the AD group has a different trend in temporal changes of HC asymmetry than the group of normal controls. We also demonstrate the flexibility of the direct mapping method by applying it to construct spherical maps of HC surfaces. Spherical harmonics (SPHARM) analysis is then applied and it confirms our results about temporal changes of HC asymmetry in AD. PMID:17625918

  12. Waste-surface mapping of the Fernald K-65 silos using a structured light measurement system

    SciTech Connect

    Burks, B.L.; DePiero, F.W.; Dinkins, M.A.; Rowe, J.C. ); Selleck, C.B. ); Jacoboski, D.L. )

    1992-10-01

    A remotely operated surface-mapping measurement system was developed by the Robotics Process Systems Division at Oak Ridge National Laboratory for use in the K-65 waste-storage silos at Fernald, Ohio. The mapping system used three infrared line-generating laser diodes as illumination sources and three high-resolution, low-lux, calibrated, black-and-white, charge-coupled-device video cameras as receivers. These components were combined to form structured light source range and direction sensors with six different possible emitter-receiver pairs. A technology demonstration and predeployment tests were performed at Fernald using the empty Silo 4 into which was placed rectangular objects of known dimensions. These objects were scanned by the structured light sources to demonstrate functionality and verify that the system was giving sufficiently accurate range data in three dimensions. The structured light sources were deployed in Silos 1 and 2 to scan the waste surfaces. The resulting data were merged to create three-dimensional maps of those surfaces. A bentonite clay cap was placed over the waste surfaces and surface maps were obtained. The change in surface height before and after bentonite addition was utilized as a measure of clay cap thickness.

  13. Waste-surface mapping of the Fernald K-65 silos using a structured light measurement system

    SciTech Connect

    Burks, B.L.; DePiero, F.W.; Dinkins, M.A.; Rowe, J.C.; Selleck, C.B.; Jacoboski, D.L.

    1992-10-01

    A remotely operated surface-mapping measurement system was developed by the Robotics & Process Systems Division at Oak Ridge National Laboratory for use in the K-65 waste-storage silos at Fernald, Ohio. The mapping system used three infrared line-generating laser diodes as illumination sources and three high-resolution, low-lux, calibrated, black-and-white, charge-coupled-device video cameras as receivers. These components were combined to form structured light source range and direction sensors with six different possible emitter-receiver pairs. A technology demonstration and predeployment tests were performed at Fernald using the empty Silo 4 into which was placed rectangular objects of known dimensions. These objects were scanned by the structured light sources to demonstrate functionality and verify that the system was giving sufficiently accurate range data in three dimensions. The structured light sources were deployed in Silos 1 and 2 to scan the waste surfaces. The resulting data were merged to create three-dimensional maps of those surfaces. A bentonite clay cap was placed over the waste surfaces and surface maps were obtained. The change in surface height before and after bentonite addition was utilized as a measure of clay cap thickness.

  14. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS.

    PubMed

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852

  15. Use of a remote computer terminal during field checking of Landsat digital maps

    USGS Publications Warehouse

    Robinove, Charles J.; Hutchinson, C.F.

    1978-01-01

    Field checking of small-scale land classification maps made digitally from Landsat data is facilitated by use of a remote portable teletypewriter terminal linked by teleplume to the IDIMS (Interactive Digital Image Manipulation System) at the EDC (EROS Data Center), Sioux Falls, S. Dak. When field checking of maps 20 miles northeast of Baker, Calif., during the day showed that changes in classification were needed, the terminal was used at night to combine image statistical files, remap portions of images, and produce new alphanumeric maps for field checking during the next day. The alphanumeric maps can be used without serious difficulty in location in the field even though the scale is distorted, and statistical files created during the field check can be used for full image classification and map output at the EDC. This process makes field checking faster than normal, provides interaction with the statistical data while in the field, and reduces to a minimum the number of trips needed to work interactively with the IDIMS at the EDC, thus saving significant amounts of time and money. The only significant problem is using telephone lines which at times create spurious characters in the printout or prevent the line feed (paper advance) signal from reaching the terminal, thus overprinting lines which should be sequential. We recommend that maps for field checking be made with more spectral classes than are expected because in the field it is much easier to group classes than to reclassify or separate classes when only the remote terminal is available for display.

  16. Remote sensing for mapping natural habitats and their conservation status - New opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Corbane, Christina; Lang, Stefan; Pipkins, Kyle; Alleaume, Samuel; Deshayes, Michel; García Millán, Virginia Elena; Strasser, Thomas; Vanden Borre, Jeroen; Toon, Spanhove; Michael, Förster

    2015-05-01

    Safeguarding the diversity of natural and semi-natural habitats in Europe is one of the aims set out by the Habitats Directive (Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora) and one of the targets of the European 2020 Biodiversity Strategy, and is to be accomplished by maintaining a favourable conservation status. To reach this aim a high-level understanding of the distribution and conditions of these habitats is needed. Remote sensing can considerably contribute to habitat mapping and their observation over time. Several European projects and a large number of scientific studies have addressed the issue of mapping and monitoring natural habitats via remote sensing and the deriving of indicators on their conservation status. The multitude of utilized remote sensing sensors and applied methods used in these studies, however, impede a common understanding of what is achievable with current state-of-the-art technologies. The aim of this paper is to provide a synthesis on what is currently feasible in terms of detection and monitoring of natural and semi-natural habitats with remote sensing. To focus this endeavour, we concentrate on those studies aimed at direct mapping of individual habitat types or discriminating between different types of habitats occurring in relatively large, spatially contiguous units. By this we uncover the potential of remote sensing to better understand the distribution of habitats and the assessment of their conservation status in Europe. Natural habitats are "terrestrial or aquatic areas distinguished by geographic, abiotic and biotic features, whether entirely natural or semi-natural" (HabDir). Biotopes are "the smallest geographical unit of the biosphere or of a habitat that can be delimited by convenient boundaries and is characterized by its biota" (Lincoln, 1998). The term 'remote sensing' as used in this context comprises advanced, computer-assisted analytical tools for information

  17. MORFEO project: use of remote sensing technology for mapping, monitoring and forecasting landslides

    NASA Astrophysics Data System (ADS)

    Guzzetti, F.; Candela, L.; Carlà, R.; Fornaro, G.; Lanari, R.; Mondini, A.; Ober, G.; Fiorucci, F.; Zeni, G.

    2009-04-01

    MORFEO, an Italian acronym for Monitoring Landslide Risk exploiting Earth Observation Technology, is a 3-year research and development project of the Italian Space Agency, carried out in the framework of the Italian national earth observation programme. The project primary contract is Carlo Gavazzi Space, a leading enterprise in space technology and remote sensing applications in Italy. The project research team is composed by seven research institutes of the Italian National Research Council, and six university departments. The team has consolidated experience in landslide detection and mapping, landslide hazard assessment and risk evaluation, remote sensing technology (e.g., laser, optical, radar, GPS) for landslide detection, mapping and monitoring. MORFEO aims at the design, development and demonstration of a prototype system that exploits multiple satellite technologies to support the Italian national civil protection offices to manage landslide risk in Italy. Research activities conducted within the MORFEO project consist chiefly in testing, evaluating and improving EO technologies to increase the current capabilities to detect, map, monitor and forecast landslides in Italy. More precisely, the activities include: (i) detection and mapping landslides exploiting medium-resolution to very-high resolution satellite optical images, (ii) landslide monitoring, through the integration of ground based and satellite technologies, including GPS and DInSAR, (iii) landslide susceptibility, hazard and risk modelling using information obtained processing optical and radar data, (iv) vulnerability and damage assessment, exploiting optical and radar sensors, and (v) landslides forecasting, using thresholds, models and remote sensing data. We provide examples of some of the preliminary results obtained in the MOFEO project.

  18. Higher resolution satellite remote sensing and the impact on image mapping

    NASA Astrophysics Data System (ADS)

    Watkins, Allen H.; Thormodsgard, June M.

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges. The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.

  19. Higher resolution satellite remote sensing and the impact on image mapping

    USGS Publications Warehouse

    Watkins, Allen H.; Thormodsgard, June M.

    1987-01-01

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges. The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented. 

  20. Advances in Electrostatic Dust Detection on Remote Surfaces

    SciTech Connect

    Voinier, C; Skinner, C H; Roquemore, A L

    2005-02-09

    The inventory of dust in next-step magnetic fusion devices will be regulated for safety reasons, however diagnostics to measure in-vessel dust are still in their infancy. Advances in dust particle detection on remote surfaces are reported. Two grids of interlocking circuit traces with spacing in the range 125 mu m to 25 mu m are biased to 30 V. Impinging dust creates a short circuit and the result current pulse is recorded. The detector response was measured with particles scraped from a carbon fiber composite tile and sorted by size category. The finest 25 mu m grid showed a sensitivity more than an order of magnitude higher than the 125 mu m grid. The response to the finest particle categories (5 30 mu m) was two orders of magnitude higher than the largest (125 250 mu m) category. Longer duration current pulses were observed from the coarser particles. The results indicate a detection threshold for fine particles below 1 mu g/cm^2.

  1. Hydrological Application of Remote Sensing: Surface States -- Snow

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Kelly, Richard E. J.; Foster, James L.; Chang, Alfred T. C.

    2004-01-01

    Remote sensing research of snow cover has been accomplished for nearly 40 years. The use of visible, near-infrared, active and passive-microwave remote sensing for the analysis of snow cover is reviewed with an emphasis on the work on the last decade.

  2. Combining land surface models and remote sensing data to estimate evapotranspiration for drought monitoring in Europe

    NASA Astrophysics Data System (ADS)

    Cammalleri, C.; Sepulcre-Cantó, G.; Vogt, J.

    2014-10-01

    The main hydrologic feedback from the land-surface to the atmosphere is the evapotranspiration, ET, which embraces the response of both the soil and vegetated surface to the atmospheric forcing (e.g., precipitation and temperature), as well as influences locally atmospheric humidity, cloud formation and precipitation, the main driver for drought. Actual ET is regulated by several factors, including biological quantities (e.g., rooting depth, leaf area, fraction of absorbed photosynthetically active radiation) and soil water status. The ET temporal dynamic is strongly affected by rainfall deficits, and in turn it represents a robust proxy of the effects of water shortage on plants. These characteristics make ET a promising quantity for monitoring environmental drought, defined as a shortage of water availability that reduces the ecosystem productivity. In the last few decades, the capability to accurately model ET over large areas in a spatial-distributed fashion has increased notably. Most of the improvements in this field are related to the increasing availability of remote sensing data, and the achievements in modelling of ET-related quantities. Several land-surface models exploit the richness of newly available datasets, including the Community Land Model (CLM) and the Meteosat Second Generation (MSG) ET outputs. Here, the potentiality of ET maps obtained by combining land-surface models and remote sensing data through these two schemes is explored, with a special focus on the reliability of ET (and derived standardized variables) as drought indicator. Tests were performed over Europe at moderate spatial resolution (3-5 km), with the final goal to improve the estimation of soil water status as a contribution to the European Drought Observatory (EDO, http://edo.jrc.ec.europa.eu).

  3. A New Perspective on Surface Weather Maps

    ERIC Educational Resources Information Center

    Meyer, Steve

    2006-01-01

    A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…

  4. Remote Sensing for Hydrology: Surface Water Dynamics from Three Decades of Landsat Data

    NASA Astrophysics Data System (ADS)

    Tulbure, M. G.; Broich, M.; Kingsford, R.; Lucas, R.; Keith, D.

    2014-12-01

    Surface water is a vital resource affected by changes in climate and anthropogenic factors. Knowledge of surface water dynamics provides critical information for flood and drought management. Here we focused on the on the entire Murray-Darling Basin (MDB) of Australia, a large semi-arid region with scarce water resources, high hydroclimatic variability and competing water demands, impacted by climate change, altered flow regimes and land use changes. The MDB is also an area where substantial investment in environmental water allocation of large volumes of environmental flow was made. We used Landsat TM and ETM+ time series to synoptically map the dynamic of surface water extent with an internally consistent algorithm (Tulbure and Broich, 2013) over decades (1986-2011). We used a subset of Landsat path/rows for image training in both wet and dry years. Results show high interannual variability in number and size of flooded areas, with flooded areas during the Millennium Drought (until 2009) being substantially smaller than during the excessive 2010-2011 La Nina flooding. Flooding frequency in 2006, a very dry year was lower than in 2010, the La Nina year when extensive floods occurred. More developed areas of the basin showed different inter-annual patterns from natural areas of the basin. At Barmah-Millewa, the largest river red gum forest in the world, we also mapped flooded forest and tracked changes in NDVI. Higher NDVI values were found in areas more frequently flooded. Knowledge of the spatial and temporal dynamics of flooding and the response of riparian vegetation communities to flooding is important for management of floodplain wetlands and vegetation communities and for investigating effectiveness of environmental flows and flow regimes in the MDB. Existing maps of inundated areas are linked with river flow to quantify the relationship between river flow and inundated area in the MDB. Historic flood inundation extent mapped via remote sensing can be used

  5. Remote sensing of surface currents with single shipborne high-frequency surface wave radar

    NASA Astrophysics Data System (ADS)

    Wang, Zhongbao; Xie, Junhao; Ji, Zhenyuan; Quan, Taifan

    2016-01-01

    High-frequency surface wave radar (HFSWR) is a useful technology for remote sensing of surface currents. It usually requires two (or more) stations spaced apart to create a two-dimensional (2D) current vector field. However, this method can only obtain the measurements within the overlapping coverage, which wastes most of the data from only one radar observation. Furthermore, it increases observation's costs significantly. To reduce the number of required radars and increase the ocean area that can be measured, this paper proposes an economical methodology for remote sensing of the 2D surface current vector field using single shipborne HFSWR. The methodology contains two parts: (1) a real space-time multiple signal classification (MUSIC) based on sparse representation and unitary transformation techniques is developed for measuring the radial currents from the spreading first-order spectra, and (2) the stream function method is introduced to obtain the 2D surface current vector field. Some important conclusions are drawn, and simulations are included to validate the correctness of them.

  6. Remotely mapping river water quality using multivariate regression with prediction validation.

    SciTech Connect

    Stork, Christopher Lyle; Autry, Bradley C.

    2005-07-01

    Remote spectral sensing offers an attractive means of mapping river water quality over wide spatial regions. While previous research has focused on development of spectral indices and models to predict river water quality based on remote images, little attention has been paid to subsequent validation of these predictions. To address this oversight, we describe a retrospective analysis of remote, multispectral Compact Airborne Spectrographic Imager (CASI) images of the Ohio River and its Licking River and Little Miami River tributaries. In conjunction with the CASI acquisitions, ground truth measurements of chlorophyll-a concentration and turbidity were made for a small set of locations in the Ohio River. Partial least squares regression models relating the remote river images to ground truth measurements of chlorophyll-a concentration and turbidity for the Ohio River were developed. Employing these multivariate models, chlorophyll-a concentrations and turbidity levels were predicted in river pixels lacking ground truth measurements, generating detailed estimated water quality maps. An important but often neglected step in the regression process is to validate prediction results using a spectral residual statistic. For both the chlorophyll-a and turbidity regression models, a spectral residual value was calculated for each river pixel and compared to the associated statistical confidence limit for the model. These spectral residual statistic results revealed that while the chlorophyll-a and turbidity models could validly be applied to a vast majority of Ohio River and Licking River pixels, application of these models to Little Miami River pixels was inappropriate due to an unmodeled source of spectral variation.

  7. Using Remote Sensing Platforms to Estimate Near-Surface Soil Properties

    NASA Technical Reports Server (NTRS)

    Sullivan, D. G.; Shaw, J. N.; Rickman, D.; Mask, P. L.; Wersinger, J. M.; Luvall, J.

    2003-01-01

    Evaluation of near-surface soil properties via remote sensing (RS) could facilitate soil survey mapping, erosion prediction, fertilization regimes, and allocation of agrochemicals. The objective of this study was to evaluate the relationship between soil spectral signature and near surface soil properties in conventionally managed row crop systems. High resolution RS data were acquired over bare fields in the Coastal Plain, Appalachian Plateau, and Ridge and Valley provinces of Alabama using the Airborne Terrestrial Applications Sensor (ATLAS) multispectral scanner. Soils ranged from sandy Kandiudults to fine textured Rhodudults. Surface soil samples (0-1 cm) were collected from 163 sampling points for soil water content, soil organic carbon (SOC), particle size distribution (PSD), and citrate dithionite extractable iron (Fed) content. Surface roughness, soil water content, and crusting were also measured at sampling. Results showed RS data acquired from lands with less than 4 % surface soil water content best approximated near-surface soil properties at the Coastal Plain site where loamy sand textured surfaces were predominant. Utilizing a combination of band ratios in stepwise regression, Fed (r2 = 0.61), SOC (r2 = 0.36), sand (r2 = 0.52), and clay (r2 = 0.76) were related to RS data at the Coastal Plain site. In contrast, the more clayey Ridge and Valley soils had r-squares of 0.50, 0.36, 0.17, and 0.57. for Fed, SOC, sand and clay, respectively. Use of estimated eEmissivity did not generally improve estimates of near-surface soil attributes.

  8. Daily sea surface salinity variability in the tropical Pacific Ocean derived from satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Ballabrera-Poy, Joaquim; Olmedo, Estrella; Turiel, Antonio; Portabella, Marcos; Martinez, Justino; Hoareau, Nina

    2016-04-01

    In this work, a multifractal data fusion algorithm is used to obtain daily sea surface salinity (SSS) maps from the Soil Moisture and Ocean Salinity (SMOS) Level 2 (L2) data. The L2 SSS retrievals are obtained from the brightness temperature reconstructions at different polarizations and incidence angles along the satellite swath. SMOS L2 data have a spatial resolution of about 43 km and accuracy between 0.6 to 1.7 (in the practical salinity scale). The main goal of the data fusion algorithm is to use the reliable information of the OSTIA sea surface temperature (SST) daily fields to increase the spatial and temporal resolution of the SMOS L2 SSS data. Our SMOS dataset consists of the European Space Agency (ESA) L2 v620 reprocessed data from January 2010 to May 2015, and of the latest L2 operational data (near real-time) version after May 2015. Salinity anomalies are constructed by removing the five-year average of the L2 salinity data as a function of the geographical position, the overpass orientation (ascending or descending), and the across-track distance to the center of the swath. The SMOS-based climatologies evidence the existence of strong systematic artifacts, especially near the coast and, as such, they allow retrieving some of the systematic errors present in the original L2 data. The 0.05-degree, daily SST product from OSTIA is used as a template in our scalar fusion algorithm to generate 0.05 degree, daily SSS maps. The resulting SSS maps are less noisy and better define the main geophysical structures as compared to the standard high-level SSS products. Differences against near-surface Argo salinity measurements are reduced by 40% with respect to the standard products. In order to assess the significance of the extrapolation to the time domain, data from the Global Tropical Moored Buoy Array are used. The results indicate that the small time-scale variability present in the mooring data are not completely reproduced by remote sensing, although data

  9. Vesta Mineralogy: VIR maps Vesta's surface

    NASA Technical Reports Server (NTRS)

    Coradina, A.; DeSanctis, M.; Ammannito, E.; Capaccioni, F.; Capria, T.; Carraro, F.; Cartacci, M.; Filacchione, G.; Fonte, S.; Magni, G.; Noschese, R.; Tosi, F.; Barucci, A.; Federico, C.; Frigeri, A.; Fulchigoni, M.; Langevin, Y.; Marchi, S.; Palomba, E.; Turrini, D.; McCord, T.; McFadden, L. A.; Pieters, C.; Raymond, C. A.; Russell, C. T.

    2011-01-01

    The Dawn mission will have completed Survey orbit around 4 Vesta by the end of August 2011. We present a preliminary analysis of data acquired by the Visual and InfraRed Spectrometer (VIR) to map Vesta mineralogy. Thermal properties and mineralogical data are combined to provide constraints on Vesta's formation and thermal evolution. delivery of exogenic materials, space weathering processes, and origin of the howardite. eucrite, and diogenite (HED) meteorites.

  10. Soil mapping at regional scale using Remote Sensing - integrating multiple research methods

    NASA Astrophysics Data System (ADS)

    Mulder, V. L.; de Bruin, S.; Schaepman, M. E.

    2012-04-01

    Initiated by renewed interest in soil resources because of their role in supporting food security and climate change adaptation and mitigation, this research aims to provide a coherent methodology for soil and terrain mapping using remote sensing data. The work particularly addresses data acquisition for extensive areas where information about soils is sparse while at the same time resources are limited. The methodology aims to fully exploit data from current missions as well as the Sentinel-2 satellite mission (to be launched in 2014) for delivering soil data. The project aims to establish a coherent methodology where RS is integrated within each part of the soil mapping process on a regional scale; (1) A sampling method (constrained Latin hypercube sampling) that aims to acquire soil sample data representing soil variability in the study area under time and budgetary constraints. (2) Retrieval of composite soil mineralogy from spectroscopic data using linear mixing and non-linear methods. (3) Soil property prediction at regional scale using remote sensing data and a small primary data set. Employing regression trees and related methods along with spatial interpolation, this part integrates the above components and produces soil property maps as well as confidence intervals for these. The methodologies are demonstrated in a 1500 km2 study area in Northern Morocco offering a combination of landscape diversity, sparse vegetation cover and limited availability of existing data. With this research, we demonstrate that remote sensing plays a fundamental role for delivering detailed soil data on global and regional scale which is required for research focussing on food security and climate change adaptation and mitigation.

  11. Remote sensing approach to map riparian vegetation of the Colorado River Ecosystem, Grand Canyon area, Arizona

    NASA Astrophysics Data System (ADS)

    Nguyen, U.; Glenn, E.; Nagler, P. L.; Sankey, J. B.

    2015-12-01

    Riparian zones in the southwestern U.S. are usually a mosaic of vegetation types at varying states of succession in response to past floods or droughts. Human impacts also affect riparian vegetation patterns. Human- induced changes include introduction of exotic species, diversion of water for human use, channelization of the river to protect property, and other land use changes that can lead to deterioration of the riparian ecosystem. This study explored the use of remote sensing to map an iconic stretch of the Colorado River in the Grand Canyon National Park, Arizona. The pre-dam riparian zone in the Grand Canyon was affected by annual floods from spring run-off from the watersheds of Green River, the Colorado River and the San Juan River. A pixel-based vegetation map of the riparian zone in the Grand Canyon, Arizona, was produced from high-resolution aerial imagery. The map was calibrated and validated with ground survey data. A seven-step image processing and classification procedure was developed based on a suite of vegetation indices and classification subroutines available in ENVI Image Processing and Analysis software. The result was a quantitative species level vegetation map that could be more accurate than the qualitative, polygon-based maps presently used on the Lower Colorado River. The dominant woody species in the Grand Canyon are now saltcedar, arrowweed and mesquite, reflecting stress-tolerant forms adapted to alternated flow regimes associated with the river regulation.

  12. Mapping Glauconite Unites with Using Remote Sensing Techniques in North East of Iran

    NASA Astrophysics Data System (ADS)

    Ahmadirouhani, R.; Samiee, S.

    2014-10-01

    Glauconite is a greenish ferric-iron silicate mineral with micaceous structure, characteristically formed in shallow marine environments. Glauconite has been used as a pigmentation agent for oil paint, contaminants remover in environmental studies and a source of potassium in plant fertilizers, and other industries. Koppeh-dagh basin is extended in Iran, Afghanistan and Turkmenistan countries and Glauconite units exist in this basin. In this research for enhancing and mapping glauconitic units in Koppeh-dagh structural zone in north east of Iran, remote sensing techniques such as Spectral Angle Mapper classification (SAM), band ratio and band composition methods on SPOT, ASTER and Landsat data in 3 steps were applied.

  13. Parameterization of aerodynamic roughness of China's land surface vegetation from remote sensing data

    NASA Astrophysics Data System (ADS)

    Hu, Deyong; Xing, Liwei; Huang, Shengli; Deng, Lei; Xu, Yingjun

    2014-01-01

    Aerodynamic roughness length (z0) is one of the important parameters that influence energy exchange at the land-atmosphere interface in numerical models, so it is of significance to accurately parameterize the land surface. To parameterize the z0 values of China's land surface vegetation using remote sensing data, we parameterized the vegetation canopy area index using the leaf area index and land cover products of moderate resolution imaging spectroradiometer data. Then we mapped the z0 values of different land cover types based on canopy area index and vegetation canopy height data. Finally, we analyzed the intra-annual monthly z0 values. The conclusions are: (1) This approach has been developed to parameterize large scale regional z0 values from multisource remote sensing data, allowing one to better model the land-atmosphere flux exchange based on this feasible and operational scheme. (2) The variation of z0 values in the parametric model is affected by the vegetation canopy area index and its threshold had been calculated to quantify different vegetation types. In general, the z0 value will increase during the growing season. When the threshold in the dense vegetation area or in the growing season is exceeded, the z0 values will decrease but the zero-plane displacement heights will increase. This technical scheme to parameterize the z0 can be applied to large-scale regions at a spatial resolution of 1 km, and the dynamic products of z0 can be used in high resolution land or atmospheric models to provide a useful scheme for land surface parameterization.

  14. Some examples of the utility of HCMM data in geologic remote sensing. [Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Schieldge, J. P.; Abrams, M. J.; Alley, R. E.

    1981-01-01

    Examples of HCMM (Heat Capacity Mapping Mission) data in geologic remote sensing are presented, and the data set is composed of HCMM and aircraft digital scanner data and ground truth data from four western U.S. test sites. Data are used in the thermal model to test thermal data effectiveness, and changes in temperature with depth and time for dry soils are described by the model. It is found that the HCMM thermal inertia image is useful in the separability of bedrock and alluvium in Death Valley, and aa and pahoehoe flows in the Pisgah basalt flow. In a color composite of HCMM day temperature, night temperature, and day visible images of the Pisgah Crater test site, it is possible to distinguish alluvium, playa, aa and pahoehoe basalt flow, rhyolite intrusives, and other elements. Ground checking of units at a few points will extend capabilities to large areas and assist in creating telegeologic maps.

  15. Potential of remote visible and near-infrared spectral reflectance measurements for mapping thermal maturity variations

    SciTech Connect

    Rowan, L.C.; Pawlewicz, M.J.; Jones, O.D. )

    1989-09-01

    The visible and near-infrared (VNIR) spectral reflectance of rocks containing organic matter is related to thermal maturity because thermal alteration liberates hydrogen and forms highly absorbing carbon-rich polycondensed structures. To evaluate the usefulness of remote spectral reflectance measurements for mapping thermal maturity differences, Landsat Thematic Mapper (TM) images of the Eureka, Nevada, area were processed to produce a digital classification image maps that shows maturity in well-exposed, sparsely vegetated areas consisting of Chainman Shale. The relationship between spectral reflectance in TM bands and band ratios and maturity was confirmed through analysis of laboratory VNIR spectral reflectance and mean vitrinite reflectance (R{sub m}) measurements of 20 samples.

  16. Observations of Brine Pool Surface Characteristics and Internal Structure Through Remote Acoustic and Structured Light Imaging

    NASA Astrophysics Data System (ADS)

    Smart, C.; Roman, C.; Michel, A.; Wankel, S. D.

    2015-12-01

    Observations and analysis of the surface characteristics and internal structure of deep-sea brine pools are currently limited to discrete in-situ observations. Complementary acoustic and structured light imaging sensors mounted on a remotely operated vehicle (ROV) have demonstrated the ability systematically detect variations in surface characteristics of a brine pool, reveal internal stratification and detect areas of active hydrocarbon activity. The presented visual and acoustic sensors combined with a stereo camera pair are mounted on the 4000m rated ROV Hercules (Ocean Exploration Trust). These three independent sensors operate simultaneously from a typical 3m altitude resulting in visual and bathymetric maps with sub-centimeter resolution. Applying this imaging technology to 2014 and 2015 brine pool surveys in the Gulf of Mexico revealed acoustic and visual anomalies due to the density changes inherent in the brine. Such distinct changes in acoustic impedance allowed the high frequency 1350KHz multibeam sonar to detect multiple interfaces. For instance, distinct acoustic reflections were observed at 3m and 5.5m below the vehicle. Subsequent verification using a CDT and lead line indicated the acoustic return from the brine surface was the signal at 3m, while a thicker muddy and more saline interface occurred at 5.5m, the bottom of the brine pool was not located but is assumed to be deeper than 15m. The multibeam is also capable of remotely detecting emitted gas bubbles within the brine pool, indicative of active hydrocarbon seeps. Bubbles associated with these seeps were not consistently visible above the brine while using the HD camera on the ROV. Additionally, while imaging the surface of brine pool the structured light sheet laser became diffuse, refracting across the main interface. Analysis of this refraction combined with varying acoustic returns allow for systematic and remote detection of the density, stratification and activity levels within and

  17. Mapping surface disturbance from wind farms

    NASA Astrophysics Data System (ADS)

    Diffendorfer, James E.

    2013-04-01

    Wind energy is one of the fastest growing segments of the electricity market and this trend will likely continue as countries strive to reduce CO2 production while meeting growing energy demands. One impact of wind facilities is surface disturbance, including roads, that lead to habitat loss and fragmentation. Numerous studies of wind power utilize estimates of surface disturbance for GIS-based modeling or basic calculations of the land area required to generate energy using wind. However published estimates of the land use required for a MW of electricity from wind facilities vary by more than 10 times (0.83 to 250 MW/Km2). We report results from a geospatial analysis of 39 wind facilities in the United States that we fully digitized using high resolution photo-imagery. The selected sites and analyses were designed to elucidate the effects of turbine size, topography, and land use on the area requirements of wind facilities. The results indicate point estimates of average surface disturbance/MW have wide levels of variation, explained primarily by Landcover and Topography. Wind facilities in agricultural landscapes had smaller surface disturbance/ha than facilities in forests and shrublands, and facilities in relatively flat topography had smaller surface disturbance/ha than facilities on hills, ridges, or mesas. Land use, topography, and turbine size all influenced turbine spacing. The statistical models suggest we can predict geographic locations where new wind facilities could be placed with minimized surface disturbance.

  18. Hyperspectral remote sensing for mineral mapping of structural related mineralizations around Mount Isa, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Jakob, Sandra; Salati, Sanaz; Gloaguen, Richard

    2015-04-01

    Alone or combined with other remote sensing data, hyperspectral mineral mapping can be used to investigate mineralizations and deposits via alteration minerals. Their kind, abundance and spatial distribution can deliver important statements about the occurrence and formation of mineralizations and their relation to structural features. The high spectral and spatial resolution of HyMap data exceeds multispectral data distinctly and makes the recognition of even smaller geological structures possible. The spectral unmixing of single endmembers can be used for the accurate mapping of specific materials or minerals. The support of hyperspectral imaging by spectral data gathered in the field and the analysis of the composition of rock samples can help to determine endmembers and to identify absorption features. This study demonstrates the possibilities and limitations of remote sensing, especially hyperspectral data, for mineral mapping purposes, using the example of the Mount Isa Inlier. This geological area is situated in Northern Queensland, Australia, and is known for its considerable ore deposits and consequent mining of predominantly copper, zinc, lead, silver and gold. Beside hyperspectral HyMap data, multispectral Landsat 8 and SRTM digital elevation data were analyzed. A three-week field study in 2014 supported the investigations. After preprocessing and vegetation masking the data were analyzed using Spectral Feature Fitting (SFF) and Mixture Tuned Matched Filtering (MTMF) for alteration mineral mapping. The outcomes were combined with results from decorrelation stretch, band ratioing, topographic indices and automated lineament analysis. Additional information was provided by field spectrometer measurements and the XRF and XRD analysis of rock samples. Throughout the study, mineral mapping using remote sensing data, especially hyperspectral data, turned out to deliver high qualitative results when it is supported by additional information. In situ

  19. Mapping and monitoring conifer mortality using remote sensing in the Lake Tahoe Basin

    SciTech Connect

    Macomber, S.A.; Woodcock, C.E. )

    1994-12-01

    A prolonged drought in the western US has resulted in alarming levels of mortality in conifer forests. Satellite remote sensing holds the potential for mapping and monitoring the effects of such environmental changes over large geographic areas in a timely manner. Results from the application of a forest canopy reflectance model using multitemporal Landsat TM imagery and field measurements, indicate conifer mortality can be effectively mapped and inventoried. The test area for this project is the Lake Tahoe Basin Management Unit in the Sierra Nevada of California. The Landsat TM images are from the summers of 1988 and 1991. The Li-Strahler canopy model estimates several forest stand parameters, including tree size and canopy cover for each conifer stand, from reflectance values in satellite imagery. The difference in cover estimates between the dates forms the basis for stratifying stands into mortality classes, which are used as both themes in a map and the basis of the field sampling design. Field measurements from 61 stands collected in the summer of 1992 indicate 15% of the original timber volume in the true fir zone died between 1988 and 1992. The resulting low standard error of 11% for this estimate indicates the utility of these mortality classes for detecting areas of high mortality. Also, the patterns in the estimated mean timber volume loss for each class follow the expected trends. The results of this project are immediately useful for fire hazard management, by providing both estimates of the degree of overall mortality and maps showing its location. They also indicate current remote sensing technology may be useful for monitoring the changes in vegetation that are expected to result from climate change.

  20. Bush Encroachment Mapping for Africa - Multi-Scale Analysis with Remote Sensing and GIS

    NASA Astrophysics Data System (ADS)

    Graw, V. A. M.; Oldenburg, C.; Dubovyk, O.

    2015-12-01

    Bush encroachment describes a global problem which is especially facing the savanna ecosystem in Africa. Livestock is directly affected by decreasing grasslands and inedible invasive species which defines the process of bush encroachment. For many small scale farmers in developing countries livestock represents a type of insurance in times of crop failure or drought. Among that bush encroachment is also a problem for crop production. Studies on the mapping of bush encroachment so far focus on small scales using high-resolution data and rarely provide information beyond the national level. Therefore a process chain was developed using a multi-scale approach to detect bush encroachment for whole Africa. The bush encroachment map is calibrated with ground truth data provided by experts in Southern, Eastern and Western Africa. By up-scaling location specific information on different levels of remote sensing imagery - 30m with Landsat images and 250m with MODIS data - a map is created showing potential and actual areas of bush encroachment on the African continent and thereby provides an innovative approach to map bush encroachment on the regional scale. A classification approach links location data based on GPS information from experts to the respective pixel in the remote sensing imagery. Supervised classification is used while actual bush encroachment information represents the training samples for the up-scaling. The classification technique is based on Random Forests and regression trees, a machine learning classification approach. Working on multiple scales and with the help of field data an innovative approach can be presented showing areas affected by bush encroachment on the African continent. This information can help to prevent further grassland decrease and identify those regions where land management strategies are of high importance to sustain livestock keeping and thereby also secure livelihoods in rural areas.

  1. Mapping impervious surface area in the Brazilian Amazon using Landsat Imagery

    PubMed Central

    Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott

    2013-01-01

    Impervious surface area (ISA) is an important parameter related to environmental change and socioeconomic conditions, and has been given increasing attention in the past two decades. However, mapping ISA using remote sensing data is still a challenge due to the variety and complexity of materials comprising ISA and the limitations of remote sensing data spectral and spatial resolution. This paper examines ISA mapping with Landsat Thematic Mapper (TM) images in urban and urban–rural landscapes in the Brazilian Amazon. A fractional-based method and a per-pixel based method were used to map ISA distribution, and their results were evaluated with QuickBird images based on the 2010 Brazilian census at the sector scale of analysis for examining the mapping performance. This research showed that the fraction-based method improved the ISA estimation, especially in urban–rural frontiers and in a landscape with a small urban extent. Large errors were mainly located at the sites having ISA proportions of 0.2–0.4 in a census sector. Calibration with high spatial resolution data is valuable for improving Landsat-based ISA estimates. PMID:24151451

  2. Quantitative mapping of particulate iron in an ocean dump using remotely sensed data

    NASA Technical Reports Server (NTRS)

    Ohlhorst, C. W.; Bahn, G. S.

    1978-01-01

    A remote sensing experiment was conducted at the industrial acid waste ocean dump site located approximately 38 n mi SE of Cape Henlopen, Delaware, to see if there was a relationship between aircraft remotely sensed spectral signatures and the iron concentration measured in the plume. Results are presented which show that aircraft remotely sensed spectral data can be used to quantify and map an acid waste dump in terms of its particulate iron concentration. A single variable equation using the ratio of band 2 (440-490 nm) radiance to band 4 (540-580 nm) radiance was used to quantify the acid plume and the surrounding water. The acid waste varied in age from freshly dumped to 3 1/2 hours old. Particulate iron concentrations in the acid waste were estimated to range up to 1.1 mg/liter at the 0.46 meter depth. A classification technique was developed to remove sunglitter-affected pixels from the data set.

  3. The detection and mapping of oil on a marshy area by a remote luminescent sensor

    USGS Publications Warehouse

    McFarlane, C.; Watson, R.D.

    2005-01-01

    Airborne remote sensing can be a cost-effective method for monitoring pollutants in large areas such as occur in oil spills. An opportunity to test a particular method arose when a well ruptured and for 23 days spewed a 90-meter fountain of oil into the air, dispersing the oil over a wide area. The method tested was an airborne luminescence detector with a Fraunhofer Line Discriminator (FLD) which was flown over the affected area 41 days after the well was capped to obtain a map or the deposition pattern. To calibrate the system, samples of Spartina (wire grass) and Phragmites (common reed) were collected from the contaminated area and the oil residues were eluted in cyclohexane and quantitatively analyzed in a fluorescence photometer. Good correlation was observed between the remote sensor (FLD) and the laboratory analysis. Isopleths defining the deposition pattern of oil were drawn from the remote sensing information. A discussion will be presented on the feasibility of using this instrument for similar contamination incidents for cleanup and damage assessment.

  4. Surface Emissivity Maps for Use in Satellite Retrievals of Longwave Radiation

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Kratz, David P.; Gupta, Shashi K.

    1999-01-01

    Accurate accounting of surface emissivity is essential for the retrievals of surface temperature from remote sensing measurements, and for the computations of longwave (LW) radiation budget of the Earth?s surface. Past studies of the above topics assumed that emissivity for all surface types, and across the entire LW spectrum is equal to unity. There is strong evidence, however, that emissivity of many surface materials is significantly lower than unity, and varies considerably across the LW spectrum. We have developed global maps of surface emissivity for the broadband LW region, the thermal infrared window region (8-12 micron), and 12 narrow LW spectral bands. The 17 surface types defined by the International Geosphere Biosphere Programme (IGBP) were adopted as such, and an additional (18th) surface type was introduced to represent tundra-like surfaces. Laboratory measurements of spectral reflectances of 10 different surface materials were converted to corresponding emissivities. The 10 surface materials were then associated with 18 surface types. Emissivities for the 18 surface types were first computed for each of the 12 narrow spectral bands. Emissivities for the broadband and the window region were then constituted from the spectral band values by weighting them with Planck function energy distribution.

  5. Bathymetry mapping using a GPS-sonar equipped remote control boat: Application in waste stabilisation ponds

    NASA Astrophysics Data System (ADS)

    Coggins, Liah; Ghadouani, Anas; Ghisalberti, Marco

    2014-05-01

    Traditionally, bathymetry mapping of ponds, lakes and rivers have used techniques which are low in spatial resolution, sometimes subjective in terms of precision and accuracy, labour intensive, and that require a high level of safety precautions. In waste stabilisation ponds (WSP) in particular, sludge heights, and thus sludge volume, are commonly measured using a sludge judge (a clear plastic pipe with length markings). A remote control boat fitted with a GPS-equipped sonar unit can improve the resolution of depth measurements, and reduce safety and labour requirements. Sonar devices equipped with GPS technology, also known as fish finders, are readily available and widely used by people in boating. Through the use of GPS technology in conjunction with sonar, the location and depth can be recorded electronically onto a memory card. However, despite its high applicability to the field, this technology has so far been underutilised. In the case of WSP, the sonar can measure the water depth to the top of the sludge layer, which can then be used to develop contour maps of sludge distribution and to determine sludge volume. The coupling of sonar technology with a remotely operative vehicle has several advantages of traditional measurement techniques, particularly in removing human subjectivity of readings, and the sonar being able to collect more data points in a shorter period of time, and continuously, with a much higher spatial resolution. The GPS-sonar equipped remote control boat has been tested on in excess of 50 WSP within Western Australia, and has shown a very strong correlation (R2 = 0.98) between spot readings taken with the sonar compared to a sludge judge. This has shown that the remote control boat with GPS-sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution, while greatly reducing profiling time. Remotely operated vehicles, such as the one built in this study, are useful for not only determining sludge

  6. Beyond Flood Hazard Maps: Detailed Flood Characterization with Remote Sensing, GIS and 2d Modelling

    NASA Astrophysics Data System (ADS)

    Santillan, J. R.; Marqueso, J. T.; Makinano-Santillan, M.; Serviano, J. L.

    2016-09-01

    Flooding is considered to be one of the most destructive among many natural disasters such that understanding floods and assessing the risks associated to it are becoming more important nowadays. In the Philippines, Remote Sensing (RS) and Geographic Information System (GIS) are two main technologies used in the nationwide modelling and mapping of flood hazards. Although the currently available high resolution flood hazard maps have become very valuable, their use for flood preparedness and mitigation can be maximized by enhancing the layers of information these maps portrays. In this paper, we present an approach based on RS, GIS and two-dimensional (2D) flood modelling to generate new flood layers (in addition to the usual flood depths and hazard layers) that are also very useful in flood disaster management such as flood arrival times, flood velocities, flood duration, flood recession times, and the percentage within a given flood event period a particular location is inundated. The availability of these new layers of flood information are crucial for better decision making before, during, and after occurrence of a flood disaster. The generation of these new flood characteristic layers is illustrated using the Cabadbaran River Basin in Mindanao, Philippines as case study area. It is envisioned that these detailed maps can be considered as additional inputs in flood disaster risk reduction and management in the Philippines.

  7. Rapid mapping of soil electrical conductivity by remote sensing: implication for landmine detection and vehicle mobility

    NASA Astrophysics Data System (ADS)

    Katsube, T. J.; McNairn, H.; Das, Y.; Gauthier, E.; Holt, R. M.; Singhroy, V.; DiLabio, R.; Connell-Madore, S.; Dyke, L.

    2005-06-01

    Many soil physical and chemical properties interfere with landmine detection signals. Since prior knowledge of these property distributions would allow appropriate technology selection and efficient demining operations, rapid mapping of these properties over wide areas are considered for meeting military and economic constraints. As soil electrical conductivity (EC) interferes with widely used detection systems, such as metal detectors and ground penetrating radar, we have started with developing a rapid mapping technique for EC using remote sensing. Electromagnetic surveys are proven methods for mapping EC, but do not provide all information required for demining. Therefore, EC prediction by imaging of soil moisture change using radar satellite imagery acquired by RADARSAT is being tested in eastern Alberta, Canada; northern Mississippi (U.S.A.). Areas of little soil moisture change with time are associated with high moisture retention and high clay content, suggesting higher EC. These soil characteristics are also associated with trafficability. RADARSAT soil moisture change detection images for eastern Alberta identified five areas with possible high moisture retention characteristics. Validation by soil and trafficability maps verified the predictions for more than half of the areas. Lack of some prediction accuracy is considered due to image acquisition timing and lack of physical property knowledge of some soil constituents.

  8. The use of remote sensing imagery for environmental land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Miller, D. A.; Foster, K. E.

    1976-01-01

    Flood hazard maps have been constructed for Graham, Yuma, and Yavapai Counties in Arizona using remote sensing techniques. Watershed maps of priority areas were selected on the basis of their interest to the county planning staff and represented areas of imminent or ongoing development and those known to be subject to inundation by storm runoff. Landsat color infrared imagery at scales of 1:1,000,000, 1:500,000, and 1:250,000 was used together with high-altitude aerial photography at scales of 1:120,000 and 1:60,000 to determine drainage patterns and erosional features, soil type, and the extent and type of ground cover. The satellite imagery was used in the form of 70 mm chips for enhancement in a color additive viewer and in all available enlargement modes. Field checking served as the main backup to the interpretations. Areas with high susceptibility to flooding were determined with a high level of confidence from the remotely sensed imagery.

  9. A Map-Reduce-enabled SOLAP cube for large-scale remotely sensed data aggregation

    NASA Astrophysics Data System (ADS)

    Li, Jiyuan; Meng, Lingkui; Wang, Frank Z.; Zhang, Wen; Cai, Yang

    2014-09-01

    Spatial On-Line Analytical Processing (SOLAP) is a powerful decision support systems tool for exploring the multidimensional perspective of spatial data. In recent years, remotely sensed data have been integrated into SOLAP cubes, and this improvement has advantages in spatio-temporal analysis for environment monitoring. However, the performance of aggregations in SOLAP still faces a considerable challenge from the large-scale dataset generated by Earth observation. From the perspective of data parallelism, a tile-based SOLAP cube model, the so-called Tile Cube, is presented in this paper. The novel model implements Roll-Up/Drill-Across operations in the SOLAP environment based on Map-Reduce, a popular data-intensive computing paradigm, and improves the throughput and scalability of raster aggregation. Therefore, the long time-series, wide-range and multi-view analysis of remotely sensed data can be processed in a short time. The Tile Cube prototype was built on Hadoop/Hbase, and drought monitoring is used as an example to illustrate the aggregations in the model. The performance testing indicated the model can be scaled along with both the data growth and node growth. It is applicable and natural to integrate the SOLAP cube with Map-Reduce. Factors that influence the performance are also discussed, and the balance of them will be considered in future works to make full use of data locality for model optimisation.

  10. Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data

    NASA Astrophysics Data System (ADS)

    Khan, Shuhab D.; Mahmood, Khalid; Casey, John F.

    2007-04-01

    TETHYS is a relational GIS database that combines geophysical, remote sensing, geochemical, and geochronological data, developed as a flexible resource for studying magmatic and geodynamic responses to continental collisions. In this paper, we demonstrate utility of our database by integrating field, remote sensing, and structural data, for detailed mapping and tectonic emplacement of Muslim Bagh ophiolite of western Pakistan. This ophiolite forms the uppermost part of a nappe pile which accreted onto the Indian continental margin during the closure of the Neo-Tethys during a pre-terminal collision that predated the final closure of Tethys during the major collision between India and Eurasia. Utilizing the TETHYS, Landsat, ASTER imagery, and a digital elevation model developed from the ASTER data are used to characterize the lithology and structure of the area. Use of image processing techniques improved the geologic map of the area, for a better understanding of the tectonic emplacement of the Muslim Bagh ophiolite. For the first time we report that the dikes in the Muslim Bagh ophiolite are cutting the metamorphic sole. Our preliminary geochemical data for sheeted dike complex suggest chemical affinities with arc-related rocks. This observation suggests that dikes were intruded in an island arc environment soon after the ophiolite was formed.

  11. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (plus or minus 5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  12. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperature

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (+/-5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  13. Minimizing Gaps of Daily Ndvi Map with Geostationary Satellite Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Lee, S.; Ryu, Y.; Jiang, C.

    2015-12-01

    Satellite based remote sensing has been used to monitor plant phenology. Numerous studies have generally utilized normalized difference vegetation index (NDVI) to quantify phenological patterns and changes in regional to the global scales. Obtaining the NDVI values during summer in East Asian Monsoon regions is important because most plants grow vigorously in this season. However, satellite derived NDVI data are error prone to clouds during most of the period. Various methods have attempted to reduce the effect of cloud in temporal and spatial NDVI monitoring; the fundamental solution is to have a large data pool that includes multiple images in short period and supplements NDVI values in same period. Multiple images of geostationary satellite in a day can be a method to expand the pool. In this study, we suggest an approach that minimizes data gaps in NDVI of the day through geostationary satellite derived NDVI composition. We acquired data from Geostationary Ocean Color Imager (GOCI) which is a satellite that was launched to monitor ocean around the Korean peninsula, China, Japan and Russia. The satellite observes eight times per day (09:00 - 16:00, every hour) at 500 x 500 m resolution from 2011 to 2015. GOCI red- and near infrared radiance was converted into surface reflectance by using 6S Radiative Transfer Model (6S). We calculated NDVI tiles for each of observed eight tiles per day and made one day NDVI through maximum-value composite method. We evaluated the composite GOCI derived NDVI by comparing with daily MODIS-derived NDVI (composited from MOD09GA and MYD09GA), 16-day Landsat 8-derived NDVI, and in-situ light emitting diode (LED) NDVI measurements at a homogeneous deciduous forest and rice paddy sites. We found that GOCI-derived NDVI maps revealed little data gaps compared to MODIS and Landsat, and GOCI derived NDVI time series were smoother than MODIS derived NDVI time series in summer. GOCI-derived NDVI agreed well with in-situ observations of NDVI

  14. Compositional Mapping of Europa's Surface with SUDA

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Sternovsky, Z.; Horanyi, M.; Hand, K. P.; Srama, R.; Postberg, F.; Altobelli, N.; Gruen, E.; Gudipati, M. S.; Schmidt, J.; Zolotov, M. Y.; Tucker, S.; Hoxie, V. C.; Kohnert, R.

    2015-12-01

    The Surface Mass Analyzer (SUDA) measures the composition of ballistic dust particles populating the thin exospheres that were detected around each of the Galilean moons. Since these grains are direct samples from the moons' icy surfaces, unique composition data will be obtained that will help to define and constrain the geological activities on and below the moons' surface. SUDA will make a vital contribution to NASA's mission to Europa and provide key answers to its main scientific questions about the surface composition, habitability, the icy crust, and exchange processes with the deeper interior of the Jovian icy moon Europa. SUDA is a time-of- flight, reflectron-type impact mass spectrometer, optimised for a high mass resolution which only weakly depends on the impact location. The small size, low mass and large sensitive area meet the challenging demands of mission to Europa. A full-size prototype SUDA instrument was built in order to demonstrate its performance through calibration experiments at the dust accelerator at NASA's IMPACT institute at Boulder, CO, with a variety of cosmo-chemically relevant dust analogues. The effective mass resolution of m/Δm of 150-300 is achieved for mass range of interest m = 1-150.

  15. Subpixel land cover change mapping with multitemporal remote-sensed images at different resolution

    NASA Astrophysics Data System (ADS)

    Wu, Ke; Yi, Wang; Niu, Ruiqing; Wei, Lifei

    2015-01-01

    Due to the lack of support for a high-resolution image in a short time, land cover change detection is always applied on the multitemporal remote-sensed images with different resolutions. The coarse-resolution image contains a large number of mixed pixels, which can seriously limit the utility of the change detection. Soft classification (SC) can be applied to improve this situation through deriving the abundances and generating the fractional change map, but it cannot provide the spatial distribution of the subpixels. Subpixel mapping (SPM) is a potential solution to resolve this problem, and is designed to use the proportions to obtain a sharpened thematic map at a subpixel scale. Based on this thought, the subpixel scale land cover change mapping result can be realized by integrating these two key techniques. However, in practice, there is a serious limitation to the detail and accuracy of the result, because when the scale factor between the different resolution images is large, the subpixel configuration is complex and the data volumes will be amplified. Moreover, with the high proportion of the changed area in the whole image, the change detection process at the subpixel level gets more difficult. The SPM technique is generally performed based only on the abundances of each and the spatial dependence assumption, so it cannot satisfy the demand. In order to overcome this shortcoming, several new reasonable subpixel scale change detection rules are defined in this paper, which dictate the land cover change map must be constructed according to the existing high-resolution image. The output from SC and prior information of the subpixel feature arrangement is applied into a modified cellular automata (CA) model, which can be regarded as a more reasonable tool to monitor the subpixel changes to resolve the big-data problem. Two experiments are performed and the results prove that the proposed method can effectively improve the accuracy of the change detection maps

  16. How to Map Space Weathering on an Asteroid Surface

    NASA Astrophysics Data System (ADS)

    Clark, B. E.; Barucci, M. A.; Merlin, F.; Lantz, C.; Campins, H.; Fornasier, S.; Dotto, E.; Lauretta, D. S.

    2015-11-01

    Our OSIRIS-REx space weathering map of asteroid 101955 Bennu will be an expression of the probability that each surface facet exhibits space weathering. To each surface facet, we will assign a ranking in: slope, band depth, albedo, and context.

  17. Brain surface maps from 3-D medical images

    NASA Astrophysics Data System (ADS)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  18. Mapping genetic and phylogenetic diversity of a temperate forest using remote sensing based upscaling methods

    NASA Astrophysics Data System (ADS)

    Escriba, C. G.; Yamasaki, E.; Leiterer, R.; Tedder, A.; Shimizu, K.; Morsdorf, F.; Schaepman, M. E.

    2015-12-01

    Functioning and resilience of forest ecosystems under environmental pressures increases when biodiversity at genetic, species, canopy and ecosystem level is higher. Therefore mapping and monitoring diversity becomes a necessity to assess changes in ecosystems and understanding their consequences. Diversity can be assessed by using different metrics, such as diversity of functional traits or genetic diversity amongst others. In-situ approaches have provided useful, but usually spatially constrained information, often dependent on expert knowledge. We propose using remote sensing in combination with in-situ sampling at different spatial scales. We map phylogenetic and genetic diversity using airborne imaging spectroscopy in combination with terrestrial and airborne laser scanning, as well as exhaustive in-situ sampling schemes. To this end, we propose to link leaf optical properties using a taxonomic approach (spectranomics) to genetic and phylogenetic diversity. The test site is a managed mixed temperate forest on the south-facing slope of Laegern Mountain, Switzerland (47°28'42.0" N, 8°21'51.8" E, 682 m.a.s.l.). The intensive sampling area is roughly 300m x 300m and dominant species are European beech (Fagus sylvatica) and Ash (Fraxinus excelsior). We perform phylogenetic and intraspecific genetic variation analyses for the five most dominant tree species at the test site. For these species, information on functional biochemical and architectural plant traits diversity is retrieved from imaging spectroscopy and laser scanning data and validated with laboratory and in-situ measurements. To assess regional-scale genetic diversity, the phylogenetic and genetic signals are quantified using the remote sensing data, resulting in spatially distributed intra-specific genetic variation. We discuss the usefulness of combined remote sensing and in-situ sampling, to bridge diversity scales from genetic to canopy level.

  19. Mapping the surface charge distribution of amyloid fibril

    NASA Astrophysics Data System (ADS)

    Lee, Gyudo; Lee, Wonseok; Lee, Hyungbeen; Woo Lee, Sang; Sung Yoon, Dae; Eom, Kilho; Kwon, Taeyun

    2012-07-01

    It is of high importance to measure and map the surface charge distribution of amyloids, since electrostatic interaction between amyloidogenic proteins and biomolecules plays a vital role in amyloidogenesis. In this work, we have measured and mapped the surface charge distributions of amyloids (i.e., β-lactoglobulin fibril) using Kelvin probe force microscopy. It is shown that the surface charge distribution is highly dependent on the conformation of amyloids (e.g., the helical pitch of amyloid fibrils) as well as the pH of a solvent.

  20. Application of a simple cerebellar model to geologic surface mapping

    USGS Publications Warehouse

    Hagens, A.; Doveton, J.H.

    1991-01-01

    Neurophysiological research into the structure and function of the cerebellum has inspired computational models that simulate information processing associated with coordination and motor movement. The cerebellar model arithmetic computer (CMAC) has a design structure which makes it readily applicable as an automated mapping device that "senses" a surface, based on a sample of discrete observations of surface elevation. The model operates as an iterative learning process, where cell weights are continuously modified by feedback to improve surface representation. The storage requirements are substantially less than those of a conventional memory allocation, and the model is extended easily to mapping in multidimensional space, where the memory savings are even greater. ?? 1991.

  1. Mapping Invasive Plant Species with a Combination of Field and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Skowronek, S.; Feilhauer, H.; Van De Kerchove, R.; Ewald, M.; Aerts, R.; Somers, B.; Warrie, J.; Kempeneers, P.; Lenoir, J.; Honnay, O.; Asner, G. P.; Schmidtlein, S.; Hattab, T.; Rocchini, D.

    2015-12-01

    Advanced hyperspectral and LIDAR data offer a great potential to map and monitor invasive plant species and their impact on ecosystems. These species are often difficult to detect over large areas with traditional mapping approaches. One challenge is the combination of the remote sensing data with the field data for calibration and validation. Therefore, our goals were to (1) develop an approach that allows to efficiently map species invasions based on presence-only data of the target species and remote sensing data; and (2) use this approach to create distribution maps for invasive plant species in two study areas in western Europe, which offer the basis for further analysis of the impact of invasions and to infer possible management options. For this purpose, on the island of Sylt in Northern Germany, we collected vegetation data on 120 plots with a size of 3 m x 3 m with different cover fractions of two invasive plant species; the moss Campylopus introflexus and the shrub Rosa rugosa. In the forest of Compiègne in Northern France, we sampled a total of 50 plots with a size of 25 x 25 m, targeting the invasive tree Prunus serotina. In both study areas, independent validation datasets containing presence and absence points of the target species were collected. Airborne hyperspectral data (APEX), which were simultaneously acquired for both study areas in summer 2014, provided 285 spectral bands covering the visible, near infrared and short-wave infrared region with a pixel size of 1.8 and 3 m. First results showed that mapping using one-class classifiers is possible: For C. introflexus, AUC value was 0.89 and OAC 0.72, for R. rugosa., AUC was 0.93 and OAC 0.92. However, for both species, a few areas were mapped incorrectly. Possible explanations are the different appearances of the target species in different biotope types underrepresented in the calibration data, and a high cover of species with similar reflectance properties.

  2. [Ventricular activation sequence estimated by body surface isochrone map].

    PubMed

    Hayashi, H; Ishikawa, T; Takami, K; Kojima, H; Yabe, S; Ohsugi, S; Miyachi, K; Sotobata, I

    1985-06-01

    This study was performed to evaluate the usefulness of the body surface isochrone map (VAT map) for identifying the ventricular activation sequence, and it was correlated with the isopotential map. Subjects consisted of 42 normal healthy adults, 18 patients with artificial ventricular pacemakers, and 100 patients with ventricular premature beats (VPB). The sites of pacemaker implantations were the right ventricular endocardial apex (nine cases), right ventricular epicardial apex (five cases), right ventricular inflow tract (one case), left ventricular epicardial apex (one case), and posterior base of the left ventricle via the coronary sinus (two cases). An isopotential map was recorded by the mapper HPM-6500 (Chunichi-Denshi Co.) on the basis of an 87 unipolar lead ECG, and a VAT isochrone map was drawn by a minicomputer. The normal VAT map was classified by type according to alignment of isochrone lines, and their frequency was 57.1% for type A, 16.7% for type B, and 26.2% for type C. In the VAT map of ventricular pacing, the body surface area of initial isochrone lines represented well the sites of pacemaker stimuli. In the VAT map of VPB, the sites of origin of VPB agreed well with those as determined by the previous study using an isopotential map. The density of the isochrone lines suggested the mode of conduction via the specialized conduction system or ventricular muscle. The VAT map is a very useful diagnostic method to predict the ventricular activation sequence more directly in a single sheet of the map. PMID:2419457

  3. Biomass Mapping of US forests using synergy of Synthetic Aperture Radar and optical Remote Sensing

    NASA Astrophysics Data System (ADS)

    Kellndorfer, J. M.; Baccini, A.; Bishop, J.; Cartus, O.; Cormier, T.; Walker, W. S.; Santoro, M.

    2011-12-01

    The availability of several national remote sensing datasets with 30 m resolution for ca. year 2000, i.e. the SRTM DEM, the USGS National Elevation Dataset (NED), the National Land Cover Dataset 2001 (NLCD 2001) as well as Landsat ETM+ data compiled by the Multi-Resolution Land Characteristics Consortium (MRLC), represented a unique opportunity to produce a baseline canopy height and aboveground biomass map for the US, the National Biomass and Carbon Dataset, NBCD 2000. Differentiation of the SRTM Elevations and NED allowed the estimation of the SRTM phase scattering center height within the forest canopies, which was found to be a key predictor for the actual canopy height as well as for the aboveground biomass of live woody vegetation. Together with topographic information derived from the DEM, the NLCD maps and the Landsat data, the phase scattering center heights were used as spatial predictor layers in RandomForest for predicting canopy height and biomass. Forest survey data provided by the USDA Forest Service FIA program were available under a national Memorandum of Understanding and served as response variables for model development and validation. The production of the canopy height and biomass maps was done on a mapping zone basis in which the conterminous US was split into 66 ecoregionally distinct mapping zones. A bootstrap validation at different spatial scales resulted in biomass retrieval accuracies in terms of the root mean square error, RMSE, of 55 t/ha (at plot level), 19 t/ha (at hexagon level) and 14 t/ha (at county level). In case of canopy height, the RMSE was 3.8 m at plot level. In a follow-on project, we aim at generating regional datasets of changes in carbon stocks between the years 2000 and 2007 for the Northeastern US. In order to update the NBCD biomass map, ALOS PALSAR FBD data for the years 2007/08 were ordered from ASF. For the biomass retrieval with ALOS PALSAR data, we adopted a fully automated retrieval algorithm, presented in

  4. Constructions of vegetation cover cartographical models based on remote sensing information and traditional maps.

    NASA Astrophysics Data System (ADS)

    Krenke, Alexander; Puzachenko, Yuriy

    2010-05-01

    Construction of models of vegetation based on remote sensing information is actually a problem of classification of remote sensing information. Each pixel in the classification procedure applies to one class of vegetation. These classes can be initially defined by the values of variables (channels, indexes, etc.), or can be obtained during the procedure. If the problem is solved on the basis of the training set, i.e. classes are originally specified, then arises the question of the representativeness of the sample. If the classes and their spatial distribution are obtained in the classification process, there is a problem of physical interpretation of the classes. The proposed technique is one of the options for addressing the problems described above. For many territories, there are maps representing the structure of vegetation and associated characteristics. These maps are a generalization of the expert opinion of the authors, a large array of field descriptions, interpretation of aerial photographs. Depending on the scale, such maps have varying degrees of accuracy and generalization, for example, small-scale maps reflect the structure of the phenomenon described in very simplified form. However, any high-quality map, in general, correctly, at the appropriate scale, reflects the phenomenon described. Thus, you can use these maps as a training sample covering the whole modeling territory. Using the traditional maps, we use the data accumulated over many years of research in its spatial form. This approach gives us a pre-defined types of modeled phenomena and provides a greater variety of manifestations of these types, than, for example, a few reference points derived from the field observation. Kernel of the method is based on the following sequence of procedures: 1. Map, remote sensing information and its derivatives are combined into one database. Elementary unit of such a database represents a pixel, which has the geographic coordinates and has a size

  5. A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data

    NASA Astrophysics Data System (ADS)

    Westermann, S.; Østby, T. I.; Gisnås, K.; Schuler, T. V.; Etzelmüller, B.

    2015-06-01

    Permafrost is a key element of the terrestrial cryosphere which makes mapping and monitoring of its state variables an imperative task. We present a modeling scheme based on remotely sensed land surface temperatures and reanalysis products from which mean annual ground temperatures (MAGT) can be derived at a spatial resolution of 1 km at continental scales. The approach explicitly accounts for the uncertainty due to unknown input parameters and their spatial variability at subgrid scale by delivering a range of MAGTs for each grid cell. This is achieved by a simple equilibrium model with only few input parameters which for each grid cell allows scanning the range of possible results by running many realizations with different parameters. The approach is applied to the unglacierized land areas in the North Atlantic region, an area of more than 5 million km2 ranging from the Ural Mountains in the east to the Canadian Archipelago in the west. A comparison to in situ temperature measurements in 143 boreholes suggests a model accuracy better than 2.5 °C, with 139 considered boreholes within this margin. The statistical approach with a large number of realizations facilitates estimating the probability of permafrost occurrence within a grid cell so that each grid cell can be classified as continuous, discontinuous and sporadic permafrost. At its southern margin in Scandinavia and Russia, the transition zone between permafrost and permafrost-free areas extends over several hundred km width with gradually decreasing permafrost probabilities. The study exemplifies the unexploited potential of remotely sensed data sets in permafrost mapping if they are employed in multi-sensor multi-source data fusion approaches.

  6. A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data

    NASA Astrophysics Data System (ADS)

    Westermann, S.; Østby, T.; Gisnås, K.; Schuler, T. V.; Etzelmüller, B.

    2015-02-01

    Permafrost is a key element of the terrestrial cryosphere which makes mapping and monitoring of its state variables an imperative task. We present a modeling scheme based on remotely sensed land surface temperatures and reanalysis products from which mean annual ground temperatures (MAGT) can be derived at a spatial resolution of 1 km on continental scale. The approach explicitly accounts for the uncertainty due to unknown input parameters and their spatial variability at subgrid scale by delivering a range of MAGTs for each grid cell. This is achieved by a simple equilibrium model with only few input parameters which for each grid cell allows scanning the range of possible results by running many realizations with different parameters. The approach is applied to the unglacierized land areas in the North Atlantic region, an area of more than 5 million km2 ranging from the Ural mountains in the East to the Canadian Archipelago in the West. A comparison to in-situ temperature measurements in 143 boreholes suggests a model accuracy better than 2.5 °C, with 139 considered boreholes within this margin. The statistical approach with a large number of realizations facilitates estimating the probability of permafrost occurrence within a grid cell so that each grid cell can be classified as continuous, discontinuous and sporadic permafrost. At its southern margin in Scandinavia and Russia, the transition zone between permafrost and permafrost-free areas extends over several hundred km width with gradually decreasing permafrost probabilities. The study exemplifies the unexploited potential of remotely sensed data sets in permafrost mapping if they are employed in multi-sensor multi-source data fusion approaches.

  7. Mapping Neogene and Quaternary sedimentary deposits in northeastern Brazil by integrating geophysics, remote sensing and geological field data

    NASA Astrophysics Data System (ADS)

    Andrades-Filho, Clódis de Oliveira; Rossetti, Dilce de Fátima; Bezerra, Francisco Hilario Rego; Medeiros, Walter Eugênio; Valeriano, Márcio de Morisson; Cremon, Édipo Henrique; Oliveira, Roberto Gusmão de

    2014-12-01

    Neogene and late Quaternary sedimentary deposits corresponding respectively to the Barreiras Formation and Post-Barreiras Sediments are abundant along the Brazilian coast. Such deposits are valuable for reconstructing sea level fluctuations and recording tectonic reactivation along the passive margin of South America. Despite this relevance, much effort remains to be invested in discriminating these units in their various areas of occurrence. The main objective of this work is to develop and test a new methodology for semi-automated mapping of Neogene and late Quaternary sedimentary deposits in northeastern Brazil integrating geophysical and remote sensing data. The central onshore Paraíba Basin was selected due to the recent availability of a detailed map based on the integration of surface and subsurface geological data. We used airborne gamma-ray spectrometry (i.e., potassium-K and thorium-Th concentration) and morphometric data (i.e., relief-dissection, slope and elevation) extracted from the digital elevation model (DEM) generated by the Shuttle Radar Topography Mission (SRTM). The procedures included: (a) data integration using geographic information systems (GIS); (b) exploratory statistical analyses, including the definition of parameters and thresholds for class discrimination for a set of sample plots; and (c) development and application of a decision-tree classification. Data validation was based on: (i) statistical analysis of geochemical and airborne gamma-ray spectrometry data consisting of K and Th concentrations; and (ii) map validation with the support of a confusion matrix, overall accuracy, as well as quantity disagreement and allocation disagreement for accuracy assessment based on field points. The concentration of K successfully separated the sedimentary units of the basin from Precambrian basement rocks. The relief-dissection morphometric variable allowed the discrimination between the Barreiras Formation and the Post-Barreiras Sediments. In

  8. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    PubMed

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

  9. Monotone Sobolev Mappings of Planar Domains and Surfaces

    NASA Astrophysics Data System (ADS)

    Iwaniec, Tadeusz; Onninen, Jani

    2016-01-01

    An approximation theorem of Youngs (Duke Math J 15, 87-94, 1948) asserts that a continuous map between compact oriented topological 2-manifolds (surfaces) is monotone if and only if it is a uniform limit of homeomorphisms. Analogous approximation of Sobolev mappings is at the very heart of Geometric Function Theory (GFT) and Nonlinear Elasticity (NE). In both theories the mappings in question arise naturally as weak limits of energy-minimizing sequences of homeomorphisms. As a result of this, the energy-minimal mappings turn out to be monotone. In the present paper we show that, conversely, monotone mappings in the Sobolev space { {W}^{1,p} , 1 < p < ∞}, are none other than { {W}^{1,p} }-weak (also strong) limits of homeomorphisms. In fact, these are limits of diffeomorphisms. By way of illustration, we establish the existence of traction free energy-minimal deformations for p -harmonic type energy integrals.

  10. Using Remote Sensing Data to Evaluate Surface Soil Properties in Alabama Ultisols

    NASA Technical Reports Server (NTRS)

    Sullivan, Dana G.; Shaw, Joey N.; Rickman, Doug; Mask, Paul L.; Luvall, Jeff

    2005-01-01

    Evaluation of surface soil properties via remote sensing could facilitate soil survey mapping, erosion prediction and allocation of agrochemicals for precision management. The objective of this study was to evaluate the relationship between soil spectral signature and surface soil properties in conventionally managed row crop systems. High-resolution RS data were acquired over bare fields in the Coastal Plain, Appalachian Plateau, and Ridge and Valley provinces of Alabama using the Airborne Terrestrial Applications Sensor multispectral scanner. Soils ranged from sandy Kandiudults to fine textured Rhodudults. Surface soil samples (0-1 cm) were collected from 163 sampling points for soil organic carbon, particle size distribution, and citrate dithionite extractable iron content. Surface roughness, soil water content, and crusting were also measured during sampling. Two methods of analysis were evaluated: 1) multiple linear regression using common spectral band ratios, and 2) partial least squares regression. Our data show that thermal infrared spectra are highly, linearly related to soil organic carbon, sand and clay content. Soil organic carbon content was the most difficult to quantify in these highly weathered systems, where soil organic carbon was generally less than 1.2%. Estimates of sand and clay content were best using partial least squares regression at the Valley site, explaining 42-59% of the variability. In the Coastal Plain, sandy surfaces prone to crusting limited estimates of sand and clay content via partial least squares and regression with common band ratios. Estimates of iron oxide content were a function of mineralogy and best accomplished using specific band ratios, with regression explaining 36-65% of the variability at the Valley and Coastal Plain sites, respectively.

  11. Remote sensing of surface mines - A comparative study of sensor systems

    NASA Technical Reports Server (NTRS)

    Irons, J. R.; Lachowski, H.; Peterson, C.

    1980-01-01

    The application of remote sensing to the inventory of coal surface mines and to the monitoring of mine reclamation in the eastern United States was investigated. Data were acquired during spring and autumn by several sensor systems over study areas located within the bituminous coal fields of Pennsylvania. Data sources were the Landsat MSS, an airborne multispectral scanner (Daedalus DS-1260), the airborne Thematic Mapper Simulator, and high-altitude color and color infrared aerial photography. A comparison of the data sets was conducted by a quantitative assessment of area measurement accuracy. Landsat data were found most suitable for a synoptic inventory of mines on a regional basis. High-altitude aerial photography was considered the best source of the detailed information required for reclamation monitoring. Nine channels of data from the airborne scanner were evaluated to select the most useful spectral bands for discriminating among the land cover types associated with surface mines. Four bands were selected in the following order by a stepwise linear discriminant procedure: 0.60-0.65 micron, 0.92-1.10 microns, 0.80-0.89 micron, and 8-14 microns. The data corresponding to these four bands were used for the thematic mapping of land cover.

  12. AVIRIS Land-Surface Mapping in Support of the Boreal Ecosystem-Atmosphere Study (BOREAS)

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Gamon, John; Keightley, Keir; Prentiss, Dylan; Reith, Ernest; Green, Robert

    2001-01-01

    A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely-sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS follow-on program is concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has the potential of contributing to BOREAS through: (1) accurate retrieved apparent surface reflectance; (2) improved landcover classification; and (3) direct assessment of biochemical/biophysical information such as canopy liquid water and chlorophyll concentration through pigment fits. In this paper, we present initial products for major flux tower sites including: (1) surface reflectance of dominant cover types; (2) a land-cover classification developed using spectral mixture analysis (SMA) and Multiple Endmember Spectral Mixture Analysis (MESMA); and (3) liquid water maps. Our goal is to compare these land-cover maps to existing maps and to incorporate AVIRIS image products into models of photosynthetic flux.

  13. Mineral Physicochemistry based Geoscience Products for Mapping the Earth's Surface and Subsurface

    NASA Astrophysics Data System (ADS)

    Laukamp, C.; Cudahy, T.; Caccetta, M.; Haest, M.; Rodger, A.; Western Australian Centre of Excellence3D Mineral Mapping

    2011-12-01

    Mineral maps derived from remotes sensing data can be used to address geological questions about mineral systems important for exploration and mining. This paper focuses on the application of geoscience-tuned multi- and hyperspectral sensors (e.g. ASTER, HyMap) and the methods to routinely create meaningful higher level geoscience products from these data sets. The vision is a 3D mineral map of the earth's surface and subsurface. Understanding the physicochemistry of rock forming minerals and the related diagnostic absorption features in the visible, near, mid and far infrared is a key for mineral mapping. For this, reflectance spectra obtained with lab based visible and infrared spectroscopic (VIRS) instruments (e.g. Bruker Hemisphere Vertex 70) are compared to various remote and proximal sensing techniques. Calibration of the various sensor types is a major challenge with any such comparisons. The spectral resolution of the respective instruments and the band positions are two of the main factors governing the ability to identify mineral groups or mineral species and compositions of those. The routine processing method employed by the Western Australian Centre of Excellence for 3D Mineral Mapping (http://c3dmm.csiro.au) is a multiple feature extraction method (MFEM). This method targets mineral specific absorption features rather than relying on spectral libraries or the need to find pure endmembers. The principle behind MFEM allows us to easily compare hyperspectral surface and subsurface data, laying the foundation for a seamless and accurate 3-dimensional mineral map. The advantage of VIRS techniques for geoscientific applications is the ability to deliver quantitative mineral information over multiple scales. For example, C3DMM is working towards a suite of ASTER-derived maps covering the Australian continent, scheduled for publication in 2012. A suite of higher level geoscience products of Western Australia (e.g. AlOH group abundance and composition) are now

  14. Urban Mapping and Growth Prediction using Remote Sensing and GIS Techniques, Pune, India

    NASA Astrophysics Data System (ADS)

    Sivakumar, V.

    2014-11-01

    This study aims to map the urban area in and around Pune region between the year 1991 and 2010, and predict its probable future growth using remote sensing and GIS techniques. The Landsat TM and ETM+ satellite images of 1991, 2001 and 2010 were used for analyzing urban land use class. Urban class was extracted / mapped using supervised classification technique with maximum likelihood classifier. The accuracy assessment was carried out for classified maps. The achieved overall accuracy and Kappa statistics were 86.33 % & 0.76 respectively. Transition probability matrix and area change were obtained using different classified images. A plug-in was developed in QGIS software (open source) based on Markov Chain model algorithm for predicting probable urban growth for the future year 2021. Based on available data set, the result shows that urban area is expected to grow much higher in the year 2021 when compared to 2010. This study provides an insight into understanding of urban growth and aids in subsequent infrastructure planning, management and decision-making.

  15. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment.

    PubMed

    Shahabi, Himan; Hashim, Mazlan

    2015-04-22

    This research presents the results of the GIS-based statistical models for generation of landslide susceptibility mapping using geographic information system (GIS) and remote-sensing data for Cameron Highlands area in Malaysia. Ten factors including slope, aspect, soil, lithology, NDVI, land cover, distance to drainage, precipitation, distance to fault, and distance to road were extracted from SAR data, SPOT 5 and WorldView-1 images. The relationships between the detected landslide locations and these ten related factors were identified by using GIS-based statistical models including analytical hierarchy process (AHP), weighted linear combination (WLC) and spatial multi-criteria evaluation (SMCE) models. The landslide inventory map which has a total of 92 landslide locations was created based on numerous resources such as digital aerial photographs, AIRSAR data, WorldView-1 images, and field surveys. Then, 80% of the landslide inventory was used for training the statistical models and the remaining 20% was used for validation purpose. The validation results using the Relative landslide density index (R-index) and Receiver operating characteristic (ROC) demonstrated that the SMCE model (accuracy is 96%) is better in prediction than AHP (accuracy is 91%) and WLC (accuracy is 89%) models. These landslide susceptibility maps would be useful for hazard mitigation purpose and regional planning.

  16. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment.

    PubMed

    Shahabi, Himan; Hashim, Mazlan

    2015-01-01

    This research presents the results of the GIS-based statistical models for generation of landslide susceptibility mapping using geographic information system (GIS) and remote-sensing data for Cameron Highlands area in Malaysia. Ten factors including slope, aspect, soil, lithology, NDVI, land cover, distance to drainage, precipitation, distance to fault, and distance to road were extracted from SAR data, SPOT 5 and WorldView-1 images. The relationships between the detected landslide locations and these ten related factors were identified by using GIS-based statistical models including analytical hierarchy process (AHP), weighted linear combination (WLC) and spatial multi-criteria evaluation (SMCE) models. The landslide inventory map which has a total of 92 landslide locations was created based on numerous resources such as digital aerial photographs, AIRSAR data, WorldView-1 images, and field surveys. Then, 80% of the landslide inventory was used for training the statistical models and the remaining 20% was used for validation purpose. The validation results using the Relative landslide density index (R-index) and Receiver operating characteristic (ROC) demonstrated that the SMCE model (accuracy is 96%) is better in prediction than AHP (accuracy is 91%) and WLC (accuracy is 89%) models. These landslide susceptibility maps would be useful for hazard mitigation purpose and regional planning. PMID:25898919

  17. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment

    PubMed Central

    Hashim, Mazlan

    2015-01-01

    This research presents the results of the GIS-based statistical models for generation of landslide susceptibility mapping using geographic information system (GIS) and remote-sensing data for Cameron Highlands area in Malaysia. Ten factors including slope, aspect, soil, lithology, NDVI, land cover, distance to drainage, precipitation, distance to fault, and distance to road were extracted from SAR data, SPOT 5 and WorldView-1 images. The relationships between the detected landslide locations and these ten related factors were identified by using GIS-based statistical models including analytical hierarchy process (AHP), weighted linear combination (WLC) and spatial multi-criteria evaluation (SMCE) models. The landslide inventory map which has a total of 92 landslide locations was created based on numerous resources such as digital aerial photographs, AIRSAR data, WorldView-1 images, and field surveys. Then, 80% of the landslide inventory was used for training the statistical models and the remaining 20% was used for validation purpose. The validation results using the Relative landslide density index (R-index) and Receiver operating characteristic (ROC) demonstrated that the SMCE model (accuracy is 96%) is better in prediction than AHP (accuracy is 91%) and WLC (accuracy is 89%) models. These landslide susceptibility maps would be useful for hazard mitigation purpose and regional planning. PMID:25898919

  18. Extracting temporal and spatial information from remotely sensed data for mapping wildlife habitat

    NASA Astrophysics Data System (ADS)

    Wallace, Cynthia S. A.

    The research accomplished in this dissertation used both mathematical and statistical techniques to extract and evaluate measures of landscape temporal dynamics and spatial structure from remotely sensed data for the purpose of mapping wildlife habitat. By coupling the landscape measures gleaned from the remotely sensed data with various sets of animal sightings and population data, effective models of habitat preference were created. Measures of temporal dynamics of vegetation greenness as measured by National Oceanographic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR) satellite were used to effectively characterize and map season specific habitat of the Sonoran pronghorn antelope, as well as produce preliminary models of potential yellow-billed cuckoo habitat in Arizona. Various measures that capture different aspects of the temporal dynamics of the landscape were derived from AVHRR Normalized Difference Vegetation Index composite data using three main classes of calculations: basic statistics, standardized principal components analysis, and Fourier analysis. Pronghorn habitat models based on the AVHRR measures correspond visually and statistically to GIS-based models produced using data that represent detailed knowledge of ground-condition. Measures of temporal dynamics also revealed statistically significant correlations with annual estimates of elk population in selected Arizona Game Management Units, suggesting elk respond to regional environmental changes that can be measured using satellite data. Such relationships, once verified and established, can be used to help indirectly monitor the population. Measures of landscape spatial structure derived from IKONOS high spatial resolution (1-m) satellite data using geostatistics effectively map details of Sonoran pronghorn antelope habitat. Local estimates of the nugget, sill, and range variogram parameters calculated within 25 x 25-meter image windows describe the spatial

  19. Estimating and Mapping Urban Impervious Surfaces: Reflection on Spectral, Spatial, and Temporal Resolutions

    NASA Astrophysics Data System (ADS)

    Weng, Q.

    2007-12-01

    Impervious surface is a key indicator of urban environmental quality and urbanization degree. Therefore, estimation and mapping of impervious surfaces in urban areas has attracted more and more attention recently by using remote sensing digital images. In this paper, satellite images with various spectral, spatial, and temporal resolutions are employed to examine the effects of these remote sensing data characteristics on mapping accuracy of urban impervious surfaces. The study area was the city proper of Indianapolis (Marion County), Indiana, United States. Linear spectral mixture analysis was applied to generate high albedo, low albedo, vegetation, and soil fraction images (endmembers) from the satellite images, and impervious surfaces were then estimated by adding high albedo and low albedo fraction images. A comparison of EO-1 ALI (multispectral) and Hyperion (hyperspectral) images indicates that the Hyperion image was more effective in discerning low albedo surface materials, especially the spectral bands in the mid-infrared region. Linear spectral mixing modeling was found more useful for medium spatial resolution images, such as Landsat TM/ETM+ and ASTER images, due to the existence of a large amount of mixed pixels in the urban areas. The model, however, may not be suitable for high spatial resolution images, such as IKONOS images, because of less influence from the mixing pixel. The shadow problem in the high spatial resolution images, caused by tall buildings and large tree crowns, is a challenge in impervious surface extraction. Alternative image processing algorithms such as decision tree classifier may be more appropriate to achieve high mapping accuracy. For mid-latitude cities, seasonal vegetation phenology has a significant effect on the spectral response of terrestrial features, and therefore, image analysis must take into account of this environmental characteristic. Three ASTER images, acquired on April 5, 2004, June 16, 2001, and October 3, 2000

  20. Mapping Near-Surface Salinization Using Long-wavelength AIRSAR

    NASA Technical Reports Server (NTRS)

    Paine, Jeffery G.

    2003-01-01

    In May 1999, NASA's Jet Propulsion Laboratory acquired airborne synthetic aperture radar (AIRSAR) data over the Hatchel and Montague Test Sites in Texas. We analyzed P- and L-band polarimetric radar data from these AIRSAR missions to assess whether AIRSAR could be used as a rapid and remote platform for screening large areas at risk for near-surface soil and water salinization. Ongoing geological, geophysical, and hydrological studies at the Hatchel Test Site in Runnels County and the Montague Test Site in Montague County have demonstrated the utility of high-resolution airborne electromagnetic (EM) induction in mapping electrical conductivity changes that accompany shallow natural and oil-field related salinization at these sites in the Colorado and Red River basins. We compared AIRSAR and airborne EM data quantitatively by (1) selecting representative flight lines from airborne EM surveys of the Hatchel and Montague sites, (2) extracting measurement locations and apparent conductivities at the highest available EM frequency, (3) identifying and extracting all P- and L-band backscatter intensities for all locations within 5 m of an airborne EM measurement, and (4) examining the spatial and magnitude relationships between apparent conductivity and all radar polarization and polarization-ratio combinations. For both test sites, backscatter intensity in all individual P- and L-band polarizations was slightly negatively correlated with apparent conductivity. In most modes this was manifested as a decrease in the range and magnitude of backscatter intensity as apparent conductivity increased. Select single-band and cross-band polarization ratios exhibited somewhat higher correlation with apparent conductivity by partly diminishing the dominance of the vegetation contribution to V backscatter intensity. The highest correlation with conductivity was obtained using the L-band vertical- to cross-polarization ratio, the P-band vertical- to L-band cross-polarization ratio

  1. Satellite remote sensing of surface energy and mass balance - Results from FIFE

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Markham, B. J.; Wang, J. R.; Huemmrich, F.; Sellers, P. J.; Strebel, D. E.; Kanemasu, E. T.; Kelly, Robert D.; Blad, Blaine L.

    1991-01-01

    Results obtained from the FIFE experiments conducted in 1987 and 1989 are summarized. Data analyses indicate that the hypotheses linking energy balance components to surface biology and remote sensing are reasonable at a point level, and that satellite remote sensing can potentially provide useful estimates of the surface energy budget. An investigation of atmospheric scattering and absorption effects on satellite remote sensing of surface radiance shows that the magnitude of atmospheric opacity variations within the FIFE site and with season can have a large effect on satellite measured values of surface radiances. Comparisons of atmospherically corrected TM radiances with surface measured radiances agreed to within about two percent at the visible and near-infrared wavelengths and to 6 percent in the midinfrared.

  2. On The Correlation Between Geo-Referenced Clinical Data And Remotely Sensed Air Pollution Maps.

    PubMed

    Dagliati, Arianna; Marinoni, Andrea; Cerra, Carlo; Gamba, Paolo; Bellazzi, Riccardo

    2015-01-01

    This work presents an analysis framework enabling the integration of a clinical-administrative dataset of Type 2 Diabetes (T2D) patients with environmental information derived from air quality maps acquired from remote sensing data. The research has been performed within the EU project MOSAIC, which gathers T2D patients' data coming from Fondazione S. Maugeri (FSM) hospital and the Pavia local health care agency (ASL). The proposed analysis is aimed to highlight the complexity of the domain, showing the different perspectives that can be adopted when applying a data-driven approach to large variety of temporal, geo-localized data. We investigated a set of 899 patients, located in the Pavia area, and detected several patterns depicting how clinical facts and air pollution variations may be related.

  3. Road pavement condition mapping and assessment using remote sensing data based on MESMA

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Zhang, X.; Jin, X.; Yu, H.; Rao, J.; Tian, S.; Luo, L.; Li, C.

    2016-04-01

    Remote sensing can be used to monitor changes of asphalt pavement condition because of the spectral change of aged asphalt material. However, owing to coarse spatial resolution of images and the limited width of roads ambient land cover types (e.g. vegetation, buildings, and soil) affect the spectral signal and add significant variability and uncertainty to analysis of road conditions. To overcome this problem, Multiple Endmember Spectral Mixture Analysis (MESMA) was tested to map asphalt pavement condition using WorldView-2 satellite imagery with eight bands spanning from visible to near infrared. Results indicated that MESMA run in a three-endmember model models mixed-pavement pixels well with a low average RMSE (0.01).

  4. Mapping agricultural phenology using repetitive optical remote sensing over a peri-urban region

    NASA Astrophysics Data System (ADS)

    Delbart, Nicolas; Vaudour, Emmanuelle; Dragoi, Mihaela; Maignan, Fabienne; Ottlé, Catherine

    2016-04-01

    This study explores the potential of multi-temporal optical remote sensing, with high revisit frequency, to derive missing information on agricultural practices necessary to model soil organic carbon content, over the agricultural lands in the Versailles plain in the western Paris suburbs. This study comes besides past and ongoing studies on the use of radar and high spatial resolution optical remote sensing to monitor agricultural practices in this study area (e.g. Vaudour et al. 2014). Agricultural statistics, such as the Land Parcel Identification System (LPIS) for France, permit to know the nature of annual crops for each digitized declared field of this land parcel registry. However, within each declared field, several cropped plots and a diversity of practices may exist, being marked by agricultural rotations which vary both spatially and temporally within it and differ from one year to the other. Very high spatial resolution Pléiades satellite data has allowed delineating crops plots, and identifying crops within declared fields, revealing this fine spatial crop pattern. Here we evaluate the potential of high observation frequency remote sensing to differentiate seasonal crops (e.g. winter barley from spring barley) and to evaluate key phenological moments. In particular, in addition to a dataset of field observations, we use three datasets at three complementary spatial resolutions: the CNES SPOT4-TAKE5 at ten meters in the 2013 winter and spring, the Landsat data at 30m, and the large-swath PROBA-V central camera data at 100m available since May 2013. The analysis of each dataset is done first on a pixel-based approach and second on a within-plot approach on the basis of the above described crop map. This work is carried out in the framework of the CNES TOSCA-PLEIADES-CO of the French Space Agency.

  5. Rice Area Inter Annual Variation through a Remote Sensing Based Mapping Algorithm

    NASA Astrophysics Data System (ADS)

    Elshorbagy, A. M.; Imam, E. H.; Nour, M. H.

    2013-10-01

    Rice is the main water-consuming crop planted in Egypt Delta. Constrained with the limited water resources, mapping rice is essential for any better water resources management. Xiao (2005) developed an algorithm for rice mapping by studying the dynamics of three vegetation indices the normalized difference vegetation index (NDVI), the Enhanced Vegetation Index (EVI) and the Land surface water index (LSWI). Rice main differentiating feature is being planted in flooded land. Thus moisture sensitive index like LSWI will temporally exceed the EVI or the NDVI signalling rice transplanting. Xiao (2005) utilized MODIS free satellite imagery (500 m spatial resolution). However its coarse resolution combined with the Egyptian complex landscape raised the need for the algorithm modification. In this piece of work a low - cost rice mapping algorithm was developed. The multi resolution (MODIS 250 m red and near infrared bands) and (MODIS 500 m - shortwave infrared and blue bands) were utilized. The arable land was mapped through the utilization of the NDVI and applying it on MODIS 250 m (fine spatial resolution) scenes. The MODIS fine temporal resolution (MOD09A1 product) was utilized to study the LSWI, NDVI and EVI dynamics throughout the rice planting season. The non-arable land from MODIS 250 m was then used to refine the rice area calculated from the MODIS 500 m imagery. The algorithm was applied on the Egypt delta region in years 2008, 2009, and 2010. The mapped rice areas were enhanced from the MODIS 250 m arable mapping module and the results of the algorithm were validated against annual areas reports. There was good agreement between the estimated areas from the algorithm and the reports. Inter annual variation in rice areas was successfully mapped. In addition, the rice area and probable transplanting dates conforms to local planting practices. The findings of this study indicate that the algorithm can be used for rice mapping on a timely and frequent manner.

  6. Mapping dustfall distribution in urban areas using remote sensing and ground spectral data.

    PubMed

    Yan, Xing; Shi, Wenzhong; Zhao, Wenji; Luo, Nana

    2015-02-15

    The aim of this study was to utilize remote sensing and ground-based spectral data to assess dustfall distribution in urban areas. The ground-based spectral data denoted that dust has a significant impact on spectral features. Dusty leaves have an obviously lower reflectance than clean leaves in the near-infrared bands (780-1,300 nm). The correlation analysis between dustfall weight and spectral reflectance showed that spectroscopy in the 350-2,500-nm region produced useful dust information and could assist in dust weight estimation. A back propagation (BP) neutral network model was generated using spectral response functions and integrated remote sensing data to assess dustfall weight in the city of Beijing. Compared with actual dustfall weight, validation of the results showed a satisfactory accuracy with a lower root mean square error (RMSE) of 3.6g/m(2). The derived dustfall distribution in Beijing indicated that dustfall was easily accumulated and increased in the south of the city. In addition, our results showed that construction sites and low-rise buildings with inappropriate land use were two main sources of dust pollution. This study offers a low-cost and effective method for investigating detailed dustfall in an urban environment. Environmental authorities may use this method for deriving dustfall distribution maps and pinpointing the sources of pollutants in urban areas.

  7. Mapping radioactivity in groundwater to identify elevated exposure in remote and rural communities.

    PubMed

    Kleinschmidt, Ross; Black, Jeffrey; Akber, Riaz

    2011-03-01

    A survey of radioactivity in groundwater (110 sites) was conducted as a precursor to providing a baseline of radiation exposure in rural and remote communities in Queensland, Australia, that may be impacted upon by exposure pathways associated with the supply, treatment, use and wastewater treatment of the resource. Radionuclides in groundwater, including ²³⁸U, ²²⁶Ra, ²²²Rn, ²²⁸Ra, ²²⁴Ra and ⁴⁰K were measured and found to contain activity concentration levels of up to 0.71 BqL⁻¹, 0.96 BqL⁻¹, 108 BqL⁻¹, 2.8 BqL⁻¹, 0.11 BqL⁻¹ and 0.19 BqL⁻¹ respectively. Activity concentration results were classified by aquifer lithology, showing correlation between increased radium isotope concentration and basic volcanic host rock. The groundwater survey and mapping results were further assessed using an investigation assessment tool to identify seven remote or rural communities that may require additional radiation dose assessment beyond that attributed to ingestion of potable water.

  8. Overview of hyperspectral remote sensing for mapping marine benthic habitats from airborne and underwater sensors

    NASA Astrophysics Data System (ADS)

    Dierssen, Heidi M.

    2013-09-01

    The seafloor, with its diverse and dynamic benthic habitats varying on meter to centimeter scales, is difficult to accurately monitor with traditional techniques. The technology used to build imaging spectrometers has rapidly advanced in recent years with the advent of smaller sensors and better signal-to-noise capabilities that has facilitated their use in mapping fine-scale benthic features. Here, the use of such sensors for hyperspectral remote sensing of the seafloor from both airborne and underwater platforms is discussed. Benthic constituents provide a so-called optical fingerprint with spectral properties that are often too subtle to be discerned with simple color photographs or multichannel spectrometers. Applications include the recent field validation of the airborne Portable Remote Imaging SpectroMeter (PRISM), a new imaging sensor package optimized for coastal ocean processes in Elkorn Slough California. In these turbid sediment-laden waters, only subtle spectral differences differentiate seafloor with sediment from that with eelgrass. The ultimate goal is to provide robust radiometric approaches that accurately consider light attenuation by the water column and are able to be applied to diverse habitats without considerable foreknowledge.

  9. Remote sensing survey applied to synthetic geological mapping in Ivory Coast (West Africa)

    NASA Astrophysics Data System (ADS)

    Deroin, Jean-Paul; Delor, Claude; Simeon, Yves; Yao, Bertin

    1994-12-01

    We have used remote sensing as an additional method in 1:200 000-scale reconnaissance mapping of the Ivory Coast. Landsat imagery was chosen for its low cost, and its interest for relatively small-scale work and its synthetic and multispectral properties. This proved perfectly satisfactory, especially in the bush savanna to the north of latitude 7 deg 30'. The imagery was also compared with aeromagnetic survey results. The lithostructural features revealed by MSS can be directly correlated with field observations. 1) Certain clear facies variations (amphibolites or gabbros among acidic rocks, for example) are spectrally well expressed. Conglomerates are commonly distinctive (on the Katiola sheet for example), when they are sufficiently extensive and they form ridges that can be followed several tens of kilometres. 2) The traces of planar structures can, at least locally, be followed and correlated with a regional schistosity. Certain features mappable on images confirm offset across transcurrent structures identified on the ground (N-S transcurrent fault zones, for example). Our experience in Ivory Coast shows that the use of Landsat MSS imagery should systematically be considered for any small- scale studies in which only a small part of the budget can be attributed to remote sensing.

  10. Enhanced Surface Water and Energy Flux Calculation through the Integration of Thermal Remote Sensing Retrievals with Land Surface Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The treatment of aerodynamic surface temperature in soil–vegetation–atmosphere transfer (SVAT) models can be used to classify approaches into two broad categories. The first category contains models utilizing remote sensing (RS) observations of surface radiometric temperature to estimate aerodynamic...

  11. Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling.

    PubMed

    Gumma, Murali Krishna; Pavelic, Paul

    2013-04-01

    Groundwater development across much of sub-Saharan Africa is constrained by a lack of knowledge on the suitability of aquifers for borehole construction. The main objective of this study was to map groundwater potential at the country-scale for Ghana to identify locations for developing new supplies that could be used for a range of purposes. Groundwater potential zones were delineated using remote sensing and geographical information system (GIS) techniques drawing from a database that includes climate, geology, and satellite data. Subjective scores and weights were assigned to each of seven key spatial data layers and integrated to identify groundwater potential according to five categories ranging from very good to very poor derived from the total percentage score. From this analysis, areas of very good groundwater potential are estimated to cover 689,680 ha (2.9 % of the country), good potential 5,158,955 ha (21.6 %), moderate potential 10,898,140 ha (45.6 %), and poor/very poor potential 7,167,713 ha (30 %). The results were independently tested against borehole yield data (2,650 measurements) which conformed to the anticipated trend between groundwater potential and borehole yield. The satisfactory delineation of groundwater potential zones through spatial modeling suggests that groundwater development should first focus on areas of the highest potential. This study demonstrates the importance of remote sensing and GIS techniques in mapping groundwater potential at the country-scale and suggests that similar methods could be applied across other African countries and regions.

  12. Mapping Glacial Weathering Processes with Thermal Infrared Remote Sensing: A Case Study at Robertson Glacier, Canada

    NASA Astrophysics Data System (ADS)

    Rutledge, A. M.; Christensen, P. R.; Shock, E.; Canovas, P. A., III

    2014-12-01

    Geologic weathering processes in cold environments, especially subglacial chemical processes acting on rock and sediment, are not well characterized due to the difficulty of accessing these environments. Glacial weathering of geologic materials contributes to the solute flux in meltwater and provides a potential source of energy to chemotrophic microbes, and is thus an important component to understand. In this study, we use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data to map the extent of glacial weathering in the front range of the Canadian Rockies using remotely detected infrared spectra. We ground-truth our observations using laboratory infrared spectroscopy, x-ray diffraction, and geochemical analyses of field samples. The major goals of the project are to quantify weathering inputs to the glacial energy budget, and to link in situ sampling with remote sensing capabilities. Robertson Glacier, Alberta, Canada is an excellent field site for this technique as it is easily accessible and its retreating stage allows sampling of fresh subglacial and englacial sediments. Infrared imagery of the region was collected with the ASTER satellite instrument. At that same time, samples of glacially altered rock and sediments were collected on a downstream transect of the glacier and outwash plain. Infrared laboratory spectroscopy and x-ray diffraction were used to determine the composition and abundance of minerals present. Geochemical data were also collected at each location, and ice and water samples were analyzed for major and minor elements. Our initial conclusion is that the majority of the weathering seems to be occurring at the glacier-rock interface rather than in the outwash stream. Results from both laboratory and ASTER data indicate the presence of leached weathering rinds. A general trend of decreasing carbonate abundances with elevation (i.e. residence time in ice) is observed, which is consistent with increasing calcium ion

  13. Remote mapping of river bathymetry from publicly available multispectral image data

    NASA Astrophysics Data System (ADS)

    Legleiter, C. J.

    2011-12-01

    Remote sensing could facilitate efficient characterization of river systems for research and management purposes, provided that suitable image data are available and that the information derived therefrom is reliable. This study evaluated the utility of public domain multispectral images for estimating flow depths in a small stream and a larger gravel-bed river, using data acquired through a task-oriented consortium and the National Agricultural Imagery Program (NAIP). Field measurements were used to calibrate image-derived quantities to observed depths and to assess depth retrieval accuracy. A band ratio-based algorithm yielded coherent, hydraulically reasonable bathymetric maps for both field sites and three different types of image data. Applying a spatial filter reduced image noise and improved depth retrieval performance, with a strong calibration relationship (R2 = 0.68) and an observed (field-surveyed) vs. predicted (image-derived) R2 of 0.6 for tasked images of the smaller stream. The NAIP data were less useful in this environment due to geo-referencing errors and a coarser spatial resolution. On the larger river, NAIP-derived bathymetry was more accurate, with an observed vs. predicted R2 value of 0.64 for a compressed county mosaic easily accessible via the internet. Comparison of remotely sensed bathymetric maps with field surveys indicated that although the locations of pools were determined accurately, their full depth could not be detected due to limited sensor radiometric resolution. Although a number of other constraints also must be considered, such as the need for local calibration data, depth retrieval from publicly available image data is feasible under appropriate conditions.

  14. Remote sensing and GIS for wetland inventory, mapping and change analysis.

    PubMed

    Rebelo, L-M; Finlayson, C M; Nagabhatla, N

    2009-05-01

    A multiple purpose wetland inventory is being developed and promoted through partnerships and specific analyses at different scales in response to past uncertainties and gaps in inventory coverage. A partnership approach is being promoted through the Ramsar Convention on Wetlands to enable a global inventory database to be compiled from individual projects and analyses using remote sensing and GIS. Individual projects that are currently part of this global effort are described. They include an analysis of the Ramsar sites' database to map the distribution of Ramsar sites across global ecoregions and to identify regions and wetland types that are under-represented in the database. Given the extent of wetland degradation globally, largely due to agricultural activities, specific attention is directed towards the usefulness of Earth Observation in providing information that can be used to more effectively manage wetlands. As an example, a further project using satellite data and GIS to quantify the condition of wetlands along the western coastline of Sri Lanka is described and trends in land use due to changes in agriculture, sedimentation and settlement patterns are outlined. At a regional scale, a project to map and assess, using remote sensing, individual wetlands used for agriculture in eight countries in southern Africa is also described. Land cover and the extent of inundation at each site is being determined from a multi-temporal data set of images as a base for further assessment of land use change. Integrated fully within these analyses is the development of local capacity to plan and undertake such analyses and in particular to relate the outcomes to wetland management and to compile data on the distribution, extent and condition of wetlands globally.

  15. LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application

    NASA Astrophysics Data System (ADS)

    Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin

    2014-11-01

    The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product

  16. Mapping Methane in Titan's Atmosphere near Titan's Surface

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Soderblom, Jason; Barnes, Jason

    2016-06-01

    Titan's atmospheric methane may be coupled to sources and sinks on its surface. In order to map methane concentrations in layers just above Titan's surface, we use data sets in which locations on Titan are imaged from a variety of viewing angles (and within a short time span). We also use a radiative transfer code based on the Markov Chain method of Esposito and House (1978, AJ 219, 1058) to accommodate spherical atmospheric geometries. We report on (a) selected Cassini/VIMS flybys that image terrain on Titan from different angles, (b) the expected vertical resolution of methane maps near the surface from these flybys and (c) preliminary results: 3D methane and haze distributions and surface albedos.

  17. Multi-Beam Surface Lidar for Lunar and Planetary Mapping

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Garvin, James B.

    1998-01-01

    Surface lidar techniques are now being demonstrated in low Earth orbit with a single beam of pulsed laser radiation at 1064 nm that profiles the vertical structure of Earth surface landforms along the nadir track of a spacecraft. In addition, a profiling laser altimeter, called MOLA, is operating in elliptical Martian orbit and returning surface topography data. These instruments form the basis for suggesting an improved lidar instrument that employs multiple beams for extension of sensor capabilities toward the goal of true, 3-dimensional mapping of the Moon or other similar planetary surfaces. In general the lidar waveform acquired with digitization of a laser echo can be used for laser distance measurement (i.e. range-to-the-surface) by time-of-flight measurement and for surface slope and shape measurements by examining the detailed lidar waveform. This is particularly effective when the intended target is the lunar surface or another planetary body free of any atmosphere. The width of the distorted return pulse is a first order measure of the surface incidence angle, a combination of surface slope and laser beam pointing. Assuming an independent and absolute (with respect to inertial space) measurement of laser beam pointing on the spacecraft, it is possible to derive a surface slope with-respect-to the mean planetary surface or its equipotential gravity surface. Higher-order laser pulse distortions can be interpreted in terms of the vertical relief of the surface or reflectivity variations within the area of the laser beam footprint on the surface.

  18. Using Advanced Remote Sensing Data Fusion Techniques for Studying Earth Surface Processes and Hazards: A Landslide Detection Case Study

    NASA Astrophysics Data System (ADS)

    Hulslander, D.

    2014-12-01

    A major problem in earth surface process and hazards research is we have little to no knowledge of precisely where and when the next significant event may occur. This makes it nearly impossible to set up adequate instrumentation and observation ahead of time. Furthermore, it is not practical to overcome this challenge by instrumenting and observing everywhere all the time. We can't be everywhere and see everything. Remote sensing helps us to fill that gap with missions such as Landsat and WorldView2 offering regular global coverage. However, remote sensing systems for global monitoring have several inherent compromises. Tradeoffs must be made between data storage, processing capacity, spatial resolution, spectral resolution, and temporal resolution. Additionally, instruments and systems must be designed in advance and from a generalized standpoint to serve as many purposes as possible, often at the expense of high performance in specific tasks. Because of these practical constraints, when using remote sensing data to study earth surface processes it is critical to maximize signal content or information obtained from all available data. Several approaches, including multi-temporal data fusion, multi-sensor data fusion, and fusion with derivative products such as band ratios or vegetation indices can help expand how much information can be extracted from remote sensing acquisitions. Fused dataset results contain more coherent information than the sum of their individual constituents. Examples using Landsat and WorldView2 data in this study show this added information makes it possible to map earth surface processes and events, such as the 2011 Cinque Terre landslides, in a more automated and repeatable fashion over larger areas than is possible with manual imagery analysis techniques and with greater chance of successful detection.

  19. Mapping Alteration Caused by Hydrocarbon Microseepages in Patrick Draw area Southwest Wyoming Using Image Spectroscopy and Hyperspectral Remote Sensing

    SciTech Connect

    Shuhab D. Khan

    2008-06-21

    Detection of underlying reservoir accumulations using remote sensing techniques had its inception with the identification of macroseeps. However, today we find ourselves relying on the detection of more subtle characteristics associated with petroleum reservoirs, such as microseeps. Microseepages are the result of vertical movement of light hydrocarbons from the reservoir to the surface through networks of fractures, faults, and bedding planes that provide permeable routes within the overlying rock. Microseepages express themselves at the surface in an array of alterations and anomalies, such as chemical or mineralogical changes in overlying soils and sediments. Using NASA's Hyperion hyperspectral imaging sensors, this project has developed spectral and geochemical ground truthing techniques to identify and map alterations caused by hydrocarbon microseepages and to determine their relationships to the underlying geology in the Patrick Draw area of Southwest Wyoming. Training the classification of satellite imagery with spectral inputs of samples collected over previously defined areas of hydrocarbon microseepage resulted in the successful identification of an anomalous zone. Geochemical characteristics of samples that defined this anomalous zone were then compared to the remaining non-anomalous samples using XRD, ICP, spectroscopy and carbon isotope techniques.

  20. Demonstration of centimeter-level precision, swath mapping, full-waveform laser altimetry from high altitude on the Global Hawk UAV for future application to cryospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Wake, S.; Rabine, D.; Hofton, M. A.; Mitchell, S.

    2013-12-01

    The Land Vegetation and Ice Sensor (LVIS) is a high-altitude, wide-swath laser altimeter that has, for over 15 years, demonstrated state-of-the-art performance in surface altimetry, including many aspects of remote sensing of the cryosphere such as precise topography of ice sheets and sea ice. NASA Goddard, in cooperation with NASA's Earth Science Technology Office (ESTO), has developed a new, more capable sensor that can operate autonomously from a high-altitude UAV aircraft to further enhance the LVIS capability and extend its reach and coverage. In June 2012, this latest sensor, known as LVIS-GH, was integrated onto NASA's Global Hawk aircraft and completed a successful high-altitude demonstration flight over Death Valley, Owens Valley, and the Sierra Nevada region of California. Data were collected over a wide variety of terrain types from 58,000' (> 17 km) altitude during the 6 hour long test flight. The full-waveform laser altimetry technique employed by LVIS and LVIS-GH provides precise surface topography measurements for solid earth and cryospheric applications and captures the vertical structure of forests in support of territorial ecology studies. LVIS-GH fully illuminates and maps a 4 km swath and provides cm-level range precision, as demonstrated in laboratory and horizontal range testing, as well as during this test flight. The cm range precision is notable as it applies to accurate measurements of sea ice freeboard and change detection of subtle surface deformation such as heaving in permafrost areas. In recent years, LVIS has primarily supported Operation IceBridge activities, including deployments to the Arctic and Antarctic on manned aircraft such as the NASA DC-8 and P-3. The LVIS-GH sensor provides an major upgrade of coverage capability and remote access; LVIS-GH operating on the long-duration Global Hawk aircraft can map up to 50,000 km^2 in a single flight and can provide access to remote regions such as the entirety of Antarctica. Future

  1. Mapping Tamarix: New techniques for field measurements, spatial modeling and remote sensing

    NASA Astrophysics Data System (ADS)

    Evangelista, Paul H.

    Native riparian ecosystems throughout the southwestern United States are being altered by the rapid invasion of Tamarix species, commonly known as tamarisk. The effects that tamarisk has on ecosystem processes have been poorly quantified largely due to inadequate survey methods. I tested new approaches for field measurements, spatial models and remote sensing to improve our ability measure and to map tamarisk occurrence, and provide new methods that will assist in management and control efforts. Examining allometric relationships between basal cover and height measurements collected in the field, I was able to produce several models to accurately estimate aboveground biomass. The best two models were explained 97% of the variance (R 2 = 0.97). Next, I tested five commonly used predictive spatial models to identify which methods performed best for tamarisk using different types of data collected in the field. Most spatial models performed well for tamarisk, with logistic regression performing best with an Area Under the receiver-operating characteristic Curve (AUC) of 0.89 and overall accuracy of 85%. The results of this study also suggested that models may not perform equally with different invasive species, and that results may be influenced by species traits and their interaction with environmental factors. Lastly, I tested several approaches to improve the ability to remotely sense tamarisk occurrence. Using Landsat7 ETM+ satellite scenes and derived vegetation indices for six different months of the growing season, I examined their ability to detect tamarisk individually (single-scene analyses) and collectively (time-series). My results showed that time-series analyses were best suited to distinguish tamarisk from other vegetation and landscape features (AUC = 0.96, overall accuracy = 90%). June, August and September were the best months to detect unique phenological attributes that are likely related to the species' extended growing season and green-up during

  2. Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to climatic variability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indices derived from remotely-sensed imagery are commonly used to predict soil properties with digital soil mapping (DSM) techniques. The use of images from single dates or a small number of dates is most common for DSM; however, selection of the appropriate images is complicated by temporal variabi...

  3. Morphology and surface mapping. [surface properties of lunar rocks

    NASA Technical Reports Server (NTRS)

    Marvin, U. B.

    1974-01-01

    Of the many boulders photographed at the Apollo 17 site, boulder 1 from Station 2 is unique in having a strongly developed foliation. Resistant layers form four steeply inclined ridges separated by joint planes or by deeply eroded beds of softer materials. A prominent cleavage, or set of cross joints, is oriented almost normal to the foliation. The cleavage is expressed as subparallel cracks, some of which are open fissures. The entire surface of the boulder is rough and studded by dark colored knobs ranging in diameter from 1 to 15 cm. It is a polymict breccia containing at least one type of rock that has not been recognized in any other lunar sample, and it records an unusual minor element distribution and magnetic history.

  4. Ground-based Hyperspectral Remote Sensing for Mapping Rock Alterations and Lithologies: Case Studies from Semail Ophiolite, Oman and Rush Springs Sandstone, Oklahoma

    NASA Astrophysics Data System (ADS)

    Sun, L.; Khan, S.; Hauser, D. L.; Glennie, C. L.; Snyder, C.; Okyay, U.

    2014-12-01

    This study used ground-based hyperspectral remote sensing data to map rock alterations and lithologies at Semail Ophiolite, Oman, as well as hydrocarbon-induced rock alterations at Cement, Oklahoma. The Samail Ophiolite exposed the largest, least-deformed, and the most-studied ophiolite in the world. Hydrocarbon seepages at Cement, Oklahoma brought hydrocarbons to the Rush Springs sandstones at surface, and generated rock alterations including bleaching of red beds, and carbonate cementation. Surficial expressions of rock alterations and different lithofacies are distinct from adjacent rocks, and can be detected by remote sensing techniques. Hyperspectral remote sensing acquires light intensity for hundreds of bands in a continuous electromagnetic spectrum from visible light to short-wave infrared radiation, and holds potential to characterize rocks with great precision. Ground-based hyperspectral study could scan the objects at close ranges thus provide very fine spatial resolutions (millimeters to centimeters). This study mapped all the major iconic outcrops of Semail ophiolite including pillow lava, sheeted dykes, layered gabbros, and peridotites. This study also identified surficial rock alterations induced by hydrocarbons at Cement, Oklahoma. Reddish-brown Rush Spring sandstones are bleached to pink, yellow, and gray colors; pore spaces in the sandstones have been filled with carbonate cementation. Laboratory spectroscopy was used to assist with mineral identification and classification in hyperspectral data. Terrestrial laser scanning (TLS) was used to provide high-accuracy spatial references. Principal component analysis, minimum noise fraction, spectral angle mapper, and band ratios are used in image processing. Combining lithological, remote sensing and geochemical data, this study built a model for petroleum seepage and related rock alterations, and provided a workflow for employing ground-based hyperspectral remote sensing techniques in petrological

  5. Remotely Sensed Percent Tree Cover Mapping Using Support Vector Machine Combined with Autonomous Endmember Extraction

    NASA Astrophysics Data System (ADS)

    Bai, Liming; Lin, Hui; Sun, Hua; Zang, Zhuo; Mo, Dengkui

    Remotely sensed forest mapping has become an important way to meet the increasing needs for forest-cover-associated data. However, accuracy for such products varies with the condition of forest ecosystem. In this paper, a support vector machine (SVM) classifier combined with autonomous endmember extraction technique was performed to improve the performance of machine learning in satellite land cover classification and percent tree cover mapping. For the study area, Pingnan County, Guangxi Zhuang Autonomous Region, China, that featured as a complex and fragmented subtropical forest habitat, the TM imagery was first processed with SMACC endmember extraction to find spectral endmembers of expected land cover classes. Secondly, the refined endmembers were input into SVM instead of conventional visual selection of training ROIs. The percent tree cover for the county is 53.6%, underestimated by 1.3% when compared with the National Continuous Forest Inventory 2004 statistics, suggesting a fair agreement with ground truth. The approach also shows a robust performance with an overall RMSE of 10.1.

  6. Mapping and predicting sinkholes by integration of remote sensing and spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Goldshleger, N.; Basson, U.; Azaria, I.

    2013-08-01

    The Dead Sea coastal area is exposed to the destructive process of sinkhole collapse. The increase in sinkhole activity in the last two decades has been substantial, resulting from the continuous decrease in the Dead Sea's level, with more than 1,000 sinkholes developing as a result of upper layer collapse. Large sinkholes can reach 25 m in diameter. They are concentrated mainly in clusters in several dozens of sites with different characteristics. In this research, methods for mapping, monitoring and predicting sinkholes were developed using active and passive remote-sensing methods: field spectrometer, geophysical ground penetration radar (GPR) and a frequency domain electromagnetic instrument (FDEM). The research was conducted in three stages: 1) literature review and data collection; 2) mapping regions abundant with sinkholes in various stages and regions vulnerable to sinkholes; 3) analyzing the data and translating it into cognitive and accessible scientific information. Field spectrometry enabled a comparison between the spectral signatures of soil samples collected near active or progressing sinkholes, and those collected in regions with no visual sign of sinkhole occurrence. FDEM and GPR investigations showed that electrical conductivity and soil moisture are higher in regions affected by sinkholes. Measurements taken at different time points over several seasons allowed monitoring the progress of an 'embryonic' sinkhole.

  7. Integration of remote sensing and surface geophysics in the detection of faults

    NASA Technical Reports Server (NTRS)

    Jackson, P. L.; Shuchman, R. A.; Wagner, H.; Ruskey, F.

    1977-01-01

    Remote sensing was included in a comprehensive investigation of the use of geophysical techniques to aid in underground mine placement. The primary objective was to detect faults and slumping, features which, due to structural weakness and excess water, cause construction difficulties and safety hazards in mine construction. Preliminary geologic reconnaissance was performed on a potential site for an underground oil shale mine in the Piceance Creek Basin of Colorado. LANDSAT data, black and white aerial photography and 3 cm radar imagery were obtained. LANDSAT data were primarily used in optical imagery and digital tape forms, both of which were analyzed and enhanced by computer techniques. The aerial photography and radar data offered supplemental information. Surface linears in the test area were located and mapped principally from LANDSAT data. A specific, relatively wide, linear pointed directly toward the test site, but did not extend into it. Density slicing, ratioing, and edge enhancement of the LANDSAT data all indicated the existence of this linear. Radar imagery marginally confirmed the linear, while aerial photography did not confirm it.

  8. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    PubMed Central

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. PMID:27561322

  9. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy.

    PubMed

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. PMID:27561322

  10. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    NASA Astrophysics Data System (ADS)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-08-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.

  11. Remote Sensing supports EULAKES project for mapping submerged macrophytes in Lake Garda

    NASA Astrophysics Data System (ADS)

    Matta, Erica; Bresciani, Mariano; Giardino, Claudia; Bolpagni, Rossano; Pellegrini, Giovanna; Braga, Federica

    2013-04-01

    Lake bottoms have an important role in the aquatic ecosystem: bathymetry and morphology may affect the hydrodynamic processes in coastal waters, while the presence of aquatic macrophytes helps to preserve the ecology. Within the context of macrophyte monitoring programs, technical advances in remote sensing with higher spatial and spectral resolutions provide opportunities for big scale ecological studies, with the possibility to assess a multitemporal analysis. One of the objectives of the EULAKES project has been to map aquatic vegetation cover inside the Garda Lake from hyperspectral MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) aerial images thanks to the application of a bio-optical model inversion technique (BOMBER: Bio-Optical Model Based tool for Estimating water quality and bottom properties from Remote sensing images). MIVIS images, with a spectral resolution of 102 bands, working between 430 and 1270 nm, were previously corrected for atmospheric, adjacency and glint effects before being processed with the BOMBER tool. One complete MIVIS overflight (12 runs) acquired on June 27th 2011, allowed the retrieval of a macrophyte presence map all around the first 7m deep coastal belt, with a validation error of about 10%, resulting from 89 in situ measures performed during images acquisition. A relevant spatial distribution could be observed, with higher aquatic plants concentration in the Southern part of the lake. A further local cover distribution map localized on the Sirmione Peninsula was integrated with previous results to perform a temporal analysis of macrophyte colonization patterns along this reduced littoral zone for the last 14 years (acquisitions on September 1997, July 2005 and July 2010). Considerable modifications in terms of macrophyte structural complexity and colonized areas were detectable: a drastic reduction of well-established dense communities (more than 70% of cover) and increasing of un-colonized areas were followed by

  12. Monitoring land-use change by combining participatory land-use maps with standard remote sensing techniques: Showcase from a remote forest catchment on Mindanao, Philippines

    NASA Astrophysics Data System (ADS)

    Mialhe, François; Gunnell, Yanni; Ignacio, J. Andres F.; Delbart, Nicolas; Ogania, Jenifer L.; Henry, Sabine

    2015-04-01

    This paper combines participatory activities (PA) with remote sensing analysis into an integrated methodology to describe and explain land-cover changes. A remote watershed on Mindanao (Philippines) is used to showcase the approach, which hypothesizes that the accuracy of expert knowledge gained from remote sensing techniques can be further enhanced by inputs from vernacular knowledge when attempting to understand complex land mosaics and past land-use changes. Six participatory sessions based on focus-group discussions were conducted. These were enhanced by community-based land-use mapping, resulting in a final total of 21 participatory land-use maps (PLUMs) co-produced by a sample of stakeholders with different sociocultural and ecological perspectives. In parallel, seven satellite images (Landsat MSS, Landsat TM, Landsat ETM+, and SPOT4) were classified following standard techniques and provided snapshots for the years 1976, 1996, and 2010. Local knowledge and collective memory contributed to define and qualify relevant land-use classes. This also provided information about what had caused the land-use changes in the past. Results show that combining PA with remote-sensing analysis provides a unique understanding of land-cover change because the two methods complement and validate one another. Substantive qualitative information regarding the chronology of land-cover change was obtained in a short amount of time across an area poorly covered by scientific literature. The remote sensing techniques contributed to test and to quantify verbal reports of land-use and land-cover change by stakeholders. We conclude that the method is particularly relevant to data-poor areas or conflict zones where rapid reconnaissance work is the only available option. It provides a preliminary but accurate baseline for capturing land changes and for reporting their causes and consequences. A discussion of the main challenges encountered (i.e. how to combine different systems of

  13. Efficient crop type mapping based on remote sensing in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Zhong, Liheng

    Most agricultural systems in California's Central Valley are purposely flexible and intentionally designed to meet the demands of dynamic markets. Agricultural land use is also impacted by climate change and urban development. As a result, crops change annually and semiannually, which makes estimating agricultural water use difficult, especially given the existing method by which agricultural land use is identified and mapped. A minor portion of agricultural land is surveyed annually for land-use type, and every 5 to 8 years the entire valley is completely evaluated. So far no effort has been made to effectively and efficiently identify specific crop types on an annual basis in this area. The potential of satellite imagery to map agricultural land cover and estimate water usage in the Central Valley is explored. Efforts are made to minimize the cost and reduce the time of production during the mapping process. The land use change analysis shows that a remote sensing based mapping method is the only means to map the frequent change of major crop types. The traditional maximum likelihood classification approach is first utilized to map crop types to test the classification capacity of existing algorithms. High accuracy is achieved with sufficient ground truth data for training, and crop maps of moderate quality can be timely produced to facilitate a near-real-time water use estimate. However, the large set of ground truth data required by this method results in high costs in data collection. It is difficult to reduce the cost because a trained classification algorithm is not transferable between different years or different regions. A phenology based classification (PBC) approach is developed which extracts phenological metrics from annual vegetation index profiles and identifies crop types based on these metrics using decision trees. According to the comparison with traditional maximum likelihood classification, this phenology-based approach shows great advantages

  14. Detection and mapping of oil-contaminated soils by remote sensing of laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Luedeker, Wilhelm; Guenther, Kurt P.; Dahn, Hans-Guenter

    1995-10-01

    The contamination of soil by aromatic mineral hydrocarbons (MHC) (e.g., gasoline, oil, etc.) has become a severe environmental problem because not only men, animals, and plants are threatened but also the water and air. With the unification of Germany a great number of suspected contaminated sites in the new countries were registered. An estimation of the German Federal Ministry of Environment (BMU) counts 180,000 areas contaminated with different pollutants, 55,000 are situated in the former GDR. On military settlements for example more than fifty percent of the chemicals are MHCs. Hence one can get an idea of the importance of soil pollution by hydrocarbons. Other zones contaminated due to carelessness or accidents are civil petrolstations, airports, refineries, pipelines, and traffic disasters. At the present time for most of these areas the contamination is assumed due to recent use. Due to the large extension of the problem an estimation and evaluation of the potential hazard for the environment is difficult and expensive to perform. In the case of an actual endangering the total area must be mapped in detail resulting in increasing costs for the owner. Nevertheless it is necessary to find reliable timesaving areal mapping and monitoring methods. One opportunity presented in this paper is the application of remote sensing by laser induced fluorescence from an airborne platform. It promises to fulfill these requirements in a sufficiently fast manner with very high spatial resolution. The access to the pollutant detection is the specific laser induced fluorescence emitted by the MHC (finger print). The present work shows the requirements for a helicopterborne lidar system for MHC mapping and how the detected signals are to be evaluated and interpreted.

  15. Remote Sensing Soil Salinity Map for the San Joaquin Vally, California

    NASA Astrophysics Data System (ADS)

    Scudiero, E.; Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.

    2015-12-01

    Soil salinization is a major natural hazard to worldwide agriculture. We present a remote imagery approach that maps salinity within a range (i.e., salinities less than 20 dS m-1, when measured as the electrical conductivity of the soil saturation extract), accuracy, and resolution most relevant to agriculture. A case study is presented for the western San Joaquin Valley (WSJV), California, USA (~870,000 ha of farmland) using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields (542 ha) established from apparent soil electrical conductivity directed sampling were used as ground-truth (sampled in 2013), totaling over 5000 pixels (30×30 m) with salinity values in the range of 0 to 35.2 dS m-1. Multi-year maximum values of CRSI were used to model soil salinity. In addition, soil type, elevation, meteorological data, and crop type were evaluated as covariates. The fitted model (R2=0.73) was validated: i) with a spatial k-folds (i.e., leave-one-field-out) cross-validation (R2=0.61), ii) versus salinity data from three independent fields (sampled in 2013 and 2014), and iii) by determining the accuracy of the qualitative classification of white crusted land as extremely-saline soils. The effect of land use change is evaluated over 2396 ha in the Broadview Water District from a comparison of salinity mapped in 1991 with salinity predicted in 2013 from the fitted model. From 1991 to 2013 salinity increased significantly over the selected study site, bringing attention to potential negative effects on soil quality of shifting from irrigated agriculture to fallow-land. This is cause for concern since over the 3 years of California's drought (2010-2013) the fallow land in the WSJV increased from 12.7% to 21.6%, due to drastic reduction in water allocations to farmers.

  16. Development and Evaluation of a Uav Based Mapping System for Remote Sensing and Surveying Applications

    NASA Astrophysics Data System (ADS)

    Eling, C.; Wieland, M.; Hess, C.; Klingbeil, L.; Kuhlmann, H.

    2015-08-01

    In recent years, unmanned aerial vehicles (UAVs) have increasingly been used in various application areas, such as in the remote sensing or surveying. For these applications the UAV has to be equipped with a mapping sensor, which is mostly a camera. Furthermore, a georeferencing of the UAV platform and/or the acquired mapping data is required. The most efficient way to realize this georeferencing is the direct georeferencing, which is based on an onboard multi-sensor system. In recent decades, direct georeferencing systems have been researched and used extensively in airborne, ship and land vehicle applications. However, these systems cannot easily be adapted to UAV platforms, which is mainly due to weight and size limitations. In this paper a direct georeferencing system for micro- and mini-sized UAVs is presented, which consists of a dual-frequency geodetic grade OEM GPS board, a low-cost single-frequency GPS chip, a tactical grade IMU and a magnetometer. To allow for cm-level position and sub-degree attitude accuracies, RTK GPS (real-time kinematic) and GPS attitude (GPS compass) determination algorithms are running on this system, as well as a GPS/IMU integration. Beside the direct georeferencing, also the precise time synchronization of the camera, which acts as the main sensor for mobile mapping applications, and the calibration of the lever arm between the camera reference point and the direct georeferencing reference point are explained in this paper. Especially the high accurate time synchronization of the camera is very important, to still allow for high surveying accuracies, when the images are taken during the motion of the UAV. Results of flight tests demonstrate that the developed system, the camera synchronization and the lever arm calibration make directly georeferenced UAV based single point measurements possible, which have cm-level accuracies on the ground.

  17. Surface-enhanced hyper-Raman and Raman hyperspectral mapping.

    PubMed

    Gühlke, Marina; Heiner, Zsuzsanna; Kneipp, Janina

    2016-06-01

    We investigate distributions of crystal violet and malachite green on plasmonic surfaces by principal component analysis (PCA) imaging of surface-enhanced hyper-Raman scattering (SEHRS) data. As a two-photon excited Raman scattering process, SEHRS provides chemical structure information based on molecular vibrations, but follows different selection rules than the normal, one-photon excited surface-enhanced Raman scattering (SERS). Therefore, simultaneous hyperspectral mapping using SEHRS excited at 1064 nm and SERS excited at 532 nm improves spatially resolved multivariate discrimination based on complementary vibrational information. The possibility to map distributions of the structurally similar dyes crystal violet and malachite green demonstrates the potential of this approach for multiplex imaging of complex systems. PMID:27166200

  18. Use of remote sensing techniques for geological hazard surveys in vegetated urban regions. [multispectral imagery for lithological mapping

    NASA Technical Reports Server (NTRS)

    Stow, S. H.; Price, R. C.; Hoehner, F.; Wielchowsky, C.

    1976-01-01

    The feasibility of using aerial photography for lithologic differentiation in a heavily vegetated region is investigated using multispectral imagery obtained from LANDSAT satellite and aircraft-borne photography. Delineating and mapping of localized vegetal zones can be accomplished by the use of remote sensing because a difference in morphology and physiology results in different natural reflectances or signatures. An investigation was made to show that these local plant zones are affected by altitude, topography, weathering, and gullying; but are controlled by lithology. Therefore, maps outlining local plant zones were used as a basis for lithologic map construction.

  19. An integrated approach for updating cadastral maps in Pakistan using satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Ali, Zahir; Tuladhar, Arbind; Zevenbergen, Jaap

    2012-08-01

    Updating cadastral information is crucial for recording land ownership and property division changes in a timely fashioned manner. In most cases, the existing cadastral maps do not provide up-to-date information on land parcel boundaries. Such a situation demands that all the cadastral data and parcel boundaries information in these maps to be updated in a timely fashion. The existing techniques for acquiring cadastral information are discipline-oriented based on different disciplines such as geodesy, surveying, and photogrammetry. All these techniques require a large number of manpower, time, and cost when they are carried out separately. There is a need to integrate these techniques for acquiring cadastral information to update the existing cadastral data and (re)produce cadastral maps in an efficient manner. To reduce the time and cost involved in cadastral data acquisition, this study develops an integrated approach by integrating global position system (GPS) data, remote sensing (RS) imagery, and existing cadastral maps. For this purpose, the panchromatic image with 0.6 m spatial resolution and the corresponding multi-spectral image with 2.4 m spatial resolution and 3 spectral bands from QuickBird satellite were used. A digital elevation model (DEM) was extracted from SPOT-5 stereopairs and some ground control points (GCPs) were also used for ortho-rectifying the QuickBird images. After ortho-rectifying these images and registering the multi-spectral image to the panchromatic image, fusion between them was attained to get good quality multi-spectral images of these two study areas with 0.6 m spatial resolution. Cadastral parcel boundaries were then identified on QuickBird images of the two study areas via visual interpretation using participatory-GIS (PGIS) technique. The regions of study are the urban and rural areas of Peshawar and Swabi districts in the Khyber Pakhtunkhwa province of Pakistan. The results are the creation of updated cadastral maps with a

  20. Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data

    NASA Astrophysics Data System (ADS)

    Fayad, Ibrahim; Baghdadi, Nicolas; Guitet, Stéphane; Bailly, Jean-Stéphane; Hérault, Bruno; Gond, Valéry; El Hajj, Mahmoud; Tong Minh, Dinh Ho

    2016-10-01

    Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (>150 Mg/ha, and >300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean >300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter- and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R2 = 0.54, RMSE = 48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain "wall-to-wall" AGB maps over French Guiana with an RMSE for the in situ AGB estimates of ∼50 Mg/ha and R2 = 0.66 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS

  1. Introduction and testing of a monitoring and colony-mapping method for waterbird populations that uses high-speed and ultra-detailed aerial remote sensing.

    PubMed

    Bakó, Gábor; Tolnai, Márton; Takács, Ádám

    2014-07-18

    Remote sensing is a method that collects data of the Earth's surface without causing disturbances. Thus, it is worthwhile to use remote sensing methods to survey endangered ecosystems, as the studied species will behave naturally while undisturbed. The latest passive optical remote sensing solutions permit surveys from long distances. State-of-the-art highly sensitive sensor systems allow high spatial resolution image acquisition at high altitudes and at high flying speeds, even in low-visibility conditions. As the aerial imagery captured by an airplane covers the entire study area, all the animals present in that area can be recorded. A population assessment is conducted by visual interpretations of an ortho image map. The basic objective of this study is to determine whether small- and medium-sized bird species are recognizable in the ortho images by using high spatial resolution aerial cameras. The spatial resolution needed for identifying the bird species in the ortho image map was studied. The survey was adjusted to determine the number of birds in a colony at a given time.

  2. Introduction and Testing of a Monitoring and Colony-Mapping Method for Waterbird Populations That Uses High-Speed and Ultra-Detailed Aerial Remote Sensing

    PubMed Central

    Bakó, Gábor; Tolnai, Márton; Takács, Ádám

    2014-01-01

    Remote sensing is a method that collects data of the Earth's surface without causing disturbances. Thus, it is worthwhile to use remote sensing methods to survey endangered ecosystems, as the studied species will behave naturally while undisturbed. The latest passive optical remote sensing solutions permit surveys from long distances. State-of-the-art highly sensitive sensor systems allow high spatial resolution image acquisition at high altitudes and at high flying speeds, even in low-visibility conditions. As the aerial imagery captured by an airplane covers the entire study area, all the animals present in that area can be recorded. A population assessment is conducted by visual interpretations of an ortho image map. The basic objective of this study is to determine whether small- and medium-sized bird species are recognizable in the ortho images by using high spatial resolution aerial cameras. The spatial resolution needed for identifying the bird species in the ortho image map was studied. The survey was adjusted to determine the number of birds in a colony at a given time. PMID:25046012

  3. Hydrogen desorption kinetics for aqueous hydrogen fluoride and remote hydrogen plasma processed silicon (001) surfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Carter, Richard J.; Schneider, Thomas P.; Nemanich, Robert J.

    2015-09-15

    The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C). The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.

  4. Single-source surface energy balance algorithms to estimate evapotranspiration from satellite-based remotely sensed data

    NASA Astrophysics Data System (ADS)

    Bhattarai, Nishan

    The flow of water and energy fluxes at the Earth's surface and within the climate system is difficult to quantify. Recent advances in remote sensing technologies have provided scientists with a useful means to improve characterization of these complex processes. However, many challenges remain that limit our ability to optimize remote sensing data in determining evapotranspiration (ET) and energy fluxes. For example, periodic cloud cover limits the operational use of remotely sensed data from passive sensors in monitoring seasonal fluxes. Additionally, there are many remote sensing-based single-source surface energy balance (SEB) models, but no clear guidance on which one to use in a particular application. Two widely used models---surface energy balance algorithm for land (SEBAL) and mapping ET at high resolution with internalized calibration (METRIC)---need substantial human-intervention that limits their applicability in broad-scale studies. This dissertation addressed some of these challenges by proposing novel ways to optimize available resources within the SEB-based ET modeling framework. A simple regression-based Landsat-Moderate Resolution Imaging Spectroradiometer (MODIS) fusion model was developed to integrate Landsat spatial and MODIS temporal characteristics in calculating ET. The fusion model produced reliable estimates of seasonal ET at moderate spatial resolution while mitigating the impact that cloud cover can have on image availability. The dissertation also evaluated five commonly used remote sensing-based single-source SEB models and found the surface energy balance system (SEBS) may be the best overall model for use in humid subtropical climates. The study also determined that model accuracy varies with land cover type, for example, all models worked well for wet marsh conditions, but the SEBAL and simplified surface energy balance index (S-SEBI) models worked better than the alternatives for grass cover. A new automated approach based on

  5. Towards GPS Surface Reflection Remote Sensing of Sea Ice Conditions

    NASA Technical Reports Server (NTRS)

    Komjathy, A.; Maslanik, J. A.; Zavorotny, V. U.; Axelrad, P.; Katzberg, S. J.

    2000-01-01

    This paper describes the research to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. The characteristics of the GPS signals and equipment afford the possibility of new measurements not possible with existing radar and passive microwave systems. In particular, the GPS receiving systems are small and light-weight, and as such are particularly well suited to be deployed on small aircraft or satellite platforms with minimal impact. Our preliminary models and experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and fresh-water ice as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the ice pack near Barrow, Alaska suggesting correlation between forward scattered GPS returns and RADARSAT backscattered signals.

  6. Remote photoacoustic detection of liquid contamination of a surface.

    PubMed

    Perrett, Brian; Harris, Michael; Pearson, Guy N; Willetts, David V; Pitter, Mark C

    2003-08-20

    A method for the remote detection and identification of liquid chemicals at ranges of tens of meters is presented. The technique uses pulsed indirect photoacoustic spectroscopy in the 10-microm wavelength region. Enhanced sensitivity is brought about by three main system developments: (1) increased laser-pulse energy (150 microJ/pulse), leading to increased strength of the generated photoacoustic signal; (2) increased microphone sensitivity and improved directionality by the use of a 60-cm-diameter parabolic dish; and (3) signal processing that allows improved discrimination of the signal from noise levels through prior knowledge of the pulse shape and pulse-repetition frequency. The practical aspects of applying the technique in a field environment are briefly examined, and possible applications of this technique are discussed. PMID:12952337

  7. Land cover mapping based on a frequency based contextual classifier from remote sensing data over Penang Island, Malaysia

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; MatJafri, M. Z.; Abdullah, K.

    2010-11-01

    Remote sensing data have been widely used for land cover mapping using supervised and unsupervised methods. The produced land cover maps are useful for various applications. This paper presents a technique for land use/cover mapping using THEOS data of the Penang Island, Malaysia. The objective is to assess the capability of a THEOS image to provide useful remotely sensed images for land cover mapping. The land cover information was extracted from the visible digital spectral bands using PCI Geomatica 10.3 software package. A frequency based contextual classifier was applied to the imagery to extract the spectral information from the acquired scene. Contextual classification is employed when neighbouring pixels are taken into account. The accuracy of each classification map was assessed using the reference data set consisted of a large number of samples collected per category. The study revealed that the frequency based contextual classifier produced superior result and achieved a high degree of accuracy. The preliminary result indicates that THEOS image can be provided useful data for remote sensing to retrieve land cover information at local scale.

  8. Sub-pixel flood inundation mapping from multispectral remotely sensed images based on discrete particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Li, Linyi; Chen, Yun; Yu, Xin; Liu, Rui; Huang, Chang

    2015-03-01

    The study of flood inundation is significant to human life and social economy. Remote sensing technology has provided an effective way to study the spatial and temporal characteristics of inundation. Remotely sensed images with high temporal resolutions are widely used in mapping inundation. However, mixed pixels do exist due to their relatively low spatial resolutions. One of the most popular approaches to resolve this issue is sub-pixel mapping. In this paper, a novel discrete particle swarm optimization (DPSO) based sub-pixel flood inundation mapping (DPSO-SFIM) method is proposed to achieve an improved accuracy in mapping inundation at a sub-pixel scale. The evaluation criterion for sub-pixel inundation mapping is formulated. The DPSO-SFIM algorithm is developed, including particle discrete encoding, fitness function designing and swarm search strategy. The accuracy of DPSO-SFIM in mapping inundation at a sub-pixel scale was evaluated using Landsat ETM + images from study areas in Australia and China. The results show that DPSO-SFIM consistently outperformed the four traditional SFIM methods in these study areas. A sensitivity analysis of DPSO-SFIM was also carried out to evaluate its performances. It is hoped that the results of this study will enhance the application of medium-low spatial resolution images in inundation detection and mapping, and thereby support the ecological and environmental studies of river basins.

  9. Norwegian remote sensing spectrometry for mapping and monitoring of algal blooms and pollution - NORSMAP-89

    SciTech Connect

    Pettersson, L.H.; Johannessen, O.M.; Frette, O. )

    1990-01-09

    During the late spring of 1988 an extensive bloom of the toxic algae Chrysocromulina polylepis occurred in the Skagerrak region influencing most life in the upper 30 meter of the ocean. The algal front was advected northward with the Norwegian Coastal Current along the coast of southern Norway, where it became a severe threat to the Norwegian seafarming industry. An ad-hoc expert team was established to monitor and forecast the movement of the algae front. Remote sensing of sea surface temperature from the operational US NOAA satellites monitored the movement of the algal front, consistent with a warm ocean front. The lack of any optical remote sensing instrumentation was recognized as a major de-efficiency during this algal bloom. To prepare for similar events in the future Nansen Remote Sensing Center initiated a three week pilot study in the Oslofjord and Skagerrak region, during May 1989. The Canadian Compact Airborne Spectrographic Imager (CASI) was installed in the surveillance aircraft. Extensive in situ campaigns was also carried out by the Norwegian Institute for Water Research and Institute of Marine Research. A ship-borne non-imaging spectrometer was operated from the vessels participating in the field campaign. As a contribution from a joint campaign (EISAC '89) between the Joint Research Centre (JRC) of the European Community and the European Space Agency (ESA) both the Canadian Fluorescence Line Imager (FLI) and the US 64-channel GER scanner was operated simultaneously at the NORSMAP 89 test site. Regions of different biological and physical conditions were covered during the pilot study and preliminary analysis are obtained from oil slicks, suspended matter from river, as well as minor algal bloom. The joint analysis of the data collected during the NORSMAP 89 campaign and conclussions will be presented, as well as suggestions for future utilization of airborne spectroscopy systems for operational monitoring of algal bloom and water pollution.

  10. Mapping of government land encroachment in Cameron Highlands using multiple remote sensing datasets

    NASA Astrophysics Data System (ADS)

    Zin, M. H. M.; Ahmad, B.

    2014-02-01

    The cold and refreshing highland weather is one of the factors that give impact to socio-economic growth in Cameron Highlands. This unique weather of the highland surrounded by tropical rain forest can only be found in a few places in Malaysia. It makes this place a famous tourism attraction and also provides a very suitable temperature for agriculture activities. Thus it makes agriculture such as tea plantation, vegetable, fruits and flowers one of the biggest economic activities in Cameron Highlands. However unauthorized agriculture activities are rampant. The government land, mostly forest area have been encroached by farmers, in many cases indiscriminately cutting down trees and hill slopes. This study is meant to detect and assess this encroachment using multiple remote sensing datasets. The datasets were used together with cadastral parcel data where survey lines describe property boundary, pieces of land are subdivided into lots of government and private. The general maximum likelihood classification method was used on remote sensing image to classify the land-cover in the study area. Ground truth data from field observation were used to assess the accuracy of the classification. Cadastral parcel data was overlaid on the classification map in order to detect the encroachment area. The result of this study shows that there is a land cover change of 93.535 ha in the government land of the study area between years 2001 to 2010, nevertheless almost no encroachment took place in the studied forest reserve area. The result of this study will be useful for the authority in monitoring and managing the forest.

  11. Mapping global land surface albedo from NOAA AVHRR

    NASA Astrophysics Data System (ADS)

    Csiszar, I.; Gutman, G.

    1999-03-01

    A set of algorithms is combined for a simple derivation of land surface albedo from measurements of reflected visible and near-infrared radiation made by the advanced very high resolution radiometer (AVHRR) onboard the National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites. The system consists of a narrowband-to-broadband conversion and bidirectional correction at the top of the atmosphere and an atmospheric correction. We demonstrate the results with 1 month worth of data from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS) global vegetation index (GVI) weekly data set and the NOAA/NASA Pathfinder Atmosphere (PATMOS) project daily data. Error analysis of the methodology indicates that the surface albedo can be retrieved with 10-15% relative accuracy. Monthly albedo maps derived from September 1989 GVI and PATMOS data agree well except for small discrepancies attributed mainly to different preprocessing and residual atmospheric effects. A 5-year mean September map derived from the GVI multiannual time series is consistent with that derived from low-resolution Earth Radiation Budget Experiment data as well as with a September map compiled from ground observations and used in many numerical weather and climate models. Instantaneous GVI-derived albedos were found to be consistent with surface albedo measurements over various surface types. The discrepancies found can be attributed to differences in areal coverage and representativeness of the satellite and ground data. The present pilot study is a prototype for a routine real-time production of high-resolution global surface albedo maps from NOAA AVHRR Global Area Coverage (GAC) data.

  12. Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach

    USGS Publications Warehouse

    Senay, Gabriel B.; Bohms, Stefanie; Singh, Ramesh K.; Gowda, Prasanna H.; Velpuri, Naga Manohar; Alemu, Henok; Verdin, James P.

    2013-01-01

    The increasing availability of multi-scale remotely sensed data and global weather datasets is allowing the estimation of evapotranspiration (ET) at multiple scales. We present a simple but robust method that uses remotely sensed thermal data and model-assimilated weather fields to produce ET for the contiguous United States (CONUS) at monthly and seasonal time scales. The method is based on the Simplified Surface Energy Balance (SSEB) model, which is now parameterized for operational applications, renamed as SSEBop. The innovative aspect of the SSEBop is that it uses predefined boundary conditions that are unique to each pixel for the "hot" and "cold" reference conditions. The SSEBop model was used for computing ET for 12 years (2000-2011) using the MODIS and Global Data Assimilation System (GDAS) data streams. SSEBop ET results compared reasonably well with monthly eddy covariance ET data explaining 64% of the observed variability across diverse ecosystems in the CONUS during 2005. Twelve annual ET anomalies (2000-2011) depicted the spatial extent and severity of the commonly known drought years in the CONUS. More research is required to improve the representation of the predefined boundary conditions in complex terrain at small spatial scales. SSEBop model was found to be a promising approach to conduct water use studies in the CONUS, with a similar opportunity in other parts of the world. The approach can also be applied with other thermal sensors such as Landsat.

  13. Phased-array ultrasonic surface contour mapping system. Technical note

    SciTech Connect

    Fasching, G.E.; Loudin, W.J.; Paton, D.E.; Smith, N.S. Jr.

    1992-11-01

    The development of reliable mechanistic models for prediction of conventional and fluidized-bed combustor and gasifier operation and solids flow behavior in silos or other solids handling and storage components requires knowledge of the contained solids flow characteristics. This knowledge is gained from dynamic experimental measurements of bed top surface contours in addition to measurements of bulk bed properties. The surface contour mapping system (SCMS) provides a means of generating surface contour maps in real time with a unique, automatically focused, density-compensated, digital phased-array scanning, ultrasonic-range measurement system. The system is designed to operate in environments having gas temperatures up to 1,600 {degree}F and pressures to 1,000 psig. Computer simulation of several SCMS candidates and acoustic carrier modulation techniques indicates that a surface measurement resolution of {plus_minus}2 inches over a range of 5 to 20 feet distance between the transmit/receive (T/R) transducers and the bed surface can be expected. The simulation of a particular design, a 9-T/R, 25-pixel bed surface, in which the level of each pixel was randomly set between 5 and 7 feet below the plane of the T/R transducers, then measured using two different modulation techniques, produced excellent results. The simulation of this surface contour mapping system determined the value of the level of each of the 25 pixels to within {plus_minus}1 inch for over 95 percent of more than 100 test cases for one of the modulation techniques, and for over 99 percent of about 100 test cases for a second modulation technique. A hardware implementation of the design simulated but using only a two-T/R, three-pixel SCMS produced results very closely approximating those obtained during the simulation.

  14. Sea surface signature of tropical cyclones using microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Kil, Bumjun; Burrage, Derek; Wesson, Joel; Howden, Stephan

    2013-06-01

    Measuring the sea surface during tropical cyclones (TC) is challenging due to severe weather conditions that prevent shipboard measurements and clouds which mask the sea surface for visible satellite sensors. However, sea surface emission in the microwave L-band can penetrate rain and clouds and be measured from space. The European Space Agency (ESA) MIRAS L-band radiometer on the Soil Moisture and Ocean Salinity (SMOS) satellite enables a view of the sea surface from which the effects of tropical cyclones on sea surface emissivity can be measured. The emissivity at these frequencies is a function of sea surface salinity (SSS), sea surface temperature (SST), sea surface roughness, polarization, and angle of emission. If the latter four variables can be estimated, then models of the sea surface emissivity can be used to invert SSS from measured brightness temperature (TB). Actual measured TB from space also has affects due to the ionosphere and troposphere, which have to be compensated for, and components due to the galactic and cosmic background radiation those have to be removed. In this research, we study the relationships between retrieved SSS from MIRAS, and SST and precipitation collected by the NASA TMI sensor from the Tropical Rainfall Measuring Mission (TRMM) satellite during Hurricane Isaac, in August 2012. During the slower movement of the storm, just before landfall on the vicinity of the Louisiana Shelf, higher precipitation amounts were associated with lower SSS and slightly increased SST. This increased trend of SST and lower SSS under regions of high precipitation are indicative of inhibited vertical mixing. The SMOS Level 2 SSS were filtered by a stepwise process with removal of high uncertainty in TB under conditions of strong surface roughness which are known to create noise. The signature of increased SST associated with increasing precipitation was associated with decreased SSS during the storm. Although further research is required, this study

  15. The use of Remotely Piloted Aircraft System (RPAS) for geological monitoring and mapping in mountain area: test and results

    NASA Astrophysics Data System (ADS)

    Taddia, Glenda; Piras, Marco; Forno, Gabriella M.; Gattiglio, Marco; Lingua, Andrea; Lo Russo, Stefano

    2015-04-01

    Geological mapping is an interpretive process involving multiple types of information, from analytical data to subjective observations, collected and synthesized by a researcher. With field experience, geologists generally develop effective personal styles of relatively efficient mapping. Each geologic map, regardless of scale, requires a certain level of field mapping, where data are recorded on a topographic map and on aerial images, with notes in a field book. Traditionally, geological elements are hand-transferred to a cartography, on which the final map is prepared for publication using known cartographic techniques. Cartography and topographic support are traditionally produced with aerial photogrammetry method, but nowadays, the coming of the Remotely Piloted Aircraft System (RPAS) or so called UAV (Unmanned Aerial Vehicle) can help the geologist to produce similar support, but reducing cost, increasing the productivity , to have a more flexible system and more. In this case, the commercial fixed-wing system EBEE has been tested by producing a dense digital surface model (DDSM) of the bedrock, Quaternary sediments and landforms in a sector of the alpine Rodoretto Valley, a tributary of the Germanasca Valley (northwestern Italy). The Germanasca Valley is located along the north-south tectonic thrust between the Dora Maira Massif, which outcrops on the valley's right side and the Greenstone and Schist Complex visible on the left side. These nappe systems include the Penninic Domain (Lower, Medium and Upper Penninic units) and the Piedmont Zone. The landforms and surficial sediments in this valley have resulted from the combinate effects of the Quaternary alpine glacial phases and deep-seated gravitative slope deformations. In the area of investigation only monotonous calcshists of the Greenstone and Schist Complex (GS) occur, with a regional foliation dipping 20-30° to N30E and the examined area is located between 2500 m and 1760 m. The area appears elongated

  16. Why surface-truth field study is needed in remote-sensing instruction

    NASA Technical Reports Server (NTRS)

    Wake, W. H.

    1981-01-01

    Especially designed field studies are needed in remote sensing technology transfer courses regardless of the field work provided by the students'/trainees' major disciplines because the remote sensing discipline has unique emphases and needs. Modification of existng schedules to include field work provides the equivalent of extending the duration of the program with the added benefit of enhancing learning achievements per actual program day. The process of surface truth field instruction, levels of student capabilities and stages in the development of surface truth field studies are discussed.

  17. Characterization of Surface Reflectance Variation Effects on Remote Sensing

    NASA Technical Reports Server (NTRS)

    Pearce, W. A.

    1984-01-01

    The use of Monte Carlo radiative transfer codes to simulate the effects on remote sensing in visible and infrared wavelengths of variables which affect classification is examined. These variables include detector viewing angle, atmospheric aerosol size distribution, aerosol vertical and horizontal distribution (e.g., finite clouds), the form of the bidirectional ground reflectance function, and horizontal variability of reflectance type and reflectivity (albedo). These simulations are used to characterize the sensitivity of observables (intensity and polarization) to variations in the underlying physical parameters both to improve algorithms for the removal of atmospheric effects and to identify techniques which can improve classification accuracy. It was necessary to revise and validate the simulation codes (CTRANS, ARTRAN, and the Mie scattering code) to improve efficiency and accommodate a new operational environment, and to build the basic software tools for acquisition and off-line manipulation of simulation results. Initial calculations compare cases in which increasing amounts of aerosol are shifted into the stratosphere, maintaining a constant optical depth. In the case of moderate aerosol optical depth, the effect on the spread function is to scale it linearly as would be expected from a single scattering model. Varying the viewing angle appears to provide the same qualitative effect as modifying the vertical optical depth (for Lambertian ground reflectance).

  18. Two-pulse rapid remote surface contamination measurement.

    SciTech Connect

    Headrick, Jeffrey M.; Kulp, Thomas J.; Bisson, Scott E.; Reichardt, Thomas A.; Farrow, Roger L.

    2010-11-01

    This project demonstrated the feasibility of a 'pump-probe' optical detection method for standoff sensing of chemicals on surfaces. Such a measurement uses two optical pulses - one to remove the analyte (or a fragment of it) from the surface and the second to sense the removed material. As a particular example, this project targeted photofragmentation laser-induced fluorescence (PF-LIF) to detect of surface deposits of low-volatility chemical warfare agents (LVAs). Feasibility was demonstrated for four agent surrogates on eight realistic surfaces. Its sensitivity was established for measurements on concrete and aluminum. Extrapolations were made to demonstrate relevance to the needs of outside users. Several aspects of the surface PF-LIF physical mechanism were investigated and compared to that of vapor-phase measurements. The use of PF-LIF as a rapid screening tool to 'cue' more specific sensors was recommended. Its sensitivity was compared to that of Raman spectroscopy, which is both a potential 'confirmer' of PF-LIF 'hits' and is also a competing screening technology.

  19. Algorithm for remote sensing of land surface temperature

    NASA Astrophysics Data System (ADS)

    AlSultan, Sultan; Lim, H. S.; MatJafri, M. Z.; Abdullah, K.

    2008-10-01

    This study employs the developed algorithm for retrieving land surface temperature (LST) from Landsat TM over Saudi Arabia. The algorithm is a mono window algorithm because the Landsat TM has only one thermal band between wavelengths of 10.44-12.42 μm. The proposed algorithm included three parameters, brightness temperature, surface emissivity and incoming solar radiation in the algorithm regression analysis. The LST estimated by the proposed developed algorithm and the LST values produced using ATCORT2_T in the PCI Geomatica 9.1 image processing software were compared. The mono window algorithm produced high accuracy LST values using Landsat TM data.

  20. Robotic Radionuclide Inspection and Mapping of Surface Contamination On Building Surfaces

    SciTech Connect

    Mauer, G.F.; Kawa, Ch.

    2007-07-01

    The mapping of localized regions of radionuclide contamination in a building can be a time consuming and costly task. Humans moving hand-held radiation detectors over the target areas are subject to fatigue. A contamination map based on manual surveys can contain significant operator-induced inaccuracies. A Fanuc M16i light industrial robot has been configured for installation on a mobile aerial work platform, such as a tall forklift. When positioned in front of a surface, the robot can map the radiation levels over a surface area of up to 2 m by 2 m. The robot's end effector is a commercial alpha-beta radiation sensor, augmented with range and collision avoidance sensors to ensure operational safety as well as to maintain a constant gap between surface and radiation sensors. A graphical user interface guides the robot operator to position the robot at the desired wall segments, and to select an area for surveying. After the operator has entered the required parameters, the custom surveying software plans the scan sequence, alerts of any potential problems, such as unreachable singularities, and creates a contamination map of the surveyed region. Maps of multiple regions can be combined into a single map of the entire region. The survey data are stored in a data base file. In addition to automated surface scans, operators can manually select regions for further inspection, as well as control the end effector motion manually. In comparison to manual contamination surveys, the robotic approach is more accurate, reliable, and faster. (authors)

  1. Diffeomorphic Metric Surface Mapping in Superior Temporal Gyrus

    PubMed Central

    Vaillant, Marc; Qiu, Anqi; Glaunès, Joan; Miller, Michael I.

    2011-01-01

    This paper describes the application of large deformation diffeomorphic metric mapping to cortical surfaces based on the shape and geometric properties of subregions of the superior temporal gyrus in the human brain. The anatomical surfaces of the cortex are represented as triangulated meshes. The diffeomorphic matching algorithm is implemented by defining a norm between the triangulated meshes, based on the algorithms of Vaillant and Glaunès. The diffeomorphic correspondence is defined as a flow of the extrinsic three dimensional coordinates containing the cortical surface that registers the initial and target geometry by minimizing the norm. The methods are demonstrated in 40 high resolution MRI cortical surfaces of planum temporale (PT) constructed from subsets of the superior temporal gyrus (STG). The effectiveness of the algorithm is demonstrated via the Euclidean positional distance, distance of normal vectors, and curvature before and after the surface matching as well as the comparison with a landmark matching algorithm. The results demonstrate that both the positional and shape variability of the anatomical configurations are being represented by the diffeomorphic maps. PMID:17185000

  2. Surface water dynamics in Amazon, Congo, and Lake Chad Wetlands from remote sensing and modeling

    NASA Astrophysics Data System (ADS)

    Jung, H.; Getirana, A.; Jasinski, M. F.

    2013-05-01

    The capability of satellites to understand and monitor surface water dynamics in tropical wetlands is presented by analysis various remote sensing technologies over the Amazon, Congo, and Lake Chad regions. Although different in size and location, all these basins are tropical, representing riparian tropical, swamp tropical and inland Saharan wetlands, respectively. First, yearly flooding in the Logone floodplain is investigated using Landsat Enhanced Thematic Mapper Plus (ETM+). Flooding has a direct impact on agricultural, pastoral and fishery systems in the Lake Chad Basin. Since the flooding extent, depth, and duration are highly variable, flood inundation mapping facilitates efficient use of water resources and have more knowledge of the coupled human-natural system in the Logone floodplain. Flood maps are generated from 33 multi-temporal ETM+ images acquired during the period 2006 to 2008. The maximum flooding extent in the study area increases up to ~5.8K km2 in late October 2008. A strong correlation is observed between the flooding extents and water height variations in both the floodplain and the river. Second, interferometric processing of JERS-1 SAR data from the central portions of both Amazon and Congo Wetlands provides centimeter-scale measurements of water level change. The Amazon is marked by a myriad of floodplain channels, but the Congo has comparatively few. Amazon floodplain channels, lakes and pans are well interconnected, whereas the Congo wetlands are expanses with few boundaries or flow routes. The hydraulic processes that build the Amazon floodplain are not similarly apparent in the Congo. Third, we evaluate the potential of large altimetry datasets as a complementary gauging network capable of providing water discharge in ungauged regions. A rating-curve-based methodology is adopted to derive water discharge from altimetric data provided by the Envisat satellite within the Amazon basin. From a global-scale perspective, the stage

  3. Estimation and Mapping of Coastal Mangrove Biomass Using Both Passive and Active Remote Sensing Method

    NASA Astrophysics Data System (ADS)

    Yiqiong, L.; Lu, W.; Zhou, J.; Gan, W.; Cui, X.; Lin, G., Sr.

    2015-12-01

    Mangrove forests play an important role in global carbon cycle, but carbon stocks in different mangrove forests are not easily measured at large scale. In this research, both active and passive remote sensing methods were used to estimate the aboveground biomass of dominant mangrove communities in Zhanjiang National Mangrove Nature Reserve in Guangdong, China. We set up a decision tree including spectral, texture, position and geometry indexes to achieve mangrove inter-species classification among 5 main species named Aegiceras corniculatum, Aricennia marina, Bruguiera gymnorrhiza, Kandelia candel, Sonneratia apetala by using 5.8m multispectral ZY-3 images. In addition, Lidar data were collected and used to obtain the canopy height of different mangrove species. Then, regression equations between the field measured aboveground biomass and the canopy height deduced from Lidar data were established for these mangrove species. By combining these results, we were able to establish a relatively accurate method for differentiating mangrove species and mapping their aboveground biomass distribution at the estuary scale, which could be applied to mangrove forests in other regions.

  4. Remote detection and mapping of organic molecules in Titan's atmosphere using ALMA

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin; Nixon, Conor A.; Charnley, Steven B.; Palmer, Maureen; Mumma, Michael J.; Molter, Edward; Teanby, Nicholas; Irwin, Patrick GJ; Kisiel, Zbigniew; Serigano, Joseph

    2016-06-01

    Titan is the largest moon of Saturn, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Atmospheric photochemistry results in the production of a wide range of complex organic molecules, including hydrocarbons, nitriles, aromatics and species of possible pre-biotic relevance. Studies of Titan's atmospheric chemistry thus provide a unique opportunity to explore the origin and evolution of complex organic matter in a primitive (terrestrial) planetary atmosphere. Underpinned by laboratory measurements, remote and in-situ observations of hydrocarbons, nitriles and oxygen-bearing species provide important new insights in this regard. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new facility, well suited to the study of molecular emission from Titan's upper and middle-atmosphere. This presentation will focus on results from our ongoing studies of Titan using ALMA during the period 2012-2014, including detection and mapping of rotational emission lines from molecules including HNC, CO, HC3N, CH3CN, C2H3CN and C2H5CN, as well minor isotopologues. Possible chemical formation pathways for these species will be discussed, and the the scope for improved understanding of non-aqueous organic chemistry through laboratory experiments and atmospheric/liquid-phase simulations under Titan-like conditions will be examined.

  5. Remote sensing and object-based techniques for mapping fine-scale industrial disturbances

    NASA Astrophysics Data System (ADS)

    Powers, Ryan P.; Hermosilla, Txomin; Coops, Nicholas C.; Chen, Gang

    2015-02-01

    Remote sensing provides an important data source for the detection and monitoring of disturbances; however, using this data to recognize fine-spatial resolution industrial disturbances dispersed across extensive areas presents unique challenges (e.g., accurate delineation and identification) and deserves further investigation. In this study, we present and assess a geographic object-based image analysis (GEOBIA) approach with high-spatial resolution imagery (SPOT 5) to map industrial disturbances using the oil sands region of Alberta's northeastern boreal forest as a case study. Key components of this study were (i) the development of additional spectral, texture, and geometrical descriptors for characterizing image-objects (groups of alike pixels) and their contextual properties, and (ii) the introduction of decision trees with boosting to perform the object-based land cover classification. Results indicate that the approach achieved an overall accuracy of 88%, and that all descriptor groups provided relevant information for the classification. Despite challenges remaining (e.g., distinguishing between spectrally similar classes, or placing discrete boundaries), the approach was able to effectively delineate and classify fine-spatial resolution industrial disturbances.

  6. Mapping suitability areas for concentrated solar power plants using remote sensing data

    DOE PAGES

    Omitaomu, Olufemi A.; Singh, Nagendra; Bhaduri, Budhendra L.

    2015-05-14

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on amore » Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. Furthermore, we present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.« less

  7. Mapping suitability areas for concentrated solar power plants using remote sensing data

    SciTech Connect

    Omitaomu, Olufemi A.; Singh, Nagendra; Bhaduri, Budhendra L.

    2015-05-14

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on a Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. Furthermore, we present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.

  8. Mapping Soil Depth with Topographic and Land Cover Attributes from Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Ru; Chen, Chi-Farn; Son, Nguyen-Thanh; Lau, Va-Khin

    2016-04-01

    Soil depth is an important parameter for identification of the overused slope land in Taiwan. The retrieval of high resolution soil depth at a large scale is costly and time-consuming. The main objective of this study is to develop an approach to estimate soil depths using satellite data with the aid of field survey data in Taiwan. The data were processed using the soil-landscape regression kriging model. The predictor variables, including elevation, slope, aspect, curvature, topographic wetness, spectral indices, and land use, derived from remotely sensed data were used as model inputs for the soil depth estimation. In this study, topographic attributes were derived from an 5-m resolution digital elevation model, and the land-use map and spectral indices were obtained through interpretation of Landsat-8 data. The absolute mean and root mean-square errors were used to access the reliability of the prediction, indicating a goodness-of-fit of the estimation model. The results of soil depth estimation compared with the field survey data indicated close relationship between these two datasets. The results obtained from this study could spatially provide quantitative information of soil depths, which is an important indicator for assessing the overused slope land. The methods were thus proposed for retrieval of soil depths in Taiwan.

  9. Lineament mapping of vertical fractures of rock outcrops by remote sensing images

    NASA Astrophysics Data System (ADS)

    Matarrese, Raffaella; Masciopinto, Costantino

    2016-04-01

    The monitoring of hydrological processes within the vadose zone is usually difficult, especially in the presence of compact rock subsoil. The possibility of recognizing the trend of the structural lineaments in fractured systems has important fallout in the understanding water infiltration processes, especially when the groundwater flow is strongly affected by the presence of faults and fractures that constitute the preferred ways of water fluxes. This study aims to detect fracture lineaments on fractured rock formations from CASI hyperspectral airborne VNIR images, with a size of 60 cm of the spatial resolution, and collected during November 2014. Lineaments detected with such high resolution have been compared with the fracture lineaments detected by a Landsat 8 image acquired at the same time of the CASI acquisition. The method has processed several remote sensed images at different spatial resolution, and it has produced the visualization of numerous lineament maps, as result of the vertical and sub-vertical fractures of the investigated area. The study has been applied to the fractured limestone outcrop of the Murgia region (Southern Italy). Here the rock formation hosts a deep groundwater, which supplies freshwater for drinking and irrigation purposes. The number of the fractures allowed a rough estimation of the vertical average hydraulic conductivity of the rock outcrop. This value was compared with field saturated rock hydraulic conductivity measurements derived from large ring infiltrometer tests carried out on the same rock outcrop.

  10. A remote surface pressure measurement technique for rotating elements

    SciTech Connect

    Hubner, J.P.; Abbitt, J.D.; Carroll, B.F.; Schanze, K.S.

    1997-04-01

    This technical note describes a photoluminescent paint technique developed to measure the steady-state surface pressure distributions on rotating elements. The application of pressure-sensitive paints (PSPs) as a means of measuring surface pressure has emerged in recent years as a viable alternative to conventional transducers, yielding accurate quantitative results (Morris et al., 1993; McLachlan et al., 1993; Morris, 1995). Burns and Sullivan (1995) describe a lifetime-based technique to measure pressure on rotating machinery with tip speeds exceeding 200 m/s. Their method measures the phase shift that occurs between a modulated excitation source and the corresponding emission response of the paint. The technique performed in this paper uses an unmodulated light source and measures the actual intensity decay with respect to time. The corresponding lifetimes of decay are then calibrated with the steady-state pressure.

  11. Surface-based mapping of gene expression and probabilistic expression maps in the mouse cortex.

    PubMed

    Ng, Lydia; Lau, Chris; Sunkin, Susan M; Bernard, Amy; Chakravarty, M Mallar; Lein, Ed S; Jones, Allan R; Hawrylycz, Michael

    2010-02-01

    The Allen Brain Atlas (ABA, www.brain-map.org) is a genome wide, spatially registered collection of cellular resolution in situ hybridization gene expression image data of the C57Bl/6J mouse brain. Derived from the ABA, the Anatomic Gene Expression Atlas (AGEA, http://mouse.brain-map.org/agea) has demonstrated both laminar and areal spatial gene expression correlations in the mouse cortex. While the mouse cortex is lissencephalic, its curvature and substantial bending in boundary areas renders it difficult to visualize and analyze laminar versus areal effects in a rectilinear coordinate framework. In context of human and non-human primate cortex, surface-based representation has proven useful for understanding relative locations of laminar, columnar, and areal features. In this paper, we describe a methodology for constructing surface-based flatmaps of the mouse cortex that enables mapping of gene expression data from individual genes in the ABA, or probabilistic expression maps from the AGEA, to identify and visualize genetic relationships between layers and areas. PMID:19818854

  12. Combined use of optical remote sensing and GIS for landslide mapping

    NASA Astrophysics Data System (ADS)

    Frauenfelder, R.; Kronholm, K.; Kääb, A.

    2009-04-01

    Landslide activity usually alters the spectral signal of the earth surface significantly through the displacement and disruption of the surficial vegetation layer. This makes landslide areas considerably easy targets for detecting and mapping from space-borne data. We employed data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to detect and map landslides in Pakistan and in Northern Norway. Digital Terrain Models (DTMs) generated from ASTER stereo data were used to calculate volume estimates for the individual landslides. Orthophotos and DTMs were generated from corrected level 1B data. Orientation of the 3N and corresponding 3B band from GCPs, transformation to epipolar geometry, parallax-matching, and parallax-to-DTM conversion was done using the PCI Geomatica 10.0 Orthoengine software. Orthophotos and DTMs were then integrated into a GIS (ArcGIS 9.2), where landslides were automatically detected and mapped using the normalized difference vegetation index (NDVI), thresholding of band 1 (green) and band 2 (red), and selected terrain information, such as slope and curvature. The resulting landslide inventory data was used to supplement existing field data.

  13. Probing and mapping electrode surfaces in solid oxide fuel cells.

    PubMed

    Blinn, Kevin S; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A; Liu, Meilin

    2012-09-20

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen (1-7). The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion(2). Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation(8-12). It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition(8, 10, 13, 14) ("coking") and sulfur poisoning(11, 15) and the manner in which surface modifications stave off this degradation(16). The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM

  14. Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells

    PubMed Central

    Blinn, Kevin S.; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A.; Liu, Meilin

    2012-01-01

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM

  15. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats ecoregion, central Alaska

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Minsley, Burke J.; Ji, Lei; Walvoord, Michelle A.; Smith, Bruce D.; Abraham, Jared D.; Rose, Joshua R.

    2013-01-01

    Machine-learning regression tree models were used to extrapolate airborne electromagnetic resistivity data collected along flight lines in the Yukon Flats Ecoregion, central Alaska, for regional mapping of permafrost. This method of extrapolation (r = 0.86) used subsurface resistivity, Landsat Thematic Mapper (TM) at-sensor reflectance, thermal, TM-derived spectral indices, digital elevation models and other relevant spatial data to estimate near-surface (0–2.6-m depth) resistivity at 30-m resolution. A piecewise regression model (r = 0.82) and a presence/absence decision tree classification (accuracy of 87%) were used to estimate active-layer thickness (ALT) (< 101 cm) and the probability of near-surface (up to 123-cm depth) permafrost occurrence from field data, modelled near-surface (0–2.6 m) resistivity, and other relevant remote sensing and map data. At site scale, the predicted ALTs were similar to those previously observed for different vegetation types. At the landscape scale, the predicted ALTs tended to be thinner on higher-elevation loess deposits than on low-lying alluvial and sand sheet deposits of the Yukon Flats. The ALT and permafrost maps provide a baseline for future permafrost monitoring, serve as inputs for modelling hydrological and carbon cycles at local to regional scales, and offer insight into the ALT response to fire and thaw processes.

  16. [An operational remote sensing algorithm of land surface evapotranspiration based on NOAA PAL dataset].

    PubMed

    Hou, Ying-Yu; He, Yan-Bo; Wang, Jian-Lin; Tian, Guo-Liang

    2009-10-01

    Based on the time series 10-day composite NOAA Pathfinder AVHRR Land (PAL) dataset (8 km x 8 km), and by using land surface energy balance equation and "VI-Ts" (vegetation index-land surface temperature) method, a new algorithm of land surface evapotranspiration (ET) was constructed. This new algorithm did not need the support from meteorological observation data, and all of its parameters and variables were directly inversed or derived from remote sensing data. A widely accepted ET model of remote sensing, i. e., SEBS model, was chosen to validate the new algorithm. The validation test showed that both the ET and its seasonal variation trend estimated by SEBS model and our new algorithm accorded well, suggesting that the ET estimated from the new algorithm was reliable, being able to reflect the actual land surface ET. The new ET algorithm of remote sensing was practical and operational, which offered a new approach to study the spatiotemporal variation of ET in continental scale and global scale based on the long-term time series satellite remote sensing images.

  17. Comparison/Validation of Remote Sensing-Based Surface Energy Balance Models Over the Agricultural Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate characterization of surface energy fluxes over a range of spatial and temporal scales is critical for many applications in agriculture, hydrology, meteorology, and climatology. Over the past several years, there has been a major effort devoted to the development and refinement of remote sen...

  18. [An operational remote sensing algorithm of land surface evapotranspiration based on NOAA PAL dataset].

    PubMed

    Hou, Ying-Yu; He, Yan-Bo; Wang, Jian-Lin; Tian, Guo-Liang

    2009-10-01

    Based on the time series 10-day composite NOAA Pathfinder AVHRR Land (PAL) dataset (8 km x 8 km), and by using land surface energy balance equation and "VI-Ts" (vegetation index-land surface temperature) method, a new algorithm of land surface evapotranspiration (ET) was constructed. This new algorithm did not need the support from meteorological observation data, and all of its parameters and variables were directly inversed or derived from remote sensing data. A widely accepted ET model of remote sensing, i. e., SEBS model, was chosen to validate the new algorithm. The validation test showed that both the ET and its seasonal variation trend estimated by SEBS model and our new algorithm accorded well, suggesting that the ET estimated from the new algorithm was reliable, being able to reflect the actual land surface ET. The new ET algorithm of remote sensing was practical and operational, which offered a new approach to study the spatiotemporal variation of ET in continental scale and global scale based on the long-term time series satellite remote sensing images. PMID:20077694

  19. Remote control and navigation tests for application to long-range lunar surface exploration

    NASA Technical Reports Server (NTRS)

    Mastin, W. C.; White, P. R.; Vinz, F. L.

    1971-01-01

    Tests conducted with a vehicle system built at the Marshall Space Flight Center to investigate some of the unknown factors associated with remote controlled teleoperated vehicles on the lunar surface are described. Test data are summarized and conclusions are drawn from these data which indicate that futher testing will be required.

  20. Mapping permeability over the surface of the Earth

    USGS Publications Warehouse

    Gleeson, T.; Smith, L.; Moosdorf, N.; Hartmann, J.; Durr, H.H.; Manning, A.H.; Van Beek, L. P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of ???5 ?? 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change. Copyright ?? 2011 by the American Geophysical Union.

  1. Mapping permeability over the surface of the Earth

    USGS Publications Warehouse

    Gleeson, Tom; Smith, Leslie; Moosdorf, Nils; Hartmann, Jens; Durr, Hans H.; Manning, Andrew H.; van Beek, Ludovicus P. H.; Jellinek, A. Mark

    2011-01-01

    Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of -5 x 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change.

  2. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    NASA Astrophysics Data System (ADS)

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, P.; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Nouvellon, Y.; Scholes, R.; Kutsch, W.

    2012-02-01

    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  3. Combining surface reanalysis and remote sensing data for monitoring evapotranspiration

    USGS Publications Warehouse

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, Pat; Williams, C.; Ardö, J.; Marie, B.; Cappelaere, B.; Grandcourt, A.; Nickless, A.; Noubellon, Y.; Scholes, R.; Kutsch, W.

    2012-01-01

    Climate change is expected to have the greatest impact on the world's poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled actual evapotranspiration (AET), a key input in continental-scale hydrologic models. In this study, a model driven by dynamic canopy AET was combined with the Global Land Data Assimilation System realization of the NOAH Land Surface Model (GNOAH) wet canopy and soil AET for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against AET from the GNOAH model and dynamic model using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance are at humid sites with dense vegetation, while performance at semi-arid sites is poor, but better than individual models. The reduction in errors using the hybrid model can be attributed to the integration of a dynamic vegetation component with land surface model estimates, improved model parameterization, and reduction of multiplicative effects of uncertain data.

  4. Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image

    NASA Astrophysics Data System (ADS)

    Wicaksono, Pramaditya; Danoedoro, Projo; Hartono, Hartono; Nehren, Udo; Ribbe, Lars

    2011-11-01

    Mangrove forest is an important ecosystem located in coastal area that provides various important ecological and economical services. One of the services provided by mangrove forest is the ability to act as carbon sink by sequestering CO2 from atmosphere through photosynthesis and carbon burial on the sediment. The carbon buried on mangrove sediment may persist for millennia before return to the atmosphere, and thus act as an effective long-term carbon sink. Therefore, it is important to understand the distribution of carbon stored within mangrove forest in a spatial and temporal context. In this paper, an effort to map carbon stocks in mangrove forest is presented using remote sensing technology to overcome the handicap encountered by field survey. In mangrove carbon stock mapping, the use of medium spatial resolution Landsat 7 ETM+ is emphasized. Landsat 7 ETM+ images are relatively cheap, widely available and have large area coverage, and thus provide a cost and time effective way of mapping mangrove carbon stocks. Using field data, two image processing techniques namely Vegetation Index and Linear Spectral Unmixing (LSU) were evaluated to find the best method to explain the variation in mangrove carbon stocks using remote sensing data. In addition, we also tried to estimate mangrove carbon sequestration rate via multitemporal analysis. Finally, the technique which produces significantly better result was used to produce a map of mangrove forest carbon stocks, which is spatially extensive and temporally repetitive.

  5. Hyperspectral Remote Sensing of Atmosphere and Surface Properties

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Yang, Ping

    2011-01-01

    Atmospheric Infrared Sounder (AIRS), Infrared Atmospheric Sounding Interferometer (IASI), and Cross-track Infrared Sounder (CrIS) are all hyper-spectral satellite sensors with thousands of spectral channels. Top of atmospheric radiance spectra measured by these sensors contain high information content on atmospheric, cloud, and surface properties. Exploring high information content contained in these high spectral resolution spectra is a challenging task due to computation e ort involved in modeling thousands of spectral channels. Usually, only very small fractions (4{10 percent) of the available channels are included in physical retrieval systems or numerical weather forecast (NWP) satellite data assimilations. We will describe a method of simultaneously retrieving atmospheric temperature, moisture, cloud, and surface properties using all available spectral channels without sacrificing computational speed. The essence of the method is to convert channel radiance spectra into super-channels by an Empirical Orthogonal Function (EOF) transformation. Because the EOFs are orthogonal to each other, about 100 super-channels are adequate to capture the information content of the radiance spectra. A Principal Component-based Radiative Transfer Model (PCRTM) developed at NASA Langley Research Center is used to calculate both the super-channel magnitudes and derivatives with respect to atmospheric profiles and other properties. There is no need to perform EOF transformations to convert super channels back to spectral space at each iteration step for a one-dimensional variational retrieval or a NWP data assimilation system. The PCRTM forward model is also capable of calculating radiative contributions due to multiple-layer clouds. The multiple scattering effects of the clouds are efficiently parameterized. A physical retrieval algorithm then performs an inversion of atmospheric, cloud, and surface properties in super channel domain directly therefore both reducing the

  6. Identifying and Mapping Seasonal Surface Water Frost with MGS TES

    NASA Astrophysics Data System (ADS)

    Bapst, J.; Bandfield, J. L.; Wood, S. E.

    2013-12-01

    The Thermal Emission Spectrometer (TES) visible/near-infrared and thermal infrared bolometers measured surface broadband albedo and temperature for more than three Mars years. As seasons progress on Mars, surface temperatures may fall below the frost point of volatiles in the atmosphere (namely, carbon dioxide and water). Systematic mapping of the spatial and temporal occurrence of these volatiles in the martian atmosphere, on the surface, and in the subsurface has shown their importance in understanding the climate of Mars. However, few studies have investigated seasonal surface water frost and its role in the global water cycle. We examine zonally-averaged TES daytime albedo, temperature, and water vapor abundance data [after Smith, 2004] to map the presence of surface water frost on Mars. Surface water frost occurs in the polar and mid latitudes, in regions with surface temperatures less than 220 K and above 150 K, and can significantly increase albedo relative to the bare surface. In the northern hemisphere water frost is most apparent in late fall/early winter, before the onset of carbon dioxide frost. Dust storms occurring near northern winter solstice affect albedo data and prevent us from putting a latitudinal lower limit on the water frost in the northern hemisphere. Regardless, seasonal water frost occurs at least as low as 48°N in Utopia Planitia, beginning at Ls=~230°, as observed by Viking Lander 2 [Svitek and Murray, 1990]. Daytime surface water frost was also observed at the Phoenix Lander site (68°N) beginning at Ls=~160° [Cull et al., 2010]. The timing of albedo variations observed by TES agree relatively well with lander observations of seasonal frost. Seasonal water frost is not detected during fall in the southern hemisphere. A potential explanation for this discrepancy, compared with frost detections in the north, is the disparity in atmospheric water vapor abundance between the two hemispheres. The frost point temperatures for water vapor

  7. Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature

    NASA Astrophysics Data System (ADS)

    Marques da Silva, J. R.; Damásio, C. V.; Sousa, A. M. O.; Bugalho, L.; Pessanha, L.; Quaresma, P.

    2015-06-01

    Pest risk maps for agricultural use are usually constructed from data obtained from in-situ meteorological weather stations, which are relatively sparsely distributed and are often quite expensive to install and difficult to maintain. This leads to the creation of maps with relatively low spatial resolution, which are very much dependent on interpolation methodologies. Considering that agricultural applications typically require a more detailed scale analysis than has traditionally been available, remote sensing technology can offer better monitoring at increasing spatial and temporal resolutions, thereby, improving pest management results and reducing costs. This article uses ground temperature, or land surface temperature (LST), data distributed by EUMETSAT/LSASAF (with a spatial resolution of 3 × 3 km (nadir resolution) and a revisiting time of 15 min) to generate one of the most commonly used parameters in pest modeling and monitoring: "thermal integral over air temperature (accumulated degree-days)". The results show a clear association between the accumulated LST values over a threshold and the accumulated values computed from meteorological stations over the same threshold (specific to a particular tomato pest). The results are very promising and enable the production of risk maps for agricultural pests with a degree of spatial and temporal detail that is difficult to achieve using in-situ meteorological stations.

  8. Role of remote sensing in Bay measurements

    NASA Technical Reports Server (NTRS)

    Mugler, J. P., Jr.; Godfrey, J. P.; Hickman, G. D.; Hovis, W. G.; Pearson, A. O.; Weaver, K. N.

    1978-01-01

    Remote measurements of a number of surface or near surface parameters for baseline definition and specialized studies, remote measurements of episodic events, and remote measurements of the Bay lithosphere are considered in terms of characterizing and understanding the ecology of the Chesapeake Bay. Geologic processes and features best suited for information enhancement by remote sensing methods are identified. These include: (1) rates of sedimentation in the Bay; (2) rates of erosion of Bay shorelines; (3) spatial distribution and geometry of aquifers; (4) mapping of Karst terrain (sinkholes); and (5) mapping of fracture patterns. Recommendations for studying problem areas identified are given.

  9. Color Shaded-Relief and Surface-Classification Maps of the Fish Creek Area, Harrison Bay Quadrangle, Northern Alaska

    USGS Publications Warehouse

    Mars, John L.; Garrity, Christopher P.; Houseknecht, David W.; Amoroso, Lee; Meares, Donald C.

    2007-01-01

    Introduction The northeastern part of the National Petroleum Reserve in Alaska (NPRA) has become an area of active petroleum exploration during the past five years. Recent leasing and exploration drilling in the NPRA requires the U.S. Bureau of Land Management (BLM) to manage and monitor a variety of surface activities that include seismic surveying, exploration drilling, oil-field development drilling, construction of oil-production facilities, and construction of pipelines and access roads. BLM evaluates a variety of permit applications, environmental impact studies, and other documents that require rapid compilation and analysis of data pertaining to surface and subsurface geology, hydrology, and biology. In addition, BLM must monitor these activities and assess their impacts on the natural environment. Timely and accurate completion of these land-management tasks requires elevation, hydrologic, geologic, petroleum-activity, and cadastral data, all integrated in digital formats at a higher resolution than is currently available in nondigital (paper) formats. To support these land-management tasks, a series of maps was generated from remotely sensed data in an area of high petroleum-industry activity (fig. 1). The maps cover an area from approximately latitude 70?00' N. to 70?30' N. and from longitude 151?00' W. to 153?10' W. The area includes the Alpine oil field in the east, the Husky Inigok exploration well (site of a landing strip) in the west, many of the exploration wells drilled in NPRA since 2000, and the route of a proposed pipeline to carry oil from discovery wells in NPRA to the Alpine oil field. This map area is referred to as the 'Fish Creek area' after a creek that flows through the region. The map series includes (1) a color shaded-relief map based on 5-m-resolution data (sheet 1), (2) a surface-classification map based on 30-m-resolution data (sheet 2), and (3) a 5-m-resolution shaded relief-surface classification map that combines the shaded

  10. Mapping surface charge density with a scanning nanopipette

    NASA Astrophysics Data System (ADS)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Besenbacher, Flemming; Dong, Mingdong

    2015-03-01

    Characterisation of the surface charge density (SCD) is important in interface and colloid science, and especially local variations in SCD of biological samples are of keen interest. The surface charge of lipid bilayers governs the uptake of charged particles and guides cell-cell interactions. As the electrostatic potential is screened by high physiological salt concentrations, direct probing of the potential can only be performed at a sub nanometer distance; therefore it was impossible to directly measure the SCD under physiological conditions. Yet the charged surface attracts counter ions leading to an enhanced ionic concentration near the surface, creating a measurable surface conductivity. In this study we measure SCD using a scanning ion-conductance microscope (SICM) setup, where the electrolyte current through a nanopipette is monitored as the pipette is positioned in the vicinity of the sample. We investigate the current dependency of SCD and pipette potential using numerical solutions to Poisson and Nernst-Planck equations and characterise a complex system governed by a multitude of factors such as pipette size, geometry and charge. We then propose an imaging method and prove its feasibility by mapping the surface charge density of phase separated lipid bilayers.

  11. [Mapping sensitivity of surface waters to acidification in China].

    PubMed

    Ye, Xuemei; Hao, Jiming; Duan, Lei; Zhou, Zhongping

    2002-01-30

    Acidification of surface waters can be decided by some environmental factors, such as soil's buffering capacity, neutralization capacity of bedrock to acid deposition and types of land use, among which the most important factor is the soil's resistance to acidification. Therefore, information about soils, geology and land use can be used to predict the regional occurrence of acidification surface waters under different flows. In this paper, information and data about Chinese soils, geology and land use types were collected to determine and to map the sensitivity of surface waters to acidification. Results showed that in China, most surface waters were not sensitive to acidification. The few most sensitive surface waters were located in the north part of Northeastern China, accounting for 2.67% of all the country land. It was the combined results of strongly acidified ortho podzolic soil, acidified bedrock and coniferous forest. Surface waters which were not very sensitive to acidification were distributed both in the region of dark brown forest soil in Northeastern China and in the ferralsol and yellow-brown earth area in Southern China, occupying 15.2% of all the country land. The other surface waters which distributed on 82.11% of all the country land were not sensitive to acidification at all. Most in the Northern China because of the high resistance of soils to acidification and the others were in the Southern China where calcareous soils and agricultural lands were widely distributed. Since soils were quite resistant to acid, acidification of surface waters of large area will not likely occur in the southern region of China suffering from heavy acid deposition in the near future. Nevertheless, the acid deposition in Northern China should be controlled as soon as possible in case that acidified surface waters will be found there.

  12. Subpixel mapping on remote sensing imagery using a prediction model combining wavelet transform and radial basis function neural network

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoyan; Guo, Zhongyang; Zhang, Liquan; Xu, Wencheng

    2009-12-01

    Soft classification methods can be used for mixed-pixel classification on remote sensing imagery by estimating different land cover class fractions of every pixel. However, the spatial distribution and location of these class components within the pixel remain unknown. To map land cover at subpixel scale and increase the spatial resolution of land cover classification maps, in this paper, a prediction model combining wavelet transform and Radial Basis Functions (RBF) neural network, abbreviated as Wavelet-RBFNN, is constructed by predicting high-frequency wavelet coefficients from low-frequency coefficients at the same resolution with RBF network and taking wavelet coefficients at coarser resolution as training samples. According to different land cover class fraction images obtained from mixed-pixel classification, based on the assumption of neighborhood dependence of wavelet coefficients, subpixel mapping on remote sensing imagery can be accomplished through two steps, i.e., prediction of land cover class compositions within subpixels and hard classification. The experimental results obtained with artificial images, QuickBird image and Landsat 7 ETM+ image indicate that the subpixel mapping method proposed in this paper can successfully produce super-resolution land cover classification maps from remote sensing imagery, outperforming cubic B-spline and Kriging interpolation method in visual effect and prediction accuracy. The Wavelet-RBFNN model can also be applied to simulate higher spatial resolution image, and automatically identify and locate land cover targets at the subpixel scales, when the cost and availability of high resolution imagery prohibit its use in many areas of work.

  13. Rapidmap - rapid mapping and information dissemination for disasters using remote sensing and geoinformation

    NASA Astrophysics Data System (ADS)

    Baltsavias, E.; Cho, K.; Remondino, F.; Soergel, U.; Wakabayashi, H.

    2013-10-01

    FP7 INCO project frame for enhancing research cooperation between European countries and Japan on two topics, one of which is Resilience Against Disasters. The project started in June 2013 and has a duration of 2 years. In the paper, we will outline the aims of the project, methodologies and techniques to be developed and some test data. Remote Sensing (RS) and Geographic Information System (GIS) are powerful technologies for collecting useful information on the damages of disasters in short time. However, since many different types of RS data are available (satellite, aerial, UAV, terrestrial), data co-registration, information integration and feature extraction need reliable and advanced methodologies. In the RAPIDMAP project, we will develop practical ways to integrate RS data processing tools in near-real-time and allow users to use this data soon after the disasters by means of WebGIS tools. This will help not only decision makers but also end-users in the disaster area. The key components of this project are: (1) Near-real-time monitoring: the procedure of near-real-time monitoring with satellites as well as Unmanned Airborne Vehicles (UAV) will be set up and demonstrated. (2) Data co-registration: in disasters, various images as well as maps come from different sources. The co-registration of multiple images is a key technology for information integration. In this project, a system to co-register multiple images in near-real-time will be developed. (3) Data fusion and change detection: one of the advantages of RS is to collect information with multiple sensors. Various methods for fusing optical with active microwave (SAR) sensor data for information extraction and change detection will be developed. (4) Decision Support System (DSS) based on WebGIS technologies: the collected and integrated information has to be easily accessible and visible by decision makers and end-users in near-real-time and worldwide. By using WebGIS technologies, wireless networks and

  14. Mapping Woody Plant Encroachment in Grassland Using Multiple Source Remote Sensing images: Case Study in Oklahoma

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Zhang, G.; Zhang, Y.; Zou, Z.; Zhou, Y.; Wu, X.; Bajgain, R.

    2015-12-01

    Woody plant encroachment (mainly Juniperus virginiana, a coniferous evergreen tree) in the native grassland has been rapidly increasing in the U.S. Southern Great Plains, largely triggered by overgrazing domestic livestock, fire suppression, and changing rainfall regimes. Increasing dense woody plants have significant implications for local grassland ecosystem dynamics, such as carbon storage, soil nutrient availability, herbaceous forage production, livestock, watershed hydrology and wildlife habitats. However, very limited data are available about the spatio-temporal dynamics of woody plant encroachment to the native grassland at regional scale. Data from remotes sensing could potentially provide relevant information and improve the conversion of native grassland to woody plant encroachment. Previous studies on woody detection in grassland mainly conducted at rangeland scale using airborne or high resolution images, which is sufficient to monitor the dynamics of woody plant encroachment in local grassland. This study examined the potential of medium resolution images to detect the woody encroachment in tallgrass prairie. We selected Cleveland county, Oklahoma, US. as case study area, where eastern area has higher woody coverage than does the western area. A 25-m Phased Array Type L-band Synthetic Aperture Radar (PALSAR, N36W98) image was used to map the trees distributed in the grassland. Then, maximum enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) in the winter calculated from time-series Landsat images was used to identify the invaded woody species (Juniperus virginiana) through phenology-based algorithm. The resulting woody plant encroachment map was compared with the results extracted from the high resolution images provided by the National Agriculture Imagery Program (NAIP). Field photos were also used to validate the accuracy. These results showed that integrating PALSAR and Landsat had good performance to identify the

  15. Automated mapping of linear dunefield morphometric parameters from remotely-sensed data

    NASA Astrophysics Data System (ADS)

    Telfer, M. W.; Fyfe, R. M.; Lewin, S.

    2015-12-01

    Linear dunes are among the world's most common desert dune types, and typically occur in dunefields arranged in remarkably organized patterns extending over hundreds of kilometers. The causes of the patterns, formed by dunes merging, bifurcating and terminating, are still poorly understood, although it is widely accepted that they are emergent properties of the complex system of interactions between the boundary layer and an often-vegetated erodible substrate. Where such dunefields are vegetated, they are typically used as extensive rangeland, yet it is evident that many currently stabilized dunefields have been reactivated repeatedly during the late Quaternary. It has been suggested that dunefield patterning and the temporal evolution of dunefields are related, and thus there is considerable interest in better understanding the boundary conditions controlling dune patterning, especially given the possibility of reactivation of currently-stabilized dunefields under 21st century climate change. However, the time-consuming process of manual dune mapping has hampered attempts at quantitative description of dunefield patterning. This study aims to develop and test methods for delineating linear dune trendlines automatically from freely-available remotely sensed datasets. The highest resolution free global topographic data presently available (Aster GDEM v2) proved to be of marginal use, as the topographic expression of the dunes is of the same order as the vertical precision of the dataset (∼10 m), but in regions with relatively simple patterning it defined dune trends adequately. Analysis of spectral data (panchromatic Landsat 8 data) proved more promising in five of the six test sites, and despite poor panchromatic signal/noise ratios for the sixth site, the reflectance in the deep blue/violet (Landsat 8 Band 1) offers an alternative method of delineating dune pattern. A new edge detection algorithm (LInear Dune Optimized edge detection; LIDO) is proposed, based on

  16. Artificial Groundwater Recharge Zones Mapping Using Remote Sensing and GIS: A Case Study in Indian Punjab

    NASA Astrophysics Data System (ADS)

    Singh, Amanpreet; Panda, S. N.; Kumar, K. S.; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.

  17. Mapping crop distribution in administrative districts of southwest Germany using multi-sensor remote sensing data

    NASA Astrophysics Data System (ADS)

    Conrad, Christopher; Goessl, Achim; Lex, Sylvia; Metz, Annekatrin; Esch, Thomas; Konrad, Christoph; Goettlicher, Gerold; Dech, Stefan

    2010-10-01

    In the face of global change, concepts for sustainable land management are increasingly requested, among others to cope with the rapidly increasing energy demand. High resolution land use classifications can contribute spatially explicit information suitable for land use planning. In this study, the coverage of cereal crops was derived for two regions in Baden-Wuerttemberg and Rhineland-Palatinate - Germany, as well as in the Alsace - France, by classifying multitemporal and multi-scale remote sensing data. The presented methodology shall be used as basic input for high resolution bio-energy potential calculations. Segmentation of pan-merged 15 m Landsat 7 ETM+ data and pre-classification with CORINE data was applied to derive homogenous objects assumed to approximate the field boundaries of agricultural areas. Seven acquisitions of moderate resolution IRS-P6 AWiFS data (60 m) recorded during the vegetation period of 2007 were used for the subsequent classification of the objects. Multiple classification and regression trees (random forest) were selected as classification algorithm due to their ability to consider non-linear distributions of class values in the feature space. Training and validation was based on a subset of 1724 samplings of the official European land use survey LUCAS (Land Use/ Cover Area Frame Statistical Survey). Altogether, the object based approach resulted in an overall accuracy of 74 %. The use of 15 m Landsat for mapping field objects were identified to be one major obstacle caused by the characteristically small agricultural units in Southwest Germany. Improvements were also achieved by correcting the LUCAS samples for location errors.

  18. Analysis of Multitemporal and Multisensor Remote Sensing Data for Crop Rotation Mapping

    NASA Astrophysics Data System (ADS)

    Waldhoff, G.; Curdt, C.; Hoffmeister, D.; Bareth, G.

    2012-07-01

    For accurate regional modelling of (agro-)ecosystems, up-to-date land use information is essential to assess the impact of the permanent changing vegetation cover of agricultural land on matter fluxes in the soil-vegetation-atmosphere (SVA) system. In this regard, officially available land use datasets are mostly inadequate, since they only provide generalised information concerning agricultural land use. In this contribution, we present our work for the year 2008 on the generation of multi temporal, disaggregated land use data with the goal to derive a crop rotation map for the years 2008-2010 for the study area of the research project CRC/TR 32. For this purpose, the Multi-Data Approach (MDA) was used to integrate multitemporal remote sensing classifications with additional spatial information by the means of expert knowledge-based production rules. Our results show that the information content of a land use dataset is considerably enhanced by combining crop type information of multiple observations during each growing season. For a sufficient temporal coverage, the usage of multiple sensors is generally inevitable. Thus, datasets of ASTER, Landsat TM & ETM+ as well as IRS-P6 were incorporated. In terms of classification accuracy our analysis yielded similar results with support vector machines (SVM) and the classical maximum likelihood classifier (MLC) for all sensors, with SVM being mostly only slightly better. For the refinement of land parcel boundaries and the reduction of misclassification, the incorporation of the 'field block' (FB) vector information was very effective. 'Field blocks', provided by the chamber of agriculture, are coherent agricultural areas with (relatively) permanent boundaries. As a result, a much more accurate differentiation of agricultural land and non-agricultural land was achieved. With the enhanced annual MDA land use data of the three consecutive years containing crop type information sufficient information is available for

  19. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab.

    PubMed

    Singh, Amanpreet; Panda, S N; Kumar, K S; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources. PMID:23775493

  20. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab.

    PubMed

    Singh, Amanpreet; Panda, S N; Kumar, K S; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.

  1. Putting us on the Map: Remote Sensing Investigation of the Ancient Maya Landscape

    NASA Technical Reports Server (NTRS)

    Sever, Thomas L.; Saturno, William; Irwin, Daniel E.

    2004-01-01

    A common problem for archaeologists studying ancient settlement in the Maya Lowlands is overcoming the dense vegetation in order to obtain an accurate regional perspective of the presence of archaeological sites, their exact locations and their overall extents. Most often this is done by extensive ground surveys in which many individuals chop parallel paths through the vegetation in search of sites. Once a site is found an effort is made to mark its location on a regional map and to explore its perimeter. Obtaining locational information has been made dramatically easier in recent years with the advent of improved Global Positioning Systems (GPS), however the process of initial identification of sites and the determination of their borders is exceedingly labor intensive and has remained relatively unchanged since the beginning of settlement surveys in the region in the 1950's. Currently, we are revolutionizing settlement survey in the Maya Lowlands by using remotely sensed data from IKONOS, Quickbird, and Eol, satellites. The Ancient Maya built their cities, towns and even their smallest hamlets using excavated limestone and lime plasters. We propose that the decay of these structures provides a unique microenvironment for the growth of vegetation as the levels of moisture and nutrition within the ruins vary substantially from those in the surrounding forest. These microenvironmental differences on the ground are likewise represented by compositional differences in the forest canopy both in the species present and in leaf color (representing moisture/nutritional stress) visible through the analysis of high- resolution satellite data. In this way the detailed analysis of forest composition can reveal a detailed picture of the ancient settlements that lie beneath it. Preliminary examinations using this technique have been very successful and we are refining these techniques in order to efficiently comprehend the details of Ancient Maya settlement in the Lowlands.

  2. Putting Us on the Map: Remote Sensing Investigation of the Ancient Maya Landscape

    NASA Technical Reports Server (NTRS)

    Sever, Thomas L.; Saturno, William

    2004-01-01

    A common problem for archaeologists studying ancient settlement in the Maya Lowlands is overcoming the dense vegetation in order to obtain an accurate regional perspective of the presence of archaeological sites, their exact locations and their overall extents. Most often this is done by extensive ground surveys in which many individuals chop parallel paths through the vegetation in search of sites. Once a site is found an effort is made to mark its location on a regional map and to explore its perimeter. Obtaining locational information has been made dramatically easier in recent years with the advent of improved Global Positioning Systems (GPS), however the process of initial identification of sites and the determination of their borders is exceedingly labor intensive and has remained relatively unchanged since the beginning of settlement surveys in the region in the 1950 s. Currently, we are revolutionizing settlement survey in the Maya Lowlands by using remotely sensed data from IKONOS, Quickbird, and Eo 1, satellites as well as airborne AIRSAR radar data. The Ancient Maya built their cities, towns and even their smallest hamlets using excavated limestone and lime plasters. We propose that the decay of these structures provides a unique microenvironment for the growth of vegetation as the levels of moisture and nutrition within the ruins vary substantially from those in the surrounding forest. These microenvironmental differences on the ground are likewise represented by compositional differences in the forest canopy both in the species present and in leaf color (representing moisture/nutritional stress) visible through the analysis of high-resolution satellite data. In this way the detailed analysis of forest composition can reveal a detailed picture of the ancient settlements that lie beneath it. Preliminary examinations using this technique have been very successful and we are refining these techniques in order to efficiently comprehend the details of

  3. Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps.

    PubMed

    Kimball, J. S.; Keyser, A. R.; Running, S. W.; Saatchi, S. S.

    2000-06-01

    An ecological process model (BIOME-BGC) was used to assess boreal forest regional net primary production (NPP) and response to short-term, year-to-year weather fluctuations based on spatially explicit, land cover and biomass maps derived by radar remote sensing, as well as soil, terrain and daily weather information. Simulations were conducted at a 30-m spatial resolution, over a 1205 km(2) portion of the BOREAS Southern Study Area of central Saskatchewan, Canada, over a 3-year period (1994-1996). Simulations of NPP for the study region were spatially and temporally complex, averaging 2.2 (+/- 0.6), 1.8 (+/- 0.5) and 1.7 (+/- 0.5) Mg C ha(-1) year(-1) for 1994, 1995 and 1996, respectively. Spatial variability of NPP was strongly controlled by the amount of aboveground biomass, particularly photosynthetic leaf area, whereas biophysical differences between broadleaf deciduous and evergreen coniferous vegetation were of secondary importance. Simulations of NPP were strongly sensitive to year-to-year variations in seasonal weather patterns, which influenced the timing of spring thaw and deciduous bud-burst. Reductions in annual NPP of approximately 17 and 22% for 1995 and 1996, respectively, were attributed to 3- and 5-week delays in spring thaw relative to 1994. Boreal forest stands with greater proportions of deciduous vegetation were more sensitive to the timing of spring thaw than evergreen coniferous stands. Similar relationships were found by comparing simulated snow depth records with 10-year records of aboveground NPP measurements obtained from biomass harvest plots within the BOREAS region. These results highlight the importance of sub-grid scale land cover complexity in controlling boreal forest regional productivity, the dynamic response of the biome to short-term interannual climate variations, and the potential implications of climate change and other large-scale disturbances.

  4. Landslide Mapping and Modeling Using Remote Sensing, GIS and Statistical Analysis of District Muzaffarabad, Pakistan

    NASA Astrophysics Data System (ADS)

    Khalid, Nimrah; Mushtaq, Saman

    2016-07-01

    Occurrence factors of Landslide hazard can be natural such as high slopes, geological conditions and lineaments, faults, rain, and river cutting. Man-made factors such as road cuttings, deforestation or development can also contribute to the landsliding. The focus of this study was to model those landslides susceptible prone to hazard areas which in turn can help for the development, urbanization and for setting up rules or regulations to save nature and environment of the area. The focal of the current research work was the Earthquake of October, 2005 also known as Kashmir Earthquake, the epicenter location of the earthquake 34°29'35″N 73°37'44″E at height of ~2000 from mean sea level and ~20 Km North-East from Muzaffarabad city, Azad Jammu & Kashmir, at the scale of 1:50000 Geological map of 43-F/11, tehsil Nauseri area. The techniques used in this research is based on theorem of Bayes's bivariat statistic (weight of evidence) which predicts the events geographically and on input layers and the relationship of event. A relationship between event of landslide and factors was studied and analyzed using this method. Subsequently a prediction of the occurrence of the spatial location of the landslide event was established successfully. The relationship of distribution of landslide and factors layers was calculated using the statistical methods which enabled to predict the landslides zones in different areas. The methodology applied proved that the success rate was 80% landslide occurred in 18% area and prediction rate was 70% of landslides occurred in 70% of area. The use satellite remote sensing data, and GIS with the integration of statistical method are definitely an effective tool for predicting the future landslide prone areas.

  5. Mapping the global land surface using 1 km AVHRR data

    USGS Publications Warehouse

    Lauer, D.T.; Eidenshink, J.C.

    1998-01-01

    The scientific requirements for mapping the global land surface using 1 km advanced very high resolution radiometer (AVHRR) data have been set forth by the U.S. Global Change Research Program; the International Geosphere Biosphere Programme (IGBP); The United Nations; the National Oceanic and Atmospheric Administration (NOAA); the Committee on Earth Observations Satellites; and the National Aeronautics and Space Administration (NASA) mission to planet Earth (MTPE) program. Mapping the global land surface using 1 km AVHRR data is an international effort to acquire, archive, process, and distribute 1 km AVHRR data to meet the needs of the international science community. A network of AVHRR receiving stations, along with data recorded by NOAA, has been acquiring daily global land coverage since April 1, 1992. A data set of over 70,000 AVHRR images is archived and distributed by the United States Geological Survey (USGS) EROS Data Center, and the European Space Agency. Under the guidance of the IGBP, processing standards have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are for the study of surface vegetation condition, mapping land cover, and deriving biophysical characteristics of terrestrial ecosystems. A time-series of 54 10-day global vegetation index composites for the period of April 1, 1992 through September 1993 has been produced. The production of a time-series of 33 10-day global vegetation index composites using NOAA-14 data for the period of February 1, 1995 through December 31, 1995 is underway. The data products are available from the USGS, in cooperation with NASA's MTPE program and other international organizations.

  6. VEM on VERITAS - Retrieval of global infrared surface emissivity maps of Venus and expectable retrieval uncertainties

    NASA Astrophysics Data System (ADS)

    Kappel, David; Arnold, Gabriele; Haus, Rainer; Helbert, Jörn; Smrekar, Suzanne; Hensley, Scott

    2016-04-01

    Even though Venus is in many respects the most Earth-like planet we know today, its surface composition and geology are not well understood yet. The major obstacle is the extremely dense, hot, and opaque atmosphere that complicates both in situ measurements and infrared remote sensing, the wavelength range of the latter often being the range of choice due to its coverage of many spectral properties diagnostic to the surface material's composition and texture. Thermal emissions of the hot surface depend on surface temperature and on spectral surface emissivity. As this emitted radiation wells upward, it is strongly attenuated through absorption and multiple scattering by the gaseous and particulate components of the dense atmosphere, and it is superimposed by thermal atmospheric emissions. While surface information this way carried to space is completely lost in the scattered sunlight on the dayside, a few narrow atmospheric transparency windows around 1 μm allow the sounding of the surface with nightside measurements. The successfully completed VEX ('Venus Express') mission, although not dedicated to surface science, enabled a first glimpse at much of the southern hemisphere's surface through the nightside spectral transparency windows covered by VIRTIS-M-IR ('Visible and InfraRed Thermal Imaging Spectrometer, Mapping channel in the IR', 1.0-5.1 μm). Two complementary approaches, a fast semi-empiric technique on the one hand, and a more fundamental but resource-intensive method based on a fully regularized Bayesian multi-spectrum retrieval algorithm in combination with a detailed radiative transfer simulation program on the other hand, were both successfully applied to derive surface emissivity data maps. Both methods suffered from lack of spatial coverage and a small SNR as well as from surface topography maps not sufficiently accurate for the definition of suitable boundary conditions for surface emissivity retrieval. The recently proposed VERITAS mission

  7. Mapping flood prone areas in southern Brazil: a combination of frequency analysis, HAND algorithm and remote sensing methods

    NASA Astrophysics Data System (ADS)

    Fabris Goerl, Roberto; Borges Chaffe, Pedro Luiz; Marcel Pellerin, Joel Robert; Altamirano Flores, Juan Antonio; Josina Abreu, Janete; Speckhann, Gustavo Andrei; Mattos Sanchez, Gerly

    2015-04-01

    Floods disaster damages several people around the world. There is a worldwide increasing trend of natural disasters frequency and their negative impacts related to the population growth and high urbanization in natural hazards zones. In Santa Catarina state, such as almost all southern Brazilian territory, floods are a frequent hydrological disaster. In this context, flood prone areas map is a important tool to avoid the construction of new settlements in non-urbanizations areas. The present work aimed to map flood prone areas in Palhoça City, Southern Brazil combining high resolution digital elevations data, remote sensing information, frequency analysis and High Above Nearest Drainage (HAND) algorithm. We used 17 years of daily discharge and stage data to calculate flood probability and return period. Remote Sensing (RS) with CBERS HRC image with 2,7m resolution was used. This image was taken one day after one flood occurrence and a band difference was used to extract the flood extent. HAND using DEM to calculate the altimetric difference between channel pixel and adjacent terrain values. All morphometric attributes used in HAND were extracted directly from the high resolution DEM (1m). Through CBERS image areas where flood level was higher than 0.5m were mapped. There is some kind of uncertain in establish HAND classes, since only distance to the channel was take in account. Thus, using other hydrological or spatial information can reduce this uncertain. To elaborate the final flood prone map, all this methods were combined. This map was classified in three main classes based on return period. It was notices that there is a strong spatial correlation between high susceptibility flood areas and geomorphological features like floodplains and Holocene beach ridges, places where water table emerges frequently. The final map was classified using three different colors (red, yellow and green) related to high, medium an law susceptibility flood areas. This mapping

  8. Applications of remote sensing and GIS in surface hydrology: Snow cover, soil moisture and precipitation

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei

    Studies on surface hydrology can generally be classified into two categories, observation for different components of surface water, and modeling their dynamic movements. This study only focuses on observation part of surface water components: snow cover, soil moisture, and precipitation. Moreover, instead of discussion on the detailed algorithm and instrument technique behind each component, this dissertation pours efforts on analysis of the standard remotely sensed products and their applications under different settings. First in Chapter 2, validation of MODIS Terra 8-day maximum snow cover composite (MOD10A2) in the Northern Xinjiang, China, from 2000-2006, shows that the 8-day MODIS/Terra product has high agreements with in situ measurements as the in situ snow depth is larger or equal to 4 cm, while the agreement is low for the patchy snow as the in situ snow depth less than 4 cm. According to the in situ observation, this chapter develops an empirical algorithm to separate the cloud-covered pixels into snow and no snow. Continued long-term production of MODIS-type snow cover product is critical to assess water resources of the study area, as well as other larger scale global environment monitoring. Terra and Aqua satellites carry the same MODIS instrument and provide two parallel MODIS daily snow cover products at different time (local time 10:30 am and 1:30 pm, respectively). Chapter 3 develops an algorithm and automated scripts to combine the daily MODIS Terra (MOD10A1) and Aqua (MYD10A1) snow cover products, and to automatically generate multi-day Terra-Aqua snow cover image composites, with flexible starting and ending dates and a user-defined cloud cover threshold. Chapter 4 systematically compares the difference between MODIS Terra and Aqua snow cover products within a hydrologic year of 2003-2004, validates the MODIS Terra and Aqua snow cover products using in situ measurements in Northern Xinjiang, and compares the accuracy among the standard MODIS

  9. Remote control of tissue interactions via engineered photo-switchable cell surfaces.

    PubMed

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M; Yousaf, Muhammad N

    2014-01-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies. PMID:25204325

  10. Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M.; Yousaf, Muhammad N.

    2014-09-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.

  11. Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces

    PubMed Central

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M.; Yousaf, Muhammad N.

    2014-01-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies. PMID:25204325

  12. In situ remote RF plasma cleaning and surface characterization after silicon dioxide/silicon RIE

    NASA Astrophysics Data System (ADS)

    Ying, Hong

    In IC fabrication, etching (patterning) technology is one of the fundamental techniques. Dry etching has replaced wet etching for patterning micron and submicron features in advanced microelectronics device fabrication. Due to the dry etching induced surface modifications and damage, post-etch cleanings are necessary and critical to device fabrication. Similarly, dry cleaning or gas phase cleaning technologies have shown promise in cleaning processes where conventional wet cleans are impractical or inadequate. The focus of this thesis is the investigation of dry surface cleaning and conditioning after reactive ion etching (RIE) of SiO2 on Si. The approach is to employ in situ remote RF H2 plasma and H2/SiH4 plasma processes for RIE induced CFx residue removal and a final H-passivation of the Si surface. The major scientific issue is to develop understanding of the plasma processes that effectively remove contaminants yet do not damage existing layers. Our investigation suggests that a remote H2 plasma process is effective in removing RIE induced CFx residue and chlorine-containing residue. With the addition of ˜0.1% of SiH4, the remote H 2/SiH4 plasma has proven to be more effective in removal of residual oxide contamination. The plasma cleaning processes have been successfully developed to be fully in situ and cluster tool compatible. The processes were optimized for surface residue and via residue removal on 150 mm interconnect patterned wafers. SEM images showed that a significant amount of surface and via residue were removed. Finally, by using the cobalt silicide formation process and the Schottky diode electrical properties as two test vehicles, we demonstrated the importance of post-RIE cleaning and evaluated the remote plasma cleaning techniques as dry surface cleaning processes.

  13. Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data

    PubMed Central

    Stevens, Forrest R.; Gaughan, Andrea E.; Linard, Catherine; Tatem, Andrew J.

    2015-01-01

    High resolution, contemporary data on human population distributions are vital for measuring impacts of population growth, monitoring human-environment interactions and for planning and policy development. Many methods are used to disaggregate census data and predict population densities for finer scale, gridded population data sets. We present a new semi-automated dasymetric modeling approach that incorporates detailed census and ancillary data in a flexible, “Random Forest” estimation technique. We outline the combination of widely available, remotely-sensed and geospatial data that contribute to the modeled dasymetric weights and then use the Random Forest model to generate a gridded prediction of population density at ~100 m spatial resolution. This prediction layer is then used as the weighting surface to perform dasymetric redistribution of the census counts at a country level. As a case study we compare the new algorithm and its products for three countries (Vietnam, Cambodia, and Kenya) with other common gridded population data production methodologies. We discuss the advantages of the new method and increases over the accuracy and flexibility of those previous approaches. Finally, we outline how this algorithm will be extended to provide freely-available gridded population data sets for Africa, Asia and Latin America. PMID:25689585

  14. SMOS sea surface salinity maps of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Olmedo, Estrella; Turiel, Antonio; Ballabrera-Poy, Joaquim; Martinez, Justino; Portabella, Marcos

    2016-04-01

    Salinity and temperature gradients drive the thermohaline circulation of the oceans, and play a key role in the ocean-atmosphere coupling. The strong and direct interactions between the ocean and the cryosphere (primarily through sea ice and ice shelves) is also a key ingredient of the thermohaline circulation. The ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, has the objective measuring soil moisture over the continents and sea surface salinity over the oceans. Although the mission was originally conceived for hydrological and oceanographic studies [1], SMOS is also making inroads in the cryospheric monitoring. SMOS carries an innovative L-band (1.4 GHz, or 21-cm wavelength), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution wide swath (1200-km), and with a 3-day revisit time at the equator, but a more frequent one at the poles. Although the SMOS radiometer operating frequency offers almost the maximum sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) variations, this is rather low, , i.e.,: 90% of ocean SSS values span a range of brightness temperatures of only 5K at L-band. This sensitivity is particularly low in cold waters. This implies that the SSS retrieval requires high radiometric performance. Since the SMOS launch, SSS Level 3 maps have been distributed by several expert laboratories including the Barcelona Expert Centre (BEC). However, since the TB sensitivity to SSS decreases with decreasing sea surface temperature (SST), large retrieval errors had been reported when retrieving salinity values at latitudes above 50⁰N. Two new processing algorithms, recently developed at BEC, have led to a considerable improvement of the SMOS data, allowing for the first time to derive SSS maps in cold waters. The first one is to empirically characterize and correct the systematic biases with six

  15. Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data

    USGS Publications Warehouse

    Yang, Limin; Xian, George Z.; Klaver, Jacqueline M.; Deal, Brian

    2003-01-01

    We developed a Sub-pixel Imperviousness Change Detection (SICD) approach to detect urban land-cover changes using Landsat and high-resolution imagery. The sub-pixel percent imperviousness was mapped for two dates (09 March 1993 and 11 March 2001) over western Georgia using a regression tree algorithm. The accuracy of the predicted imperviousness was reasonable based on a comparison using independent reference data. The average absolute error between predicted and reference data was 16.4 percent for 1993 and 15.3 percent for 2001. The correlation coefficient (r) was 0.73 for 1993 and 0.78 for 2001, respectively. Areas with a significant increase (greater than 20 percent) in impervious surface from 1993 to 2001 were mostly related to known land-cover/land-use changes that occurred in this area, suggesting that the spatial change of an impervious surface is a useful indicator for identifying spatial extent, intensity, and, potentially, type of urban land-cover/land-use changes. Compared to other pixel-based change-detection methods (band differencing, rationing, change vector, post-classification), information on changes in sub-pixel percent imperviousness allow users to quantify and interpret urban land-cover/land-use changes based on their own definition. Such information is considered complementary to products generated using other change-detection methods. In addition, the procedure for mapping imperviousness is objective and repeatable, hence, can be used for monitoring urban land-cover/land-use change over a large geographic area. Potential applications and limitations of the products developed through this study in urban environmental studies are also discussed.

  16. Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing

    NASA Astrophysics Data System (ADS)

    Parajuli, Sagar Prasad; Yang, Zong-Liang; Kocurek, Gary

    2014-09-01

    Mineral dust in the atmosphere has implications for Earth's radiation budget, biogeochemical cycles, hydrological cycles, human health, and visibility. Currently, the simulated vertical mass flux of dust differs greatly among the existing dust models. While most of the models utilize an erodibility factor to characterize dust sources, this factor is assumed to be static, without sufficient characterization of the highly heterogeneous and dynamic nature of dust source regions. We present a high-resolution land cover map of the Middle East and North Africa (MENA) in which the terrain is classified by visually examining satellite images obtained from Google Earth Professional and Environmental Systems Research Institute Basemap. We show that the correlation between surface wind speed and Moderate Resolution Imaging Spectroradiometer deep blue aerosol optical depth (AOD) can be used as a proxy for erodibility, which satisfactorily represents the spatiotemporal distribution of soil-derived dust sources. This method also identifies agricultural dust sources and eliminates the satellite-observed dust component that arises from long-range transport, pollution, and biomass burning. The erodible land cover of the MENA region is grouped into nine categories: (1) bedrock: with sediment, (2) sand deposit, (3) sand deposit: on bedrock, (4) sand deposit: stabilized, (5) agricultural and urban area, (6) fluvial system, (7) stony surface, (8) playa/sabkha, and (9) savanna/grassland. Our results indicate that erodibility is linked to the land cover type and has regional variation. An improved land cover map, which explicitly accounts for sediment supply, availability, and transport capacity, may be necessary to represent the highly dynamic nature of dust sources in climate models.

  17. Remote sensing for precision agriculture: Within-field spatial variability analysis and mapping with aerial digital multispectral images

    NASA Astrophysics Data System (ADS)

    Gopalapillai, Sreekala

    2000-10-01

    Advances in remote sensing technology and biological sensors provided the motivation for this study on the applications of aerial multispectral remote sensing in precision agriculture. The feasibility of using high-resolution multispectral remote sensing for precision farming applications such as soil type delineation, identification of crop nitrogen levels, and modeling and mapping of weed density distribution and yield potential within a crop field was explored in this study. Some of the issues such as image calibration for variable lighting conditions and soil background influence were also addressed. Intensity normalization and band ratio methods were found to be adequate image calibration methods to compensate for variable illumination and soil background influence. Several within-field variability factors such as growth stage, field conditions, nutrient availability, crop cultivar, and plant population were found to be dominant in different periods. Unsupervised clustering of color infrared (CIR) image of a field soil was able to identify soil mapping units with an average accuracy of 76%. Spectral reflectance from a crop field was highly correlated to the chlorophyll reading. A regression model developed to predict nitrogen stress in corn identified nitrogen-stressed areas from nitrogen-sufficient areas with a high accuracy (R2 = 0.93). Weed density was highly correlated to the spectral reflectance from a field. One month after planting was found to be a good time to map spatial weed density. The optimum range of resolution for weed mapping was 4 m to 4.5 m for the remote sensing system and the experimental field used in this study. Analysis of spatial yield with respect to spectral reflectance showed that the visible and NIR reflectance were negatively correlated to yield and crop population in heavily weed-infested areas. The yield potential was highly correlated to image indices, especially to normalized brightness. The ANN model developed for one of the

  18. Raman mapping of intact biofilms on stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Nguyen, Julie K.; Heighton, Lynne; Xu, Yunfeng; Nou, Xiangwu; Schmidt, Walter F.

    2016-05-01

    Many issues occur when microbial bacteria contaminates human food or water; it can be dangerous to the public. Determining how the microbial are growing, it can help experts determine how to prevent the outbreaks. Biofilms are a tightly group of microbial cells that grow on living surfaces or surrounding themselves. Though biofilms are not necessarily uniform; when there are more than one type of microbial bacteria that are grown, Raman mapping is performed to determine the growth patterns. Depending on the type of microbial bacteria, they can grow in various patterns such as symmetrical or scattered on the surface. The biofilms need to be intact in order to preclude and potentially figuring out the relative intensity of different components in a biofilm mixture. In addition, it is important to determine whether one biofilms is a substrate for another biofilm to be detected. For example, it is possible if layer B appears above layer A, but layer A doesn't appear above layer B. In this case, three types of biofilms that are grown includes Listeria(L), Ralstonia(R), and a mixture of the two (LR). Since microbe deposits on metal surfaces are quite suitable, biofilms were grown on stainless steel surface slides. Each slide was viewed under a Raman Microscope at 100X and using a 532nm laser to provide great results and sharp peaks. The mapping of the laser helps determine how the bacteria growth, at which intensity the bacteria appeared in order to identify specific microbes to signature markers on biofilms.

  19. Regional adaptation of a dynamic global vegetation model using a remote sensing data derived land cover map of Russia

    NASA Astrophysics Data System (ADS)

    Khvostikov, S.; Venevsky, S.; Bartalev, S.

    2015-12-01

    The dynamic global vegetation model (DGVM) SEVER has been regionally adapted using a remote sensing data-derived land cover map in order to improve the reconstruction conformity of the distribution of vegetation functional types over Russia. The SEVER model was modified to address noticeable divergences between modelling results and the land cover map. The model modification included a light competition method elaboration and the introduction of a tundra class into the model. The rigorous optimisation of key model parameters was performed using a two-step procedure. First, an approximate global optimum was found using the efficient global optimisation (EGO) algorithm, and afterwards a local search in the vicinity of the approximate optimum was performed using the quasi-Newton algorithm BFGS. The regionally adapted model shows a significant improvement of the vegetation distribution reconstruction over Russia with better matching with the satellite-derived land cover map, which was confirmed by both a visual comparison and a formal conformity criterion.

  20. Surface Towed CSEM Systems for Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Sherman, J.; Constable, S.; Kannberg, P. K.

    2015-12-01

    We have developed a low-power, surface towed electric dipole-dipole system suitable for mapping seafloor geology in shallow water and deployable from small boats. The transmitter is capable of up to 50 amps output using 12 VDC from a 110/240 VAC power supply, and can generate an arbitrary GPS stabilized ternary waveform. Transmitter antennas are typically 50 to 100 m long. Receivers are built around the standard Scripps seafloor electrode, amplifier, and logging systems but housed in floating PVC cases and equipped with GPS timing and positioning, pitch/roll/heading sensors, and accelerometers. Receiver dipoles are 1.5 m long rigid booms held 1 m below the surface. As with the Scripps deep-towed Vulcan system, rigid antennas are used to avoid noise associated with flexible antennas moving across Earth's magnetic field. The tow cable is a simple floating rope up to 1000 m long. Water depth and conductivity are sampled continuously in order to provide constraints for apparent resistivity calculations and inversion, and moored seafloor recorders can be used to extend transmitter/receiver offsets. The entire system can be air freighted and transported in one utility vehicle. We will present results from a study to map permafrost in shallow water off Prudhoe Bay, Alaska.

  1. CosmoQuest: A software platform for surface feature mapping

    NASA Astrophysics Data System (ADS)

    Gay, Pamela

    2016-07-01

    While many tools exist for allowing individuals to mark features in images, it has previously been unwieldy to get entire teams collaboratively mapping out surface features, and to statistically compare each team members contributions. Our CSB software was initially developed to facilitate crowd-sourcing projects, including CosmoQuest's "Moon Mappers" project. Statistically study of its results (Robbins et al 2014) has shown that professionals using this software get results that are as good as those they get using other commonly used software packages. This has lead to an expansion of the software to facilitate professional science use of the software. In order to allow the greatest use of CSB, and to facilitate better science collaboration, CosmoQuest now allows teams to create private projects. Basic features include: using their own data sets, allowing multiple team members to annotate the images, performing basic statistics on the resulting data, downloading all results in either .sql or .csv formats. In this presentation, we will overview how best to use CSB to improve your own science collaboration. Current applications include surface science and transient object identification, and published results include both crater maps and the discovery of KBOs.

  2. Integrating remote sensing with species distribution models; Mapping tamarisk invasions using the Software for Assisted Habitat Modeling (SAHM)

    USGS Publications Warehouse

    West, Amanda M.; Evangelista, Paul H.; Jarnevich, Catherine S.; Young, Nicholas E.; Stohlgren, Thomas J.; Talbert, Colin; Talbert, Marian K.; Morisette, Jeffrey; Anderson, Ryan

    2016-01-01

    Early detection of invasive plant species is vital for the management of natural resources and protection of ecosystem processes. The use of satellite remote sensing for mapping the distribution of invasive plants is becoming more common, however conventional imaging software and classification methods have been shown to be unreliable. In this study, we test and evaluate the use of five species distribution model techniques fit with satellite remote sensing data to map invasive tamarisk (Tamarix spp.) along the Arkansas River in Southeastern Colorado. The models tested included boosted regression trees (BRT), Random Forest (RF), multivariate adaptive regression splines (MARS), generalized linear model (GLM), and Maxent. These analyses were conducted using a newly developed software package called the Software for Assisted Habitat Modeling (SAHM). All models were trained with 499 presence points, 10,000 pseudo-absence points, and predictor variables acquired from the Landsat 5 Thematic Mapper (TM) sensor over an eight-month period to distinguish tamarisk from native riparian vegetation using detection of phenological differences. From the Landsat scenes, we used individual bands and calculated Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and tasseled capped transformations. All five models identified current tamarisk distribution on the landscape successfully based on threshold independent and threshold dependent evaluation metrics with independent location data. To account for model specific differences, we produced an ensemble of all five models with map output highlighting areas of agreement and areas of uncertainty. Our results demonstrate the usefulness of species distribution models in analyzing remotely sensed data and the utility of ensemble mapping, and showcase the capability of SAHM in pre-processing and executing multiple complex models.

  3. Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 1. field spectroscopy and radiative transfer modeling

    USGS Publications Warehouse

    Legleiter, Carl J.; Kinzel, Paul J.; Overstreet, Brandon T.

    2011-01-01

    Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty.

  4. Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 1. Field spectroscopy and radiative transfer modeling

    USGS Publications Warehouse

    Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T.

    2011-01-01

    Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty. ?? 2011 by the American Geophysical Union.

  5. Infrared remote sensing of planetary surfaces: an overview, outstanding questions, and prospects

    NASA Astrophysics Data System (ADS)

    Arnold, Gabriele E.

    2013-09-01

    We owe a major part of our knowledge about surface composition and structure of solid planetary surfaces to infrared imaging and Fourier transform spectroscopy. Based on these methods, it succeeds to observe single planetary objects in a global geo-scientific content. The topics of infrared surface studies are mineralogical composition analyses, measurement of surface temperature, thermal inertia, and photometric observation of surface regolith texture. The comparison of infrared with photogeologic data forms the essential basis for comparative studies in planetology. The present paper summarizes outstanding results by examples of ESA experiments like VIRTIS on Venus Express and Rosetta, PFS on Mars Express, MERTIS on Bepi Colombo, and TIRVIM on ExoMars, and provides an outlook for future plans. The instruments are described, and the interplay of disciplines like planetology, IR measuring techniques, and space flight engineering is demonstrated. Infrared remote sensing provides essential knowledge about the current state of solid planetary surfaces. This allows studying fundamental questions in comparative planetology.

  6. Mapping cardiac surface mechanics with structured light imaging

    PubMed Central

    Laughner, Jacob I.; Zhang, Song; Li, Hao; Shao, Connie C.

    2012-01-01

    Cardiovascular disease often manifests as a combination of pathological electrical and structural heart remodeling. The relationship between mechanics and electrophysiology is crucial to our understanding of mechanisms of cardiac arrhythmias and the treatment of cardiac disease. While several technologies exist for describing whole heart electrophysiology, studies of cardiac mechanics are often limited to rhythmic patterns or small sections of tissue. Here, we present a comprehensive system based on ultrafast three-dimensional (3-D) structured light imaging to map surface dynamics of whole heart cardiac motion. Additionally, we introduce a novel nonrigid motion-tracking algorithm based on an isometry-maximizing optimization framework that forms correspondences between consecutive 3-D frames without the use of any fiducial markers. By combining our 3-D imaging system with nonrigid surface registration, we are able to measure cardiac surface mechanics at unprecedented spatial and temporal resolution. In conclusion, we demonstrate accurate cardiac deformation at over 200,000 surface points of a rabbit heart recorded at 200 frames/s and validate our results on highly contrasting heart motions during normal sinus rhythm, ventricular pacing, and ventricular fibrillation. PMID:22796539

  7. Mapping of the ocean surface wind by ocean acoustic interferometers.

    PubMed

    Voronovich, Alexander G; Penland, Cécile

    2011-05-01

    Measurements of marine surface winds are crucial to understanding mechanical and thermodynamic forces on the ocean. Satellite measurements of surface winds provide global coverage but are problematic at high wind speeds. Acoustic techniques of wind speed retrieval, and even for tracking hurricanes, have been suggested as an alternative since wind is a strong source of ambient noise in the ocean. Such approaches involve near-local measurements with bottom-mounted hydrophones located close to the area of interest. This paper suggests a complementary approach: measuring directivity of low-frequency ambient noise in the horizontal plane. These measurements would employ long vertical line arrays (VLAs) spanning a significant portion of the ocean waveguide. Two VLAs separated by a distance of some tens of kilometers and coherently measuring acoustic pressure form a single ocean interferometer. By sampling the area of interest from different perspectives with at least two interferometers, marine surface winds might be mapped over horizontal scales of the order of 1000 km with about 10 km resolution (more specifically, the 10 km resolution here means that contribution from the basis functions representing surface wind field with the scale of spatial variations of the order of 10 km can be resolved; independent retrieval of the wind within 10(4) cells of a corresponding grid is hardly possible). An averaging time required to overcome statistical variability in the noise field is estimated to be about 3 h. Numerical simulations of propagation conditions typical for the North Atlantic Ocean are presented.

  8. Use of ground-based remotely sensed data for surface energy balance calculations during Monsoon '90

    NASA Technical Reports Server (NTRS)

    Moran, M. S.; Kustas, William P.; Vidal, Alain; Stannard, David I.; Blanford, James

    1991-01-01

    Surface energy balance was evaluated at a semiarid watershed using direct and indirect measurements of the turbulent fluxes, a remote technique based on measurements of surface reflectance and temperature, and conventional meteorological information. Comparison of remote estimates of net radiant flux and soil heat flux densities with measured values showed errors on the order of +/-40 W/sq m. To account for the effects of sparse vegetation, semi-empirical adjustments to aerodynamic resistance were required for evaluation of sensible heat flux density (H). However, a significant scatter in estimated versus measured latent heat flux density (LE) was still observed, +/-75 W/sq m over a range from 100-400 W/sq m. The errors of H and LE estimates were reduced to +/-50 W/sq m when observations were restricted to clear sky conditions.

  9. Integration of geophysical, ground surface, and remote sensing methods to identify ice features in discontinuous permafrost near Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.; Bjella, K.; Hiemstra, C. A.; Newman, S. D.; Anderson, J.; Edwards, J.; Arcone, S. A.; Wagner, A. M.; Barbato, R.; Berkowitz, J.; Deeb, E. J.

    2014-12-01

    Ground ice features such as ice wedges, segregation ice, and thermokarst cave ice are present in the subsurface in a variety of spatial scales and patterns. Accurately identifying the character and extent of these ice features in permafrost terrains allows engineers and planners to cost effectively create innovative infrastructure designs to withstand the changing environment. We are assembling a holistic view of how a variety of surficial and standoff geophysical measurements can be combined with classic ground based measurements to delineate subsurface permafrost features. We are combining horizontal geophysical measurements; borehole mapping; multispectral and radar remote sensing; airborne and ground-based LiDAR; snow, soil, and vegetation mapping; and subsurface thermal measurements and modeling at three field sites in discontinuous permafrost of Interior Alaska. Our sites cross transects representing upland and lowland permafrost and a variety of soil and vegetation compositions. With our measurements we identified and mapped a 300 meter wide swath of ice rich frozen peat at one of our lowland field sites. The high ice content was confirmed with borehole measurements. This ice rich permafrost region yields higher electrical resistivity values than the nearby permafrost and is associated with anomalously low seasonal thaw depths compared to other sites nearby. Surface soils in the ice rich region have high soil moisture contents, low redox potential (30-100 mV), and elevated soil microbial activity. The ice rice region yields low phase changes from paired interferometric synthetic aperture radar measurements collected in late spring and late summer. One interpretation of this result is that the ice rich area experiences minimal summer season subsidence. Taken in total, our results suggest the ice rich peat region has distinct surface signatures and subsurface geophysical characteristics that may be extrapolated to other areas to identify ice rich permafrost in

  10. Mapping water surface roughness in a shallow, gravel-bed river using hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Overstreet, B. T.; Legleiter, C. J.

    2014-12-01

    Rapid advances in remote sensing are narrowing the gap between the data available for characterizing physical and biological processes in rivers and the information needed to guide river management decisions. The availability and quality of hyperspectral imagery have increased drastically over the past 20 years and hyperspectral data is now used in a number of different capacities that range from classifying riverine environments to measuring river bathymetry. A fundamental challenge in relating the spectral data from images to biophysical processes is the difficulty of isolating individual contributions to the at-sensor radiance, each associated with a different component of the fluvial environment. In this presentation we describe a method for isolating the contribution of light reflected from the water surface, or sun glint, from a hyperspectral image of a shallow gravel-bed river. We show that isolation and removal of sun glint can improve the accuracy of spectrally-based depth retrieval in cases where sun glint dominates the at-sensor radiance. Observed-vs.-predicted R2 values for depth retrieval improved from 0.56 to 0.68 following sun glint removal. In addition to clarifying the signal associated with the water column and bed, isolating sun glint could unlock important hydraulic information contained within the topography of the water surface. We present data from flume and field experiments suggesting that the intensity of sun glint is a function of water surface roughness. In rivers, water surface roughness depends on local flow hydraulics: depth, velocity, and bed material grain size. To explore this relationship, we coupled maps of image-derived sun glint with hydraulic measurements collected with a kayak-borne acoustic Doppler current profiler along 2 km of the Snake River in Grand Teton National Park. Spatial patterns of sun glint are spatially correlated with field observations of near-surface velocity and depth, suggesting that reach scale hydraulics

  11. Geolgical Structure Mapping of the Bentong-Raub Suture Zone, Peninsular Malaysia Using Palsar Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Beiranvand Pour, A.; Hashim, M.

    2015-10-01

    The Bentong-Raub Suture Zone (BRSZ) of peninsular Malaysia was selected as case study to evaluate the capability of the Phased Array type L-band Synthetic Aperture Radar (PALSAR) satellite remote sensing data for structural geology mapping in tropical environments. The structural elements in the BRSZ were enhanced using multi-polarization configuration of PALSAR data at a regional scale. Adaptive local sigma and directional filters were applied to PALSAR data for detailed structural mapping. Numerous tectonic lineaments with consistent variation in trend, length and density were detected in the study area. Structural analysis of the BRSZ reveals that two distinct parts can be defined, a western part affected mainly by ductile fabrics in the Cameron Highlands and an eastern part affected mainly by brittle deformation in the BRSZ. Ductile deformation indicates several generation of folding in the Cameron Highlands. Several faults, joints and fractures represent brittle deformation events in the BRSZ. The results of this study demonstrate the usefulness of PALSAR satellite remote sensing data for mapping geological structures in tropical environments.

  12. Web GIS in practice IV: publishing your health maps and connecting to remote WMS sources using the Open Source UMN MapServer and DM Solutions MapLab.

    PubMed

    Boulos, Maged N Kamel; Honda, Kiyoshi

    2006-01-18

    Open Source Web GIS software systems have reached a stage of maturity, sophistication, robustness and stability, and usability and user friendliness rivalling that of commercial, proprietary GIS and Web GIS server products. The Open Source Web GIS community is also actively embracing OGC (Open Geospatial Consortium) standards, including WMS (Web Map Service). WMS enables the creation of Web maps that have layers coming from multiple different remote servers/sources. In this article we present one easy to implement Web GIS server solution that is based on the Open Source University of Minnesota (UMN) MapServer. By following the accompanying step-by-step tutorial instructions, interested readers running mainstream Microsoft(R) Windows machines and with no prior technical experience in Web GIS or Internet map servers will be able to publish their own health maps on the Web and add to those maps additional layers retrieved from remote WMS servers. The 'digital Asia' and 2004 Indian Ocean tsunami experiences in using free Open Source Web GIS software are also briefly described.

  13. Adaptive Multi-Objective Sub-Pixel Mapping Framework Based on Memetic Algorithm for Hyperspectral Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Zhang, L.

    2012-07-01

    Sub-pixel mapping technique can specify the location of each class within the pixels based on the assumption of spatial dependence. Traditional sub-pixel mapping algorithms only consider the spatial dependence at the pixel level. The spatial dependence of each sub-pixel is ignored and sub-pixel spatial relation is lost. In this paper, a novel multi-objective sub-pixel mapping framework based on memetic algorithm, namely MSMF, is proposed. In MSMF, the sub-pixel mapping is transformed to a multi-objective optimization problem, which maximizing the spatial dependence index (SDI) and Moran's I, synchronously. Memetic algorithm is utilized to solve the multi-objective problem, which combines global search strategies with local search heuristics. In this framework, the sub-pixel mapping problem can be solved using different evolutionary algorithms and local algorithms. In this paper, memetic algorithm based on clonal selection algorithm (CSA) and random swapping as an example is designed and applied simultaneously in the proposed MSMF. In MSMF, CSA inherits the biologic properties of human immune systems, i.e. clone, mutation, memory, to search the possible sub-pixel mapping solution in the global space. After the exploration based on CSA, the local search based on random swapping is employed to dynamically decide which neighbourhood should be selected to stress exploitation in each generation. In addition, a solution set is used in MSMF to hold and update the obtained non-dominated solutions for multi-objective problem. Experimental results demonstrate that the proposed approach outperform traditional sub-pixel mapping algorithms, and hence provide an effective option for sub-pixel mapping of hyperspectral remote sensing imagery.

  14. Large-scale experimental technology with remote sensing in land surface hydrology and meteorology

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried; Schmugge, Thomas J.; Sellers, Piers J.; Hall, Forrest G.

    1988-01-01

    Two field experiments to study atmospheric and land surface processes and their interactions are summarized. The Hydrologic-Atmospheric Pilot Experiment, which tested techniques for measuring evaporation, soil moisture storage, and runoff at scales of about 100 km, was conducted over a 100 X 100 km area in France from mid-1985 to early 1987. The first International Satellite Land Surface Climatology Program field experiment was conducted in 1987 to develop and use relationships between current satellite measurements and hydrologic, climatic, and biophysical variables at the earth's surface and to validate these relationships with ground truth. This experiment also validated surface parameterization methods for simulation models that describe surface processes from the scale of vegetation leaves up to scales appropriate to satellite remote sensing.

  15. LANDSAT Remote Sensing: Observations of an Appalachian mountaintop surface coal mining and reclamation operation. [kentucky

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The potential benefits of using LANDSAT remote sensing data by state agencies as an aide in monitoring surface coal mining operations are reviewed. A mountaintop surface mine in eastern Kentucky was surveyed over a 5 year period using satellite multispectral scanner data that were classified by computer analyses. The analyses were guided by aerial photography and by ground surveys of the surface mines procured in 1976. The application of the LANDSAT data indicates that: (1) computer classification of the various landcover categories provides information for monitoring the progress of surface mining and reclamation operations; (2) successive yearly changes in barren and revegetated areas can be qualitatively assessed for surface mines of 100 acres or more of disrupted area; (3) barren areas consisting of limestone and shale mixtures may be recognized, and revegetated areas in various stages of growth may be identified against the hilly forest background.

  16. Frost grain size metamorphism - Implications for remote sensing of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Fanale, F. P.; Zent, A. P.

    1983-01-01

    The effective grain size of a material on a planetary surface affects the strength of absorption features observed in the reflectance of a particulate surface. In the case of a planetary surface containing volatile ices, the absorption characteristics can change in connection with processes leading to a change in the grain size of the material. The present investigation is concerned with an evaluation regarding the occurrence of such processes and the implications for remote sensing applications. It is found that quantitative modeling of the kinetics of grain growth and destruction by thermal and nonthermal processes can provide a means to reconcile apparent optical paths in the volatile portions of planetary surfaces with the physical history of those surfaces. Attention is also given to conditions in the case of the Pluto/Triton system, Uranus and Saturnian satellites, and the Galilean system.

  17. A new strategy for snow-cover mapping using remote sensing data and ensemble based systems techniques

    NASA Astrophysics Data System (ADS)

    Roberge, S.; Chokmani, K.; De Sève, D.

    2012-04-01

    The snow cover plays an important role in the hydrological cycle of Quebec (Eastern Canada). Consequently, evaluating its spatial extent interests the authorities responsible for the management of water resources, especially hydropower companies. The main objective of this study is the development of a snow-cover mapping strategy using remote sensing data and ensemble based systems techniques. Planned to be tested in a near real-time operational mode, this snow-cover mapping strategy has the advantage to provide the probability of a pixel to be snow covered and its uncertainty. Ensemble systems are made of two key components. First, a method is needed to build an ensemble of classifiers that is diverse as much as possible. Second, an approach is required to combine the outputs of individual classifiers that make up the ensemble in such a way that correct decisions are amplified, and incorrect ones are cancelled out. In this study, we demonstrate the potential of ensemble systems to snow-cover mapping using remote sensing data. The chosen classifier is a sequential thresholds algorithm using NOAA-AVHRR data adapted to conditions over Eastern Canada. Its special feature is the use of a combination of six sequential thresholds varying according to the day in the winter season. Two versions of the snow-cover mapping algorithm have been developed: one is specific for autumn (from October 1st to December 31st) and the other for spring (from March 16th to May 31st). In order to build the ensemble based system, different versions of the algorithm are created by varying randomly its parameters. One hundred of the versions are included in the ensemble. The probability of a pixel to be snow, no-snow or cloud covered corresponds to the amount of votes the pixel has been classified as such by all classifiers. The overall performance of ensemble based mapping is compared to the overall performance of the chosen classifier, and also with ground observations at meteorological

  18. Use of models to map potential capture of surface water

    USGS Publications Warehouse

    Leake, Stanley A.

    2006-01-01

    The effects of ground-water withdrawals on surface-water resources and riparian vegetation have become important considerations in water-availability studies. Ground water withdrawn by a well initially comes from storage around the well, but with time can eventually increase inflow to the aquifer and (or) decrease natural outflow from the aquifer. This increased inflow and decreased outflow is referred to as “capture.” For a given time, capture can be expressed as a fraction of withdrawal rate that is accounted for as increased rates of inflow and decreased rates of outflow. The time frames over which capture might occur at different locations commonly are not well understood by resource managers. A ground-water model, however, can be used to map potential capture for areas and times of interest. The maps can help managers visualize the possible timing of capture over large regions. The first step in the procedure to map potential capture is to run a ground-water model in steady-state mode without withdrawals to establish baseline total flow rates at all sources and sinks. The next step is to select a time frame and appropriate withdrawal rate for computing capture. For regional aquifers, time frames of decades to centuries may be appropriate. The model is then run repeatedly in transient mode, each run with one well in a different model cell in an area of interest. Differences in inflow and outflow rates from the baseline conditions for each model run are computed and saved. The differences in individual components are summed and divided by the withdrawal rate to obtain a single capture fraction for each cell. Values are contoured to depict capture fractions for the time of interest. Considerations in carrying out the analysis include use of realistic physical boundaries in the model, understanding the degree of linearity of the model, selection of an appropriate time frame and withdrawal rate, and minimizing error in the global mass balance of the model.

  19. Local cortical surface complexity maps from spherical harmonic reconstructions.

    PubMed

    Yotter, Rachel A; Nenadic, Igor; Ziegler, Gabriel; Thompson, Paul M; Gaser, Christian

    2011-06-01

    Altered cortical surface complexity and gyrification differences may be a potentially sensitive marker for several neurodevelopmental disorders. We propose to use spherical harmonic (SPH) constructions to measure cortical surface folding complexity. First, we demonstrate that the complexity measure is accurate, by applying our SPH approach and the more traditional box-counting method to von Koch fractal surfaces with known fractal dimension (FD) values. The SPH approach is then applied to study complexity differences between 87 patients with DSM-IV schizophrenia (with stable psychopathology and treated with antipsychotic medication; 48 male/39 female; mean age=35.5 years, SD=11.0) and 108 matched healthy controls (68 male/40 female; mean age=32.1 years, SD=10.0). The global FD for the right hemisphere in the schizophrenia group was significantly reduced. Regionally, reduced complexity was also found in temporal, frontal, and cingulate regions in the right hemisphere, and temporal and prefrontal regions in the left hemisphere. These results are discussed in terms of previously published findings. Finally, the anatomical implications of a reduced FD are highlighted through comparison of two subjects with vastly different complexity maps.

  20. Validation of Spaceborne Radar Surface Water Mapping with Optical sUAS Images

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Murnaghan, K.; Sherman, D.; Poncos, V.; Brisco, B.; Armenakis, C.

    2015-08-01

    The Canada Centre for Remote Sensing (CCRS) has over 40 years of experience with airborne and spaceborne sensors and is now starting to use small Unmanned Aerial Systems (sUAS) to validate products from large coverage area sensors and create new methodologies for very high resolution products. Wetlands have several functions including water storage and retention which can reduce flooding and provide continuous flow for hydroelectric generation and irrigation for agriculture. Synthetic Aperture Radar is well suited as a tool for monitoring surface water by supplying acquisitions irrespective of cloud cover or time of day. Wetlands can be subdivided into three classes: open water, flooded vegetation and upland which can vary seasonally with time and water level changes. RADARSAT-2 data from the Wide-Ultra Fine, Spotlight and Fine Quad-Pol modes has been used to map the open water in the Peace-Athabasca Delta, Alberta using intensity thresholding. We also use spotlight modes for higher resolution and the fully polarimetric mode (FQ) for polarimetric decomposition. Validation of these products will be done using a low altitude flying sUAS to generate optical georeferenced images. This project provides methodologies which could be used for flood mapping as well as ecological monitoring.

  1. Thermal infrared remote sensing of surface features for renewable resource applications

    NASA Technical Reports Server (NTRS)

    Welker, J. E.

    1981-01-01

    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications.

  2. Heat capacity mapping mission. [satellite for earth surface temperature measurement

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1978-01-01

    A Heat Capacity Mapping Mission (HCMM), part of a series of Applications Explorers Missions, is designed to provide data on surface heating as a response to solar energy input. The data is obtained by a two channel scanning radiometer, with one channel covering the visible and near-IR band between 0.5 and 1.1 micrometers, and the other covering the thermal-IR between 10.5 and 12.5 micrometers. The temperature range covered lies between 260 and 340 K, in 0.3 deg steps, with an accuracy at 280 K of plus or minus 0.5 K. Nominal altitude is 620 km, with a ground swath 700 km wide.

  3. Photoinduced surface voltage mapping study for large perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou; Liu, Shengzhong Frank

    2016-05-01

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH3NH3PbX3 (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  4. Development of a Land Use Mapping and Monitoring Protocol for the High Plains Region: A Multitemporal Remote Sensing Application

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.; Nellis, M. Duane

    1996-01-01

    The purpose of this project was to develop a practical protocol that employs multitemporal remotely sensed imagery, integrated with environmental parameters to model and monitor agricultural and natural resources in the High Plains Region of the United States. The value of this project would be extended throughout the region via workshops targeted at carefully selected audiences and designed to transfer remote sensing technology and the methods and applications developed. Implementation of such a protocol using remotely sensed satellite imagery is critical for addressing many issues of regional importance, including: (1) Prediction of rural land use/land cover (LULC) categories within a region; (2) Use of rural LULC maps for successive years to monitor change; (3) Crop types derived from LULC maps as important inputs to water consumption models; (4) Early prediction of crop yields; (5) Multi-date maps of crop types to monitor patterns related to crop change; (6) Knowledge of crop types to monitor condition and improve prediction of crop yield; (7) More precise models of crop types and conditions to improve agricultural economic forecasts; (8;) Prediction of biomass for estimating vegetation production, soil protection from erosion forces, nonpoint source pollution, wildlife habitat quality and other related factors; (9) Crop type and condition information to more accurately predict production of biogeochemicals such as CO2, CH4, and other greenhouse gases that are inputs to global climate models; (10) Provide information regarding limiting factors (i.e., economic constraints of pumping, fertilizing, etc.) used in conjunction with other factors, such as changes in climate for predicting changes in rural LULC; (11) Accurate prediction of rural LULC used to assess the effectiveness of government programs such as the U.S. Soil Conservation Service (SCS) Conservation Reserve Program; and (12) Prediction of water demand based on rural LULC that can be related to rates of

  5. Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada

    USGS Publications Warehouse

    Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

    1993-01-01

    The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 731.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: 1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; 2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and 3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends (1986-89) using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used.

  6. Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada

    SciTech Connect

    Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

    1994-12-01

    The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used.

  7. Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation

    NASA Astrophysics Data System (ADS)

    Anderson, Ray G.; Lo, Min-Hui; Famiglietti, James S.

    2012-08-01

    Estimates of consumptive use of surface water by agriculture are vital for assessing food security, managing water rights, and evaluating anthropogenic impacts on regional hydrology. However, reliable, current, and public data on consumptive use can be difficult to obtain, particularly in international and less developed basins. We combine remotely-sensed precipitation and satellite observations of evapotranspiration and groundwater depletion to estimate surface water consumption by irrigated agriculture in California's Central Valley for the 2004-09 water years. We validated our technique against measured consumption data determined from streamflow observations and water export data in the Central Valley. Mean satellite-derived surface water consumption was 291.0 ± 32.4 mm/year while measured surface water consumption was 308.1 ± 6.5 mm/year. The results show the potential for remotely-sensed hydrologic data to independently observe irrigated agriculture's surface water consumption in contested or unmonitored basins. Improvements in the precision and spatial resolution of satellite precipitation, evapotranspiration and gravimetric groundwater observations are needed to reduce the uncertainty in this method and to allow its use on smaller basins and at shorter time scales.

  8. Deformable structure registration of bladder through surface mapping.

    PubMed

    Xiong, Li; Viswanathan, Akila; Stewart, Alexandra J; Haker, Steven; Tempany, Clare M; Chin, Lee M; Cormack, Robert A

    2006-06-01

    Cumulative dose distributions in fractionated radiation therapy depict the dose to normal tissues and therefore may permit an estimation of the risk of normal tissue complications. However, calculation of these distributions is highly challenging because of interfractional changes in the geometry of patient anatomy. This work presents an algorithm for deformable structure registration of the bladder and the verification of the accuracy of the algorithm using phantom and patient data. In this algorithm, the registration process involves conformal mapping of genus zero surfaces using finite element analysis, and guided by three control landmarks. The registration produces a correspondence between fractions of the triangular meshes used to describe the bladder surface. For validation of the algorithm, two types of balloons were inflated gradually to three times their original size, and several computerized tomography (CT) scans were taken during the process. The registration algorithm yielded a local accuracy of 4 mm along the balloon surface. The algorithm was then applied to CT data of patients receiving fractionated high-dose-rate brachytherapy to the vaginal cuff, with the vaginal cylinder in situ. The patients' bladder filling status was intentionally different for each fraction. The three required control landmark points were identified for the bladder based on anatomy. Out of an Institutional Review Board (IRB) approved study of 20 patients, 3 had radiographically identifiable points near the bladder surface that were used for verification of the accuracy of the registration. The verification point as seen in each fraction was compared with its predicted location based on affine as well as deformable registration. Despite the variation in bladder shape and volume, the deformable registration was accurate to 5 mm, consistently outperforming the affine registration. We conclude that the structure registration algorithm presented works with reasonable accuracy and

  9. Wavelet and Fractal Analysis of Remotely Sensed Surface Temperature with Applications to Estimation of Surface Sensible Heat Flux Density

    NASA Technical Reports Server (NTRS)

    Schieldge, John

    2000-01-01

    Wavelet and fractal analyses have been used successfully to analyze one-dimensional data sets such as time series of financial, physical, and biological parameters. These techniques have been applied to two-dimensional problems in some instances, including the analysis of remote sensing imagery. In this respect, these techniques have not been widely used by the remote sensing community, and their overall capabilities as analytical tools for use on satellite and aircraft data sets is not well known. Wavelet and fractal analyses have the potential to provide fresh insight into the characterization of surface properties such as temperature and emissivity distributions, and surface processes such as the heat and water vapor exchange between the surface and the lower atmosphere. In particular, the variation of sensible heat flux density as a function of the change In scale of surface properties Is difficult to estimate, but - in general - wavelets and fractals have proved useful in determining the way a parameter varies with changes in scale. We present the results of a limited study on the relationship between spatial variations in surface temperature distribution and sensible heat flux distribution as determined by separate wavelet and fractal analyses. We analyzed aircraft imagery obtained in the thermal infrared (IR) bands from the multispectral TIMS and hyperspectral MASTER airborne sensors. The thermal IR data allows us to estimate the surface kinetic temperature distribution for a number of sites in the Midwestern and Southwestern United States (viz., San Pedro River Basin, Arizona; El Reno, Oklahoma; Jornada, New Mexico). The ground spatial resolution of the aircraft data varied from 5 to 15 meters. All sites were instrumented with meteorological and hydrological equipment including surface layer flux measuring stations such as Bowen Ratio systems and sonic anemometers. The ground and aircraft data sets provided the inputs for the wavelet and fractal analyses

  10. Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Puzhao; Gong, Maoguo; Su, Linzhi; Liu, Jia; Li, Zhizhou

    2016-06-01

    Multi-spatial-resolution change detection is a newly proposed issue and it is of great significance in remote sensing, environmental and land use monitoring, etc. Though multi-spatial-resolution image-pair are two kinds of representations of the same reality, they are often incommensurable superficially due to their different modalities and properties. In this paper, we present a novel multi-spatial-resolution change detection framework, which incorporates deep-architecture-based unsupervised feature learning and mapping-based feature change analysis. Firstly, we transform multi-resolution image-pair into the same pixel-resolution through co-registration, followed by details recovery, which is designed to remedy the spatial details lost in the registration. Secondly, the denoising autoencoder is stacked to learn local and high-level representation/feature from the local neighborhood of the given pixel, in an unsupervised fashion. Thirdly, motivated by the fact that multi-resolution image-pair share the same reality in the unchanged regions, we try to explore the inner relationships between them by building a mapping neural network. And it can be used to learn a mapping function based on the most-unlikely-changed feature-pairs, which are selected from all the feature-pairs via a coarse initial change map generated in advance. The learned mapping function can bridge the different representations and highlight changes. Finally, we can build a robust and contractive change map through feature similarity analysis, and the change detection result is obtained through the segmentation of the final change map. Experiments are carried out on four real datasets, and the results confirmed the effectiveness and superiority of the proposed method.

  11. Microwave backscattering theory and active remote sensing of the ocean surface

    NASA Technical Reports Server (NTRS)

    Brown, G. S.; Miller, L. S.

    1977-01-01

    The status is reviewed of electromagnetic scattering theory relative to the interpretation of microwave remote sensing data acquired from spaceborne platforms over the ocean surface. Particular emphasis is given to the assumptions which are either implicit or explicit in the theory. The multiple scale scattering theory developed during this investigation is extended to non-Gaussian surface statistics. It is shown that the important statistic for the case is the probability density function of the small scale heights conditioned on the large scale slopes; this dependence may explain the anisotropic scattering measurements recently obtained with the AAFE Radscat. It is noted that present surface measurements are inadequate to verify or reject the existing scattering theories. Surface measurements are recommended for qualifying sensor data from radar altimeters and scatterometers. Additional scattering investigations are suggested for imaging type radars employing synthetically generated apertures.

  12. An investigation of satellite sounding products for the remote sensing of the surface energy balance and soil moisture

    NASA Technical Reports Server (NTRS)

    Diak, George R.

    1989-01-01

    Improved techniques for the remote sensing of the land surface energy balance (SEB) and soil moisture would greatly improve prediction of climate and weather as well as be of benefit to agriculture, hydrology and many associated fields. Most of the satellite remote sensing methods which were researched to date rely upon satellite-measured infrared surface temperatures or their time changes as a remote sensing signal. Optimistically, only four or five levels of information (wet to dry) in surface heating/evaporation are discernable by surface temperature methods and a good understanding of atmospheric conditions is necessary to bring them to this accuracy level. Skin temperature methods were researched as well as begun work on several new methods for the remote sensing of the SEB, some elements of which are applicable to current and retrospective data sources and some which will rely on instrumentation from the Earth Observing System (EOS) program in the 1990s.

  13. Reflectance spectroscopy - Quantitative analysis techniques for remote sensing applications. [in planetary surface geology

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Roush, T. L.

    1984-01-01

    The empirical methods and scattering theories that are important for solving remote sensing problems are among the methods for remotely sensed reflectance data analysis presently compared. In the case of the photon mean optical path length concept's implications for reflectance spectra modeling, it is shown that the mean optical path length in a particulate surface is in roughly inverse proportion to the square root of the absorption coefficient. Absorption bands, which are Gaussian in shape when plotted as true absorptance vs photon energy, are also Gaussians in apparent absorptance, although they have a smaller intensity. An apparent continuum in a reflectance spectrum is modeled as a mathematical function that is used to isolate a particular absorption feature for analysis, and it is noted that this continuum should be removed by dividing it into the reflectance spectrum.

  14. Advancing the Remote Sensing of Land Surface-Atmosphere Interactions: Field Campaign Needs in the Next Decade

    NASA Astrophysics Data System (ADS)

    Hall, F. G.; Sellers, P. J.; Hummerich, K. F.

    2008-12-01

    Field Campaigns have played a vital role in the development of remote sensing measurement techniques and models to observe the changing nature of the Earth's vegetated land surface and to compute the exchange of carbon, water and energy from the vegetated land surface. Importantly, they have pioneered and fostered a culture of interdisciplinary research focusing and integrating the efforts of the hydrology, ecology and remote sensing communities toward the resolution of a critical question for life on the planet earth; How are the Earth's energy, water and carbon cycles changing, and what are the consequences for the Earth's climate, the sustainability of its ecosystems and biodiversity? Not only have the research results from these campaigns contributed substantially to the resolution of this critical question, the interdisciplinary data sets acquired and made easily accessible to the global scientific community, continue to contribute, remaining heavily utilized more than 20 years following the completion of the earliest campaigns. A new generation of earth science satellites is now on the drawing board; in the US to extend the 30+ year data record from the Landsat series; some to extend the data record from NOAA's AVHRR, NASA's Terra and Aqua; and a growing constellation of satellites from Europe, Japan, India and China. In addition to continuing the existing satellite data record, new satellite concepts, utilizing combined radar and lidar measurements, are being designed in the US and abroad to map the earth's vegetation, ice and solid surfaces in three dimensions. These capabilities will permit global mapping of the vertical and horizontal structure of vegetation, critical to measuring biomass and biomass change needed to understand and project future changes in the earth's carbon cycle, climate and biodiversity. New space capabilities require new field campaigns To be effective these campaigns must be formulated with a rigorous experiment design focused on

  15. Measuring and mapping forest wildlife habitat characteristics using LiDAR remote sensing and multi-sensor function

    NASA Astrophysics Data System (ADS)

    Hyde, Peter

    Managing forests for multiple, often competing uses is challenging; managing Sierra National Forest's fire regime and California spotted owl habitat is difficult and compounded by lack of information about habitat quality. Consistent and accurate measurements of forest structure will reduce uncertainties regarding the amount of habitat reduction or alteration that spotted owls can tolerate. Current methods of measuring spotted owl habitat are mostly field-based and emphasize the important of canopy cover. However, this is more because of convenience than because canopy cover is a definitive predictor of owl presence or fecundity. Canopy cover is consistently and accurately measured in the field using a moosehorn densitometer; comparable measurements can be made using airphoto interpretation or from examining satellite imagery, but the results are not consistent. LiDAR remote sensing can produce consistent and accurate measurements of canopy cover, as well as other aspects of forest structure (such as canopy height and biomass) that are known or thought to be at least as predictive as canopy cover. Moreover, LiDAR can be used to produce maps of forest structure rather than the point samples available from field measurements. However, LiDAR data sets are expensive and not available everywhere. Combining LiDAR with other, remote sensing data sets with less expensive, wall-to-wall coverage will result in broader scale maps of forest structure than have heretofore been possible; these maps can then be used to analyze spotted owl habitat. My work consists of three parts: comparison of LiDAR estimates of forest structure with field measurements, statistical fusion of LiDAR and other remote sensing data sets to produce broad scale maps of forest structure, and analysis of California spotted owl presence and fecundity as a function of LiDAR-derived canopy structure. I found that LiDAR was able to replicate field measurements accurately. Additionally, I was able to

  16. Elemental mapping of planetary surfaces using gamma-ray spectroscopy

    SciTech Connect

    Reedy, R.C.

    1990-01-01

    The gamma rays escaping from a planet can be used to map the concentrations of various elements in its surface. In a planet, the high-energy particles in the galactic cosmic rays induce a cascade of particles that includes many neutrons. The {gamma} rays are made by the nuclear excitations induced by these cosmic-ray particles and their secondaries (especially capture or inelastic-scattering reactions induced by neutrons) and decay of the naturally-occurring radioelements. After a short history of planetary {gamma}-ray spectroscopy and its applications, the {gamma}-ray spectrometer planned for the Mars Observer mission is presented. The results of laboratory experiments that simulate the cosmic-ray bombardments of planetary surfaces or measure cross sections for the production of {gamma} rays and the status of the theoretical calculations for the processes that make and transport neutrons and {gamma} rays will be reviewed. The emphasis here is on studies of Mars and on new ideas, concepts, and problems that have arisen over the last decade, such as Doppler broadening and peaks from neutron scattering with germanium nuclei in a high-resolution {gamma}-ray spectrometer. 31 refs., 1 fig., 1 tab.

  17. Quantitative suspended sediment mapping using aircraft remotely sensed multispectral data. [in Virginia

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1975-01-01

    Suspended sediment is an important environmental parameter for monitoring water quality, water movement, and land use. Quantitative suspended sediment determinations were made from analysis of aircraft remotely sensed multispectral digital data. A statistical analysis and derived regression equation were used to determine and plot quantitative suspended sediment concentration contours in the tidal James River, Virginia, on May 28, 1974. From the analysis, a single band, Band 8 (0.70-0.74 microns), was adequate for determining suspended sediment concentrations. A correlation coefficient of 0.89 was obtained with a mean inaccuracy of 23.5 percent for suspended sediment concentrations up to about 50 mg/l. Other water quality parameters - secchi disc depth and chlorophyll - also had high correlations with the remotely sensed data. Particle size distribution had only a fair correlation with the remotely sensed data.

  18. Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade?

    NASA Astrophysics Data System (ADS)

    Ramsey, Michael S.; Harris, Andrew J. L.

    2013-01-01

    Volcanological remote sensing spans numerous techniques, wavelength regions, data collection strategies, targets, and applications. Attempting to foresee and predict the growth vectors in this broad and rapidly developing field is therefore exceedingly difficult. However, we attempted to make such predictions at both the American Geophysical Union (AGU) meeting session entitled Volcanology 2010: How will the science and practice of volcanology change in the coming decade? held in December 2000 and the follow-up session 10 years later, Looking backward and forward: Volcanology in 2010 and 2020. In this summary paper, we assess how well we did with our predictions for specific facets of volcano remote sensing in 2000 the advances made over the most recent decade, and attempt a new look ahead to the next decade. In completing this review, we only consider the subset of the field focused on thermal infrared remote sensing of surface activity using ground-based and space-based technology and the subsequent research results. This review keeps to the original scope of both AGU presentations, and therefore does not address the entire field of volcanological remote sensing, which uses technologies in other wavelength regions (e.g., ultraviolet, radar, etc.) or the study of volcanic processes other than the those associated with surface (mostly effusive) activity. Therefore we do not consider remote sensing of ash/gas plumes, for example. In 2000, we had looked forward to a "golden age" in volcanological remote sensing, with a variety of new orbital missions both planned and recently launched. In addition, exciting field-based sensors such as hand-held thermal cameras were also becoming available and being quickly adopted by volcanologists for both monitoring and research applications. All of our predictions in 2000 came true, but at a pace far quicker than we predicted. Relative to the 2000-2010 timeframe, the coming decade will see far fewer new orbital instruments with

  19. Application of NASA's modern era retrospective-analysis in Global Wetlands Mappings Derived from Coarse-Resolution Satellite Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Schröder, R.; McDonald, K. C.; Podest, E.; Jones, L. A.; Kimball, J. S.; Pinto, N.; Zimmermann, R.; Küppers, M.

    2011-12-01

    The sensitivity of Earth's wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. Global methane emissions are typically estimated via process-based models calibrated to individual wetland sites. Regardless of the complexity of these process-based models, accurate geographical distribution and seasonality of recent global wetland extent are typically not accounted for in such an approach, which may explain the large variations in estimated global methane emissions as well as the significant interannual variations in the observed atmospheric growth rate of methane. Spatially comprehensive ground observation networks of large-scale inundation patterns are very sparse because they require large fiscal, technological and human resources. Satellite remote sensing of global inundation dynamics thus can support the ability for a complete synoptic view of past and current inundation dynamics over large areas that otherwise could not be assessed. Coarse-resolution (~25km) satellite data from passive and active microwave instruments are well suited for the global observation of large-scale inundation patterns because they are primarily sensitive to the associated dielectric properties of the landscape and cover large areas within a relatively short amount of time (up to daily repeat in high latitudes). This study summarizes a new remote sensing technique for quantifying global daily surface water fractions based on combined passive-active microwave remote sensing data sets from the AMSR-E and QuikSCAT instruments over a 7 year period (July 2002 - July 2009). We apply these data with ancillary land cover maps from MODIS to: 1) define the potential global domain of surface water impacted land; 2) establish land cover driven predictive equations for implementing a dynamic mixture model adjusted to total column water vapor obtained from NASA's modern era

  20. Estimating long-term surface hydrological components by coupling remote sensing observation with surface flux model.

    SciTech Connect

    Song, J.; Wesely, M. L.

    2002-05-02

    A model framework for parameterized subgrid-scale surface fluxes (PASS) has been applied to use satellite data, models, and routine surface observations to infer root-zone available moisture content and evapotranspiration rate with moderate spatial resolution within Walnut River Watershed in Kansas. Biweekly composite normalized difference vegetative index (NDVI) data are derived from observations by National Oceanic and Atmospheric Administration (NOAA) satellites. Local surface observations provide data on downwelling solar irradiance, air temperature, relative humidity, and wind speed. Surface parameters including roughness length, albedo, surface water conductance, and the ratio of soil heat flux to net radiation are estimated; pixel-specific near-surface meteorological conditions such as air temperature, vapor pressure, and wind speed are adjusted according to local surface forcing. The PASS modeling system makes effective use of satellite data and can be run for large areas for which flux data do not exist and surface meteorological data are available from only a limited number of ground stations. The long-term surface hydrological budget is evaluated using radar-derived precipitation estimates, surface meteorological observations, and satellite data. The modeled hydrological components in the Walnut River Watershed compare well with stream gauge data and observed surface fluxes during 1999.

  1. Large-scale Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Velpuri, N.; Singh, R. K.; Bohms, S.; Verdin, J. P.

    2013-12-01

    We present a simple but robust method that uses remotely sensed thermal data and model-assimilated weather fields to produce actual evapotranspiration (ET) for the contiguous United States (CONUS) at monthly and seasonal time scales. The method is based on the Simplified Surface Energy Balance (SSEB) model which is now parameterized for operational applications, and renamed as SSEBop. The innovative aspect of the SSEBop is that it uses pre-defined, boundary conditions that are unique to each pixel for the 'hot' and 'cold' reference end members. We used SSEBop to compute 13 years (2000-2012) of monthly ET using MODIS and data streams provided by Global Data Assimilation System (GDAS). Validation of SSEBop performance (model to observed as well as model to model) was performed over the CONUS at both point and basin scales. Point scale model to observed validation was performed using eddy covariance FLUXNET ET (FLET) data (2001-2007) aggregated by year, land cover, elevation and climate zone. Basin scale model to observed validation was performed using annual gridded FLUXNET ET (GFET) and annual basin water balance ET (WBET) data aggregated by various Hydrologic Unit Code (HUC) levels. Model-to-model comparison was also performed by comparing SSEBop ET with MOD16 ET. Point scale validation using monthly data aggregated by years revealed that the MOD16 ET and SSEBop ET products compared well with observations at comparable accuracies annually. Both ET products showed comparable results by most land cover types and by climate zones. However, SSEBop performed better for Grassland and Forest classeswhereasMOD16 performed better for the woody savanna class. Validation results at different HUC levels over 2000-2011 using GFET as a reference indicated higher accuracies for MOD16 ET data. MOD16, SSEBop and GFET data were validated against WBET (2000-2009), and results indicate that both MOD16 and SSEBop ET matched the accuracies of the global GFET dataset at HUC levels. Our

  2. Comparison of two different surfaces for 3d model abstraction in support of remote sensing simulations

    SciTech Connect

    Pope, Paul A; Ranken, Doug M

    2010-01-01

    A method for abstracting a 3D model by shrinking a triangular mesh, defined upon a best fitting ellipsoid surrounding the model, onto the model's surface has been previously described. This ''shrinkwrap'' process enables a semi-regular mesh to be defined upon an object's surface. This creates a useful data structure for conducting remote sensing simulations and image processing. However, using a best fitting ellipsoid having a graticule-based tessellation to seed the shrinkwrap process suffers from a mesh which is too dense at the poles. To achieve a more regular mesh, the use of a best fitting, subdivided icosahedron was tested. By subdividing each of the twenty facets of the icosahedron into regular triangles of a predetermined size, arbitrarily dense, highly-regular starting meshes can be created. Comparisons of the meshes resulting from these two seed surfaces are described. Use of a best fitting icosahedron-based mesh as the seed surface in the shrinkwrap process is preferable to using a best fitting ellipsoid. The impacts to remote sensing simulations, specifically generation of synthetic imagery, is illustrated.

  3. Quantitative Evaluation of Surface Color of Tomato Fruits Cultivated in Remote Farm Using Digital Camera Images

    NASA Astrophysics Data System (ADS)

    Hashimoto, Atsushi; Suehara, Ken-Ichiro; Kameoka, Takaharu

    To measure the quantitative surface color information of agricultural products with the ambient information during cultivation, a color calibration method for digital camera images and a remote monitoring system of color imaging using the Web were developed. Single-lens reflex and web digital cameras were used for the image acquisitions. The tomato images through the post-ripening process were taken by the digital camera in both the standard image acquisition system and in the field conditions from the morning to evening. Several kinds of images were acquired with the standard RGB color chart set up just behind the tomato fruit on a black matte, and a color calibration was carried out. The influence of the sunlight could be experimentally eliminated, and the calibrated color information consistently agreed with the standard ones acquired in the system through the post-ripening process. Furthermore, the surface color change of the tomato on the tree in a greenhouse was remotely monitored during maturation using the digital cameras equipped with the Field Server. The acquired digital color images were sent from the Farm Station to the BIFE Laboratory of Mie University via VPN. The time behavior of the tomato surface color change during the maturing process could be measured using the color parameter calculated based on the obtained and calibrated color images along with the ambient atmospheric record. This study is a very important step in developing the surface color analysis for both the simple and rapid evaluation of the crop vigor in the field and to construct an ambient and networked remote monitoring system for food security, precision agriculture, and agricultural research.

  4. Euro-Maps 3D- A Transnational, High-Resolution Digital Surface Model For Europe

    NASA Astrophysics Data System (ADS)

    Uttenthaler, A.; Barner, F.; Hass, T.; Makiola, J.; d'Angelo, P.; Reinartz, P.; Carl, S.; Steiner, K.

    2013-12-01

    Euro-Maps 3D is a homogeneous 5 m spaced digital surface model (DSM) semi-automatically derived by Euromap from 2.5 m in-flight stereo data provided by the Indian IRS-P5 Cartosat-1 satellite. This new and innovative product has been developed in close co- operation with the Remote Sensing Technology Institute (IMF) of the German Aerospace Center (DLR) and is being jointly exploited. The very detailed and accurate representation of the surface is achieved by using a sophisticated and well adapted algorithm implemented on the basis of the Semi-Global Matching approach. In addition, the final product includes detailed flanking information consisting of several pixel-based quality and traceability layers also including an ortho layer. The product is believed to provide maximum accuracy and transparency. The DSM product meets and exceeds HRE80 qualification standards. The DSM product will be made available transnational in a homogeneous quality for most parts of Europe, North Africa and Turkey by Euromap step-by-step. Other areas around the world are processed on demand.

  5. Mapping photosynthetically available radiation at the sea surface using GOCI

    NASA Astrophysics Data System (ADS)

    Choi, Jongkuk; Kim, Jihye; Yang, Hyun; Moon, Jeong-Eon; Frouin, Robert

    2016-04-01

    Photosynthetically available radiation (PAR) controls the composition of marine ecosystem by affecting the growth of phytoplankton, thus estimating PAR at the ocean surface accurately is important to understand the marine ecological environment. Although many studies have been attempted to estimate PAR employing ocean colour satellite data since 2003, previous studies using data from the polar orbit systems had spatial and temporal limitations to estimate accurate daily PAR. Here, we estimate daily PAR from Geostationary Ocean Colour Imager (GOCI) which collects data eight times a day at an hour interval in daytime and compare it with in-situ measurement and MODIS-based daily PAR. The algorithm we developed in this study, employed GOCI visible bands (centred at (412, 443, 490, 555, 660, 680 nm) which belongs to the range of PAR by calculating albedo at the layer of clouds and the sea surface to estimate daily PAR. The resultant value was validated by comparing the in-situ measurements acquired from an ocean research station, Socheongcho between February and May 2015, which showed a similar pattern with somewhat GOCI-base PAR's overestimations. The comparison with the results from MODIS, a polar orbit system showed that a good agreement with each other was illustrated at clear sky conditions, while MODIS showed some over- or underestimations at cloudy conditions with irregular patterns. This study shows that GOCI can estimate effectively the daily PAR with its advantages of acquiring data more frequently than other polar orbit ocean colour satellites by reducing the uncertainties induced by insufficient images to map the daily PAR at ocean surface.

  6. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 2: Application of Equilibrium Evaporation Model to Estimate Evapotranspiration by Remote Sensing Technique. [Japan

    NASA Technical Reports Server (NTRS)

    Kotoda, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In a humid region like Japan, it seems that the radiation term in the energy balance equation plays a more important role for evapotranspiration then does the vapor pressure difference between the surface and lower atmospheric boundary layer. A Priestley-Taylor type equation (equilibrium evaporation model) is used to estimate evapotranspiration. Net radiation, soil heat flux, and surface temperature data are obtained. Only temperature data obtained by remotely sensed techniques are used.

  7. Application of remote sensing and geographical information system in mapping forest fire risk zone at Bhadra wildlife sanctuary, India.

    PubMed

    Sowmya, S V; Somashekar, R K

    2010-11-01

    Fire is the most spectacular natural disturbance that affects the forest ecosystem composition and diversity. Fire has a devastating effect on the landscape and its impact is felt at every level of the ecosystem and it is possible to map forest fire risk zone and thereby minimize the frequency of fire. There is a need for supranational approaches that analyze wide scenarios of factors involved and global fire effects. Fires can be monitored and analyzed over large areas in a timely and cost effective manner by using satellite imagery. Also Geographical Information System (GIS) can be used effectively to demarcate the fire risk zone map. Bhadra wildlife Sanctuary located in Kamataka, India was selected for this study. Vegetation, slope, distance from roads, settlements parameters were derived for a study area using topographic maps and field information. The Remote Sensing (RS) and Geographical Information System (GIS)-based forest fire risk model of the study area appeared to be highly compatible with the actual fire-affected sites. The temporal satellite data from 1989 to2006 have been analyzed to map the burnt areas. These classes were weighted according to their influence on forest fire. Four categories of fire risk regions such as Low, Moderate, High and Very high fire intensity zones were identified. It is predicted that around 10.31% of the area falls undermoderate risk zone.

  8. Real-time renewal of the digital map for local government by using remote sensing and RTK-GPS

    NASA Astrophysics Data System (ADS)

    Okuno, Aki; Shikada, Masaaki

    2004-12-01

    Much local government has been using a large scale digital map with Geographic Information System (GIS). However, the updating method of a map is not established yet. The purpose of this study is the real-time renewal of the digital map for local government by using Remote Sensing and RTK-GPS. This concept was defined as REAL TIME GIS. This system has the problem that RTK-GPS measuring data is Japanese Geodetic Datum 2000 (JGD2000) of WGS-84, but most of the digital maps of local government are still Tokyo Datum of old geodetic system. It is necessary to transform an old geodetic system to a new one. In this study, the coordinate transformation methods were compared Affine Transformation with TKY2JGD. Moreover, the number and arrangement of control points were changed, coordinates were converted by Affine Transformation. In this paper, the parameters which were calculated by Affine Transformation were called "High-Accuracy Regional Parameter (HARP)". As a result, TKY2JGD has a maximum 15cm error. Affine Transformation has 2cm errors using 4 control points at the corner of unit. It is suggested that the process of REAL TIME GIS and HARP should be introduced to the work of local government.

  9. SETTLEMENT AREA MAPPING USING OPTICAL AND SYNTHETIC APERTURE RADAR (SAR) REMOTE SENSING IMAGERY TO SUPPORT TSUNAMI RISK ASSESSMENT

    NASA Astrophysics Data System (ADS)

    Khomarudin, R.; Strunz, G.; Ludwig, R.; Post, J.; Zosseder, K.; Esch, T.; Indrajit, A.; Khomarudin, R.

    2009-12-01

    In Indonesia more than 60% of the population and more than 80% of the industrial areas are located in the coastal regions. Many of the development activities take place in the coastal areas such as fisheries, agriculture, industry, transportation, tourism, urban development, that are particularly vulnerable to natural disasters. Indonesia is one of the most vulnerable countries on the world with respect to the tsunami threat. In the framework of the GITEWS (German Indonesian Tsunami Early Warning System) project a comprehensive risk assessment is being performed. To mitigate and decrease the loss of lives caused by tsunami, the information on people activities and settlement area is important. Remote sensing techniques can be applied to map settlement areas, which are used as input for tsunami risk assessment. This paper presents the results of the development and application of classification techniques for settlement extraction using Landsat TM and TerraSAR-X imagery. Several methods, like region growing, Index based built up index (IBI) and speckle divergence methods, have been investigated to extract settlement areas in the districts of Cilacap and Padang. The decision tree and neighborhood algorithm has also been used for performing the classification steps. The results of this research are promising, especially the SAR techniques based on TerraSAR-X gave highly accurate results with more than 85% overall accuracy and low omission and commission errors. Keyword: Remote Sensing, Settlement Mapping, Region Growing, Index Based Built-up Index, SAR Speckle Divergence

  10. Mapping the Educational Work of Governesses on Australia's Remote Stations

    ERIC Educational Resources Information Center

    Newman, Sally

    2014-01-01

    This article is about the educational work of governesses on Australia's remote cattle and sheep stations. These stations occupy vast tracts of land in the outback, and form part of global food supply chains exporting meat to countries around the world. The article explores the nature of governesses' work, the boundaries they negotiate…

  11. Principles and case studies of earthquake-triggered landslide inventory mapping using remote sensing and GIS technologies

    NASA Astrophysics Data System (ADS)

    Xu, Chong

    2014-05-01

    Inventory maps of earthquake-triggered landslides can be constructed using several methods, which are often subject to obvious differences due to lack of commonly accepted criteria or principles. To solve this problem, the author describes the principles for preparing inventory maps of earthquake-triggered landslides, focusing on varied methods and their criteria. The principles include the following key points: all landslides should be mapped as long as they can be recognized from images; both the boundary and source area position of landslides should be mapped; spatial distribution pattern of earthquake-triggered landslides should be continuous; complex landslides should be divided into distinct groups; three types of errors such as precision of the location and boundary of landslides, false positive errors, and false negative errors of earthquake-triggered landslide inventories should be controlled and reduced; and inventories of co-seismic landslides should be constructed by the visual interpretation method rather than automatic extraction of satellite images or/and aerial photographs. In addition, selection of remote sensing images and creation of landslides attribute database are also discussed in this paper. Then the author applies these principles to produce inventory maps of four events: the 12 May 2008 Wenchuan, China Mw 7.9, 14 April 2010 Yushu, China Mw 6.9, 12 January 2010 Haiti Mw 7.0, and 2007 Aysén Fjord, Chile Mw 6.2. The results show obvious differences in comparison with previous studies by other researchers, which again attests to the necessity of establishment of unified principles for preparation of inventory maps of earthquake-triggered landslides. This research was supported by the National Science Foundation of China (41202235).

  12. Surface Properties and Characteristics of Mars Landing Sites from Remote Sensing Data and Ground Truth

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.; Haldemann, A. F.; Simpson, R. A.; Furgason, R. L.; Putzig, N. E.; Huertas, A.; Arvidson, R. E.; Heet, T.; Bell, J. F.; Mellon, M. T.; McEwen, A. S.

    2008-12-01

    Surface characteristics at the six sites where spacecraft have successfully landed on Mars can be related favorably to their signatures in remotely sensed data from orbit and from the Earth. Comparisons of the rock abundance, types and coverage of soils (and their physical properties), thermal inertia, albedo, and topographic slope all agree with orbital remote sensing estimates and show that the materials at the landing sites can be used as ground truth for the materials that make up most of the equatorial and mid- to moderately high-latitude regions of Mars. The six landing sites sample two of the three dominant global thermal inertia and albedo units that cover ~80% of the surface of Mars. The Viking, Spirit, Mars Pathfinder, and Phoenix landing sites are representative of the moderate to high thermal inertia and intermediate to high albedo unit that is dominated by crusty, cloddy, blocky or frozen soils (duricrust that may be layered) with various abundances of rocks and bright dust. The Opportunity landing site is representative of the moderate to high thermal inertia and low albedo surface unit that is relatively dust free and composed of dark eolian sand and/or increased abundance of rocks. Rock abundance derived from orbital thermal differencing techniques in the equatorial regions agrees with that determined from rock counts at the surface and varies from ~3-20% at the landing sites. The size-frequency distributions of rocks >1.5 m diameter fully resolvable in HiRISE images of the landing sites follow exponential models developed from lander measurements of smaller rocks and are continuous with these rock distributions indicating both are part of the same population. Interpretation of radar data confirms the presence of load bearing, relatively dense surfaces controlled by the soil type at the landing sites, regional rock populations from diffuse scattering similar to those observed directly at the sites, and root-mean-squared slopes that compare favorably

  13. Laboratory insights into the detection of surface biosignatures by remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Poch, O.; Pommerol, A.; Jost, B.; Roditi, I.; Frey, J.; Thomas, N.

    2014-03-01

    With the progress of direct imaging techniques, it will be possible in the short or long-term future to retrieve more efficiently the information on the physical properties of the light reflected by rocky exoplanets (Traub et al., 2010). The search for visible-infrared absorption bands of peculiar gases (O2, CH4 etc.) in this light could give clues for the presence of life (Kaltenegger and Selsis, 2007). Even more uplifting would be the direct detection of life itself, on the surface of an exoplanet. Considering this latter possibility, what is the potential of optical remote-sensing methods to detect surface biosignatures? Reflected light from the surface of the Earth exhibits a strong surface biosignature in the form of an abrupt change of reflectance between the visible and infrared range of the spectrum (Seager et al., 2005). This spectral feature called "vegetation red-edge" is possibly the consequence of biological evolution selecting the right chemical structures enabling the plants to absorb the visible energy, while preventing them from overheating by reflecting more efficiently the infrared. Such red-edge is also found in primitive photosynthetic bacteria, cyanobacteria, that colonized the surface of the Earth ocean and continents billions of years before multicellular plants (Knacke, 2003). If life ever arose on an Earth-like exoplanet, one could hypothesize that some form of its surface-life evolves into similar photo-active organisms, also exhibiting a red-edge. In this paper, we will present our plan and preliminary results of a laboratory study aiming at precising the potentiality of remote sensing techniques in detecting such surface biosignatures. Using equipment that has been developed in our team for surface photometry studies (Pommerol 2011, Jost 2013, Pommerol 2013), we will investigate the reflectance spectra and bidirectional reflectance function of soils containing bacteria such as cyanobacteria, in various environmental conditions. We will

  14. Vegetation Cover Mapping Based on Remote Sensing and Digital Elevation Model Data

    NASA Astrophysics Data System (ADS)

    Korets, M. A.; Ryzhkova, V. A.; Danilova, I. V.; Prokushkin, A. S.

    2016-06-01

    An algorithm of forest cover mapping based on combined GIS-based analysis of multi-band satellite imagery, digital elevation model, and ground truth data was developed. Using the classification principles and an approach of Russian forest scientist Kolesnikov, maps of forest types and forest growing conditions (FGC) were build. The first map is based on RS-composite classification, while the second map is constructed on the basis of DEM-composite classification. The spatial combination of this two layers were also used for extrapolation and mapping of ecosystem carbon stock values (kgC/m2). The proposed approach was applied for the test site area (~3600 km2), located in the Northern Siberia boreal forests of Evenkia near Tura settlement.

  15. Direct Cortical Mapping via Solving Partial Differential Equations on Implicit Surfaces

    PubMed Central

    Shi, Yonggang; Thompson, Paul M.; Dinov, Ivo; Osher, Stanley; Toga, Arthur W.

    2007-01-01

    In this paper, we propose a novel approach for cortical mapping that computes a direct map between two cortical surfaces while satisfying constraints on sulcal landmark curves. By computing the map directly, we can avoid conventional intermediate parameterizations and help simplify the cortical mapping process. The direct map in our method is formulated as the minimizer of a flexible variational energy under landmark constraints. The energy can include both a harmonic term to ensure smoothness of the map and general data terms for the matching of geometric features. Starting from a properly designed initial map, we compute the map iteratively by solving a partial differential equation (PDE) defined on the source cortical surface. For numerical implementation, a set of adaptive numerical schemes are developed to extend the technique of solving PDEs on implicit surfaces such that landmark constraints are enforced. In our experiments, we show the flexibility of the direct mapping approach by computing smooth maps following landmark constraints from two different energies. We also quantitatively compare the metric preserving property of the direct mapping method with a parametric mapping method on a group of 30 subjects. Finally, we demonstrate the direct mapping method in the brain mapping applications of atlas construction and variability analysis. PMID:17379568

  16. Impact of the Sun on Remote Sensing of Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, David M; Abraham, Saji; Wentz, F; Lagerloef, G S

    2005-01-01

    The sun is a sufficiently strong source of radiation at L-band to be an important source of interference for radiometers on future satellite missions such as SMOS, Aquarius, and Hydros designed to monitor soil moisture and sea surface salinity. Radiation from the sun can impact passive remote sensing systems in several ways, including line-of-sight radiation that comes directly from the sun and enters through antenna side lobes and radiation that is reflected from the surface to the radiometer. Examples are presented in the case of Aquarius, a pushbroom radiometer with three beams designed to monitor sea surface salinity. Near solar minimum, solar contamination is not a problem unless the sun enters near the main beam. But near solar maximum, contamination from the sun equivalent to a change of salinity on the order of 0.1 psu can occur even when the signal enters in sidelobes far from the main beam.

  17. Remote measurement of ice thickness on the shuttle external tank surface

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1990-01-01

    A passive technique is proposed for remote measurement of thickness of the ice layer formed on the external tank surface of the Shuttle during the T-2 hours period before launch. It is based on the comparison of the ratios of the intensities of three preselected near-IR wavelength bands scattered from the (test spot) and a neighboring (reference spot) on the tank surface. The Shuttle is uniformly illuminated by a battery of strategically located solar simulator lamps and banks of incadescent lamps during prelaunch period. Thus, there should be adequate radiation in the three selected bands incident on the external tank surface during the test period. It is planned to conduct a feasibility study of the proposed technique before recommending it to the KSC/SSC teams for adoption.

  18. Remote haptic perception of slanted surfaces shows the same scale expansion as visual perception.

    PubMed

    Shaffer, Dennis M; McManama, Eric

    2015-04-01

    Previous work has shown that overestimates of geographic slant depend on the modality used (verbal or haptic). Recently, that line of reasoning has come into question for many reasons, not the least of which is that the typical method used for measuring "action" has been the use of a palm board, which is not well calibrated to any type of action toward slanted surfaces. In the present work, we investigated how a remote haptic task that has been well calibrated to action in previous work is related to verbal overestimates of slanted surfaces that are out of reach. The results show that haptic estimates are perceptually equivalent to the verbal overestimates that have been found in numerous previous studies. This work shows that the haptic perceptual system is scaled in the same way as the visual perceptual system for estimating the orientation of slanted surfaces that are out of reach.

  19. Improved Prediction of Quasi-Global Vegetation Conditions Using Remotely-Sensed Surface Soil Moisture

    NASA Technical Reports Server (NTRS)

    Bolten, John; Crow, Wade

    2012-01-01

    The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.

  20. Toward autonomous surface-based infrared remote sensing of polar clouds: cloud-height retrievals

    NASA Astrophysics Data System (ADS)

    Rowe, Penny M.; Cox, Christopher J.; Walden, Von P.

    2016-08-01

    Polar regions are characterized by their remoteness, making measurements challenging, but an improved knowledge of clouds and radiation is necessary to understand polar climate change. Infrared radiance spectrometers can operate continuously from the surface and have low power requirements relative to active sensors. Here we explore the feasibility of retrieving cloud height with an infrared spectrometer that would be designed for use in remote polar locations. Using a wide variety of simulated spectra of mixed-phase polar clouds at varying instrument resolutions, retrieval accuracy is explored using the CO2 slicing/sorting and the minimum local emissivity variance (MLEV) methods. In the absence of imposed errors and for clouds with optical depths greater than ˜ 0.3, cloud-height retrievals from simulated spectra using CO2 slicing/sorting and MLEV are found to have roughly equivalent high accuracies: at an instrument resolution of 0.5 cm-1, mean biases are found to be ˜ 0.2 km for clouds with bases below 2 and -0.2 km for higher clouds. Accuracy is found to decrease with coarsening resolution and become worse overall for MLEV than for CO2 slicing/sorting; however, the two methods have differing sensitivity to different sources of error, suggesting an approach that combines them. For expected errors in the atmospheric state as well as both instrument noise and bias of 0.2 mW/(m2 sr cm-1), at a resolution of 4 cm-1, average retrieval errors are found to be less than ˜ 0.5 km for cloud bases within 1 km of the surface, increasing to ˜ 1.5 km at 4 km. This sensitivity indicates that a portable, surface-based infrared radiance spectrometer could provide an important complement in remote locations to satellite-based measurements, for which retrievals of low-level cloud are challenging.

  1. Novel applications of multiple-point geostatistics in remote sensing, geophysics, climate science and surface hydrology

    NASA Astrophysics Data System (ADS)

    Mariethoz, G.; Jha, S. K.; McCabe, M. F.; Evans, J. P.

    2012-12-01

    Recent advances in multiple-point geostatistics (MPS) offer new possibilities in remote sensing, surface hydrology and climate modeling. MPS is an ensemble of tools for the characterization of spatial phenomena. Its most prominent characteristic is the use of training images for defining what type of spatial patterns are deemed to result from the processes under study. In the last decade, MPS have been increasingly used to characterize 3D subsurface structures consisting of geological facies, with application primarily to reservoir engineering, hydrogeology and mining. Although the methods show good results, a consistent difficulty relates to finding appropriate training images to describe largely unknown geological formations. Despite this issue, the growing interest in MPS triggered a series of different methodological advances, leading to improved computational performance and increased flexibility. With these recent improvements, the scientific community now has unprecedented numerical tools that allow dealing with a wide range of problems outside the realm of subsurface applications. These include the simulation of continuous variables as well as complex non-linear ensembles of multivariate properties. It is found that these new tools are ideal to address a number of issues in scientific fields related to surface modeling of environmental systems and geophysical data. Shifting focus and investigating the application of MPS to surface hydrology results in a wealth of training images that are readily available, thanks to global networks of remote sensing measurements. This presentation will delineate recent results in this direction, including MPS applications to the stochastic downscaling of climate models, the completion of partially informed remote sensing images and the processing of geophysical data. A major advantage is the use of satellite images taken at regular intervals, which can be used to inform both the spatial and temporal variability of

  2. Satellite Based Mapping of Land Surface ET using MODIS and Alternate Surface Meteorological Inputs from AMSR-E, Reanalysis, and Surface Weather Stations

    NASA Astrophysics Data System (ADS)

    Mu, Q.; Jones, L. A.; Kimball, J. S.; Running, S. W.

    2007-12-01

    Regional evapotranspiration (ET), including water loss from plant transpiration and soil evaporation, is essential to understanding interactions between land-atmosphere surface energy and water balances. Vapor pressure deficit (VPD) and surface air temperature are key variables for stomatal conductance and ET estimation. We developed an algorithm to estimate ET using a modified Penman-Monteith approach driven by MODIS derived vegetation data and daily surface meteorological inputs including net incoming solar radiation, air temperature and VPD. The model was applied using alternate daily meteorological inputs, including: 1) site level weather station observations, 2) VPD and air temperature derived from the Advanced Microwave Scanning Radiometer (AMSR-E) on the EOS Aqua satellite, and 3) Global Modeling and Assimilation Office (GMAO) reanalysis based surface temperature, humidity and solar radiation data. Model performance was assessed across a North American boreal-Arctic transect (>50o N) of six eddy covariance flux towers representing boreal grassland, boreal forest and tundra biomes. Model results derived from the three meteorology data sets agree well with observed tower fluxes (r>0.6; P<0.00001; RMSE<30W/m2) and capture spatial patterns and seasonal variability in ET. The MODIS-AMSR-E derived ET results also show comparable accuracy to ET results derived from the reanalysis meteorology, while ET estimation error was generally more a function of algorithm parameterization than differences in meteorology drivers. Our results indicate significant potential for regional mapping and monitoring daily land surface evaporation using synergistic information from satellite optical-IR and microwave remote sensing.

  3. Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land.

    PubMed

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550 nm (τ(550)) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ(550) with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ(550) and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ(550) retrieved by Module A (r(2) = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r(2) ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  4. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  5. Effects of spatial resolution of remotely sensed data on estimating urban impervious surfaces.

    PubMed

    Li, Weifeng; Ouyang, Zhiyun; Zhou, Weiqi; Chen, Qiuwen

    2011-01-01

    Impervious surfaces are the result of urbanization that can be explicitly quantified, managed and controlled at each stage of land development. It is a very useful environmental indicator that can be used to measure the impacts of urbanization on surface runoff, water quality, air quality, biodiversity and microclimate. Therefore, accurate estimation of impervious surfaces is critical for urban environmental monitoring, land management, decision-making and urban planning. Many approaches have been developed to estimate surface imperviousness, using remotely sensed data with various spatial resolutions. However, few studies, have investigated the effects of spatial resolution on estimating surface imperviousness. We compare medium-resolution Landsat data with high-resolution SPOT images to quantify the imperviousness in Beijing, China. The results indicated that the overall 91% accuracy of estimates of imperviousness based on TM data was considerably higher than the 81% accuracy of the SPOT data. The higher resolution SPOT data did not always predict the imperviousness of the land better than the TM data. At the whole city level, the TM data better predicts the percentage cover of impervious surfaces. At the sub-city level, however, the ring belts from the central core to the urban-rural peripheral, the SPOT data may better predict the imperviousness. These results highlighted the need to combine multiple resolution data to quantify the percentage of imperviousness, as higher resolution data do not necessarily lead to more accurate estimates. The methodology and results in this study can be utilized to identify the most suitable remote sensing data to quickly and efficiently extract the pattern of the impervious land, which could provide the base for further study on many related urban environmental problems.

  6. Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N.

    2007-02-01

    Multiyear surface PM10 measurements performed on Crete Island, Greece, have been used in conjunction with satellite (Total Ozone Mapping Spectrometer (TOMS)) and ground-based remote sensing measurements (Aerosol Robotic Network (AERONET)) to enhance our understanding of the evolution of mineral dust events over the eastern Mediterranean. An analysis of southerly air masses at altitudes of 1000 and 3000 m over a 5 year period (2000-2005), showed that dust can potentially arrive over Crete, either simultaneously in the lower free troposphere and inside the boundary layer (vertical extended transport (VET)) or initially into the free troposphere with the heavier particles gradually being scavenged inside the boundary layer (free troposphere transport (FTT)). Both pathways present significant seasonal variations but on an annual basis contribute almost equally to the dust transport in the area. During VET the aerosol index (AI) derived from TOMS was significantly correlated with surface PM10, and in general AI was found to be adequate for the characterization of dust loadings over the eastern Mediterranean on a climatological basis. A significant covariance between PM10 and AOT was observed during VET as well, indicating that AOT levels from AERONET may be estimated by PM10 levels at the surface. Surface measurements are thus crucial for the validation of remote sensing measurements and hence are a powerful tool for the investigation of the impact of aerosols on climate.

  7. Multiscale controls on water surface roughness and implications for remote sensing of rivers

    NASA Astrophysics Data System (ADS)

    Overstreet, B. T.; Legleiter, C. J.; Harrison, L.; Pitcher, L. H.; Ryan, J.; Rennermalm, A. K.; Smith, L. C.

    2015-12-01

    Remote sensing has emerged as a viable and efficient tool for studying river systems and facilitating their rehabilitation. While many remote sensing applications utilize spectral information from the substrate and water column, light reflected from the water surface is often a significant component of the total at-sensor radiance. As water surface roughness (WSR) increases, a greater proportion of surface facets become oriented so as to reflect, rather than transmit, light. As a result, WSR exerts a primary control on the amount of surface reflected light measured by a remote sensor. WSR in rivers is a function of flow hydraulics, channel form, slope, bed roughness, and wind. While the relative influence of each of these components on WSR changes with scale, understanding these relationships could lead to methods for obtaining hydraulic information from image-derived metrics of WSR (i.e., surface reflectance). We collected field data on flow depth and velocity using an acoustic Doppler current profiler and simultaneously measured WSR using a custom built ultrasonic distance sensor on a diverse set of rivers ranging from a 15 m wide supraglacial river on the Greenland Ice Sheet to 100 m wide gravel-bed rivers in Wyoming and Oregon. Simultaneous multi- and hyperspectral image data sets indicate that image-derived surface reflectance is strongly correlated with WSR. Temporally distributed point measurements of flow depth, velocity, and WSR on the supraglacial river capture a threefold range in discharge (6 m3/s to 17 m3/s) and indicate that flow velocity is a primary control on WSR in smaller channels, even in the absence of sediment-induced bed roughness. Spatially distributed field measurements from large gravel-bed rivers suggests that spatial variability of WSR in the thalweg corresponds with geomorphic facies while WSR along the channel margins is more significantly influenced by grain size, relative submergence, and bank geometry. These findings suggest that

  8. A three dimensional radiative transfer method for optical remote sensing of vegetated land surfaces

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem; Myneni, Ranga B.; Choudhury, Bhaskar J.

    1991-01-01

    In the application of remote sensing at optical wavelengths to vegetated surfaces from satellite borne high resolution instruments, an understanding of the various physical mechanisms that contribute to the measured signal is important. A numerical method of solving the radiative transfer equation in three dimensions is reported. The reliability of coding and accuracy of the algorithm are evaluated by benchmarching. Parametrization of the methods and results of a simulation are presented. The method is tested with experimental data of canopy bidirectional reflectance factors. The effect of spatial heterogeneity on the relationship between the simple ratio and normalized vrs absorbed Photosynthetically Active Radiation (PAR) is discussed.

  9. Cancer Risk Map for the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2011-01-01

    We discuss calculations of the median and 95th percentile cancer risks on the surface of Mars for different solar conditions. The NASA Space Radiation Cancer Risk 2010 model is used to estimate gender and age specific cancer incidence and mortality risks for astronauts exploring Mars. Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated using the HZETRN/QMSFRG computer code, and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. In the transport of particles through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution is implemented to describe the spherically distributed atmospheric distance along the slant path at each elevation on Mars. The resultant directional shielding by Mars atmosphere at each elevation is coupled with vehicle and body shielding for organ dose estimates. Astronaut cancer risks are mapped on the global topography of Mars, which was measured by the Mars Orbiter Laser Altimeter. Variation of cancer risk on the surface of Mars is due to a 16-km elevation range, and the large difference is obtained between the Tharsis Montes (Ascraeus, Pavonis, and Arsia) and the Hellas impact basin. Cancer incidence risks are found to be about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for all astronauts and breast cancer risk for female astronauts. The number of safe days on Mars to be below radiation limits at the 95th percent confidence level is reported for several Mission design scenarios.

  10. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2014-01-01

    Lunar Flashlight is an exciting new mission concept in preformulation studies for NASA's Advanced Exploration Systems (AES) by a team from the Jet Propulsion Laboratory, UCLA, and Marshall Space Flight Center. This innovative, low-cost concept will map the lunar south pole for volatiles and demonstrate several technological firsts, including being the first CubeSat to reach the Moon, the first mission to use an 80 m2 solar sail, and the first mission to use a solar sail as a reflector for science observations. The Lunar Flashlight mission spacecraft maneuvers to its lunar polar orbit and uses its solar sail as a mirror to reflect 50 kW of sunlight down into shaded polar regions, while the on-board spectrometer measures surface reflection and composition. The Lunar Flashlight 6U spacecraft has heritage elements from multiple cubesat systems. The deployable solar sail/reflector is based on previous solar sail experiments, scaled up for this mission. The mission will demonstrate a path where 6U CubeSats could, at dramatically lower cost than previously thought possible, explore, locate and estimate size and composition of ice deposits on the Moon. Locating ice deposits in the Moon's permanently shadowed craters addresses one of NASA's Strategic Knowledge Gaps (SKGs) to detect composition, quantity, distribution, form of water/H species and other volatiles associated with lunar cold traps. Polar volatile data collected by Lunar Flashlight could then ensure that targets for more expensive lander- and rover-borne measurements would include volatiles in sufficient quantity and near enough to the surface to be operationally useful.

  11. In situ remote H-plasma cleaning of patterned Si-SiO2 surfaces

    NASA Astrophysics Data System (ADS)

    Carter, R. J.; Schneider, T. P.; Montgomery, J. S.; Nemanich, R. J.

    1994-11-01

    A RF H-plasma exposure was used to clean the surface of Si-SiO2 patterned wafers. The areal coverage of SiO2 to bare Si was 4 to 1, and the patterns were long strips, small squares, and large open regions. The plasma-surface etching was monitored by residual gas analysis (RGA). The RGA spectra indicated etching of the Si surface at temperatures below 400 C and no detectable by-products due to interactions with the SiO2 regions for temperatures less than 450 C. The patterned surfaces were characterized with low energy electron diffraction (LEED) (from the bare Si regions) and atomic force microscopy (AFM). The LEED patterns indicate 1 x 1 and 2 x 1 surface symmetries at 300 and 450 C, respectively. The sharpness of the LEED patterns as well as the 2 x 1 reconstruction indicated that the H-plasma cleaned the bare Si regions. In addition, AFM measurements indicated that the Si and SiO2 surface rms roughnesses do not vary significantly due to the H-plasma exposure. It can be concluded from the RGA and AFM data that the remote H-plasma process at 450 C cleaned the surface and did not significantly react with either the Si or SiO2 regions.

  12. C-band RISAT-1 imagery for geospatial mapping of cryospheric surface features in the Antarctic environment

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Panditrao, Satej N.; Luis, Alvarinho J.

    2016-05-01

    Cryospheric surface feature classification is one of the widely used applications in the field of polar remote sensing. Precise surface feature maps derived from remotely sensed imageries are the major requirement for many geoscientific applications in polar regions. The present study explores the capabilities of C-band dual polarimetric (HH & HV) SAR imagery from Indian Radar Imaging Satellite (RISAT-1) for land cryospheric surface feature mapping. The study areas selected for the present task were Larsemann Hills and Schirmacher Oasis, East Antarctica. RISAT-1 Fine Resolution STRIPMAP (FRS-1) mode data with 3-m spatial resolution was used in the present research attempt. In order to provide additional context to the amount of information in dual polarized RISAT-1 SAR data, a band HH+HV was introduced to make use of the original two polarizations. In addition to the data calibration, transformed divergence (TD) procedure was performed for class separability analysis to evaluate the quality of the statistics before image classification. For most of the class pairs the TD values were comparable, which indicated that the classes have good separability. Fuzzy and Artificial Neural Network classifiers were implemented and accuracy was checked. Nonparametric classifier Support Vector Machine (SVM) was also used to classify RISAT-1 data with an optimized polarization combination into three land-cover classes consisting of sea ice/snow/ice, rocks/landmass, and lakes/waterbodies. This study demonstrates that C-band FRS1 image mode data from the RISAT-1 mission can be exploited to identify, map and monitor land cover features in the polar regions, even during dark winter period. For better landcover classification and analysis, hybrid polarimetric data (cFRS-1 mode) from RISAT-1, which incorporates phase information, unlike the dual-pol linear (HH, HV) can be used for obtaining better polarization signatures.

  13. Laser Remote Measurements of atmospheric pollutants (Las-R-Map): UV-Visible Laser system description and data processing

    NASA Astrophysics Data System (ADS)

    Sivakumar, V.; Wyk, H. V.

    Laser radar more popularly known as LIDAR LIght Detection And Ranging is becoming one of the most powerful techniques for active remote sensing of the earth s atmosphere Around the globe several new lidar systems have been developed based on the scientific interest Particularly the DIfferential Absorption Lidar DIAL technique is only one which can provide the better accuracy of measuring atmospheric pollutants Using modern advanced techniques and instrumentation a mobile DIAL system called laser remote measurements of atmospheric pollutants hear after referred as Las-R-Map is designed at National Laser Centre NLC --Pretoria 25 r 45 prime S 28 r 17 prime E Las-R-Map is basically used for measuring atmospheric pollutants applying the principle of absorption by constituents The system designed primarily to focus on the following pollutant measurements such as SO 2 CH 4 CO 2 NO 2 and O 3 In future the system could be used to measure few particulate matter between 2 5 mu m and 10 mu m Benzene Hg 1 3-butadiene H 2 S HF and Volatile Organic Compounds VOC Las-R-map comprises of two different laser sources Alexandrite and CO 2 optical receiver data acquisition and signal processor It uses alexandrite laser in the UV-Visible region from 200 nm to 800 nm and CO 2 laser in the Far-IR region from 9 2 mu m to 10 8 mu m Such two different laser sources make feasibility for studying the wide range of atmospheric pollutants The present paper is focused on technical details

  14. Sub-surface minority carrier lifetime mapping in photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Schuck, P. James

    2014-03-01

    The minority carrier lifetime is considered one of the most critical and variable parameters in photovoltaic materials. However, accurately measuring its value is one of the great challenges in evaluating unconventional semiconductor materials for PV applications. I will describe our two-photon time-resolved photoluminescence decay measurements, which allow us to decouple surface and bulk recombination processes even in unpassivated samples. We demonstrate how the traditional one-photon technique can underestimate the bulk lifetime in a CdTe crystal by 10X and show that two-photon excitation more-accurately measures the bulk lifetime. I will finish by discussing how this technique enables the generation of three-dimensional minority carrier lifetime and charge collection efficiency maps that will be useful in identifying efficiency bottlenecks for new and conventional (e.g. CdTe & CIGS) thin film PV materials. Other Authors: Edward S. Barnard1, Eric T. Hoke2, Shaul Aloni1, Craig H. Peters2, Brian E. Hardin2; 1 The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA; 2 PLANT PV Inc. Oakland CA.

  15. Improving the performance of digital soil maps by the application of remotely sensed data used in terroir mapping - case study of the Tokaj wine region

    NASA Astrophysics Data System (ADS)

    Takács, Katalin; Laborczi, Annamária; Lukácsy, György; Pásztor, László

    2015-04-01

    The aim of the soil mapping is to explore and visualize the spatial extension and variability of the thematic knowledge about soils. Soil maps are thematic maps, which can present information about the primary or derivative soil characteristics, soil classes and knowledge about the processes, function and services of the soils. The method for information obtaining about soils is sampling which results only point data and should be spatially extended by a properly chosen process. The digital soil mapping (DSM) method uses environmental auxiliary variables for the spatial extension. These variables should be in direct or indirect relation with the target soil characteristic and should provide full coverage for the target area. Environmental variables can be derived from digital elevation models, land cover data or satellite images which can be obtained most efficiently with remote sensing methods. The soil-landscape relation can be modelled by geostatistical and data mining methods based the soil data and auxiliary variables. The study area is Tokaj wine region (approximately 400 km2) which is located in Northeast-Hungary, in Tokaj Mountains. Soil data is available for 200 sampling points. The terrain variables - such as elevation, slope, aspect and other derivatives - are derived from a relatively high resolution digital elevation model (DEM; 1 m), that was generated by LiDAR. The other environmental variables - such as land cover, NDVI - are prepared based on Landsat images which are acquired at different seasons in line with vegetation phenology and soil coverage. The target maps are prepared by digital soil mapping methods. For the analysis of the relationship between soil sampling data and the auxiliary variables different geostatistical methods are used to choose the most appropriate environmental variables for the spatial modelling. The spatial extension of point data are performed by interpolation methods. For summarizing the main aim of this study is to test

  16. Synergistic use of optical and InSAR data for urban impervious surface mapping: A case study in Hong Kong

    USGS Publications Warehouse

    Jiang, L.; Liao, M.; Lin, H.; Yang, L.

    2009-01-01

    A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning and watershed resource management, require accurate and up-to-date geospatial data of urban impervious surfaces. In this study, the potential of the synergistic use of optical and InSAR data in urban impervious surface mapping at the sub-pixel level was investigated. A case study in Hong Kong was conducted for this purpose by applying a classification and regression tree (CART) algorithm to SPOT 5 multispectral imagery and ERS-2 SAR data. Validated by reference data derived from high-resolution colour-infrared (CIR) aerial photographs, our results show that the addition of InSAR feature information can improve the estimation of impervious surface percentage (ISP) in comparison with using SPOT imagery alone. The improvement is especially notable in separating urban impervious surface from the vacant land/bare ground, which has been a difficult task in ISP modelling with optical remote sensing data. In addition, the results demonstrate the potential to map urban impervious surface by using InSAR data alone. This allows frequent monitoring of world's cities located in cloud-prone and rainy areas. ?? 2009 Taylor & Francis.

  17. [The design and implementation of the web typical surface object spectral information system in arid areas based on .NET and SuperMap].

    PubMed

    Xia, Jun; Tashpolat, Tiyip; Zhang, Fei; Ji, Hong-jiang

    2011-07-01

    The characteristic of object spectrum is not only the base of the quantification analysis of remote sensing, but also the main content of the basic research of remote sensing. The typical surface object spectral database in arid areas oasis is of great significance for applied research on remote sensing in soil salinization. In the present paper, the authors took the Ugan-Kuqa River Delta Oasis as an example, unified .NET and the SuperMap platform with SQL Server database stored data, used the B/S pattern and the C# language to design and develop the typical surface object spectral information system, and established the typical surface object spectral database according to the characteristics of arid areas oasis. The system implemented the classified storage and the management of typical surface object spectral information and the related attribute data of the study areas; this system also implemented visualized two-way query between the maps and attribute data, the drawings of the surface object spectral response curves and the processing of the derivative spectral data and its drawings. In addition, the system initially possessed a simple spectral data mining and analysis capabilities, and this advantage provided an efficient, reliable and convenient data management and application platform for the Ugan-Kuqa River Delta Oasis's follow-up study in soil salinization. Finally, It's easy to maintain, convinient for secondary development and practically operating in good condition.

  18. Field-scale land surface modeling over continental extents: Applications in satellite remote sensing of soil moisture

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Wood, E. F.; Cai, X.

    2015-12-01

    Existing land surface models (LSM) struggle to accurately represent the observed field-scale (~100 meters) spatial heterogeneity of soil moisture due to the over-simplistic parameterizations of sub-grid heterogeneity and the coarseness of the model input data. This is especially relevant in the context of satellite remote sensing of soil moisture since land surface models are seen as important tools with which to validate high-resolution soil moisture retrievals. To address this challenge, we have developed HydroBloks, a semi-distributed land surface model that uses hydrologic response units (HRUs) to represent the observed field-scale spatial heterogeneity of soil moisture while maintaining the computational efficiency of existing LSMs. To accomplish this goal, HydroBloks couples the Noah-MP land surface model to the Dynamic TOPMODEL hydrologic model. The HRUs are defined by clustering proxies of the drivers of spatial heterogeneity using field-scale land data (e.g., NLCD). This allows for each HRU's results to be readily mapped out in space, enabling model application and validation at sub-100 meter scales. In this study, HydroBloks is implemented at three USDA watersheds over the contiguous United States (Little Washita, Little River, and Walnut Gulch). HydroBloks is run at each watershed between 2004 and 2014 using a 100 Latin Hypercube Sample to account for model parameter uncertainty. Each catchment's model ensemble is constrained and validated using available in-situ top-layer soil moisture observations. The results from this study provide insight into the strengths and weaknesses of existing soil moisture networks and the model's potential applications for improved design of in-situ soil moisture networks.

  19. A Remote Characterization System and a fault-tolerant tracking system for subsurface mapping of buried waste sites

    SciTech Connect

    Sandness, G.A.; Bennett, D.W. ); Martinson, L. ); Bingham, D.N.; Anderson, A.A. )

    1992-08-01

    This paper describes two closely related projects that will provide new technology for characterizing hazardous waste burial sites. The first project, a collaborative effort by five of the national laboratories, involves the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for noninvasive inspection of the surface and subsurface. The second project, conducted by the Idaho National Engineering Laboratory (INEL), involves the development of a position sensing system that can track a survey vehicle or instrument in the field. This system can coordinate updates at a rate of 200/s with an accuracy better than 0.1% of the distance separating the target and the sensor. It can employ acoustic or electromagnetic signals in a wide range of frequencies and can be operated as a passive or active device.

  20. Development and Validation of Remote Sensing-Based Surface Inundation Products for Vector-Borne Disease Risk in East Africa

    NASA Astrophysics Data System (ADS)

    Jensen, K.; McDonald, K. C.; Ceccato, P.; Schroeder, R.; Podest, E.

    2014-12-01

    The potential impact of climate variability and change on the spread of infectious disease is of increasingly critical concern to public health. Newly-available remote sensing datasets may be combined with predictive modeling to develop new capabilities to mitigate risks of vector-borne diseases such as malaria, leishmaniasis, and rift valley fever. We have developed improved remote sensing-based products for monitoring water bodies and inundation dynamics that have potential utility for improving risk forecasts of vector-borne disease epidemics. These products include daily and seasonal surface inundation based on the global mappings of inundated area fraction derived at the 25-km scale from active and passive microwave instruments ERS, QuikSCAT, ASCAT, and SSM/I data - the Satellite Water Microwave Product Series (SWAMPS). Focusing on the East African region, we present validation of this product using multi-temporal classification of inundated areas in this region derived from high resolution PALSAR (100m) and Landsat (30m) observations. We assess historical occurrence of malaria in the east African country of Eritrea with respect to the time series SWAMPS datasets, and we aim to construct a framework for use of these new datasets to improve prediction of future malaria risk in this region. This work is supported through funding from the NASA Applied Sciences Program, the NASA Terrestrial Ecology Program, and the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Program. This study is also supported and monitored by National Oceanic and Atmospheric Administration (NOAA) under Grant - CREST Grant # NA11SEC4810004. The statements contained within the manuscript/research article are not the opinions of the funding agency or the U.S. government, but reflect the authors' opinions. This work was conducted in part under the framework of the ALOS Kyoto and Carbon Initiative. ALOS PALSAR data were provided by JAXA EORC.

  1. Transformation Methods for Using Combination of Remotely Sensed Data and Cadastral Maps

    NASA Astrophysics Data System (ADS)

    Dönmez, Ş. Ö.; Tunc, A.

    2016-06-01

    In order to examine using cadastral maps as base maps for aerial orthophotos, two different 2D transformation methods were applied between various coordinate systems. Study area was chosen from Kagithane district in Istanbul. The used data is an orthophoto (30 cm spatial resolution), and cadastral map (1:1000) taken from land office, containing the same region. Transformation methods are chosen as; 1st Order Polynomial Transformation and Helmert 2D Transformation within this study. The test points, used to determine the coefficients between the datums, were 26 common traverse points and the check points, used to compare the transformed coordinates to reliable true coordinates, were 10 common block corners. The transformation methods were applied using Matlab software. After applying the methods, residuals were calculated and compared between each transformation method in order to use cadastral maps as reliable vector data.

  2. Mapping biomass with remote sensing: a comparison of methods for the case study of Uganda

    PubMed Central

    2011-01-01

    Background Assessing biomass is gaining increasing interest mainly for bioenergy, climate change research and mitigation activities, such as reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries (REDD+). In response to these needs, a number of biomass/carbon maps have been recently produced using different approaches but the lack of comparable reference data limits their proper validation. The objectives of this study are to compare the available maps for Uganda and to understand the sources of variability in the estimation. Uganda was chosen as a case-study because it presents a reliable national biomass reference dataset. Results The comparison of the biomass/carbon maps show strong disagreement between the products, with estimates of total aboveground biomass of Uganda ranging from 343 to 2201 Tg and different spatial distribution patterns. Compared to the reference map based on country-specific field data and a national Land Cover (LC) dataset (estimating 468 Tg), maps based on biome-average biomass values, such as the Intergovernmental Panel on Climate Change (IPCC) default values, and global LC datasets tend to strongly overestimate biomass availability of Uganda (ranging from 578 to 2201 Tg), while maps based on satellite data and regression models provide conservative estimates (ranging from 343 to 443 Tg). The comparison of the maps predictions with field data, upscaled to map resolution using LC data, is in accordance with the above findings. This study also demonstrates that the biomass estimates are primarily driven by the biomass reference data while the type of spatial maps used for their stratification has a smaller, but not negligible, impact. The differences in format, resolution and biomass definition used by the maps, as well as the fact that some datasets are not independent from the reference data to which they

  3. GeoComplexity and scale: surface processes and remote sensing of geosystems. GeoComplexity and scale: surface processes and remote sensing of geosystems

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter

    2015-04-01

    along with some simple analyses of their scaling properties. Global 1km, 8-daily terrestrial land surface BRDF/albedo maps exist for US sensors from MODIS and by orbit from MISR. More recently, the ESA GlobAlbedo project [4] has produced land surface datasets on the same spatio-temporal sampling using optimal estimation with full uncertainty matrices associated with each and every 1km pixel. By exploiting these uncertainty estimates I show how upscaling can be performed as well as analysing their scaling properties. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [5]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ≈400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n˚312377 and the ESA GlobAlbedo project. Partial support is also provided from the STFC "MSSL Consolidated Grant" ST/K000977/1. References: [1] Gwinner, K., F. et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007, 2010; [2] Gwinner, K., Muller, J-P., et al. (2015) MarsExpress High Resolution Stereo Camera (HRSC) Multi-orbit Data Products: Methodology, Mapping Concepts and Performance for the first

  4. Application of indicators derived by remote sensing for mapping of landslide hazard and vulnerability

    NASA Astrophysics Data System (ADS)

    Eidsvig, Unni; Vidar Vangelsten, Bjørn; Geiss, Christian; Klotz, Martin; Ekseth, Kristine; Taubenböck, Hannes

    2014-05-01

    The choice and the development of methods for risk assessment of landslides depends on several factors. Important factors are the type of landslide and the elements at risk, the choice of spatial and temporal scale, the purpose of the analysis and the needs of the end-users. In addition, data availability is a major constraint, which greatly affects the type of methods and models that can be developed. Remote sensing is a promising tool for an economical and up-to-date data collection, which also could be applied to monitor the dynamic development of risk. The spatial and temporal distribution of the risk for landslides can be assessed by monitoring hazard indicators (e.g. slope height and slope angle), exposure indicators (e.g. number of houses and the total population) and vulnerability indicators (e.g. population density, settlement structures or indicators related to structural vulnerability). Several of the indicators applicable for landslide risk and vulnerability can be obtained by remote sensing techniques. However, for better results, indicators from remote sensing should be combined with other type of data. In this work, a review on the application of indicators for landslide risk assessment in explicit models as well as an assessment of end user needs was conducted in order to determine the most relevant indicators for landslide hazard and vulnerability. Lists of recommended indicators, mainly derivable from remote sensing, have been developed. These indicators are supposed to be used in risk assessment, e.g. by combining hazard, vulnerability and exposure indicators to produce risk indices. Moreover schemes for ranking, weighting and aggregation of the indicators into hazard- and vulnerability indices are provided. The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7-SPACE-2012-1] under Grant agreement No 312972 Framework to integrate Space-based and in-situ sENSing for dynamic v

  5. Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region.

    PubMed

    Callister, Kate E; Griffioen, Peter A; Avitabile, Sarah C; Haslem, Angie; Kelly, Luke T; Kenny, Sally A; Nimmo, Dale G; Farnsworth, Lisa M; Taylor, Rick S; Watson, Simon J; Bennett, Andrew F; Clarke, Michael F

    2016-01-01

    Understanding the age structure of vegetation is important for effective land management, especially in fire-prone landscapes where the effects of fire can persist for decades and centuries. In many parts of the world, such information is limited due to an inability to map disturbance histories before the availability of satellite images (~1972). Here, we describe a method for creating a spatial model of the age structure of canopy species that established pre-1972. We built predictive neural network models based on remotely sensed data and ecological field survey data. These models determined the relationship between sites of known fire age and remotely sensed data. The predictive model was applied across a 104,000 km(2) study region in semi-arid Australia to create a spatial model of vegetation age structure, which is primarily the result of stand-replacing fires which occurred before 1972. An assessment of the predictive capacity of the model using independent validation data showed a significant correlation (rs = 0.64) between predicted and known age at test sites. Application of the model provides valuable insights into the distribution of vegetation age-classes and fire history in the study region. This is a relatively straightforward method which uses widely available data sources that can be applied in other regions to predict age-class distribution beyond the limits imposed by satellite imagery.

  6. Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region

    PubMed Central

    Callister, Kate E.; Griffioen, Peter A.; Avitabile, Sarah C.; Haslem, Angie; Kelly, Luke T.; Kenny, Sally A.; Nimmo, Dale G.; Farnsworth, Lisa M.; Taylor, Rick S.; Watson, Simon J.; Bennett, Andrew F.; Clarke, Michael F.

    2016-01-01

    Understanding the age structure of vegetation is important for effective land management, especially in fire-prone landscapes where the effects of fire can persist for decades and centuries. In many parts of the world, such information is limited due to an inability to map disturbance histories before the availability of satellite images (~1972). Here, we describe a method for creating a spatial model of the age structure of canopy species that established pre-1972. We built predictive neural network models based on remotely sensed data and ecological field survey data. These models determined the relationship between sites of known fire age and remotely sensed data. The predictive model was applied across a 104,000 km2 study region in semi-arid Australia to create a spatial model of vegetation age structure, which is primarily the result of stand-replacing fires which occurred before 1972. An assessment of the predictive capacity of the model using independent validation data showed a significant correlation (rs = 0.64) between predicted and known age at test sites. Application of the model provides valuable insights into the distribution of vegetation age-classes and fire history in the study region. This is a relatively straightforward method which uses widely available data sources that can be applied in other regions to predict age-class distribution beyond the limits imposed by satellite imagery. PMID:27029046

  7. Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region.

    PubMed

    Callister, Kate E; Griffioen, Peter A; Avitabile, Sarah C; Haslem, Angie; Kelly, Luke T; Kenny, Sally A; Nimmo, Dale G; Farnsworth, Lisa M; Taylor, Rick S; Watson, Simon J; Bennett, Andrew F; Clarke, Michael F

    2016-01-01

    Understanding the age structure of vegetation is important for effective land management, especially in fire-prone landscapes where the effects of fire can persist for decades and centuries. In many parts of the world, such information is limited due to an inability to map disturbance histories before the availability of satellite images (~1972). Here, we describe a method for creating a spatial model of the age structure of canopy species that established pre-1972. We built predictive neural network models based on remotely sensed data and ecological field survey data. These models determined the relationship between sites of known fire age and remotely sensed data. The predictive model was applied across a 104,000 km(2) study region in semi-arid Australia to create a spatial model of vegetation age structure, which is primarily the result of stand-replacing fires which occurred before 1972. An assessment of the predictive capacity of the model using independent validation data showed a significant correlation (rs = 0.64) between predicted and known age at test sites. Application of the model provides valuable insights into the distribution of vegetation age-classes and fire history in the study region. This is a relatively straightforward method which uses widely available data sources that can be applied in other regions to predict age-class distribution beyond the limits imposed by satellite imagery. PMID:27029046

  8. Delay/Doppler-Mapping GPS-Reflection Remote-Sensing System

    NASA Technical Reports Server (NTRS)

    Lowe, Stephen; Kroger, Peter; Franklin, Garth; LeBrecque, John; Lerma, Jesse; Lough, Michael; Marcin, Martin; Muellerschoen, Ronald; Spitzmesser, Donovan; Young, Lawrence

    2003-01-01

    A radio receiver system that features enhanced capabilities for remote sensing by use of reflected Global Positioning System (GPS) signals has been developed. This system was designed primarily for ocean altimetry, but can also be used for scatterometry and bistatic synthetic-aperture radar imaging. Moreover, it could readily be adapted to utilize navigation-satellite systems other than the GPS, including the Russian Global Navigation Satellite System GLONASS) and the proposed European Galileo system. This remote-sensing system offers both advantages and disadvantages over traditional radar altimeters: One advantage of GPS-reflection systems is that they cost less because there is no need to transmit signals. Another advantage is that there are more simultaneous measurement opportunities - one for each GPS satellite in view. The primary disadvantage is that in comparison with radar signals, GPS signals are weaker, necessitating larger antennas and/or longer observations. This GPS-reflection remote-sensing system was tested in aircraft and made to record and process both (1) signals coming directly from GPS satellites by means of an upward-looking antenna and (2) GPS signals reflected from the ground by means of a downward-looking antenna. In addition to performing conventional GPS processing, the system records raw signals for postprocessing as required.

  9. Navigating the airport surface: Electronic vs. paper maps

    NASA Technical Reports Server (NTRS)

    Batson, Vernon M.; Harris, Randall L., Sr.; Hunt, Patricia J.

    1994-01-01

    Recent advances in the Differential Global Positioning System (DGPS) and ground/aircraft data-links provide a basis for the generation of an accurate cockpit navigational map display including data-linked ATC-cleared ground routes. Such an electronic map may have the potential to improve pilots' situation awareness and taxi performance and thereby lessen runway incursions. The objective of this simulator study was to assess the potential improvements in these areas when using an advanced electronic map (compared to using today's paper map) under two outside scene visibility levels. Results showed average taxi speed increased under both good and poor visibilities, by as much as 24 percent, due in part to eliminating the time used for orientation with the paper map. Pilots made only one-third as many errors as well and commented that they believed that the electronic map gave them better awareness.

  10. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Hayne, P. O.; Banazadeh, P.; Baker, J. D.; Staehle, R. L.; Paine, C..; Paige, D. A.

    2014-01-01

    Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers

  11. Can remote high-resolution mapping help individual-based fish population models go up-scale? (Invited)

    NASA Astrophysics Data System (ADS)

    Harvey, B.; Railsback, S.

    2009-12-01

    Spatially explicit, individual-based models of fish populations show great promise for linking physical conditions and processes to population dynamics. The ability to link physical processes and population outcomes is critical for optimizing habitat restoration efforts, forecasting the consequences of climate change, evaluating flow regimes, and other activities necessary to sustain at-risk fish populations. Because individual-based models simulate habitat from the perspective of individual fish, they commonly capture variation in physical habitat on a scale of 1- 50 square meters and rely on simulations (including hydraulic modeling) at the reach scale (0.2 to 1 km). Simulated reaches can be linked in some models such that virtual fish can move among them. The significance of the size, location and arrangement of reaches included in IBM simulations of fish populations has not been investigated in detail. However, the process of reach selection clearly benefits from information on channel physical conditions at the network scale, so that reaches can be selected to well-represent the diversity of habitat at larger spatial scales. High-resolution mapping of channel topography would be a richer source of network-scale information than others used to date, such as habitat typing and simple video. Remote, high-resolution mapping data might also provide a major step forward in the capability of individual-based models to address fish population dynamics at the network scale if the mapping data could be directly used for hydraulic simulations. Challenges for this step include the need to estimate physical habitat variables included in individual-based models that may not be readily discernable from topographic data, such as the availability of cover for fish. Exploring the use of high-resolution mapping data in individual-based modeling of fish populations seems worth doing, in that the individual-based models should be a particularly effective way to derive biological

  12. Biological processes and optical measurements near the sea surface: Some issues relevant to remote sensing

    NASA Technical Reports Server (NTRS)

    Cullen, John J.; Lewis, Marlon R.

    1995-01-01

    The advent of remote sensing, the develpmemt of new optical instrumentation, and the associated advances in hydrological optics have transformed oceanography; it is now feasible to describe ocean-scale biogeochemical dynamcis from satellite observations, verified and complemented by measurements from optical sensors on profilers, moorings, and drifters. Only near-surface observations are common to both remote sensing and in situ observation, so it is critical to understand processes in the upper euphotic zone. Unfortunately, the biological principles that must be used to interpret optical variability near the sea surface are weaker than we would like, because relatively few experiments and analyses have examined bio-optical relationships under high irradiance characteristic of the upper optical depth. Special consideration of this stratum is justified, because there is good evidence that bio-optical relationships are altered near the surface; (1) the fluorescence yield from chlorophyll declines, leading to bias in the estimation of pigment from fluorometry; (2) the modeled relationship between solar-stimulated fluorecence and photosynthesis seems to deviate significantly from that presented for the lower euphotic zone; and (3) carbon-specific and cellular attenuation cross sections of phytoplankton change substantially during exposures to bright light. Even the measurement of primary productivity is problematic near the sea surface, because vertical mixing is not simulated and artifactual inhibition of photosynthesis can result. These problems can be addressed by focusing more sampling effort, experimental simulation, and analytical consideration on the upper optical depth, and by shortening timescales for the measurement of marine photosynthesis. Special efforts to study near-surface processes are justified, because new bio-optical algorithms will require quantitaitve descriptions of the responses of phytoplankton to bright light.

  13. Interactive Radiative Transfer Modeling Tools to Map Volcanic Emissions with Thermal Infrared Remote Sensing

    NASA Astrophysics Data System (ADS)

    Realmuto, V. J.

    2012-12-01

    The estimation of plume composition from thermal infrared (TIR) radiance measurements is based in radiative transfer (RT) modeling. To model the observed spectra we must consider the temperature, emissivity, and elevation of the surface beneath the plume, plume altitude and thickness, and the local atmospheric temperature and humidity. Our knowledge of these parameters is never perfect, and interactive RT modeling allows us to evaluate the impact of these uncertainties on our estimates of plume composition. Interactive RT modeling has three main components: retrieval procedures for plume components, an engine for RT calculations, and a graphic user interface (GUI) to input radiance data, modify model parameters, launch retrievals, and visualize the resulting estimates of plume composition. The Jet Propulsion Laboratory (JPL), in collaboration with Spectral Sciences, Inc. (SSI), is developing a new class of tools for interactive RT modeling. We will implement RT modeling on graphics processors (GPU) to achieve a 100-fold increase in processing speed, relative to conventional CPU-based processing, and thus enable fully-interactive estimation and visualization of plume composition. The heritage for our new tools is based on the Plume Tracker toolkit, developed at JPL, and MODTRAN RT model, developed by SSI. Plume Tracker integrates retrieval procedures, interactive visualization tools, and an interface to a modified version of MODTRAN under a single GUI. Our new tools will incorporate refinements from a recent adaptation of MODTRAN to optimize modeling the radiative properties of chemical clouds. This presentation will include a review of the foundations of plume mapping in the TIR and examples of the application of Plume Tracker to ASTER, MODIS, and AIRS data. We will present an overview of our tool development effort and discuss the application of these tools to data from new and future instruments, such as the airborne Hyperspectral Thermal Emission Spectrometer

  14. Mapping snow depth in alpine terrain with remotely piloted aerial systems and structure-from-motion photogrammetry - first results from a pilot study

    NASA Astrophysics Data System (ADS)

    Adams, Marc; Fromm, Reinhard; Bühler, Yves; Bösch, Ruedi; Ginzler, Christian

    2016-04-01

    Detailed information on the spatio-temporal distribution of seasonal snow in the alpine terrain plays a major role for the hydrological cycle, natural hazard management, flora and fauna, as well as tourism. Current methods are mostly only valid on a regional scale or require a trade-off between the data's availability, cost and resolution. During a one-year pilot study, we investigated the potential of remotely piloted aerial systems (RPAS) and structure-from-motion photogrammetry for snow depth mapping. We employed multi-copter and fixed-wing RPAS, equipped with different low-cost, off-the shelf sensors, at four test sites in Austria and Switzerland. Over 30 flights were performed during the winter 2014/15, where different camera settings, filters and lenses, as well as data collection routines were tested. Orthophotos and digital surface models (DSM) where calculated from the imagery using structure-from-motion photogrammetry software. Snow height was derived by subtracting snow-free from snow-covered DSMs. The RPAS-results were validated against data collected using a variety of well-established remote sensing (i.e. terrestrial laser scanning, large frame aerial sensors) and in-situ measurement techniques. The results show, that RPAS i) are able to map snow depth within accuracies of 0.07-0.15 m root mean square error (RMSE), when compared to traditional in-situ data; ii) can be operated at lower cost, easier repeatability, less operational constraints and higher GSD than large frame aerial sensors on-board manned aircraft, while achieving significantly higher accuracies; iii) are able to acquire meaningful data even under harsh environmental conditions above 2000 m a.s.l. (turbulence, low temperature and high irradiance, low air density). While providing a first prove-of-concept, the study also showed future challenges and limitations of RPAS-based snow depth mapping, including a high dependency on correct co-registration of snow-free and snow-covered height

  15. Presentation of a surface runoff susceptibility mapping method and its application to the Lezarde catchment

    NASA Astrophysics Data System (ADS)

    Lagadec, Lilly-Rose; Patrice, Pierre; Chazelle, Blandine; Braud, Isabelle; Dehotin, Judicaël; Hauchard, Emmanuel; Breil, Pascal

    2016-04-01

    Intense surface runoff is a hydrological process at the origin of intense phenomena such as erosion, flash floods, and mudslides and can generate major damage. In this paper, we present a mapping method to represent the susceptibility of surface runoff occurrence. The method, called IRIP (Indicator of Intense Pluvial Runoff, French acronym) produces 3 maps representing 3 steps of the surface runoff phenomena: generation, transfer and accumulation. The maps area created by combining surface runoff factors extracted from topography, soil properties and land use. Each map has a six level scale of susceptibility, from 0 (low susceptibility) to 5 (strong susceptibility). The method is applied in the Lézarde catchment (210 km², northern France) known to be prone to intense surface runoff. The relevance of the mapping method results is evaluated by comparing the susceptibility maps to data related to surface runoff: risk regulatory zonings of surface runoff and erosion, and surface runoff impacts on the transportation network (roads and railways). The relationship between the comparison data sets and the susceptibility maps can be indirect, so, a method of comparison is proposed. Similarity indexes are computed for the regulatory zonings and detection rates are computed for the damaged transportation network sections. The comparison shows good correlation between the surface runoff zoning map and the susceptibility map of accumulation, and between the soil erosion zoning and the susceptibility map of transfer. High detection rates are obtained when comparing the damaged network sections and the susceptibility maps of transfer and accumulation. The paper also opens interesting prospects to improve the the mapping method and method of evaluation.

  16. Application of PALSAR-2 Remote Sensing Data for Landslide Hazard Mapping in Kelantan River Basin, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    Yearly, several landslides ensued during heavy monsoons rainfall in Kelantan river basin, peninsular Malaysia, which are obviously connected to geological structures and topographical features of the region. In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geological structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulated drainage pattern and metamorphic and Quaternary units. Consequently, structural and topographical geology maps were produced for Kelantan river basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping.

  17. The utility of surface temperature measurements for the remote sensing of surface soil water status

    NASA Technical Reports Server (NTRS)