Sample records for removal efficiency compared

  1. The influence of small-scale interlayer heterogeneity on DDT removal efficiency for flushing technology

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Chen, Jiajun

    2017-06-01

    With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep efficiency. It suggested that foam flushing can reduce the disturbance from interlayer heterogeneity in remediating DDT contaminated heterogeneous medium.

  2. Does the combination of biochar and clinoptilolite enhance nutrient recovery from the liquid fraction of biogas digestate?

    PubMed

    Kocatürk-Schumacher, Nazlı Pelin; Zwart, Kor; Bruun, Sander; Brussaard, Lijbert; Jensen, Lars Stoumann

    2017-05-01

    Concentrating nutrients on biochar and clinoptilolite and subsequently using the nutrient-enriched sorbents as a fertiliser could be an alternative way to manage nutrients in digestate. In this study, we investigated the use of biochar and clinoptilolite columns in removing ammonium, potassium, orthophosphate and dissolved organic carbon (DOC) from the liquid fraction of digestate. Our objectives were to investigate the effect of the initial loading ratio between liquid and biochar on nutrient removal, and to investigate the effect of combining biochar with clinoptilolite on nutrient and DOC removal efficiency. Increasing the initial loading ratios increased nutrient concentrations on biochar to 8.61 mg NH 4 -N g -1 , 1.95 mg PO 4 -P g -1 and 13.01 mg DOC g -1 , but resulted in decreasing removal efficiencies. The combination of biochar and clinoptilolite resulted in improved ammonium, potassium and DOC removal efficiencies compared to biochar alone, but did not significantly change PO 4 -P removal efficiencies. Removal efficiencies with combined sorbents were up to 67% for ammonium, 58% for DOC and 58% for potassium. Clinoptilolite showed higher removal efficiencies compared to biochar alone, and combining clinoptilolite with biochar improved only total P removal efficiency. Concentrating nutrients with clinoptilolite and biochar may be an option when both sorbents are available at low cost.

  3. The influence of small-scale interlayer heterogeneity on DDT removal efficiency for flushing technology.

    PubMed

    Wang, Xingwei; Chen, Jiajun

    2017-06-01

    With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep efficiency. It suggested that foam flushing can reduce the disturbance from interlayer heterogeneity in remediating DDT contaminated heterogeneous medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Application of Colloidal Filtration Theory on Textile Fibrous Media: Effect of Fiber Orientation on Bacterial Removal Efficiency and Attachment

    NASA Astrophysics Data System (ADS)

    Roy, Sukumar; Ghosh, Subrata; Bhowmick, Niranjan

    2018-06-01

    A mechanism to remove the Pseudomonas bacteria from contaminated water by using textile fibrous media has been proposed in this article. The attachment of Pseudomonas bacteria on nylon fibrous media was studied in laboratory column experiment. A systematic study was carried out to investigate the attachment of bacteria on the fibrous material as a function of fiber orientation to the direction of the liquid flow. Three types of textiles media with different orientation fiber were selected for the experiment (i.e. 0°, 45° and 90°). It was found that the bacteria removal efficiency was comparatively higher at 90° orientation as compared to that of 45° and 0° orientation of fibrous media, suggesting that the removal efficiency of bacteria (1 - Fp) was depended on fiber orientation. The removal trends were explained on the basis of colloidal filtration theory. This is due to the higher single collector contact efficiency and attachment/collision efficiency as observed from the experimental data of removal efficiency.

  5. Application of Colloidal Filtration Theory on Textile Fibrous Media: Effect of Fiber Orientation on Bacterial Removal Efficiency and Attachment

    NASA Astrophysics Data System (ADS)

    Roy, Sukumar; Ghosh, Subrata; Bhowmick, Niranjan

    2018-05-01

    A mechanism to remove the Pseudomonas bacteria from contaminated water by using textile fibrous media has been proposed in this article. The attachment of Pseudomonas bacteria on nylon fibrous media was studied in laboratory column experiment. A systematic study was carried out to investigate the attachment of bacteria on the fibrous material as a function of fiber orientation to the direction of the liquid flow. Three types of textiles media with different orientation fiber were selected for the experiment (i.e. 0°, 45° and 90°). It was found that the bacteria removal efficiency was comparatively higher at 90° orientation as compared to that of 45° and 0° orientation of fibrous media, suggesting that the removal efficiency of bacteria (1 - Fp) was depended on fiber orientation. The removal trends were explained on the basis of colloidal filtration theory. This is due to the higher single collector contact efficiency and attachment/collision efficiency as observed from the experimental data of removal efficiency.

  6. Comparative study of As (III) and Zn (II) removal from aqueous solutions using Philippine natural zeolite and alumina

    NASA Astrophysics Data System (ADS)

    Olegario-Sanchez, Eleanor; Pelicano, Christian Mark

    2017-12-01

    Herein, the heavy metal removal efficiency of Philippine natural zeolite is investigated through a comparative study with commercial alumina (Al2O3). XRD results revealed a high purity crystalline γ-Al2O3 and a natural zeolite having clinoptilolite (Na,K,Ca)2-3Al3(Al,Si)2Si13O36.12H2O and mordenite (Ca, Na2, K2)Al2Si10O24.7H2O as primary component minerals. Micro-pores and plate-like structures were observed on the surface of the natural zeolite. The natural zeolite has shown three times higher removal efficiency for Zn2+ ion than alumina. On the other hand, alumina exhibited comparable but smaller removal efficiency for As3+ as with that of natural zeolite. Alumina showed a higher capability of increasing the pH of both solutions compared with the natural zeolite. Based on removal efficiency and adsorbent costs, Philippine natural zeolite could be used as a low-cost alternative for wastewater treatment.

  7. Furosemide removal in constructed wetlands: Comparative efficiency of LECA and Cork granulates as support matrix.

    PubMed

    Machado, A I; Dordio, A; Fragoso, R; Leitão, A E; Duarte, E

    2017-12-01

    The removal efficiency of LECA and cork granulates as support matrix for pharmaceuticals active compounds in a constructed wetland system was investigated using the diuretic drug Furosemide. Kinetics studies were performed testing three different concentrations of Furosemide in an ultrapure water matrix, along seven days. LECA achieved higher removal values compared to cork granulates. However, cork granulates presented a higher removal in the first 24 h of contact time compared to the other adsorbent. The kinetic studies showed that LECA and cork granulates have different adsorption behaviours for Furosemide which is controlled by different adsorption mechanisms. Both materials showed good removal efficiencies and a combination of the two should be further explored in order to applied both materials as support matrix to cope with different furosemide concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of pH, initial Pb2+ concentration, and polyculture on lead remediation by three duckweed species.

    PubMed

    Tang, Jie; Chen, Chunxia; Chen, Lei; Daroch, Maurycy; Cui, Yan

    2017-10-01

    Various geographical duckweed isolates have been developed for phytoremediation of lead. The Pb 2+ removal efficiency of Lemna aequinoctialis, Landoltia punctata, and Spirodela polyrhiza was investigated in monoculture and polyculture at different levels of pH and initial Pb 2+ concentrations. L. aequinoctialis was not sensitive to the tested pH but significantly affected by initial Pb 2+ concentration, whereas synergistic effect of pH and initial Pb 2+ concentration on removal efficiency of L. punctata and S. polyrhiza was found. Although the majority of polycultures showed median removal efficiency as compared to respective monocultures, some of the polycultures achieved higher Pb 2+ removal efficiencies and can promote population to remove Pb 2+ . Besides, the three duckweed strains could be potential candidates for Pb 2+ remediation as compared to previous reports. Conclusively, this study provides useful references for future large-scale duckweed phytoremediation.

  9. Evaluating the efficiency of carbon utilisation via bioenergetics between biological aerobic and denitrifying phosphorus removal systems

    PubMed Central

    Jin, Zhan; He, Yin; Xu, Xuan; Zheng, Xiang-yong

    2017-01-01

    There are two biological systems available for removing phosphorus from waste water, conventional phosphorus removal (CPR) and denitrifying phosphorus removal (DPR) systems, and each is characterized by the type of sludge used in the process. In this study, we compared the characteristics associated with the efficiency of carbon utilization between CPR and DPR sludge using acetate as a carbon source. For DPR sludge, the heat emitted during the phosphorus release and phosphorus uptake processes were 45.79 kJ/mol e- and 84.09 kJ/mol e-, respectively. These values were about 2 fold higher than the corresponding values obtained for CPR sludge, suggesting that much of the energy obtained from the carbon source was emitted as heat. Further study revealed a smaller microbial mass within the DPR sludge compared to CPR sludge, as shown by a lower sludge yield coefficient (0.05 gVSS/g COD versus 0.36 gVSS/g COD), a result that was due to the lower energy capturing efficiency of DPR sludge according to bioenergetic analysis. Although the efficiency of anoxic phosphorus removal was only 39% the efficiency of aerobic phosphorus removal, the consumption of carbon by DPR sludge was reduced by 27.8% compared to CPR sludge through the coupling of denitrification with dephosphatation. PMID:29065157

  10. Removal of inhibitors from lignocellulosic hydrolyzates by vacuum membrane distillation.

    PubMed

    Chen, Jingwen; Zhang, Yaqin; Wang, Yafei; Ji, Xiaosheng; Zhang, Lin; Mi, Xigeng; Huang, He

    2013-09-01

    In this study, vacuum membrane distillation (VMD) was used to remove two prototypical fermentation inhibitors (acetic acid and furfural) from lignocellulose hydrolyzates. The effect of operating parameters, such as feed temperature and feed velocity, on the removal efficiencies of inhibitors was investigated. Under optimal conditions, more than 98% of furfural could be removed by VMD. However, the removal efficiency of acetic acid was considerably lower. After furfural and acetic acid were selectively removed from hydrolyzates by VMD, ethanol production efficiency increased by 17.8% compared to original hydrolyzates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Study on removal efficiency of nitrogen and phosphorus from agricultural wastewater by subsurface flow constructed wetland

    NASA Astrophysics Data System (ADS)

    Ling, Zhen; Li, Jie

    2018-03-01

    Subsurface Flow Constructed Wetland Plant 5 kinds of perennial herbs, there are Canna, Water onion, Iris, Calamus, Reed. Foucs on Subsurface Flow Constructed Wetlands on agricultural wastewater nitrogen and phosphorus removal effect. Research results: Different plants TP removal efficiency from high to low is Iris> reed> calamus> water onion> canna.And TN removal efficiency from high to low is reed> water onion> iris> calamus> canna. Compared with the blank test land, Wetland plants improves TN removal and TP removal is higher than TN. Wetland plants can reduce the PH of experimental water.

  12. A comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2015-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent organic pollutants in the environment and their occurrence causes toxicological effects on humans. We examined different conventional coagulant treatments such as alum, ferric chloride and polyaluminium chloride in removing these compounds. These were then compared with a natural coagulant (Moringa oleifera). We also investigated the powdered-activated carbon (PAC) and granular-activated carbon (GAC) for removing these compounds. At an initial dose of 5 mg/L, polyaluminium chloride led to a higher reduction of PFOS/PFOA compared with alum which in turn was higher than ferric. The removal efficiency increased with the increase in coagulant dose and decrease in pH. M. oleifera was very effective in reducing PFOS and PFOA than conventional coagulants, with a reduction efficiencies of 65% and 72%, respectively, at a dose of 30 mg/L. Both PAC and GAC were very effective in reducing these compounds than coagulations. PAC led to a higher reduction in PFOS and PFOA than GAC due to its greater surface area and shorter internal diffusion distances. The addition of PAC (10 min contact time) with coagulation (at 5 mg/L dosage) significantly increased the removal efficiency, and the maximum removal efficiency was for M. oleifera with 98% and 94% for PFOS and PFOA, respectively. The reduction efficiency of PFOS/PFOA was reduced with the increase in dissolved organic concentration due to the adsorption competition between organic molecules and PFOS/PFOA.

  13. Role of surface energy and nano-roughness in the removal efficiency of bacterial contamination by nonwoven wipes from frequently touched surfaces

    NASA Astrophysics Data System (ADS)

    Edwards, Nicholas W. M.; Best, Emma L.; Connell, Simon D.; Goswami, Parikshit; Carr, Chris M.; Wilcox, Mark H.; Russell, Stephen J.

    2017-12-01

    Healthcare associated infections (HCAIs) are responsible for substantial patient morbidity, mortality and economic cost. Infection control strategies for reducing rates of transmission include the use of nonwoven wipes to remove pathogenic bacteria from frequently touched surfaces. Wiping is a dynamic process that involves physicochemical mechanisms to detach and transfer bacteria to fibre surfaces within the wipe. The purpose of this study was to determine the extent to which systematic changes in fibre surface energy and nano-roughness influence removal of bacteria from an abiotic polymer surface in dry wiping conditions, without liquid detergents or disinfectants. Nonwoven wipe substrates composed of two commonly used fibre types, lyocell (cellulosic) and polypropylene, with different surface energies and nano-roughnesses, were manufactured using pilot-scale nonwoven facilities to produce samples of comparable structure and dimensional properties. The surface energy and nano-roughness of some lyocell substrates were further adjusted by either oxygen (O2) or hexafluoroethane (C2F6) gas plasma treatment. Static adpression wiping of an inoculated surface under dry conditions produced removal efficiencies of between 9.4% and 15.7%, with no significant difference (p < 0.05) in the relative removal efficiencies of Escherichia coli, Staphylococcus aureus or Enterococcus faecalis. However, dynamic wiping markedly increased peak wiping efficiencies to over 50%, with a minimum increase in removal efficiency of 12.5% and a maximum increase in removal efficiency of 37.9% (all significant at p < 0.05) compared with static wiping, depending on fibre type and bacterium. In dry, dynamic wiping conditions, nonwoven wipe substrates with a surface energy closest to that of the contaminated surface produced the highest E. coli removal efficiency, while the associated increase in fibre nano-roughness abrogated this trend with S. aureus and E. faecalis.

  14. In vitro assessment of cutting efficiency and durability of zirconia removal diamond rotary instruments.

    PubMed

    Kim, Joon-Soo; Bae, Ji-Hyeon; Yun, Mi-Jung; Huh, Jung-Bo

    2017-06-01

    Recently, zirconia removal diamond rotary instruments have become commercially available for efficient cutting of zirconia. However, research of cutting efficiency and the cutting characteristics of zirconia removal diamond rotary instruments is limited. The purpose of this in vitro study was to assess and compare the cutting efficiency, durability, and diamond rotary instrument wear pattern of zirconia diamond removal rotary instruments with those of conventional diamond rotary instruments. In addition, the surface characteristics of the cut zirconia were assessed. Block specimens of 3 mol% yttrium cation-doped tetragonal zirconia polycrystal were machined 10 times for 1 minute each using a high-speed handpiece with 6 types of diamond rotary instrument from 2 manufacturers at a constant force of 2 N (n=5). An electronic scale was used to measure the lost weight after each cut in order to evaluate the cutting efficiency. Field emission scanning electron microscopy was used to evaluate diamond rotary instrument wear patterns and machined zirconia block surface characteristics. Data were statistically analyzed using the Kruskal-Wallis test, followed by the Mann-Whitney U test (α=.05). Zirconia removal fine grit diamond rotary instruments showed cutting efficiency that was reduced compared with conventional fine grit diamond rotary instruments. Diamond grit fracture was the most dominant diamond rotary instrument wear pattern in all groups. All machined zirconia surfaces were primarily subjected to plastic deformation, which is evidence of ductile cutting. Zirconia blocks machined with zirconia removal fine grit diamond rotary instruments showed the least incidence of surface flaws. Although zirconia removal diamond rotary instruments did not show improved cutting efficiency compared with conventional diamond rotary instruments, the machined zirconia surface showed smoother furrows of plastic deformation and fewer surface flaws. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    PubMed Central

    Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-01-01

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363

  16. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions.

    PubMed

    Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-02-26

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  17. Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater.

    PubMed

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Stražar, Marjeta; Heath, Ester

    2014-05-01

    In this study, the removal of clofibric acid, ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac residues from wastewater, using a novel shear-induced cavitation generator has been systematically studied. The effects of temperature, cavitation time and H2O2 dose on removal efficiency were investigated. Optimisation (50°C; 15 min; 340 mg L(-1) of added H2O2) resulted in removal efficiencies of 47-86% in spiked deionised water samples. Treatment of actual wastewater effluents revealed that although matrix composition reduces removal efficiency, this effect can be compensated for by increasing H2O2 dose (3.4 g L(-1)) and prolonging cavitation time (30 min). Hydrodynamic cavitation has also been investigated as either a pre- or a post-treatment step to biological treatment. The results revealed a higher overall removal efficiency of recalcitrant diclofenac and carbamazepine, when hydrodynamic cavitation was used prior to as compared to post biological treatment i.e., 54% and 67% as compared to 39% and 56%, respectively. This is an important finding since diclofenac is considered as a priority substance to be included in the EU Water Framework Directive. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Spray scrubbing of particulate-laden SO(2) using a critical flow atomizer.

    PubMed

    Bandyopadhyay, Amitava; Biswas, Manindra Nath

    2008-08-01

    The performance of a spray tower using an energy efficient two-phase critical flow atomizer on the scrubbing of particulate-laden SO(2) using water and dilute NaOH is reported in this article. Experimentation revealed that SO(2) removal was enhanced due to presence of particles (fly-ash) and almost 100% removal efficiency was achieved in water scrubbing. The removal efficiency is elucidated in reference to atomizing air pressure, droplet diameter and droplet velocity besides other pertinent variables of the system studied. The presence of fly-ash particles improved the removal efficiency to about 20% within the range of variables studied. Empirical and semi-empirical correlations were developed for predicting the removal efficiency in water and dilute NaOH respectively. Predicted data fitted excellently well with experimental values. The performance of the spray tower is compared with the performances of existing systems and very encouraging results are obtained.

  19. Application of natural citric acid sources and their role on arsenic removal from drinking water: a green chemistry approach.

    PubMed

    Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Islam, Sk Mijanul; Bundschuh, Jochen; Chatterjee, Debashis; Hidalgo, Manuela

    2013-11-15

    Solar Oxidation and Removal of Arsenic (SORAS) is a low-cost non-hazardous technique for the removal of arsenic (As) from groundwater. In this study, we tested the efficiency of natural citric acid sources extracted from tomato, lemon and lime to promote SORAS for As removal at the household level. The experiment was conducted in the laboratory using both synthetic solutions and natural groundwater samples collected from As-polluted areas in West Bengal. The role of As/Fe molar ratios and citrate doses on As removal efficiency were checked in synthetic samples. The results demonstrate that tomato juice (as citric acid) was more efficient to remove As from both synthetic (percentage of removal: 78-98%) and natural groundwater (90-97%) samples compared to lemon (61-83% and 79-85%, respectively) and lime (39-69% and 63-70%, respectively) juices. The As/Fe molar ratio and the citrate dose showed an 'optimized central tendency' on As removal. Anti-oxidants, e.g. 'hydroxycinnamates', found in tomato, were shown to have a higher capacity to catalyze SORAS photochemical reactions compared to 'flavanones' found in lemon or lime. The application of this method has several advantages, such as eco- and user- friendliness and affordability at the household level compared to other low-cost techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. AMOchar: Amorphous manganese oxide coating of biochar improves its efficiency at removing metal(loid)s from aqueous solutions.

    PubMed

    Trakal, Lukáš; Michálková, Zuzana; Beesley, Luke; Vítková, Martina; Ouředníček, Petr; Barceló, Andreu Piqueras; Ettler, Vojtěch; Číhalová, Sylva; Komárek, Michael

    2018-06-01

    A novel sorbent made from biochar modified with an amorphous Mn oxide (AMOchar) was compared with pure biochar, pure AMO, AMO+biochar mixtures and biochar+birnessite composite for the removal of various metal(loid)s from aqueous solutions using adsorption and solid-state analyses. In comparison with the pristine biochar, both Mn oxide-biochar composites were able to remove significantly greater quantities of various metal(loid)s from the aqueous solutions, especially at a ratio 2:1 (AMO:biochar). The AMOchar proved most efficient, removing almost 99, 91 and 51% of Pb, As and Cd, respectively. Additionally, AMOchar and AMO+biochar mixture exhibited reduced Mn leaching, compared to pure AMO. Therefore, it is concluded that the synthesis of AMO and biochar is able to produce a double acting sorbent ('dorbent') of enhanced efficiency, compared with the individual deployment of their component materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Removal of trace organic contaminants from domestic wastewater: A meta-analysis comparison of sewage treatment technologies.

    PubMed

    Melvin, Steven D; Leusch, Frederic D L

    2016-01-01

    Trace organic contaminants (TrOCs), such as endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs), represent global threats to aquatic animals and ecosystems. A major source of TrOCs in the aquatic environment is via the discharge of treated sewage, so there is an urgent need to evaluate the comparative efficiencies of the most widely used sewage treatment technologies as regards elimination of these compounds from wastewater. To address this need, 976 published articles were compiled focusing on estimates of removal (%) for 20 common environmental TrOCs, from five major sewage treatment technologies: conventional activated sludge (CAS), oxidation ditch (OD), membrane bioreactor (MBR), ponds and constructed wetlands (PCW), and trickling biological filters (TBF). A quantitative meta-analysis was performed to compare standardized relative removal efficiencies (SREs) of the compounds amongst these technologies, and where possible potential sources of heterogeneity were considered (e.g., flow rates and chemical sorption potential). The results indicate that the most widely used CAS treatment and the less common TBF provide comparatively poor overall removal of common organic micropollutants. Membrane bioreactors appear to be capable of achieving the greatest overall removal efficiencies, but the sustainability and economic viability of this option has been questioned. Treatment with OD systems may be more economical while still achieving comparatively high removal efficiencies, and the analysis revealed OD to be the best option for targeting highly potent estrogenic EDCs. This study offers a unique global assessment of TrOC removal via leading sewage treatment technologies, and is an important step in the identification of effective options for treating municipal sewage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Pharmaceutical removal in tropical subsurface flow constructed wetlands at varying hydraulic loading rates.

    PubMed

    Zhang, Dong Qing; Gersberg, Richard M; Hua, Tao; Zhu, Junfei; Tuan, Nguyen Anh; Tan, Soon Keat

    2012-04-01

    Determining the fate of emerging organic contaminants in an aquatic ecosystem is important for developing constructed wetlands (CWs) treatment technology. Experiments were carried out in subsurface flow CWs in Singapore to evaluate the fate and transport of eight pharmaceutical compounds. The CW system included three parallel horizontal subsurface flow CWs and three parallel unplanted beds fed continuously with synthetic wastewater at different hydraulic retention times (HRTs). The findings of the tests at 2-6 d HRTs showed that the pharmaceuticals could be categorized as (i) efficiently removed compounds with removal higher than 85% (ketoprofen and salicylic acid); (ii) moderately removed compounds with removal efficiencies between 50% and 85% (naproxen, ibuprofen and caffeine); and (iii) poorly removed compounds with efficiency rate lower than 50% (carbamazepine, diclofenac, and clofibric acid). Except for carbamazepine and salicylic acid, removal efficiencies of the selected pharmaceuticals showed significant (p<0.05) enhancement in planted beds as compared to the unplanted beds. Removal of caffeine, ketoprofen and clofibric acid were found to follow first order decay kinetics with decay constants higher in the planted beds than the unplanted beds. Correlations between pharmaceutical removal efficiencies and log K(ow) were not significant (p>0.05), implying that their removal is not well related to the compound's hydrophobicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Dissolved nutrients and atrazine removal by column-scale monophasic and biphasic rain garden model systems.

    PubMed

    Yang, Hanbae; McCoy, Edward L; Grewal, Parwinder S; Dick, Warren A

    2010-08-01

    Rain gardens are bioretention systems that have the potential to reduce peak runoff flow and improve water quality in a natural and aesthetically pleasing manner. We compared hydraulic performance and removal efficiencies of nutrients and atrazine in a monophasic rain garden design versus a biphasic design at a column-scale using simulated runoff. The biphasic rain garden was designed to increase retention time and removal efficiency of runoff pollutants by creating a sequence of water saturated to unsaturated conditions. We also evaluated the effect of C substrate availability on pollutant removal efficiency in the biphasic rain garden. Five simulated runoff events with various concentrations of runoff pollutants (i.e. nitrate, phosphate, and atrazine) were applied to the monophasic and biphasic rain gardens once every 5d. Hydraulic performance was consistent over the five simulated runoff events. Peak flow was reduced by approximately 56% for the monophasic design and 80% for the biphasic design. Both rain garden systems showed excellent removal efficiency of phosphate (89-100%) and atrazine (84-100%). However, significantly (p<0.001) higher removal of nitrate was observed in the biphasic (42-63%) compared to the monophasic rain garden (29-39%). Addition of C substrate in the form of glucose increased removal efficiency of nitrate significantly (p<0.001), achieving up to 87% removal at a treatment C/N ratio of 2.0. This study demonstrates the importance of retention time, environmental conditions (i.e. saturated/unsaturated conditions), and availability of C substrate for bioremediation of pollutants, especially nitrates, in rain gardens. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and burrows pond rearing system

    USDA-ARS?s Scientific Manuscript database

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal eff...

  5. Comparative evaluation of cyanide removal by adsorption, biodegradation, and simultaneous adsorption and biodegradation (SAB) process using Bacillus cereus and almond shell.

    PubMed

    Dwivedi, Naveen; Balomajumder, Chandrajit; Mondal, Prasenji

    2016-07-01

    The present study aimed to investigate the removal efficiency of cyanide from contaminated water by adsorption, biodegradation and simultaneous adsorption and biodegradation (SAB) process individually in a batch reactor. Adsorption was achieved by using almond shell granules and biodegradation was conducted with suspended cultures of Bacillus cereus, whereas SAB process was carried out using Bacillus cereus and almond shell in a batch reactor. The effect of agitation time, pH, and initial cyanide concentration on the % removal of cyanide has been discussed. Under experimental conditions, optimum removal was obtained at pH 7 with agitation time of 48 hrs and temperature of 35 degrees C. Cyanide was utilized by bacteria as sole source of nitrogen for growth. The removal efficiencies of cyanide by adsorption, biodegradation, and SAB were found to be 91.38%, 95.87%, and 99.63%, respectively, at initial cyanide concentration of 100 mg l(-1). The removal efficiency of SAB was found to be better as compared to that of biodegradation and adsorption alone.

  6. A study of subsurface wastewater infiltration systems for distributed rural sewage treatment.

    PubMed

    Qin, Wei; Dou, Junfeng; Ding, Aizhong; Xie, En; Zheng, Lei

    2014-08-01

    Three types of subsurface wastewater infiltration systems (SWIS) were developed to study the efficiency of organic pollutant removal from distributed rural sewage under various conditions. Of the three different layered substrate systems, the one with the greatest amount of decomposed cow dung (5%) and soil (DCDS) showed the highest removal efficiency with respect to total nitrogen (TN), where the others showed no significant difference. The TN removal efficiency was increased with an increasing filling height of DCDS. Compared with the TN removal efficiency of 25% in the system without DCDS, the removal efficiency of the systems in which DCDS filled half and one fourth of the height was increased by 72% and 31%, respectively. Based on seasonal variations in the discharge of the typical rural family, the SWIS were run at three different hydraulic loads of 6.5, 13 and 20 cm/d. These results illustrated that SWIS could perform well at any of the given hydraulic loads. The results of trials using different inlet configurations showed that the effluent concentration of the contaminants in the system operating a multiple-inlet mode was much lower compared with the system operated under single-inlet conditions. The effluent concentration ofa pilot-scale plant achieved the level III criteria specified by the Surface Water Quality Standard at the initial stage.

  7. Comparison of filtration mechanisms of food and industrial grade TiO2 nanoparticles.

    PubMed

    Chen, Chen; Marcus, Ian M; Waller, Travis; Walker, Sharon L

    2018-05-21

    The removal of food and industrial grade titanium dioxide (TiO 2 ) particles through drinking water filtration was assessed via direct visualization of an in situ 2-D micromodel. The goal of this research was to determine whether variances in surface composition, aggregate size, and ionic strength result in different transport and deposition processes in porous media. Food and industrial grade TiO 2 particles were characterized by measuring their hydrodynamic diameter, zeta potential, and zero point of charge before introduction into the 2-D micromodel. The removal efficiency as a function of position on the collector surface was calculated from direct visualization measurements. Notably, food grade TiO 2 had a lower removal efficiency when compared with industrial grade. The difference in removal efficiency between the two particle types could be attributed to the higher stability (as indicated by the larger zeta potential values) of the food grade particles, which lead to a reduced aggregate size when compared to the industrial grade particles. This removal efficiency trend was most pronounced in the rear stagnation point, due to the high contribution of hydrodynamic forces at that point. It could be inferred from the results presented herein that particle removal strategies should be based on particle aggregate size and surface charge. Graphical abstract ᅟ.

  8. [Remediation efficiency of lead-contaminated soil at an industrial site by ultrasonic-assisted chemical extraction].

    PubMed

    Wang, Xin-jie; Huang, Jin-lou; Liu, Zhi-qiang; Yue, Xi

    2013-09-01

    This research chose five lead-contaminated sites of a lead-acid battery factory to analyze the speciation distribution and concentration of lead. Under the same conditions (0.1 mol x L(-1) EDTA,30 min, 25 degrees C), the removal effect of heavy metal was compared between ultrasonic-assisted chemical extraction (UCE) and conventional chemical extraction ( CCE), and the variation of lead speciation was further explored. The results showed that the lead removal efficiency of UCE was significantly better than CCE. The lead removal efficiency of WS, A, B, C and BZ was 10.06%, 48.29%, 48.69%, 53.28% and 36.26% under CCE. While the removal efficiency of the UCE was 22.42%, 69.31%, 71.00%, 74.49% and 71.58%, with the average efficiency higher by 22%. By comparing the speciation distribution of the two washing methods, it was found that the acid extractable content maintained or decreased after UCE, whereas it showed an increasing trend after CCE. The reduction effect of the reducible was as high as 98% by UCE. UCE also showed a more efficient reduction effect of the organic matter-sulfite bounded form and the residual form. Hence, it is feasible to improve the washing efficiency of heavy metal contained in soil by conducting the cleaning process with the help of ultrasonic wave, which is a simple and fast mean to remove lead from contaminated sites.

  9. Crumb rubber filtration: a potential technology for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2006-05-01

    The removal of turbidity, particles, phytoplankton and zooplankton in water by crumb rubber filtration was investigated. A substantial reduction was achieved. Of the three variables, filter depth, media size and filtration rate, media size had the most significant influence. Smaller media size favored higher removal efficiency of all targeted matter. There was no apparent relationship between removal efficiency and filter depth. Higher filtration rate resulted in lower removal efficiency and higher head loss. Compared with conventional granular media filters, crumb rubber filters required less backwash, and developed lower head loss. Consequently crumb rubber filters could be run for a longer time or allow a higher filtration rate. The results also indicate that the crumb rubber filtration alone did not achieve the target removal of invasive species. However, crumb rubber filtration could potentially be used as a primary treatment technology to enhance the efficiency of a secondary treatment process (e.g., disinfection).

  10. Cutting efficiency of a mid-infrared laser on human enamel.

    PubMed

    Levy, G; Koubi, G F; Miserendino, L J

    1998-02-01

    In this study, the cutting ability of a newly developed dental laser was compared with a dental high-speed handpiece and rotary bur for removal of enamel. Measurements of the volume of tissue removed, energy emitted, and time of exposure were used to quantify the ablation rate (rate of tissue removal) for each test group and compared. Cutting efficiency (mm3/s) of the laser was calculated based on the mean volume of tissue removed per pulse (mm3/pulse) and unit energy expended (mm3/J) over the range of applied powers (2, 4, 6, and 8 W). The specimens were then examined by light microscopy and scanning electron micrographs for qualitative analysis of the amount of remaining debris and the presence of the smear layer on the prepared enamel surface. Calculations of the cutting efficiency of the laser over the range of powers tested revealed a linear relationship with the level of applied power. The maximum average rate of tissue removal by the laser was 0.256 mm3/s at 8 W, compared with 0.945 mm3/s by the dental handpiece. Light microscopy and scanning electron micrograph examinations revealed a reduction in the amount of remaining debris and smear layer in the laser-prepared enamel surfaces, compared with the conventional method. Based on the results of this study, the cutting efficiency of the high-speed handpiece and dental bur was 3.7 times greater than the laser over the range of powers tested, but the laser appeared to create a cleaner enamel surface with minimal thermal damage. Further modifications of the laser system are suggested for improvement of laser cutting efficiency.

  11. Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013).

    PubMed

    Zhang, Dong-Qing; Jinadasa, K B S N; Gersberg, Richard M; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2015-04-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural (environmental) systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice, applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand (BOD) and total suspended solid (TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid (TSS) (91.3%), chemical oxygen demand (COD) (84.3%), and nitrogen (i.e., 80.7% for ammonium (NH)4-N, 80.8% for nitrate (NO)3-N, and 75.4% for total nitrogen (TN)) as compared to other wetland systems. Vertical subsurface flow (VSSF) CWs removed TSS (84.9%), BOD (87.6%), and nitrogen (i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN) more efficiently than horizontal subsurface flow (HSSF) CWs, while HSSF CWs (69.8%) showed better total phosphorus (TP) removal compared to VSSF CWs (60.1%). Floating treatment wetlands (FTWs) showed comparable removal efficiencies for BOD (70.7%), NH4-N (63.6%), and TP (44.8%) to free water surface (FWS) CW systems. Copyright © 2015. Published by Elsevier B.V.

  12. An evaluation of multipass electrofishing for estimating the abundance of stream-dwelling salmonids

    Treesearch

    James T. Peterson; Russell F. Thurow; John W. Guzevich

    2004-01-01

    Failure to estimate capture efficiency, defined as the probability of capturing individual fish, can introduce a systematic error or bias into estimates of fish abundance. We evaluated the efficacy of multipass electrofishing removal methods for estimating fish abundance by comparing estimates of capture efficiency from multipass removal estimates to capture...

  13. Bio-removal of Nickel ions by Sporosarcina pasteurii and Bacillus megaterium, A Comparative Study

    NASA Astrophysics Data System (ADS)

    Gheethi, AA; Efaq, AN; Mohamed, RM; Abdel-Monem, MO; Halid Abdullah, Abd; Hashim, M. Amir

    2017-08-01

    The aim of this work was to study the potential of Sporosarcina pasteurii 586S and Bacillus megaterium 1295S isolated from sewage treatment plants (STPs) in removing of nickel ions from the aqueous solution. The bacterial cells were used as living and dead cell biomass. The efficiency of bio-removal process was investigated as a response for nickel and biomass concentrations, time, pH and temperature. The bio-removal capacity (Qmax) of both strains were compared. The highest bio-removal percentage was recorded by dead cells in comparison to living cells. Dead cell biomass of B. megaterium 1295S exhibited higher efficiency for bio-removing of Ni2+ than S. pasteurii 586S at196.4 and 200.2 mg Ni2+ g-1, respectively. It can be concluded that both bacterial strains have high potential to be applied in the biotechnology for removing of Ni2+ ions, however, dead cells of B. megaterium 1295S is the most potent.

  14. A testing-coverage software reliability model considering fault removal efficiency and error generation.

    PubMed

    Li, Qiuying; Pham, Hoang

    2017-01-01

    In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance.

  15. Removal of trace metal contaminants from potable water by electrocoagulation.

    PubMed

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K

    2016-06-21

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  16. Removal of trace metal contaminants from potable water by electrocoagulation

    NASA Astrophysics Data System (ADS)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  17. Comparative analysis of endodontic smear layer removal efficacy of 17% ethylenediaminetetraacetic acid, 7% maleic acid, and 2% chlorhexidine using scanning electron microscope: An in vitro study.

    PubMed

    Attur, Kailash; Joy, Mathew T; Karim, Riyas; Anil Kumar, V J; Deepika, C; Ahmed, Haseena

    2016-08-01

    The aim of the present study was to evaluate the efficiency of different endodontic irrigants in the removal of smear layer through scanning electron microscopic image analysis. The present in vitro study was carried out on 45 single-rooted extracted human mandibular premolar teeth with single canal and complete root formation. Teeth were randomly assigned to three groups with 15 teeth in each group. Group I samples were irrigated with 17% ethylenediaminetetraacetic (EDTA) irrigation, Group II with 7% maleic acid irrigation, and Group III with 2% chlorhexidine irrigation. Scanning electron microscope evaluation was done for the assessment of smear layer removal in the coronal, middle, and apical thirds. Comparison of the smear layer removal between the three different groups was done by Kruskal-Wallis test, followed by Mann-Whitney U test for comparing individual groups. A P value less than 0.05 was considered to be statistically significant. Statistically significant difference was seen between the two test groups (17% EDTA vs. 7% maleic acid and 17% EDTA vs. 2% chlorhexidine) in smear layer removal at coronal, middle, and apical thirds of the root canal. The most efficient smear layer removal was seen in Group I with 17% EDTA irrigation compared with other groups (P < 0.05) and the least by 2% chlorhexidine. The present study shows that 17% EDTA efficiently removes the smear layer from root canal walls.

  18. Carbonyl sulfide removal with compost and wood chip biofilters, and in the presence of hydrogen sulfide.

    PubMed

    Sattler, Melanie L; Garrepalli, Divya R; Nawal, Chandraprakash S

    2009-12-01

    Carbonyl sulfide (COS) is an odor-causing compound and hazardous air pollutant emitted frequently from wastewater treatment facilities and chemical and primary metals industries. This study examined the effectiveness of biofiltration in removing COS. Specific objectives were to compare COS removal efficiency for various biofilter media; to determine whether hydrogen sulfide (H2S), which is frequently produced along with COS under anaerobic conditions, adversely impacts COS removal; and to determine the maximum elimination capacity of COS for use in biofilter design. Three laboratory-scale polyvinyl chloride biofilter columns were filled with up to 28 in. of biofilter media (aged compost, fresh compost, wood chips, or a compost/wood chip mixture). Inlet COS ranged from 5 to 46 parts per million (ppm) (0.10-9.0 g/m3 hr). Compost and the compost/wood chip mixture produced higher COS removal efficiencies than wood chips alone. The compost and compost/wood chip mixture had a shorter stabilization times compared with wood chips alone. Fresh versus aged compost did not impact COS removal efficiency. The presence of H2S did not adversely impact COS removal for the concentration ratios tested. The maximum elimination capacity is at least 9 g/m3 hr for COS with compost media.

  19. The color removal of dye wastewater by magnesium chloride/red mud (MRM) from aqueous solution.

    PubMed

    Wang, Qi; Luan, Zhaokun; Wei, Ning; Li, Jin; Liu, Chengxi

    2009-10-30

    In this study, the MgCl2/red mud system (MRM) was used to investigate the color removal efficiency of dye solutions. Parameters such as the effect of the dosage of red mud (RM) and MgCl2 have been studied. The effect of pH on the conversion rate of Mg2+ has also been studied. The color removal efficiency of MRM was compared with that of PAC/RM and PAC/NaOH. Meanwhile, the color removal efficiency of RM was compared with that of NaOH. The results show that the MRM system can remove more than 98% of the coloring material at a dosage of 25 g RM/L dye solution and a volume of 1.5 mL MgCl2/L dye solution in the decolorization process of reactive dye, acid dye and direct dye. The color removal efficiency was better than PAC/RM and PAC/NaOH system. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicated that both models provide the best correlation of the experimental data. The decolorization mechanism of MRM was discussed, too. The MRM system was a viable alternative to some of the more conventional forms of chemical treatment of dye solutions and also provided another way to make use of industrial waste red mud.

  20. A cost comparison of five midstory removal methods

    Treesearch

    Brian G. Bailey; Michael R. Saunders; Zachary E. Lowe

    2011-01-01

    Within mature hardwood forests, midstory removal treatments have been shown to provide the adequate light and growing space needed for early establishment of intermediate-shade-tolerant species. As the method gains popularity, it is worthwhile to determine what manner of removal is most cost-efficient. Th is study compared five midstory removal treatments across 10...

  1. More Efficient Sodium Removal by Ultrafiltration Compared to Diuretics in Acute Heart Failure; Underexplored and Overstated.

    PubMed

    Kazory, Amir

    2016-01-01

    Enhanced removal of sodium has often been cited as an advantage of ultrafiltration (UF) therapy over diuretic-based medical treatment in the management of acute decompensated heart failure. However, so far clinical studies have rarely evaluated the precise magnitude of sodium removal, and this assumption is largely based on the physiologic mechanisms and anecdotal observations that predate the contemporary management of heart failure. Recent data suggest that patients treated with UF experience substantial reduction in urinary sodium excretion possibly due to prolonged intravascular volume contraction. Consequently, the efficient sodium extraction through production of isotonic ultrafiltrate can be offset by urine hypotonicity. Based on the limited currently available data, it seems unlikely that the persistent benefits of UF could be solely explained by its greater efficiency in sodium removal. The design of the future studies should include frequent measurements of urine sodium to precisely compare the impact of UF and diuretics on sodium balance. © 2016 S. Karger AG, Basel.

  2. Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge.

    PubMed

    Liao, Hanpeng; Lu, Xiaomei; Rensing, Christopher; Friman, Ville Petri; Geisen, Stefan; Chen, Zhi; Yu, Zhen; Wei, Zhong; Zhou, Shungui; Zhu, Yongguan

    2018-01-02

    Composting is an efficient way to convert organic waste into fertilizers. However, waste materials often contain large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) that can reduce the efficacy of antibiotic treatments when transmitted to humans. Because conventional composting often fails to remove these compounds, we evaluated if hyperthermophilic composting with elevated temperature is more efficient at removing ARGs and MGEs and explored the underlying mechanisms of ARG removal of the two composting methods. We found that hyperthermophilic composting removed ARGs and MGEs more efficiently than conventional composting (89% and 49%, respectively). Furthermore, the half-lives of ARGs and MGEs were lower in hyperthermophilic compositing compared to conventional composting (67% and 58%, respectively). More-efficient removal of ARGs and MGEs was associated with a higher reduction in bacterial abundance and diversity of potential ARG hosts. Partial least-squares path modeling suggested that reduction of MGEs played a key role in ARG removal in hyperthermophilic composting, while ARG reduction was mainly driven by changes in bacterial community composition under conventional composting. Together these results suggest that hyperthermophilic composting can significantly enhance the removal of ARGs and MGEs and that the mechanisms of ARG and MGE removal can depend on composting temperature.

  3. Comparison of the removal of ethanethiol in twin-biotrickling filters inoculated with strain RG-1 and B350 mixed microorganisms.

    PubMed

    An, Taicheng; Wan, Shungang; Li, Guiying; Sun, Lei; Guo, Bin

    2010-11-15

    This study aims to compare the biological degradation performance of ethanethiol using strain RG-1 and B350 commercial mixed microorganisms, which were inoculated and immobilized on ceramic particles in twin-biotrickling filter columns. The parameters affecting the removal efficiency, such as empty bed residence time (EBRT) and inlet concentration, were investigated in detail. When EBRT ranged from 332 to 66 s at a fixed inlet concentration of 1.05 mg L(-1), the total removal efficiencies for RG-1 and B350 both decreased from 100% to 70.90% and 47.20%, respectively. The maximum elimination capacities for RG-1 and B350 were 38.36 (removal efficiency=89.20%) and 25.82 g m(-3) h(-1) (removal efficiency=57.10%), respectively, at an EBRT of 83 s. The variation of the inlet concentration at a fixed EBRT of 110 s did not change the removal efficiencies which remained at 100% for RG-1 and B350 at concentrations of less than 1.05 and 0.64 mg L(-1), respectively. The maximum elimination capacities were 39.93 (removal efficiency=60.30%) and 30.34 g m(-3) h(-1) (removal efficiency=46.20%) for RG-1 and B350, respectively, at an inlet concentration of 2.03 mg L(-1). Sulfate was the main metabolic product of sulfur in ethanethiol. Based the results, strain RG-1 would be a better choice than strain B350 for the biodegradation of ethanethiol. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Behavior of microorganisms in drinking water treatment by inductively coupled plasma system: Case study in ground water

    NASA Astrophysics Data System (ADS)

    Desmiarti, Reni; Hazmi, Ariadi; Martynis, Munas; Sutopo, Ulung Muhammad; Li, Fusheng

    2018-02-01

    Pathogenic bacteria, such as total coliforms (TC), fecal coliforms (FC) and other coliforms (OC), were removed from groundwater by inductively coupled plasma system treatment in continuous flow experiments. The objective of this study is to investigate the effect of flowrate and frequency on the behavior of microorganisms in drinking water treatment using inductively coupled plasma system (ICPS). The results showed that after 120 minutes of ICPS treatment, the removal efficiency with respect to TC, FC and OC decreased with increasing flowrate. The removal efficiency of FC was achieved at 100% in all runs. Compared to FC, the removal efficiencies with respect to TC and FC were lower than those with respect to TC and OC in the following order: FC >OC> TC. The disinfection yield of TC and OC significantly increased when the removal efficiency increased. The electromagnetic flux varied from 8.08±0.46 to 10.54±0.19 W/cm2. The results in the present work can be used to design a new technology for drinking water treatment to remove all pathogenic bacteria without using hazardous chemicals.

  5. Mastication and oral health-related quality of life in removable denture wearers with Alzheimer disease.

    PubMed

    Campos, Camila H; Ribeiro, Giselle R; Rodrigues Garcia, Renata C M

    2018-05-01

    Alzheimer disease (AD) can affect masticatory function, affecting oral health-related quality of life (OHRQoL). Whether oral rehabilitation with conventional removable prostheses can restore masticatory function and improve OHRQoL in these individuals is unknown. The purpose of this clinical study was to evaluate the influence of oral rehabilitation with removable prostheses on masticatory efficiency and OHRQoL in elders with and without AD. Thirty-two elders with mild AD (n=16, mean age=76.7 ±6.3 years) or without AD (n=16, mean age=75.2 ±4.4 years) were recruited. All participants first underwent masticatory efficiency and OHRQoL evaluations, and 2 months after insertion of new removable prostheses, the variables were reassessed. Masticatory efficiency was determined using the sieving method, and OHRQoL was measured by applying the Geriatric Oral Health Assessment Index (GOHAI). The data from the baseline and after insertion of the new removable prostheses were compared by paired t test. Group differences at each time point were assessed by t test (α=.05). After insertion of the new removable prostheses, masticatory efficiency and OHRQoL improved in both the elders with AD and the control. At baseline, elders with AD had lower masticatory efficiency and higher OHRQoL than controls (P<.05). After removable prosthesis insertion, elders with AD continued to show lower masticatory efficiency values than controls, but their OHRQoL was similar. Oral rehabilitation with new removable prostheses improved the masticatory efficiency and OHRQoL of elders with and without AD, although masticatory efficiency did not reach control levels in elders with AD. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. A testing-coverage software reliability model considering fault removal efficiency and error generation

    PubMed Central

    Li, Qiuying; Pham, Hoang

    2017-01-01

    In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance. PMID:28750091

  7. Test of precoat filtration technology for treatment of swimming pool water.

    PubMed

    Christensen, Morten Lykkegaard; Klausen, Morten Møller; Christensen, Peter Vittrup

    2018-02-01

    The technical performance of a precoat filter was compared with that of a traditional sand filter. Particle concentration and size distribution were measured before and after the filtration of swimming pool water. Both the sand and precoat filters could reduce the particle concentration in the effluent. However, higher particle removal efficiency was generally observed for the precoat filter, especially for particles smaller than 10 μm in diameter. Adding flocculant improved the removal efficiency of the sand filter, resulting in removal efficiencies comparable to those of the precoat filter. Three powders, i.e., two types of perlite (Harbolite ® and Aquatec perlite) and cellulose fibers (Arbocel ® ), were tested for the precoat filter, but no significant difference in particle removal efficiency was observed among them. The maximum efficiency was reached within 30-40 min of filtration. The energy required for the pumps increased by approximately 35% over a period of 14 days. The energy consumption could be reduced by replacing the powder on the filter cloth. The sand filter was backwashed once a week, while the powder on the precoat filter was replaced every two weeks. Under these conditions, it was possible to reduce the water used for cleaning by 88% if the precoat filter was used instead of the sand filter.

  8. The fate of polar trace organic compounds in the hyporheic zone.

    PubMed

    Schaper, Jonas L; Seher, Wiebke; Nützmann, Gunnar; Putschew, Anke; Jekel, Martin; Lewandowski, Jörg

    2018-04-18

    The hyporheic zone (HZ) is often considered to efficiently remove polar trace organic compounds (TrOCs) from lotic systems, mitigating potential adverse effects of TrOCs on ecosystem functioning and drinking water production. Predicting the fate of TrOCs in the hyporheic zone (HZ) is difficult as the in-situ removal rate constants are not known and the biogeochemical factors as well as hydrological conditions controlling the removal efficiency are not fully understood. To determine the in-situ removal efficiency of the HZ for a variety of TrOCs as a function of the biogeochemical milieu, we conducted a field study in an urban river near Berlin, Germany. Subsurface flow was studied by time series of temperature depth profiles and the biogeochemical milieu of the HZ by concentration depth profiles. These results, in conjunction with a 1D advection-dispersion transport model, were used to calculate first-order removal rate constants of several polar TrOCs in the HZ. For the majority of TrOCs investigated, removal rate constants were strongly dependent on redox conditions, with significantly higher removal rates observed under predominantly suboxic (i.e. denitrifying) compared to anoxic (i.e. Fe and Mn reducing) conditions. Compared to previous studies on the fate of TrOCs in saturated sediments, half-lives within oxic/suboxic sections of the HZ were relatively low, attributable to the site-specific characteristics of the HZ in a stream dominated by wastewater treatment plant effluent. For nine out of thirteen investigated TrOCs, concentrations decreased significantly in the HZ with relative removal percentages ranging from 32% for primidone to 77% for gabapentin. For many TrOCs, removal efficiency decreased drastically as redox conditions became anoxic. For the majority of compounds investigated here, the HZ indeed acts as an efficient bioreactor that is capable of removing TrOCs along relatively short flow paths. Depending on the TrOC, removal capacity may be enhanced by either increasing the magnitude of groundwater-surface exchange fluxes, by increasing the total residence time in the HZ or the exposure time to suboxic zones, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Enhancing nitrogen removal in an Orbal oxidation ditch by optimization of oxygen supply: practice in a full-scale municipal wastewater treatment plant.

    PubMed

    Zhou, Xin; Guo, Xuesong; Han, Yunping; Liu, Junxin; Ren, Jincheng; Wang, Yu; Guo, Yantao

    2012-09-01

    Seven different aeration modes, in which oxygen supply was changed by adjusting the number of aerators, were designed and applied in a full-scale municipal wastewater treatment plant with Orbal oxidation ditch to investigate the influence of dissolved oxygen (DO) on nitrogen removal performance. The full-scale experiment results of 574 days showed that nitrogen removal efficiency depended on the degree of nitrification and denitrification in the outer channel, which was the largest contributor for TN removal in the Orbal oxidation ditch. Appropriate aeration control in the outer channel was essential to balance nitrification and denitrification in the Orbal oxidation ditch. When DO was as low as about 0.2 mg/L in the outer channel, the highest TN removal efficiency of 75% was obtained. Microbial analysis confirmed that aerobic and anaerobic bacteria coexisted in the outer channel. The greater species diversity and more intensive activities of these bacteria in aeration Mode V may be responsible for the higher TN removal efficiency compared with Mode III. These results suggest that different aerated conditions in the Orbal oxidation ditch might have a significant effect on microbial community characteristics and nitrogen removal efficiencies.

  10. Biofilm Removal Using Carbon Dioxide Aerosols without Nitrogen Purge.

    PubMed

    Hong, Seongkyeol; Jang, Jaesung

    2016-11-06

    Biofilms can cause serious concerns in many applications. Not only can they cause economic losses, but they can also present a public health hazard. Therefore, it is highly desirable to remove biofilms from surfaces. Many studies on CO2 aerosol cleaning have employed nitrogen purges to increase biofilm removal efficiency by reducing the moisture condensation generated during the cleaning. However, in this study, periodic jets of CO2 aerosols without nitrogen purges were used to remove Pseudomonas putida biofilms from polished stainless steel surfaces. CO2 aerosols are mixtures of solid and gaseous CO2 and are generated when high-pressure CO2 gas is adiabatically expanded through a nozzle. These high-speed aerosols were applied to a biofilm that had been grown for 24 hr. The removal efficiency ranged from 90.36% to 98.29% and was evaluated by measuring the fluorescence intensity of the biofilm as the treatment time was varied from 16 sec to 88 sec. We also performed experiments to compare the removal efficiencies with and without nitrogen purges; the measured biofilm removal efficiencies were not significantly different from each other (t-test, p > 0.55). Therefore, this technique can be used to clean various bio-contaminated surfaces within one minute.

  11. Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.

    PubMed

    Sharma, Anshul; Adapureddy, Sri Malini; Goel, Sudha

    2014-04-01

    The aim of this study was to evaluate the impact of different oxidizing agents like light, aeration (by mixing) and electrocoagulation (EC) on the oxidation of As (III) and its subsequent removal in an EC batch reactor. Arsenic solutions prepared using distilled water and groundwater were evaluated. Optimum pH and the effect of varying initial pH on As removal efficiency were also evaluated. MaximumAs (III) removal efficiency with EC, light and aeration was 97% from distilled water and 71% from groundwater. Other results show that EC alone resulted in 90% As removal efficiency in the absence of light and mixing from distilled water and 53.6% from groundwater. Removal with light and mixing but without EC resulted in only 26% As removal from distilled water and 29% from groundwater proving that electro-oxidation and coagulation were more effective in removing arsenic compared to the other oxidizing agents examined. Initial pH was varied from 5 to 10 in distilled water and from 3 to 12 in groundwater for evaluating arsenic removal efficiency by EC. The optimum initial pH for arsenic removal was 7 for distilled water and groundwater. For all initial pHs tested between 5 and 10 in distilled water, the final pH ranged between 7 and 8 indicating that the EC process tends towards near neutral pH under the conditions examined in this study.

  12. Removal of trace metal contaminants from potable water by electrocoagulation

    PubMed Central

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency. PMID:27324564

  13. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and Burrows pond rearing system

    USGS Publications Warehouse

    Moffitt, Christine M.

    2016-01-01

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal efficiency, and measures of velocity using several tools. Computational fluid dynamics was used first to characterize hydraulics in the proposed retrofit that included removal of the traditional Burrows pond dividing wall and establishment of four counter rotating cells with appropriate drains and inlet water jets. Hydraulic residence time was subsequently established in the four full scale test tanks using measures of conductivity of a salt tracer introduced into the systems both with and without fish present. Vertical and horizontal velocities were also measured with acoustic Doppler velocimetry in transects across each of the rearing systems. Finally, we introduced ABS sinking beads that simulated fish solids then followed the kinetics of their removal via the drains to establish relative purge rates. The mixed cell raceway provided higher mean velocities and a more uniform velocity distribution than did the Burrows pond. Vectors revealed well-defined, counter-rotating cells in the mixed cell raceway, and were likely contributing factors in achieving a relatively high particle removal efficiency-88.6% versus 8.0% during the test period. We speculate retrofits of rearing ponds to mixed cell systems will improve both the rearing environments for the fish and solids removal, improving the efficiency and bio-security of fish culture. We recommend further testing in hatchery production trials to evaluate fish physiology and growth.

  14. High efficient removal of molybdenum from water by Fe2(SO4)3: Effects of pH and affecting factors in the presence of co-existing background constituents.

    PubMed

    Zhang, Xiang; Ma, Jun; Lu, Xixin; Huangfu, Xiaoliu; Zou, Jing

    2015-12-30

    Comparatively investigated the different effects of Fe2(SO4)3 coagulation-filtration and FeCl3 coagulation-filtration on the removal of Mo (VI). And the influence of calcium, sulfate, silicate, phosphate and humic acid (HA) were also studied. The following conclusions can be obtained: (1) compared with the case of FeCl3, Fe2(SO4)3 showed a higher Mo (VI) removal efficiency at pH 4.00-5.00, but an equal removal efficiency at pH 6.00-9.00. (2) The optimum Mo (VI) removal by Fe2(SO4)3 was achieved at pH 5.00-6.00; (3) The presence of calcium can reduce the removal of Mo (VI) over the entire pH range in the present study; (4) The effect of co-existing background anions (including HA) was dominated by three factors: Firstly the influence of co-existing background anions on the content of Fe intercepted from water (intercepted Fe). Secondly the competition of co-existing anions with Mo (VI) for adsorption sites. Thirdly the influence of co-existing background anions on the Zeta potential of the iron flocs. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Removal efficiency and enzymatic mechanism of dibutyl phthalate (DBP) by constructed wetlands.

    PubMed

    Qi, Xin; Li, Tiancui; Wang, Feihua; Dai, Yanran; Liang, Wei

    2018-06-01

    Four vertical-flow constructed wetland systems were set up in the field in order to study the removal efficiency and possible enzymatic mechanism of the constructed wetlands in treating sewage containing different concentrations of dibutyl phthalate (DBP). Under DBP spiked concentrations of 0.5, 1.0, and 2.0 mg/L, good DBP removal rates of 62.08, 82.17, and 84.17% were achieved, respectively. Meanwhile, certain removal effects of general water quality parameters were observed in all four constructed wetlands: with high average removal rates of nitrate nitrogen (NO 3 - -N) and chemical oxygen demand (COD) of 91.10~93.89 and 82.83~89.17%, respectively, with moderate removal efficiencies of total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH 4 + -N) of 44.59~49.67, 30.58~37.18, and 28.52~37.45%, respectively. Compared to the control, an increase of enzyme activities of urease, phosphatase, dehydrogenase, and nitrate reductase was observed in the treatments with DBP addition. In the presence of 0.5 mg/L of DBP concentration, the urease, phosphatase, and dehydrogenase activities reached the highest levels, with an increase of 350.02, 36.57, and 417.88% compared with the control, respectively. It appeared that the low concentration of DBP might better stimulate the release of enzymes.

  16. Oxytetracycline removal from water by novel microbial embedding gel beads

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Pan, Peng; Zeng, Ming; Wang, Wei; Xu, Chenshan; Zhang, Zongpeng; Liu, Xinyuan; Wang, Yichao

    2018-01-01

    As a common antibiotic in aquatic environment, excessive oxytetracycline (OTC) is urgent to be removed due to its great biological toxicity. Compared with the traditional activated sludge, microbial embedding can enhance the treating efficiency. In this study, novel microbial embedding gel beads were produced with the additional agent of cyclodextrin (CD). Results show that CD could increase the mass transfer of OTC into gel beads, possibly because of its strong affinity for organic matters. In terms of OTC biodegradation, gel beads with CD were comparable to gel beads without CD, while the former’s sucrose removal efficiency was higher than the latter. The biodegradation of OTC only occurred in the presence of sucrose. The respiration test also confirmed these findings. Overall, the produced novel gel beads modified with CD could improve the removal performance of OTC.

  17. Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples.

    PubMed

    Rahmani, Mashaallah; Kaykhaii, Massoud; Sasani, Mojtaba

    2018-01-05

    This study aimed to investigate the efficiency of 3A zeolite as a novel adsorbent for removal of Rhodamine B and Malachite green dyes from water samples. To increase the removal efficiency, effecting parameters on adsorption process were investigated and optimized by adopting Taguchi design of experiments approach. The percentage contribution of each parameter on the removal of Rhodamine B and Malachite green dyes determined using ANOVA and showed that the most effective parameters in removal of RhB and MG by 3A zeolite are initial concentration of dye and pH, respectively. Under optimized condition, the amount predicted by Taguchi design method and the value obtained experimentally, showed good closeness (more than 94.86%). Good adsorption efficiency obtained for proposed methods indicates that, the 3A zeolite is capable to remove the significant amounts of Rhodamine B and Malachite green from environmental water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples

    NASA Astrophysics Data System (ADS)

    Rahmani, Mashaallah; Kaykhaii, Massoud; Sasani, Mojtaba

    2018-01-01

    This study aimed to investigate the efficiency of 3A zeolite as a novel adsorbent for removal of Rhodamine B and Malachite green dyes from water samples. To increase the removal efficiency, effecting parameters on adsorption process were investigated and optimized by adopting Taguchi design of experiments approach. The percentage contribution of each parameter on the removal of Rhodamine B and Malachite green dyes determined using ANOVA and showed that the most effective parameters in removal of RhB and MG by 3A zeolite are initial concentration of dye and pH, respectively. Under optimized condition, the amount predicted by Taguchi design method and the value obtained experimentally, showed good closeness (more than 94.86%). Good adsorption efficiency obtained for proposed methods indicates that, the 3A zeolite is capable to remove the significant amounts of Rhodamine B and Malachite green from environmental water samples.

  19. A novel approach to enhance biological nutrient removal using a culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (Rpf) in SBR process.

    PubMed

    Liu, Yindong; Su, Xiaomei; Lu, Lian; Ding, Linxian; Shen, Chaofeng

    2016-03-01

    A culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (SRpf) was used to enhance the biological nutrient removal of potentially functional bacteria. The obtained results suggest that SRpf accelerated the start-up process and significantly enhanced the biological nutrient removal in sequencing batch reactor (SBR). PO4 (3-)-P removal efficiency increased by over 12 % and total nitrogen removal efficiency increased by over 8 % in treatment reactor acclimated by SRpf compared with those without SRpf addition. The Illumina high-throughput sequencing analysis showed that SRpf played an essential role in shifts in the composition and diversity of bacterial community. The phyla of Proteobacteria and Actinobacteria, which were closely related to biological nutrient removal, were greatly abundant after SRpf addition. This study demonstrates that SRpf acclimation or addition might hold great potential as an efficient and cost-effective alternative for wastewater treatment plants (WWTPs) to meet more stringent operation conditions and legislations.

  20. Application of ultrasound and air stripping for the removal of aromatic hydrocarbons from spent sulfidic caustic for use in autotrophic denitrification as an electron donor.

    PubMed

    Lee, Jae-Ho; Park, Jeung-Jin; Choi, Gi-Choong; Byun, Im-Gyu; Park, Tae-Joo; Lee, Tae-Ho

    2013-01-01

    Spent sulfidic caustic (SSC) produced from petroleum industry can be reused to denitrify nitrate-nitrogen via a biological nitrogen removal process as an electron donor for sulfur-based autotrophic denitrification, because it has a large amount of dissolved sulfur. However, SSC has to be refined because it also contains some aromatic hydrocarbons, typically benzene, toluene, ethylbenzene, xylene (BTEX) and phenol that are recalcitrant organic compounds. In this study, laboratory-scale ultrasound irradiation and air stripping treatment were applied in order to remove these aromatic hydrocarbons. In the ultrasound system, both BTEX and phenol were exponentially removed by ultrasound irradiation during 60 min of reaction time to give the greatest removal efficiency of about 80%. Whereas, about 95% removal efficiency of BTEX was achieved, but not any significant phenol removal, within 30 min in the air stripping system, indicating that air stripping was a more efficient method than ultrasound irradiation. However, since air stripping did not remove any significant phenol, an additional process for degrading phenol was required. Accordingly, we applied a combined ultrasound and air stripping process. In these experiments, the removal efficiencies of BTEX and phenol were improved compared to the application of ultrasound and air stripping alone. Thus, the combined ultrasound and air stripping treatment is appropriate for refining SSC.

  1. Analysis of complex network performance and heuristic node removal strategies

    NASA Astrophysics Data System (ADS)

    Jahanpour, Ehsan; Chen, Xin

    2013-12-01

    Removing important nodes from complex networks is a great challenge in fighting against criminal organizations and preventing disease outbreaks. Six network performance metrics, including four new metrics, are applied to quantify networks' diffusion speed, diffusion scale, homogeneity, and diameter. In order to efficiently identify nodes whose removal maximally destroys a network, i.e., minimizes network performance, ten structured heuristic node removal strategies are designed using different node centrality metrics including degree, betweenness, reciprocal closeness, complement-derived closeness, and eigenvector centrality. These strategies are applied to remove nodes from the September 11, 2001 hijackers' network, and their performance are compared to that of a random strategy, which removes randomly selected nodes, and the locally optimal solution (LOS), which removes nodes to minimize network performance at each step. The computational complexity of the 11 strategies and LOS is also analyzed. Results show that the node removal strategies using degree and betweenness centralities are more efficient than other strategies.

  2. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    PubMed

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment resulted in removal efficiencies of >90% for clofibric acid and >98% for carbamazepine and diclofenac, while the remaining compounds were reduced to levels below the LOD. For ibuprofen, naproxen, ketoprofen and diclofenac the highest contribution to overall removal was attributed to biological treatment, for clofibric acid UV treatment was the most efficient, while for carbamazepine hydrodynamic cavitation/hydrogen peroxide process and UV treatment were equally efficient. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Biofiltration vs conventional activated sludge plants: what about priority and emerging pollutants removal?

    PubMed

    Mailler, R; Gasperi, J; Rocher, V; Gilbert-Pawlik, S; Geara-Matta, D; Moilleron, R; Chebbo, G

    2014-04-01

    This paper compares the removal performances of two complete wastewater treatment plants (WWTPs) for all priority substances listed in the Water Framework Directive and additional compounds of interest including flame retardants, surfactants, pesticides, and personal care products (PCPs) (n = 104). First, primary treatments such as physicochemical lamellar settling (PCLS) and primary settling (PS) are compared. Similarly, biofiltration (BF) and conventional activated sludge (CAS) are then examined. Finally, the removal efficiency per unit of nitrogen removed of both WWTPs for micropollutants is discussed, as nitrogenous pollution treatment results in a special design of processes and operational conditions. For primary treatments, hydrophobic pollutants (log K ow > 4) are well removed (>70 %) for both systems despite high variations of removal. PCLS allows an obvious gain of about 20 % regarding pollutant removals, as a result of better suspended solids elimination and possible coagulant impact on soluble compounds. For biological treatments, variations of removal are much weaker, and the majority of pollutants are comparably removed within both systems. Hydrophobic and volatile compounds are well (>60 %) or very well removed (>80 %) by sorption and volatilization. Some readily biodegradable molecules are better removed by CAS, indicating a better biodegradation. A better sorption of pollutants on activated sludge could be also expected considering the differences of characteristics between a biofilm and flocs. Finally, comparison of global processes efficiency using removals of micropollutants load normalized to nitrogen shows that PCLS + BF is as efficient as PS + CAS despite a higher compactness and a shorter hydraulic retention time (HRT). Only some groups of pollutants seem better removed by PS + CAS like alkylphenols, flame retardants, or di-2-ethylhexyl phthalate (DEHP), thanks to better biodegradation and sorption resulting from HRT and biomass characteristics. For both processes, and out of the 68 molecules found in raw water, only half of them are still detected in the water discharged, most of the time close to their detection limit. However, some of them are detected at higher concentrations (>1 μg/L and/or lower than environmental quality standards), which is problematic as they represent a threat for aquatic environment.

  4. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process.

    PubMed

    Pueyo, N; Miguel, N; Ovelleiro, J L; Ormad, M P

    The purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide-ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation-flocculation-decantation and lime-soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5-12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN(-) of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process.

  5. Evaluation of the Efficacy of Caries Removal Using Polymer Bur, Stainless Steel Bur, Carisolv, Papacarie - An Invitro Comparative Study.

    PubMed

    Divya, Gaddam; Prasad, Madhu Ghanashyam; Vasa, Aron Arun Kumar; Vasanthi, Done; Ramanarayana, Boyapati; Mynampati, Praffulla

    2015-07-01

    Dental caries continues to affect a significant portion of the world population and treatment of the decay is associated with pain by many patients. Intervention and application of rotary instruments for treatment of carious lesions has often resulted in considerable removal of tooth structure. Chemo-mechanical method, a minimal invasive technique for caries removal was developed to overcome these shortcomings. This innovative method seems to be efficient in removing infected dentine without altering the healthy dental tissue or harming the adjacent oral mucosa. To evaluate the efficacy and efficiency of Caries removal Using Polymer Bur, Stainless Steel Bur, Carisolv and Papacarie. A total of 120 sectioned specimens were obtained from 60 extracted teeth. Each tooth was sectioned mesiodistally in the center of the carious lesion so that two halves (buccal and lingual or palatal) having equal sized carious lesions are compared. The sectioned specimens were subdivided into four groups (Polymer Bur, Stainless Steel Bur, Carisolv, Papacarie) allotting 30 specimens to each for caries excavation. One-way ANOVA, Chi-square test analysis was done for comparison between groups which showed significant results with Stainless Steel Bur excavation taking less mean time when compared to other agents and Polymer Bur showed more amount of bacterial remnants after excavation whereas Carisolv and Papacarie were efficient with less dentinal tubule destruction and bacterial remnants after excavation. Further inter comparison between groups was done using Paired t-test and Fischer's Exact-test. The Mean time taken by Stainless Steel Bur excavation was found to be less and caused more amount of dentinal tubule destruction when compared to Polymer Bur, Carisolv and Papacarie. Chemo-mechanical methods found to be more efficient with lesser amount of bacterial remnants and dentinal tubule destruction after caries excavation when compared to conventional methods.

  6. Evaluation of the Efficacy of Caries Removal Using Polymer Bur, Stainless Steel Bur, Carisolv, Papacarie – An Invitro Comparative Study

    PubMed Central

    Prasad, Madhu Ghanashyam; Vasa, Aron Arun Kumar; Vasanthi, Done; Ramanarayana, Boyapati; Mynampati, Praffulla

    2015-01-01

    Context Dental caries continues to affect a significant portion of the world population and treatment of the decay is associated with pain by many patients. Intervention and application of rotary instruments for treatment of carious lesions has often resulted in considerable removal of tooth structure. Chemo-mechanical method, a minimal invasive technique for caries removal was developed to overcome these shortcomings. This innovative method seems to be efficient in removing infected dentine without altering the healthy dental tissue or harming the adjacent oral mucosa. Aim To evaluate the efficacy and efficiency of Caries removal Using Polymer Bur, Stainless Steel Bur, Carisolv and Papacarie. Materials and Methods A total of 120 sectioned specimens were obtained from 60 extracted teeth. Each tooth was sectioned mesiodistally in the center of the carious lesion so that two halves (buccal and lingual or palatal) having equal sized carious lesions are compared. The sectioned specimens were subdivided into four groups (Polymer Bur, Stainless Steel Bur, Carisolv, Papacarie) allotting 30 specimens to each for caries excavation. Results One-way ANOVA, Chi-square test analysis was done for comparison between groups which showed significant results with Stainless Steel Bur excavation taking less mean time when compared to other agents and Polymer Bur showed more amount of bacterial remnants after excavation whereas Carisolv and Papacarie were efficient with less dentinal tubule destruction and bacterial remnants after excavation. Further inter comparison between groups was done using Paired t-test and Fischer’s Exact-test. Conclusion The Mean time taken by Stainless Steel Bur excavation was found to be less and caused more amount of dentinal tubule destruction when compared to Polymer Bur, Carisolv and Papacarie. Chemo-mechanical methods found to be more efficient with lesser amount of bacterial remnants and dentinal tubule destruction after caries excavation when compared to conventional methods. PMID:26393204

  7. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level.

    PubMed

    Wu, Yi-Ting; Yu, Yi-Hui; Nguyen, Van-Huy; Lu, Kung-Te; Wu, Jeffrey Chi-Sheng; Chang, Luh-Maan; Kuo, Chi-Wen

    2013-11-15

    The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO2 photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO2 selectivity. Interestingly, Mn-TiO2 in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    PubMed

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  9. Removal of malachite green from aqueous solutions by electrocoagulation/peanut shell adsorption coupling in a batch system.

    PubMed

    Wang, Xiansheng; Ni, Jiaheng; Pang, Shuo; Li, Ying

    2017-04-01

    A electrocoagulation (EC)/peanut shell (PS) adsorption coupling technique was studied for the removal of malachite green (MG) in our present work. The addition of an appropriate PS dosage (5 g/L) resulted in remarkable increase in the removal efficiency of MG at lower current density and shorter operating time compared with the conventional EC process. The effect of current density, pH of MG solution, dosage of PS and initial concentration of MG were also investigated. The maximum removal efficiency of MG was 98% under optimum conditions in 5 min. And it was 23% higher than that in EC process. Furthermore, the unit energy demand (UED) and the unit electrode material demand (UEMD) were calculated and discussed. The results demonstrated that the EC/PS adsorption coupling method achieved a reduction of 94% UED and UEMD compared with EC process.

  10. A comparative study of American football helmet removal techniques using a cadaveric model of cervical spine injury.

    PubMed

    Anderson, Andrew; Tollefson, Brian; Cohen, Rob; Johnson, Jeremy; Summers, Richard L

    2011-04-01

    American football is the source of a significant number of cervical spine injuries. Removal of the helmets from these individuals is often problematic and presents a potential for exacerbation of the injury. There are two widely recognized helmet removal techniques that are currently in practice. In this study, the two methods are compared for cervical movement and potential for cord injury to determine their relative efficiency and clinical utility. A single cadaver with a simulated cervical injury was used to compare the National Athletic Trainers' Association (NATA) and cast saw techniques of helmet removal. Directed lateral fluoroscopy was used to measure the relative changes in angulation, translation, distraction, and space available to the spinal cord during helmet removal using the two techniques as performed by medical personnel with limited training in the methods. By radiologists' reports, there were no detectable changes in disc height, translation or space available for the spinal cord during helmet removal with either of the studied techniques. Operators noted that the noise of the cast saw would probably be significantly uncomfortable for any live subject inside of a helmet. Both the NATA and cast saw methods appear effective for the safe removal of a football helmet and with little risk of further injury to the cervical spine. Considering the simplicity and efficiency of the NATA helmet removal technique, the authors conclude that the NATA technique should be the preferred helmet removal method.

  11. Removal of arsenic and iron removal from drinking water using coagulation and biological treatment.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2016-02-01

    Effects of biological activated carbon (BAC), biological aerated filter (BAF), alum coagulation and Moringa oleifera coagulation were investigated to remove iron and arsenic contaminants from drinking water. At an initial dose of 5 mg/L, the removal efficiency for arsenic and iron was 63% and 58% respectively using alum, and 47% and 41% respectively using Moringa oleifera. The removal of both contaminants increased with the increase in coagulant dose and decrease in pH. Biological processes were more effective in removing these contaminants than coagulation. Compared to BAF, BAC gave greater removal of both arsenic and iron, removing 85% and 74%, respectively. Longer contact time for both processes could reduce the greater concentration of arsenic and iron contaminants. The addition of coagulation (at 5 mg/L dosage) and a biological process (with 15 or 60 min contact time) could significantly increase removal efficiency, and the maximum removal was observed for the combination of alum and BAC treatment (60 min contact time), with 100% and 98.56% for arsenic and iron respectively. The reduction efficiency of arsenic and iron reduced with the increase in the concentration of dissolved organics in the feedwater due to the adsorption competition between organic molecules and heavy metals.

  12. The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces

    PubMed Central

    Seo, Donghyun; Lee, Junghun; Lee, Choongyeop; Nam, Youngsuk

    2016-01-01

    The efficient water harvesting from air-laden moisture has been a subject of great interest to address world-wide water shortage issues. Recently, it has been shown that tailoring surface wettability can enhance the moisture harvesting performance. However, depending on the harvesting condition, a different conclusion has often been reported and it remains unclear what type of surface wettability would be desirable for the efficient water harvesting under the given condition. Here we compare the water harvesting performance of the surfaces with various wettability under two different harvesting conditions–dewing and fogging, and show that the different harvesting efficiency of each surface under these two conditions can be understood by considering the relative importance of the water capturing and removal efficiency of the surface. At fogging, the moisture harvesting performance is determined by the water removal efficiency of the surface with the oil-infused surfaces exhibiting the best performance. Meanwhile, at dewing, both the water capturing and removal efficiency are crucial to the harvesting performance. And well-wetting surfaces with a lower barrier to nucleation of condensates exhibit a better harvesting performance due to the increasing importance of the water capture efficiency over the water removal efficiency at dewing. PMID:27063149

  13. Comparative study of humic acid removal and floc characteristics by electrocoagulation and chemical coagulation.

    PubMed

    Semerjian, Lucy; Damaj, Ahmad; Salam, Darine

    2015-11-01

    The current study aims at investigating the efficiency of electrocoagulation for the removal of humic acid from contaminated waters. In parallel, conventional chemical coagulation was conducted to asses humic acid removal patterns. The effect of varying contributing parameters (matrix pH, humic acid concentration, type of electrode (aluminum vs. iron), current density, solution conductivity, and distance between electrodes) was considered to optimize the electrocoagulation process for the best attainable humic acid removal efficiencies. Optimum removals were recorded at pH of 5.0-5.5, an electrical conductivity of 3000 μS/cm at 25 °C, and an electrode distance of 1 cm for both electrode types. With aluminum electrodes, a current density of 0.05 mA/cm2 outperformed 0.1 mA/cm2 yet not higher densities, whereas a current density of 0.8 mA/cm2 was needed for iron electrodes to exhibit comparable performance. With both electrode types, higher initial humic acid concentrations were removed at a slower rate but ultimately attained almost complete removals. On the other hand, the best humic acid removals (∼90%) by chemical coagulation were achieved at 4 mg/L for both coagulants. Also, higher removals were attained at elevated initial humic acid concentrations. Humic acid removals of 90% or higher at an initial HA concentration of 40 mg/L were exhibited, yet alum performed better at the highest experimented concentration. It was evident that iron flocs were larger, denser, and more geometrical in shape compared to aluminum flocs.

  14. Defluoridation potential of jute fibers grafted with fatty acyl chain

    NASA Astrophysics Data System (ADS)

    Manna, Suvendu; Saha, Prosenjit; Roy, Debasis; Sen, Ramkrishna; Adhikari, Basudam

    2015-11-01

    Waterborne fluoride is usually removed from water by coagulation, adsorption, ion exchange, electro dialysis or reverse osmosis. These processes are often effective over narrow pH ranges, release ions considered hazardous to human health or produce large volumes of toxic sludge that are difficult to handle and dispose. Although plant matters have been shown to remove waterborne fluoride, they suffer from poor removal efficiency. Following from the insight that interaction between microbial carbohydrate biopolymers and anionic surfaces is often facilitated by lipids, an attempt has been made to enhance fluoride adsorption efficiency of jute by grafting the lignocellulosic fiber with fatty acyl chains found in vegetable oils. Fluoride removal efficiency of grafted jute was found to be comparable or higher than those of alternative defluoridation processes. Infrared and X-ray photoelectron spectroscopic evidence indicated that hydrogen bonding, protonation and C-F bonding were responsible for fluoride accumulation on grafted jute. Adsorption based on grafted jute fibers appears to be an economical, sustainable and eco-friendly alternative technique for removing waterborne fluoride.

  15. Conversion Characteristics and Production Evaluation of Styrene/o-Xylene Mixtures Removed by DBD Pretreatment

    PubMed Central

    Jiang, Liying; Zhu, Runye; Mao, Yubo; Chen, Jianmeng; Zhang, Liang

    2015-01-01

    The combination of chemical oxidation methods with biotechnology to removal recalcitrant VOCs is a promising technology. In this paper, the aim was to identify the role of key process parameters and biodegradability of the degradation products using a dielectric barrier discharge (DBD) reactor, which provided the fundamental data to evaluate the possibilities of the combined system. Effects of various technologic parameters like initial concentration of mixtures, residence time and relative humidity on the decomposition and the degradation products were examined and discussed. It was found that the removal efficiency of mixed VOCs decreased with increasing initial concentration. The removal efficiency reached the maximum value as relative humidity was approximately 40%–60%. Increasing the residence time resulted in increasing the removal efficiency and the order of destruction efficiency of VOCs followed the order styrene > o-xylene. Compared with the single compounds, the removal efficiency of styrene and o-xylene in the mixtures of VOCs decreased significantly and o-xylene decreased more rapidly. The degradation products were analyzed by gas chromatography and gas chromatography-mass spectrometry, and the main compounds detected were O3, COx and benzene ring derivatives. The biodegradability of mixed VOCs was improved and the products had positive effect on biomass during plasma application, and furthermore typical results indicated that the biodegradability and biotoxicity of gaseous pollutant were quite depending on the specific input energy (SIE). PMID:25629961

  16. Pollutant removal characteristics of a two-influent-line BNR process performing denitrifying phosphorus removal: role of sludge recycling ratios.

    PubMed

    Liu, Hongbo; Leng, Feng; Chen, Piao; Kueppers, Stephan

    2016-11-01

    This paper studied denitrifying phosphorus removal of a novel two-line biological nutrient removal process treating low strength domestic wastewater under different sludge recycling ratios. Mass balance of intracellular compounds including polyhydroxyvalerate, polyhydroxybutyrate and glycogen was investigated together with total nitrogen (TN) and total phosphorus (TP). Results showed that sludge recycling ratios had a significant influence on the use of organics along bioreactors and 73.6% of the average removal efficiency was obtained when the influent chemical oxygen demand (COD) ranged from 175.9 mgL -1 to 189.9 mgL -1 . The process performed better under a sludge recycling ratio of 100% compared to 25% and 50% in terms of ammonia and COD removal rates. Overall, TN removal efficiency for 50% and 100% sludge recycling ratios were 56.4% and 61.9%, respectively, unlike the big gap for carbon utilization and the TP removal rates, indicating that the effect of sludge recycling ratio on the anaerobic compartments had been counteracted by change in the efficiency of other compartments. The higher ratio of sludge recycling was conducive to the removal of TN, not in favor of TP, and less influence on COD. Thus, 25% was considered to be the optimal sludge recycling ratio.

  17. Simultaneous attenuation of pharmaceuticals, organic matter, and nutrients in wastewater effluent through managed aquifer recharge: Batch and column studies.

    PubMed

    Im, Huncheol; Yeo, Inseol; Maeng, Sung Kyu; Park, Chul Hwi; Choi, Heechul

    2016-01-01

    Batch and column experiments were conducted to evaluate the removal of organic matter, nutrients, and pharmaceuticals and to identify the removal mechanisms of the target contaminants. The sands used in the experiments were obtained from the Youngsan River located in South Korea. Neutral and cationic pharmaceuticals (iopromide, estrone, and trimethoprim) were removed with efficiencies greater than 80% from different sand media during experiments, due to the effect of sorption between sand and pharmaceuticals. However, the anionic pharmaceuticals (sulfamethoxazole, ketoprofen, ibuprofen, and diclofenac) were more effectively removed by natural sand, compared to baked sand. These observations were mainly attributed to biodegradation under natural conditions of surface organic matter and ATP concentrations. The removal of organic matter and nitrogen was also found to increase under biotic conditions. Therefore, it is indicated that biodegradation plays an important role and act as major mechanisms for the removal of organic matter, nutrients, and selected pharmaceuticals during sand passage and the managed aquifer recharge, which is an effective treatment method for removing target contaminants. However, the low removal efficiencies of pharmaceuticals (e.g., carbamazepine and sulfamethoxazole) require additional processes (e.g., AOPs, NF and RO membrane), a long residence time, and long travel distance for increasing the removal efficiencies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Efficiency test of filtering methods for the removal of transcranial magnetic stimulation artifacts on human electroencephalography with artificially transcranial magnetic stimulation-corrupted signals

    NASA Astrophysics Data System (ADS)

    Zilber, Nicolas A.; Katayama, Yoshinori; Iramina, Keiji; Erich, Wintermantel

    2010-05-01

    A new approach is proposed to test the efficiency of methods, such as the Kalman filter and the independent component analysis (ICA), when applied to remove the artifacts induced by transcranial magnetic stimulation (TMS) from electroencephalography (EEG). By using EEG recordings corrupted by TMS induction, the shape of the artifacts is approximately described with a model based on an equivalent circuit simulation. These modeled artifacts are subsequently added to other EEG signals—this time not influenced by TMS. The resulting signals prove of interest since we also know their form without the pseudo-TMS artifacts. Therefore, they enable us to use a fit test to compare the signals we obtain after removing the artifacts with the original signals. This efficiency test turned out very useful in comparing the methods between them, as well as in determining the parameters of the filtering that give satisfactory results with the automatic ICA.

  19. Studies on crude oil removal from pebbles by the application of biodiesel.

    PubMed

    Xia, Wen-xiang; Xia, Yan; Li, Jin-cheng; Zhang, Dan-feng; Zhou, Qing; Wang, Xin-ping

    2015-02-15

    Oil residues along shorelines are hard to remove after an oil spill. The effect of biodiesel to eliminate crude oil from pebbles alone and in combination with petroleum degrading bacteria was investigated in simulated systems. Adding biodiesel made oil detach from pebbles and formed oil-biodiesel mixtures, most of which remained on top of seawater. The total petroleum hydrocarbon (TPH) removal efficiency increased with biodiesel quantities but the magnitude of augment decreased gradually. When used with petroleum degrading bacteria, the addition of biodiesel (BD), nutrients (NUT) and BD+NUT increased the dehydrogenase activity and decreased the biodegradation half lives. When BD and NUT were replenished at the same time, the TPH removal efficiency was 7.4% higher compared to the total improvement of efficiency when BD and NUT was added separately, indicating an additive effect of biodiesel and nutrients on oil biodegradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Applicability of Zeolite Based Systems for Ammonia Removal and Recovery From Wastewater.

    PubMed

    Das, Pallabi; Prasad, Bably; Singh, Krishna Kant Kumar

    2017-09-01

      Ammonia discharged in industrial effluents bears deleterious effects and necessitates remediation. Integrated systems devoted to recovery of ammonia in a useful form and remediation of the same addresses the challenges of waste management and its utilization. A comparative performance evaluation study was undertaken to access the suitability of different zeolite based systems (commercial zeolites and zeolites synthesized from fly ash) for removal of ammonia followed by its subsequent release. Four main parameters which were studied to evaluate the applicability of such systems for large scale usage are cost-effectiveness, ammonia removal efficiency, performance on regeneration, and ammonia release percentage. The results indicated that synthetic zeolites outperformed zeolites synthesized from fly ash, although the later proved to be more efficient in terms of total cost incurred. Process technology development in this direction will be a trade-of between cost and ammonia removal and release efficiencies.

  1. Research on material removal accuracy analysis and correction of removal function during ion beam figuring

    NASA Astrophysics Data System (ADS)

    Wu, Weibin; Dai, Yifan; Zhou, Lin; Xu, Mingjin

    2016-09-01

    Material removal accuracy has a direct impact on the machining precision and efficiency of ion beam figuring. By analyzing the factors suppressing the improvement of material removal accuracy, we conclude that correcting the removal function deviation and reducing the removal material amount during each iterative process could help to improve material removal accuracy. Removal function correcting principle can effectively compensate removal function deviation between actual figuring and simulated processes, while experiments indicate that material removal accuracy decreases with a long machining time, so a small amount of removal material in each iterative process is suggested. However, more clamping and measuring steps will be introduced in this way, which will also generate machining errors and suppress the improvement of material removal accuracy. On this account, a free-measurement iterative process method is put forward to improve material removal accuracy and figuring efficiency by using less measuring and clamping steps. Finally, an experiment on a φ 100-mm Zerodur planar is preformed, which shows that, in similar figuring time, three free-measurement iterative processes could improve the material removal accuracy and the surface error convergence rate by 62.5% and 17.6%, respectively, compared with a single iterative process.

  2. The efficiency of macroporous polystyrene ion-exchange resins in natural organic matter removal from surface water

    NASA Astrophysics Data System (ADS)

    Urbanowska, Agnieszka; Kabsch-Korbutowicz, Małgorzata

    2017-11-01

    Natural water sources used for water treatment contains various organic and inorganic compounds. Surface waters are commonly contaminated with natural organic matter (NOM). NOM removal from water is important e.g. due to lowering the risk of disinfection by-product formation during chlorination. Ion exchange with the use of synthetic ion-exchange resins is an alternative process to typical NOM removal approach (e.g. coagulation, adsorption or oxidation) as most NOM compounds have anionic character. Moreover, neutral fraction could be removed from water due to its adsorption on resin surface. In this study, applicability of two macroporous, polystyrene ion exchange resins (BD400FD and A100) in NOM removal from water was assessed including comparison of treatment efficiency in various process set-ups and conditions. Moreover, resin regeneration effectivity was determined. Obtained results shown that examined resins could be applied in NOM removal and it should be noticed that column set-up yielded better results (contrary to batch set-up). Among the examined resins A100 one possessed better properties. It was determined that increase of solution pH resulted in a slight decrease in treatment efficiency while higher temperature improved it. It was also observed that regeneration efficiency was comparable in both tested methods but batch set-up required less reagents.

  3. Treatment of laboratory wastewater in a tropical constructed wetland comparing surface and subsurface flow.

    PubMed

    Meutia, A A

    2001-01-01

    Wastewater treatment by constructed wetland is an appropriate technology for tropical developing countries like Indonesia because it is inexpensive, easily maintained, and has environmentally friendly and sustainable characteristics. The aim of the research is to examine the capability of constructed wetlands for treating laboratory wastewater at our Center, to investigate the suitable flow for treatment, namely vertical subsurface or horizontal surface flow, and to study the effect of the seasons. The constructed wetland is composed of three chambered unplanted sedimentation tanks followed by the first and second beds, containing gravel and sand, planted with Typha sp.; the third bed planted with floating plant Lemna sp.; and a clarifier with two chambers. The results showed that the subsurface flow in the dry season removed 95% organic carbon (COD) and total phosphorus (T-P) respectively, and 82% total nitrogen (T-N). In the transition period from the dry season to the rainy season, COD removal efficiency decreased to 73%, T-N increased to 89%, and T-P was almost the same as that in the dry season. In the rainy season COD and T-N removal efficiencies increased again to 95% respectively, while T-P remained unchanged. In the dry season, COD and T-P concentrations in the surface flow showed that the removal efficiencies were a bit lower than those in the subsurface flow. Moreover, T-N removal efficiency was only half as much as that in the subsurface flow. However, in the transition period, COD removal efficiency decreased to 29%, while T-N increased to 74% and T-P was still constant, around 93%. In the rainy season, COD and T-N removal efficiencies increased again to almost 95%. On the other hand, T-P decreased to 76%. The results show that the constructed wetland is capable of treating the laboratory wastewater. The subsurface flow is more suitable for treatment than the surface flow, and the seasonal changes have effects on the removal efficiency.

  4. Impact of exogenous organic carbon on the removal of chemicals of concern in the high rate nitrifying trickling filters.

    PubMed

    Mai, Lei; van den Akker, Ben; Du, Jun; Kookana, Rai S; Fallowfield, Howard

    2016-06-01

    The application of fixed bed high rate nitrifying trickling filters (NTFs) for the removal of track organic chemicals of concern (CoC) is less well known than their application to nutrient removal in water treatment. Particularly, the effect of exogenous organic carbon substrate (sucrose) loading on the performance of NTFs is not well understood. A laboratory-scale NTF system was operated in recirculation mode, with the objective of removing ammonia and CoC simultaneously. The efficiency of a high rate NTF for removal both of low concentration of ammonia (5 mg NH4-N L(-1)) and different concentrations of CoC in the presence of an exogenous organic carbon substrate (30 mg total organic carbon (TOC) L(-1)) was investigated. In the presence of exogenous organic carbon, the results demonstrated that the high rate NTF was able to successfully remove most of the CoCs investigated, with the removal ranging from 20.2% to 87.54%. High removal efficiencies were observed for acetaminophen (87.54%), bisphenol A (86.60%), trimethoprim (86.24%) and 17α-ethynylestradiol (80.60%). It was followed by the medium removal efficiency for N, N-diethyl-m-toluamide (61.31%) and atrazine (56.90%). In contrast, the removal of caffeine (28.43%) and benzotriazole (20.20%) was poorer in the presence of exogenous organic carbon. The removal efficiency for CoC was also compared with the results obtained in our previous study in the absence of exogenous organic carbon. The results showed that the addition of exogenous organic carbon was able to improve the removal of some of the CoC. Significant TOC percentage removals (45.68%-84.43%) and ammonia removal rate (mean value of 0.44 mg NH4-N L(-1) h(-1)) were also achieved in this study. The findings from this study provide valuable information for optimising the efficiency of high rate NTF for the removal of ammonia, CoC and TOC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials.

    PubMed

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-03-23

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%-99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3--N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.

  6. Integration of chemical scrubber with sodium hypochlorite and surfactant for removal of hydrocarbons in cooking oil fume.

    PubMed

    Cheng, Hsin-Han; Hsieh, Chu-Chin

    2010-10-15

    There are many types of technologies to control cooking oil fumes (COFs), but current typical technologies, such as electrostatic precipitator, conventional scrubber, catalyst, or condenser, are unable to efficiently remove the odorous materials present in COFs which are the primary cause of odor-complaint cases. There is also a lack of information about using sodium hypochlorite (NaOCl) and surfactants to remove contaminants in COFs, and previous studies lack on-site investigations in restaurants. This study presents a chemical scrubber integrated with an automatic control system (ACS) to treat hydrocarbons (HCs) in COFs, and to monitor non-methane HCs (NMHC) and odor as indicators for its efficiency evaluation. The chemical scrubber effectively treats hydrophobic substances in COFs by combining surfactant and NaOCl under optimal operational conditions with NHMC removal efficiency as high as 85%. The mass transfer coefficient (K(L)a) of NMHC was enhanced by 50% under the NaOCl and surfactant conditions, as compared to typical wet scrubber. Further, this study establishes the fuzzy equations of the ACS, including the relationship between the removal efficiency and K(L)a, liquid/gas ratio, pH and C(NaOCl). 2010 Elsevier B.V. All rights reserved.

  7. Study on the removal efficiency of UF membranes using bacteriophages in bench-scale and semi-technical scale.

    PubMed

    Kreissel, K; Bösl, M; Lipp, P; Franzreb, M; Hambsch, B

    2012-01-01

    To determine the removal efficiency of ultrafiltration (UF) membranes for nano-particles in the size range of viruses the state of the art uses challenge tests with virus-spiked water. This work focuses on bench-scale and semi-technical scale experiments. Different experimental parameters influencing the removal efficiency of the tested UF membrane modules were analyzed and evaluated for bench- and semi-technical scale experiments. Organic matter in the water matrix highly influenced the removal of the tested bacteriophages MS2 and phiX174. Less membrane fouling (low ΔTMP) led to a reduced phage reduction. Increased flux positively affected phage removal in natural waters. The tested bacteriophages MS2 and phiX174 revealed different removal properties. MS2, which is widely used as a model organism to determine virus removal efficiencies of membranes, mostly showed a better removal than phiX174 for the natural water qualities tested. It seems that MS2 is possibly a less conservative surrogate for human enteric virus removal than phiX174. In bench-scale experiments log removal values (LRV) for MS2 of 2.5-6.0 and of 2.5-4.5 for phiX174 were obtained for the examined range of parameters. Phage removal obtained with differently fabricated semi-technical modules was quite variable for comparable parameter settings, indicating that module fabrication can lead to differing results. Potting temperature and module size were identified as influencing factors. In conclusion, careful attention has to be paid to the choice of experimental settings and module potting when using bench-scale or semi-technical scale experiments for UF membrane challenge tests.

  8. Efficient degradation of H2S over transition metal modified TiO2 under VUV irradiation: Performance and mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Gaoyuan; Ji, Jian; Hu, Peng; Lin, Sixin; Huang, Haibao

    2018-03-01

    Odor pollution causes great harm to the atmospheric environment and human health. H2S, as an odor gas, is highly toxic and corrosive and thus requires removal efficiently. In this study, TiO2 catalysts modified by transition metals including Mn, Cu, Ni and Co, were prepared using a modified sol-gelatin method and tested under UV-PCO or VUV-PCO process. H2S degradation was great enhanced in VUV-PCO compared with conventional UV-PCO. Among the catalysts, 1 wt% Mn-TiO2 showed the highest removal efficiency of 89.9%, which is 30 times higher than that under 254 nm UV irradiation. Residual ozone in the outlet can be completely eliminated by Mn-TiO2. Photocatalytic oxidation, photolysis and ozone-assisted catalytic oxidation all involved in the VUV-PCO process and their contribution were determined by H2S removal efficiency.

  9. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies.

    PubMed

    Wang, Jing-Han; Zhang, Tian-Yuan; Dao, Guo-Hua; Xu, Xue-Qiao; Wang, Xiao-Xiong; Hu, Hong -Ying

    2017-04-01

    Reuse of secondary municipal effluent from wastewater treatment plants in water bodies could effectively alleviate freshwater resource shortage. However, excessive nutrients must be efficiently removed to prevent eutrophication. Compared with other means of advanced wastewater treatment, microalgae-based processes display overwhelming advantages including efficient and simultaneous N and P removal, no requirement of additional chemicals, O 2 generation, CO 2 mitigation, and potential value-added products from harvested biomass. One particular challenge of microalgae-based advanced municipal wastewater treatment compared to treatment of other types of wastewater is that concentrations of nutrients and N:P ratios in secondary municipal effluent are much lower and imbalanced. Therefore, there should be comprehensive considerations on nutrient removal from this specific type of effluent. Removal of nutrients and organic substances, and other environmental benefits of microalgae-based advanced municipal wastewater treatment systems were summarized. Among the existing studies on microalgal advanced nutrient removal, much information on major parameters is absent, rendering performances between studies not really comparable. Mechanisms of microalgae-based nitrogen and phosphorus removal were respectively analyzed to better understand advanced nutrient removal from municipal secondary effluent. Factors influencing microalgae-based nutrient removal were divided into intrinsic, environmental, and operational categories; several factors were identified in each category, and their influences on microalgal nutrient removal were discussed. A multiplicative kinetic model was integrated to estimate microalgal growth-related nutrient removal based majorly on environmental and intrinsic factors. Limitations and prospects of future full-scale microalgae-based advanced municipal wastewater treatment were also suggested. The manuscript could offer much valuable information for future studies on microalgae-based advanced wastewater treatment and water reuse.

  10. Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system.

    PubMed

    Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa

    2015-07-01

    Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity.

  11. The Effect of Body Posture on Brain Glymphatic Transport.

    PubMed

    Lee, Hedok; Xie, Lulu; Yu, Mei; Kang, Hongyi; Feng, Tian; Deane, Rashid; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2015-08-05

    The glymphatic pathway expedites clearance of waste, including soluble amyloid β (Aβ) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF-interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of Aβ, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by "retention" of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and Aβ clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans. The rodent brain removes waste better during sleep or anesthesia compared with the awake state. Animals exhibit different body posture during the awake and sleep states, which might affect the brain's waste removal efficiency. We investigated the influence of body posture on brainwide transport of inert tracers of anesthetized rodents. The major finding of our study was that waste, including Aβ, removal was most efficient in the lateral position (compared with the prone position), which mimics the natural resting/sleeping position of rodents. Although our finding awaits testing in humans, we speculate that the lateral position during sleep has advantage with regard to the removal of waste products including Aβ, because clinical studies have shown that sleep drives Aβ clearance from the brain. Copyright © 2015 the authors 0270-6474/15/3511034-11$15.00/0.

  12. The Effect of Body Posture on Brain Glymphatic Transport

    PubMed Central

    Lee, Hedok; Xie, Lulu; Yu, Mei; Kang, Hongyi; Feng, Tian; Deane, Rashid; Logan, Jean; Nedergaard, Maiken

    2015-01-01

    The glymphatic pathway expedites clearance of waste, including soluble amyloid β (Aβ) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF–interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of Aβ, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by “retention” of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and Aβ clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans. SIGNIFICANCE STATEMENT The rodent brain removes waste better during sleep or anesthesia compared with the awake state. Animals exhibit different body posture during the awake and sleep states, which might affect the brain's waste removal efficiency. We investigated the influence of body posture on brainwide transport of inert tracers of anesthetized rodents. The major finding of our study was that waste, including Aβ, removal was most efficient in the lateral position (compared with the prone position), which mimics the natural resting/sleeping position of rodents. Although our finding awaits testing in humans, we speculate that the lateral position during sleep has advantage with regard to the removal of waste products including Aβ, because clinical studies have shown that sleep drives Aβ clearance from the brain. PMID:26245965

  13. Photosynthetic response to low sink demand after fruit removal in relation to photoinhibition and photoprotection in peach trees.

    PubMed

    Duan, Wei; Fan, Pei G; Wang, Li J; Li, Wei D; Yan, Shu T; Li, Shao H

    2008-01-01

    Diurnal variations in photosynthesis, chlorophyll fluorescence, xanthophyll cycle, antioxidant enzymes and antioxidant metabolism in leaves in response to low sink demand caused by fruit removal (-fruit) were studied in 'Zaojiubao' peach (Prunus persica (L.) Batch) trees during the final stage of rapid fruit growth. Compared with the retained fruit treatment (+fruit), the -fruit treatment resulted in a significantly lower photosynthetic rate, stomatal conductance and transpiration rate, but generally higher internal CO(2) concentration, leaf-to-air vapor pressure difference and leaf temperature. The low photosynthetic rate in the -fruit trees paralleled reductions in maximal efficiency of photosystem II (PSII) photochemistry and carboxylation efficiency. The midday depression in photosynthetic rate in response to low sink demand resulting from fruit removal was mainly caused by non-stomatal limitation. Fruit removal resulted in lower quantum efficiency of PSII as a result of both a decrease in the efficiency of excitation capture by open PSII reaction centers and an increase in closure of PSII reaction centers. Both xanthophyll-dependent thermal dissipation and the antioxidant system were up-regulated providing protection from photo-oxidative damage to leaves during low sink demand. Compared with the leaves of +fruit trees, leaves of -fruit trees had a larger xanthophyll cycle pool size and a higher de-epoxidation state, as well as significantly higher activities of antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase and a higher reduction state of ascorbate and glutathione. However, the -fruit treatment resulted in higher hydrogen peroxide and malondialdehyde concentrations compared with the +fruit treatment, indicating photo-oxidative damage.

  14. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles.

    PubMed

    Huang, Pengpeng; Ye, Zhengfang; Xie, Wuming; Chen, Qi; Li, Jing; Xu, Zhencheng; Yao, Maosheng

    2013-08-01

    Much work is devoted to heavy metal sorption, reduction and relevant mechanisms by nanoscale zero valent iron (nZVI) particle, but fewer studies utilize its magnetic properties in aqueous metal removals. Here, we have investigated the use of nZVI particles both electrosprayed (E-nZVI) and non-electrosprayed (NE-nZVI) with different concentration levels (0.186-1.86 mg/mL) in removing aqueous Cd(II), Cr(IV), and Pb(II) through the magnetic separation means. The effects of the reaction time (5-20 min) and magnetic treatment time (1-30 min) on relevant magnetic removal efficiencies were studied. Metal ion concentration was analyzed using inductively coupled plasma (ICP), and the magnetically obtained metal-nZVI mixtures were further analyzed using X-ray photoelectron spectroscopy (XPS). Results showed that the magnetic removal efficiencies of heavy metals varied with the metal species, nZVI loading, reaction and magnetic separation time. In most cases, use of 1.5 mg/mL E-nZVI or NE-nZVI resulted in removal efficiencies of more than 80% for Pb(II), Cd(II), and Cr(IV). Increasing the magnetic treatment time from 1 to 20 min was shown to lead to ≈ 20% increase in Pb(II) removal efficiency, but no improvements for Cd(II) and Cr(IV). In contrast, increasing the reaction time decreased the Pb(II) removal efficiency, yet no effects observed for Cd(II) and Cr(IV). In general, 1 min reaction and 5 min magnetic treatment were found sufficient to achieve considerable heavy metal removals. For comparable efficiencies, use of magnetic method could significantly reduce nZVI loading. XPS analysis results indicated that atomic percentages of O 1s, Fe 2p, Cd 3d, Pb 4f and Cr 2p varied with metal exposures. Different from Cd(II) and Cr(IV), aqueous iron ions might be possibly present when treating Pb(II). This study demonstrated a rapid heavy metal removal method using the magnetic property of nZVI particles, while contributing to understanding of the relevant removal mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types ofmore » systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.« less

  16. Effective remediation of phenol,2,4-bis(1,1-dimethylethyl) and bis(2-ethylhexyl) phthalate in farm effluent using Guar gum--A plant based biopolymer.

    PubMed

    Kee, Yang Ling; Mukherjee, Sumona; Pariatamby, Agamuthu

    2015-10-01

    This study was carried out to evaluate the efficiency of Guar gum in removing Persistent Organic Pollutants (POPs), viz. phenol,2,4-bis(1,1-dimethylethyl) and bis(2-ethylhexyl) phthalate (DEHP), from farm effluent. The removal efficiency was compared with alum. The results indicated that 4.0 mg L(-1) of Guar gum at pH 7 could remove 99.70% and 99.99% of phenol,2,4-bis(1,1-dimethylethyl) and DEHP, respectively. Box Behnken design was used for optimization of the operating parameters for optimal POPs removal. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy studies were conducted on the flocs. SEM micrographs showed numerous void spaces in the flocs produced by Guar gum as opposed to those produced by alum. This indicated why Guar gum was more effective in capturing and removal of suspended particles and POPs as compared to alum. FTIR spectra indicated a shift in the bonding of functional groups in the flocs produced by Guar gum as compared to raw Guar gum powder signifying chemical attachment of the organics present in the effluent to the coagulant resulting in their removal. Guar gum is highly recommended as a substitute to chemical coagulant in treating POPs due to its non-toxic and biodegradable characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Determining major factors controlling phosphorus removal by promising adsorbents used for lake restoration: A linear mixed model approach.

    PubMed

    Funes, A; Martínez, F J; Álvarez-Manzaneda, I; Conde-Porcuna, J M; de Vicente, J; Guerrero, F; de Vicente, I

    2018-05-17

    Phosphorus (P) removal from lake/drainage waters by novel adsorbents may be affected by competitive substances naturally present in the aqueous media. Up to date, the effect of interfering substances has been studied basically on simple matrices (single-factor effects) or by applying basic statistical approaches when using natural lake water. In this study, we determined major factors controlling P removal efficiency in 20 aquatic ecosystems in the southeast Spain by using linear mixed models (LMMs). Two non-magnetic -CFH-12 ® and Phoslock ® - and two magnetic materials -hydrous lanthanum oxide loaded silica-coated magnetite (Fe-Si-La) and commercial zero-valent iron particles (FeHQ)- were tested to remove P at two adsorbent dosages. Results showed that the type of adsorbent, the adsorbent dosage and color of water (indicative of humic substances) are major factors controlling P removal efficiency. Differences in physico-chemical properties (i.e. surface charge or specific surface), composition and structure explain differences in maximum P adsorption capacity and performance of the adsorbents when competitive ions are present. The highest P removal efficiency, independently on whether the adsorbent dosage was low or high, were 85-100% for Phoslock and CFH-12 ® , 70-100% for Fe-Si-La and 0-15% for FeHQ. The low dosage of FeHQ, compared to previous studies, explained its low P removal efficiency. Although non-magnetic materials were the most efficient, magnetic adsorbents (especially Fe-Si-La) could be proposed for P removal as they can be recovered along with P and be reused, potentially making them more profitable in a long-term period. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. In-situ burning of oil in coastal marshes. 2. Oil spill cleanup efficiency as a function of oil type, marsh type, and water depth.

    PubMed

    Lin, Qianxin; Mendelssohn, Irving A; Carney, Kenneth; Miles, Scott M; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of spilled oil, which receives considerable attention in marine conditions, could be an effective way to cleanup wetland oil spills. An experimental in-situ burn was conducted to study the effects of oil type, marsh type, and water depth on oil chemistry and oil removal efficiency from the water surface and sediment. In-situ burning decreased the totaltargeted alkanes and total targeted polycyclic aromatic hydrocarbons (PAHs) in the burn residues as compared to the pre-burn diesel and crude oils. Removal was even more effective for short-chain alkanes and low ring-number PAHs. Removal efficiencies for alkanes and PAHs were >98% in terms of mass balance although concentrations of some long-chain alkanes and high ring-number PAHs increased in the burn residue as compared to the pre-burn oils. Thus, in-situ burning potentially prevents floating oil from drifting into and contaminating adjacent habitats and penetrating the sediment. In addition, in-situ burning significantly removed diesel oil that had penetrated the sediment for all water depths. Furthermore, in-situ burning at a water depth 2 cm below the soil surface significantly removed crude oil that had penetrated the sediment. As a result, in-situ burning may reduce the long-term impacts of oil on benthic organisms.

  19. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea.

    PubMed

    Zhang, Yating; Gu, Lingbiao; Wang, Fei; Kong, Lingjun; Qin, Guangyong

    2017-03-30

    As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE) technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.

  20. Competitive Adsorption and Oxidation Behavior of Heavy Metals on nZVI Coated with TEOS.

    PubMed

    Eglal, Mahmoud M; Ramamurthy, Amruthur S

    2015-11-01

    Zero valent iron nanoparticle (nanofer ZVI) is a powerful substance due to its coating with tetraethyl orthosilicate (TEOS). Tetraethyl orthosilicate imparts higher reactivity and decreases particle agglomeration. The competitive removal and displacement of multi-metals are influenced by time, pH, and initial concentration, the presence and properties of competing metals ion in the solution. For both the isotherm and kinetic studies performed for multi-metal removal experiments, compared to Pb II and Cd II, Cu II experienced a higher removal rate during the initial 5 minutes. After 120 minutes, all metals achieved removal efficiency in the range of 95 to 99%. The results of single and competitive kinetic tests for all three metals during the initial 5 minutes indicated that the presence of other metals generally reduce removal efficiency of metals. Both kinetic test and electron dispersive spectroscope (EDS) studies found that Cu II gets removed faster than the other metals. Pseudo-second order behavior was noted for the multi-metal removal systems.

  1. Effects of defeathering and insulative jackets on production by laying hens at low temperatures.

    PubMed

    Gonyou, H W; Morrison, W D

    1983-07-01

    Exposure to a temperature of 5 degrees C compared with 20 degrees C resulted in a 20.5% increase in food consumption and an 18.8% decrease in efficiency of food utilisation with intermediate values resulting from exposure to 10 degrees C and 15 degrees C. Removal of feathers from the neck, back and (or) breast resulted in a 5 to 6% increase in food consumption. The effects of feather removal and temperature on food consumption were additive. Cloth jackets effectively insulated the back and breast areas when feathers had been removed but also resulted in increased food intake and lower efficiency.

  2. Impact of the air filtration on indoor particle concentration by using combination filters in offices building

    NASA Astrophysics Data System (ADS)

    Kabrein, H.; Hariri, A.; Leman, A. M.; Noraini, N. M. R.; Yusof, M. Z. M.; Afandi, A.

    2017-09-01

    Heating ventilation and air conditioning system (HVAC) is very important for offices building and human health. The combining filter method was used to reduce the air pollution indoor such as that particulate matter and gases pollution that affected in health and productivity. Using particle filters in industrial HVAC systems (factories and manufacturing process) does not enough to remove all the indoor pollution. The main objective of this study is to investigate the impact of combination filters for particle and gases removal efficiency. The combining method is by using two filters (particulate filter pre-filter and carbon filter) to reduce particle matter and gases respectively. The purpose of this study is to use minimum efficiency reporting value (MERV filter) rating 13 and activated carbon filter (ACF) to remove indoor air pollution and controlling the air change rate to enhance the air quality and energy saving. It was concluded that the combination filter showed good removal efficiency of particle up to 90.76% and 89.25% for PM10 and PM2.5 respectively. The pressure drop across the filters was small compared with the high-efficiency filters. The filtration efficiency of combination filters after three months’ was better than efficiency by the new MERV filter alone.

  3. The effect of hydraulic retention time in onsite wastewater treatment and removal of pharmaceuticals, hormones and phenolic utility substances.

    PubMed

    Ejhed, H; Fång, J; Hansen, K; Graae, L; Rahmberg, M; Magnér, J; Dorgeloh, E; Plaza, G

    2018-03-15

    Micropollutants such as pharmaceuticals, hormones and phenolic utility chemicals in sewage water are considered to be an emerging problem because of increased use and observed adverse effects in the environment. The study provides knowledge on the removal efficiency of micropollutants with a range of physical and chemical properties in three commercially available onsite wastewater treatment facilities (OWTFs), tested on influent wastewater collected from 2500 person equivalents in Bildchen, Germany. A longer hydraulic retention time would in theory be expected to have a positive effect, and this study presents results for three different OWTFs in full-scale comparable tests under natural conditions. A range of 24 different pharmaceuticals, five phenols and three hormones were analyzed. Flow-proportional consecutive sampling was performed in order to determine the removal efficiency. Twenty-eight substances were detected in the effluent wastewater out of 32 substances included. Average effluent concentrations of Simvastatin, Estrone, Estradiol and Ethinylestradiol were above the indicative critical-effect concentration of pharmacological effect on fish in all facilities. Average effluent concentrations of both Diclofenac and Estradiol were higher than the Environmental Quality Standards applied in Sweden (190-240 times and 9-35 times respectively). The removal efficiency of micropollutants was high for substances with high logK ow , which enhance the adsorption and removal with sludge. Low removal was observed for substances with low logK ow and acidic characteristics, and for substances with stabilizing elements of the chemical structure. Facilities that use activated sludge processes removed hormones more efficiently than facilities using trickling filter treatment technique. Moreover, longer hydraulic retention time increased the removal of pharmaceuticals, hormones, turbidity and total nitrogen. Removal of Caffeine, Ibuprofen, Estrone, Naproxen and Estradiol, was strongly correlated to the sludge and particles removal. Thus, the efficiency of the tested OWTFs could be improved by adjusting the technical methods and increasing the hydraulic retention time. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sono assisted electrocoagulation process for the removal of pollutant from pulp and paper industry effluent.

    PubMed

    Asaithambi, P; Aziz, Abdul Raman Abdul; Sajjadi, Baharak; Daud, Wan Mohd Ashri Bin Wan

    2017-02-01

    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm 2 ), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm 2 , electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.

  5. Treatment of soft drink process wastewater by ozonation, ozonation-H₂O₂ and ozonation-coagulation processes.

    PubMed

    García-Morales, M A; Roa-Morales, G; Barrera-Díaz, C; Balderas-Hernández, P

    2012-01-01

    In this research, we studied the treatment of wastewater from the soft drink process using oxidation with ozone. A scheme composed of sequential ozonation-peroxide, ozonation-coagulation and coagulation-ozonation treatments to reduce the organic matter from the soft drink process was also used. The samples were taken from the conventional activated sludge treatment of the soft drink process, and the experiments using chemical oxidation with ozone were performed in a laboratory using a reactor through a porous plate glass diffuser with air as a feedstock for the generation of ozone. Once the sample was ozonated, the treatments were evaluated by considering the contact time, leading to greater efficiency in removing colour, turbidity and chemical oxygen demand (COD). The effect of ozonation and coagulant coupled with treatment efficiency was assessed under optimal conditions, and substantial colour and turbidity removal were found (90.52% and 93.33%, respectively). This was accompanied by a 16.78% reduction in COD (initial COD was 3410 mg/L). The absorbance spectra of the oxidised products were compared using UV-VIS spectroscopy to indicate the level of oxidation of the wastewater. We also determined the kinetics of decolouration and the removal of turbidity with the best treatment. The same treatment was applied to the sample taken from the final effluent of the activated sludge system, and a COD removal efficiency of 100% during the first minute of the reaction with ozone was achieved. As a general conclusion, we believe that the coagulant polyaluminum chloride - ozone (PAC- ozone) treatment of wastewater from the manufacturing of soft drinks is the most efficient for removing turbidity and colour and represents an advantageous option to remove these contaminants because their removal was performed in minutes compared to the duration of traditional physical, chemical and biological processes that require hours or days.

  6. [Rapid startup and nitrogen removal characteristic of anaerobic ammonium oxidation reactor in packed bed biofilm reactor with suspended carrier].

    PubMed

    Chen, Sheng; Sun, De-zhi; Yu, Guang-lu

    2010-03-01

    Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.

  7. A modeling understanding on the phosphorous removal performances of A2O and reversed A2O processes in a full-scale wastewater treatment plant.

    PubMed

    Xie, Wen-Ming; Zeng, Raymond J; Li, Wen-Wei; Wang, Guo-Xiang; Zhang, Li-Min

    2018-05-31

    Reversed A 2 O process (anoxic-anaerobic-aerobic) and conventional A 2 O process (anaerobic-anoxic-aerobic) are widely used in many wastewater treatment plants (WWTPs) in Asia. However, at present, there are still no consistent results to figure out which process has better total phosphorous (TP) removal performance and the mechanism for this difference was not clear yet. In this study, the treatment performances of both processes were compared in the same full-scale WWTP and the TP removal dynamics was analyzed by a modeling method. The treatment performance of full-scale WWTP showed the TP removal efficiency of the reversed A 2 O process was more efficient than in the conventional A 2 O process. The modeling results further reveal that the TP removal depends highly on the concentration and composition of influent COD. It had more efficient TP removal than the conventional A 2 O process only under conditions of sufficient influent COD and high fermentation products content. This study may lay a foundation for appropriate selection and optimization of treatment processes to suit practical wastewater properties.

  8. Removal of Trace Pharmaceuticals from Water using coagulation and powdered activated carbon as pretreatment to ultrafiltration membrane system.

    PubMed

    Sheng, Chenguang; Nnanna, A G Agwu; Liu, Yanghe; Vargo, John D

    2016-04-15

    In this study, the efficacy of water treatment technologies: ultra-filtration (UF), powdered activated carbon (PAC), coagulation (COA) and a combination of these technologies (PAC/UF and COA/UF) to remove target pharmaceuticals (Acetaminophen, Bezafibrate, Caffeine, Carbamazepine, Cotinine, Diclofenac, Gemfibrozil, Ibuprofen, Metoprolol, Naproxen, Sulfadimethoxine, Sulfamethazine, Sulfamethoxazole, Sulfathiazole, Triclosan and Trimethoprim) was investigated. Samples of wastewater from municipal WWTPs were analyzed using direct aqueous injection High Performance Liquid Chromatography with Tandem Quadrupole Mass Spectrometric (LC/MS/MS) detection. On concentration basis, results showed an average removal efficiency of 29%, 50%, and 7%, respectively, for the UF, PAC dosage of 50ppm, and COA dosage of 10ppm. When PAC dosage of 100ppm was used as pretreatment to the combined PAC and UF in-line membrane system, a 90.3% removal efficiency was achieved. The removal efficiency of UF in tandem with COA was 33%, an increase of 4% compared with the single UF treatment. The adsorption effect of PAC combined with the physical separation process of UF revealed the best treatment strategy for removing pharmaceutical contaminant from water. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enhanced nitrogen removal from piggery wastewater with high NH4+ and low COD/TN ratio in a novel upflow microaerobic biofilm reactor.

    PubMed

    Meng, Jia; Li, Jiuling; Li, Jianzheng; Antwi, Philip; Deng, Kaiwen; Nan, Jun; Xu, Pianpian

    2018-02-01

    To enhance nutrient removal more cost-efficiently in microaerobic process treating piggery wastewater characterized by high ammonium (NH 4 + -N) and low chemical oxygen demand (COD) to total nitrogen (TN) ratio, a novel upflow microaerobic biofilm reactor (UMBR) was constructed and the efficiency in nutrient removal was evaluated with various influent COD/TN ratios and reflux ratios. The results showed that the biofilm on the carriers had increased the biomass in the UMBR and enhanced the enrichment of slow-growth-rate bacteria such as nitrifiers, denitrifiers and anammox bacteria. The packed bed allowed the microaerobic biofilm process perform well at a low reflux ratio of 35 with a NH 4 + -N and TN removal as high as 93.1% and 89.9%, respectively. Compared with the previously developed upflow microaerobic sludge reactor, the UMBR had not changed the dominant anammox approach to nitrogen removal, but was more cost-efficiently in treating organic wastewater with high NH 4 + -N and low COD/TN ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Removal of carbamazepine and naproxen by immobilized Phanerochaete chrysosporium under non-sterile condition.

    PubMed

    Li, Xueqing; de Toledo, Renata Alves; Wang, Shengpeng; Shim, Hojae

    2015-03-25

    This study explored the utilization of a white-rot fungus (WRF), Phanerochaete chrysosporium, immobilized in wood chips, to remove carbamazepine and naproxen under non-sterile condition. The removal efficiencies for both pharmaceutically active compounds (PhACs) in artificially contaminated water were improved by 4% for naproxen and 30% for carbamazepine in seven days, compared to without wood chips. Although adsorption was crucial at the early stage, bioremoval was found to be the main removal mechanism for both PhACs. The extracellular enzymes played important roles in the naproxen removal, while the intracellular enzyme system was responsible for the carbamazepine removal. The increased of intracellular enzyme activity through the immobilization of WRF cells may contribute to the significantly enhanced removal efficiency for carbamazepine. In addition, the removal of naproxen or carbamazepine slightly increased when both compounds coexisted, compared to the system where the two pharmaceuticals existed separately. Based on the batch experimental results, a fixed-bed bioreactor packed with a mixture of WRF mycelia pellets and wood chips was developed and operated with the intermittent feeding and continuous aerating mode for 28 days under non-sterile condition, with naproxen and carbamazepine spiked into the influent at 1.0 mg L(-1). Almost complete removal of naproxen and 60-80% removal of carbamazepine were obtained in the first two weeks. However, the removal efficiencies for both compounds suddenly dropped to as low as less than 20% by the 14th day, possibly due to the contamination by other microorganisms in the reactor. After the addition of 8.25% sodium hypochlorite at the ratio of 1:100 (v/v) into the influent tank on both Day 20 and Day 25, a rapid recovery (higher than 95%) was achieved in the naproxen removal, by effectively inhibiting contamination in the reactor. In comparison, the same rebounding phenomenon was not observed for carbamazepine and this difference may be associated to the various enzyme-working systems. A longer hydraulic retention time (HRT) was conducive to improve the removal of both compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Enhanced biological nutrients removal using an integrated oxidation ditch with vertical circle from wastewater by adding an anaerobic column.

    PubMed

    Wang, Shu-mei; Liu, Jun-xin

    2005-01-01

    Compared to conventional oxidation ditches, an integrated oxidation ditch with vertical circle (IODVC) has the characters of concise configuration, simple operation and maintenance, land saving and automatical sludge returning. By the utilization of vertical circulation, an aerobic zone and an anoxic zone can be unaffectedly formed in the IODVC. Therefore, COD and nitrogen can be efficiently removed. However, the removal efficiency of phosphorus was low in the IODVC. In the experiment described, a laboratory scale system to add an anaerobic column to the IODVC has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that the removal efficiency of TP with the anaerobic column was increased to 54.0% from 22.3% without the anaerobic column. After the acetic sodium was added into the influent as carbon sources, the mean TP removal efficency of 77.5% was obtained. At the same time, the mean removal efficiencies of COD, TN and NH3-N were 92.2%, 81.6% and 98.1%, respectively, at 12 h of HRT and 21-25 d of SRT. The optimal operational conditions in this study were as follows: recycle rate = 1.5-2.0, COD/TN > 6, COD/TP > 40, COD loading rate = 0.26-0.32 kgCOD/(kgSS x d), TN loading rate = 0.028-0.034 kgTN/(kgSS x d) and TP loading rate = 0.003-0.005 kgTP/(kgSS x d), respectively.

  12. Comparison of Moringa stenopetala seed extract as a clean coagulant with Alum and Moringa stenopetala-Alum hybrid coagulant to remove direct dye from Textile Wastewater.

    PubMed

    Dalvand, Arash; Gholibegloo, Elham; Ganjali, Mohammad Reza; Golchinpoor, Najmeh; Khazaei, Mohammad; Kamani, Hossein; Hosseini, Sara Sadat; Mahvi, Amir Hossein

    2016-08-01

    In this study, the efficiency of Moringa stenopetala seed extract was compared with alum and M. stenopetala-alum hybrid coagulant to remove Direct Red 23 azo dye from textile wastewater. The effects of parameters such as pH, coagulant dose, type of salt used for the extraction of coagulant and initial dye concentration on dye removal efficiency were investigated. Moreover, the existing functional groups on the structure of M. stenopetala coagulant (MSC) were determined by Fourier transform infrared spectroscopy, and the morphology of sludge produced by MSC, alum, and hybrid coagulant was characterized by scanning electron microscopy. Ninhydrin test was also used to determine the quantity of primary amines in the MSC and Moringa oleifera coagulant (MOC). According to the results, with increasing the coagulant dose and decreasing the initial dye concentration, dye removal efficiency has increased. The maximum dye removal of 98.5, 98.2, and 98.3 % were obtained by using 240, 120, and 80 mg/L MSC, alum and hybrid coagulant at pH 7, respectively. The results also showed MSC was much more effective than MOC for dye removal. The volume of sludge produced by MSC was one fourth and half of those produced by alum and hybrid coagulant, respectively. Based on the results, hybrid coagulant was the most efficient coagulant for direct dye removal from colored wastewater.

  13. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    PubMed Central

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-01-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  14. Simultaneous carbon and nitrogen removal from anaerobic effluent of the cassava ethanol industry.

    PubMed

    Yin, Zhixuan; Xie, Li; Zhou, Qi; Bi, Xuejun

    2018-03-01

    This study investigated the simultaneous carbon and nitrogen removal from anaerobic effluent of cassava stillage using a lab-scale integrated system consisting of an upflow anaerobic sludge blanket (UASB) reactor and an activated sludge (AS) process. Simultaneous denitrification and methanogenesis (SDM) was observed in the UASB with nitrate recirculation. Compared with the blank reactor without recirculation, the overall chemical oxygen demand (COD) removal efficiencies in the combined system with nitrate recirculation were similar (80-90%), while the TN removal efficiencies were significantly improved from 4.7% to 71.0%. Additionally, the anaerobic COD removal efficiencies increased from 21% to 40% as the recirculation ratio decreased from 3 to 1. Although the influent nitrate concentrations fluctuated (60-140 mg N/L), the nitrate removal efficiencies could be maintained at about 97% under different recirculation conditions. With the decreasing recirculation ratio from 3 to 1, the CH 4 content in biogas improved from 2% to 40% while the N 2 content reduced from 95.8% to 50.6%. The 16S rDNA sequencing results indicated that bacteria diversity in anaerobic SDM granular sludge was much higher than archaea. The effect of recirculation ratios on the bacterial and archaeal communities in SDM granular sludge could be further confirmed by the relative abundance of denitrifying bacteria. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs.

    PubMed

    Wang, Dongbo; Jia, Feiyue; Wang, Hou; Chen, Fei; Fang, Ying; Dong, Wenbo; Zeng, Guangming; Li, Xiaoming; Yang, Qi; Yuan, Xingzhong

    2018-06-01

    Recently, Fe-based metal-organic frameworks (MOFs) have attracted increasing attention and been widely used. To date, however, it is unknown whether they can be employed to degrade tetracycline, one of the most widely used antibiotics. This work therefore aims to provide such support by comparing the performance of three Fe-based MOFs (namely, Fe-MIL-101, Fe-MIL-100, and Fe-MIL-53) in removing tetracycline. Experimental results showed that Fe-MIL-101 exhibited the best performance in tetracycline removal, with 96.6% of tetracycline being removed (initial tetracycline concentration at 50 mg/L) while Fe-MIL-100 and Fe-MIL-53 removed 57.4% and 40.6% under the same conditions. Additionally, the effects of adding dosage, adsorption time, and initial concentration of tetracycline on degradation efficiency were examined. It was found that the adsorption and photocatalytic degradation effect was better with the increase of time, the optimum dosage of Fe-MIL-101 was 0.5 g/L and the removal efficiency decreased with the increasing of initial tetracycline concentrations. Moreover, the trapping experiments and ESR tests indicated that O 2 -, OH and h + were the main active species in photocatalytic degradation process of tetracycline. Due to its high removal efficiency and simple synthesis, it could be used as a potential catalyst for degradation of tetracycline and other antibiotics. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    PubMed

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [Energy saving achieved by limited filamentous bulking under low dissolved oxygen: experimental validation in A/O process].

    PubMed

    Guo, Jian-hua; Wang, Shu-ying; Peng, Yong-zhen; Zheng, Ya-nan; Huang, Hui-jun; Ge, Shi-jian; Sun, Zhi-rong

    2008-12-01

    Preliminary studies had been conducted to determine the correctness of the theory and technique of energy saving achieved by limited filamentous bulking under low DO using a lab-scale A/O reactor with real domestic wastewater as the influent. The results showed that SVI could be maintained 150-230 mL/g and sludge settleability would not become very poor under the condition of low DO. During the period of limited filamentous bulking, COD and total nitrogen removal efficiencies were improved, and distinct simultaneous nitrification and denitrification (SND) was achieved, while ammonia removal efficiency would slightly decline with decreasing of DO, compared with the period of good settleability sludge under high DO. COD, ammonia and total nitrogen removal efficiencies were 86%, 70% and 63%, respectively. It was found that about 10%-25% nitrogen would be removed by SND based on the mass balance of nitrogen. Besides, SS in the effluent was almost negligible and the effluent turbidity was lower than 3 NTU. Significantly, aeration consumptions would be decreased by 17% under the condition with DO of 0.5 mg/L compared with 2.0 mg/L according to theoretical calculation of air requirements to keep different DO levels, which was about 57% in lab-scale reactor correspondingly.

  18. The efficiency of contact lens care regimens on protein removal from hydrogel and silicone hydrogel lenses

    PubMed Central

    Heynen, Miriam; Liu, Lina; Sheardown, Heather; Jones, Lyndon

    2010-01-01

    Purpose To investigate the efficiency of lysozyme and albumin removal from silicone hydrogel and conventional contact lenses, using a polyhexamethylene biguanide multipurpose solution (MPS) in a soaking or rubbing/soaking application and a hydrogen peroxide system (H2O2). Methods Etafilcon A, lotrafilcon B and balafilcon A materials were incubated in protein solutions for up to 14 days. Lenses were either placed in radiolabeled protein to quantify the amount deposited or in fluorescent-conjugated protein to identify its location, using confocal laser scanning microscopy (CLSM). Lenses were either rinsed with PBS or soaked overnight in H2O2 or MPS with and without lens rubbing. Results After 14 days lysozyme was highest on etafilcon A (2,200 μg) >balafilcon A (50 µg) >lotrafilcon B (9.7 µg) and albumin was highest on balafilcon A (1.9 µg) =lotrafilcon B (1.8 µg) >etafilcon A (0.2 µg). Lysozyme removal was greatest for balafilcon A >etafilcon A >lotrafilcon B, with etafilcon A showing the most change in protein distribution. Albumin removal was highest from etafilcon A >balafilcon A >lotrafilcon B. H2O2 exhibited greater lysozyme removal from etafilcon A compared to both MPS procedures (p<0.001) but performed similarly for lotrafilcon B and balafilcon A lenses (p>0.62). Albumin removal was solely material specific, while all care regimens performed to a similar degree (p>0.69). Conclusions Protein removal efficiency for the regimens evaluated depended on the lens material and protein type. Overall, lens rubbing with MPS before soaking did not reduce the protein content on the lenses compared to nonrubbed lenses (p=0.89). PMID:20098668

  19. A systematic approach of removal mechanisms, control and optimization of silver nanoparticle in wastewater treatment plants.

    PubMed

    Vilela, Paulina; Liu, Hongbin; Lee, SeungChul; Hwangbo, Soonho; Nam, KiJeon; Yoo, ChangKyoo

    2018-08-15

    The release of silver nanoparticles (AgNPs) to wastewater caused by over-generation and poor treatment of the remaining nanomaterial has raised the interest of researchers. AgNPs can have a negative impact on watersheds and generate degradation of the effluent quality of wastewater treatment plants (WWTPs). The aim of this research is to design and analyze an integrated model system for the removal of AgNPs with high effluent quality in WWTPs using a systematic approach of removal mechanisms modeling, optimization, and control of the removal of silver nanoparticles. The activated sludge model 1 was modified with the inclusion of AgNPs removal mechanisms, such as adsorption/desorption, dissolution, and inhibition of microbial organisms. Response surface methodology was performed to minimize the AgNPs and total nitrogen concentrations in the effluent by optimizing operating conditions of the system. Then, the optimal operating conditions were utilized for the implementation of control strategies into the system for further analysis of enhancement of AgNPs removal efficiency. Thus, the overall AgNP removal efficiency was found to be slightly higher than 80%, which was an improvement of almost 7% compared to the BSM1 reference value. This study provides a systematic approach to find an optimal solution for enhancing AgNP removal efficiency in WWTPs and thereby to prevent pollution in the environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Enhancement of a UASB-septic tank performance for decentralised treatment of strong domestic sewage.

    PubMed

    Mahmoud, Nidal; van Lier, Jules B

    2011-01-01

    The possibility of enhancing the process performance of the UASB-septic tank for treating strong sewage in Palestine by means of inoculating the reactor with well adapted anaerobic sludge and/or adding a packing media to the upper part of the reactor, creating an anaerobic hybrid (AH)-septic tank, was investigated. To achieve these objectives, two community onsite UASB-septic tank and AH-septic tank were operated in parallel at 2 days HRT for around 8 months overlapping the cold and hot periods of the year in Palestine. The achieved removal efficiencies of CODtot in the UASB-septic tank and AH-septic tank during the first months of operation, coinciding with the cold period and the subsequent hot period, were respectively 50 (+/- 15)% and 48 (+/- 15)% and 66 (+/- 8)% and 55 (+/- 8)%. This shows that the UASB-septic tank performed significantly better (p < 0.05) than the AH-septic tank after rather long periods of operation. The difference in the CODtot removal efficiency was mainly due to the better CODss removal efficiencies in the UASB-septic tank. The removal efficiencies over the last 50 days of operation for CODtot, CODsus, CODcol and CODdis were 70, 72, 77 and 55% and 53, 54, 78 and 45% for the UASB-septic tank and AH-septic tank, respectively. Comparing the here achieved COD removal efficiencies with previously reported efficiencies of UASB-septic tanks operated in Palestine shows that the reactor performance in terms of COD removal and conversion, during the first 8 months of operation, has improved substantially by being started with well adapted anaerobic sludge, simulating and predicting long-term performance. Adding packing media did not lead to an improvement.

  1. Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate.

    PubMed

    Deng, Yang

    2007-07-19

    Municipal landfill leachate, especially mature leachate, may disrupt the performance of moderately-sized municipal activated sludge wastewater treatment plants, and likewise tend to be recalcitrant to biological pretreatment. Recently, Fenton methods have been investigated for chemical treatment or pre-treatment of mature leachate. In this paper, the results of laboratory tests to determine the roles of oxidation and coagulation in reducing the organic content of mature leachate during Fenton treatment are presented. The efficiencies of chemical oxygen demand (COD) oxidation and coagulation were tested, and the ratio of COD removal by oxidation to that by coagulation was assessed, under various operating conditions. Low initial pH, appropriate relative and absolute Fenton reagent dosages, aeration, and stepwise addition of reagents increased COD removal by oxidation and the importance of oxidation relative to coagulation. Simultaneous aeration and stepwise reagent addition allowed comparable treatment without initial acidification pH, due to the generation of acidic organic intermediates and the continuous input of CO2. On the other hand, high COD oxidation efficiency and low ferrous dosage inhibited COD removal by coagulation. At significantly high oxidation efficiency, overall COD reduction decrease slightly due to low coagulation efficiency. Under the most favorable conditions (initial pH 3, molar ratio [H(2)O(2)]/[Fe2+]=3, [H2O2]=240 mM, and six dosing steps), 61% of the initial COD was removed, and the ratio of COD removal oxidation to coagulation was 0.75. Results highlighted the synergistic roles of oxidation and coagulation in Fenton treatment of mature leachate, and the role of oxidation in controlling the efficiency of removal of COD by coagulation.

  2. Characterization of the arsenite oxidizer Aliihoeflea sp. strain 2WW and its potential application in the removal of arsenic from groundwater in combination with Pf-ferritin.

    PubMed

    Corsini, Anna; Colombo, Milena; Muyzer, Gerard; Cavalca, Lucia

    2015-09-01

    A heterotrophic arsenite-oxidizing bacterium, strain 2WW, was isolated from a biofilter treating arsenic-rich groundwater. Comparative analysis of 16S rRNA gene sequences showed that it was closely related (98.7 %) to the alphaproteobacterium Aliihoeflea aesturari strain N8(T). However, it was physiologically different by its ability to grow at relatively low substrate concentrations, low temperatures and by its ability to oxidize arsenite. Here we describe the physiological features of strain 2WW and compare these to its most closely related relative, A. aestuari strain N8(T). In addition, we tested its efficiency to remove arsenic from groundwater in combination with Pf-ferritin. Strain 2WW oxidized arsenite to arsenate between pH 5.0 and 8.0, and from 4 to 30 °C. When the strain was used in combination with a Pf-ferritin-based material for arsenic removal from natural groundwater, the removal efficiency was significantly higher (73 %) than for Pf-ferritin alone (64 %). These results showed that arsenite oxidation by strain 2WW combined with Pf-ferritin-based material has a potential in arsenic removal from contaminated groundwater.

  3. Biotreatment of oily wastewater by rhamnolipids in aerated active sludge system*

    PubMed Central

    Zhang, Hong-zi; Long, Xu-wei; Sha, Ru-yi; Zhang, Guo-liang; Meng, Qin

    2009-01-01

    Oily wastewater generated by various industries creates a major ecological problem throughout the world. The traditional methods for the oily wastewater treatment are inefficient and costly. Surfactants can promote the biodegradation of petroleum hydrocarbons by dispersing oil into aqueous environment. In the present study, we applied rhamnolipid-containing cell-free culture broth to enhance the biodegradation of crude oil and lubricating oil in a conventional aerobically-activated sludge system. At 20 °C, rhamnolipids (11.2 mg/L) increased the removal efficiency of crude oil from 17.7% (in the absence of rhamnolipids) to 63%. At 25 °C, the removal efficiency of crude oil was over 80% with the presence of rhamnolipids compared with 22.3% in the absence of rhamnolipids. Similarly, rhamnolipid treatment (22.5 mg/L) for 24 h at 20 °C significantly increased the removal rate of lubricating oil to 92% compared with 24% in the absence of rhamnolipids. The enhanced removal of hydrocarbons was mainly attributed to the improved solubility and the reduced interfacial tension by rhamnolipids. We conclude that a direct application of the crude rhamnolipid solution from cell culture is effective and economic in removing oily contaminants from wastewater. PMID:19882761

  4. Is halogen content the most important factor in the removal of halogenated trace organics by MBR treatment?

    PubMed

    Hai, Faisal I; Tadkaew, Nichanan; McDonald, James A; Khan, Stuart J; Nghiem, Long D

    2011-05-01

    This study investigated the relationship between physicochemical properties (namely halogen content and hydrophobicity) of halogenated trace organics and their removal efficiencies by a laboratory scale membrane bioreactor (MBR) under stable operating conditions. The reported results demonstrated a combined effect of halogen content and hydrophobicity on the removal. Compounds with high halogen content (>0.3) were well removed (>85%) when they possessed high hydrophobicity (Log D>3.2), while those with lower Log D values were also well removed if they had low halogen content (<0.1). General indices such as the BIOWIN index (which is based on only biodegradation) or a more specific index such as the halogen content (which captures a chemical aspect) appeared insufficient to predict the removal efficiency of halogenated compounds in MBR. Experimental data confirmed that the ratio of halogen content and Log D, which incorporates two important physico-chemical properties, is comparatively more suitable. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Impact of substrates acclimation strategy on simultaneous biodegradation of hydrogen sulfide and ammonia.

    PubMed

    Jiang, Xia; Luo, Yiqun; Yan, Rong; Tay, Joo Hwa

    2009-12-01

    Three columns were differentiated with feeding mixture of H(2)S and NH(3) (MFC), feeding NH(3) followed by H(2)S (NFC), and feeding H(2)S followed by NH(3) (SFC). Removal performance, biodegradation capacity and microbial community structures in the three columns were compared. The results show that NFC has a shorter acclimation period for the removal of NH(3) gas and nitrification than MFC. Under the high loading of H(2)S and NH(3) at 164 and 82 gm(-3) h(-1), respectively, NFC exhibited high removal efficiency of NH(3) (>95%) while the removal efficiencies were obtained at 63 and 75% in MFC and SFC, respectively. The removal of NH(3) gas in NFC was significantly attributed to nitrification (over 50%), while adsorption and chemical reaction contributed to the removal of NH(3) in MFC and SFC. The different biodegradation capacities of NH(3) could be due to the dissimilarity in the microbial population presented in each column.

  6. Comparative study on the removal technologies of 2-methylisoborneol (MIB) in drinking water.

    PubMed

    Liang, Cun-Zhen; Wang, Dong-Sheng; Ge, Xiao-Peng; Yang, Min; Sun, Wei

    2006-01-01

    Removal of 2-methylisoborneol (MIB) in drinking water by ozone, powdered activated carbon (PAC), potassium permanganate and potassium ferrate was investigated. The adsorption kinetics of MIB by both wood-based and coat-based PACs show that main removal of MIB occurs within contact time of 1 h. Compared with the wood-based PAC, the coat-based PAC evidently improved the removal efficiency of MIB. The removal percentage of trace MIB at any given time for a particular carbon dosage was irrelative to the initial concentration of MIB. A series of experiments were performed to determine the effect of pH on the ozonation of MIB. The results show that pH has a significant effect on the ozonation of MIB. It is conclusive that potassium permanganate and potassium ferrate are ineffective in removing the MIB in drinking water.

  7. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.

    PubMed

    Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping

    2010-01-01

    Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.

  8. Comparative evaluation of rRNA depletion procedures for the improved analysis of bacterial biofilm and mixed pathogen culture transcriptomes

    PubMed Central

    Petrova, Olga E.; Garcia-Alcalde, Fernando; Zampaloni, Claudia; Sauer, Karin

    2017-01-01

    Global transcriptomic analysis via RNA-seq is often hampered by the high abundance of ribosomal (r)RNA in bacterial cells. To remove rRNA and enrich coding sequences, subtractive hybridization procedures have become the approach of choice prior to RNA-seq, with their efficiency varying in a manner dependent on sample type and composition. Yet, despite an increasing number of RNA-seq studies, comparative evaluation of bacterial rRNA depletion methods has remained limited. Moreover, no such study has utilized RNA derived from bacterial biofilms, which have potentially higher rRNA:mRNA ratios and higher rRNA carryover during RNA-seq analysis. Presently, we evaluated the efficiency of three subtractive hybridization-based kits in depleting rRNA from samples derived from biofilm, as well as planktonic cells of the opportunistic human pathogen Pseudomonas aeruginosa. Our results indicated different rRNA removal efficiency for the three procedures, with the Ribo-Zero kit yielding the highest degree of rRNA depletion, which translated into enhanced enrichment of non-rRNA transcripts and increased depth of RNA-seq coverage. The results indicated that, in addition to improving RNA-seq sensitivity, efficient rRNA removal enhanced detection of low abundance transcripts via qPCR. Finally, we demonstrate that the Ribo-Zero kit also exhibited the highest efficiency when P. aeruginosa/Staphylococcus aureus co-culture RNA samples were tested. PMID:28117413

  9. Selective elimination of chromophoric and fluorescent dissolved organic matter in a full-scale municipal wastewater treatment plant.

    PubMed

    Yang, Xiaofang; Zhou, Zhongbo; Raju, Maddela Naga; Cai, Xiaoxuan; Meng, Fangang

    2017-07-01

    Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in term of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (P<0.05) and the protein-like FDOM (P<0.05) displayed a significant seasonal variation, with higher removal efficiencies in summer, whereas removal of CDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality. Copyright © 2016. Published by Elsevier B.V.

  10. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions.

    PubMed

    Usman, Adel R A; Ahmad, Mahtab; El-Mahrouky, Mohamed; Al-Omran, Abdulrasoul; Ok, Yong Sik; Sallam, Abdelazeem Sh; El-Naggar, Ahmed H; Al-Wabel, Mohammad I

    2016-04-01

    Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg(-1) predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m(2) g(-1)) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar.

  11. Using carbonized low-cost materials for removal of chemicals of environmental concern from water.

    PubMed

    Weidemann, Eva; Niinipuu, Mirva; Fick, Jerker; Jansson, Stina

    2018-06-01

    Adsorption on low-cost biochars would increase the affordability and availability of water treatment in, for example, developing countries. The aim of this study was to identify the precursor materials and hydrochar surface properties that yield efficient removal of compounds of environmental concern (CEC). We determined the adsorption kinetics of a mixture containing ten CECs (octhilinone, triclosan, trimethoprim, sulfamethoxasole, ciprofloxacin, diclofenac, paracetamol, diphenhydramine, fluconazole, and bisphenol A) to hydrochars prepared from agricultural waste (including tomato- and olive-press wastes, rice husks, and horse manure). The surface characteristics of the hydrochars were evaluated via diffuse reflectance infrared spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and N 2 -adsorption. Kinetic adsorption tests revealed that removal efficiencies varied substantially among different materials. Similarly, surface analysis revealed differences among the studied hydrochars and the degree of changes that the materials undergo during carbonization. According to the DRIFTS data, compared with the least efficient adsorbent materials, the most efficient hydrochars underwent more substantial changes during carbonization.

  12. Dynamics of organic matter, nitrogen and phosphorus removal and their interactions in a tidal operated constructed wetland.

    PubMed

    Li, Chunyan; Wu, Shubiao; Dong, Renjie

    2015-03-15

    This paper demonstrates the potential of tidal flow operated constructed wetland application for the removal dynamics of organic matter, nitrogen and phosphorus. Near-complete removal of organic matter was achieved with a constant removal efficiency of 95%, irrespective of TOC influent loadings ranged from 10 g/m(2) · d to 700 g/m(2) · d. High NH4(+)-N removal at 95% efficiency under influent loading of 17 g/m(2) · d, was stably obtained and was not negatively influenced by increasing influent organic carbon loading rate. Increased influent TOC loading (350 g/m(2) · d to 700 g/m(2) · d) significantly enhanced denitrification capacity and increased TN removal from 30% to 95%. Under tidal flow operation, a higher carbon supply (C/N = 20) for complete TN removal was demonstrated as comparing to that observed in traditional CWs approaches. In addition, the removal of phosphorus was strongly influenced by organic loadings. However, further investigations are needed to elucidate the detailed mechanism that would explain the role of organic loading in phosphorus removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Treatment of oily waters using vermiculite.

    PubMed

    Mysore, Deepa; Viraraghavan, Thiruvenkatachari; Jin, Yee-Chung

    2005-07-01

    The main objective of this study was to examine the removal of oil from water by expanded and hydrophobized vermiculite. A pH of 9 showed a higher removal efficiency of oil by vermiculite. Oil removal efficiencies at pH 9 were found to be 79%, 93%, 90%, 57% for standard mineral oil (SMO), Canola oil (CO), Kutwell oil (KUT45), refinery effluent (RE), respectively, in the case of expanded vermiculite, and 56%, 58%, 47%, 43% for SMO, CO, KUT45 and RE, respectively, for hydrophobized vermiculite. Kinetic data satisfied both the Lagergren and Ho models. Equilibrium studies showed that the Langmuir isotherm was the best-fit isotherm for oil removal by both expanded and hydrophobized vermiculite. The data showed a higher adsorptive capacity by the expanded vermiculite compared to the hydrophobized vermiculite. Desorption studies showed that the expanded vermiculite did not desorb oil to the same extent compared to hydrophobized vermiculite. The Freundlich isotherm was the best-fit model for desorption. Expanded vermiculite showed better retention than hydrophobic vermiculite. The results showed that the expanded vermiculite had a greater affinity for oil than hydrophobized vermiculite.

  14. Treatment of wastewater containing o-phenylenediamine by ozone in a rotor-stator reactor.

    PubMed

    Arowo, Moses; Li, Yingwen; Chu, Guangwen; Sun, Baochang; Chen, Jianfeng; Shao, Lei

    2016-01-01

    This work employed a novel rotor-stator reactor (RSR) to intensify the degradation process of o-phenylenediamine (o-PDA) by ozone. The effects of different operating parameters including initial pH, temperature, rotation speed, liquid volumetric flow rate and inlet ozone concentration on the removal efficiency of o-PDA were investigated in an attempt to establish the optimum conditions. The removal efficiency was evaluated in terms of degradation ratio and chemical oxygen demand (COD) reduction ratio of the o-PDA wastewater. Results indicate that the removal efficiency decreased with increasing liquid volumetric flow rate but increased with an increase in pH and inlet ozone concentration. Also, the removal efficiency increased up to a certain level with an increase in rotation speed and temperature. Additionally, a comparison experiment was carried out in a stirred tank reactor (STR), and the results show that the degradation and COD reduction ratios reached a maximum of 94.6% and 61.2% in the RSR as compared to 45.3% and 28.6% in the STR, respectively. This work demonstrates that ozone oxidation carried out in RSR may be a promising alternative for pre-treatment of o-PDA wastewater.

  15. Wetlands with greater degree of urbanization improve PM2.5 removal efficiency.

    PubMed

    Liu, Jiakai; Yan, Guoxin; Wu, Yanan; Wang, Yu; Zhang, Zhenming; Zhang, Mingxiang

    2018-09-01

    In recent decades, China has experienced both rapid urbanization and heavy air pollution and the rapid urbanization trend would be continue in the next decade. Wetlands have been shown to be efficient in particle removal, primarily through dry deposition and leaf accumulation. Thus, a more comprehensive understanding of PM2.5 removal by wetlands during urbanization processes could inform urban planning. In the current study, three wetland plots, Cuihu Lake Park (CL), Summer Palace (SP), and Olympic Park (OP), were selected as low, medium, and highly degrees of urbanization site respectively based on the proportions of building and traffic district areas to compare the removal efficiencies. Results show the average dry deposition velocity in OP was significantly higher than CL and SP. Dry deposition is mainly influenced by meteorological conditions. Buildings and other infrastructure make the meteorological conditions conducive to deposition, resulting in higher wind velocity, higher temperature, and more intense turbulence between buildings. Variation in leaf accumulation was not statistically significant between the three plots, and plant species was the major factor affecting the amount of accumulation. The dry deposition contribution to particle removal increases with degree of urbanization. The average dry deposition accounted for 39.74%, 52.55%, and 62.75% at low, middle and high level respectively. Therefore, Wetlands with greater degree of urbanization improve PM2.5 removal efficiency primarily by accelerating the dry deposition process. The result emphasizes the importance of wetlands in particle removal in highly urbanized areas and thus more wetlands should be preserved and/or created during urban expansion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Automatic control and remote monitoring system for biological nutrient removal on small wastewater treatment plants in Korea.

    PubMed

    Lee, H; Min, Y M; Park, C H; Park, Y H

    2004-01-01

    Many small-size wastewater treatment plants in Korea's rural communities are designed to remove organic and suspended matter only, and they generally show a large fluctuation in the influent loading compared to municipal wastewater treatment plants (MWWTPs). They also have no professional engineers stationed for efficient operation against mechanical breakdown. For those reasons, the wastewater treatment plants have low efficiency in treatment of nitrogen and phosphorus as well as organic matter. In order to solve those problems, this study developed an automatic control system and RMS (remote monitoring system), which can keep efficiency stable despite any change in the small plants' loading rates and are capable of removing nutrient materials such as nitrogen or phosphorus. According to the results of the Experimental SBR system of the automatic control program, complete nitrification was made under oxic conditions and denitrification occurred as NO3-N concentration decreased by 0.5 mg/l in anoxic conditions and excellent nitrogen removal efficiency was seen generally. The Experimental SBR system created "phosphate release and uptake" effectively and displayed phosphate-removing efficiency up to more than 80% as the concentration of effluent was kept low by 0.4 mg/l. RMS developed in this study transmits a plant's data and operation states to clients in remote locations in real-time interval through the Internet. Therefore, although you are in a remote location, it allows you to see if a plant is properly operated or there is any breakdown.

  17. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution.

    PubMed

    Poo, Kyung-Min; Son, Eun-Bi; Chang, Jae-Soo; Ren, Xianghao; Choi, Yun-Jung; Chae, Kyu-Jung

    2018-01-15

    For the purpose of reusing wasted marine macro-algae generated during cultivation, harvesting, processing and selling processes, biochars derived from Saccharina japonica (known as kelp) and Sargassum fusiforme (known as hijikia) were characterized and their removal capacities for Cu, Cd, and Zn in aqueous solution were assessed. Feedstocks, S. japonica, S. fusiforme, and also pinewood sawdust as a control, were pyrolyzed at 250, 400, 500, 600 and 700 °C. In evaluating heavy metal removal capacities, SJB (S. japonica biochar) showed the best performance, with removal efficiencies of more than 98% for the three heavy metals when pyrolyzed at over 400 °C. SFB (S. fusiforme biochar) also showed good potential as an adsorbent, with removal efficiencies for the three heavy metals of more than 86% when pyrolyzed at over 500 °C. On the contrary, the maximum removal efficiencies of PSB (pinewood sawdust biochar) were 81%, 46%, and 47% for Cu, Cd, and Zn, respectively, even at 700 °C, the highest pyrolysis temperature. This demonstrates that marine macro-algae were advantageous in terms of production energy for removing heavy metals even at relatively low pyrolysis temperatures, compared with PSB. The excellent heavy metal adsorption capacities of marine macro-algae biochars were considered due to their higher pH and more oxygen-containing functional groups, although the specific surface areas of SJB and SFB were significantly lower than that of PSB. This research confirmed that the use of marine macro-algae as a heavy metal adsorbent was suitable not only in the removal of heavy metals, but also in terms of resource recycling and energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Economical and technical efficiencies evaluation of full scale piggery wastewater treatment BNR plants.

    PubMed

    Oa, S W; Choi, E; Kim, S W; Kwon, K H; Min, K S

    2009-01-01

    A method evaluating the economic efficiency of piggery waste treatment plant based on kinetics for nitrogen removal performances is executed in this study and five full scale plants were evaluated, monitored intensively during one year under steady-state conditions. The performance data from those surveyed plants were recalculated by first-order kinetic equation instead of the Monod's equation, and the nitrogen removal kinetics related with COD/TKN ratios. Two plants adapting two extreme strategies for pre treatment, 'excess phase separation', and 'minimum phase separation', were evaluated by the assessment of life cycle cost (LCC). Although the compared two plants use an opposite strategy to each other, similar evaluation results are deduced by nitrogen removal efficiencies and operational and construction costs. But the proportions of constituent elements are as different as two opposite strategies, so electrical and construction costs are inversely proportional to chemical costs and operational costs respectively.

  19. Immobilized Carbonic Anhydrase on Hollow Fiber Membranes Accelerates CO2 Removal from Blood

    PubMed Central

    Arazawa, David T.; Oh, Heung-Il; Ye, Sang-Ho; Johnson, Carl A.; Woolley, Joshua R.; Wagner, William R.; Federspiel, William J.

    2012-01-01

    Current artificial lungs and respiratory assist devices designed for carbon dioxide removal (CO2R) are limited in their efficiency due to the relatively small partial pressure difference across gas exchange membranes. To offset this underlying diffusional challenge, bioactive hollow fiber membranes (HFMs) increase the carbon dioxide diffusional gradient through the immobilized enzyme carbonic anhydrase (CA), which converts bicarbonate to CO2 directly at the HFM surface. In this study, we tested the impact of CA-immobilization on HFM CO2 removal efficiency and thromboresistance in blood. Fiber surface modification with radio frequency glow discharge (RFGD) introduced hydroxyl groups, which were activated by 1M CNBr while 1.5M TEA was added drop wise over the activation time course, then incubation with a CA solution covalently linked the enzyme to the surface. The bioactive HFMs were then potted in a model gas exchange device (0.0084 m2) and tested in a recirculation loop with a CO2 inlet of 50mmHg under steady blood flow. Using an esterase activity assay, CNBr chemistry with TEA resulted in 0.99U of enzyme activity, a 3.3 fold increase in immobilized CA activity compared to our previous method. These bioactive HFMs demonstrated 108 ml/min/m2 CO2 removal rate, marking a 36% increase compared to unmodified HFMs (p < 0.001). Thromboresistance of CA-modified HFMs was assessed in terms of adherent platelets on surfaces by using lactate dehydrogenase (LDH) assay as well as scanning electron microscopy (SEM) analysis. Results indicated HFMs with CA modification had 95% less platelet deposition compared to unmodified HFM (p < 0.01). Overall these findings revealed increased CO2 removal can be realized through bioactive HFMs, enabling a next generation of more efficient CO2 removal intravascular and paracorporeal respiratory assist devices. PMID:22962517

  20. Effects of storage conditions of Moringa oleifera seeds on its performance in coagulation.

    PubMed

    Katayon, S; Noor, M J Megat Mohd; Asma, M; Ghani, L A Abdul; Thamer, A M; Azni, I; Ahmad, J; Khor, B C; Suleyman, A M

    2006-09-01

    Moringa oleifera is a plant whose seeds have coagulation properties for treating water and wastewater. In this study the coagulation efficiency of Moringa oleifera kept in different storage conditions were studied. The Moringa oleifera seeds were stored at different conditions and durations; open container and closed container at room temperature (28 degrees C) and refrigerator (3 degrees C) for durations of 1, 3 and 5 months. Comparison between turbidity removal efficiency of Moringa oleifera kept in refrigerator and room temperature revealed that there was no significant difference between them. The Moringa oleifera kept in refrigerator and room temperature for one month showed higher turbidity removal efficiency, compared to those kept for 3 and 5 months, at both containers. The coagulation efficiency of Moringa oleifera was found to be dependent on initial turbidity of water samples. Highest turbidity removals were obtained for water with very high initial turbidity. In summary coagulation efficiency of Moringa oleifera was found independent of storage temperature and container, however coagulation efficiency of Moringa oleifera decreased as storage duration increased. In addition, Moringa oleifera can be used as a potential coagulant especially for very high turbidity water.

  1. Comparative study on metal biosorption by two macroalgae in saline waters: single and ternary systems.

    PubMed

    Figueira, Paula; Henriques, Bruno; Teixeira, Ana; Lopes, Cláudia B; Reis, Ana T; Monteiro, Rui J R; Duarte, A C; Pardal, M A; Pereira, E

    2016-06-01

    The biosorption capability of two marine macroalgae (green Ulva lactuca and brown Fucus vesiculosus) was evaluated in the removal of toxic metals (Hg, Cd and Pb) from saline waters, under realistic conditions. Results showed that, independently of the contamination scenario tested, both macroalgae have a remarkable capacity to biosorb Hg and Pb. In single-contaminant systems, by using only c.a. 500 mg of non-pre-treated algae biomass (size <200 μm) per litter, it was possible to achieve removal efficiencies between 96 and 99 % for Hg and up to 86 % for Pb. Despite the higher removal of Hg, equilibrium was reached more quickly for Pb (after 8 h). In multi-contaminant systems, macroalgae exhibited a similar selectivity toward the target metals: Hg > Pb> > Cd, although Pb removal by U. lactuca was more inhibited than that achieved by F. vesiculosus. Under the experimental conditions used, none of the macroalgae was effective to remove Cd (maximum removal of 20 %). In all cases, the kinetics of biosorption was mathematically described with success. Globally, it became clear that the studied macroalgae may be part of simple, efficient, and cost-effective water treatment technologies. Nevertheless, Fucus vesiculosus has greater potential, since it always presented higher initial sorption rates and higher removal efficiencies.

  2. Evaluation of soil pH and moisture content on in-situ ozonation of pyrene in soils.

    PubMed

    Luster-Teasley, S; Ubaka-Blackmoore, N; Masten, S J

    2009-08-15

    In this study, pyrene spiked soil (300 ppm) was ozonated at pH levels of 2, 6, and 8 and three moisture contents. It was found that soil pH and moisture content impacted the effectiveness of PAH oxidation in unsaturated soils. In air-dried soils, as pH increased, removal increased, such that pyrene removal efficiencies at pH 6 and pH 8 reached 95-97% at a dose of 2.22 mg O(3)/mg pyrene. Ozonation at 16.2+/-0.45 mg O(3)/ppm pyrene in soil resulted in 81-98% removal of pyrene at all pH levels tested. Saturated soils were tested at dry, 5% or 10% moisture conditions. The removal of pyrene was slower in moisturized soils, with the efficiency decreasing as the moisture content increased. Increasing the pH of the soil having a moisture content of 5% resulted in improved pyrene removals. On the contrary, in the soil having a moisture content of 10%, as the pH increased, pyrene removal decreased. Contaminated PAH soils were stored for 6 months to compare the efficiency of PAH removal in freshly contaminated soil and aged soils. PAH adsorption to soil was found to increase with longer exposure times; thus requiring much higher doses of ozone to effectively oxidize pyrene.

  3. Assessing the effectiveness of pollutant removal by macrophytes in a floating wetland for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Prajapati, Meera; van Bruggen, Johan J. A.; Dalu, Tatenda; Malla, Rabin

    2017-12-01

    The study aimed to evaluate the removal of pollutants by floating treatment wetlands (FTWs) using an edible floating plant, and emergent macrophytes. All experiments were performed under ambient conditions. Physico-chemical parameters were measured, along with microbiological analysis of biofilm within the roots, water column, and sludge and gravel zone. Nitrification and denitrification rates were high in the water zone of Azolla filiculoides, Lemna minor, Lactuca sativa, P. stratiotes, and Phragmites australis. Phosphate removal efficiencies were 23, 10, and 15% for the free-floating hydrophytes, emergent macrophytes, and control and edible plants, respectively. The microbial community was relatively more active in the root zone compared to other zones. Pistia stratiotes was found to be the efficient in ammonium (70%) and total nitrogen (59%) removal. Pistia stratiotes also showed the highest microbial activity of 1306 mg day-1, which was 62% of the total volume. Microbial activity was found in the water zone of all FTWs expect for P. australis. The use of P. stratiotes and the edible plant L. sativa could be a potential option to treat domestic wastewater due to relatively high nutrient and organic matter removal efficiency.

  4. Removal of steroid estrogens from wastewater using granular activated carbon: comparison between virgin and reactivated carbon.

    PubMed

    Rowsell, Victoria Francesca; Pang, Dawn Sok Cheng; Tsafou, Foteini; Voulvoulis, Nikolaos

    2009-04-01

    This research was set up in response to new European legislation to identify cost-effective treatment for removal of steroid estrogens from effluent. This study aimed to compare estrogen removal of two types of granular activated carbon: virgin (F400) and reactivated (C401) carbon. Rapid, small-scale column tests were conducted with a total bed volume of 24.9 cm3 over three columns, and analysis was carried out using high-performance liquid chromatography. Results demonstrated that C401 performed more efficiently with greater than or equal to 81% estrogen removal in wastewater compared to F400 which produced greater than or equal to 65% estrogen removal. Estrogen removal can be affected by competitive adsorption from natural organic matter present in wastewater. In addition, the physical properties of each carbon had the potential to influence adsorption differently, thus resulting in the observed varied adsorption capability of the two carbons.

  5. [Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms].

    PubMed

    Cao, Xi-hua; Song, Xiu-xian; Yu, Zhi-ming

    2004-09-01

    Removal efficiencies of Prorocentrum donghaiense (Prorocentrum dentatum) by Hexadecyltrimethylammonium (HDTMA) bromide and organo-clay modified by HDTMA were identified. Moreover the toxicity of the unbound HDTMA and HDTMA plus clay to aquacultural organisms, Penaeus japonicus, was also tested. The results suggested that (1) The unbound HDTMA had an excellent ability to remove the red tide organisms. However, its strong toxicity to Penaeus japonicus would restrict its practical use in red tide control. (2) The toxicity of HDTMA could be remarkably decreased by addition of clay and the organo-clay complex had a good ability to removal red tide organisms. At the same time the availability of organo-clay to remove the red tide of P. donghaiense and Heterosigma akashiwo in the lab-imitated cultures were studied. The results indicated that the organo-clay complex could remove 100% P. donghaiense at the dosage of 0.03 g/L and effectively control H. akashiwo at 0.09 g/L while the survival rate of Penaeus japonicus larvae, which were cultured in the red tide seawater, is kept 100%. According to the results in laboratory, the mesocosm tests (CEPEX) in East China Sea were conducted in April and May of 2003. The removal efficiencies of original clay, organic clay and inorganic clay were compared during the CEPEX tests. The results revealed that both inorganic clay and organic clay could remove red tide organisms more effectively than the original clay.

  6. Removal efficiency and toxicity reduction of 4-chlorophenol with physical, chemical and biochemical methods.

    PubMed

    Gómez, M; Murcia, M D; Dams, R; Christofi, N; Gómez, E; Gómez, J L

    2012-01-01

    Chlorophenols are well-known priority pollutants and many different treatments have been assessed to facilitate their removal from industrial wastewater. However, an absolute and optimum solution still has to be practically implemented in an industrial setting. In this work, a series ofphysical, chemical and biochemical treatments have been systematically tested for the removal of 4-chlorophenol, and their results have been compared in order to determine the most effective treatment based on removal efficiency and residual by-product formation. Chemical treatments based on advanced oxidation processes (AOP) produced the best results on rate and extent of pollutant removal. The non-chemical technologies showed advantages in terms of complete (in the case of adsorption) or easy (enzymatic treatments) removal of toxic treatment by-products. The AOP methods led to the production of different photoproducts depending on the chosen treatment. Toxic products remained in most cases following treatment, though the toxicity level is significantly reduced with combination treatments. Among the treatments, a photochemical method combining UV, produced with a KrCl excilamp, and hydrogen peroxide achieved total removal of chlorophenol and all by-products and is considered the best treatment for chlorophenol removal.

  7. Utilization of Natural Zeolite and Perlite as Landfill Liners for in Situ Leachate Treatment in Landfills

    PubMed Central

    Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri

    2012-01-01

    The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO3-N), ammonium-nitrogen (NH4-N), phosphate (PO4), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO3, NH4, PO4, COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO3, PO4 and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH4 (1.5%). PMID:22754458

  8. Utilization of natural zeolite and perlite as landfill liners for in situ leachate treatment in landfills.

    PubMed

    Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri

    2012-05-01

    The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO(3)-N), ammonium-nitrogen (NH(4)-N), phosphate (PO(4)), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO(3), NH(4), PO(4), COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO(3), PO(4) and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH(4) (1.5%).

  9. Optimization of high-rate TN removal in a novel constructed wetland integrated with microelectrolysis system treating high-strength digestate supernatant.

    PubMed

    Guo, Luchen; He, Keli; Wu, Shubiao; Sun, Hao; Wang, Yanfei; Huang, Xu; Dong, Renjie

    2016-08-01

    The potential of high-rate TN removal in three aerated horizontal subsurface-flow constructed wetlands to treat high-strength anaerobic digestate supernatant was evaluated. Different strategies of intermittent aeration and effluent recirculation were applied to compare their effect on nitrogen depuration performance. Additional glucose supply and iron-activated carbon based post-treatment systems were established and examined, respectively, to further remove nitrate that accumulated in the effluents from aerated wetlands. The results showed that intermittent aeration (1 h on:1 h off) significantly improved nitrification with ammonium removal efficiency of 90% (18.1 g/(m(2)·d)), but limited TN removal efficiency (53%). Even though effluent recirculation (a ratio of 1:1) increased TN removal from 53% to 71%, the effluent nitrate concentration was still high. Additional glucose was used as a post-treatment option and further increased the TN removal to 82%; however, this implementation caused additional organic pollution. Furthermore, the iron-activated carbon system stimulated with a microelectrolysis process achieved greater than 85% effluent nitrate removal and resulted in 86% TN removal. Considering the high TN removal rate, aerated constructed wetlands integrated with a microelectrolysis-driven system show great potential for treating high-strength digestate supernatant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Organic compounds removal and toxicity reduction of landfill leachate by commercial bakers' yeast and conventional bacteria based membrane bioreactor integrated with nanofiltration.

    PubMed

    Reis, Beatriz Gasparini; Silveira, Amanda Lemes; Tostes Teixeira, Luiza Procópio; Okuma, Adriana Akemi; Lange, Liséte Celina; Amaral, Miriam Cristina Santos

    2017-12-01

    This study aimed to compare the performance of a commercial bakers' yeast (MBRy) and conventional bacteria (MBRb) based membrane bioreactor integrated with nanofiltration (NF) in the removal of landfill leachate toxicity. Performances were evaluated using physicochemical analyses, toxicity tests and identification of organic compounds. The MBR b and MBR y were operated with a hydraulic retention time (HRT) of 48h and solids retention time (SRT) of 60 d. The MBR y demonstrated better removal efficiencies for COD (69±7%), color (54±11%) and ammoniacal nitrogen (34±7%) compared to MBR b , which showed removal efficiencies of 27±5%, 33±4% and 27±7%, for COD, color and ammoniacal nitrogen. Although the MBR y seems to be the configuration that presented the highest efficiency; it generated toxic permeate whose toxicity cannot be explained by physicochemical results. The identification of compounds shows that there is a wide range of compounds in the landfill leachate in addition to others that are produced in the biological treatment steps. The NF plays a crucial role in the polishing of the final effluents by the either complete or partial retention of compounds, that attribute toxicity to the leachate, and inorganic contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Micropollutants removal by full-scale UV-C/sulfate radical based Advanced Oxidation Processes.

    PubMed

    Rodríguez-Chueca, J; Laski, E; García-Cañibano, C; Martín de Vidales, M J; Encinas, Á; Kuch, B; Marugán, J

    2018-07-15

    The high chemical stability and the low biodegradability of a vast number of micropollutants (MPs) impede their correct treatment in urban wastewater treatment plants. In most cases, the chemical oxidation is the only way to abate them. Advanced Oxidation Processes (AOPs) have been experimentally proved as efficient in the removal of different micropollutants at lab-scale. However, there is not enough information about their application at full-scale. This manuscript reports the application of three different AOPs based on the addition of homogeneous oxidants [hydrogen peroxide, peroxymonosulfate (PMS) and persulfate anions (PS)], in the UV-C tertiary treatment of Estiviel wastewater treatment plant (Toledo, Spain) previously designed and installed in the facility for disinfection. AOPs based on the photolytic decomposition of oxidants have been demonstrated as more efficient than UV-C radiation alone on the removal of 25 different MPs using low dosages (0.05-0.5 mM) and very low UV-C contact time (4-18 s). Photolysis of PMS and H 2 O 2 reached similar average MPs removal in all the range of oxidant dosages, obtaining the highest efficiency with 0.5 mM and 18 s of contact time (48 and 55% respectively). Nevertheless, PMS/UV-C reached slightly higher removal than H 2 O 2 /UV-C at low dosages. So, these treatments are selective to degrade the target compounds, obtaining different removal efficiencies for each compound regarding the oxidizing agent, dosages and UV-C contact time. In all the cases, H 2 O 2 /UV-C is more efficient than PMS/UV-C, comparing the ratio cost:efficiency (€/m 3 ·order). Even H 2 O 2 /UV-C treatments are more efficient than UV-C alone. Thus, the addition of 0.5 mM of H 2 O 2 compensates the increased of UV-C contact time and therefore the increase of electrical consumption, that it should be need to increase the removal of MPs by UV-C treatments alone. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Functional Magnetic Nanoparticles for Highly Efficient Cholesterol Removal.

    PubMed

    Sun, Jun; Xu, Bin; Mu, Yaoyao; Ma, Haile; Qu, Wenjuan

    2018-01-01

    In this study, magnetic nanoparticles functionalized with carboxylated β-cyclodextrin (CM-β-CD; referred to Fe 3 O 4 @CM-β-CD) were synthesized and used for the efficient removal of cholesterol from milk and egg yolk via host-guest interactions. The results of Fourier-transform infrared, X-ray photoelectron spectroscopy, and thermogravimetric analysis indicated that the CM-β-CD was successfully conjugated to the surface of Fe 3 O 4 , and the amount of CM-β-CD attached on Fe 3 O 4 @CM-β-CD was determined to be 9.164%. The X-ray diffraction and transmission electron microscopy data revealed that the process of CM-β-CD coating did not result in a phase change of the Fe 3 O 4 , and the Fe 3 O 4 @CM-β-CD nanoparticles were determined to have an average size of about 15 nm. The results of isotherm adsorption and kinetic properties indicated that CM-β-CD functionalization increased the cholesterol removal efficiency, and the characteristics of cholesterol adsorption on Fe 3 O 4 @CM-β-CD were fitted well with the Langmuir adsorption model and Lagergren pseudo-1st-order kinetic models. Furthermore, compared with the Fe 3 O 4 nanoparticles, the functionalized Fe 3 O 4 @CM-β-CD nanoparticles exhibited greater cholesterol removal efficiency, and saponification of the milk and egg yolk was found to be beneficial for the cholesterol removal; using the Fe 3 O 4 @CM-β-CD nanoparticles, 98.8% and 94.6% of the cholesterol was extracted in 1 h from saponified milk and egg yolk, respectively, and the Fe 3 O 4 @CM-β-CD nanoparticles still displayed efficient cholesterol removal after 6 reuses. © 2017 Institute of Food Technologists®.

  13. Anaerobic digestion of grass: the effect of temperature applied during the storage of substrate on the methane production.

    PubMed

    Míchal, Pavel; Švehla, Pavel; Plachý, Vladimír; Tlustoš, Pavel

    2017-07-01

    Within this research, biogas production, representation of methane in biogas and volatile solids (VSs) removal efficiency were compared using batch tests performed with the samples of intensively and extensively planted grasses originating from public areas. Before the batch tests, the samples were stored at different temperatures achievable on biogas plants applying trigeneration strategy (-18°C, +3°C, +18°C and +35°C). Specific methane production from intensively planted grasses was relatively high (0.33-0.41 m 3 /kg VS) compared to extensively planted grasses (0.20-0.33 m 3 /kg VS). VSs removal efficiency reached 59.8-68.8% for intensively planted grasses and 34.6-56.5% for extensively planted grasses. Freezing the intensively planted grasses at -18°C proved to be an effective thermal pretreatment leading to high biogas production (0.61 m 3 /kg total solid (TS)), high representation of methane (64.0%) in biogas and good VSs removal efficiency (68.8%). The results of this research suggest that public areas or sport parks seem to be available, cheap and at the same time very effective feedstock for biogas production.

  14. Efficiency of wastewater treatment in SBR and IFAS-MBSBBR systems in specified technological conditions.

    PubMed

    Sytek-Szmeichel, K; Podedworna, J; Zubrowska-Sudol, M

    2016-01-01

    The objective of this study is to compare wastewater treatment effectiveness in sequencing batch reactor (SBR) and integrated fixed-film activated sludge-moving-bed sequencing batch biofilm reactor (IFAS-MBSBBR) systems in specific technological conditions. The comparison of these two technologies was based on the following assumptions, shared by both series, I and II: the reactor's active volume was 28 L; 8-hour cycle of reactor's work, with the same sequence and duration of its consecutive phases; and the dissolved oxygen concentration in the aerobic phases was maintained at a level of 3.0 mg O2/L. For both experimental series (I and II), comparable effectiveness of organic compound (chemical oxygen demand (COD)) removal, nitrification and biological phosphorus removal has been obtained at levels of 95.1%, 97% and 99%, respectively. The presence of the carrier improved the efficiency of total nitrogen removal from 86.3% to 91.7%. On the basis of monitoring tests, it has been found that the ratio of simultaneous denitrification in phases with aeration to the total efficiency of denitrification in the cycle was 1.5 times higher for IFAS-MBSBBR.

  15. Efficient multidimensional regularization for Volterra series estimation

    NASA Astrophysics Data System (ADS)

    Birpoutsoukis, Georgios; Csurcsia, Péter Zoltán; Schoukens, Johan

    2018-05-01

    This paper presents an efficient nonparametric time domain nonlinear system identification method. It is shown how truncated Volterra series models can be efficiently estimated without the need of long, transient-free measurements. The method is a novel extension of the regularization methods that have been developed for impulse response estimates of linear time invariant systems. To avoid the excessive memory needs in case of long measurements or large number of estimated parameters, a practical gradient-based estimation method is also provided, leading to the same numerical results as the proposed Volterra estimation method. Moreover, the transient effects in the simulated output are removed by a special regularization method based on the novel ideas of transient removal for Linear Time-Varying (LTV) systems. Combining the proposed methodologies, the nonparametric Volterra models of the cascaded water tanks benchmark are presented in this paper. The results for different scenarios varying from a simple Finite Impulse Response (FIR) model to a 3rd degree Volterra series with and without transient removal are compared and studied. It is clear that the obtained models capture the system dynamics when tested on a validation dataset, and their performance is comparable with the white-box (physical) models.

  16. Effect of storage of shelled Moringa oleifera seeds from reaping time on turbidity removal.

    PubMed

    Golestanbagh, M; Ahamad, I S; Idris, A; Yunus, R

    2011-09-01

    Moringa oleifera is an indigenous plant to Malaysia whose seeds are used for water purification. Many studies on Moringa oleifera have shown that it is highly effective as a natural coagulant for turbidity removal. In this study, two different methods for extraction of Moringa's active ingredient were investigated. Results of sodium chloride (NaCl) and distilled water extraction of Moringa oleifera seeds showed that salt solution extraction was more efficient than distilled water in extracting Moringa's active coagulant ingredient. The optimum dosage of shelled Moringa oleifera seeds extracted by the NaCl solution was comparable with that of the conventional chemical coagulant alum. Moreover, the turbidity removal efficiency was investigated for shelled Moringa oleifera seeds before drying in the oven under different storage conditions (i.e. open and closed containers at room temperature, 27 °C) and durations (fresh, and storage for 2, 4, 6 and 8 weeks from the time the seeds were picked from the trees). Our results indicate that there are no significant differences in coagulation efficiencies and, accordingly, turbidity removals between the examined storage conditions and periods.

  17. Comparison of seven kinds of drinking water treatment processes to enhance organic material removal: a pilot test.

    PubMed

    Chen, Chao; Zhang, Xiaojian; He, Wenjie; Lu, Wei; Han, Hongda

    2007-08-15

    Organic matter in source water has presented many challenges in the field of water purification, especially for conventional treatment. A two-year-long pilot test comparing water treatment processes was conducted to enhance organic matter removal. The tested process combinations included the conventional process, conventional plus advanced treatment, pre-oxidation plus conventional process and pre-oxidation plus conventional plus advanced treatment. The efficiency of each kind of process was assayed with the comprehensive indices of COD(Mn), TOC, UV(254), AOC, BDOC, THMs, and HAAs and their formation potential. The results showed that the combination of the conventional process and O(3)-BAC provides integrated removal of organic matter and meets the required standards. It is the best performing treatment tested in this investigation for treating polluted source water in China. Moreover, much attention should be paid to organic removal before disinfection to control DBP formation and preserve biostability. This paper also reports the range of efficiency of each unit process to calculate the total efficiency of different process combinations in order to help choose the appropriate water treatment process.

  18. [Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].

    PubMed

    Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying

    2012-11-01

    The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA.

  19. Identifying the influential aquifer heterogeneity factor on nitrate reduction processes by numerical simulation

    NASA Astrophysics Data System (ADS)

    Jang, E.; He, W.; Savoy, H.; Dietrich, P.; Kolditz, O.; Rubin, Y.; Schüth, C.; Kalbacher, T.

    2017-01-01

    Nitrate reduction reactions in groundwater systems are strongly influenced by various aquifer heterogeneity factors that affect the transport of chemical species, spatial distribution of redox reactive substances and, as a result, the overall nitrate reduction efficiency. In this study, we investigated the influence of physical and chemical aquifer heterogeneity, with a focus on nitrate transport and redox transformation processes. A numerical modeling study for simulating coupled hydrological-geochemical aquifer heterogeneity was conducted in order to improve our understanding of the influence of the aquifer heterogeneity on the nitrate reduction reactions and to identify the most influential aquifer heterogeneity factors throughout the simulation. Results show that the most influential aquifer heterogeneity factors could change over time. With abundant presence of electron donors in the high permeable zones (initial stage), physical aquifer heterogeneity significantly influences the nitrate reduction since it enables the preferential transport of nitrate to these zones and enhances mixing of reactive partners. Chemical aquifer heterogeneity plays a comparatively minor role. Increasing the spatial variability of the hydraulic conductivity also increases the nitrate removal efficiency of the system. However, ignoring chemical aquifer heterogeneity can lead to an underestimation of nitrate removals in long-term behavior. With the increase of the spatial variability of the electron donor, i.e. chemical heterogeneity, the number of the ;hot spots; i.e. zones with comparably higher reactivity, should also increase. Hence, nitrate removal efficiencies will also be spatially variable but overall removal efficiency will be sustained if longer time scales are considered and nitrate fronts reach these high reactivity zones.

  20. Monothioarsenate Occurrence in Bangladesh Groundwater and Its Removal by Ferrous and Zero-Valent Iron Technologies.

    PubMed

    Planer-Friedrich, Britta; Schaller, Jörg; Wismeth, Fabian; Mehlhorn, Judith; Hug, Stephan J

    2018-05-15

    In most natural groundwaters, sulfide concentrations are low, and little attention has been paid to potential occurrence of thioarsenates (As V S n -II O 4- n 3- with n = 1-4). Thioarsenate occurrence in groundwater could be critical with regard to the efficiency of iron (Fe)-based treatment technologies because previous studies reported less sorption of thioarsenates to preformed Fe-minerals compared to arsenite and arsenate. We analyzed 273 groundwater samples taken from different wells in Bangladesh over 1 year and detected monothioarsenate (MTA), likely formed via solid-phase zero-valent sulfur, in almost 50% of all samples. Concentrations ranged up to >30 μg L -1 (21% of total As). MTA removal by locally used technologies in which zero-valent or ferrous Fe is oxidized by aeration and As sorbs or coprecipitates with the forming Fe(III)hydroxides was indeed lower than for arsenate. The presence of phosphate required up to three times as much Fe(II) for comparable MTA removal. However, in contrast to previous sorption studies on preformed Fe minerals, MTA removal, even in the presence of phosphate, was still higher than that of arsenite. The more efficient MTA removal is likely caused by a combination of coprecipitation and adsorption rendering the tested Fe-based treatment technologies suitable for As removal also in the presence of MTA.

  1. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal.

    PubMed

    Yang, Shuai; Yang, Fenglin; Fu, Zhimin; Lei, Ruibo

    2009-04-01

    A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated for simultaneously removing organic carbon and nitrogen in wastewater. Its performance was compared with a conventional membrane bioreactor (CMBR) at various influent COD/TN ratios of 8.9-22.1. The operational parameters were optimized to increase the treatment efficiency. COD removal efficiency averaged at 95.6% and 96.2%, respectively, for MBMBR and CMBR during the 4 months experimental period. The MBMBR system demonstrated good performance on nitrogen removal at different COD/TN ratios. When COD/TN was 8.9 and the total nitrogen (TN) load was 7.58 mg/l h, the TN and ammonium nitrogen removal efficiencies of the MBMBR were maintained over 70.0% and 80.0%, respectively, and the removed total nitrogen (TN) load reached to 5.31 mg/l h. Multifunctional microbial reactions in the carrier, such as simultaneous nitrification and denitrification (SND), play important roles in nitrogen removal. In comparison, the CMBR did not perform so well. Its TN removal was not stable, and the removed total nitrogen (TN) load was only 1.02 mg/l h at COD/TN ratio 8.9. The specific oxygen utilization rate (SOUR) showed that the biofilm has a better microbial activity than an activated sludge. Nevertheless, the membrane fouling behavior was more severe in the MBMBR than in the CMBR due to a thick and dense cake layer formed on the membrane surface, which was speculated to be caused by the filamentous bacteria in the MBMBR.

  2. Effect of ferrate on green algae removal.

    PubMed

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-09-01

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  3. Urea removal coupled with enhanced electricity generation in single-chambered microbial fuel cells.

    PubMed

    Wang, Luguang; Xie, Beizhen; Gao, Ningshengjie; Min, Booki; Liu, Hong

    2017-09-01

    High concentration of total ammonia nitrogen (TAN) in the form of urea is known to inhibit the performance of many biological wastewater treatment processes. Microbial fuel cells (MFCs) have great potential for TAN removal due to its unique oxic/anoxic environment. In this study, we demonstrated that increased urea (TAN) concentration up to 3940 mg/L did not inhibit power output of single-chambered MFCs, but enhanced power generation by 67% and improved coulombic efficiency by 78% compared to those obtained at 80 mg/L of TAN. Over 80% of nitrogen removal was achieved at TAN concentration of 2630 mg/L. The increased nitrogen removal coupled with significantly enhanced coulombic efficiency, which was observed for the first time, indicates the possibility of a new electricity generation mechanism in MFCs: direct oxidation of ammonia for power generation. This study also demonstrates the great potential of using one MFC reactor to achieve simultaneous electricity generation and urea removal from wastewater.

  4. Treatment of synthetic kraft evaporator condensate using thermophilic and mesophilic membrane aerated biofilm reactors.

    PubMed

    Liao, B Q; Zheng, M R; Ratana-Rueangsri, L

    2010-01-01

    A comparative study on the treatment of synthetic kraft evaporator condensate was conducted using thermophilic (55 degrees C) and mesophilic (30 degrees C) membrane aerated biofilm reactors (MABRs) and sequencing batch reactors (SBRs) for 8 months. Under tested conditions, a chemical oxygen demand (COD) removal efficiency of 80-95% was achieved with both thermophilic and mesophilic MABRs and SBRs. The COD removal efficiency of thermophilic MABR (80-90%) was slightly lower than that of the mesophilic MABR (85-95%) and the thermophilic SBR (90-95%). A significant amount (13-37%) of COD was stripped by conventional aeration in the SBRs, while stripping in MABRs was negligible. Simultaneous COD removal and denitrification were observed in the mesophilic MABR, while the thermophilic MABR contributed mainly for COD removal. Nitrification was not significant in both the thermophilic and mesophilic MABRs. The results suggest that treatment of kraft evaporator condensate is feasible with the use of both thermophilic and mesophilic MABRs in terms of COD removal with the advantages of negligible stripping.

  5. Effect of rhizobacteria on arsenic uptake by macrophyte Eichhornia crassipes (Mart.) Solms.

    PubMed

    Kaur, Parvinder; Singh, Simranjeet; Kumar, Vivek; Singh, Nasib; Singh, Joginder

    2018-01-28

    Wastewater flowing in streams and nallahs across India carries several trace metals, including metalloid arsenic (As), which are considered serious environmental contaminants due to their toxicity, and recalcitrant nature. In this study, we determined the phytoremediation of As by Eichhornia crassipes (Mart.) Solms either alone or in association with plant growth-promoting rhizobacteria. Pseudomonas and Azotobacter inoculation to E. crassipes resulted in enhanced As removal compared to uninoculated control. Co-inoculation with a consortium of Pseudomonas, Azotobacter, Azospirillum, Actinomyces, and Bacillus resulted in a higher As (p < 0.05) phytoaccumulation efficiency. P. aeruginosa strain jogii was found particularly effective in augmenting As removal by E. crassipes. Our findings indicate that the synergistic association of E. crassipes and various rhizobacteria is an effective strategy to enhance removal of As and thus may be utilized as an efficient biological alternative for the removal of this metalloid from wastewaters.

  6. Implementation of ferric hydroxide-based media for removal of toxic metalloids

    NASA Astrophysics Data System (ADS)

    Szlachta, Małgorzata; Wójtowicz, Patryk

    2017-11-01

    Effective removal of inorganic arsenic species is possible by application of the sorption technique with the use of iron-based sorbents. This study investigates the removal of arsenic(III) and arsenic(V) from an aqueous solution by application of a granular ferric hydroxide-based sorbent. The performance of tested media was evaluated based on the batch and fixed-bed adsorption studies. The efficiency of the process was determined with various treatment times, adsorbent doses, initial concentrations of arsenic and various solution temperatures. The obtained adsorption data were fitted with pseudo-first and second-order kinetic models and Langmuir and Freundlich isotherm equations. It was observed that the overall arsenite removal was lower when compared to the arsenate, and all tested operating parameters influenced the process efficiency. The experiments under dynamic conditions showed high treatment capacity and stability of tested adsorbent over a long period of time.

  7. Anaerobic treatment of domestic sewage in modified septic tanks at low temperature.

    PubMed

    Chen, Zhiqiang; Wen, Qinxue; Guan, Huabin; Bakke, Rune; Ren, Nanqi

    2014-01-01

    Three laboratory-scale septic tanks, an anaerobic baffled reactor (ABR)-septic tank (R1), a Yuhuan drawing three-dimensional-carrier-septic tank (R2) and a conventional septic tank (R3), were operated in parallel over half a year under hydraulic retention times (HRTs) of 36, 24 and 12 h, with a sewage temperature of 16 degrees C. The removal efficiencies of total chemical oxygen demand (CODtot) achieved in R1 and R2 increased by 14%, 21% and 12% and 18%, 3% and 16%, respectively, under three different HRTs, as compared to those in R3. The total nitrogen and phosphorus removal efficiencies were negligible. R1 sludges had a higher specific methane production rate as compared to that of R2 and R3 sludges. The results indicated that the two modified septic tanks can improve the performance in terms of COD and total solids removal, both were suitable technologies for domestic sewage (pre) treatment at low temperature in northern China.

  8. Chromium (Ⅵ) removal from aqueous solutions through powdered activated carbon countercurrent two-stage adsorption.

    PubMed

    Wang, Wenqiang

    2018-01-01

    To exploit the adsorption capacity of commercial powdered activated carbon (PAC) and to improve the efficiency of Cr(VI) removal from aqueous solutions, the adsorption of Cr(VI) by commercial PAC and the countercurrent two-stage adsorption (CTA) process was investigated. Different adsorption kinetics models and isotherms were compared, and the pseudo-second-order model and the Langmuir and Freundlich models fit the experimental data well. The Cr(VI) removal efficiency was >80% and was improved by 37% through the CTA process compared with the conventional single-stage adsorption process when the initial Cr(VI) concentration was 50 mg/L with a PAC dose of 1.250 g/L and a pH of 3. A calculation method for calculating the effluent Cr(VI) concentration and the PAC dose was developed for the CTA process, and the validity of the method was confirmed by a deviation of <5%. Copyright © 2017. Published by Elsevier Ltd.

  9. Lindane removal by pure and mixed cultures of immobilized actinobacteria.

    PubMed

    Saez, Juliana M; Benimeli, Claudia S; Amoroso, María J

    2012-11-01

    Lindane (γ-HCH) is an organochlorine insecticide that has been widely used in developing countries. It is known to persist in the environment and can cause serious health problems. One of the strategies adopted to remove lindane from the environment is bioremediation using microorganisms. Immobilized cells present advantages over free suspended cells, like their high degradation efficiency and protection against toxins. The aims of this work were: (1) To evaluate the ability of Streptomyces strains immobilized in four different matrices to remove lindane, (2) To select the support with optimum lindane removal by pure cultures, (3) To assay the selected support with consortia and (4) To evaluate the reusability of the immobilized cells. Four Streptomyces sp. strains had previously shown their ability to grow in the presence of lindane. Lindane removal by microorganisms immobilized was significantly higher than in free cells. Specifically immobilized cells in cloth sachets showed an improvement of around 25% in lindane removal compared to the abiotic control. Three strains showed significantly higher microbial growth when they were entrapped in silicone tubes. Strains immobilized in PVA-alginate demonstrated lowest growth. Mixed cultures immobilized inside cloth sachets showed no significant enhancement compared to pure cultures, reaching a maximum removal of 81% after 96 h for consortium I, consisting of the four immobilized strains together. Nevertheless, the cells could be reused for two additional cycles of 96 h each, obtaining a maximum removal efficiency of 71.5% when each of the four strains was immobilized in a separate bag (consortium III). Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Enhanced nitrate-nitrogen removal by modified attapulgite-supported nanoscale zero-valent iron treating simulated groundwater.

    PubMed

    Dong, Lei; Lin, Li; Li, Qingyun; Huang, Zhuo; Tang, Xianqiang; Wu, Min; Li, Chao; Cao, Xiaohuan; Scholz, Miklas

    2018-05-01

    Attapulgite (or palygorskite) is a magnesium aluminium phyllosilicate. Modified attapulgite-supported nanoscale zero-valent iron (NZVI) was created by a liquid-phase reduction method and then applied for nitrate-nitrogen (NO 3 -N) removal (transformation) in simulated groundwater. Nanoscale zero-valent iron was sufficiently dispersed on the surface of thermally modified attapulgite. The NO 3 -N removal efficiency reached up to approximately 83.8% with an initial pH values of 7.0. The corresponding thermally modified attapulgite-supported nanoscale zero-valent iron (TATP-NZVI) and NO 3 -N concentrations were 2.0 g/L and 20 mg/L respectively. Moreover, 72.1% of the water column NO 3 -N was converted to ammonium-nitrogen (NH 4 -N) within 6 h. The influence of environmental boundary conditions including dissolved oxygen (DO) concentration, light illumination and water temperature on NO 3 -N removal was also investigated with batch experiments. The results indicated that the DO concentration greatly impacted on NO 3 -N removal in the TATP-NZVI-contained solution, and the NO 3 -N removal efficiencies were 58.5% and 83.3% with the corresponding DO concentrations of 9.0 and 0.3 mg/L after 6 h of treatment, respectively. Compared to DO concentrations, no significant (p > 0.05) effect of light illumination on NO 3 -N removal and NH 4 -N generation was detected. The water temperature also has great importance concerning NO 3 -N reduction, and the removal efficiency of NO 3 -N at 25 °C was 1.25 times than that at 15 °C. For groundwater, therefore, environmental factors such as water temperature, anaerobic conditions and darkness could influence the NO 3 -N removal efficiency when TATP-NZVI is present. This study also demonstrated that TATP-NZVI has the potential to be developed as a suitable material for direct remediation of NO 3 -N-contaminated groundwater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Performance evaluation of different filter media in turbidity removal from water by application of modified qualitative indices.

    PubMed

    Gholikandi, G Badalians; Dehghanifard, E; Sepehr, M Noori; Torabian, A; Moalej, S; Dehnavi, A; Yari, Ar; Asgari, Ar

    2012-01-01

    Water filtration units have been faced problems in water turbidity removal related to their media, which is determined by qualitative indices. Moreover, Current qualitative indices such as turbidity and escaping particle number could not precisely determine the efficiency of the media in water filtration, so defining new indices is essential. In this study, the efficiency of Anthracite-Silica and LECA-Silica media in turbidity removal were compared in different operating condition by using modified qualitative indices. The pilot consisted of a filter column (one meter depth) which consisted of a layer of LECA (450 mm depth) and a layer of Silica sand (350 mm depth. Turbidities of 10, 20, and 30 NTU, coagulant concentrations of 4, 8, and 12 ppm and filtration rates of 10, 15, and 20 m/h were considered as variables. The LECA-Silica media is suitable media for water filtration. Averages of turbidity removal efficiencies in different condition for the LECA-Silica media were 85.8±5.37 percent in stable phase and 69.75±3.37 percent in whole operation phase, while the efficiency of total system were 98.31±0.63 and 94.49±2.97 percent, respectively. The LECA layer efficiency in turbidity removal was independent from filtration rates and due to its low head loss; LECA can be used as a proper medium for treatment plants. Results also showed that the particle index (PI) was a suitable index as a substitute for turbidity and EPN indices.

  12. Occurrence and removal of pharmaceuticals, hormones, personal care products, and endocrine disrupters in a full-scale water reclamation plant.

    PubMed

    Tran, Ngoc Han; Gin, Karina Yew-Hoong

    2017-12-01

    This study provided the first comprehensive data on the occurrence and removal of twenty-five target emerging contaminants (ECs) in a full-scale water reclamation plant (WRP) in the Southeast Asian region. Nineteen out of the twenty-five ECs were ubiquitously detected in raw influent samples. Concentrations of the detected ECs in raw influent samples ranged substantially from 44.3 to 124,966ng/L, depending upon the compound and sampling date. The elimination of ECs in full-scale conventional activated sludge (CAS) and membrane bioreactor (MBR) systems at a local WRP was evaluated and compared. Several ECs, such as acetaminophen, atenolol, fenoprofen, indomethacin, ibuprofen, and oxybenzone, exhibited excellent removal efficiencies (>90%) in biological wastewater treatment processes, while some of the investigated compounds (carbamazepine, crotamiton, diclofenac, and iopamidol) appeared to be persistent in the both CAS and MBR systems. Field-based monitoring results showed that MBR outperformed CAS in the elimination of most target ECs. The relationship between molecular characteristics of ECs (i.e. physicochemical properties and structural features) and their removal efficiencies during biological wastewater treatment was also elucidated. Excellent removal efficiencies (>90%) were often noted for ECs with the sole presence of electron donating groups (i.e. phenolic [OH], amine [NH 2 ], methoxy [OCH 3 ], phenoxy [OC 6 H 5 ], or alkyl groups). Conversely, ECs with the absence of electron donating groups or the predominance of strong electron withdrawing groups (e.g. halogenated, carbonyl, carboxyl, and sulfonamide) tended to show poor removal efficiencies (<30%) in biological wastewater treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes.

    PubMed

    Kumar, Abhijeet; Nidheesh, P V; Suresh Kumar, M

    2018-08-01

    Treatment of composite wastewater generating from the industrial estates is a great challenge. The present study examines the applicability of aerated electrocoagulation and modified peroxi-coagulation processes for removing color and COD from composite wastewater. Iron plates were used as anodes and cathodes in both electrochemical processes and experiments were carried out in a working volume of 2 L. Aeration enhanced the efficiency of electrocoagulation process significantly. More than 50% of COD and 60% of color were removed after 1 h of electrocoagulation process operated at pH 3 and applied voltage of 1 V. Efficiency of the modified peroxi-coagulation process was significantly higher than that of aerated electrocoagulation. COD and color removal efficiencies of the modified peroxi-coagulation process were found as 77.7% and 97%, respectively after 1 h of electrolysis operated at 1 V, solution pH 3 and 50 mM hydrogen peroxide addition. This improved efficiency of modified peroxi-coagulation compared to aerated electrocoagulation is mainly due to the attack of in-situ generated hydroxyl radicals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Use of amphiphilic triblock copolymers for enhancing removal efficiency of organic pollutant from contaminated media

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hyup; Lee, Byungsun; Son, Intae; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Wu, Jong-Pyo; Kim, Younguk

    2015-11-01

    We have studied amphiphilic triblock copolymers poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol) (PEG- b-PPG- b-PEG) and poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol) (PPG- b-PEG- b-PPG) as possible substitutes for sodium dodecyl sulfate as anionic surfactants for the removal of hydrophobic contaminants. The triblock copolymers were compared with sodium dodecyl sulfate in terms of their abilities to remove toluene as hydrophobic contaminant in fuel, and the effects of polymer structure, PEG content, and concentration were studied. The PEG- b-PPG- b-PEG copolymer containing two hydrophilic PEG blocks was more effective for the removal of hydrophobic contaminant at extremely high concentration. We also measured the removal capabilities of the triblock copolymers having various PEG contents and confirmed that removal capability was greatest at 10% PEG content regardless of polymer structure. As with sodium dodecyl sulfate, the removal efficiency of a copolymer has a positive correlation with its concentration. Finally, we proposed the amphiphilic triblock copolymer of PPG- b-PEG- b-PPG bearing 10% PEG content that proved to be the most effective substitute for sodium dodecyl sulfate.

  15. [Quantification study on the runoff and seepage distribution and N, P pollutants removal of the vegetated buffer strips].

    PubMed

    Wang, Min; Huang, Yu-Chi; Wu, Jian-Qiang

    2010-11-01

    By using the constructed buffer strips test base and the runoff hydrometric devices, a research on stagnant runoff and nitrogen (N), phosphorous (P) pollutants removal capacity of the vegetated buffer strips was conducted. The results show that the vegetated buffer strips might reduce the speed of runoff significantly and improve the hydraulic permeability of soil. The runoff water output time of 19 m buffer strips planted with Cynodon dactylon, Festuca arundinacea and Trifolium repens are 2.46, 1.72 and 2.03 times higher than the control (no vegetation) respectively; The seepage water quantity of three vegetation buffer strips are 3.01, 2.16 and 2.45 times higher than the control respectively as well. Total removal efficiency of the three buffer strips increase about 237%, 268% and 274% comparing with the control respectively. The N, P removal capacity of seepage is significantly higher than that of the runoff, the larger seepage water quantity will cause higher N, P total removal efficiency and removal loads of unit area. With different vegetated buffer strips, the TN, NH4(+) -N, TP removal ratio of seepage and runoff are 2.79, 2.02 and 2.83 respectively.

  16. [Optimization and comparison of nitrogen and phosphorus removal by different aeration modes in oxidation ditch].

    PubMed

    Guo, Chang-Zi; Peng, Dang-Cong; Cheng, Xue-Mei; Wang, Dan

    2012-03-01

    The oxidation ditch operation mode was simulated by sequencing batch reactor (SBR) system with alternate stirring and aeration. The nitrogen and phosphorus removal efficiencies were investigated in two different aeration modes: point aeration and step aeration. Experimental results show that oxygen is dissolved more efficiently in point aeration mode with a longer aerobic region in the same air supply capacity, but dissolved oxygen (DO) utilization efficiency for nitrogen and phosphorus removal is high in step aeration mode. Nitrification abilities of the two modes are equal with ammonia-nitrogen (NH4(+) -N) removal efficiency of 96.68% and 97.03%, respectively. Nitrifier activities are 4.65 and 4.66 mg x (g x h)(-1) respectively. When the ratio of anoxic zones and the aerobic zones were 1, the total nitrogen (TN) removal efficiency of point aeration mode in 2, 4 or 7 partitions was respectively 60.14%, 47.93% and 33.7%. The total phosphorus (TP) removal efficiency was respectively 28.96%, 23.75% and 24.31%. The less the partitions, the higher the nitrogen and phosphorus removal efficiencies, but it is in more favor of TN removal. As for step aeration mode with only one partitioning zone, the TN and TP removal efficiencies are respectively 64.21% and 49.09%, which is better than in point aeration mode, but more conducive to the improvement of TP removal efficiency. Under the condition of sufficient nitrification in step aeration mode, the nitrogen and phosphorus removal is better with the increase of anoxic zone. The removal efficiencies of TN and TP respectively rose to 73.94% and 54.18% when the ratio of anoxic zones and the aerobic zones was increased from 1 : 1 to 1. 8 : 1. As the proportion of anoxic zones was enlarged further, nitrification and operation stability were weakened so as to affect the nitrogen and phosphorus removal efficiencies.

  17. Experimental investigation on cleaning of corroded ancient coins using a Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhu, Huazhong; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua

    2017-05-01

    The objective of the work reported is to study experimentally on the removal of corrosion layer from the ancient coins using laser beam as the conservation tool. With the use of Q-switched Nd:YAG laser radiation at 1064 nm, dry laser cleaning, steam laser cleaning and chemical-assisted laser cleaning were used to find out a more suitable and efficient laser treatment for corrosion removal. Cleaning tests were performed on ancient Chinese coins. Experimental results shows that the dry laser cleaning was not successful at removing all types of corrosion crust. It was possible to remove the outer thicker layer of the corrosion products (typically known as patina), but failed on the thinner layer of cuprite. The steam laser cleaning could decrease the initial removal threshold and improve the removal efficiency especially for the oxidation with powdery structure. As for chemical-assisted laser treatment, the cleaning results demonstrate that the combination of laser and chemical reagent could provide a considerable improvement in corrosion removal compared with the conventional laser treatments. Most of the corrosion contaminant was stripped, even the cuprite layer. Moreover, no secondary pollution was formed on the cleaned surface. X-ray fluorescence was applied to determine the variation of composition of surface layer and bulk metal before and after the coins cleaned. It shows that all of the three laser treatments were efficient to reduce the chlorine concentration on the surface of the coins more than 75%.

  18. Detection of pepper mild mottle virus as an indicator for drinking water quality in Hanoi, Vietnam, in large volume of water after household treatment.

    PubMed

    Sangsanont, Jatuwat; The Dan, Dang; Thi Viet Nga, Tran; Katayama, Hiroyuki; Furumai, Hiroaki

    2016-11-09

    The aims of this study were to examine the removal of bacteria and viruses by household point-of-use (POU) treatments and to apply a previously developed large-volume virus concentration method (∼20 L). First, the removal of microbes by household POU treatment was investigated in the laboratory. Second, the prevalence of viruses in drinking water sources for households and the removal efficiency of microbes by POU treatments in two suburban communities in Hanoi, Vietnam, were investigated. Indigenous pepper mild mottle virus (PMMoV) was used as the main target together with adenovirus, Aichi virus, enterovirus, F-specific bacteriophage genogroup 1, and Escherichia coli to investigate the removal efficiency of household treatments. The results from laboratory and field survey were compared. From the laboratory study, ceramic membranes were not effective for removing viruses and bacteria from water; pathogen reduction was less than 1.5 log10. By contrast, reverse osmosis (RO) devices reduced microbes by 3 to > 5 log10. In a field study, PMMoV was found to be the most prevalent waterborne virus. Household sand filtration was ineffective for removing E. coli, total coliforms and PMMoV; the reduction was less than 1 order of magnitude. Boiling the water and then filtering it with a ceramic membrane reduced E. coli by 3 orders of magnitude, but this was not effective for removing PMMoV. RO filtration was one of the promising methods for removing E. coli, total coliforms and PMMoV to below their detection limits in most of the samples studied. The removal of E. coli, total coliforms and PMMoV was >2.3, >4 and >3 log10, respectively. The laboratory results of virus removal efficiency by POU devices agreed with the field study. Due to the prevalence and characteristics of PMMoV, it is a strong candidate for an indigenous indicator to investigate the viral removal efficiency of household POU treatments.

  19. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China

    USGS Publications Warehouse

    Chang, Xiaotian; Meyer, M.T.; Liu, Xiuying; Zhao, Q.; Hao, Chen; Chen, J.-a.; Qiu, Z.; Yang, L.; Cao, J.; Shu, W.

    2010-01-01

    Sewage samples from 4 hospitals, 1 nursery, 1 slaughter house, 1 wastewater treatment plant and 5 source water samples of Chongqing region of Three Gorge Reservoir were analyzed for macrolide, lincosamide, trimethoprim, fluorouinolone, sulfonamide and tetracycline antibiotics by online solid-phase extraction and liquid chromatography-tandem mass spectrometry. Results showed that the concentration of ofloxacin (OFX) in hospital was the highest among all water environments ranged from 1.660????g/L to 4.240????g/L and norfloxacin (NOR, 0.136-1.620????g/L), ciproflaxacin (CIP, ranged from 0.011????g/L to 0.136????g/L), trimethoprim (TMP, 0.061-0.174????g/L) were commonly detected. Removal range of antibiotics in the wastewater treatment plant was 18-100% and the removal ratio of tylosin, oxytetracycline and tetracycline were 100%. Relatively higher removal efficiencies were observed for tylosin (TYL), oxytetracycline (OXY) and tetracycline (TET)(100%), while lower removal efficiencies were observed for Trimethoprim (TMP, 1%), Epi-iso-chlorotetracycline (EICIC, 18%) and Erythromycin-H2O (ERY-H2O, 24%). Antibiotics were removed more efficiently in primary treatment compared with those in secondary treatment. ?? 2009 Elsevier Ltd. All rights reserved.

  20. Comparison of lead removal behaviors and generation of water-soluble sodium compounds in molten lead glass under a reductive atmosphere

    NASA Astrophysics Data System (ADS)

    Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu

    2018-06-01

    We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.

  1. Treatment of toluene and its by-products using an electron beam/ultra-fine bubble hybrid system

    NASA Astrophysics Data System (ADS)

    Son, Youn-Suk; Kim, Tae-Hun; Choi, Chang Yong; Park, Jun-Hyeong; Ahn, Ji-Won; Dinh, Trieu-Vuong

    2018-03-01

    Although, until quite recently, many technologies (electron beam (EB), plasma, and ultraviolet) have been studied to overcome disadvantages of conventional methods (such as absorption, adsorption, biofiltration and incineration) for treatment of volatile organic compounds (VOCs), their techniques still have some problems such as formation of a by-product. Generally, it is reported that various by-products are generated from the EB irradiation process to remove VOCs. Therefore, we developed an electron beam/ultra-fine bubble (EB/UB) hybrid system to enhance removal efficiency of a VOC (toluene) and to reduce its by-products formed by electron beam irradiation. As a result, the removal efficiency of toluene (30 ppm) by only EB (10 kGy) was 80.1%. However, the removal efficiency of toluene using the hybrid system (water temperature: 5 ℃) was increased up to 17% when compared to only EB (10 kGy). Additionally, the 65.2% of ozone formed from the EB process was removed in UB reactor. In case of other trace by-products such as undesired VOCs and aldehydes, the levels were lowered down to the below detection limit by the subsequent UB reactor. We also found that the amount of toluene collected and solubilized into water is affected by the water temperature in the UB reactor.

  2. Preparation of AAO-CeO2 nanotubes and their application in electrochemical oxidation desulfurization of diesel

    NASA Astrophysics Data System (ADS)

    Du, Xiaoqing; Yang, Yumeng; Yi, Chenxi; Chen, Yu; Cai, Chao; Zhang, Zhao

    2017-02-01

    The coaxial arrays of AAO-CeO2 NTs have been successfully galvanostatically deposited on an anode, characterized and adopted as a catalyst for removing organic sulfurs from diesel. The influence of the main electrochemical oxidation factors on the efficiency of desulfurization have also been investigated. The results show that the fabrication process of AAO-CeO2 NTs is accompanied by the formation of a new phase, namely Al3Ce, and the main oxidation products of the diesel are soluble inorganic sulphides, especially Ce2(SO4)3. When compared with dibenzothiophene and 4, 6-dimethyldibenzothiophene, benzothiophene is much more easily removed, with a removal efficiency that reaches 87.2%. Finally, a possible electrochemical oxidation desulfurization pathway for diesel is proposed.

  3. Wet air co-oxidation of decabromodiphenyl ether (BDE209) and tetrahydrofuran.

    PubMed

    Zhao, Hongxia; Zhang, Feifang; Qu, Baocheng; Xue, Xingya; Liang, Xinmiao

    2009-09-30

    The wet air co-oxidation (WACO) of a major commercial polybrominated diphenyl ether flame retardant congener, decabromodiphenyl ether (BDE209), was investigated using tetrahydrofuran (THF) as an initiator in a stainless autoclave at temperature range of 120-170 degrees C and 0.5MPa oxygen pressure. Compared to the single oxidation of BDE209 under the same conditions, the addition of THF in the reaction system greatly improved the removal efficiency of BDE209. The effect of temperature on the reaction was studied. The removals of BDE209 and Br increased with increasing temperature. In addition, the effect of NaNO(2) as the catalyst on the WACO was also investigated and the results showed that the addition of NaNO(2) could improve the Br removal efficiency.

  4. 40 CFR 63.9323 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... device emission destruction or removal efficiency? 63.9323 Section 63.9323 Protection of Environment... determine the add-on control device emission destruction or removal efficiency? You must use the procedures... removal efficiency as part of the performance test required by § 63.9310. You must conduct three test runs...

  5. 40 CFR 63.9323 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... device emission destruction or removal efficiency? 63.9323 Section 63.9323 Protection of Environment... determine the add-on control device emission destruction or removal efficiency? You must use the procedures... removal efficiency as part of the performance test required by § 63.9310. You must conduct three test runs...

  6. 40 CFR 63.4166 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... device emission destruction or removal efficiency? 63.4166 Section 63.4166 Protection of Environment....4166 How do I determine the add-on control device emission destruction or removal efficiency? (a) For... device organic emissions destruction or removal efficiency, using Equation 2 of this section. ER23JY02...

  7. 40 CFR 63.3966 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... device emission destruction or removal efficiency? 63.3966 Section 63.3966 Protection of Environment... or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test...

  8. 40 CFR 63.4965 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... device emission destruction or removal efficiency? 63.4965 Section 63.4965 Protection of Environment....4965 How do I determine the add-on control device emission destruction or removal efficiency? You must... destruction or removal efficiency as part of the performance test required by § 63.4960. You must conduct...

  9. 40 CFR 63.3966 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... device emission destruction or removal efficiency? 63.3966 Section 63.3966 Protection of Environment... or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test...

  10. Hexavalent chromium removal and bioelectricity generation by Ochrobactrum sp. YC211 under different oxygen conditions.

    PubMed

    Chen, Chih-Yu; Cheng, Chiu-Yu; Chen, Ching-Kuo; Hsieh, Min-Chi; Lin, Ssu-Ting; Ho, Kuo-Ying; Li, Jo-Wei; Lin, Chia-Pei; Chung, Ying-Chien

    2016-01-01

    Bioremediation is an environmentally friendly method of reducing heavy metal concentration and toxicity. A chromium-reducing bacterial strain, isolated from the vicinity of an electroplate factory, was identified as Ochrobactrum sp. YC211. The efficiency and capacity per time of Ochrobactrum sp. YC211 for hexavalent chromium (Cr(VI)) removal under anaerobic conditions were superior to those under aerobic conditions. An acceptable removal efficiency (96.5 ± 0.6%) corresponding to 30.2 ± 0.8 mg-Cr (g-dry cell weight-h)(-1) was achieved by Ochrobactrum sp. YC211 at 300 mg L(-1) Cr(VI). A temperature of 30°C and pH 7 were the optimal parameters for Cr(VI) removal. By examining reactivated cells, permeabilized cells, and cell-free extract, we determined that Cr(VI) removal by Ochrobactrum sp. YC211 under anaerobic conditions mainly occurred in the soluble fraction of the cell and can be regarded as an enzymatic reaction. The results also indicated that an Ochrobactrum sp. YC211 microbial fuel cell (MFC) with an anaerobic anode was considerably superior to that with an aerobic anode in bioelectricity generation and Cr(VI) removal. The maximum power density and Cr(VI) removal efficiency of the MFC were 445 ± 3.2 mW m(-2) and 97.2 ± 0.3%, respectively. Additionally, the effects of coexisting ions (Cu(2+), Zn(2+), Ni(2+), SO4(2-), and Cl(-)) in the anolyte on the MFC performance and Cr(VI) removal were nonsignificant (P > 0.05). To our knowledge, this is the first report to compare Cr(VI) removal by different cells and MFC types under aerobic and anaerobic conditions.

  11. Enhancement of Anaerobic Digestion to Treat Saline Sludge from Recirculating Aquaculture Systems

    PubMed Central

    Luo, Guo-zhi; Ma, Niannian; Li, Ping; Tan, Hong-xin; Liu, Wenchang

    2015-01-01

    The effectiveness of carbohydrate addition and the use of ultrasonication as a pretreatment for the mesophilic anaerobic digestion of saline aquacultural sludge was assessed. Analyses were conducted using an anaerobic sequencing batch reactor (ASBR), which included stopped gas production attributed to the saline inhibition. After increasing the C : N ratio, gas production was observed, and the total chemical oxygen demand (TCOD) removal efficiency increased from 75% to 80%. The TCOD removal efficiency of the sonication period was approximately 85%, compared to 75% for the untreated waste. Ultrasonication of aquaculture sludge was also found to enhance the gas production rate and the TCOD removal efficiency. The average volatile fatty acid (VFA) to alkalinity ratios ranged from 0.1 to 0.05, confirming the stability of the digesters. Furthermore, soluble chemical oxygen demand (SCOD), VFA, and PO4 3− concentrations increased in the effluents. There was a 114% greater gas generation during the ultrasonication period, with an average production of 0.08 g COD/L·day−1. PMID:26301258

  12. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    PubMed

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  13. [Simultaneous desulfurization and denitrification by TiO2/ACF under different irradiation].

    PubMed

    Han, Jing; Zhao, Yi

    2009-04-15

    The supported TiO2 photocatalysts were prepared in laboratory, and the experiments of simultaneous desulfurization and denitrification were carried out by self-designed photocatalysis reactor. The optimal experimental conditions were achieved, and the efficiencies of simultaneous desulfurization and denitrification under two different light sources were compared. The results show that the oxygen content of flue gas, reaction temperature, flue gas humidity and irradiation intensity are most essential factors to photocatalysis. For TiO2/ACF, the removal efficiencies of 99.7% for SO2 and 64.3% for NO are obtained respectively at optimal experimental conditions under UV irradiation. For TiO2/ACF, the removal efficiencies of 97.5% for SO2 and 49.6% for NO are achieved respectively at optimal experimental conditions under the visible light irradiation. The results of five times parallel experiments indicate standard deviation S of parallel data is little. The mechanism of removal for SO2 and NO is proposed under two light sources by ion chromatography analysis of the absorption liquid.

  14. Effects of boundary conditions on the cleaning efficiency of riverbank filtration and artificial groundwater recharge systems regarding bulk parameters and trace pollutants.

    PubMed

    Storck, Florian R; Schmidt, Carsten K; Wülser, Richard; Brauch, Heinz-Jürgen

    2012-01-01

    Drinking water is often produced from surface water by riverbank filtration (RBF) or artificial groundwater recharge (AGR). In this study, an AGR system was exemplarily investigated and results were compared with those of RBF systems, in which the effects of redox milieu, temperature and surface water discharge on the cleaning efficiency were evaluated. Besides bulk parameters such as DOC (dissolved organic carbon), organic trace pollutants including iodinated X-ray contrast media, personal care products, complexing agents, and pharmaceuticals were investigated. At all studied sites, levels of TOC (total organic carbon), DOC, AOX (adsorbable organic halides), SAC (spectral absorption coefficient at 254 nm), and turbidity were reduced significantly. DOC removal was stimulated at higher groundwater temperatures during AGR. Several substances were generally easily removable during both AGR and RBF, regardless of the site, season, discharge or redox regime. For some more refractory substances, however, removal efficiency turned out to be significantly influenced by redox conditions.

  15. Quantitative assessment of the efficacy of spiral-wound membrane cleaning procedures to remove biofilms.

    PubMed

    Hijnen, W A M; Castillo, C; Brouwer-Hanzens, A H; Harmsen, D J H; Cornelissen, E R; van der Kooij, D

    2012-12-01

    Cleaning of high pressure RO/NF membranes is an important operational tool to control biofouling. Quantitative information on the efficacy of cleaning agents and protocols to remove biomass is scarce. Therefore, a laboratory cleaning test to assess the efficiency of cleaning procedures to remove attached biomass was developed. The major components of the test are (i) production of uniform biofilm samples, (ii) the quantification of the biomass concentrations with robust parameters and (iii) a simple test procedure with optimal exposure of the biofilm samples to the chemicals. The results showed that PVC-P is a suitable substratum for the production of uniform biofilm samples. ATP and carbohydrates (CH) as major components of the biofilm matrix for nucleotides (living bacterial cells) and extracellular polymeric substances EPS, respectively, were selected as robust biomass parameters. The removal of ATP and CH with the NaOH/Sodium Dodecyl Sulfate (SDS) mixture, selected as a standard treatment at pH 12.0, was reproducible. The resistance of the EPS matrix against chemical cleaning was demonstrated by a low CH removal (32.8 ± 6.0%) compared to the ATP removal (70.5 ± 15.1%). The inverse relationship of biomass removal with the CH to ATP ratio (μg/ng) of the biofilms demonstrated the influence of the biomass characteristics on cleaning. None of the 27 chemicals tested (analytical-grade and commercial brands) in single step or in double-step treatments were significantly more effective than NaOH/SDS. Oxidizing agents NaOCl and H(2)O(2), the latter in combination with SDS, both tested as common agents in biofilm control, showed a significantly higher efficiency (70%) to remove biofilms. In the test, simultaneously, the efficiency of agents to remove precipitated minerals such as Fe can be assessed. Validation tests with Cleaning in Place (CIP) in 8 and 2.5-inch RO membrane pilot plant experiments showed similar ranking of the cleaning efficiency of cleaning protocols as determined in the laboratory tests. Further studies with the laboratory test are required to study the effect of cleaning conditions such as duration, temperature, shear forces as well as chemical conditions (concentrations, alternative agents or mixtures and sequence of application) on the efficiency to remove attached biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A comparison of efficiencies of microbiological pollution removal in six sewage treatment plants with different treatment systems.

    PubMed

    Kistemann, Thomas; Rind, Esther; Rechenburg, Andrea; Koch, Christoph; Classen, Thomas; Herbst, Susanne; Wienand, Ina; Exner, Martin

    2008-10-01

    Six sewage treatment plants (STP) were investigated over a 12-month period in order to measure the microbiological load of untreated municipal wastewater and to evaluate the removal efficiencies of different treatment systems. The STP investigated can be classified into three categories: bigger plants with tertiary treatment, smaller plants with enhanced secondary treatment, and very small compact facilities. The plants studied had a considerable quantitative impact on the hydrology of the catchment area; consequently, it was anticipated that the microbiological load of the effluent would also be significant. Eighty samples were taken from the influent and effluent of the STP, regardless of weather conditions, and several bacterial and two parasitological parameters were analysed. The average microbiological reduction of each STP was dependent on its capacity and treatment procedures and varied between 1.9 and 3.5log10. Small compact facilities had a significantly lower removal efficiency (2.0+/-1log10) and discharged treated wastewater with a poorer microbiological quality compared to larger plants with tertiary treatment or with enhanced secondary treatment (2.8log10). Final sand filtration and extensive intermediate settling considerably improved the overall microbiological removal efficiency. During the study period, the microbiological water quality of the receiving water course was not significantly impaired by the discharge of any of the investigated plants; however, the compact facilities showed critical treatment deficiencies. In particular, the reduction of Giardia cysts was insufficient (<1.5log10) compared to that of the bigger plants (>3.0log10). In order to quantify the overall impact of microbiological loads on the receiving watercourse in this catchment area, it is also necessary to assess the pollution from combined sewer overflow basins and diffuse pollution. This will be considered in subsequent studies.

  17. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    PubMed

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  18. Kinetics and the mass transfer mechanism of hydrogen sulfide removal by biochar derived from rice hull.

    PubMed

    Shang, Guofeng; Liu, Liang; Chen, Ping; Shen, Guoqing; Li, Qiwu

    2016-05-01

    The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperature has great influence on the adsorption of H2S. At the different pyrolysis temperature, the H2S removal efficiency of rice hull-derived biochar was different. The adsorption capacities of biochar were 2.09 mg·g(-1), 2.65 mg·g(-1), 16.30 mg·g(-1), 20.80 mg·g(-1), and 382.70 mg·g(-1), which their pyrolysis temperatures were 100 °C, 200 °C, 300 °C, 400 °C and 500 °C respectively. Based on the Yoon-Nelson model, it analyzed the mass transfer mechanism of hydrogen sulfide adsorption by biochar. The paper focuses on the biochar derived from rice hull-removed hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperatures have great influence on the adsorption of H2S. At the different pyrolysis temperatures, the H2S removal efficiency of rice hull-derived biohar was different. The adsorption capacities of biochar were 2.09, 2.65, 16.30, 20.80, and 382.70 mg·g(-1), and their pyrolysis temperatures were 100, 200, 300, 400, and 500 °C, respectively. Based on the Yoon-Nelson model, the mass transfer mechanism of hydrogen sulfide adsorption by biochar was analyzed.

  19. 40 CFR 63.3166 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... device emission destruction or removal efficiency? 63.3166 Section 63.3166 Protection of Environment... Limitations § 63.3166 How do I determine the add-on control device emission destruction or removal efficiency... emission destruction or removal efficiency as part of the performance test required by § 63.3160. You must...

  20. 40 CFR 63.3166 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... device emission destruction or removal efficiency? 63.3166 Section 63.3166 Protection of Environment... Limitations § 63.3166 How do I determine the add-on control device emission destruction or removal efficiency... emission destruction or removal efficiency as part of the performance test required by § 63.3160. You must...

  1. 40 CFR 63.4766 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... device emission destruction or removal efficiency? 63.4766 Section 63.4766 Protection of Environment... Option § 63.4766 How do I determine the add-on control device emission destruction or removal efficiency... emission destruction or removal efficiency as part of the performance test required by § 63.4760. You must...

  2. Virus removal efficiency of Cambodian ceramic pot water purifiers.

    PubMed

    Salsali, Hamidreza; McBean, Edward; Brunsting, Joseph

    2011-06-01

    Virus removal efficiency is described for three types of silver-impregnated, ceramic water filters (CWFs) produced in Cambodia. The tests were completed using freshly scrubbed filters and de-ionized (DI) water as an evaluation of the removal efficiency of the virus in isolation with no other interacting water quality variables. Removal efficiencies between 0.21 and 0.45 log are evidenced, which is significantly lower than results obtained in testing of similar filters by other investigators utilizing surface or rain water and a less frequent cleaning regime. Other experiments generally found virus removal efficiencies greater than 1.0 log. This difference may be because of the association of viruses with suspended solids, and subsequent removal of these solids during filtration. Variability in virus removal efficiencies between pots of the same manufacturer, and observed flow rates outside the manufacturer's specifications, suggest tighter quality control and consistency may be needed during production.

  3. Application of Zero-Valent Iron Nanoparticles for the Removal of Aqueous Zinc Ions under Various Experimental Conditions

    PubMed Central

    Liang, Wen; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei

    2014-01-01

    Application of zero-valent iron nanoparticles (nZVI) for Zn2+ removal and its mechanism were discussed. It demonstrated that the uptake of Zn2+ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn2+ could be removed within 2 h. The pH value and dissolved oxygen (DO) were the important factors of Zn2+ removal by nZVI. The DO enhanced the removal efficiency of Zn2+. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxy)hydroxide, which could show high adsorption affinity. The removal efficiency of Zn2+ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn2+ by nZVI because the existing H+ inhibited the formation of iron (oxy)hydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn2+ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn2+ were higher than Cd2+. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn2+. PMID:24416439

  4. Decomposition of mixed malodorants in a wire-plate pulse corona reactor.

    PubMed

    Shi, Y; Ruan, J; Wang, X; Li, W; Tan, T

    2005-09-01

    Decomposition characteristics of two groups of representative mixed malodorants (1, ethanethiol + hydrogen sulfide; 2, ethanethiol + ammonia) in air were investigated employing a wire-plate pulse corona reactor. A new type of high-voltage pulse generator with a thyratron switch and a Blumlein pulse-forming network (BPFN) was used in our experiments. The experiments were conducted at a gas-flow rate of 13 m3/h. Important parameters, including peak voltage, chemical structures of malodorants, pulse frequency, and initial concentration, which influenced the removal efficiency, were investigated. The results showed that the mixed malodorants could be treated effectively by pulse corona. The removal efficiencies of 200 mg/m3 C2H5SH and 200 mg/m3 H2S for group 1 were 95.6% and 100%, respectively, which were almost equal to those of the two pollutants separately. The energy cost was about 65.1-81.4 J/L, which was 31.5-45.2% lower than for treating pollutants alone. The removal efficiencies of 105 mg/m3 C2HsSH and 40 mg/m3 NH3 for group 2 were 93.1% and almost 100%, and the energy cost was 65.1 J/L, 55.6% lower than that which was treated separately. In the case of two groups of mixed malodorants removal, NOx, 03, SO2, CO2, and CO were all observed. Moreover, some sulfur and white crystal ammonium nitrates were discovered adhering to the corona wires in the removal of groups 1 and 2, respectively. A dynamics model was developed to describe the relation of the removal efficiency with specific energy density and initial concentration. In the case of group 1 removal,the decomposition rate constants decreased as compared to the single treating. As for group 2 removal, the decomposition rate constants increased, especially for NH3. According to the results, the optimization design for the reactor and the matching of high pulse voltage source can be reckoned.

  5. Application of advanced characterization techniques to assess DOM treatability of micro-polluted and un-polluted drinking source waters in China.

    PubMed

    Wang, Dongsheng; Xing, Linan; Xie, Jiankun; Chow, Christopher W K; Xu, Zhizhen; Zhao, Yanmei; Drikas, Mary

    2010-09-01

    China has a very complex water supply system which relies on many rivers and lakes. As the population and economic development increases, water quality is greatly impacted by anthropogenic processes. This seriously affects the character of the dissolved organic matter (DOM) and imposes operational challenges to the water treatment facilities in terms of process optimization. The aim of this investigation was to compare selected drinking water sources (raw) with different DOM character, and the respective treated waters after coagulation, using simple organic characterization techniques to obtain a better understanding of the impact of source water quality on water treatment. Results from the analyses of selected water samples showed that the dissolved organic carbon (DOC) of polluted waters is generally higher than that of un-polluted waters, but the specific UV absorbance value has the opposite trend. After resolving the high performance size exclusion chromatography (HPSEC) peak components of source waters using peak fitting, the twelve waters studied can be divided into two main groups (micro-polluted and un-polluted) by using cluster analysis. The DOM removal efficiency (treatability) of these waters has been compared using four coagulants. For water sources allocated to the un-polluted group, traditional coagulants (Al(2)(SO(4))(3) and FeCl(3)) achieved better removal. High performance poly aluminum chloride, a new type of composite coagulant, performed very well and more efficiently for polluted waters. After peak fitting the HPSEC chromatogram of each of the treated waters, average removal efficiency of the profiles can be calculated and these correspond well with DOC and UV removal. This provides a convenient tool to assess coagulation removal and coagulant selection. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. In vitro human skin permeation and decontamination of 2-chloroethyl ethyl sulfide (CEES) using Dermal Decontamination Gel (DDGel) and Reactive Skin Decontamination Lotion (RSDL).

    PubMed

    Cao, Yachao; Hui, Xiaoying; Zhu, Hanjiang; Elmahdy, Akram; Maibach, Howard

    2018-07-01

    This study compared the efficiency for in vitro human skin decontamination using DDGel and RSDL. Experiments were performed using in vitro human skin models, in which skin was mounted onto Flow-Through diffusion cells. The mass of 14 -C CEES removed from skin surface after decontamination was quantitated by measuring radioactivity with a liquid scintillation spectrometer. Both decontaminants removed more than 82% of CEES from skin. DDGel skin decontamination significantly reduced toxicant amount when compared to RSDL. Mean CEES remaining in stratum corneum (SC), viable epidermis, dermis, and systemic absorption of DDGel and RSDL were, 0.12 and 0.55% (P < 0.01), 0.31 and 0.95% (p < 0.01), 1.08 and 2.92% (p < 0.05), 3.13 and 6.34% (p < 0.05), respectively. DDGel showed higher decontamination efficiency (twice decontamination efficacy factor, DEF) than RSDL and efficiently removed chemicals from the skin surface, importantly back-extracted from the SC, and significantly reduced both chemical penetration into skin and systemic absorption. Thus, DDGel can offer a potential as a next generation skin decontamination platform technology for military and civilian applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism.

    PubMed

    Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min

    2016-03-01

    The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents.

  8. Screening and prioritization of micropollutants in wastewaters from on-site sewage treatment facilities.

    PubMed

    Gros, Meritxell; Blum, Kristin M; Jernstedt, Henrik; Renman, Gunno; Rodríguez-Mozaz, Sara; Haglund, Peter; Andersson, Patrik L; Wiberg, Karin; Ahrens, Lutz

    2017-04-15

    A comprehensive screening of micropollutants was performed in wastewaters from on-site sewage treatment facilities (OSSFs) and urban wastewater treatment plants (WWTPs) in Sweden. A suspect screening approach, using high resolution mass spectrometry, was developed and used in combination with target analysis. With this strategy, a total number of 79 micropollutants were successfully identified, which belong to the groups of per- and polyfluoroalkyl substances (PFASs), pesticides, phosphorus-containing flame retardants (PFRs) and pharmaceuticals and personal care products (PPCPs). Results from this screening indicate that concentrations of micropollutants are similar in influents and effluents of OSSFs and WWTPs, respectively. Removal efficiencies of micropollutants were assessed in the OSSFs and compared with those observed in WWTPs. In general, removal of PFASs and PFRs was higher in package treatment OSSFs, which are based on biological treatments, while removal of PPCPs was more efficient in soil bed OSSFs. A novel comprehensive prioritization strategy was then developed to identify OSSF specific chemicals of environmental relevance. The strategy was based on the compound concentrations in the wastewater, removal efficiency, frequency of detection in OSSFs and on in silico based data for toxicity, persistency and bioaccumulation potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Lead (II) removal from natural soils by enhanced electrokinetic remediation.

    PubMed

    Altin, Ahmet; Degirmenci, Mustafa

    2005-01-20

    Electrokinetic remediation is a very effective method to remove metal from fine-grained soils having low adsorption and buffering capacity. However, remediation of soil having high alkali and adsorption capacity via the electrokinetic method is a very difficult process. Therefore, enhancement techniques are required for use in these soil types. In this study, the effect of the presence of minerals having high alkali and cation exchange capacity in natural soil polluted with lead (II) was investigated by means of the efficiency of electrokinetic remediation method. Natural soil samples containing clinoptilolite, gypsum and calcite minerals were used in experimental studies. Moreover, a sample containing kaolinite minerals was studied to compare with the results obtained from other samples. Best results for soils bearing alkali and high sorption capacity minerals were obtained upon addition of 3 mol AcH and application of 20 V constant potential after a remediation period of 220 h. In these test conditions, lead (II) removal efficiencies for these samples varied between 60% and 70% up to 0.55 normalized distance. Under the same conditions, removal efficiencies in kaolinite sample varied between 50% and 95% up to 0.9 normalized distance.

  10. Comparison of biomass from integrated fixed-film activated sludge (IFAS), moving bed biofilm reactor (MBBR) and membrane bioreactor (MBR) treating recalcitrant organics: Importance of attached biomass.

    PubMed

    Huang, Chunkai; Shi, Yijing; Xue, Jinkai; Zhang, Yanyan; Gamal El-Din, Mohamed; Liu, Yang

    2017-03-15

    This study compared microbial characteristics and oil sands process-affected water (OSPW) treatment performance of five types of microbial biomass (MBBR-biofilm, IFAS-biofilm, IFAS-floc, MBR-aerobic-floc, and MBR-anoxic-floc) cultivated from three types of bioreactors (MBBR, IFAS, and MBR) in batch experiments. Chemical oxygen demand (COD), ammonium, acid extractable fraction (AEF), and naphthenic acids (NAs) removals efficiencies were distinctly different between suspended and attached bacterial aggregates and between aerobic and anoxic suspended flocs. MBR-aerobic-floc and MBR-anoxic-floc demonstrated COD removal efficiencies higher than microbial aggregates obtained from MBBR and IFAS, MBBR and IFAS biofilm had higher AEF removal efficiencies than those obtained using flocs. MBBR-biofilm demonstrated the most efficient NAs removal from OSPW. NAs degradation efficiency was highly dependent on the carbon number and NA cyclization number according to UPLC/HRMS analysis. Mono- and di-oxidized NAs were the dominant oxy-NA species in OSPW samples. Microbial analysis with quantitative polymerase chain reaction (q-PCR) indicated that the bacterial 16S rRNA gene abundance was significantly higher in the batch bioreactors with suspended flocs than in those with biofilm, the NSR gene abundance in the MBR-anoxic bioreactor was significantly lower than that in aerobic batch bioreactors, and denitrifiers were more abundant in the suspended phase of the activated sludge flocs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Comparison of NOx Removal Efficiencies in Compost Based Biofilters Using Four Different Compost Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacey, Jeffrey Alan; Lee, Brady Douglas; Apel, William Arnold

    2001-06-01

    In 1998, 3.6 trillion kilowatt-hours of electricity were generated in the United States. Over half of this was from coal-fired power plants, resulting in more than 8.3 million tons of nitrogen oxide (NOx) compounds being released into the environment. Over 95% of the NOx compounds produced during coal combustion are in the form of nitric oxide (NO). NOx emission regulations are becoming increasingly stringent, leading to the need for new, cost effective NOx treatment technologies. Biofiltration is such a technology. NO removal efficiencies were compared in compost based biofilters using four different composts. In previous experiments, removal efficiencies were typicallymore » highest at the beginning of the experiment, and decreased as the experiments proceeded. This work tested different types of compost in an effort to find a compost that could maintain NO removal efficiencies comparable to those seen early in the previous experiments. One of the composts was wood based with manure, two were wood based with high nitrogen content sludge, and one was dairy compost. The wood based with manure and one of the wood based with sludge composts were taken directly from an active compost pile while the other two composts were received in retail packaging which had been out of active piles for an indeterminate amount of time. A high temperature (55-60°C) off-gas stream was treated in biofilters operated under denitrifying conditions. Biofilters were operated at an empty bed residence time of 13 seconds with target inlet NO concentrations of 500 ppmv. Lactate was the carbon and energy source. Compost was sampled at 10-day intervals to determine aerobic and anaerobic microbial densities. Compost was mixed at a 1:1 ratio with lava rock and calcite was added at 100g/kg of compost. In each compost tested, the highest removal efficiencies occurred within the first 10 days of the experiment. The wood based with manure peaked at day 3 (77.14%), the dairy compost at day 1 (80.74%), the active wood based with sludge at day 5 (68.15%) and the inactive wood based with sludge at day 9 (63.64%, this compost was frozen when received). These levels gradually decreased throughout the remainder of the experiment until they fell between 40% and 60%. Decreasing removal efficiency was characteristic of all the composts tested, regardless of their makeup or activity state prior to testing. Although microbial densities and composition between composts may have differed, there was little change in densities within each experiment.« less

  12. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.

    PubMed

    Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki

    2010-10-15

    Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Membrane fouling control and enhanced removal of pharmaceuticals and personal care products by coagulation-MBR.

    PubMed

    Park, Junwon; Yamashita, Naoyuki; Tanaka, Hiroaki

    2018-04-01

    We investigated the effects of the addition of two coagulants-polyaluminium chloride (PACl) and chitosan-into the membrane bioreactor (MBR) process on membrane fouling and the removal of pharmaceuticals and personal care products (PPCPs). Their addition at optimized dosages improved the permeability of the membrane by reducing the concentration of soluble microbial products in mixed liquor, the content of inorganic elements, and irreversible fouling of the membrane surface. During long-term operation, the addition of PACl increased removal efficiencies of tetracycline, mefenamic acid, atenolol, furosemide, ketoprofen, and diclofenac by 17-23%. The comparative evaluation using mass balance calculations between coagulation-MBR (with PACl addition) and control-MBR (without PACl addition) showed that enhanced biodegradability played a key role in improving removal efficiencies of some PPCPs in coagulation-MBR. Coagulation-MBR also had higher oxygen uptake rates and specific nitrification rates of microorganisms. Overall, our findings suggest that the combination of MBR with coagulation reduced membrane fouling, lengthening operation period of the membrane, and improved the removal of some PPCPs as a result of enhanced biodegradability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method.

    PubMed

    Zhu, Xinbo; Tu, Xin; Mei, Danhua; Zheng, Chenghang; Zhou, Jinsong; Gao, Xiang; Luo, Zhongyang; Ni, Mingjiang; Cen, Kefa

    2016-07-01

    In this work, plasma-catalytic removal of low concentrations of acetone over CuO/γ-Al2O3 catalysts was carried out in a cylindrical dielectric barrier discharge (DBD) reactor. The combination of plasma and the CuO/γ-Al2O3 catalysts significantly enhanced the removal efficiency of acetone compared to the plasma process using the pure γ-Al2O3 support, with the 5.0 wt% CuO/γ-Al2O3 catalyst exhibiting the best acetone removal efficiency of 67.9%. Catalyst characterization was carried out to understand the effect the catalyst properties had on the activity of the CuO/γ-Al2O3 catalysts in the plasma-catalytic reaction. The results indicated that the formation of surface oxygen species on the surface of the catalysts was crucial for the oxidation of acetone in the plasma-catalytic reaction. The effects that various operating parameters (discharge power, flow rate and initial concentration of acetone) and the interactions between these parameters had on the performance of the plasma-catalytic removal of acetone over the 5.0 wt% CuO/γ-Al2O3 catalyst were investigated using central composite design (CCD). The significance of the independent variables and their interactions were evaluated by means of the Analysis of Variance (ANOVA). The results showed that the gas flow rate was the most significant factor affecting the removal efficiency of acetone, whilst the initial concentration of acetone played the most important role in determining the energy efficiency of the plasma-catalytic process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation.

    PubMed

    Zhao, Yue; Yao, Jun; Yuan, Zhimin; Wang, Tianqi; Zhang, Yiyue; Wang, Fei

    2017-01-01

    Microbially induced carbonate precipitation (MICP) is an emerging and promising bioremediation technology to restore the environment polluted by heavy metals. Carbonate-biomineralization microbe can immobilize heavy metals from mobile species into stable crystals. In the present manuscript, laboratory batch studies were conducted to evaluate the Cd removal ability based on biosorption and MICP, using carbonate-biomineralization microbe GZ-22 isolated from a mine soil. This strain was identified as a Bacillus sp. according to 16S rDNA gene sequence analysis. Results of batch experiments revealed that MICP of the strain GZ-22 showed a greater potential to remove Cd than biomass biosorption under different impact factors such as pH, initial Cd concentration, and contact time. The optimum pH for MICP was 6 (50.34 %), while for biomass biosorption, it was 5 (38.81 %). When the initial concentration of Cd was 10 mg/L, removal efficiency induced by MICP was 53.06 % after 3 h, which was about 11 % greater than the removal efficiency induced by adsorption. The Cd removal efficiency increased as reaction time. The maximum removal efficiency based on MICP can reach 60.72 % at 10 mg/L for 48 h compared with 56.27 % by biosorption. X-ray diffractomer (XRD) revealed that Cd was transformed into CdCO 3 by MICP of GZ-22. The present illustrated that the carbonate-biomineralization microbe GZ-22 can offer an effective and eco-friendly approach to immobilize soluble Cd and that MICP may play an important role in heavy metal bioremediation.

  16. Influence of voltage input to heavy metal removal from electroplating wastewater using electrocoagulation process

    NASA Astrophysics Data System (ADS)

    Wulan, D. R.; Cahyaningsih, S.; Djaenudin

    2017-03-01

    In medium capacity, electroplating industry usually treats wastewater until 5 m3 per day. Heavy metal content becomes concern that should be reduced. Previous studies performed electrocoagulation method on laboratory scale, either batch or continuous. This study was aimed to compare the influence of voltage input variation into heavy metal removal in electroplating wastewater treatment using electrocoagulation process on laboratory-scale in order to determine the optimum condition for scaling up the reactor into pilot-scale. The laboratory study was performed in 1.5 L glass reactor in batch system using wastewater from electroplating industry, the voltage input varied at 20, 30 and 40 volt. The electrode consisted of aluminium 32 cm2 as sacrifice anode and copper 32 cm2 as cathode. During 120 min electrocoagulation process, the pH value was measured using pH meter, whereas the heavy metal of chromium, copper, iron, and zinc concentration were analysed using Atomic Absorption Spectrophotometer (AAS). Result showed that removal of heavy metals from wastewater increased due to the increasing of voltage input. Different initial concentration of heavy metals on wastewater, resulted the different detention time. At pilot-scale reactor with 30 V voltage input, chromium, iron, and zinc reached removal efficiency until 89-98%, when copper reached 79% efficiency. At 40V, removal efficiencies increased on same detention time, i.e. chromium, iron, and zinc reached 89-99%, whereas copper reached 85%. These removal efficiencies have complied the government standard except for copper that had higher initial concentration in wastewater. Kinetic rate also calculated in this study as the basic factor for scaling up the process.

  17. Rapid decay in the relative efficiency of quarantine to halt epidemics in networks

    NASA Astrophysics Data System (ADS)

    Strona, Giovanni; Castellano, Claudio

    2018-02-01

    Several recent studies have tackled the issue of optimal network immunization by providing efficient criteria to identify key nodes to be removed in order to break apart a network, thus preventing the occurrence of extensive epidemic outbreaks. Yet, although the efficiency of those criteria has been demonstrated also in empirical networks, preventive immunization is rarely applied to real-world scenarios, where the usual approach is the a posteriori attempt to contain epidemic outbreaks using quarantine measures. Here we compare the efficiency of prevention with that of quarantine in terms of the tradeoff between the number of removed and saved nodes on both synthetic and empirical topologies. We show how, consistent with common sense, but contrary to common practice, in many cases preventing is better than curing: depending on network structure, rescuing an infected network by quarantine could become inefficient soon after the first infection.

  18. [Feasibility and Economic Analysis of Denitrification of Photovoltaic Wastewater Containing High Fluorine].

    PubMed

    Li, Xiang; Zhu, Liang; Huang, Yong; Yang, Peng-bing; Cui, Jian-hong; Ma, Hang

    2016-04-15

    In order to reduce acid and alkali dosing in wastewater treatment process of polycrystalline silicon by using denitrification after fluoride removal. This experiment studied the feasibility of first removing nitrogen using the denitrification process by start-up denitrifying reactor before fluoride removal. The results showed that the F⁻ concentration in the waste water to had a certain influence on the denitrification. When the concentration of F⁻ was controlled to about 750 mg · L⁻¹, the activity of denitrifying bacteria was not significantly influenced; when the concentration of F⁻ continued to increase, the denitrification efficiency of denitrifying sludge gradually reduced. In wastewater treatment of polycrystalline silicon, if the concentration of F⁻ was kept below 800 mg · L⁻¹, the denitrification performance of denitrifying sludge was not obviously affected. After 93 d operation, the total nitrogen in effluent was stabilized below 50 mg · L⁻¹, the total nitrogen removal efficiency reached 90%, and the removal rate reached 5 kg · (m³ · d)⁻¹. The calculation result showed, compared with the conventional denitrification process after fluoride removal, the proposed process could save about 70% of acid and 100% of alkali dosing, greatly reducing the cost of wastewater treatment.

  19. Bioprocessing for elimination antibiotics and hormones from swine wastewater.

    PubMed

    Cheng, D L; Ngo, H H; Guo, W S; Liu, Y W; Zhou, J L; Chang, S W; Nguyen, D D; Bui, X T; Zhang, X B

    2018-04-15

    Antibiotics and hormones in swine wastewater have become a critical concern worldwide due to the severe threats to human health and the eco-environment. Removal of most detectable antibiotics and hormones, such as sulfonamides (SAs), SMs, tetracyclines (TCs), macrolides, and estrogenic hormones from swine wastewater utilizing various biological processes were summarized and compared. In biological processes, biosorption and biodegradation are the two major removal mechanisms for antibiotics and hormones. The residuals in treated effluents and sludge of conventional activated sludge and anaerobic digestion processes can still pose risks to the surrounding environment, and the anaerobic processes' removal efficiencies were inferior to those of aerobic processes. In contrast, membrane bioreactors (MBRs), constructed wetlands (CWs) and modified processes performed better because of their higher biodegradation of toxicants. Process modification on activated sludge, anaerobic digestion and conventional MBRs could also enhance the performance (e.g. removing up to 98% SMs, 88.9% TCs, and 99.6% hormones from wastewater). The hybrid process combining MBRs with biological or physical technology also led to better removal efficiency. As such, modified conventional biological processes, advanced biological technologies and MBR hybrid systems are considered as a promising technology for removing toxicants from swine wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland.

    PubMed

    Zhang, Xinwen; Hu, Zhen; Ngo, Huu Hao; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Xie, Huijun

    2018-03-01

    Insufficient oxygen supply is identified as one of the major factors limiting organic pollutant and nitrogen (N) removal in constructed wetlands (CWs). This study designed a novel aerated vertical flow constructed wetland (VFCW) using waste gas from biological wastewater treatment systems to improve pollutant removal in CWs, its potential in purifying waste gas was also identified. Compared with unaerated VFCW, the introduction of waste gas significantly improved NH 4 + -N and TN removal efficiencies by 128.48 ± 3.13% and 59.09 ± 2.26%, respectively. Furthermore, the waste gas ingredients, including H 2 S, NH 3 , greenhouse gas (N 2 O) and microbial aerosols, were remarkably reduced after passing through the VFCW. The removal efficiencies of H 2 S, NH 3 and N 2 O were 77.78 ± 3.46%, 52.17 ± 2.53%, and 87.40 ± 3.89%, respectively. In addition, the bacterial and fungal aerosols in waste gas were effectively removed with removal efficiencies of 42.72 ± 3.21% and 47.89 ± 2.82%, respectively. Microbial analysis results revealed that the high microbial community abundance in the VFCW, caused by the introduction of waste gas from the sequencing batch reactor (SBR), led to its optimized nitrogen transformation processes. These results suggested that the VFCW intermittently aerated with waste gas may have potential application for purifying wastewater treatment plant effluent and waste gas, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff.

    PubMed

    Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2016-09-01

    Low-impact development (LID) and green infrastructure (GI) have recently become well-known methods to capture, collect, retain, and remove pollutants in stormwater runoff. The research was conducted to assess the efficiency of LID/GI systems applied in removing the particulate and dissolved heavy metals (Zn, Pb, Cu, Ni, Cr, Cd, and Fe) from urban stormwater runoff. A total of 82 storm events were monitored over a four-year period (2010-2014) on six LID/GI systems including infiltration trenches, tree box filter, rain garden, and hybrid constructed wetlands employed for the management of road, parking lot, and roof runoff. It was observed that the heavy metal concentration increased proportionally with the total suspended solids concentration. Among the heavy metal constituents, Fe appeared to be highly particulate-bound and was the easiest to remove followed by Zn and Pb; while metals such as Cr, Ni, Cu, and Cd were mostly dissolved and more difficult to remove. The mass fraction ratios of metal constituents at the effluent were increased relative to the influent. All the systems performed well in the removal of particulate-bound metals and were more efficient for larger storms greater than 15 mm wherein more particulate-bound metals were generated compared to smaller storms less than 5 mm that produced more dissolved metals. The efficiency of the systems in removing the particulate-bound metals was restricted during high average/peak flows; that is, high-intensity storms events and when heavy metals have low concentration levels.

  2. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Modelling of temperature effects on removal efficiency and dissolved oxygen concentrations in stormwater ponds.

    PubMed

    German, J; Svensson, G; Gustafsson, L G; Vikström, M

    2003-01-01

    The performance of stormwater ponds, operated under winter conditions, was modelled using the commercial software Mike21 and MOUSE. Direct and indirect effects of changing temperature were investigated. The most important effect of winter conditions is the changed hydrology, characterised by long periods with no runoff followed by snowmelt events with large runoff volumes during several days. This gives lower removal efficiencies than during a period with the same precipitation but without winter conditions. For the concentration of dissolved oxygen, wind is an important factor. Consequently the most important effect of an ice cover on the pond is that it prevents the oxygenation effects of the wind. The direct temperature effects on the removal processes are negligible compared to the indirect effects in changed hydrology and forming of ice cover.

  4. Estimation of Qualitative and Quantitative Parameters of Air Cleaning by a Pulsed Corona Discharge Using Multicomponent Standard Mixtures

    NASA Astrophysics Data System (ADS)

    Filatov, I. E.; Uvarin, V. V.; Kuznetsov, D. L.

    2018-05-01

    The efficiency of removal of volatile organic impurities in air by a pulsed corona discharge is investigated using model mixtures. Based on the method of competing reactions, an approach to estimating the qualitative and quantitative parameters of the employed electrophysical technique is proposed. The concept of the "toluene coefficient" characterizing the relative reactivity of a component as compared to toluene is introduced. It is proposed that the energy efficiency of the electrophysical method be estimated using the concept of diversified yield of the removal process. Such an approach makes it possible to substantially intensify the determination of energy parameters of removal of impurities and can also serve as a criterion for estimating the effectiveness of various methods in which a nonequilibrium plasma is used for air cleaning from volatile impurities.

  5. Removal of traces of toluene and p-xylene in indoor air using biofiltration and a hybrid system (biofiltration + adsorption).

    PubMed

    Luengas, Angela Tatiana; Hort, Cécile; Platel, Vincent; Elias, Ana; Barona, Astrid; Moynault, Laurent

    2017-04-01

    Biofiltration technology and the hybrid system combining biofiltration and adsorption (onto activated carbon) were compared as possible methods to toluene and p-xylene at parts per million concentration levels (2-45 and 1-33 ppb, respectively). An organic material was used as packing material for the biofiltration process. Even at low empty bed residence times (EBRTs) and concentrations, toluene removal efficiency reached 100% and p-xylene showed an increasing trend on their removal efficiency over the time using biofiltration. The assessment of by-products and particle generation by the biofilter and the hybrid system were taken into account. Acetone and acetic acid were identified as by-products of the biofilter. Particle emissions in the range of 0.03 to 10 μm were recorded for both systems.

  6. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater.

    PubMed

    Rattanapan, Cheerawit; Boonsawang, Piyarat; Kantachote, Duangporn

    2009-01-01

    A biofiltration system with sulfur oxidizing bacteria immobilized on granular activated carbon (GAC) as packing materials had a good potential when used to eliminate H(2)S. The sulfur oxidizing bacteria were stimulated from concentrated latex wastewater with sulfur supplement under aerobic condition. Afterward, it was immobilized on GAC to test the performance of cell-immobilized GAC biofilter. In this study, the effect of inlet H(2)S concentration, H(2)S gas flow rate, air gas flow rate and long-term operation on the H(2)S removal efficiency was investigated. In addition, the comparative performance of sulfide oxidizing bacterium immobilized on GAC (biofilter A) and GAC without cell immobilization (biofilter B) systems was studied. It was found that the efficiency of the H(2)S removal was more than 98% even at high concentrations (200-4000 ppm) and the maximum elimination capacity was about 125 g H(2)S/m(3)of GAC/h in the biofilter A. However, the H(2)S flow rate of 15-35 l/h into both biofilters had little influence on the efficiency of H(2)S removal. Moreover, an air flow rate of 5.86 l/h gave complete removal of H(2)S (100%) in biofilter A. During the long-term operation, the complete H(2)S removal was achieved after 3-days operation in biofilter A and remained stable up to 60-days.

  7. Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance.

    PubMed

    Fan, Xinfei; Zhao, Huimin; Liu, Yanming; Quan, Xie; Yu, Hongtao; Chen, Shuo

    2015-02-17

    Membrane filtration provides effective solutions for removing contaminants, but achieving high permeability, good selectivity, and antifouling ability remains a great challenge for existing membrane filtration technologies. In this work, membrane filtration coupled with electrochemistry has been developed to enhance the filtration performance of a CNTs/Al2O3 membrane. The as-prepared CNTs/Al2O3 membrane, obtained by coating interconnected CNTs on an Al2O3 substrate, presented good pore-size tunability, mechanical stability, and electroconductivity. For the removal of a target (silica spheres as a probe) with a size comparable to the membrane pore size, the removal efficiency and flux at +1.5 V were 1.1 and 1.5 times higher, respectively, than those without electrochemical assistance. Moreover, the membrane also exhibited a greatly enhanced removal efficiency for contaminants smaller than the membrane pores, providing enhancements of 4 orders of magnitude and a factor of 5.7 for latex particles and phenol, respectively. These results indicated that both the permeability and the selectivity of CNTs/Al2O3 membranes can be significantly improved by electrochemical assistance, which was further confirmed by the removal of natural organic matter (NOM). The permeate flux and NOM removal efficiency at +1.5 V were about 1.6 and 3.0 times higher, respectively, than those without electrochemical assistance. In addition, the lost flux of the fouled membrane was almost completely recovered by an electrochemically assisted backwashing process.

  8. How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review.

    PubMed

    Verlicchi, Paola; Zambello, Elena

    2014-02-01

    This review presents and discusses the data from 47 peer-reviewed journal articles on the occurrence of 137 pharmaceutical compounds in the effluent from various types of constructed wetlands treating urban wastewater. We analyse the observed removal efficiencies of the investigated compounds in order to identify the type of constructed wetland that best removes those most frequently detected. The literature reviewed details experimental investigations carried out on 136 treatment plants, including free water surface systems, as well as horizontal and vertical subsurface flow beds (pilot or full-scale) acting as primary, secondary or tertiary treatments. The occurrence of selected pharmaceuticals in sediments and gravel and their uptake by common macrophytes are also presented and discussed. We analyse the main removal mechanisms for the selected compounds and investigate the influence of the main design parameters, as well as operational and environmental conditions of the treatment systems on removal efficiency. We also report on previous attempts to correlate observed removal values with the chemical structure and chemical-physical properties (mainly pKa and LogKow) of pharmaceutical compounds. We then use the literature data to calculate the average pharmaceutical mass loadings in the effluent from constructed wetlands, comparing the ability of such systems to remove selected pharmaceuticals with the corresponding conventional secondary and tertiary treatments. Finally, the environmental risk posed by pharmaceutical residues in effluents from constructed wetlands acting as secondary and tertiary treatment steps is calculated in the form of the risk quotient ratio. This approach enabled us to provide a ranking of the most critical compounds for the two scenarios, to discuss the ramifications of the adoption of constructed wetlands for removing such persistent organic compounds, and to propose avenues of future research. © 2013.

  9. Organic semiconductor wastewater treatment using a four-stage Bardenpho with membrane system.

    PubMed

    Chung, Jinwook; Fleege, Daniel; Ong, Say Kee; Lee, Yong-Woo

    2014-01-01

    Electronic wastewater from a semiconductor plant was treated with a pilot-scale four-stage Bardenpho process with membrane system. The system was operated over a 14-month period with an overall hydraulic retention time (HRT) ranging from 9.5 to 30 h. With a few exceptions, the pilot plant consistently treated the electronic wastewater with an average removal efficiency of chemical oxygen demand (COD) and total nitrogen of 97% and 93%, respectively, and achieving effluent quality of COD<15 mg/L, turbidity<1, and silt density index<1. Based on removal efficiencies of the pilot plant, it is possible to lower the HRT to less than 9.5 h to achieve comparable removal efficiencies. An energy-saving configuration where an internal recycle line was omitted and the biomass recycle was rerouted to the pre-anoxic tank, can reduce energy consumption by 8.6% and gave removal efficiencies that were similar to the Bardenpho process. The system achieved pre-anoxic and post-anoxic specific denitrification rate values with a 95% confidence interval of 0.091 ± 0.011 g NO₃-N/g MLVSS d and 0.087 ± 0.016 g NO₃-N/g MLVSS d, respectively. The effluent from the four-stage Bardenpho with membrane system can be paired with a reverse osmosis system to provide further treatment for reuse purposes.

  10. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions.

    PubMed

    Zeng, Ming; Soric, Audrey; Roche, Nicolas

    2013-09-01

    In this study, total organic carbon (TOC) biodegradation was simulated by GPS-X software in biofilm reactors with carriers of plastic rings and glass beads under different hydraulic conditions. Hydrodynamic model by retention time distribution and biokinetic measurement by in-situ batch test served as two significant parts of model calibration. Experimental results showed that TOC removal efficiency was stable in both media due to the enough height of column, although the actual hydraulic volume changed during the variation of hydraulic condition. Simulated TOC removal efficiencies were close to experimental ones with low theil inequality coefficient values (below 0.15). Compared with glass beads, more TOC was removed in the filter with plastic rings due to the larger actual hydraulic volume and lower half saturation coefficient in spite of its lower maximum specific growth rate of biofilm, which highlighted the importance of calibrating hydrodynamic behavior and biokinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Study on Gap Flow Field Simulation in Small Hole Machining of Ultrasonic Assisted EDM

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Chang, Hao; Zhang, Wenchao; Ma, Fujian; Sha, Zhihua; Zhang, Shengfang

    2017-12-01

    When machining a small hole with high aspect ratio in EDM, it is hard for the flushing liquid entering the bottom gap and the debris could hardly be removed, which results in the accumulation of debris and affects the machining efficiency and machining accuracy. The assisted ultrasonic vibration can improve the removal of debris in the gap. Based on dynamics simulation software Fluent, a 3D model of debris movement in the gap flow field of EDM small hole machining assisted with side flushing and ultrasonic vibration is established in this paper. When depth to ratio is 3, the laws of different amplitudes and frequencies on debris distribution and removal are quantitatively analysed. The research results show that periodic ultrasonic vibration can promote the movement of debris, which is beneficial to the removal of debris in the machining gap. Compared to traditional small hole machining in EDM, the debris in the machining gap is greatly reduced, which ensures the stability of machining process and improves the machining efficiency.

  12. Hygienic quality of artificial greywater subjected to aerobic treatment: a comparison of three filter media at increasing organic loading rates.

    PubMed

    Lalander, Cecilia; Dalahmeh, Sahar; Jönsson, Håkan; Vinnerås, Björn

    2013-01-01

    With a growing world population, the lack of reliable water sources is becoming an increasing problem. Reusing greywater could alleviate this problem. When reusing greywater for crop irrigation it is paramount to ensure the removal of pathogenic organisms. This study compared the pathogen removal efficiency of pine bark and activated charcoal filters with that of conventional sand filters at three organic loading rates. The removal efficiency of Escherichia coli O157:H7 decreased drastically when the organic loading rate increased fivefold in the charcoal and sand filters, but increased by 2 log10 in the bark filters. The reduction in the virus model organism coliphage phiX174 remained unchanged with increasing organic loading in the charcoal and sand filters, but increased by 2 log10 in the bark filters. Thus, bark was demonstrated to be the most promising material for greywater treatment in terms of pathogen removal.

  13. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.

    PubMed

    Zhang, Zhenchao

    2017-12-01

    In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China (GB8978-1996).

  14. Plasma-Based Water Treatment: Efficient Transformation of Perfluoroalkyl Substances in Prepared Solutions and Contaminated Groundwater.

    PubMed

    Stratton, Gunnar R; Dai, Fei; Bellona, Christopher L; Holsen, Thomas M; Dickenson, Eric R V; Mededovic Thagard, Selma

    2017-02-07

    A process based on electrical discharge plasma was tested for the transformation of perfluorooctanoic acid (PFOA). The plasma-based process was adapted for two cases, high removal rate and high removal efficiency. During a 30 min treatment, the PFOA concentration in 1.4 L of aqueous solutions was reduced by 90% with the high rate process (76.5 W input power) and 25% with the high efficiency process (4.1 W input power). Both achieved remarkably high PFOA removal and defluorination efficiencies compared to leading alternative technologies. The high efficiency process was also used to treat groundwater containing PFOA and several cocontaminants including perfluorooctanesulfonate (PFOS), demonstrating that the process was not significantly affected by cocontaminants and that the process was capable of rapidly degrading PFOS. Preliminary investigation into the byproducts showed that only about 10% of PFOA and PFOS is converted into shorter-chain perfluoroalkyl acids (PFAAs). Investigation into the types of reactive species involved in primary reactions with PFOA showed that hydroxyl and superoxide radicals, which are typically the primary plasma-derived reactive species, play no significant role. Instead, scavenger experiments indicated that aqueous electrons account for a sizable fraction of the transformation, with free electrons and/or argon ions proposed to account for the remainder.

  15. Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system.

    PubMed

    Zuriaga-Agustí, E; Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I; Mendoza-Roca, J A

    2014-05-01

    Ultrafiltration membrane processes have become an established technology in the treatment and reuse of secondary effluents. Nevertheless, membrane fouling arises as a major obstacle in the efficient operation of these systems. In the current study, the performance of tubular ultrafiltration ceramic membranes was evaluated according to the roles exerted by membrane pore size, transmembrane pressure and feed concentration on a binary foulant system simulating textile wastewater. For that purpose, carboxymethyl cellulose sodium salt (CMC) and an azo dye were used as colloidal and organic foulants, respectively. Results showed that a larger pore size enabled more solutes to get adsorbed into the pores, producing a sharp permeate flux decline attributed to the rapid pore blockage. Besides, an increase in CMC concentration enhanced severe fouling in the case of the tighter membrane. Concerning separation efficiency, organic matter was almost completely removed with removal efficiency above 98.5%. Regarding the dye, 93% of rejection was achieved. Comparable removal efficiencies were attributed to the dynamic membrane formed by the cake layer, which governed process performance in terms of rejection and selectivity. As a result, none of the evaluated parameters showed significant influence on separation efficiency, supporting the significant role of cake layer on filtration process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Analysis of mixing conditions and multistage irradiation impact on NOx removal efficiency in the electron beam flue gas treatment process.

    PubMed

    Pawelec, Andrzej; Dobrowolski, Andrzej

    2017-01-01

    In the process of electron beam flue gas treatment (EBFGT), most energy is spent on NO x removal. The dose distribution in the reactor is not uniform and the flue gas flow pattern plays an important role in the process efficiency. It was found that proper construction of the reactor may increase the energy efficiency of the process. The impact of the number of irradiation stages and mixing conditions on NO x removal efficiency was investigated for an ideal case and a practical solution was presented and compared with previously known EBFGT reactor constructions. The research was performed by means of computational fluid dynamics methods in combination with empirical Wittig formula. Two versions of dose distribution were taken for calculations. The results of the research show that for an ideal case, application of multistage irradiation and interstage mixing may reduce the energy consumption in the process by up to 39%. On the other side, simulation of reactor construction modification for two-stage irradiation results in 25% energy consumption reduction. The results of presented case study may be applied for improving the existing reactors and proper design of future installations.

  17. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact.

    PubMed

    Udovic, Metka; Lestan, Domen

    2012-07-01

    The environmental risk of potentially toxic metals (PTMs) in soil can be diminished by their removal. Among the available remediation techniques, soil leaching with various solutions is one of the most effective but data about the impact on soil chemical and biological properties are still scarce. We studied the effect of two common leaching agents, hydrochloric acid (HCl) and a chelating agent (EDTA) on Pb, Zn, Cd removal and accessibility and on physico-chemical and biological properties in one calcareous, pH neutral soil and one non-calcareous acidic soil. EDTA was a more efficient leachant compared to HCl: up to 133-times lower chelant concentration was needed for the same percentage (35%) of Pb removal. EDTA and HCl concentrations with similar PTM removal efficiency decreased PTM accessibility in both soils but had different impacts on soil properties. As expected, HCl significantly dissolved carbonates from calcareous soil, while EDTA leaching increased the pH of the acidic soil. Enzyme activity assays showed that leaching with HCl had a distinctly negative impact on soil microbial and enzyme activity, while leaching with EDTA had less impact. Our results emphasize the importance of considering the ecological impact of remediation processes on soil in addition to the capacity for PTM removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Influence of seasonal climate differences on the pharmaceutical, hormone and personal care product removal efficiency of a drinking water treatment plant.

    PubMed

    Azzouz, Abdelmonaim; Ballesteros, Evaristo

    2013-11-01

    The potential presence of pharmaceuticals, hormones and personal care products in drinking water supplies has raised concerned over the efficiency with which these substances are removed by water treatment processes. In this work, we analyzed samples of raw, unprocessed water collected in different periods and found them to contain higher levels of these contaminants in the colder periods (viz. 12-314 ng L(-1) in autumn and winter as compared to 8-127 ng L(-1) in spring and summer) as a result of their biodegradation being favoured by high temperatures and solar irradiance. We also assessed the efficiency with which these contaminants are removed from drinking water by a water treatment plant operating in south-eastern Spain. Preoxidation with potassium permanganate and chloramination with sodium hypochlorite in the presence of highly concentrated ammonia were found to be the treatment steps most markedly contributing to the removal of pharmaceuticals, hormones and personal care products from drinking water (especially in the warmer periods, where these contaminants were completely removed from the water). By contrast, water treated in the colder periods (autumn and winter) still contained small amounts of ibuprofen and carbamazepine (0.09-0.5 ng L(-1)) which, however, accounted for less than 0.2% of their original concentrations in the water prior to treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Evaluation of porous ceramic as microbial carrier of biofilter to remove toluene vapor.

    PubMed

    Lim, J S; Park, S J; Koo, J K; Park, H

    2001-01-01

    Three kinds of porous ceramic microbe media are fabricated from fly ash, diatomite and a mixture of fly ash and diatomite powders. Water holding capacity, density, porosity, pore size and distribution, compressive strength and micro-structure of each of the fabricated media are measured and compared. The fly ash and diatomite mixture ceramic is evaluated as the best biofilter medium among the three media because of its high compressive strength. It is selected as an experimental biofilter medium inoculated with thickened activated sludge. The laboratory scale biofilter was operated for 42 days under various experimental conditions varying in inlet toluene concentration and flow rate of contaminated air stream. The experimental result shows that the removal efficiency reaches up to 96.6% after 4 days from the start-up. Nutrient limitation is considered as a major factor limiting biofilter efficiency. Biofilter efficiency decreases substantially at the build-up of backpressure, which is largely due to the accumulation of excess VSS within the media. Periodic backwashing of the biofilter is necessary to remove excess biomass and attain stable long-term high removal efficiency. The bed needs to be backwashed when the overall pressure drop becomes greater than 460.6 Pa at space velocity of 100 h-1. A maximum flow rate of 444.85 g m-3hr-1 of toluene elimination by the mixture ceramic biofilter, which is higher than the previously reported values. This indicates that the fly ash and diatomite mixture ceramic biofilter can be effectively applied for removing toluene vapor.

  20. Comparative evaluation of seven commercial products for human serum enrichment/depletion by shotgun proteomics.

    PubMed

    Pisanu, Salvatore; Biosa, Grazia; Carcangiu, Laura; Uzzau, Sergio; Pagnozzi, Daniela

    2018-08-01

    Seven commercial products for human serum depletion/enrichment were tested and compared by shotgun proteomics. Methods were based on four different capturing agents: antibodies (Qproteome Albumin/IgG Depletion kit, ProteoPrep Immunoaffinity Albumin and IgG Depletion Kit, Top 2 Abundant Protein Depletion Spin Columns, and Top 12 Abundant Protein Depletion Spin Columns), specific ligands (Albumin/IgG Removal), mixture of antibodies and ligands (Albumin and IgG Depletion SpinTrap), and combinatorial peptide ligand libraries (ProteoMiner beads), respectively. All procedures, to a greater or lesser extent, allowed an increase of identified proteins. ProteoMiner beads provided the highest number of proteins; Albumin and IgG Depletion SpinTrap and ProteoPrep Immunoaffinity Albumin and IgG Depletion Kit resulted the most efficient in albumin removal; Top 2 and Top 12 Abundant Protein Depletion Spin Columns decreased the overall immunoglobulin levels more than other procedures, whereas specifically gamma immunoglobulins were mostly removed by Albumin and IgG Depletion SpinTrap, ProteoPrep Immunoaffinity Albumin and IgG Depletion Kit, and Top 2 Abundant Protein Depletion Spin Columns. Albumin/IgG Removal, a resin bound to a mixture of protein A and Cibacron Blue, behaved less efficiently than the other products. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Efficiency of Different Endodontic Irrigation and Activation Systems in Removal of the Smear Layer: A Scanning Electron Microscopy Study.

    PubMed

    Karade, Priyatam; Chopade, Rutuja; Patil, Suvarna; Hoshing, Upendra; Rao, Madhukar; Rane, Neha; Chopade, Aditi; Kulkarni, Anish

    2017-01-01

    This in vitro study was designed to evaluate and compare different endodontic irrigation and activation systems for removal of the intracanal smear layer. Forty recently extracted, non-carious human intact single rooted premolars were selected and divided into five groups ( n =10) according to the root canal irrigation systems; syringe and needle irrigation (CTR), sonic irrigation, passive ultrasonic irrigation (PUI) and EndoVac irrigation system. All groups were prepared to #40 apical size with K-files. Each sample was subjected to final irrigation by using four different irrigation/activation systems. After splitting the samples, one half of each root was selected for examination under scanning electron microscope (SEM). The irrigation systems were compared using the Fisher's exact test with the level of significance set at 0.05. The four groups did not differ from each other in the coronal and mid-root parts of the canal. In the apical part of the canal none of the methods could completely remove all the smear layer but EndoVac system showed significantly better removal of smear layer and debris than the other methods. Within the limitations of the present study, the EndoVac system cleaned the apical part of the canal more efficiently than sonic, ultrasonic and syringe and needle irrigation.

  2. A Comparative Study of Raw and Metal Oxide Impregnated Carbon Nanotubes for the Adsorption of Hexavalent Chromium from Aqueous Solution

    PubMed Central

    Qureshi, Muhammad I.; Al-Baghli, Nadhir

    2017-01-01

    The present study reports the use of raw, iron oxide, and aluminum oxide impregnated carbon nanotubes (CNTs) for the adsorption of hexavalent chromium (Cr(VI)) ions from aqueous solution. The raw CNTs were impregnated with 1% and 10% loadings (weight %) of iron oxide and aluminum oxide nanoparticles using wet impregnation technique. The synthesized materials were characterized using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Batch adsorption experiments were performed to assess the removal efficiency of Cr(VI) ions from water and the effects of pH, contact time, adsorbent dosage, and initial concentration of the Cr(VI) ions were investigated. Results of the study revealed that impregnated CNTs achieved significant increase in the removal efficiency of Cr(VI) ions compared to raw CNTs. In fact, both CNTs impregnated with 10% loading of iron and aluminum oxides were able to remove up to 100% of Cr(VI) ions from aqueous solution. Isotherm studies were carried out using Langmuir and Freundlich isotherm models. Adsorption kinetics of Cr(VI) ions from water was found to be well described by the pseudo-second-order model. The results suggest that metallic oxide impregnated CNTs have very good potential application in the removal of Cr(VI) ions from water resulting in better environmental protection. PMID:28487625

  3. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood.

    PubMed

    Arazawa, D T; Kimmel, J D; Finn, M C; Federspiel, W J

    2015-10-01

    The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (<500 mL/min) ECCO2R devices necessitates more efficient gas exchange devices. Since over 90% of blood CO2 is transported as bicarbonate (HCO3(-)), we previously reported development of a carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal from blood in model gas exchange devices by converting bicarbonate to CO2 directly at the HFM surface. This present study tested the hypothesis that dilute sulfur dioxide (SO2) in oxygen sweep gas could further increase CO2 removal by creating an acidic microenvironment within the diffusional boundary layer adjacent to the HFM surface, facilitating dehydration of bicarbonate to CO2. CA was covalently immobilized onto poly (methyl pentene) (PMP) HFMs through glutaraldehyde activated chitosan spacers, potted in model gas exchange devices (0.0151 m(2)) and tested for CO2 removal rate with oxygen (O2) sweep gas and a 2.2% SO2 in oxygen sweep gas mixture. Using pure O2 sweep gas, CA-PMP increased CO2 removal by 31% (258 mL/min/m(2)) compared to PMP (197 mL/min/m(2)) (P<0.05). Using 2.2% SO2 acidic sweep gas increased PMP CO2 removal by 17% (230 mL/min/m(2)) compared to pure oxygen sweep gas control (P<0.05); device outlet blood pH was 7.38 units. When employing both CA-PMP and 2.2% SO2 sweep gas, CO2 removal increased by 109% (411 mL/min/m(2)) (P<0.05); device outlet blood pH was 7.35 units. Dilute acidic sweep gas increases CO2 removal, and when used in combination with bioactive CA-HFMs has a synergistic effect to more than double CO2 removal while maintaining physiologic pH. Through these technologies the next generation of intravascular and paracorporeal respiratory assist devices can remove more CO2 with smaller blood contacting surface areas. A clinical need exists for more efficient respiratory assist devices which utilize low blood flow rates (<500 mL/min) to regulate blood CO2 in patients suffering from acute lung failure. Literature has demonstrated approaches to chemically increase hollow fiber membrane (HFM) CO2 removal efficiency by shifting equilibrium from bicarbonate to gaseous CO2, through either a bioactive carbonic anhydrase enzyme coating or bulk blood acidification with lactic acid. In this study we demonstrate a novel approach to local blood acidification using an acidified sweep gas in combination with a bioactive coating to more than double CO2 removal efficiency of HFM devices. To our knowledge, this is the first report assessing an acidic sweep gas to increase CO2 removal from blood using HFM devices. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers.

    PubMed

    Liu, Zhen-Shu

    2008-11-01

    Activated carbon fibers (ACFs) were used to remove SO2 and NO from incineration flue gas. Three types of ACFs in their origin state and after pretreatment with HNO3, NaOH, and KOH were investigated. The removal efficiencies of SO2 and NO were determined experimentally at defined SO2 and NO concentrations and at temperatures of 150, 200 and 260 degrees C. Experimental results indicated that the removal efficiencies of SO2 and NO using the original ACFs were < 56% and < 27%, respectively. All ACFs modified with HNO3, NaOH, and KOH solution could increase the removal efficiencies of SO(2) and NO. The mesopore volumes and functional groups of ACFs are important in determining the removal of SO2 and NO. When the mesopore volumes of the ACFs are insufficient for removing SO2 and NO, the functional groups on the ACFs are not important in determining the removal of SO2 and NO. On the contrary, the effects of the functional groups on the removal of SO2 and NO are more important than the mesopore volumes as the amount of mesopores on the ACFs is sufficient to remove SO2 and NO. Moreover, the removal efficiencies of SO2 and NO were greatest at 200 degrees C. When the inlet concentration of SO2 increased to 600 ppm, the removal efficiency of SO2 increased slightly and the removal efficiency of NO decreased.

  5. Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan.

    PubMed

    Chang, Qing; Zhang, Min; Wang, Jinxi

    2009-09-30

    A macromolecule heavy metal flocculant mercaptoacetyl chitosan (MAC) was prepared by reacting chitosan with mercaptoacetic acid. In preliminary experiments, the flocculation performance of MAC was evaluated by using wastewater containing Cu(2+) or/and turbidity. Some factors which affect the removal of Cu(2+) and turbidity were also studied. The experimental results showed that: (1) MAC can remove both Cu(2+) and turbidity from wastewater. The removal efficiency of Cu(2+) by using MAC combined with hydrolyzed polyacrylamide is higher than that by only using MAC, the removal efficiency of Cu(2+) reaches above 98%; (2) when water sample containing not only Cu(2+) but also turbidity-causing substance, the removal efficiency of both Cu(2+) and turbidity will be promoted by the cooperation effect of each other, the residual concentration of Cu(2+) reaches below 0.5 mg L(-1) and the turbidity reaches below 3NTU, Cu(2+) is more easily removed by MAC when turbidity is higher; (3) the removal efficiency of Cu(2+) increases with the increase in pH value, contrarily removal efficiency of turbidity decreases with the increase in pH value.

  6. Novel sequential process for enhanced dye synergistic degradation based on nano zero-valent iron and potassium permanganate.

    PubMed

    Wang, Xiangyu; Liu, Peng; Fu, Minglai; Ma, Jun; Ning, Ping

    2016-07-01

    A novel synergistic technology based on nano zero-valent iron (NZVI) and potassium permanganate (KMnO4) was developed for treatment of dye wastewater. The synergistic technology was significantly superior, where above 99% of methylene blue (MB) was removed, comparatively, removal efficiencies of MB with the sole technology of NZVI and KMnO4 at pH 6.39 being 52.9% and 63.1%, respectively. The advantages of this technology include (1) the in situ formed materials (manganese (hydr)oxides, iron hydroxides and MnFe oxide), resulting in the stable and high removal efficiency of MB and (2) high removal capacity in a wide range of pH value. Compared with simultaneous addition system of NZVI and KMnO4, MB removal was remarkably improved by sequential addition system, especially when KMnO4 addition time was optimized at 20 min. Analyses of crystal structure (XRD), morphological difference (FE-SEM), element valence and chemical groups (XPS) of NZVI before and after reaction had confirmed the formation of in situ materials, which obviously enhanced removal of MB by oxidation and adsorption. More importantly, the roles of in situ formed materials and degradation mechanism were innovatively investigated, and the results suggested that NCH3 bond of MB molecule was attacked by oxidants (KMnO4 and in situ manganese (hydr)oxides) at position C1 and C9, resulting in cleavage of chromophore. This study provides new insights about an applicable technology for treatment of dye wastewater. Copyright © 2016. Published by Elsevier Ltd.

  7. Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors.

    PubMed

    Mohammad, Balsam T; Veiga, María C; Kennes, Christian

    2007-08-15

    This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop. (c) 2007 Wiley Periodicals, Inc.

  8. Short tests to couple N₂O emission mitigation and nitrogen removal strategies for landfill leachate recirculation.

    PubMed

    Wu, Dong; Wang, Chao; Dolfing, Jan; Xie, Bing

    2015-04-15

    Landfills implemented with onsite leachate recirculation can efficiently remove pollutants, but currently they are reckoned as N2O emission hot spots. In this project, we evaluated the relationship between N2O emission and nitrogen (N) removal efficiency with different types of leachate recirculated. Nitrate supplemented leachate showed low N2O emission rates with the highest N removal efficiency (~70%), which was equivalent to ~1% nitrogen emitted as N2O. Although in nitrite containing leachates' N removal efficiencies also reached to ~60%, their emitted N2O comprised ~40% of total removed nitrogen. Increasing nitrogen load promoted N2O emission and N removal efficiency, except in ammonia type leachate. When the ratio of BOD to total nitrogen increased from 0.2 to 0.4, the N2O emission flux from nitrate supplemented leachate decreased from ~25 to <0.5 μg N/kg-soil·h. We argue prior to leachate in situ recirculation, sufficient pre-aeration is critical to mitigate N2O surges and simultaneously enhance nitrogen removal efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effects of various organic carbon sources on simultaneous V(V) reduction and bioelectricity generation in single chamber microbial fuel cells.

    PubMed

    Hao, Liting; Zhang, Baogang; Cheng, Ming; Feng, Chuanping

    2016-02-01

    Four ordinary carbon sources affecting V(V) reduction and bioelectricity generation in single chamber microbial fuel cells (MFCs) were investigated. Acetate supported highest maximum power density of 589.1mW/m(2), with highest V(V) removal efficiency of 77.6% during 12h operation, compared with glucose, citrate and soluble starch. Exorbitant initial V(V) concentration led to lower V(V) removal efficiencies and power outputs. Extra addition of organics had little effect on the improvement of MFCs performance. V(V) reduction and bioelectricity generation were enhanced and then suppressed by the increase of conductivity. The larger the external resistance, the higher the V(V) removal efficiencies and voltage outputs. High-throughput 16S rRNA gene pyrosequencing analysis implied the accumulation of Enterobacter which had the capabilities of V(V) reduction, electrochemical activity and fermentation, accompanied with other functional species as Pseudomonas, Spirochaeta, Sedimentibacter and Dysgonomonas. This study steps forward to remediate V(V) contaminated environment based on MFC technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cleaning of optical surfaces by excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Mann, K.; Wolff-Rottke, B.; Müller, F.

    1996-04-01

    The effect of particle removal from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way to clean future very large telescope (VLT) mirrors [1]. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be restored, in particular when an additional solvent film on the sample surface is applied.

  11. Pretreatment of corn straw using the alkaline solution of ionic liquids.

    PubMed

    Liu, Zhen; Li, Longfei; Liu, Cheng; Xu, Airong

    2018-07-01

    In the present work, the pretreatment of corn stalk with the solution of 1-ethyl-3-methylimidazolium acetate ([Emim]Ac) ionic liquid containing NaOH was explored for its lignin removal. The effects of reaction temperature, reaction time, and solid-liquid ratio on the lignin removal efficiency were determined by the response surface methodology (RSM). The pretreatment conditions were optimized by the Box-Behnken design and the comparative study of the composition and structure of corn straw before and after the pretreatment to be: reaction temperature 98.5 °C, reaction time 1.31 h, and solid-liquid ratio 1:8.7. Under the optimized conditions, the cellulose and hemicellulose contents of the corn straw were increased to 85.69% and 9.1%, respectively, and the lignin content was reduced to 2.27% with the lignin removal efficiency up to 87.4%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Heavy metal removal by caustic-treated yeast immobilized in alginate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y.; Wilkins, E.

    1995-12-31

    Saccharomyces cerevisiae yeast biomass was treated with hot alkali to increase its biosorption capacity for heavy metals and then was immobilized in alginate gel. Biosorption capacities for Cu{sup 2+}, Cd{sup 2+}, and Zn{sup 2+} on alginate gel, native yeast, native yeast immobilized in alginate gel, and caustic-treated yeast immobilized in alginate gel were all compared. Immobilized yeasts could be reactivated and reused in a manner similar to the ion exchange resins. Immobilized caustic-treated yeast has high heavy metal biosorption capacity and high metal removal efficiency in a rather wide acidic pH region. The biosorption isotherm of immobilized caustic-treated yeast wasmore » studied, and empirical equations were obtained. The initial pH of polluted water affected the metal removal efficiency significantly, and the equilibrium biosorption capacity seemed to be temperature independent at lower initial metal concentrations.« less

  13. Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater.

    PubMed

    Chen, Xi; Chen, Xiuxia; Wan, Xianwei; Weng, Boqi; Huang, Qin

    2010-12-01

    Both live plants and dried straw of water hyacinth were applied to a sequential treatment of swine wastewater for nitrogen and phosphorus reduction. In the facultative tank, the straw behaved as a kind of adsorbent toward phosphorus. Its phosphorus removal rate varied considerably with contact time between the straw and the influent. In the laboratory, the straw displayed a rapid total phosphorus reduction on a KH(2)PO(4) solution. The adsorption efficiency was about 36% upon saturation. At the same time, the water hyacinth straw in the facultative tank enhanced NH(3)-N removal efficiency as well. However, no adsorption was evident. This study demonstrated an economically feasible means to apply water hyacinth phosphorus straw for the swine wastewater treatment. The sequential system employed significantly reduced the land use, as compared to the wastewater stabilization pond treatment, for pollution amelioration of swine waste. 2010 Elsevier Ltd. All rights reserved.

  14. 40 CFR 63.4566 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... device emission destruction or removal efficiency? 63.4566 Section 63.4566 Protection of Environment... efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test required by § 63.4560...

  15. 40 CFR 63.4566 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... device emission destruction or removal efficiency? 63.4566 Section 63.4566 Protection of Environment... efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test required by § 63.4560...

  16. Study on anaerobic treatment of wastewater containing hexavalent chromium.

    PubMed

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-06-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and COD(Cr) of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.

  17. Biomass characteristics of two types of submerged membrane bioreactors for nitrogen removal from wastewater.

    PubMed

    Liang, Zhihua; Das, Atreyee; Beerman, Daniel; Hu, Zhiqiang

    2010-06-01

    Biomass characteristics and microbial community diversity between a submerged membrane bioreactor with mixed liquor recirculation (MLE/MBR) and a membrane bioreactor with the addition of integrated fixed biofilm medium (IFMBR) were compared for organic carbon and nitrogen removal from wastewater. The two bench-scale MBRs were continuously operated in parallel at a hydraulic retention time (HRT) of 24h and solids retention time (SRT) of 20d. Both MBRs demonstrated good COD removal efficiencies (>97.7%) at incremental inflow organic loading rates. The total nitrogen removal efficiencies were 67% for MLE/MBR and 41% for IFMBR. The recirculation of mixed liquor from aerobic zone to anoxic zone in the MLE/MBR resulted in higher microbial activities of heterotrophic (46.96mgO(2)/gVSSh) and autotrophic bacteria (30.37mgO(2)/gVSSh) in the MLE/MBR compared to those from IFMBR. Terminal Restriction Fragment Length Polymorphism analysis indicated that the higher nitrifying activities were correlated with more diversity of nitrifying bacterial populations in the MLE/MBR. Membrane fouling due to bacterial growth was evident in both the reactors. Even though the trans-membrane pressure and flux profiles of MLE/MBR and IFMBR were different, the patterns of total membrane resistance changes had no considerable difference under the same operating conditions. The results suggest that metabolic selection via alternating anoxic/aerobic processes has the potential of having higher bacterial activities and improved nutrient removal in MBR systems. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Terbuthylazine and desethylterbuthylazine: Recent occurrence, mobility and removal techniques.

    PubMed

    Tasca, Andrea Luca; Puccini, Monica; Fletcher, Ashleigh

    2018-07-01

    The herbicide terbuthylazine (TBA) has displaced atrazine in most of EU countries, becoming one of the most regularly used pesticides and, therefore, frequently detected in natural waters. The affinity of TBA for soil organic matter suggests prolonged contamination; degradation leads to the release of the metabolite desethylterbuthylazine (DET), which has higher water solubility and binds more weakly to organic matter compared to the parent compound, resulting in higher associated risk for contamination of groundwater resources. Additionally, TBA and DET are chemicals of emerging concern because of their persistence and toxicity towards aquatic organisms; moreover, they are known to have significant endocrine disruption capacity to wildlife and humans. Conventional treatments applied during drinking water production do not lead to the complete removal of these chemicals; activated carbon provides the greatest efficiency, whereas ozonation can generate by-products with comparable oestrogenic activity to atrazine. Hydrogen peroxide alone is ineffective to degrade TBA, while UV/H 2 O 2 advanced oxidation and photocatalysis are the most effective processes for oxidation of TBA. It has been determined that direct photolysis gives the highest degradation efficiency of all UV/H 2 O 2 treatments, while most of the photocatalytic degradation is attributed to OH radicals, and TiO 2 solar-photocatalytic ozonation can lead to almost complete TBA removal in ∼30 min. Constructed wetlands provide a valuable buffer capacity, protecting downstream surface waters from contaminated runoff. TBA and DET occurrence are summarized and removal techniques are critically evaluated and compared, to provide the reader with a comprehensive guide to state-of-the-art TBA removal and potential future treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants.

    PubMed

    Matamoros, Víctor; Salvadó, Victòria

    2012-01-01

    The capacity of a full-scale reclamation pond-constructed wetland (CW) system to eliminate 27 emerging contaminants (i.e. pharmaceuticals, sunscreen compounds, fragrances, antiseptics, fire retardants, pesticides, and plasticizers) and the seasonal occurrence of these contaminants is studied. The compounds with the highest concentrations in the secondary effluent are diclofenac, caffeine, ketoprofen, and carbamazepine. The results show that the constructed wetland (61%) removes emerging contaminants significantly more efficiently than the pond (51%), presumably due to the presence of plants (Phragmites and Thypa) as well as the higher hydraulic residence time (HRT) in the CW. A greater seasonal trend to the efficient removal of these compounds is observed in the pond than in the CW. The overall mass removal efficiency of each individual compound ranged from 27% to 93% (71% on average), which is comparable to reported data in advanced treatments (photo-fenton and membrane filtration). The seasonal average content of emerging contaminants in the river water (2488 ng L(-1)) next to the water reclamation plant is found to be higher than the content in the final reclaimed water (1490 ng L(-1)), suggesting that the chemical quality of the reclaimed water is better than available surface waters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.

    PubMed

    Hyung, Hoon; Kim, Jae-Hong

    2009-05-01

    The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).

  1. Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation.

    PubMed

    Mena, Ismael F; Cotillas, Salvador; Díaz, Elena; Sáez, Cristina; Mohedano, Ángel F; Rodrigo, Manuel A

    2017-12-06

    In this work, sono- and photoelectrolysis of synthetic wastewaters polluted with the ionic liquids 1-Butyl-3-methylimidazolium acetate (BmimAc) and chloride (BmimCl) were investigated with diamond anodes. The results were compared to those attained by enhancing bare electrolysis with irradiation by UV light or with the application of high-frequency ultrasound (US). Despite its complex heterocyclic structure, the Bmim + cation was successfully depleted with the three technologies that were tested and was mainly transformed into four different organic intermediates, an inorganic nitrogen species and carbon dioxide. Regardless of the technology that was evaluated, removal of the heterocyclic ring is much less efficient (and much slower) than oxidation of the counter ion. In turn, the counter ion influences the rate of removal of the ionic liquid cation. Thus, the electrolysis and photoelectrolysis of BmimAc are much less efficient than sonoelectrolysis, but their differences become much less important in the case of BmimCl. In this later case, the most efficient technology is photoelectrolysis. This result is directly related to the generation of free radicals in the solution by irradiation of the electrochemical system with UV light, which contributes significantly to the removal of Bmim + . Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    NASA Astrophysics Data System (ADS)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2017-06-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  3. Profiles and removal efficiency of polycyclic aromatic hydrocarbons by two different types of sewage treatment plants in Hong Kong.

    PubMed

    Man, Yu Bon; Chow, Ka Lai; Cheng, Zhang; Mo, Wing Yin; Chan, Yung Hau; Lam, James Chung Wah; Lau, Frankie Tat Kwong; Fung, Wing Cheong; Wong, Ming Hung

    2017-03-01

    Sewage discharge could be a major source of polycyclic aromatic hydrocarbons (PAHs) in the coastal waters. Stonecutters Island and Shatin Sewage Treatment Works (SCISTW and STSTW) in Hong Kong, adopted chemically enhanced primary treatment and biological treatment, respectively. This study aimed at (1) determining the removal efficiencies of PAHs, (2) comparing the capabilities in removing PAHs, and (3) characterizing the profile of each individual PAHs, in the two sewage treatment plants (STPs). Quantification of 16 PAHs was conducted by a Gas Chromatography. The concentrations of total PAHs decreased gradually along the treatment processes (from 301±255 and 307±217ng/L to 14.9±12.1 and 63.3±54.1ng/L in STSTW and SCISTW, respectively). It was noted that STSTW was more capable in removing total PAHs than SCISTW with average total removal efficiency 94.4%±4.12% vs. 79.2%±7.48% (p<0.05). The removal of PAHs was probably due to sorption in particular matter, confirmed by the higher distribution coefficient of individual and total PAHs in solid samples (dewatered sludge contained 92.5% and 74.7% of total PAHs in SCISTW and STSTW, respectively) than liquid samples (final effluent-total contained 7.53% and 25.3% of total PAHs in STSTW and SCISTW, respectively). Despite the impressive capability of STSTW and SCISTW in removing PAHs, there was still a considerable amount of total PAHs (1.85 and 39.3kg/year, respectively for the two STPs) being discharged into Hong Kong coastal waters, which would be an environmental concern. Copyright © 2016. Published by Elsevier B.V.

  4. Reduction of selenite to elemental selenium nanoparticles by activated sludge.

    PubMed

    Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L

    2016-01-01

    Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.

  5. Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H2O2/HCl: Effect of solution chemistry and mechanism investigation.

    PubMed

    Shan, Chao; Chen, Jiajia; Yang, Zhe; Jia, Huichao; Guan, Xiaohong; Zhang, Weiming; Pan, Bingcai

    2018-04-15

    Although the removal of Se(VI) from water by using zero-valent iron (ZVI) is a promising method, passivation of ZVI severely inhibits its performance. To overcome such issue, we proposed an efficient technique to enhance Se(VI) removal via pre-corrosion of ZVI with H 2 O 2 /HCl in a short time (15 min). The resultant pcZVI suspension was weakly acidic (pH 4.56) and contained abundant aqueous Fe 2+ . 57 Fe Mössbauer spectroscopy showed that pcZVI mainly consisted of Fe 0 (66.2%), hydrated ferric oxide (26.3%), and Fe 3 O 4 (7.5%). Efficient removal of Se(VI) from sulfate-rich solution was achieved by pcZVI compared with ZVI (in the absence and presence of H 2 O 2 ) and acid-pretreated ZVI. Moreover, the efficient removal of Se(VI) by pcZVI sustained over a broad pH range (3-9) due to its strong buffering power. The presence of chloride, carbonate, nitrate, and common cations (Na + , K + , Ca 2+ , and Mg 2+ ) posed negligible influence on the removal of Se(VI) by pcZVI, while the inhibitory effect induced by sulfate, silicate, and phosphate indicated the significance of Se(VI) adsorption as a prerequisite step for its removal. The consumption of aqueous Fe 2+ was associated with Se(VI) removal, and X-ray absorption near edge structure revealed that the main pathway for Se(VI) removal by pcZVI was a stepwise reduction of Se(VI) to Se(IV) and then Se 0 as the dominant final state (78.2%). Moreover, higher electron selectivity of pcZVI was attributed to the enhanced enrichment of Se oxyanions prior to their reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Addition of anaerobic tanks to an oxidation ditch system to enhance removal of phosphorus from wastewater.

    PubMed

    Liu, Jun-xin; van Groenestijn, J W; Doddema, H J; Wang, Bao-zhen

    2002-04-01

    The oxidation ditch has been used for many years all over the world as an economic and efficient wastewater treatment technology. It can remove COD, nitrogen and a part of phosphorus efficiently. In the experiment described, a pilot scale Pasveer oxidation ditch system has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that influent total phosphorus(TP) was removed for 35%-50%. After this, two anaerobic tanks with total volume of 11 m3 were added to the system to release phosphorus. As a result, the TP removal efficiency increased by about 20%. At an anaerobic HRT of about 6 hours, a TP removal efficiency of 71% was achieved.

  7. Efficiency of removal of cadmium from aqueous solutions by plant leaves and the effects of interaction of combinations of leaves on their removal efficiency.

    PubMed

    Salim, R; Al-Subu, M; Dawod, E

    2008-05-01

    Removal of cadmium from aqueous solutions using 20 species of plant leaves and combinations of these leaves have been studied. Several factors affecting the removal efficiency have been studied. The most efficient types of plant leaves for the removal of cadmium are those of styrax, plum, pomegranate and walnut. The interaction effect of the combined leaf samples on the efficiency of removal of cadmium has been found to be additive in combinations involving styrax plant leaves but seems to be antagonistic in all other combinations. The optimum experimental conditions for removal of cadmium have been found to be at pH 4.1, using high concentrations of naturally dried plant leaves, using ground leaves and to remove cadmium from agitated aqueous solutions. The percentage of metal removed at an initial cadmium concentration of 10mg/l by the most efficient types of leaves have been found to be 85% for styrax leaves, 85% for plum leaves, 80% for pomegranate leaves, 78% for walnut leaves and 77% for meddler leaves. The presence of foreign ions or complexing agents has been found to reduce the efficiency of removal of cadmium by plant leaves. About 80-85% of the cadmium in charged plant leaves has been released under the influence of changing the pH of the solution, addition of competing ions and the addition of EDTA. The results of removal of cadmium by plant leaves have been found to follow the Freundlich adsorption isotherm, first-order reaction with respect to cadmium and to have intra-pore diffusion as the rate-limiting step.

  8. Monitoring of electrokinetic removal of heavy metals in tailing-soils using sequential extraction analysis.

    PubMed

    Kim, S O; Kim, K W

    2001-08-17

    This research focused on the monitoring of the electrokinetic removal of heavy metals from tailing-soils, and emphasizes the dependency of removal efficiencies upon their physico-chemical states, as demonstrated by the different extraction methods adopted, which included aqua regia and sequential extraction. The tailing-soils examined contained high concentrations of target metal contaminants (Cd=179mgkg(-1), Cu=207mgkg(-1), Pb=5175mgkg(-1), and Zn=7600mgkg(-1)). The removal efficiencies of the different metals were significantly influenced by their speciations, mobilities and affinities (adsorption capacities) in the soil matrix. The removal efficiencies of mobile and weakly bound fractions, such as the exchangeable fraction were more than 90% by electrokinetic treatment, but strongly bound fractions, such as the organically bound species and residual fraction were not significantly removed (less than 30% removal efficiencies). In accordance with the general sequence of mobilities of heavy metals in soils, the removal efficiencies of more mobile heavy metals (Cd, Cu, and Zn) were higher than that of less mobile heavy metal (Pb).

  9. Outstanding adsorption performance of high aspect ratio and super-hydrophobic carbon nanotubes for oil removal.

    PubMed

    Kayvani Fard, Ahmad; Mckay, Gordon; Manawi, Yehia; Malaibari, Zuhair; Hussien, Muataz A

    2016-12-01

    Oil removal from water is a highly important area due to the large production rate of emulsified oil in water, which is considered one of the major pollutants, having a negative effect on human health, environment and wildlife. In this study, we have reported the application of high quality carbon nanotube bundles produced by an injected vertical chemical vapor deposition (IV-CVD) reactor for oil removal. High quality, bundles, super hydrophobic, and high aspect ratio carbon nanotubes were produced. The average diameters of the produced CNTs ranged from 20 to 50 nm while their lengths ranged from 300 to 500 μm. Two types of CNTs namely, P-CNTs and C-CNTs, (Produced CNTs from the IV-CVD reactor and commercial CNTs) were used for oil removal from water. For the first time, thermogravimetric analysis (TGA) was conducted to measure maximum oil uptake using CNT and it was found that P-CNT can take oil up to 17 times their weight. The effect of adsorbent dosage, contact time, and agitation speed were examined on the oil spill clean-up efficiency using batch sorption experiments. Higher efficiency with almost 97% removal was achieved using P-CNTs compared to 87% removal using C-CNTs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A combined process of adsorption and Fenton-like oxidation for furfural removal using zero-valent iron residue.

    PubMed

    Li, Furong; Bao, Jianguo; Zhang, Tian C; Lei, Yutian

    2015-01-01

    In this study, the feasibility of using a combined adsorption and Fenton-like oxidation process (with zero-valent iron (ZVI) residue from heat wraps as an absorbent and catalyst) to remove furfural in the solution was evaluated. The influencing parameters (e.g. pH, H2O2 concentration, initial furfural concentration) and the reusability of ZVI residue (to replace the iron powder) were estimated. The ZVI residue was found to have much better adsorption effect on furfural at pH 2.0 compared with pH 6.7. For Fenton-like reaction alone with ZVI residue, the highest furfural removal of 97.5% was observed at the concentration of 0.176 mol/L H2O2, and all of the samples had >80% removal efficiency at different initial furfural concentrations of 2, 10, 20, 30 and 40 mmol/L. However, with a combined adsorption and Fenton-like oxidation, the removal efficiency of furfural was nearly 100% for all treatments. The ZVI residue used for furfural removal was much better than that of iron powder in the Fenton-like reaction at a seven-cycle experiment. This study suggests the combined process of adsorption and Fenton-like oxidation using ZVI residue is effective for the treatment of furfural in the liquid.

  11. Accelerated effects of nano-ZnO on phosphorus removal by Chlorella vulgaris: Formation of zinc phosphate crystallites.

    PubMed

    Xiao, Huaixian; Liu, Na; Tian, Ke; Liu, Shixiang; Ge, Fei

    2018-09-01

    Nanoparticles have been reported to induce toxicity to aquatic organisms, however, their potential impacts on phosphorus removal from wastewater by algae are unclear. In this study, the effects of nanoparticle ZnO (nano-ZnO) on phosphate (PO 4 3- ) removal by a green alga Chlorella vulgaris were investigated. We found that PO 4 3- removal efficiency was accelerated with high concentrations of nano-ZnO (0.04-0.15mM) but reduced with low concentrations of nano-ZnO (0.005-0.04mM) compared to the control (without nano-ZnO), suggesting that PO 4 3- removal efficiency by C. vulgaris was related to nano-ZnO concentrations. Moreover, we observed changes of nano-ZnO morphology and detected element P on the surface of nano-ZnO by using transmission electronic microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDX), indicating that PO 4 3- was interacted with nano-ZnO or the dissolved Zn 2+ from nano-ZnO. Furthermore, we confirmed this interaction induced the formation of Zn 3 (PO 4 ) 2 crystallites sedimentation by employing X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS), which finally accelerates the removal of PO 4 3- . Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Floating treatment wetlands for domestic wastewater treatment.

    PubMed

    Faulwetter, J L; Burr, M D; Cunningham, A B; Stewart, F M; Camper, A K; Stein, O R

    2011-01-01

    Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO(3)-N. Complete removal of NO(3)-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment.

  13. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    PubMed

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more efficient Hg-removal. Overall mercury removal efficiencies from flue gas can attain 80-95%, depending on sorbent type/impregnation, sorbent surplus and operating conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin.

    PubMed

    Gusiatin, Zygmunt Mariusz; Klimiuk, Ewa

    2012-01-01

    The influence of multiple saponin washing on copper, cadmium and zinc removal and stability in three types of soils (loamy sand, loam, silty clay) was investigated. Distribution of metals and their mobility measured as the ratio of exchangeable form to the sum of all fractions in soils was differential. After single washing the highest efficiency of metal removal was obtained in loamy sand (82-90%) and loam (67-88%), whereas the lowest in silty clay (39-62%). In loamy sand and loam metals had higher mobility factors (44-61% Cu, 60-76% Cd, and 68-84% Zn) compared to silty clay (9% Cu, 28% Cd and 36% Zn). Triplicate washing led to increase both efficiency of metal removal and percentage content of their stable forms. In consequence, fractional patterns for metals before and after treatment changed visibly as a result of their redistribution. Based on the redistribution index, the most stable metal (mainly in residual and organic fractions) after triplicate washing was Cu in loamy sand and loam. For silty clay contaminated with Cd, effective metal removal and its stabilization required a higher number of washings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Wastewater treatment for nutrient removal with Ecuadorian native microalgae.

    PubMed

    Benítez, María Belén; Champagne, Pascale; Ramos, Ana; Torres, Andres F; Ochoa-Herrera, Valeria

    2018-04-12

    The aim of this project was to study the feasibility of utilizing native microalgae for the removal of nitrogen and phosphorus, as a potential secondary wastewater treatment process in Ecuador. Agitation and aeration batch experiments were conducted using synthetic secondary wastewater effluent, to determine nitrogen and phosphorus removal efficiencies by a native Ecuadorian microalgal strain. Experimental results indicated that microalgal cultures could successfully remove nitrogen and phosphorus. [Formula: see text] and [Formula: see text] removal efficiencies of 52.6 and 55.6%, and 67.0 and 20.4%, as well as [Formula: see text] production efficiencies of 87.0 and 93.1% were reported in agitation and aeration photobioreactors, respectively. Aeration was not found to increase the nutrient removal efficiency of [Formula: see text]. Moreover, in the case of [Formula: see text], a negative impact was observed, where removal efficiencies decreased by a factor of 3.3 at higher aeration rates. To the best of our knowledge, this is the first report of the removal of nutrients by native Ecuadorian Chlorella sp., hence the results of this study would indicate that this native microalgal strain could be successfully incorporated in a potential treatment process for nutrient removal in Ecuador.

  16. Dissolved Nutrient Retention Dynamics in River Networks: A Modeling Investigation of Transient Flow and Scale Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu

    In this paper, we use a dynamic network flow model, coupled with a transient storage zone biogeochemical model, to simulate dissolved nutrient removal processes at the channel network scale. We have explored several scenarios in respect of the combination of rainfall variability, and the biological and geomorphic characteristics of the catchment, to understand the dominant controls on removal and delivery of dissolved nutrients (e.g., nitrate). These model-based theoretical analyses suggested that while nutrient removal efficiency is lower during flood events compared to during baseflow periods, flood events contribute significantly to bulk nutrient removal, whereas bulk removal during baseflow periods ismore » less. This is due to the fact that nutrient supply is larger during flood events; this trend is even stronger in large rivers. However, the efficiency of removal during both periods decreases in larger rivers, however, due to (i) increasing flow velocities and thus decreasing residence time, and (ii) increasing flow depth, and thus decreasing nutrient uptake rates. Besides nutrient removal processes can be divided into two parts: in the main channel and in the hyporheic transient storage zone. When assessing their relative contributions the size of the transient storage zone is a dominant control, followed by uptake rates in the main channel and in the transient storage zone. Increasing size of the transient storage zone with downstream distance affects the relative contributions to nutrient removal of the water column and the transient storage zone, which also impacts the way nutrient removal rates scale with increasing size of rivers. Intra-annual hydrologic variability has a significant impact on removal rates at all scales: the more variable the streamflow is, compared to mean discharge, the less nutrient is removed in the channel network. A scale-independent first order uptake coefficient, ke, estimated from model simulations, is highly dependent on the relative size of the transient storage zone and how it changes in the downstream direction, as well as the nature of hydrologic variability.« less

  17. Removal of bacteriophages with different surface charges by diverse ceramic membrane materials in pilot spiking tests.

    PubMed

    Hambsch, B; Bösl, M; Eberhagen, I; Müller, U

    2012-01-01

    This study examines mechanisms for removal of bacteriophages (MS2 and phiX174) by ceramic membranes without application of flocculants. The ceramic membranes considered included ultra- and microfiltration membranes of different materials. Phages were spiked into the feed water in pilot scale tests in a waterworks. The membranes with pore sizes of 10 nm provided a 2.5-4.0 log removal of the phages. For pore sizes of 50 nm, the log removal dropped to 0.96-1.8. The membrane with a pore size of 200 nm did not remove phages. So, the removal of both MS2- and phiX174-phages depended on the pore size of the membranes. But apart from pore size also other factors influence the removal of phages. Removal was 0.5-0.9 log higher for MS2-phages compared with phiX174-phages. Size exclusion seems to be the major but not the only mechanism which influences the efficiency of phage removal by ceramic membranes.

  18. Removal of Surrogate Bacteriophages and Enteric Viruses from Seeded Environmental Waters Using a Semi-technical Ultrafiltration Unit.

    PubMed

    Frohnert, Anne; Kreißel, Katja; Lipp, Pia; Dizer, Halim; Hambsch, Beate; Szewzyk, Regine; Selinka, Hans-Christoph

    2015-03-19

    Experiments to determine the removal of viruses in different types of water (surface water from two reservoirs for drinking water treatment, treated groundwater and groundwater contaminated with either 5 or 30 % of wastewater) by ultrafiltration were performed with a semi-technical ultrafiltration unit. Concentrations of human adenoviruses (HAdVs), murine norovirus (MNV), and the bacteriophages MS2, ΦX174 and PRD1 were measured in the feed water and the filtrate, and log removal values were calculated. Bacteria added to the feed water were not detected in the filtrates. In contrast, in most cases viruses and bacteriophages were still present in the filtrates: log removal values were in the range of 1.4-6.3 depending on virus sizes and water qualities. Best removals were observed with bacteriophage PRD1 and HAdVs, followed by MNV and phages MS2 and ΦX174. Virus size, however, was not the only criterion for efficient removal. In diluted wastewater as compared to drinking water and uncontaminated environmental waters, virus removal was clearly higher for all viruses, most likely due to higher membrane fouling. For quality assessment purposes of membrane filtration efficiencies with regard to the elimination of human viruses the small bacteriophages MS2 and ΦX174 should be used as conservative viral indicators.

  19. Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process.

    PubMed

    Guo, Jianning; Hu, Jiangyong; Tao, Yi; Zhu, Jia; Zhang, Xihui

    2014-04-01

    Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. Modified clinoptilolite in the removal of iron and manganese from water

    NASA Astrophysics Data System (ADS)

    Barloková, D.; Ilavský, J.

    2012-11-01

    It is necessary to treat water intended for drinking purposes in many cases to meet the requirements of the Regulation of the Government of the Slovak Republic No. 496/2010 on Drinking Water. There is a tendency to look for technology with new, more efficient and cost-effective materials and technologies. The goal of this study is to compare activated natural zeolite known as clinoptilolite (rich deposits of clinoptilolite were found in the region of East Slovakia Region in the 1980s) with the imported Greensand and Cullsorb materials in the removal of iron and manganese from water. The results obtained from experiments carried out at WTP Kúty prove that Klinopur-Mn is suitable for the removal of iron and manganese from water and is comparable with the imported materials.

  1. Performance evaluation and microbial community analysis of the function and fate of ammonia in a sulfate-reducing EGSB reactor.

    PubMed

    Wang, Depeng; Liu, Bo; Ding, Xinchun; Sun, Xinbo; Liang, Zi; Sheng, Shixiong; Du, Lingfeng

    2017-10-01

    Ammonia is widely distributed in sulfate-reducing bioreactor dealing with sulfate wastewater, which shows potential effect on the metabolic pathway of sulfate and ammonia. This study investigates the sulfate-reducing efficiency and microbial community composition in the sulfate-reducing EGSB reactor with the increasing ammonia loading. Results indicated that, compared with low ammonia loading (166-666 mg/L), the sulfate and organic matter removal efficiencies were improved gradually with the appropriate ammonia loading (1000-2000 mg/L), which increased from 63.58 ± 3.81 to 71.08 ± 1.36% and from 66.24 ± 1.32 to 81.88 ± 1.83%, respectively. Meanwhile, with the appropriate ratio of ammonia and sulfate (1.5-3.0) and hydraulic retention time (21 h), the sulfate-reducing anaerobic ammonia oxidation (SRAO) process was occurred efficiently, inducing the accumulation of S 0 (270 mg/L) and the simultaneous ammonia removal (70.83%) in EGSB reactor. Moreover, the key sulfate-reducing bacteria (SRB) (Desulfovibrio) and denitrification bacteria (Pseudomonas and Alcaligenes) were responsible for the sulfate and nitrogen removal in these phases, which accounted for 3.66-5.54 and 3.85-9.13%, respectively. However, as the ammonia loading higher than 3000 mg/L (phases 9 and 10), the sulfate-reducing efficiency was decreased to only 28.3 ± 1.26% with the ammonia removal rate of 18.4 ± 3.37% in the EGSB reactor. Meanwhile, the predominant SRB in phases 9 and 10 were Desulfomicrobium (1.22-1.99%) and Desulfocurvus (4.0-5.46%), and the denitrification bacteria accounted for only 0.88% (phase 10), indicating the low nitrogen removal rate.

  2. Sorption of pharmaceuticals to soil organic matter in a constructed wetland by electrostatic interaction.

    PubMed

    Park, Jongkwan; Cho, Kyung Hwa; Lee, Eunkyung; Lee, Sungyun; Cho, Jaeweon

    2018-09-01

    There is a growing interest in the removal of pharmaceuticals from wastewater because pharmaceuticals have potential ecotoxicological effects. Among several removal mechanisms, the sorption of pharmaceuticals to sediment organic matter is an important mechanism related to the mobility of pharmaceuticals. This study investigated the sorption of pharmaceuticals to soil organic matter (SOM) by electrostatic interactions. SOM located on the surface of soil/sediment generally has a negative charge because of the functional groups present (i.e., carboxylic and phenolic groups). Thus, the electrical characteristics of SOM can induce electrical attraction with positively charged chemical compounds. In this study, SOM was extracted from soils under different aquatic plants (Acorus and Typha) in a constructed wetland in Korea. Experiments were carried out with the following three pharmaceuticals with different electrical characteristics at pH 7: atenolol (positive charge; pKa 9.5), carbamazepine (neutral; no pKa), and ibuprofen (negative charge; pKa 4.9). The SOM in the Acorus pond had a higher hydrophobicity and electrical charge density than that in the Typha pond. Regarding the sorption efficiency between SOM and charged pharmaceuticals, atenolol showed highest sorption efficiency (~60%), followed by carbamazepine (~40%) and ibuprofen (<~30%). In addition, the removal efficiency of the targeted pharmaceuticals in the constructed wetland was estimated by comparing the concentrations of the pharmaceuticals at sampling points with flowing water. The results showed that the removal efficiency of atenolol and carbamazepine was almost 50%, whereas that of ibuprofen was only ~10%. A comparison of the results of lab-scale and field experiments showed that electrostatic interaction is one of the major pharmaceutical removal mechanisms in a constructed wetland. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Removal of Free Fatty Acid from Plant Oil by the Adsorption Process

    NASA Astrophysics Data System (ADS)

    Chung, Tsair-Wang; Wu, Yi-Ling; Hsu, Shih-Hong

    2018-05-01

    The food oil refinery process for deacidification is ususally conducted by the neutralization after degumming. In this study, commercialized resins will be used as adsorbents to remove the free fatty acid (FFA) in food oil without using any solvent. Applying this environmental friendly green process, the energy efficiency will be increased and the waste water will be reduced compared to the traditional process. The selected adsorbent can be reused which may reduce the process cost. Instead of using alkali neutralization, the proposed process may reduce the concern of food oil security. The commercial resins A26OH and IRA900Cl were compared as adsorbents to remove the FFA in deacidification for refinery of food oil without adding any alkali chemicals. This process will be conducted to remove the FFA form peanut oil in this study. Besides, this study will get the adsorption isotherms for one of the better sorbents of A26OH or IRA900Cl to remove FFA from peanut oil under 25, 35, and 45°C. The Langmuir and Freundlich isotherm models were compared to fit the experimental data. The obtained isotherm data is important for the adsorption system design.

  4. Study on the Enhanced Operation of Self-Ventilation-Based Coupling System for Domestic Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Kong, Lingwei; Wang, Lu; Zhang, Yi; Mei, Rongwu; Zhang, Yu

    2018-06-01

    In this study, a new coupling system of biological filter bed and subsurface-flow constructed wetland based on the self-ventilation network was proposed, and the comparative pollutant removal efficiency at low and high influent concentration of the pilot coupling system with different substrates configurations were investigated. The study found that: The comparison system (b) had better removal rates than that of the original system (a), and the removal rate when treating low influent concentration was 74.10%, 94.14%, 73.57% and 69.53%, while in high influent concentration case was 81.30%, 90.28%, 88.57% and 75.36% for CODCr , NH4+ -N, TN and TP, respectively. The removal of the above main water indexes of the comparison system (b) promoted by 11.00%, 11.55%, 2.69% and 8.09% respectively in low influent concentration case and 4.20%, 9.20%, 7.66% and 13.61% respectively in high influent concentration case when comparing to the original system (a), which showed that the optimized configuration of various kinds of substrates was significant and was more beneficial to the degradation and removal of pollutants. The adsorption and interception function of substrates in the constructed wetland was the main way of phosphorus removal. The function of self-ventilation ensured the amount of DO in the coupling system, making the phosphorus removal was less affected comparing to structure of traditional wetland.

  5. Occurrence, removal and release characteristics of dissolved brominated flame retardants and their potential metabolites in various kinds of wastewater.

    PubMed

    Kim, Un-Jung; Lee, In-Seok; Oh, Jeong-Eun

    2016-11-01

    The dissolved phase compound and congener specific distribution characteristics of three widely used brominated flame retardants (BFRs) comprising 27 polybrominated diphenyl ethers (PBDEs), 12 hydroxylated and methoxylated metabolites (OH- and MeO-BDEs), 3 hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA) were investigated in influents and effluents of various kinds of wastewater treatment plants (WWTPs), with varying source of wastewater and type of treatment, and nearby rivers in Korea. The concentration of total BFRs were the highest in industrial WWTPs nearby large industrial complexes specialized in heavy chemicals. The distribution of BFRs was differed according to composition of wastewater, with predominance of TBBPA in WWTPs with higher portion of inflowing industrial wastewater. Among HBCD diastereomers, γ-HBCD was dominant in industrial wastewater as consistent to the previous reports, however, similar contribution of α- and γ-HBCD was found in sewage and human wastewater. Through treatment process, PBDEs were the most effectively removed with a mean removal efficiency of 68.3%. HBCDs and TBBPA had removal efficiencies of 41.3% and 48.7%, respectively. The lowest removal efficiency (10.3%) was observed for PBDE metabolites and their concentration in effluent of human wastewater was even increased at maximum 1.9 fold compared with influent, implying the possibility of transformation during treatment. The estimated dissolved phase daily load of PBDEs was highest in sewage while that of TBBPA was highest in industrial wastewater. Copyright © 2016. Published by Elsevier Ltd.

  6. Removal of alkylphenols and polybromodiphenylethers by a biofiltration treatment plant during dry and wet-weather periods.

    PubMed

    Gilbert, S; Gasperi, J; Rocher, V; Lorgeoux, C; Chebbo, G

    2012-01-01

    This paper investigates the occurrence of alkylphenols (APs) and polybromodiphenylethers (PBDEs) in raw wastewater during dry and wet-weather periods, and their removal by physico-chemical lamellar settling and biofiltration techniques. Due to in-sewer deposit erosion and, to a lesser extent, to external inputs, raw effluents exhibit from 1.5 to 5 times higher AP and PBDE concentrations during wet periods compared with dry ones. The lamellar settler obtains high removal of APs and PBDEs under both dry and wet-weather flows (>53% for Σ(6)AP and >89% for Σ(4)PBDE), confirming the insensitivity of this technique to varying influent conditions. Indeed, despite the higher pollutant concentrations observed in raw effluents under wet-weather flows, adjusting the addition of coagulant-flocculent allows for efficient removal. By combining physical and biological processes, the biofiltration unit treats nutrient pollution, as well as Σ(6)AP and Σ(4)PBDE contamination (58 ± 5% and 75 ± 6% respectively). Although the operating conditions of the biofiltration unit are modified during wet periods, the performance in nutrient pollution, APs and light PBDE congeners remains high. Nevertheless, lower efficiency has been noted in nitrogen pollution, i.e. no denitrification occurs, and BDE-209 (not removed during wet-weather periods). In conclusion, this study demonstrates that the combination of both techniques treats AP and PBDE pollution efficiently during dry periods, but that they are also suitable for stormwater treatment.

  7. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    NASA Astrophysics Data System (ADS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  8. Application of steel slag coated with sodium hydroxide to enhance precipitation-coagulation for phosphorus removal.

    PubMed

    Park, Taejun; Ampunan, Vanvimol; Maeng, Sungkyu; Chung, Eunhyea

    2017-01-01

    Phosphorus removal has been studied for decades to reduce the environmental impact of phosphorus in natural waterbodies. Slag has been applied for the phosphorus removal by several mechanisms. In this study, sodium hydroxide coating was applied on the slag surface to enhance the efficiency of precipitation-coagulation process. In the batch test, it was found that the capacity of the slag to maintain high pH decreases with increasing its exposure time to the aqueous solution. In the column test, the coarse-grained coated slag showed higher phosphorus removal efficiency than the fine-grained uncoated slag. The coated slag maintained pH higher than uncoated slag and, accordingly, the removal efficiency of phosphorus was higher. Especially, when pH was less than 8, the removal efficiency decreased significantly. However, coated slag provided an excess amount of aluminum and sodium. Thus, a return process to reuse aluminum and sodium as a coagulant was introduced. The return process yields longer lifespan of slag with higher phosphorus removal and lower concentration of cations in the effluent. With the return process, the phosphorus removal efficiency was kept higher than 60% until 150 bed volumes; meanwhile, the efficiency without return process became lower than 60% at 25 bed volumes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Decolourization of remazol black-5 textile dyes using moving bed bio-film reactor

    NASA Astrophysics Data System (ADS)

    Pratiwi, R.; Notodarmojo, S.; Helmy, Q.

    2018-01-01

    The desizing and dyeing processes in the textile industries produces wastewaster containing high concentration of organic matter and colour, so it needs treatment before released to environment. In this research, removal of azo dye (Remazol Black 5/RB 5) and organic as COD was performed using Moving Bed Biofilm Reactor (MBBR). MBBR is biological treatment process with attached growth media system that can increase removal of organic matter in textile wastewater. The effectiveness of ozonation as pre-treatment process to increase the removal efficiency in MBBR was studied. The results showed that in MBBR batch system with detention time of 1 hour, pre-treatment with ozonation prior to MBBR process able to increase the colour removal efficiency of up to 86.74%. While on the reactor without ozone pre-treatment, the colour removal efficiency of up to 68.6% was achieved. From the continuous reactor experiments found that both colour and COD removal efficiency depends on time detention of RB-5 dyes in the system. The higher of detention time, the higher of colour and COD removal efficiency. It was found that optimum removal of colour and COD was achieved in 24 hour detention time with its efficiency of 96.9% and 89.13%, respectively.

  10. A comparative study of occurrence and fate of endocrine disruptors: diethyl phthalate and dibutyl phthalate in ASP- and SBR-based wastewater treatment plants.

    PubMed

    Saini, Gita; Pant, Shalini; Singh, Shri Om; Kazmi, A A; Alam, Tanveer

    2016-11-01

    Phthalates are endocrine-disrupting chemicals which affect endocrine system by bio-accumulation in aquatic organisms and produce adverse health effects in aquatic organisms as well as human beings, when come in contact. Present study focuses on occurrence and removal of two phthalates: diethylphthalate (DEP) and dibutylphthalate (DBP) in two full-scale wastewater treatment plants (WWTPs) i.e. sewage treatment plants (STPs) based on well-adopted technologies, activated sludge process (ASP) and sequencing batch reactor (SBR).Gas chromatography-mass spectrometry (GC-MS) analysis was performed for both wastewater and sludge sample for determination and identification of the concentration of these compounds in both STPs by monitoring the STPs for 9 months. It was observed that the concentration of DEP was less than DBP in the influent of ASP and SBR. Average concentrations of DEP and DBP in sludge sample of ASP were found to be 2.15 and 2.08 ng/g, whereas in SBR plant, these values were observed as 1.71 and 2.01 ng/g, respectively. Concerning the removal efficiency of DEP, SBR and ASP plants were found effective with removal efficiency of 91.51 and 91.03 %, respectively. However, in the case of DBP, SBR showed lower removal efficiency (85.42 %) as compared to ASP (92.67 %). Comparative study of both plants proposed that in ASP plant, DBP reduction was higher than the SBR. Fourier transformation infrared (FTIR) analysis also confirmed the same result of sludge analysis for both STPs. Sludge disposal studied with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and thermo-gravimetric analysis (TGA) techniques confirmed that sludge of both STPs have high calorific value and can be used as fuel to make fuel-briquettes and bottom ash to make firebricks.

  11. Chromium precipitation from tanning spent liquors using industrial alkaline residues: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca Almeida, M.A.; Boaventura, R.A.R.

    1998-07-01

    Chromium precipitation from spent tanning liquors using industrial alkaline tailings is described and removal efficiencies are compared with those obtained with traditional chemicals as NaOH, CaO and MgO: (1) using steelmaking dusts at dosages up to 70 g/l residual Cr remains {ge} 3.7 mg/l. Moreover Cr and mainly Pb are partially leached by the spent tanning liquor, therefore limiting the use of this industrial residue as Cr precipitant; (2) a dosage of 80 g/l (dry basis) of chemical sludge from a water treatment plant results in a removal efficiency of 99.97% Cr and residual Cr {le} 2 mg/l under experimentalmore » conditions that include stirring at 100 rpm for 1 h and settling for 23 h. Sedimentation time may be reduced to 2 h if stirring is extended to 2 h. Resulting sludge volume is about 400 ml/l. However, during Cr precipitation, Al is leached form the added product up to about 40 mg Al per liter of supernatant; (3) precipitation using acetylene production sludge only requires a dosage of 16 g/l (dry basis) to remove 99.96% Cr after stirring for 1 h and settling for 2 h. The soluble Cr concentration in the clarified effluent is {le} 2 mg/l and the sludge volume about 500 ml/l. This Cr level can also be achieved at a dosage of 14 g/l, provided the stirring time is increased to 3 h; (4) these results are comparable with those using either CaO or MgO at similar dosages; and (5) NaOH at dosages between 6.4 and 14 g/l proved to be not sufficiently effective for Cr precipitation. Although removal efficiencies up to 99.9% are achieved, residual Cr is always above 8.7 mg/l. Additionally, the resulting sludge is not very dense, thus leading to high sludge volume production.« less

  12. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland.

    PubMed

    Zhou, Xu; Wang, Xuezhen; Zhang, Hai; Wu, Haiming

    2017-10-01

    Recently, vertical flow constructed wetlands (VFCWs) with intermittent aeration have been proven as an efficient technology to enhance removal efficiency of organics and nitrogen for wastewater treatment. However, the low denitrification effect in VFCWs was a problem for treating low carbon source wastewater. In this study, intermittent aeration and biochar, produced by biomass pyrolysis, was used to promote the nitrogen removal in VFCWs for low C/N domestic wastewater. Four systems, including non-aerated with non-biochar VFCW, non-aerated with biochar VFCW, aerated with non-biochar VFCW and aerated with biochar VFCW, were conducted for comparing their treatment performances. The results showed that much higher removal of COD (94.9%), NH 4 + -N (99.1%), TN (52.7%) and lower N 2 O emission (60.54μg·m -2 ·h -1 ) was obtained in aerated VFCW with biochar addition. The results suggested that adding biochar to intermittent aerated VFCWs could be an effective and appropriate strategy for low C/N wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Treatment of leachate by electrocoagulation using aluminum and iron electrodes.

    PubMed

    Ilhan, Fatih; Kurt, Ugur; Apaydin, Omer; Gonullu, M Talha

    2008-06-15

    In this paper, treatment of leachate by electrocoagulation (EC) has been investigated in a batch process. The sample of leachate was supplied from Odayeri Landfill Site in Istanbul. Firstly, EC was compared with classical chemical coagulation (CC) process via COD removal. The first comparison results with 348 A/m2 current density showed that EC process has higher treatment performance than CC process. Secondly, effects of process variables such as electrode material, current density (from 348 to 631 A/m2), pH, treatment cost, and operating time for EC process are investigated on COD and NH4-N removal efficiencies. The appropriate electrode type search for EC provided that aluminum supplies more COD removal (56%) than iron electrode (35%) at the end of the 30 min operating time. Finally, EC experiments were also continued to determine the efficiency of ammonia removal, and the effects of current density, mixing, and aeration. All the findings of the study revealed that treatment of leachate by EC can be used as a step of a joint treatment.

  14. Mercury Adsorption and Oxidation over Cobalt Oxide Loaded Magnetospheres Catalyst from Fly Ash in Oxyfuel Combustion Flue Gas.

    PubMed

    Yang, Jianping; Zhao, Yongchun; Chang, Lin; Zhang, Junying; Zheng, Chuguang

    2015-07-07

    Cobalt oxide loaded magnetospheres catalyst from fly ash (Co-MF catalyst) showed good mercury removal capacity and recyclability under air combustion flue gas in our previous study. In this work, the Hg(0) removal behaviors as well as the involved reactions mechanism were investigated in oxyfuel combustion conditions. Further, the recyclability of Co-MF catalyst in oxyfuel combustion atmosphere was also evaluated. The results showed that the Hg(0) removal efficiency in oxyfuel combustion conditions was relative high compared to that in air combustion conditions. The presence of enriched CO2 (70%) in oxyfuel combustion atmosphere assisted the mercury oxidation due to the oxidation of function group of C-O formed from CO2. Under both atmospheres, the mercury removal efficiency decreased with the addition of SO2, NO, and H2O. However, the enriched CO2 in oxyfuel combustion atmosphere could somewhat weaken the inhibition of SO2, NO, and H2O. The multiple capture-regeneration cycles demonstrated that the Co-MF catalyst also present good regeneration performance in oxyfuel combustion atmosphere.

  15. A laser-abrasive method for the cutting of enamel and dentin.

    PubMed

    Altshuler, G B; Belikov, A V; Sinelnik, Y A

    2001-01-01

    This paper introduced a new method for the removal of hard dental tissue based upon the use of particles accelerated by laser irradiation, which the authors have called the laser-abrasive method. The particles used were sapphire as powder or an aqueous suspension. The effect of the products of enamel ablation was also investigated. The particles were accelerated using submillisecond pulses of Er:YAG and Nd:YAG lasers. A strobing CCD camera was used to measure the speed of the ejected particles. The additional contribution of these particles to the efficiency of laser ablation of enamel and dentin was also investigated. The results showed that the enamel particles produced by the beam-tissue interaction were also accelerated by this process of ablation and were effective in the removal of enamel and dentin. The use of an aqueous suspension of sapphire particles increased the efficiency of enamel removal threefold when compared with the use of an Er:YAG laser with water spray. The laser-abrasive method allowed for the removal of enamel and dentin at speeds approaching those of the high-speed turbine. Copyright 2001 Wiley-Liss, Inc.

  16. Azo dyes wastewater treatment and simultaneous electricity generation in a novel process of electrolysis cell combined with microbial fuel cell.

    PubMed

    Zou, Haiming; Wang, Yan

    2017-07-01

    A new process of electrolysis cell (EC) coupled with microbial fuel cell (MFC) was developed here and its feasibility in methyl red (MR) wastewater treatment and simultaneous electricity generation was assessed. Results indicate that an excellent MR removal and electricity production performance was achieved, where the decolorization and COD removal efficiencies were 100% and 89.3%, respectively and a 0.56V of cell voltage output was generated. Electrolysis voltage showed a positive influence on decolorization rate (DR) but also cause a rapid decrease in current efficiency (CE). Although a low COD removal rate of 38.5% was found in EC system, biodegradability of MR solution was significantly enhanced, where the averaged DR was 85.6%. Importantly, COD removal rate in EC-MFC integrated process had a 50.8% improvement compared with the single EC system. The results obtained here would be beneficial to provide a prospective alternative for azo dyes wastewater treatment and power production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Removal of bio-aerosols by water flow on surfaces in health-care settings

    NASA Astrophysics Data System (ADS)

    Yu, Han; Li, Yuguo

    2016-11-01

    Hand hygiene is one of the most important and efficient measures to prevent infections, however the compliance with hand hygiene remains poor especially for health-care workers. To improve this situation, the mechanisms of hand cleansing need to be explored and a detailed study on the adhesion interactions for bio-aerosols on hand surfaces and the process during particles removal by flow is significant for more efficient methods to decrease infections. The first part of presentation will focus on modelling adhesion interactions between particles, like bacteria and virus, and hand surfaces with roughness in water environment. The model presented is based on the DLVO and its extended theories. The removal process comes next, which will put forward a new model to describe the removal of particles by water flow. In this model, molecular dynamics is combined with particle motion and the results by the model will be compared with experiment results and existed models (RnR, Rock & Roll). Finally, possible improvement of the study and future design of experiments will be discussed.

  18. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR).

    PubMed

    Yuan, Yue; Liu, Jinjin; Ma, Bin; Liu, Ye; Wang, Bo; Peng, Yongzhen

    2016-12-01

    This study presents a novel strategy to improve the removal efficiency of nitrogen and phosphorus from municipal wastewater by feeding sequencing batch reactor (SBR) with sludge alkaline fermentation products as carbon sources. The performances of two SBRs treating municipal wastewater (one was fed with sludge fermentation products; F-SBR, and the other without sludge fermentation products; B-SBR) were compared. The removal efficiencies of total nitrogen (TN) and phosphorus (PO 4 3- -P) were found to be 82.9% and 96.0% in F-SBR, while the corresponding values in B-SBR were 55.9% (TN) and -6.1% (PO 4 3- -P). Illumina MiSeq sequencing indicated that ammonium-oxidizing bacteria (Nitrosomonadaceae and Nitrosomonas) and denitrifying polyphosphate accumulating organisms (Dechloromonas) were enriched in F-SBR, which resulted in NO 2 - -N accumulation and denitrifying phosphorus removal via nitrite (DPRN). Moreover, feeding of sludge fermentation products reduced 862.1mg VSS/d of sludge in the F-SBR system (volume: 10L). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Influence of operating parameters on the biodegradation of steroid estrogens and nonylphenolic compounds during biological wastewater treatment processes.

    PubMed

    Koh, Yoong K K; Chiu, Tze Y; Boobis, Alan R; Scrimshaw, Mark D; Bagnall, John P; Soares, Ana; Pollard, Simon; Cartmell, Elise; Lester, John N

    2009-09-01

    This study investigated operational factors influencing the removal of steroid estrogens and nonylphenolic compounds in two sewage treatment works, one a nitrifying/denitrifying activated sludge plant and the other a nitrifying/denitrifying activated sludge plant with phosphorus removal. Removal efficiencies of >90% for steroid estrogens and for longer chain nonylphenol ethoxylates (NP4-12EO) were observed at both works, which had equal sludge ages of 13 days. However, the biological activity in terms of milligrams of estrogen removed per day per tonne of biomass was found to be 50-60% more efficient in the nitrifying/denitrifying activated sludge works compared to the works which additionallyincorporated phosphorusremoval. A temperature reduction of 6 degrees C had no impact on the removal of free estrogens, but removal of the conjugated estrone-3-sulfate was reduced by 20%. The apparent biomass sorption (LogKp) values were greater in the nitrifying/denitrifying works than those in the nitrifying/denitrifying works with phosphorus removal for both steroid estrogens and honylphenolic compounds possibly indicating a different cell surface structure and therefore microbial population. The difference in biological activity (mg tonne(-1) d(-1)) identified in this study, of up to seven times, suggests thatthere is the potential for enhancing the removal of estrogens and nonylphenols if more detailed knowledge of the factors responsible for these differences can be identified and maximized, thus potentially improving the quality of receiving waters.

  20. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds.

    PubMed

    Martins, Mónica; Mourato, Cláudia; Sanches, Sandra; Noronha, João Paulo; Crespo, M T Barreto; Pereira, Inês A C

    2017-01-01

    Pharmaceutical products (PhP) are one of the most alarming emergent pollutants in the environment. Therefore, it is of extreme importance to investigate efficient PhP removal processes. Biologic synthesis of platinum nanoparticles (Bio-Pt) has been reported, but their catalytic activity was never investigated. In this work, we explored the potential of cell-supported platinum (Bio-Pt) and palladium (Bio-Pd) nanoparticles synthesized with Desulfovibrio vulgaris as biocatalysts for removal of four PhP: ciprofloxacin, sulfamethoxazole, ibuprofen and 17β-estradiol. The catalytic activity of the biological nanoparticles was compared with the PhP removal efficiency of D. vulgaris whole-cells. In contrast with Bio-Pd, Bio-Pt has a high catalytic activity in PhP removal, with 94, 85 and 70% removal of 17β-estradiol, sulfamethoxazole and ciprofloxacin, respectively. In addition, the estrogenic activity of 17β-estradiol was strongly reduced after the reaction with Bio-Pt, showing that this biocatalyst produces less toxic effluents. Bio-Pt or Bio-Pd did not act on ibuprofen, but this could be completely removed by D. vulgaris whole-cells, demonstrating that sulfate-reducing bacteria are among the microorganisms capable of biotransformation of ibuprofen in anaerobic environments. This study demonstrates for the first time that Bio-Pt has a high catalytic activity, and is a promising catalyst to be used in water treatment processes for the removal of antibiotics and endocrine disrupting compounds, the most problematic PhP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Color removal from dye-containing wastewater by magnesium chloride.

    PubMed

    Gao, Bao-Yu; Yue, Qin-Yan; Wang, Yan; Zhou, Wei-Zhi

    2007-01-01

    Color removal by MgCl(2) when treating synthetic waste containing pure dyes was studied. The color removal efficiency of MgCl(2)/Ca(OH)(2) was compared with that of Al(2)(SO(4))(3), polyaluminum chloride (PAC) and FeSO(4)/Ca(OH)(2). The mechanism of color removal by MgCl(2) was also investigated. The experimental results show that the color removal efficiency of MgCl(2) is related to the type of dye and depends on the pH of the waste and the dosage of the coagulants used. Treatment of waste containing reactive dye or dispersed dye with MgCl(2) yielded an optimum color removal ratio when the pH of the solution was equal to or above 12.0. For both the reactive and dispersed dye waste, MgCl(2)/Ca(OH)(2) was shown to be superior to MgCl(2)/NaOH, Al(2)(SO(4))(3), PAC and FeSO(4)/Ca(OH)(2) for color removal. A magnesium hydroxide precipitate formed at pH values greater than 12.0, which provided a large adsorptive surface area and a positive electrostatic surface charge, enabling it to remove the dyes through charge neutralization and an adsorptive coagulating mechanism. So, the MgCl(2)/Ca(OH)(2) system is a viable alternative to some of the more conventional forms of chemical treatment, especially for treating actual textile waste with high natural pH.

  2. Efficient removal of UDMH from dilute nitride MOCVD exhaust streams

    NASA Astrophysics Data System (ADS)

    Pahle, Jörg; Czerniak, Mike; Seeley, Andy; Baker, Derek

    2004-12-01

    Unsymmetrical dimethyl hydrazine (UDMH) (CH 3) 2N 2H 2 is often used in the deposition of dilute nitride semiconductors because it provides a source of nitrogen with a low thermal decomposition temperature (Temperature-dependent carrier lifetime in GaNAs using resonant-coupled photoconductive decay, NCPV Program Review Meeting, Lakewood, Colorado, 14-17 October, 2001). The problems with using this material, however, are its significant toxicity (0.01 ppm compared to ammonia's 25 ppm) and also the fact that it blocks the action of conventional dosed wet scrubbers sometimes used on nitride applications, resulting in diminished efficiency in removing arsine (the source of arsenic), and arsine being similarly toxic (TLV of 0.05 ppm). Efficient removal of UDMH, AsH 3 and hydrogen (which, though not toxic poses a potential safety hazard) by means of a combined thermal oxidation reaction and wet scrubber in series is described at input gas flow rates exceeding those typically encountered in practice. The detection technique employed was Fourier transform infra red spectroscopy (FTIR), and the calibration and resolution techniques will be described. For input UDMH flows of up to 445 sccm (i.e. 1.85×10 -2 mol/min), destructive reaction efficiencies (DREs) of >99.9% were demonstrated, corresponding to the background detection resolution of 0.4 ppm.

  3. Potential of powdered activated mustard cake for decolorising raw sugar.

    PubMed

    Singh, Kaman; Bharose, Ram; Verma, Sudhir Kumar; Singh, Vimalesh Kumar

    2013-01-15

    Carbon decolorisation has become customary in the food processing industries; however, it is not economical. Extensive research has therefore been directed towards investigating potential substitutes for commercial activated carbons which might have the advantage of offering an effective, lower-cost replacement for existing bone char or coal-based granular activated carbon (GAC). The physical (bulk density and hardness), chemical (pH and mineral content) and adsorption characteristics (iodine test, molasses test and raw sugar decolorisation efficiency) of powdered activated mustard cake (PAMC) made from de-oiled mustard cake were determined and compared to commercial adsorbents. Although the colour removal efficiency of the PAMC is lower than that of commercial materials, it is cost effective and eco-friendly compared to the existing decolorisation/refining processes. To reduce the load on GAC/activated carbon/charcoal, PAMC could be used on an industrial scale. A decolorisation mechanism has been postulated on the basis of oxygen surface functionalities and surface charge of the PAMC and, accordingly, charge transfer interaction seems to be responsible for the decolorisation mechanism. In addition, a complex interplay of electrostatics and dispersive interaction seem to be involved during the decolorisation process. A low-cost agricultural waste product in the form of de-oiled mustard cake was converted to an efficient adsorbent, PAMC, for use in decolorising raw as well as coloured sugar solutions. The physical, chemical, adsorption characteristics and raw sugar decolorisation efficiency of PAMC were determined and compared to those of commercial adsorbents. The colour removal efficiency of the PAMC is lower than that of commercial materials but it is cost effective and eco-friendly as compared to existing decolorisation/refining processes. The availability of the raw material for the production of PAMC further demands its use on an industrial scale. Copyright © 2012 Society of Chemical Industry.

  4. Effects of biofilter media depth and moisture content on removal of gases from a swine barn.

    PubMed

    Liu, Tongshuai; Dong, Hongmin; Zhu, Zhiping; Shang, Bin; Yin, Fubin; Zhang, Wanqin; Zhou, Tanlong

    2017-12-01

    Media depth (MD) and moisture content (MC) are two important factors that greatly influence biofilter performance. The purpose of this study was to investigate the combined effect of MC and MD on removing ammonia (NH 3 ), hydrogen sulfide (H 2 S), and nitrous oxide (N 2 O) from swine barns. Biofiltration performance of different MDs and MCs in combination based on a mixed medium of wood chips and compost was monitored. A 3 × 3 factorial design was adopted, which included three levels of the two factors (MC: 45%, 55%, and 67% [wet basis]; MD: 0.17, 0.33, and 0.50 m). Results indicated that high MC and MD could improve NH 3 removal efficiency, but increase outlet N 2 O concentration. When MC was 67%, the average NH 3 removal efficiency of three MDs (0.17, 0.33, and, 0.50 m) ranged from 77.4% to 78.7%; the range of average H 2 S removal efficiency dropped from 68.1-90.0% (1-34 days of the test period) to 36.8-63.7% (35-58 days of the test period); and the average outlet N 2 O concentration increased by 25.5-60.1%. When MC was 55%, the average removal efficiency of NH 3 , H 2 S, and N 2 O for treatment with 0.33 m MD was 72.8 ± 5.9%, 70.9 ± 13.3%, and -18.9 ± 8.1%, respectively; and the average removal efficiency of NH 3 , H 2 S, and N 2 O for treatment with 0.50 m MD was 77.7 ± 4.2%, 65.8 ± 13.7%, and -24.5 ±12.1%, respectively. When MC was 45%, the highest average NH 3 reduction efficiency among three MDs was 60.7% for 0.5 m MD, and the average N 2 O removal efficiency for three MDs ranged from -18.8% to -12.7%. In addition, the pressure drop of 0.33 m MD was significantly lower than that of 0.50 m MD (p < 0.05). To obtain high mitigation of NH 3 and H 2 S and avoid elevated emission of N 2 O and large pressure drop, 0.33 m MD at 55% MC is recommended. The performances of biofilters with three different media depths (0.17, 0.33, and 0.50 m) and three different media moisture contents (45%, 55%, and 67% [wet basis]) were compared to remove gases from a swine barn. Using wood chips and compost mixture as the biofilters media, the combination of 0.33 m media depth and 55% media moisture content is recommended to obtain good reduction of NH 3 and H 2 S, and to simultaneously prevent elevated emission of N 2 O and large pressure drop across the media.

  5. Conventional and thermophilic aerobic treatability of high strength oily pet food wastewater using membrane-coupled bioreactors.

    PubMed

    Kurian, R; Acharya, C; Nakhla, G; Bassi, A

    2005-11-01

    Although thermophilic treatment systems have recently gained considerable interest, limited information exists on the comparative performances of membrane-coupled bioreactors (MBR) at thermophilic and conventional conditions. In this study aerobic MBRs operating at room temperature (20 degrees C) and at lower thermophilic range (45 degrees C) were investigated for the treatment of dissolved air flotation (DAF) pretreated pet food wastewater. The particular wastewater is characterized by oil and grease (O & G) concentrations as high as 6 g/L, COD of 51 g/L, BOD of 16 g/L and volatile fatty acid (VFA) of 8.3 g/L. The performances of the two systems in terms of COD, BOD and O & G removal at varying hydraulic retention time (HRT) are compared. COD removal efficiencies in the thermophilic MBR varied from 75% to 98% and remained constant at 94% in the conventional MBR. The O & G removal efficiencies were 66-86% and 98% in the thermophilic and conventional MBR, respectively. Interestingly, high concentrations of VFA were recorded, equivalent to 50-73% of total COD, in the thermophilic MBR effluent. The observed yield in the thermophilic MBR was 40% of that observed in the conventional MBR.

  6. A new recycling technique for the waste tires reuse.

    PubMed

    Derakhshan, Zahra; Ghaneian, Mohammad Taghi; Mahvi, Amir Hossein; Oliveri Conti, Gea; Faramarzian, Mohammad; Dehghani, Mansooreh; Ferrante, Margherita

    2017-10-01

    In this series of laboratory experiments, the feasibility of using fixed bed biofilm carriers (FBBC) manufactured from existing reclaimed waste tires (RWTs) for wastewater treatment was evaluated. To assess polyamide yarn waste tires as a media, the fixed bed sequence batch reactor (FBSBR) was evaluated under different organic loading rate (OLRs). An experimental model was used to study the kinetics of substrate consumption in biofilm. Removal efficiency of soluble chemical oxygen demand (SCOD) ranged by 76-98% for the FBSBR compared to 71-96% in a sequencing batch reactor (SBR). Removal efficiency of FBBC was significantly increased by inoculating these RWTs carriers. The results revealed that the sludge production yield (Y obs ) was significantly less in the FBSBR compared to the SBR (p < 0.01). It also produced less sludge and recorded a lower stabilization ratio (VSS/TSS). The findings show that the Stover-Kincannon model was the best fit (R 2 > 99%) in a FBSBR. Results from this study suggest that RWTs to support biological activity for a variety of wastewater treatment applications as a biofilm carrier have high potential that better performance as COD and TSS removal and sludge settling properties and effluent quality supported these findings. Copyright © 2017. Published by Elsevier Inc.

  7. Paracetamol and salicylic acid removal from contaminated water by microalgae.

    PubMed

    Escapa, C; Coimbra, R N; Paniagua, S; García, A I; Otero, M

    2017-12-01

    The biomass growth, pharmaceutical removal and light conversion efficiency of Chlorella sorokiniana under the presence of paracetamol (PC) and salicylic acid (SaC) were assessed and compared at two different concentrations of these pharmaceuticals (I: 25 mg l -1 , II: 250 mg l -1 ). Microalgae were resistant to these concentrations and, moreover, their growth was significantly stimulated (p ≤ 0.05) under these drugs (biomass concentration increased above 33% PCI, 35% SaCI, 13% PCII and 45% SaCII, as compared with the respective positive controls). At the steady state of the semicontinuous culture, C. sorokiniana showed removal efficiencies above 41% and 69% for PCI and PCII, respectively; and above 93% and 98% for SaCI and SaCII, respectively. Under an irradiance of 370 μE m -2  s -1 , higher quantum yields were reached by microalgae under the presence of drugs, either at dose I or II, than by the respective positive controls. These results point to C. sorokiniana as a robust strain for the bioremediation of paracetamol and salicylic acid concentrated wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Using Wet-FGD systems for mercury removal.

    PubMed

    Díaz-Somoano, Mercedes; Unterberger, Sven; Hein, Klaus R G

    2005-09-01

    A plan to control mercury emissions to the atmosphere and to establish mercury emission limits has recently been elaborated by the European Commission, making it necessary to devise an efficient and cost effective mercury removal technology. Towards this end wet flue gas desulfurization units appear as a promising option for multi-pollutant control. However, more investigation on mercury removal and a greater mercury removal efficiency are required to achieve this objective. In the present work scrubber chemistry and the application of various solid additives to enhance mercury removal in wet scrubbers is evaluated. The results obtained show a significant correlation between mercury removal efficiency and the pH of the scrubber slurry and SO2 concentration. A weaker correlation was observed between oxygen or slurry concentration and removal efficiency. Finally several solid oxides were found to be effective additives for enhancing mercury capture in wet scrubbers.

  9. Removal of particulate matter emitted from a subway tunnel using magnetic filters.

    PubMed

    Son, Youn-Suk; Dinh, Trieu-Vuong; Chung, Sang-Gwi; Lee, Jai-Hyo; Kim, Jo-Chun

    2014-01-01

    We removed particulate matter (PM) emitted from a subway tunnel using magnetic filters. A magnetic filter system was installed on the top of a ventilation opening. Magnetic field density was increased by increasing the number of permanent magnet layers to determine PM removal characteristics. Moreover, the fan's frequency was adjusted from 30 to 60 Hz to investigate the effect of wind velocity on PM removal efficiency. As a result, PM removal efficiency increased as the number of magnetic filters or fan frequency increased. We obtained maximum removal efficiency of PM10 (52%), PM2.5 (46%), and PM1 (38%) at a 60 Hz fan frequency using double magnetic filters. We also found that the stability of the PM removal efficiency by the double filter (RSD, 3.2-5.8%) was higher than that by a single filter (10.9-24.5%) at all fan operating conditions.

  10. Removal of disinfection by-products from contaminated water using a synthetic goethite catalyst via catalytic ozonation and a biofiltration system.

    PubMed

    Wang, Yu-Hsiang; Chen, Kuan-Chung

    2014-09-10

    The effects of synthetic goethite (α-FeOOH) used as the catalyst in catalytic ozonation for the degradation of disinfection by-product (DBP) precursors are investigated. A biofiltration column applied following the catalytic ozonation process is used to evaluate the efficiency of removing DBP precursors via biotreatment. Ozone can rapidly react with aromatic compounds and oxidize organic compounds, resulting in a decrease in the fluorescence intensity of dissolved organic matter (DOM). In addition, catalytic ozonation can break down large organic molecules, which causes a blue shift in the emission-excitation matrix spectra. Water treated with catalytic ozonation is composed of low-molecular structures, including soluble microbial products (SMPs) and other aromatic proteins (APs). The DOM in SMPs and APs is removed by subsequent biofiltration. Catalytic ozonation has a higher removal efficiency for dissolved organic carbon and higher ultraviolet absorbance at 254 nm compared to those of ozonation without a catalyst. The use of catalytic ozonation and subsequent biofiltration leads to a lower DBP formation potential during chlorination compared to that obtained using ozonation and catalytic ozonation alone. Regarding DBP species during chlorination, the bromine incorporation factor (BIF) of trihalomethanes and haloacetic acids increases with increasing catalyst dosage in catalytic ozonation. Moreover, the highest BIF is obtained for catalytic ozonation and subsequent biofiltration.

  11. Removal of Disinfection By-Products from Contaminated Water Using a Synthetic Goethite Catalyst via Catalytic Ozonation and a Biofiltration System·

    PubMed Central

    Wang, Yu-Hsiang; Chen, Kuan-Chung

    2014-01-01

    The effects of synthetic goethite (α-FeOOH) used as the catalyst in catalytic ozonation for the degradation of disinfection by-product (DBP) precursors are investigated. A biofiltration column applied following the catalytic ozonation process is used to evaluate the efficiency of removing DBP precursors via biotreatment. Ozone can rapidly react with aromatic compounds and oxidize organic compounds, resulting in a decrease in the fluorescence intensity of dissolved organic matter (DOM). In addition, catalytic ozonation can break down large organic molecules, which causes a blue shift in the emission-excitation matrix spectra. Water treated with catalytic ozonation is composed of low-molecular structures, including soluble microbial products (SMPs) and other aromatic proteins (APs). The DOM in SMPs and APs is removed by subsequent biofiltration. Catalytic ozonation has a higher removal efficiency for dissolved organic carbon and higher ultraviolet absorbance at 254 nm compared to those of ozonation without a catalyst. The use of catalytic ozonation and subsequent biofiltration leads to a lower DBP formation potential during chlorination compared to that obtained using ozonation and catalytic ozonation alone. Regarding DBP species during chlorination, the bromine incorporation factor (BIF) of trihalomethanes and haloacetic acids increases with increasing catalyst dosage in catalytic ozonation. Moreover, the highest BIF is obtained for catalytic ozonation and subsequent biofiltration. PMID:25211774

  12. Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp.

    PubMed

    Liu, Yan; Li, Shibin; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-08-01

    Nitrate contamination in drinking water is a major threat to public health. This study investigated the efficiency of denitrification of aqueous solutions in the co-presence of synthesized nanoscale zero-valent iron (nZVI; diameter: 20-80 nm) and a previously isolated Paracoccus sp. strain YF1. Various influencing factors were studied, such as oxygen, pH, temperature, and anaerobic corrosion products (Fe(2+), Fe(3+) and Fe3O4). With slight toxicity to the strain, nZVI promoted denitrification efficiency by providing additional electron sources under aerobic conditions. For example, 50 mg L(-1) nZVI increased the nitrate removal efficiency from 66.9% to 85.2%. However, a high concentration of nZVI could lead to increased production of Fe(2+), a toxic ion which could compromise the removal efficiency. Kinetic studies suggest that denitrification by both free cells, and nZVI-amended cells fitted well to the zero-order model. Temperature and pH are the major factors affecting nitrate removal and cell growth, with or without the presence of nZVI. In this study, nitrate removal and cell growth increased in the pH range of 6.5-8.0, and temperature range of 25-35 °C. These conditions favor the growth of the strain, which dominated denitrification in all scenarios involved. As for anaerobic corrosion products, compared with Fe(2+) and Fe(3+), Fe3O4 promoted denitrification by serving as an electron donor. Finally, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) confirmed attachments of nZVI on the surface of the cell, and the formation of iron oxides. This study indicated that, as an electron donor source with minimal cellular toxicity, nZVI could be used to promote denitrification efficiency under biotic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Hui, E-mail: corinna@seu.edu.cn; Key Laboratory of Computer Network and Information Integration; Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000

    2015-04-15

    Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimagesmore » using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.« less

  14. Effect of the acid treatment conditions of kaolinite on etheramine adsorption: A comparative analysis using chemometric tools.

    PubMed

    Leal, Paulo Vitor Brandão; Magriotis, Zuy Maria; Sales, Priscila Ferreira de; Papini, Rísia Magriotis; Viana, Paulo Roberto de Magalhães

    2017-07-15

    The present work evaluated the effect of the acid treatment conditions of natural kaolinite (NK) regarding its efficiency in removing etheramine. The treatment was conducted using sulfuric acid at the concentrations of 1 mol L -1 (KA-01), 2 mol L -1 (KA-02) and 5 mol L -1 (KA-05) at 85 °C. The obtained adsorbents were characterized by X-ray fluorescence, X-ray diffraction, N 2 adsorption/desorption isotherms, zeta potential analysis and infrared spectroscopy. The Response Surface Method was used to optimize adsorption parameters (initial concentration of etheramine, adsorbent mass and pH of the solution). The results, described by means of a central composite design, were adjusted to the quadratic model. Results revealed that the adsorption was more efficient at the etheramine concentration of 400 mg L -1 , pH 10 and adsorbent mass of 0.1 g for NK and 0.2 g for KA-01, KA-02 and KA-05. The sample KA-02 presented a significant increase of etheramine removal compared to the NK sample. The adsorption kinetics conducted under optimized conditions showed that the system reached the equilibrium in approximately 30 min. The kinetic data were better adjusted to the pseudo-second order model. The isotherm data revealed that the Sips model was the most adequate one. The calculation of E ads allowed to infer that the mechanism for etheramine removal in all the evaluated samples was chemisorption. The reuse tests showed that, after four uses, the efficiency of adsorbents in removing etheramine did not suffer significant modifications, which makes the use of kaolinite to treat effluents from the reverse flotation of iron ore feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Biofiltration using peat and a nutritional synthetic packing material: influence of the packing configuration on H2S removal.

    PubMed

    Dumont, Eric; Cabral, Flavia Da Silva; Le Cloirec, Pierre; Andrès, Yves

    2013-01-01

    This study aims to evaluate the feasibility of using a nutritional synthetic material (UP20) combined with fibrous peat as a packing material in treating H2S (up to 280 ppmv). Three identical laboratory-scale biofilters with different packing material configurations (peat only; peat + UP20 in a mixture; peat + UP20 in two layers) were used to determine the biofilter performances. The superficial velocity of the polluted gas on each biofilter was 65 m/h (gas flow rate 0.5 Nm3 /h) corresponding to an empty bed residence time = 57 s. Variations in elimination capacity, removal efficiency, temperature and pH were tracked during 111 d. A removal efficiency of 100% was obtained for loading rates up to 6 g/m3/h for the biofilter filled with 100% peat, and up to 10 g/m3/h for both biofilters using peat complemented with UP20. For higher loading rates (up to 25.5 g/m3/h), the configuration ofpeat-UP20 in a mixture provided the best removal efficiencies (around 80% compared to 65% for the configuration of peat-UP20 in two layers and 60% for peat only). Microbial characterization highlighted that peat is able to provide sulfide-oxidizing bacteria. Through kinetic analysis (Ottengrafand Michaelis-Menten models were applied), it appeared that the configuration peat-UP20 in two layers (80/20 v/v) did not show significant improvement compared with peat alone. Although the configuration of peat-UP20 in a mixture (80/20 v/v) offered a real advantage in improving H2S treatment, it was shown that this benefit was related to the bed configuration rather than the nutritional properties of UP20.

  16. Photodegradation of multiclass fungicides in the aquatic environment and determination by liquid chromatography-tandem mass spectrometry.

    PubMed

    Celeiro, Maria; Facorro, Rocio; Dagnac, Thierry; Vilar, Vítor J P; Llompart, Maria

    2017-08-01

    The photodegradation behaviour for nine widespread fungicides (benalaxyl, cyprodinil, dimethomorph, fenhexamide, iprovalicarb, kresoxim-methyl, metalaxyl, myclobutanil and tebuconazole) was evaluated in different types of water. Two different systems, direct UV photolysis and UVC/H 2 O 2 advanced oxidation process (AOP), were applied for the photodegradation tests. For the monitoring of the target compound degradation, a method based on direct injection liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. Several fungicide photodegradation by-products were tentatively identified by high-resolution mass spectrometry (HRMS) as well. For the photolysis studies, the efficiency of different types of radiation, UVC (λ = 254 nm) and UVA (λ = 365 nm), was compared. UVC photolysis provided the highest removal with a complete degradation for fenhexamide and kresoxim-methyl, and percentages between 48 and 78% for the other compounds, excluding iprovalicarb and myclobutanil with removals <35%, after 30 min of irradiation. Besides, the photodegradation tests were performed with different initial concentrations of fungicides, and the efficiency of two photoreactor systems was compared. In all cases, the kinetics followed pseudo-first order, and the half-life times could also be calculated. The addition of H 2 O 2 under UVC light allowed an improvement of the reaction kinetics, especially for the most recalcitrant fungicides, obtaining in all cases removals higher than 82% in less than 6 min. Finally, in order to evaluate the suitability of the proposed systems, both UVC photolysis and UVC/H 2 O 2 system were tested in different real water matrices (wastewater, tap water, swimming pool water and river water), showing that the UVC/H 2 O 2 system had the highest removal efficiency in less than 6 min, for all water samples.

  17. Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater.

    PubMed

    Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan

    2013-08-01

    A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Comparative study of remediation of Cr(VI)-contaminated soil using electrokinetics combined with bioremediation.

    PubMed

    He, Jiaying; He, Chiquan; Chen, Xueping; Liang, Xia; Huang, Tongli; Yang, Xuecheng; Shang, Hai

    2018-06-01

    The purpose of this research is to design a new bioremediation-electrokinetic (Bio-EK) remediation process to increase treatment efficiency of chromium contamination in soil. Upon residual chromium analysis, it is shown that traditional electrokinetic-PRB system (control) does not have high efficiency (80.26%) to remove Cr(VI). Bio-electrokinetics of exogenous add with reduction bacteria Microbacterium sp. Y2 and electrokinetics can enhance treatment efficiency Cr(VI) to 90.67% after 8 days' remediation. To optimize the overall performance, integrated bio-electrokinetics were designed by synergy with 200 g humic substances (HS) into the systems. According to our results, Cr(VI) (98.33%) was effectively removed via electrokinetics. Moreover, bacteria and humic substances are natural, sustainable, and economical enhancement agents. The research results indicated that the use of integrated bio-electrokinetics is an effective method to remediate chromium-contaminated soils.

  19. Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water.

    PubMed

    Wu, Donghai; You, Hong; Du, Jiaxuan; Chen, Chuan; Jin, Darui

    2011-01-01

    The UV/Ag-TiO2/O3 process was investigated for ballast water treatment using Dunaliella salina as an indicator. Inactivation curves were obtained, and the toxicity of effluent was determined. Compared with individual unit processes using ozone or UV/Ag-TiO2, the inactivation efficiency of D. salina by the combined UV/Ag-TiO2/O3 process was enhanced. The presence of ozone caused an immediate decrease in chlorophyll a (chl-a) concentration. Inactivation efficiency and ch1-a removal efficiency were positively correlated with ozone dose and ultraviolet intensity. The initial total residual oxidant (TRO) concentration of effluent increased with increasing ozone dose, and persistence of TRO resulted in an extended period of toxicity. The results suggest that UV/Ag-TiO2/O3 has potential for ballast water treatment.

  20. COD removal characteristics in air-cathode microbial fuel cells.

    PubMed

    Zhang, Xiaoyuan; He, Weihua; Ren, Lijiao; Stager, Jennifer; Evans, Patrick J; Logan, Bruce E

    2015-01-01

    Exoelectrogenic microorganisms in microbial fuel cells (MFCs) compete with other microorganisms for substrate. In order to understand how this affects removal rates, current generation, and coulombic efficiencies (CEs), substrate removal rates were compared in MFCs fed a single, readily biodegradable compound (acetate) or domestic wastewater (WW). Removal rates based on initial test conditions fit first-order kinetics, but rate constants varied with circuit resistance. With filtered WW (100Ω), the rate constant was 0.18h(-)(1), which was higher than acetate or filtered WW with an open circuit (0.10h(-)(1)), but CEs were much lower (15-24%) than acetate. With raw WW (100Ω), COD removal proceeded in two stages: a fast removal stage with high current production, followed by a slower removal with little current. While using MFCs increased COD removal rate due to current generation, secondary processes will be needed to reduce COD to levels suitable for discharge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Investigation of kinetics and absorption isotherm models for hydroponic phytoremediation of waters contaminated with sulfate.

    PubMed

    Saber, Ali; Tafazzoli, Milad; Mortazavian, Soroosh; James, David E

    2018-02-01

    Two common wetland plants, Pampas Grass (Cortaderia selloana) and Lucky Bamboo (Dracaena sanderiana), were used in hydroponic cultivation systems for the treatment of simulated high-sulfate wastewaters. Plants in initial experiments at pH 7.0 removed sulfate more efficiently compared to the same experimental conditions at pH 6.0. Results at sulfate concentrations of 50, 200, 300, 600, 900, 1200, 1500 and 3000 mg/L during three consecutive 7-day treatment periods with 1-day rest intervals, showed decreasing trends of both removal efficiencies and uptake rates with increasing sulfate concentrations from the first to the second to the third 7-day treatment periods. Removed sulfate masses per unit dry plant mass, calculated after 23 days, showed highest removal capacity at 600 mg/L sulfate for both plants. A Langmuir-type isotherm best described sulfate uptake capacity of both plants. Kinetic studies showed that compared to pseudo first-order kinetics, pseudo-second order kinetic models slightly better described sulfate uptake rates by both plants. The Elovich kinetic model showed faster rates of attaining equilibrium at low sulfate concentrations for both plants. The dimensionless Elovich model showed that about 80% of sulfate uptake occurred during the first four days' contact time. Application of three 4-day contact times with 2-day rest intervals at high sulfate concentrations resulted in slightly higher uptakes compared to three 7-day contact times with 1-day rest intervals, indicating that pilot-plant scale treatment systems could be sized with shorter contact times and longer rest-intervals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of influent C/N ratios and treatment technologies on integral biogas upgrading and pollutants removal from synthetic domestic sewage.

    PubMed

    Xu, Jie; Wang, Xue; Sun, Shiqing; Zhao, Yongjun; Hu, Changwei

    2017-09-07

    Three different treatment technologies, namely mono-algae culture, algal-bacterial culture, and algal-fungal culture, were applied to remove pollutants form synthetic domestic sewage and to remove CO 2 from biogas in a photobioreactor. The effects of different initial influent C/N ratios on microalgal growth rates and pollutants removal efficiencies by the three microalgal cultures were investigated. The best biogas upgrading and synthetic domestic sewage pollutants removal effect was achieved in the algal-fungal system at the influent C/N ratio of 5:1. At the influent C/N ratio of 5:1, the algal-fungal system achieved the highest mean chemical oxygen demand (COD) removal efficiency of 81.92% and total phosphorus (TP) removal efficiency of 81.52%, respectively, while the algal-bacterial system demonstrated the highest mean total nitrogen (TN) removal efficiency of 82.28%. The average CH 4 concentration in upgraded biogas and the removal efficiencies of COD, TN, and TP were 93.25 ± 3.84% (v/v), 80.23 ± 3.92%, 75.85 ± 6.61%, and 78.41 ± 3.98%, respectively. These results will provide a reference for wastewater purification ad biogas upgrading with microalgae based technology.

  3. Performance evaluation of a granular activated carbon-sequencing batch biofilm reactor pilot plant system used in treating real wastewater from recycled paper industry.

    PubMed

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Rahman, Rakmi Abdul; Kadhum, Abdul Amir Hasan

    2012-01-01

    A pilot scale granular activated carbon-sequencing batch biofilm reactor with a capacity of 2.2 m3 was operated for over three months to evaluate its performance treating real recycled paper industry wastewater under different operational conditions. In this study, dissolved air floatation (DAF) and clarifier effluents were used as influent sources of the pilot plant. During the course of the study, the reactor was able to biodegrade the contaminants in the incoming recycled paper mill wastewater in terms of chemical oxygen demand (COD), adsorbable organic halides (AOX; specifically 2,4-dichlorophenol (2,4-DCP)) and ammoniacal nitrogen (NH3-N) removal efficiencies at varying hydraulic retention times (HRTs) of 1-3 days, aeration rates (ARs) of 2.1-3.4 m3/min and influent feed concentration of 40-950 mg COD/l. Percentages of COD, 2,4-DCP and NH3-N removals increased with increasing HRT, resulting in more than 90% COD, 2,4-DCP and NH3-N removals at HRT values above two days. Degradation of COD, 2,4-DCP and NH3-N were seriously affected by variation of ARs, which resulted in significant decrease of COD, 2,4-DCP and NH3-N removals by decreasing ARs from 3.4 m3/min to 2.1 m3/min, varying in the ranges of 24-80%, 6-96% and 5-42%, respectively. In comparison to the clarifier effluent, the treatment performance of DAF effluent, containing high COD concentration, resulted in a higher COD removal of 82%. The use of diluted DAF effluent did not improve significantly the COD removal. Higher NH3-N removal efficiency of almost 100% was observed during operation after maintenance shutdown compared to normal operation, even at the same HRT of one day due to the higher dissolved oxygen concentrations (1-7 mg/l), while no significant difference in COD removal efficiency was observed.

  4. Electrophoretic deposition of carbon nanotube on reticulated vitreous carbon for hexavalent chromium removal in a biocathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Fei, Kangqing; Song, Tian-shun; Wang, Haoqi; Zhang, Dalu; Tao, Ran; Xie, Jingjing

    2017-10-01

    For Cr(VI)-removal microbial fuel cell (MFC), a more efficient biocathode in MFCs is required to improve the Cr(VI) removal and electricity generation. RVC-CNT electrode was prepared through the electrophoretic deposition of carbon nanotube (CNT) on reticulated vitreous carbon (RVC). The power density of MFC with an RVC-CNT electrode increased to 132.1 ± 2.8 mW m-2, and 80.9% removal of Cr(VI) was achieved within 48 h; compared to only 44.5% removal of Cr(VI) in unmodified RVC. Cyclic voltammetry, energy-dispersive spectrometry and X-ray photoelectron spectrometry showed that the RVC-CNT electrode enhanced the electrical conductivity and the electron transfer rate; and provided more reaction sites for Cr(VI) reduction. This approach provides process simplicity and a thickness control method for fabricating three-dimensional biocathodes to improve the performance of MFCs for Cr(VI) removal.

  5. Behavior of pharmaceuticals in waste water treatment plant in Japan.

    PubMed

    Matsuo, H; Sakamoto, H; Arizono, K; Shinohara, R

    2011-07-01

    The fate of pharmaceuticals in a wastewater treatment plant (WWTP) in Kumamoto, Japan with activated sludge treatment is reported. Selected pharmaceuticals were detected in influent. Results from the present study confirmed that Acetaminophen, Amoxicillin, Ampicillin and Famotidine were removed at a high rate (>90% efficiency). In contrast, removal efficiency of Ketoprofen, Losartan, Oseltamivir, Carbamazepine, and Diclofenac was relatively low (<50%). The selected pharmaceuticals were also detected in raw sludge. In digestive process, Indomethacin, Atenolol, Famotidine, Trimethoprim and Cyclofosamide were removed at a high (>70% efficiency). On the other hand, removal of Carbamazepine, Ketoprofen and Diclofenac was not efficient (<50%).

  6. Effect of some operational parameters on the arsenic removal by electrocoagulation using iron electrodes

    PubMed Central

    2014-01-01

    Arsenic contamination of drinking water is a global problem that will likely become more apparent in future years as scientists and engineers measure the true extent of the problem. Arsenic poisoning is preventable though as there are several methods for easily removing even trace amounts of arsenic from drinking water. In the present study, electrocoagulation was evaluated as a treatment technology for arsenic removal from aqueous solutions. The effects of parameters such as initial pH, current density, initial concentration, supporting electrolyte type and stirring speed on removal efficiency were investigated. It has been observed that initial pH was highly effective on the arsenic removal efficiency. The highest removal efficiency was observed at initial pH = 4. The obtained experimental results showed that the efficiency of arsenic removal increased with increasing current density and decreased with increasing arsenic concentration in the solution. Supporting electrolyte had not significant effects on removal, adding supporting electrolyte decreased energy consumption. The effect of stirring speed on removal efficiency was investigated and the best removal efficiency was at the 150 rpm. Under the optimum conditions of initial pH 4, current density of 0.54 mA/cm2, stirring speed of 150 rpm, electrolysis time of 30 minutes, removal was obtained as 99.50%. Energy consumption in the above conditions was calculated as 0.33 kWh/m3. Electrocoagulation with iron electrodes was able to bring down 50 mg/L arsenic concentration to less than 10 μg/L at the end of electrolysis time of 45 minutes with low electrical energy consumption as 0.52 kWh/m3. PMID:24991426

  7. Preparation of Bamboo Chars and Bamboo Activated Carbons to Remove Color and COD from Ink Wastewater.

    PubMed

    Hata, Motohide; Amano, Yoshimasa; Thiravetyan, Paitip; Machida, Motoi

    2016-01-01

    Bamboo chars and bamboo activated carbons prepared by steam activation were applied for ink wastewater treatment. Bamboo char at 800 °C was the best for the removal of color and chemical oxygen demand (COD) from ink wastewater compared to bamboo chars at 300 to 700 °C due to higher surface area and mesopore volume. Bamboo activated carbon at 600 °C (S600) was the best compared to bamboo activated carbon at 800 °C (S800), although S800 had larger surface area (1108 m(2)/g) than S600 (734 m(2)/g). S600 had higher mesopore volume (0.20 cm(3)/g) than S800 (0.16 cm(3)/g) and therefore achieved higher color and COD removal. All bamboo activated carbons showed higher color and COD removal efficiency than commercial activated carbon. In addition, S600 had the superior adsorption capacity for methylene blue (0.89 mmol/g). Therefore, bamboo is a suitable material to prepare adsorbents for removal of organic pollutants.

  8. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system.

    PubMed

    Luo, Yunlong; Jiang, Qi; Ngo, Huu H; Nghiem, Long D; Hai, Faisal I; Price, William E; Wang, Jie; Guo, Wenshan

    2015-09-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system and a conventional membrane bioreactor (CMBR) were compared in terms of micropollutant removal efficiency and membrane fouling propensity. The results show that the hybrid MBBR-MBR system could effectively remove most of the selected micropollutants. By contrast, the CMBR system showed lower removals of ketoprofen, carbamazepine, primidone, bisphenol A and estriol by 16.2%, 30.1%, 31.9%, 34.5%, and 39.9%, respectively. Mass balance calculations suggest that biological degradation was the primary removal mechanism in the MBBR-MBR system. During operation, the MBBR-MBR system exhibited significantly slower fouling development as compared to the CMBR system, which could be ascribed to the wide disparity in the soluble microbial products (SMP) levels between MBBR-MBR (4.02-6.32 mg/L) and CMBR (21.78 and 33.04 mg/L). It is evident that adding an MBBR process prior to MBR treatment can not only enhance micropollutant elimination but also mitigate membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants.

    PubMed

    Tsui, Mirabelle M P; Leung, H W; Lam, Paul K S; Murphy, Margaret B

    2014-04-15

    Organic ultraviolet (UV) filters are applied widely in personal care products (PCPs), but the distribution and risks of these compounds in the marine environment are not well known. In this study, the occurrence and removal efficiencies of 12 organic UV filters in five wastewater treatment plants (WWTPs) equipped with different treatment levels in Hong Kong, South China, were investigated during one year and a preliminary environmental risk assessment was carried out. Using a newly developed simultaneous multiclass quantification liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, butyl methoxydibenzoylmethane (BMDM), 2,4-dihydroxybenzophenone (BP-1), benzophenone-3 (BP-3), benzophenone-4 (BP-4) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) were frequently (≥80%) detected in both influent and effluent with mean concentrations ranging from 23 to 1290 ng/L and 18-1018 ng/L, respectively; less than 2% of samples contained levels greater than 1000 ng/L. Higher concentrations of these frequently detected compounds were found during the wet/summer season, except for BP-4, which was the most abundant compound detected in all samples in terms of total mass. The target compounds behaved differently depending on the treatment level in WWTPs; overall, removal efficiencies were greater after secondary treatment when compared to primary treatment with >55% and <20% of compounds showing high removal (defined as >70% removal), respectively. Reverse osmosis was found to effectively eliminate UV filters from effluent (>99% removal). A preliminary risk assessment indicated that BP-3 and EHMC discharged from WWTPs may pose high risk to fishes in the local environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The decolorization and mineralization of acid orange 6 azo dye in aqueous solution by advanced oxidation processes: a comparative study.

    PubMed

    Hsing, Hao-Jan; Chiang, Pen-Chi; Chang, E-E; Chen, Mei-Yin

    2007-03-06

    The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO(2), O(3), O(3)/UV, O(3)/UV/TiO(2), Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O(3)/UV and O(3)/UV/TiO(2) processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O(3) dose=45mg/L; (2) the optimum pH and ratio of [H(2)O(2)]/[Fe(2+)] found for the Fenton process, are pH 4 and [H(2)O(2)]/[Fe(2+)]=6.58. The optimum [H(2)O(2)] and [Fe(2+)] under the same HF value are 58.82 and 8.93mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O(3)

  11. Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and micropollutants from treated wastewater.

    PubMed

    Lee, Carson O; Howe, Kerry J; Thomson, Bruce M

    2012-03-15

    This pilot-scale research project investigated and compared the removal of pharmaceuticals and personal care products (PPCPs) and other micropollutants from treated wastewater by ozone/biofiltration and reverse osmosis (RO). The reduction in UV254 absorbance as a function of ozone dose correlated well with the reduction in nonbiodegradable dissolved organic carbon and simultaneous production of biodegradable dissolved organic carbon (BDOC). BDOC analyses demonstrated that ozone does not mineralize organics in treated wastewater and that biofiltration can remove the organic oxidation products of ozonation. Biofiltration is recommended for treatment of ozone contactor effluent to minimize the presence of unknown micropollutant oxidation products in the treated water. Ozone/biofiltration and RO were compared on the basis of micropollutant removal efficiency, energy consumption, and waste production. Ozone doses of 4-8 mg/L were nearly as effective as RO for removing micropollutants. When wider environmental impacts such as energy consumption, water recovery, and waste production are considered, ozone/biofiltration may be a more desirable process than RO for removing PPCPs and other trace organics from treated wastewater. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Aerosol removal due to precipitation and wind forcings in Milan urban area

    NASA Astrophysics Data System (ADS)

    Cugerone, Katia; De Michele, Carlo; Ghezzi, Antonio; Gianelle, Vorne

    2018-01-01

    Air pollution represents a critical issue in Milan urban area (Northern Italy). Here, the levels of fine particles increase, overcoming the legal limits, mostly in wintertime, due to favourable calm weather conditions and large heating and vehicular traffic emissions. The main goal of this work is to quantify the aerosol removal effect due to precipitation at the ground. At first, the scavenging coefficients have been calculated for aerosol particles with diameter between 0.25 and 3 μm. The average values of this coefficient vary between 2 ×10-5 and 5 ×10-5 s-1. Then, the aerosol removal induced separately by precipitation and wind have been compared through the introduction of a removal index. As a matter of fact, while precipitation leads to a proper wet scavenging of the particles from the atmosphere, high wind speeds cause enhanced particle dispersion and dilution, that locally bring to a tangible decrease of aerosol particles' number. The removal triggered by these two forcings showed comparable average values, but different trends. The removal efficiency of precipitation lightly increases with the increase of particle diameters and vice versa happens with strong winds.

  13. Comparison of biological activated carbon (BAC) and membrane bioreactor (MBR) for pollutants removal in drinking water treatment.

    PubMed

    Tian, J Y; Chen, Z L; Liang, H; Li, X; Wang, Z Z; Li, G B

    2009-01-01

    Biological activated carbon (BAC) and membrane bioreactor (MBR) were systematically compared for the drinking water treatment from slightly polluted raw water under the same hydraulic retention time (HRT) of 0.5 h. MBR exhibited excellent turbidity removal capacity due to the separation of the membrane; while only 60% of influent turbidity was intercepted by BAC. Perfect nitrification was achieved by MBR with the 89% reduction in ammonia; by contrast, BAC only eliminated a moderate amount of influent ammonia (by 54.5%). However, BAC was able to remove more dissolved organic matter (DOM, especially for organic molecules of 3,000 approximately 500 Daltons) and corresponding disinfection by-product formation potential (DBPFP) in raw water than MBR. Unfortunately, particulate organic matter (POM) was detected in the BAC effluent. On the other hand, BAC and MBR displayed essentially the same capacity for biodegradable organic matter (BOM) removal. Fractionation of DOM showed that the removal efficiencies of hydrophobic neutrals, hydrophobic acids, weakly hydrophobic acids and hydrophilic organic matter through BAC treatment were 11.7%, 8.8%, 13.9% and 4.8% higher than that through MBR; while MBR achieved 13.8% higher hydrophobic bases removal as compared with BAC.

  14. A comparative study on the enhanced operation of a BFB and SFCW coupling process for domestic wastewater treatment

    NASA Astrophysics Data System (ADS)

    Lingwei, Kong; Lu, Wang; Rongwu, Mei; Yingyu, Tan; Yu, Zhang; Yan, Gao; Jianing, Sun; Ya, Li

    2018-05-01

    In this study, a new coupling process system of BFB (biological filter bed) and SFCW (subsurface-flow constructed wetland) based on the auto-ventilation network was proposed, and the comparative pollutant removal efficiency of the pilot test coupling system with different substrates configurations were investigated. The study found that: the influent concentration of the system fluctuated greatly and effluent concentration of the comparison system (b) was 20.22 ± 13.37 mg/L, 2.70 ± 2.49 mg/L, 4.40 ± 3.05 mg/L and 1.09 ± 0.62 mg/L, respectively. The comparison system (b) had better removal rates than that of the original system (a), which was 81.30 %, 90.28 %, 88.57 % and 75.36 % for CODcr, NH4 +-N, TN and TP, respectively. The removal of the above main water indexes of the comparison system (b) promoted to 4.20 %, 9.20 %, 7.66 % and 13.61 % respectively when compared to the original system (a), which showed that the optimized configuration of various kinds of substrates was significant and was more beneficial to the degradation and removal of pollutants. The adsorption and interception function of substrates in the constructed wetland was the main way of phosphorus removal. The function of auto-ventilation ensured the amount of DO in the coupling system, making the phosphorus removal was less affected comparing to structure of traditional wetland.

  15. NH4+-NH3 removal from simulated wastewater using UV-TiO2 photocatalysis: effect of co-pollutants and pH.

    PubMed

    Vohra, M S; Selimuzzaman, S M; Al-Suwaiyan, M S

    2010-05-01

    The main objective of the present study was to investigate the efficiency of titanium dioxide (TiO2) assisted photocatalytic degradation (PCD) process for the removal of ammonium-ammonia (NH4(+)-NH3) from the aqueous phase and in the presence of co-pollutants thiosulfate (S2O3(2-)) and p-cresol (C6H4CH3OH) under varying mixed conditions. For the NH4(+)-NH3 only PCD experiments, results showed higher NH4 -NH3 removal at pH 12 compared to pH 7 and 10. For the binary NH4(+)-NH3/S2O3(2-) studies the respective results indicated a significant lowering in NH4(+)-NH3 PCD in the presence of S2O32- at pH 7/12 whereas at pH 10 a marked increase in NH4(+)-NH3 removal transpired. A similar trend was noted for the p-cresol/NH4(+)-NH3 binary system. Comparing findings from the binary (NH4(+)-NH3/S2O3(2-) and p-cresol/NH4(+)-NH3) and tertiary (NH4(+)-NH3/S2O3(2-)/p-cresol) systems, at pH 10, showed fastest NH4(+)-NH3 removal transpiring for the tertiary system as compared to the binary systems, whereas both the binary systems indicated comparable NH4(+)-NH3 removal trends. The respective details have been discussed.

  16. An Approach for Removing Redundant Data from RFID Data Streams

    PubMed Central

    Mahdin, Hairulnizam; Abawajy, Jemal

    2011-01-01

    Radio frequency identification (RFID) systems are emerging as the primary object identification mechanism, especially in supply chain management. However, RFID naturally generates a large amount of duplicate readings. Removing these duplicates from the RFID data stream is paramount as it does not contribute new information to the system and wastes system resources. Existing approaches to deal with this problem cannot fulfill the real time demands to process the massive RFID data stream. We propose a data filtering approach that efficiently detects and removes duplicate readings from RFID data streams. Experimental results show that the proposed approach offers a significant improvement as compared to the existing approaches. PMID:22163730

  17. 40 CFR Appendix A to Subpart I of... - Alternative Procedures for Measuring Point-of-Use Abatement Device Destruction or Removal Efficiency

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... native AOI concentration (ppm) of the effluent during stable conditions. (14) Post-test calibration. At... or removal efficiencies must be determined while etching a substrate (product, dummy, or test). For... curves for the subsequent destruction or removal efficiency tests. (8) Mass location calibration. A...

  18. Formation and removal of PCDD/Fs in a municipal waste incinerator during different operating periods.

    PubMed

    Wang, Hou Chuan; Hwang, Jyh Feng; Chi, Kai Hsien; Chang, Moo Been

    2007-04-01

    The PCDD/F concentrations and removal efficiencies achieved with air pollution control devices (APCDs) during different operating periods (start-up, normal operation, and shut-down) at an existing municipal waste incinerator (MWI) in Taiwan are evaluated via stack sampling and analysis. The MWI investigated is equipped with electrostatic precipitators (EP), wet scrubbers (WS), and selective catalytic reduction system (SCR) as APCDs. The sampling results indicate that the PCDD/F concentrations at the EP inlet during start-up period were 15 times higher than that measured during normal operation period. The PCDD/F concentration observed at shut-down period was close to that measured at normal operation period. The CO concentration was between 400 and 1000 ppm during start-up period, which was about 50 times higher compared with the normal operation. Hence, combustion condition significantly affected the PCDD/F formation concentration during the waste incineration process. In addition, the distributions of the PCDD/F congeners were similar at different operating periods. During the normal operation and shut-down periods, the EP decreases the PCDD/F concentration (based on TEQ) by 18.4-48.6%, while the removal efficiency of PCDD/Fs achieved with SCR system reaches 99.3-99.6%. Nevertheless, the PCDD/F removal efficiency achieved with SCR was only 42% during the 19-h start-up period due to the low SCR operating temperature (195 degrees C).

  19. Electro-responsive supramolecular graphene oxide hydrogels for active bacteria adsorption and removal

    NASA Astrophysics Data System (ADS)

    Xue, Bin; Cao, Yi; Wang, Wei

    Bacteria are major contaminations in drinking water and healthcare products. Bacteria contamination may cause severe health problems, including food poisoning and diseases. Currently water sterilization and purification methods to remove contaminated bacteria are mainly based on the size-exclusion mechanism. In order to completely remove all bacteria in water, the pore sizes of the membranes or cartilages should be comparable to the size of bacteria, which inevitable leads to high cross-membrane water pressure and slow purification speed. Moreover, the membranes can easily get clogged. Therefore it is highly demanded to develop efficient methods and novel materials for water purification. Recently, Cui and coworker have introduced a bacteria inactivation method with high efficiency and fast purification speed based on a kind of complex materials made of silver nanofibers, carbon nanotubes and cotton, operating in an electric field. With the help of electric field, the bacteria can be efficiently kill when passing through the membrance even the pore sizes are larger than bacteria. Inspired by their work, here we report a proof-of-principle demonstration of bacteria removal using electro-reponsive hydrogels. This work is funded by Six talent peaks project in Jiangsu Province, the National Natural Science Foundation of China (Nos. 11304156, 11334004, 31170813, 81421091 and 91127026), the 973 Program of China (No. 2012CB921801 and 2013CB834100), the Priority Ac.

  20. Modeling watershed-scale impacts of stormwater management with traditional versus low impact development design

    USGS Publications Warehouse

    Sparkman, Stephanie A.; Hogan, Dianna; Hopkins, Kristina G.; Loperfido, J. V.

    2017-01-01

    Stormwater runoff and associated pollutants from urban areas in the greater Chesapeake Bay Watershed (CBW) impair local streams and downstream ecosystems, despite urbanized land comprising only 7% of the CBW area. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner to treat stormwater runoff closer to its source. This approach included the development of a novel BMP model to compare traditional and LID design, pioneering the use of comprehensively digitized storm sewer infrastructure and BMP design connectivity with spatial patterns in a geographic information system at the watershed scale. The goal was to compare total watershed pollutant removal efficiency in two study watersheds with differing spatial patterns of BMP design (traditional and LID), by quantifying the improved water quality benefit of LID BMP design. An estimate of uncertainty was included in the modeling framework by using ranges for BMP pollutant removal efficiencies that were based on the literature. Our model, using Monte Carlo analysis, predicted that the LID watershed removed approximately 78 kg more nitrogen, 3 kg more phosphorus, and 1,592 kg more sediment per square kilometer as compared with the traditional watershed on an annual basis. Our research provides planners a valuable model to prioritize watersheds for BMP design based on model results or in optimizing BMP selection.

  1. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOEpatents

    Kochen, R.L.; Navratil, J.D.

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  2. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOEpatents

    Kochen, Robert L.; Navratil, James D.

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  3. Combined sewer overflows: an environmental source of hormones and wastewater micropollutants

    USGS Publications Warehouse

    Phillips, P.J.; Chalmers, A.T.; Gray, J.L.; Kolpin, D.W.; Foreman, W.T.; Wall, G.R.

    2012-01-01

    Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency.

  4. The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.

    PubMed

    Basibuyuk, M; Kalat, D G

    2004-03-01

    Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.

  5. The cost benefit and efficiency of waste water treatment using domestic ponds—the ultimate solution in Southern Africa

    NASA Astrophysics Data System (ADS)

    Ntengwe, F. W.

    Wastewater treatment has become a challenge to most countries in Southern Africa because of the fluctuating economies that have been hit by high levels of debts. The treatment of domestic wastewater using ponds, if carefully utilized, as has been observed in most countries in the world, is the most cost effective means of handling wastewaters. When compared to the conventional use of treatment plants, the ponds have been observed to be the ultimate solution for the countries in Southern Africa especially those that are classified as Highly Indebted Poor Countries (HIPC) because of little or no operating costs associated with the treatment. The study conducted on Kitwe Waste Water Treatment Ponds to evaluate the cost benefit and efficiencies has revealed low levels of operating cost and high removal efficiencies of oxygen demanding wastes (BOD removal of 86% and TSS removal of 75%), pH values ranged from 7 to 8 indicating an increasing alkalinity from facultative to maturation ponds while other parameters such as nitrates, phosphates and temperature were found to be within acceptable levels thereby releasing effluent that makes the environment sustainable. The overall social benefit was found to be much higher than the operating costs.

  6. Natural organic matters removal efficiency by coagulation

    NASA Astrophysics Data System (ADS)

    Sapingi, Mohd Sharizal Mohd; Pishal, Munirah; Murshed, Mohamad Fared

    2017-10-01

    The presence of Natural Organic Matter (NOM) in surface water results in unwanted characteristics in terms of color, odor, and taste. NOM content reaction with free chlorine in treated water lowers the water quality further. Chlorine is added for disinfection and produces undesirable disinfection by-products (DPBs). DBPs in drinking water are carcinogenic to consumers and may promote cancerous cell development in the human body. This study was performed to compare the coagulant efficiency of aluminum sulfate (Alum) and ferric chloride (FeCl3) on NOM removal (as in UV254 absorbance) and turbidity removal under three pH conditions (pH 6, pH 7, and sample actual pH). The three sampling points for these studies were Jalan Baru River, Kerian River, and Redac Pond. Additional sampling points, such as Lubuk Buntar and a tubewell located in the Civil Engineering School, were included to observe differences in characteristics. DOC, UV absorbance, and full wavelength were tested, after which samples treated with alum were also tested to further analyze the NOM content. Based on UV254 absorbance and DOC data, specific UV value was calculated to obtain vital synopsis of the characteristics of NOM content, as well as coagulation efficiency.

  7. Combined Sewer Overflows: An Environmental Source of Hormones and Wastewater Micropollutants

    PubMed Central

    2012-01-01

    Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency. PMID:22540536

  8. Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell.

    PubMed

    Hussain, Abid; Lebrun, Frédérique Matteau; Tartakovsky, Boris

    2017-07-01

    This study evaluated performance of an upflow membraneless microbial electrolysis cell (MEC) with flow-through electrodes for wastewater treatment. First, methane production and COD removal were evaluated in continuous flow experiments carried out using synthetic and municipal wastewater. A 29-75% increase in methane production was observed under bioelectrochemical conditions as compared to an anaerobic control. Next, simultaneous removal of COD and nitrogen was studied under microaerobic conditions created by continuous air injection to the anodic compartment of the MEC. While the presence of oxygen decreased Coulombic efficiency due to aerobic degradation of COD, enhanced ammonium removal with near zero nitrite and nitrate effluent concentrations was observed. Evidence of direct ammonium oxidation at the anode as well as nitrite and nitrate reduction at the cathode was obtained by comparing performances of MECs operated under anaerobic and microaerobic conditions with the control reactor operated at zero applied voltage. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  9. Molecular and ionic-scale chemical mechanisms behind the role of nitrocyl group in the electrochemical removal of heavy metals from sludge

    PubMed Central

    Hasan, S. W.; Ahmed, I.; Housani, A. A.; Giwa, A.

    2016-01-01

    The chemical basis for improved removal rates of toxic heavy metals such as Zn and Cu from wastewater secondary sludge has been demonstrated in this study. Instead of using excess corrosive chemicals as the source of free nitrous acid (FNA) for improved solubility of heavy metals in the sludge (in order to enhance electrokinetics), an optimized use of aqua regia has been proposed as an alternative. Fragments of nitrocyl group originated from aqua regia are responsible for the disruption of biogenic mixed liquor volatile suspended solids (MLVSS) and this disruption resulted in enhanced removal of exposed and oxidized metal ions. A diversity of nitric oxide (NO), peroxy nitrous acid, and peroxy nitroso group are expected to be introduced in the mixed liquor by the aqua regia for enhanced electrochemical treatment. The effects of pectin as a post treatment on the Zn removal from sludge were also presented for the first time. Results revealed 63.6% Cu and 93.7% Zn removal efficiencies, as compared to 49% Cu and 74% Zn removal efficiencies reported in a recent study. Also, 93.3% reduction of time-to-filter (TTF), and 95 mL/g of sludge volume index (SVI) were reported. The total operating cost obtained was USD 1.972/wet ton. PMID:27550724

  10. Improved removal performance and mechanism investigation of papermaking wastewater treatment using manganese enhanced Fenton reaction.

    PubMed

    Wang, Yingcai; Wang, Can; Shi, Shuai; Fang, Shuai

    2018-06-01

    The effects of Mn(II) on Fenton system to treat papermaking wastewater and the mechanism of Mn(II) enhanced Fenton reaction were investigated in this study. The chemical oxygen demand (COD) removal efficiency was enhanced in the presence of Mn(II), which increased by 19% compared with that of the Fenton system alone. The pseudo-first order reaction kinetic rate constant of Mn(II)/Fenton system was 2.11 times higher than that of Fenton system. 67%-81% COD were removed with the increasing Mn(II) concentration from 0 to 0.8 g/L. COD removal efficiency was also enhanced in a wider pH range (3-7), which indicated the operation parameters of Fenton technology could be broadened to a milder condition. The study of the mechanism showed that Mn(II) participated in the oxidation and coagulation stages in Fenton system. In the oxidation stage, Mn(II) promotes the production of HO 2 •/ O 2 • - , then HO 2 •/ O 2 • - reacts with Fe(III) to accelerate the formation of Fe(II), and finally accelerates the production of HO•. Meantime MnMnO 3 and Fe(OH) 3 forms in the coagulation stage, facilitating the removal of suspended substances and a large amount of COD, which enhances the overall COD removal of papermaking wastewater. This study provided a detailed mechanism to improve practical applications of Fenton technology.

  11. [Efficiency of photodecomposition of trace NDMA in water by UV irradiation].

    PubMed

    Xu, Bing-Bing; Chen, Zhong-Lin; Qi, Fei; Ma, Jun

    2008-07-01

    Efficiency of photodecomposition of trace NDMA by UV irradiation was investigated with analyzing the initial concentration of NDMA, solution pH, irradiation area, irradiation intensity and water quality effect on NDMA photolysis. NDMA could be effectively photodegraded by UV irradiation. The removal efficiency of NDMA was 97.5% after 5 min of UV irradiation. Effect of initial NDMA concentration on photodecomposition of NDMA was not remarkable. With pH value ascending, the removal rate of NDMA photodecomposition decreased. The yields of photoquantum were more under lower solution pH than that under higher pH. NDMA had fastest reaction rate at solution pH = 2.2. Removal efficiency of NDMA increased with the available irradiation area ascending. Increscent ultraviolet irradiation intensity was good for NDMA degradation. Water quality affected the removal of NDMA slightly. The removal efficiency of NDMA in tap water and Songhua River raw water were 96.7% and 94.8%, respectively.

  12. Treatment of emulsified oils by electrocoagulation: pulsed voltage applications.

    PubMed

    Genc, Ayten; Bakirci, Busra

    2015-01-01

    The effect of pulsed voltage application on energy consumption during electrocoagulation was investigated. Three voltage profiles having the same arithmetic average with respect to time were applied to the electrodes. The specific energy consumption for these profiles were evaluated and analyzed together with oil removal efficiencies. The effects of applied voltages, electrode materials, electrode configurations, and pH on oil removal efficiency were determined. Electrocoagulation experiments were performed by using synthetic and real wastewater samples. The pulsed voltages saved energy during the electrocoagulation process. In continuous operation, energy saving was as high as 48%. Aluminum electrodes used for the treatment of emulsified oils resulted in higher oil removal efficiencies in comparison with stainless steel and iron electrodes. When the electrodes gap was less than 1 cm, higher oil removal efficiencies were obtained. The highest oil removal efficiencies were 95% and 35% for the batch and continuous operating modes, respectively.

  13. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    NASA Astrophysics Data System (ADS)

    Maeng, Sung Kyu; Sharma, Saroj K.; Abel, Chol D. T.; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L.

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  14. Simultaneous removal of aniline, nitrogen and phosphorus in aniline-containing wastewater treatment by using sequencing batch reactor.

    PubMed

    Jiang, Yu; Wang, Hongyu; Shang, Yu; Yang, Kai

    2016-05-01

    The high removal efficiencies of traditional biological aniline-degrading systems always lead to accumulation of ammonium. In this study, simultaneous removal of aniline, nitrogen and phosphorus in a single sequencing batch reactor was achieved by using anaerobic/aerobic/anoxic (A/O/A) operational process. The removal efficiencies of COD, NH4(+)-N, TN, TP were over 95.80%, 83.03%, 87.13%, 90.95%, respectively in most cases with 250mgL(-1) of initial aniline at 6h cycle when DO was 5.5±0.5mgL(-1). Aniline was able to be completely degraded when initial concentrations were less than 750mgL(-1). When DO increased, the removal rate of NH4(+)-N and TP slightly increased along with the moderate decrease of removal efficiencies of TN. The variation of HRT had obvious influence on removal performance of pollutants. The system showed high removal efficiencies of aniline, COD and nutrients during the variation of operating conditions, which might contribute to disposal of aniline-rich industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Organic pollutants removal from 2,4,6-trinitrotoluene (TNT) red water using low cost activated coke.

    PubMed

    Zhang, Mohe; Zhao, Quanlin; Ye, Zhengfang

    2011-01-01

    We treated 2,4,6-trinitrotoluene (TNT) red water from the Chinese explosive industry with activated coke (AC) from lignite. Since the composition of TNT red water was very complicated, chemical oxygen demand (COD) was used as the index for evaluating treatment efficiency. This study focused on sorption kinetics and equilibrium sorption isotherms of AC for the removal of COD from TNT red water, and the changes of water quality before and after adsorption were evaluated using high performance liquid chromatography, UV-Vis spectra and gas chromatography/mass spectroscopy. The results showed that the sorption kinetics of COD removal from TNT red water onto AC fitted well with the pseudo second-order model. The adsorption process was an exothermic and physical process. The sorption isotherm was in good agreement with Redlich-Peterson isotherm. At the conditions of initial pH = 6.28, 20 degrees C and 3 hr of agitation, under 160 g/L AC, 64.8% of COD was removed. The removal efficiencies of 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO3-) and 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO3-) were 80.5% and 84.3%, respectively. After adsorption, the acute toxicity of TNT red water reduced greatly, compared with that of unprocessed TNT red water.

  16. Removal of refractory contaminants in municipal landfill leachate by hydrogen, oxygen and palladium: a novel approach of hydroxyl radical production.

    PubMed

    Yu, Yingjian; Chen, Zhulei; Guo, Zhiyuan; Liao, Zhuwei; Yang, Lie; Wang, Jia; Chen, Zhuqi

    2015-04-28

    Municipal solid waste (MSW) leachate contains various refractory pollutants that pose potential threats to both surface water and groundwater. This paper established a novel catalytic oxidation process for leachate treatment, in which OH is generated in situ by pumping both H2 and O2 in the presence of Pd catalyst and Fe(2+). Volatile fatty acids in the leachate were removed almost completely by aeration and/or mechanical mixing. In this approach, a maximum COD removal of 56.7% can be achieved after 4h when 200mg/L Fe(2+) and 1250mg/L Pd/Al2O3 (pH 3.0) are used as catalysts. After oxidation, the BOD/COD ratio in the proposed process increased from 0.03 to 0.25, indicating that the biodegradability of the leachate was improved. By comparing the efficiency on COD removal and economical aspect of the proposed Pd-based in-situ process with traditional Fenton, electro-Fenton and UV-Fenton for leachate treatments, the proposed Pd-based in-situ process has potential economic advantages over other advanced oxidation processes while the COD removal efficiency was maintained. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: Comparison of the simultaneous and successive oxidant dosing strategy.

    PubMed

    Liu, Bin; Qu, Fangshu; Chen, Wei; Liang, Heng; Wang, Tianyu; Cheng, Xiaoxiang; Yu, Huarong; Li, Guibai; Van der Bruggen, Bart

    2017-11-15

    In this study, the application of enhanced coagulation with persulfate/Fe(II), permanganate and ozone for Microcystis-laden water treatment was investigated. Two oxidant dosage strategies were compared in terms of the organic removal performance: a simultaneous dosing strategy (SiDS) and a successive dosing strategy (SuDS). To optimize the oxidant species, oxidant doses and oxidant dosage strategy, the zeta potential, floc size and dimension fraction, potassium release and organic removal efficiency during the coagulation of algae-laden water were systematically investigated and comprehensively discussed. Ozonation causes most severe cell lysis and reduces organic removal efficiency because it releases intracellular organics. Moreover, ozonation can cause the release of odor compounds such as 2-methylisoborneol (2-MIB) and geosmin (GSM). With increasing doses, the performance of pollutant removal by coagulation enhanced by persulfate/Fe(II) or permanganate did not noticeably improve, which suggests that a low dosage of persulfate/Fe(II) and permanganate is the optimal strategy to enhance coagulation of Microcystis-laden water. The SiDS performs better than the SuDS because more Microcystis cell lysis occurs and less DOC is removed when oxidants are added before the coagulants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Influence of dissolved organic matter concentration and composition on the removal efficiency of perfluoroalkyl substances (PFASs) during drinking water treatment.

    PubMed

    Kothawala, Dolly N; Köhler, Stephan J; Östlund, Anna; Wiberg, Karin; Ahrens, Lutz

    2017-09-15

    Drinking water treatment plants (DWTPs) are constantly adapting to a host of emerging threats including the removal of micro-pollutants like perfluoroalkyl substances (PFASs), while concurrently considering how background levels of dissolved organic matter (DOM) influences their removal efficiency. Two adsorbents, namely anion exchange (AE) and granulated active carbon (GAC) have shown particular promise for PFAS removal, yet the influence of background levels of DOM remains poorly explored. Here we considered how the removal efficiency of 13 PFASs are influenced by two contrasting types of DOM at four concentrations, using both AE (Purolite A-600 ® ) and GAC (Filtrasorb 400 ® ). We placed emphasis on the pre-equilibrium conditions to gain better mechanistic insight into the dynamics between DOM, PFASs and adsorbents. We found AE to be very effective at removing both PFASs and DOM, while largely remaining resistant to even high levels of background DOM (8 mg carbon L -1 ) and surprisingly found that smaller PFASs were removed slightly more efficiently than longer chained counterparts, In contrast, PFAS removal efficiency with GAC was highly variable with PFAS chain length, often improving in the presence of DOM, but with variable response based on the type of DOM and PFAS chain length. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands.

    PubMed

    Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro

    2013-10-15

    The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater.

    PubMed

    Zhao, Zhao; Shi, Huijuan; Liu, Yang; Zhao, Hai; Su, Haifeng; Wang, Maolin; Zhao, Yun

    2014-09-01

    The effect of temperature, light intensity, nitrogen and phosphorus concentrations on the biomass and starch content of duckweed (Landoltia punctata OT, Lemna minor OT) in monoculture and mixture were assessed. Low light intensity promoted more starch accumulation in mixture than in monoculture. The duckweed in mixture had higher biomass and nutrient removal efficiency than those in monoculture in swine wastewater. Moreover, the ability of L. punctata C3, L. minor C2, Spirodela polyrhiza C1 and their mixtures to recovery nutrients and their biomass were analyzed. Results showed that L. minor C2 had the highest N and P content, while L. punctata C3 had the highest starch content, and the mixture of L. punctata C3 and L. minor C2 had the greatest nutrient removal rate and the highest biomass. Compared with L. punctata C3 and L. minor C2 in monoculture, their biomass in mixture increased by 17.0% and 39.8%, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Removal of {sup 222}Rn daughters from metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuzel, G.; Wojcik, M.; Majorovits, B.

    Removal of the long-lived {sup 222}Rn daughters ({sup 210}Pb, {sup 210}Bi and {sup 210}Po) from copper, stainless steel and germanium surfaces was investigated. As cleaning techniques etching and electro-polishing was applied to samples in a form of discs exposed earlier to a strong radon source. Reduction of the {sup 210}Pb activity was tested using a HPGe spectrometer, for {sup 210}Bi a beta spectrometer and for {sup 210}Po an alpha spectrometer was used. According to the conducted measurements electro-polishing was always more efficient compared to etching and in case of copper the activity reduction factors for {sup 210}Pb, {sup 210}Bi andmore » {sup 210}Po were between 200 and 400. Etching does not remove {sup 210}Po from copper but works very efficiently from germanium. Results obtained for {sup 210}Pb and {sup 210}Bi for etched stainless steel were worse but still slightly better than those achieved for copper.« less

  2. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal.

    PubMed

    Tang, Jingchun; Lv, Honghong; Gong, Yanyan; Huang, Yao

    2015-11-01

    A graphene/biochar composite (G/BC) was synthesized via slow pyrolysis of graphene (G) pretreated wheat straw, and tested for the sorption characteristics and mechanisms of representative aqueous contaminants (phenanthrene and mercury). Structure and morphology analysis showed that G was coated on the surface of biochar (BC) mainly through π-π interactions, resulting in a larger surface area, more functional groups, greater thermal stability, and higher removal efficiency of phenanthrene and mercury compared to BC. Pseudo second-order model adequately simulated sorption kinetics, and sorption isotherms of phenanthrene and mercury were simulated well by dual-mode and BET models, respectively. FTIR and SEM analysis suggested that partitioning and surface sorption were dominant mechanisms for phenanthrene sorption, and that surface complexation between mercury and C-O, CC, -OH, and OC-O functional groups was responsible for mercury removal. The results suggested that the G/BC composite is an efficient, economic, and environmentally friendly multifunctional adsorbent for environmental remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudduth, Christie; Vitali, Jason; Keefer, Mark

    The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the factmore » that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.« less

  4. Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water.

    PubMed

    Lessa, Emanuele F; Nunes, Matheus L; Fajardo, André R

    2018-06-01

    Waste coffee-grounds (WCG), a poorly explored source of biocompounds, were combined with chitosan (Cs) and poly(vinyl alcohol) (PVA) in order to obtain composites. Overall, WCG showed a good interaction with the polymeric matrix and good dispersibility up to 10 wt-%. At 5 wt-% WCG, the composite exhibited a noticeable enhancement (from 10 to 44%) of the adsorption of pharmaceuticals (metamizol (MET), acetylsalicylic acid (ASA), acetaminophen (ACE), and caffeine (CAF)) as compared to the pristine sample. The highest removal efficiency was registered at pH 6 and the removal followed the order ASA > CAF > ACE > MET. For all pharmaceuticals, the adsorption kinetics was found to follow the pseudo-second order model, while the adsorption mechanism was explained by the Freundlich isotherm. Reuse experiments indicated that the WCG-containing composite has an attractive cost-effectiveness since it presented a remarkable reusability in at least five consecutive adsorption/desorption cycles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Treatment of winery wastewater by electrochemical methods and advanced oxidation processes.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikelic, Ivanka Lovrencic; Gustek, Stefica Findri

    2013-01-01

    The aim of this research was development of new system for the treatment of highly polluted wastewater (COD = 10240 mg/L; SS = 2860 mg/L) originating from vine-making industry. The system consisted of the main treatment that included electrochemical methods (electro oxidation, electrocoagulation using stainless steel, iron and aluminum electrode sets) with simultaneous sonication and recirculation in strong electromagnetic field. Ozonation combined with UV irradiation in the presence of added hydrogen peroxide was applied for the post-treatment of the effluent. Following the combined treatment, the final removal efficiencies of the parameters color, turbidity, suspended solids and phosphates were over 99%, Fe, Cu and ammonia approximately 98%, while the removal of COD and sulfates was 77% and 62%, respectively. A new approach combining electrochemical methods with ultrasound in the strong electromagnetic field resulted in significantly better removal efficiencies for majority of the measured parameters compared to the biological methods, advanced oxidation processes or electrocoagulation. Reduction of the treatment time represents another advantage of this new approach.

  6. Adsorptive removal of sulfonamide antibiotics in livestock urine using the high-silica zeolite HSZ-385.

    PubMed

    Fukahori, S; Fujiwara, T; Funamizu, N; Matsukawa, K; Ito, R

    2013-01-01

    The adsorptive removal of seven sulfonamide antibiotics using the high-silica zeolite HSZ-385 from distilled water, synthetic urine and real porcine urine was investigated. The pH greatly affected the adsorption efficiency, and the amounts of all sulfonamide antibiotics adsorbed on HSZ-385 decreased at alkaline conditions compared with that at neutral conditions. During storage, the pH and ammonium-ion concentration increased with urea hydrolysis for porcine urine. We clarified that the adsorption efficiency of sulfonamides in synthetic urine was equivalent to that in distilled water, suggesting that adsorption behavior was not affected by coexistent ions. HSZ-385 could adsorb sulfonamide antibiotics in real porcine urine even though the non-purgeable organic carbon concentration of porcine urine was 4-7 g/L and was two orders of magnitude higher than those of sulfonamides (10 mg/L each). Moreover, the adsorption of sulfonamides reached equilibrium within 15 min, suggesting that HSZ-385 is a promising adsorbent for removing sulfonamides from porcine urine.

  7. Hibiscus rosa- sinensis leaf extract as coagulant aid in leachate treatment

    NASA Astrophysics Data System (ADS)

    Awang, Nik Azimatolakma; Aziz, Hamidi Abdul

    2012-12-01

    Hibiscus rosa- sinensis is a biodegradable material that has remained untested for flocculating properties. The objective of this study is to examine the efficiency of coagulation-flocculation processes for the removal of color, iron (Fe3+), suspended solids, turbidity and ammonia nitrogen(NH3-N), from landfill leachate using 4,000 mg/L alum in conjunction with H. rosa- sinensis leaf extract (HBaqs). Hydroxyl (O-H) and (carboxyl) C=O functional groups along the HBaqs chain help to indulge flocculating efficiency of HBaqs via bridging. The experiments confirm the positive coagulation properties of HBaqs. The Fe3+ removal rate using 4,000 mg/L alum as sole coagulant was approximately 60 %, and increased to 100 % when 4,000 mg/L alum was mixed with 500 mg/L HBaqs. By mixing, 4,000 mg/L alum with 100-500 mg/L HBaqs, 72 % of SS was removed as compared with only 45 % reduction using 4,000 mg/L alum as sole coagulant.

  8. Group normalization for genomic data.

    PubMed

    Ghandi, Mahmoud; Beer, Michael A

    2012-01-01

    Data normalization is a crucial preliminary step in analyzing genomic datasets. The goal of normalization is to remove global variation to make readings across different experiments comparable. In addition, most genomic loci have non-uniform sensitivity to any given assay because of variation in local sequence properties. In microarray experiments, this non-uniform sensitivity is due to different DNA hybridization and cross-hybridization efficiencies, known as the probe effect. In this paper we introduce a new scheme, called Group Normalization (GN), to remove both global and local biases in one integrated step, whereby we determine the normalized probe signal by finding a set of reference probes with similar responses. Compared to conventional normalization methods such as Quantile normalization and physically motivated probe effect models, our proposed method is general in the sense that it does not require the assumption that the underlying signal distribution be identical for the treatment and control, and is flexible enough to correct for nonlinear and higher order probe effects. The Group Normalization algorithm is computationally efficient and easy to implement. We also describe a variant of the Group Normalization algorithm, called Cross Normalization, which efficiently amplifies biologically relevant differences between any two genomic datasets.

  9. Group Normalization for Genomic Data

    PubMed Central

    Ghandi, Mahmoud; Beer, Michael A.

    2012-01-01

    Data normalization is a crucial preliminary step in analyzing genomic datasets. The goal of normalization is to remove global variation to make readings across different experiments comparable. In addition, most genomic loci have non-uniform sensitivity to any given assay because of variation in local sequence properties. In microarray experiments, this non-uniform sensitivity is due to different DNA hybridization and cross-hybridization efficiencies, known as the probe effect. In this paper we introduce a new scheme, called Group Normalization (GN), to remove both global and local biases in one integrated step, whereby we determine the normalized probe signal by finding a set of reference probes with similar responses. Compared to conventional normalization methods such as Quantile normalization and physically motivated probe effect models, our proposed method is general in the sense that it does not require the assumption that the underlying signal distribution be identical for the treatment and control, and is flexible enough to correct for nonlinear and higher order probe effects. The Group Normalization algorithm is computationally efficient and easy to implement. We also describe a variant of the Group Normalization algorithm, called Cross Normalization, which efficiently amplifies biologically relevant differences between any two genomic datasets. PMID:22912661

  10. A new mathematical model for nitrogen gas production with special emphasis on the role of attached growth media in anammox hybrid reactor.

    PubMed

    Tomar, Swati; Gupta, Sunil Kumar

    2015-11-01

    The present study emphasised on the development of new mathematical models based on mass balance and stoichiometry of nitrogen removal in anammox hybrid reactor (AHR). The performance of AHR at varying hydraulic retention times (HRTs) and nitrogen loading rates (NLRs) revealed that nitrogen removal efficiency (NRE) increases with increase in HRT and was found optimal (89 %) at HRT of 2 days. Mass balance of nitrogen revealed that major fraction (74.1 %) of input nitrogen is converted into N2 gas followed by 11.2 % utilised in biomass synthesis. Attached growth media (AGM) in AHR contributed to an additional 15.4 % ammonium removal and reduced the sludge washout rate by 29 %. This also enhanced the sludge retention capacity of AHR and thus minimised the formation of nitrate in the treated effluent, which is one of the bottlenecks of anammox process. Process kinetics was also studied using various mathematical models. The mass balance model derived from total nitrogen was found most precise and predicted N2 gas with least error (1.68 ± 4.44 %). Model validation for substrate removal kinetics dictated comparatively higher correlation for Grau second-order model (0.952) than modified Stover-Kincannon model (0.920). The study concluded that owing to features of high biomass retention, less nitrate formation and consistently higher nitrogen removal efficiency, this reactor configuration is techno-economically most efficient and viable. The study opens the door for researchers and scientists for pilot-scale testing of AHR leading to its wide industrial application.

  11. Measurement of efficiency in calculus removal with a frequency-doubled Alexandrite laser on pigs' jaws

    NASA Astrophysics Data System (ADS)

    Pilgrim, Christian G.; Rechmann, Peter; Goldin, Dan S.; Hennig, Thomas

    2000-03-01

    Periodontal therapy aims in a most sufficient cleaning of tooth surfaces from supra- and subgingival calculus. As a standard dental procedure teeth are treated with ultrasonic devices. The competence of the frequency doubled Alexandrite laser for a highly effective and selective removal of calculus has been repeatedly proved. Aim of the study presented here was to determine the efficiency at simulated clinical conditions of the frequency doubled Alexandrite laser (laboratory prototype, q-switched, fiber guided, wavelength 377 nm, pulse duration 1 microsecond, pulse repetition rate 70 Hz, water cooling) by quantifying it's calculus removing efficiency. The evaluated data were compared to those obtained with an ultrasonic calculus remover. In the first part of the study sample material consisted of 23 pigs' jaws. They were divided into two groups. The teeth of one group were cleaned on their buccal surfaces using an ultrasonic device (Sonosoft Lux, KaVo, Biberach, Germany; tip #9). Than hand-guided cleaning was performed until no further improvement in cleanness was visible. Cleaning time was measured. Photographic documentation was taken before and after the treatment. The teeth in the second group were cleaned engaging a frequency doubled Alexandrite laser. Treatment time was measured and photographs were taken in the same way. In the second part of the study 21 surfaces of human teeth set up in an artificial pocket model were treated with both systems again. Measurements followed the same protocol. The results strongly support the use of the frequency doubled Alexandrite laser for calculus removal.

  12. Fate of estrogens in a pilot-scale step-feed anoxic/oxic wastewater treatment system controlling by nitrogen and phosphorus removal.

    PubMed

    Chen, Qingcai; Li, Zebing; Hua, Xiaoyu

    2018-05-01

    The control measures for estrogens in the aquatic environment are topics of growing concern. It is a meaningful issue to finding optimal process parameters for efficient removal of estrogens with the purpose of efficient total nitrogen (TN) or total phosphorus (TP) removal in sewage treatment plants. The present paper is concerned with the relationships between the estrogen removal and TN or TP removal in a pilot-scale three-stage anoxic/oxic (A/O) system treating real municipal wastewater. The total removal efficiency for estrone (E1) and 17β-estradiol (E2) and their sulfate and glucuronide conjugates were on average 87% in the pilot-scale system. The concentrations of the sulfate and glucuronide conjugates of estrogens (E1 and E2) in the system were much lower than the estrogens, which might be caused by the rapid degradation of conjugates in the pilot-scale system. The average removal efficiencies of E1 and E2 and their sulfate and glucuronide conjugates were significantly lower under high TP removal conditions than those under high TN removal conditions that suggested that the ammonia oxidation promotes estrogen degradation. When the system achieved efficient TN removal, the concentrations of both E1 and E2 were generally lower in the aerobic zones than those in the anoxic zones. Instead, when the system achieved efficient TP removal conditions, the estrogen concentrations were higher in the aerobic zones than in the anoxic zones. However, it was thought that the variation of the concentrations of the estrogen conjugates had weak influence on concentrations of the free estrogens. The increase of the free estrogens in the aerobic zones could be attributed to the release of the estrogens adsorbed on the sludge. The variation of estrogens in a three-stage A/O system can be properly estimated and measured by a binary linear regression model with the variables of TP and TON (NO 2 - -N and NO 3 - -N), which is probably the important information for the improvement and optimization of wastewater treatment processes to obtain higher removal efficiency for estrogens.

  13. Phosphorous removal from aqueous solution can be enhanced through the calcination of lime sludge.

    PubMed

    Bal Krishna, K C; Niaz, Mohamed R; Sarker, Dipok C; Jansen, Troy

    2017-09-15

    Water treatment plants generate an enormous amount of the sludge which is normally treated as waste. In the recent past, many investigations have been focused on developing an economical adsorbent using water treatment sludge to remove phosphorous (P) from aqueous solutions. However, the great extents of the studies have been limited in the use of alum- and iron-based sludges. This study, therefore, investigated the P removal performance of the calcined lime sludge. Calcined lime sludge at 700 °C significantly enhanced the P removal efficiency whereas marginal improvement was noted when the sludge calcined at 400 °C was tested. With increase P removal efficiency, final pH values of the solution also significantly increased. P removal efficiency of the calcined sludge decreased with increasing the initial P concentrations. However, the removal efficiency could be improved by increasing the weight of the sludge. Further analysis demonstrated that P removal trend followed both pseudo-second order and diffusion-chemisorption kinetics signifying the P removal is potentially due to a multi-mechanistic reaction in which, the process is controlled by intra-particle diffusion followed by chemisorptions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. TEST QA PLAN FOR THE VERIFICATION TESTING OF BAGHOUSE FILTRATION PRODUCTS

    EPA Science Inventory

    Baghouses and their accompanying filter media are a leading particulate control technique for industrial sources. Increasingly emphasis on higher removal efficiencies has helped the baghouse to be even more competitive when compared to other control devices. At present there is n...

  15. Removal of pharmaceuticals from secondary effluents by an electro-peroxone process.

    PubMed

    Yao, Weikun; Wang, Xiaofeng; Yang, Hongwei; Yu, Gang; Deng, Shubo; Huang, Jun; Wang, Bin; Wang, Yujue

    2016-01-01

    This study compared the removal of pharmaceuticals from secondary effluents of wastewater treatment plants (WWTPs) by conventional ozonation and the electro-peroxone (E-peroxone) process, which involves electrochemically generating H2O2 in-situ from O2 in sparged O2 and O3 gas mixture (i.e., ozone generator effluent) during ozonation. Several pharmaceuticals with kO3 ranging from <0.1 to 6.8 × 10(5) M(-1) s(-1) were spiked into four secondary effluents collected from different WWTPs, and then treated by ozonation and the E-peroxone process. Results show that both processes can rapidly remove ozone reactive pharmaceuticals (diclofenac and gemfibrozil), while the E-peroxone process can considerably accelerate the removal of ozone-refractory pharmaceuticals (e.g., ibuprofen and clofibric acid) via indirect oxidation with OH generated from the reaction of sparged O3 with electro-generated H2O2. Compared with ozonation, the E-peroxone process enhanced the removal kinetics of ozone-refractory pharmaceuticals in the four secondary effluents by ∼40-170%, and the enhancement was more pronounced in secondary effluents that had relatively lower effluent organic matter (EfOM). Due to its higher efficiency for removing ozone-refractory pharmaceuticals, the E-peroxone process reduced the reaction time and electrical energy consumption required to remove ≥90% of all spiked pharmaceuticals from the secondary effluents as compared to ozonation. These results indicate that the E-peroxone process may provide a simple and effective way to improve existing ozonation system for pharmaceutical removal from secondary effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.

    PubMed

    Kumari, Sinu; Das, Debabrata

    2015-10-01

    The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Study on anaerobic treatment of wastewater containing hexavalent chromium*

    PubMed Central

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-01-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms. PMID:15909347

  18. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes.

    PubMed

    Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester

    2015-09-15

    Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Polycyclic aromatic hydrocarbon removal from contaminated soils using fatty acid methyl esters.

    PubMed

    Gong, Zongqiang; Wang, Xiaoguang; Tu, Ying; Wu, Jinbao; Sun, Yifei; Li, Peng

    2010-03-01

    In this study, solubilization of PAHs from a manufactured gas plant (MGP) soil and two artificially spiked soils using fatty acid methyl esters (FAME) was investigated. PAH removals from both the MGP and the spiked soils by FAME, methanol, soybean oil, hydroxypropyl-beta-cyclodextrin, Triton X-100, and Tween 80 were compared. The effect of FAME:MGP soil ratios on PAH removals was also investigated. Results showed that the FAME mixture synthesized by our lab was more efficient than the cyclodextrin and the two surfactants used for PAH removal from the spiked soils with individual PAH concentrations of 200 and 400 mg kg(-1). However, the difference among three PAH removals by the FAME, soybean oil and methanol was not quite pronounced. The FAME synthesized and market biodiesel exhibited better performance for PAH removals (46% and 35% of total PAH) from the weathered contaminated MGP soil when compared with the other agents (0-31%). Individual PAH removals from the weathered MGP soil were much lower than those from the spiked soils. The percentages of total PAH removals from the MGP soil were 59%, 46%, and 51% for the FAME:MGP soil ratios of 1:2, 1:1, and 2:1, respectively. These results showed that the FAME could be a more attractive alternative to conventional surfactants in ex situ washing of PAH-contaminated soils. 2010 Elsevier Ltd. All rights reserved.

  20. Modelling of fluoride removal via batch monopolar electrocoagulation process using aluminium electrodes

    NASA Astrophysics Data System (ADS)

    Amri, N.; Hashim, M. I.; Ismail, N.; Rohman, F. S.; Bashah, N. A. A.

    2017-09-01

    Electrocoagulation (EC) is a promising technology that extensively used to remove fluoride ions efficiently from industrial wastewater. However, it has received very little consideration and understanding on mechanism and factors that affecting the fluoride removal process. In order to determine the efficiency of fluoride removal in EC process, the effect of operating parameters such as voltage and electrolysis time were investigated in this study. A batch experiment with monopolar aluminium electrodes was conducted to identify the model of fluoride removal using empirical model equation. The EC process was investigated using several parameters which include voltage (3 - 12 V) and electrolysis time (0 - 60 minutes) at a constant initial fluoride concentration of 25 mg/L. The result shows that the fluoride removal efficiency increased steadily with increasing voltage and electrolysis time. The best fluoride removal efficiency was obtained with 94.8 % removal at 25 mg/L initial fluoride concentration, voltage of 12 V and 60 minutes electrolysis time. The results indicated that the rate constant, k and number of order, n decreased as the voltage increased. The rate of fluoride removal model was developed based on the empirical model equation using the correlation of k and n. Overall, the result showed that EC process can be considered as a potential alternative technology for fluoride removal in wastewater.

  1. Simultaneous nitrification and denitrification in a novel membrane bioelectrochemical reactor with low membrane fouling tendency.

    PubMed

    Li, Hui; Zuo, Wei; Tian, Yu; Zhang, Jun; Di, Shijing; Li, Lipin; Su, Xinying

    2017-02-01

    Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor for electrochemical denitrification, yet there is little knowledge about how to apply them into current wastewater treatment process to achieve efficient nitrogen removal. In this study, two dual-chamber MFCs were integrated with an aerobic membrane bioreactor to construct a novel membrane bioelectrochemical reactor (MBER) for simultaneous nitrification and denitrification under specific aeration. The effects of chemical oxygen demand (COD) loading rate, COD/N ratio, hydraulic retention time (HRT), and external resistance on the system performance were investigated. High effluent quality was obtained in the MBER in terms of COD and ammonium. During the operation, denitrification simultaneously occurred with nitrification at the bio-cathode of the MBER, achieving a maximal nitrogen removal efficiency of 84.3 %. A maximum power density of 1.8 W/m 3 and a current density of 8.5 A/m 3 were achieved with a coulombic efficiency of 12.1 %. Furthermore, compared to the control system, the MBER exhibited lower membrane fouling tendency due to mixed liquor volatile suspended solids (MLVSSs) and extracellular polymeric substance (EPS) reductions, EPSp/EPSc ratio decrease, and particle size increase of the sludge. These results suggest that the MBER holds potential for efficient nitrogen removal, electricity production, and membrane fouling mitigation.

  2. Anaerobic Biochemical Reactor (BCR) Treatment Of Mining-Influenced Water (MIW) - Investigation Of Metal Removal Efficiency and Ecotoxicity

    EPA Science Inventory

    BCR have been successful at removing a high percentage of metals from MIW, while BCR effluent toxicity has not been examined previously in the field. This study examined 4 active pilot BCR systems for removal of metals and toxicity. Removal efficiency for Al, As, Cd, Cu, Ni, Pb...

  3. Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, D.C.; Yu, Z.J.; Chen, Y.

    2009-06-15

    A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recoverymore » to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.« less

  4. Removal of elemental mercury by TiO₂doped with WO₃ and V₂O₅ for their photo- and thermo-catalytic removal mechanisms.

    PubMed

    Shen, Huazhen; Ie, Iau-Ren; Yuan, Chung-Shin; Hung, Chung-Hsuang; Chen, Wei-Hsiang

    2016-03-01

    The catalytic removal of Hg(0) was investigated to ascertain whether the catalysts could simultaneously possess both thermo- and photo-catalytic reactivity. The immobilized V2O5/TiO2 and WO3/TiO2 catalysts were synthesized by sol-gel method and then coated on the surface of glass beads for catalytic removal of Hg(0). They were also characterized by SEM, BET, XRD, UV-visible, and XPS analysis, and their catalytic reactivity was tested under 100-160 °C under the near-UV irradiation. The results indicated that V2O5/TiO2 solely possessed the thermo-catalytic reactivity while WO3/TiO2 only had photo-catalytic reactivity. Although the synthesis catalytic reactivity has not been found for these catalysts up to date, but compared with TiO2, the removal efficiencies of Hg(0) at 140 and 160 °C were enhanced; particularly, the efficiency was improved from 20 % at 160 °C by TiO2 to nearly 90 % by WO3/TiO2 under the same operating conditions. The effects of doping amount of V2O5 and WO3 were also investigated, and the results showed that 10 % V2O5 and 5 % WO3/TiO2 were the best immobilized catalysts for thermo- and photo-catalytic reactivity, respectively. The effect of different influent concentrations of Hg(0) was demonstrated that the highest concentration of Hg(0) led to the best removal efficiencies for V2O5/TiO2 and WO3/TiO2 at 140 and 160 °C, because high Hg(0) concentration increased the mass transfer rate of Hg(0) toward the surface of catalysts and drove the reaction to proceed. At last, the effect of single gas component on the removal of Hg(0) was also investigated.

  5. Reduction of clarithromycin and sulfamethoxazole-resistant Enterococcus by pilot-scale solar-driven Fenton oxidation.

    PubMed

    Karaolia, Popi; Michael, Irene; García-Fernández, Irene; Agüera, Ana; Malato, Sixto; Fernández-Ibáñez, Pilar; Fatta-Kassinos, Despo

    2014-01-15

    The presence of pathogenic antibiotic-resistant bacteria in aquatic environments has become a health threat in the last few years. Their presence has increased due to the presence of antibiotics in wastewater effluents, which are not efficiently removed by conventional wastewater treatments. As a result there is a need to study the possible ways of removal of the mixtures of antibiotics present in wastewater effluents and the antibiotic-resistant bacteria, which may also spread the antibiotic resistance genes to other bacterial populations. In this study the degradation of a mixture of antibiotics i.e. sulfamethoxazole and clarithromycin, the disinfection of total enterococci and the removal of those resistant to: a) sulfamethoxazole, b) clarithromycin and c) to both antibiotics have been examined, along with the toxicity of the whole effluent mixture after treatment to the luminescent aquatic bacterium Vibrio fischeri. Solar Fenton treatment (natural solar driven oxidation) using Fenton reagent doses of 50 mg L(-1) of hydrogen peroxide and 5 mg L(-1) of Fe(3+) in a pilot-scale compound parabolic collector plant was used to examine the disinfection and antibiotic resistance removal efficiency in different aqueous matrices, namely distilled water, simulated and real wastewater effluents. There was a faster complete removal of enterococci and of antibiotics in all aqueous matrices by applying solar Fenton when compared to photolytic treatment of the matrices. Sulfamethoxazole was more efficiently degraded than clarithromycin in all three aqueous matrices (95% removal of sulfamethoxazole and 70% removal of clarithromycin in real wastewater). The antibiotic resistance of enterococci towards both antibiotics exhibited a 5-log reduction with solar Fenton in real wastewater effluent. Also after solar Fenton treatment, there were 10 times more antibiotic-resistant enterococci in the presence of sulfamethoxazole than in the presence of clarithromycin. Finally, the toxicity of the treated wastewater to V. fischeri remained very low throughout the treatment time. © 2013.

  6. Effect of climatic conditions, season and wastewater quality on contaminant removal efficiency of two experimental constructed wetlands in different regions of Spain.

    PubMed

    Garfí, Marianna; Pedescoll, Anna; Bécares, Eloy; Hijosa-Valsero, María; Sidrach-Cardona, Ricardo; García, Joan

    2012-10-15

    The aim of this study was to examine the effects of climate, season and wastewater quality on contaminant removal efficiency of constructed wetlands implemented in Mediterranean and continental-Mediterranean climate region of Spain. To this end, two experimental horizontal subsurface flow constructed wetlands located in Barcelona and León (Spain) were compared. The two constructed wetland systems had the same experimental set-up. Each wetland had a surface area of 2.95 m(2), a water depth of 25 cm and a granular medium of D(60)=7.3 mm, and was planted with Phragmites australis. Both systems were designed in order to operate with a maximum organic loading rate of 6 g(DBO) m(-2) d(-1). Experimental systems operated with a hydraulic loading rate of 28.5 and 98 mm d(-1) in Barcelona and León, respectively. Total suspended solids, biochemical oxygen demand and ammonium mass removal efficiencies followed seasonal trends, with higher values in the summer (97.4% vs. 97.8%; 97.1% vs. 96.2%; 99.9% vs. 88.9%, in Barcelona and León systems, respectively) than in the winter (83.5% vs. 74.4%; 73.2% vs. 60.6%; 19% vs. no net removal for ammonium in Barcelona and León systems, respectively). During the cold season, biochemical oxygen demand and ammonium removal were significantly higher in Barcelona system than in León, as a result of higher temperature and redox potential in Barcelona. During the warm season, statistical differences were observed only for ammonium removal. Results showed that horizontal subsurface flow constructed wetland is a successful technology for both regions considered, even if winter seemed to be a critical period for ammonium removal in continental climate regions. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China.

    PubMed

    Leung, H W; Minh, T B; Murphy, M B; Lam, James C W; So, M K; Martin, Michael; Lam, Paul K S; Richardson, B J

    2012-07-01

    Occurrence, removal, consumption and environmental risks of sixteen antibiotics were investigated in several sewage treatment plants (STPs) featuring different treatment levels in Hong Kong, China. Cefalexin, ofloxacin and erythromycin-H(2)O were predominant with concentrations of 1020-5640, 142-7900 and 243-4740 ng/L in influent, respectively; their mass loads were comparable to levels reported in urban regions in China and were at the high end of the range reported for western countries. The target antibiotics behaved differently depending on the treatment level employed at the STPs and relatively higher removal efficiencies (>70%) were observed for cefalexin, cefotaxime, amoxicillin, sulfamethoxazole and chloramphenicol during secondary treatment. ß-lactams were especially susceptible to removal via the activated sludge process while macrolides were recalcitrant (<20%) in the dissolved phase. Two fluoroquinolones, ofloxacin (4%) and norfloxacin (52%), differed greatly in their removal efficiencies, probably because of disparities in their pK(a) values which resulted in different sorption behaviour in sludge. Overall antibiotic consumption in Hong Kong was back-calculated based on influent mass flows and compared with available prescription and usage data. This model was verified by a good approximation of 82% and 141% to the predicted consumption of total ofloxacin, but a less accurate estimate was obtained for erythromycin usage. Risk assessment indicated that algae are susceptible to the environmental concentrations of amoxicillin as well as the mixture of the nine detected antibiotics in receiving surface waters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Study of the efficiency of moving bed biofilm reactor (MBBR) in LAS Anionic Detergent removal from hospital wastewater: determination of removing model according to response surface methodology (RSM).

    PubMed

    Shokoohi, Reza; Torkshavand, Zahra; Zolghadnasab, Hassan; Alikhani, Mohammad Yousef; Hemmat, Meisam Sedighi

    2017-04-01

    Detergents are considered one of the important pollutants in hospital wastewater. Achieving efficient and bio-friendly methods for the removal of these pollutants is considered as a concern for environmental researchers. This study aims at studying the efficiency of a moving bed biofilm reactor (MBBR) system for removing linear alkyl benzene sulfonate (LAS) from hospital wastewater with utilization of response surface methodology (RSM). The present study was carried out on a reactor with continuous hydraulic flow using media k 1 at pilot scale to remove detergent from hospital wastewater. The effect of independent variables including contact time, percentage of media filling and mixed liquor suspended solids (MLSS) concentration of 1000-3000 mg/l on the system efficiency were assessed. Methylene blue active substances (MBAS) and chemical oxygen demand (COD) 750-850 mg/l were used by closed laboratory method in order to measure the concentration of LAS. The results revealed that the removal efficiency of LAS detergent and COD using media k 1 , retention time of 24 hours, and MLSS concentration of around 3,000 mg/l were 92.3 and 95.8%, respectively. The results showed that the MBBR system as a bio-friendly compatible method has high efficiency in removing detergents from hospital wastewater and can achieve standard output effluent in acceptable time.

  9. Efficient calcium lactate production by fermentation coupled with crystallization-based in situ product removal.

    PubMed

    Xu, Ke; Xu, Ping

    2014-07-01

    Lactic acid is a platform chemical with various industrial applications, and its derivative, calcium lactate, is an important food additive. Fermentation coupled with in situ product removal (ISPR) can provide more outputs with high productivity. The method used in this study was based on calcium lactate crystallization. Three cycles of crystallization were performed during the fermentation course using a Bacillus coagulans strain H-1. As compared to fed-batch fermentation, this method showed 1.7 times higher average productivity considering seed culture, with 74.4% more L-lactic acid produced in the fermentation with ISPR. Thus, fermentation coupled with crystallization-based ISPR may be a biotechnological alternative that provides an efficient system for production of calcium lactate or lactic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effect of organic matter on cyanide removal by illuminated titanium dioxide or zinc oxide nanoparticles

    PubMed Central

    2013-01-01

    Effect of different type of organic compounds (humic acid, oxalate, ethylenediaminetetraacetic acid, nitrilotriacetic acid, phenol) on the photocatalytic removal of cyanide with TiO2 or ZnO was studied in this work with variation of the solution pH, contact time, initial cyanide concentration and type of organic compounds. Photocatalytic oxidation efficiency of cyanide with TiO2 was greatly affected by the solution pH. It increased as the solution pH decreased. Also maximum removal of cyanide by ZnO was observed near at neutral pH because of the reduced photocatalytic activity of ZnO at exceedingly low and high pH values originated from either acidic/photochemical corrosion of the catalyst and/or surface passivation with Zn(OH)2. Removal efficiency of cyanide greatly decreased in the presence of humic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid compared to that without presence of organic compound because of the competitive oxidation as well as surface blocking by relatively large organic compounds. The oxidation pattern of cyanide was better described by first-order kinetic model. Finally photocatalytic reaction with TiO2 or ZnO can be effectively applied to treat synthetic wastewater contaminated with cyanide. PMID:24499704

  11. Ballistocardiogram Artifact Removal with a Reference Layer and Standard EEG Cap

    PubMed Central

    Luo, Qingfei; Huang, Xiaoshan; Glover, Gary H.

    2014-01-01

    Background In simultaneous EEG-fMRI, the EEG recordings are severely contaminated by ballistocardiogram (BCG) artifacts, which are caused by cardiac pulsations. To reconstruct and remove the BCG artifacts, one promising method is to measure the artifacts in the absence of EEG signal by placing a group of electrodes (BCG electrodes) on a conductive layer (reference layer) insulated from the scalp. However, current BCG reference layer (BRL) methods either use a customized EEG cap composed of electrode pairs, or need to construct the custom reference layer through additional model-building experiments for each EEG-fMRI experiment. These requirements have limited the versatility and efficiency of BRL. The aim of this study is to propose a more practical and efficient BRL method and compare its performance with the most popular BCG removal method, the optimal basis sets (OBS) algorithm. New Method By designing the reference layer as a permanent and reusable cap, the new BRL method is able to be used with a standard EEG cap, and no extra experiments and preparations are needed to use the BRL in an EEG-fMRI experiment. Results The BRL method effectively removed the BCG artifacts from both oscillatory and evoked potential scalp recordings and recovered the EEG signal. Comparison with Existing Method Compared to the OBS, this new BRL method improved the contrast-to-noise ratios of the alpha-wave, visual, and auditory evoked potential signals by 101%, 76%, and 75% respectively, employing 160 BCG electrodes. Using only 20 BCG electrodes, the BRL improved the EEG signal by 74%/26%/41% respectively. Conclusion The proposed method can substantially improve the EEG signal quality compared with traditional methods. PMID:24960423

  12. Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States.

    PubMed

    Mohapatra, Sanjeeb; Huang, Ching-Hua; Mukherji, Suparna; Padhye, Lokesh P

    2016-09-01

    The objective of this study was to study the occurrence, fate, and seasonal variations of pharmaceuticals at two urban wastewater treatment plants (WWTPs) in India and compare the results with a similar study conducted in the United States. This is the first study of its kind in comparing occurrence and fate of pharmaceuticals in wastewater of two different countries with the same methodology and analytical techniques. Twelve most relevant pharmaceuticals were selected for seasonal monitoring at two Indian WWTPs based on the comprehensive survey and through literature review. The yearly average influent concentrations of total pharmaceuticals were found to be 537 ± 5 μg/L at WWTP-1 and 353 ± 9 μg/L at WWTP-2. WWTP-2 exhibited comparatively higher removal efficiency of total pharmaceuticals (85% versus 59%, excluding monsoon season), possibly due to the cyclic activated sludge technology followed by chlorination employed at WWTP-2. Comparison with a similar study conducted in the United States revealed that concentration of most of the pharmaceuticals detected in the U.S. WWTPs were, on an average, more than 50% lower. U.S. WWTPs also exhibited 10-30% higher removal efficiencies for total pharmaceuticals. Our study results show that preliminary treatment and biological treatment alone are not adequate for complete removal of pharmaceuticals and polishing step and tertiary treatment is a necessity if higher removal of pharmaceuticals is desired in Indian WWTPs. Information obtained from this study will not only aid the local utilities but will also benefit understanding of global trends in usage of pharmaceuticals and their distribution in the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Aerodynamical Probation Of Semi-Industrial Production Plant For Centrifugal Dust Collectors’ Efficiency Research

    NASA Astrophysics Data System (ADS)

    Buligin, Y. I.; Zharkova, M. G.; Alexeenko, L. N.

    2017-01-01

    In previous studies, experiments were carried out on the small-size models of cyclonic units, but now there completed the semi-industrial pilot plant ≪Cyclone≫, which would allow comparative testing of real samples of different shaped centrifugal dust-collectors and compare their efficiency. This original research plant is patented by authors. The aim of the study is to improve efficiency of exhaust gases collecting process, by creating improved designs of centrifugal dust collectors, providing for the possibility of regulation constructive parameters depending on the properties and characteristics of air-fuel field. The objectives of the study include identifying and studying the cyclonic apparatus association constructive parameters with their aerodynamic characteristics and dust-collecting efficiency. The article is very relevant, especially for future practical application of its results in dust removal technology.

  14. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.

    PubMed

    Hajizadeh, Yaghoub; Onwudili, Jude A; Williams, Paul T

    2011-06-01

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275°C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg(-1) toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg(-1) in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Pickering emulsions for skin decontamination.

    PubMed

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Chemical oxygen demand removal efficiency and limited factors study of aminosilicone polymers in a water emulsion by iron-carbon micro-electrolysis.

    PubMed

    Yang, Shangyuan; Liang, Zhiwei; Yu, Huadong; Wang, Yunlong; Chen, Yingxu

    2014-02-01

    Micro-electrolysis was applied in the present study to investigate the effect of pH, iron-carbon mass ratio, contact time, and treatment batch on the removal efficiency of chemical oxygen demand (COD) within an aminosilicone emulsion. The results exhibited that the removal efficiency of COD decreased linearly with the batch increase, and this tendency was consistent under the various conditions. The adsorption of activated carbons contributes a large portion to the elimination of COD within the aminosilicone emulsion. The oxidation action of iron-carbon micro-electrolysis was proven and the aminosilicone emulsion's COD removal contribution was approximately 16%. Aminosilicone polymers were adsorbed on the surface of activated carbons and iron chips, which contributes to the decline of COD removal efficiency and limits the contribution of oxidation action.

  17. Membrane versus centrifuge-based therapeutic plasma exchange: a randomized prospective crossover study.

    PubMed

    Hafer, Carsten; Golla, Paulina; Gericke, Marion; Eden, Gabriele; Beutel, Gernot; Schmidt, Julius J; Schmidt, Bernhard M W; De Reys, Stef; Kielstein, Jan T

    2016-01-01

    Therapeutic plasma exchange (TPE) is either performed using a highly permeable filter with standard multifunctional renal replacement equipment (mTPE) or a centrifugation device (cTPE). Although both techniques are well established in clinical practice, performance of these two modes of TPE was never compared in a prospective randomized fashion. Thus we aimed to compare two commercially available therapeutic apheresis systems: mTPE (Octonova with Plasmaflo filter) and cTPE (Spectra Optia apheresis system). Twenty-one patients (age 51.6 ± 13.5 years; 10 F/11 M; BMI 25.1 ± 5.0 kg/m(2)) were enrolled in this randomized, prospective, paired, crossover study performed in the Hannover Medical School, Germany. First treatment (either mTPE or cTPE) was chosen by an online randomization list. The primary endpoints were plasma removal efficiency with 1.2× of the total plasma volume exchanged. Secondary endpoints were total amount of plasma substances removed, such as IgG and fibrinogen. Further, the treatment effect on platelet count and complications were evaluated. Despite a comparable volume of the processed plasma, mTPE treatment time was 10.5 % longer than cTPE treatment time (p < 0.05), resulting in a 10 % lower plasma removal rate of the mTPE treatment. Both treatments were comparable in terms of decrease in median (IQR) IgG [pre-mTPE 5.34 (3.48-8.37), post-mTPE 1.96 (1.43-2.84) g/L; pre-cTPE 5.88 (3.42-8.84), post-cTPE 1.89 (1.21-3.52) g/L]. Also the median (IQR) amount of IgG removed in mTPE [13.14 (7.42-16.10) g] was not different from the cTPE treatment [9.30 (6.26-15.69) g]. This was also true for IgM removal. Platelet loss during mTPE was nearly twice as much as with cTPE (15 ± 9 versus 7 ± 9 %, p < 0.05). Although the centrifugal procedures were conducted using flow rates that could easily be obtained using peripheral access, plasma removal efficiency was significantly higher and treatment time was significantly lower in cTPE as compared to mTPE. Despite this lower treatment time, the decline in markers of procedure efficacy was comparable. Especially in centers performing many procedures per year, cTPE in contrast to mTPE can reduce treatment time without compromising treatment efficacy.

  18. Horizontally rotating disc recirculated photoreactor with TiO2-P25 nanoparticles immobilized onto a HDPE plate for photocatalytic removal of p-nitrophenol.

    PubMed

    Behnajady, Mohammad A; Dadkhah, Hojjat; Eskandarloo, Hamed

    2018-04-01

    In this study, a horizontally rotating disc recirculated (HRDR) photoreactor equipped with two UV lamps (6 W) was designed and fabricated for photocatalytic removal of p-nitrophenol (PNP). Photocatalyst (TiO 2 ) nanoparticles were immobilized onto a high-density polyethylene (HDPE) disc, and PNP containing solution was allowed to flow (flow rate of 310 mL min -1 ) in radial direction along the surface of the rotating disc illuminated with UV light. The efficiency of direct photolysis and photocatalysis and the effect of rotating speed on the removal of PNP were studied in the HRDR photoreactor. It was found that TiO 2 -P25 nanoparticles are needed for the effective removal of PNP and there was an optimum rotating speed (450 rpm) for the efficient performance of the HRDR photoreactor. Then effects of operational variables on the removal efficiency were optimized using response surface methodology. The results showed that the predicted values of removal efficiency are consistent with experimental results with an R 2 of 0.9656. Optimization results showed that maximum removal percent (82.6%) was achieved in the HRDR photoreactor at the optimum operational conditions. Finally, the reusability of the HRDR photoreactor was evaluated and the results showed high reusability and stability without any significant decrease in the photocatalytic removal efficiency.

  19. Dissolved organic matter removal during coal slag additive soil aquifer treatment for secondary effluent recharging: Contribution of aerobic biodegradation.

    PubMed

    Wei, Liangliang; Li, Siliang; Noguera, Daniel R; Qin, Kena; Jiang, Junqiu; Zhao, Qingliang; Kong, Xiangjuan; Cui, Fuyi

    2015-06-01

    Recycling wastewater treatment plant (WWTP) effluent at low cost via the soil aquifer treatment (SAT), which has been considered as a renewable approach in regenerating potable and non-potable water, is welcome in arid and semi-arid regions throughout the world. In this study, the effect of a coal slag additive on the bulk removal of the dissolved organic matter (DOM) in WWTP effluent during SAT operation was explored via the matrix configurations of both coal slag layer and natural soil layer. Azide inhibition and XAD-resins fractionation experiments indicated that the appropriate configuration designing of an upper soil layer (25 cm) and a mixture of soil/coal slag underneath would enhance the removal efficiency of adsorption and anaerobic biodegradation to the same level as that of aerobic biodegradation (31.7% vs 32.2%), while it was only 29.4% compared with the aerobic biodegradation during traditional 50 cm soil column operation. The added coal slag would preferentially adsorb the hydrophobic DOM, and those adsorbed organics could be partially biodegraded by the biomass within the SAT systems. Compared with the relatively lower dissolved organic carbon (DOC), ultraviolet light adsorption at 254 nm (UV-254) and trihalomethane formation potential (THMFP) removal rate of the original soil column (42.0%, 32.9%, and 28.0%, respectively), SSL2 and SSL4 columns would enhance the bulk removal efficiency to more than 60%. Moreover, a coal slag additive in the SAT columns could decline the aromatic components (fulvic-like organics and tryptophan-like proteins) significantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Invert biopanning: A novel method for efficient and rapid isolation of scFvs by phage display technology.

    PubMed

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Veisi, Kamal; Tanomand, Asghar; Akbari, Bahman

    2016-11-01

    Phage display is a prominent screening technique for development of novel high affinity antibodies against almost any antigen. However, removing false positive clones in screening process remains a challenge. The aim of this study was to develop an efficient and rapid method for isolation of high affinity scFvs by removing NSBs without losing rare specific clones. Therefore, a novel two rounds strategy called invert biopanning was developed for isolating high affinity scFvs against EGFRvIII antigen from human scFv library. The efficiency of invert biopanning method (procedure III) was analyzed by comparing with results of conventional biopanning methods (procedures I and II). According to the results of polyclonal ELISA, the second round of procedure III displayed highest binding affinity against EGFRvIII peptide accompanied by lowest NSB comparing to other two procedures. Several positive clones were identified among output phages of procedure III by monoclonal phage ELISA which displayed high affinity to EGFRvIII antigen. In conclusion, results of our study indicate that invert biopanning is an efficient method for avoiding NSBs and conservation of rare specific clones during screening of a scFv phage library. Novel anti EGFRvIII scFv isolated could be a promising candidate for potential use in treatment of EGFRvIII expressing cancers. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  1. Characterization and immobilization of Trametes versicolor laccase on magnetic chitosan-clay composite beads for phenol removal.

    PubMed

    Aydemir, Tülin; Güler, Semra

    2015-01-01

    Laccase from Trametes versicolor was immobilized on magnetic chitosan-clay composite beads by glutaraldehyde crosslinking. The physical, chemical, and biochemical properties of the immobilized laccase and its application in phenol removal were comprehensively investigated. The structure and morphology of the composite beads were characterized by SEM, TGA, and FTIR analyses. The immobilized laccase showed better storage stability and higher tolerance to the changes in pH and temperature compared with free laccase. Moreover, the immobilized laccase retained more than 75% of its original activity after 10 cycles. The efficiency of phenol removal by immobilized laccase was about 80% under the optimum conditions after 4 h.

  2. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas.

    PubMed

    Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2014-12-16

    To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.

  3. Pollen packaging and dispensing: adaption of patterns of anther dehiscence and flowering traits to pollination in three Epimedium species.

    PubMed

    Li, X-X; Wang, H; Gituru, R W; Guo, Y-H; Yang, C-F

    2014-01-01

    Pollen presentation theory (PPT) predicts that plant species typically pollinated by frequent and wasteful pollinators ought to be much more parsimonious and only gradually release pollen compared to plant species pollinated by infrequent pollinators that are efficient at delivering the pollen they remove. To test PPT, we compare the pollen presentation schedules and pollination systems in three related Epimedium species, having different pollinators. Results showed that differences in anther dehiscence and flowering traits resulted in different pollen packaging schedules. For E. sutchuenense and E. franchetii, a special 'roll-up' movement of the anther wall during anther dehiscence increased pollen removal compared to the dehiscence pattern in E. mikinorii, which lacked the 'roll-up' movement. Investigations revealed that honeybees had a higher pollen removal rate and lower stigmatic pollen load compared to bumblebees. In accordance with PPT, E. sutchuenense presents pollen sequentially and slowly for the frequent and wasteful honeybees. In comparison to E. sutchuenense, E. franchetii had a faster presentation rate and was adapted to the efficient and infrequent bumblebees. However, E. mikinorii was pollinated by both bumblebees and honeybees at high frequency and had the fastest pollen presentation. This pattern could reduce pollen wastage by honeybees and might be an adaptation to its short flower longevity (less than 1 day), to increase the chances of pollen deposition on stigmas. The study indicates that pollen presentation schedules can be a consequence of interactions among anther dehiscence, flowering traits and pollination environments for a given species. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process.

    PubMed

    Falås, P; Longrée, P; la Cour Jansen, J; Siegrist, H; Hollender, J; Joss, A

    2013-09-01

    Removal of organic micropollutants in a hybrid biofilm-activated sludge process was investigated through batch experiments, modeling, and full-scale measurements. Batch experiments with carriers and activated sludge from the same full-scale reactor were performed to assess the micropollutant removal rates of the carrier biofilm under oxic conditions and the sludge under oxic and anoxic conditions. Clear differences in the micropollutant removal kinetics of the attached and suspended growth were demonstrated, often with considerably higher removal rates for the biofilm compared to the sludge. For several micropollutants, the removal rates were also affected by the redox conditions, i.e. oxic and anoxic. Removal rates obtained from the batch experiments were used to model the micropollutant removal in the full-scale process. The results from the model and plant measurements showed that the removal efficiency of the process can be predicted with acceptable accuracy (± 25%) for most of the modeled micropollutants. Furthermore, the model estimations indicate that the attached growth in hybrid biofilm-activated sludge processes can contribute significantly to the removal of individual compounds, such as diclofenac. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Experimental investigation and modeling of dissolved organic carbon removal by coagulation from seawater.

    PubMed

    Jeong, Sanghyun; Sathasivan, Arumugam; Kastl, George; Shim, Wang Geun; Vigneswaran, Saravanamuthu

    2014-01-01

    Coagulation removes colloidal matters and dissolved organic carbon (DOC) which can cause irreversible membrane fouling. However, how DOC is removed by coagulant is not well-known. Jar test was used to study the removal of hydrophobic and hydrophilic DOC fractions at various doses (0.5-8.0 mg-Fe(+3) L(-1)) of ferric chloride (FeCl3) and pH (5.0-9.0). Natural organic matter (NOM) in seawater and treated seawater were fractionated by liquid chromatography-organic carbon detector (LC-OCD). Compared to surface water, the removal of DOC in seawater by coagulation was remarkably different. Majority of DOC could be easily removed with very low coagulant dose (<5.0 mg-Fe(+3) L(-1)) and the removal efficiency did not vary with pH, but the DOC composition in treated water had significantly changed. Hydrophobic fraction (HB) was better removed at high pH while hydrophilic fraction (HF) was better removed at low pH. A modified model of Kastl et al. (2004) which assumed that the removal occurred by adsorption of un-dissociated compounds onto ferric hydroxide was formulated and successfully validated against the jar test data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Linking the mobilization of dissolved organic matter in catchments and its removal in drinking water treatment to its molecular characteristics.

    PubMed

    Raeke, Julia; Lechtenfeld, Oliver J; Tittel, Jörg; Oosterwoud, Marieke R; Bornmann, Katrin; Reemtsma, Thorsten

    2017-04-15

    Drinking water reservoirs in the Northern Hemisphere are largely affected by the decadal-long increase in riverine dissolved organic carbon (DOC) concentrations. The removal of DOC in drinking water treatment is costly and predictions are needed to link DOC removal efficiency to its mobilization in catchments, both of which are determined by the molecular composition. To study the effect of hydrological events and land use on the molecular characteristics of dissolved organic matter (DOM), 36 samples from three different catchment areas in the German low mountain ranges, with DOC concentrations ranging from 3 to 32 mg L -1 , were examined. Additionally, nine pairs of samples from downstream drinking water reservoirs were analyzed before and after flocculation. The molecular composition and the age of DOM were analyzed using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and radiocarbon ( 14 C) analysis. At elevated discharge in a forested catchment comparatively younger, more oxygenated and unsaturated molecules of higher molecular weight were preferentially mobilized, likely linked to the reductive mobilization of iron. DOM with highly similar molecular characteristics (O/C ratio > 0.5, m/z > 500) could also be efficiently removed through flocculation in drinking water treatment. The proportion of DOM removed through flocculation ranged between 43% and 73% of DOC and was highest at elevated discharge. In catchment areas with a higher percentage of grassland and agriculture a higher proportion of DOM molecules containing sulfur and nitrogen was detected, which in turn could be less efficiently flocculated. Altogether, it was shown that DOM that is released during large hydrological events can be efficiently flocculated again, suggesting a reversal of similar chemical mechanisms in both processes. Since the occurrence of heavy rainfall events is predicted to increase in the future, event-driven mobilization of DOC may continue to challenge drinking water production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone.

    PubMed

    Kazemipour, Maryam; Ansari, Mehdi; Tajrobehkar, Shabnam; Majdzadeh, Majdeh; Kermani, Hamed Reihani

    2008-01-31

    In this work, adsorption of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) that exist in industrial wastewater onto the carbon produced from nutshells of walnut, hazelnut, pistachio, almond, and apricot stone has been investigated. All the agricultural shell or stone used were ground, sieved to a defined size range, and carbonized in an oven. Time and temperature of heating were optimized at 15 min and 800 degrees C, respectively, to reach maximum removal efficiency. Removal efficiency was optimized regarding to the initial pH, flow rate, and dose of adsorbent. The maximum removal occurred at pH 6-10, flow rate of 3 mL/min, and 0.1g of the adsorbent. Capacity of carbon sources for removing cations will be considerably decreased in the following times of passing through them. Results showed that the cations studied significantly can be removed by the carbon sources. Efficiency of carbon to remove the cations from real wastewater produced by copper industries was also studied. Finding showed that not only these cations can be removed considerably by the carbon sources noted above, but also removing efficiency are much more in the real samples. These results were in adoption to those obtained by standard mixture synthetic wastewater.

  8. Determination of the effect of wind velocity and direction changes on turbidity removal in rectangular sedimentation tanks.

    PubMed

    Khezri, Seyed Mostafa; Biati, Aida; Erfani, Zeynab

    2012-01-01

    In the present study, a pilot-scale sedimentation tank was used to determine the effect of wind velocity and direction on the removal efficiency of particles. For this purpose, a 1:20 scale pilot simulated according to Frude law. First, the actual efficiency of total suspended solids (TSS) removal was calculated in no wind condition. Then, the wind was blown in the same and the opposite directions of water flow. At each direction TSS removal was calculated at three different velocities from 2.5 to 7 m/s. Results showed that when the wind was in the opposite direction of water flow, TSS removal efficiency initially increased with the increase of wind velocity from 0 to 2.5 m/s, then it decreased with the increase of velocity to 5 m/s. This mainly might happen because the opposite direction of wind can increase particles' retention time in the sedimentation tank. However, higher wind velocities (i.e. 3.5 and 5.5 m/s) could not increase TSS removal efficiency. Thus, if sedimentation tanks are appropriately exposed to the wind, TSS removal efficiency increases by approximately 6%. Therefore, energy consumption will be reduced by a proper site selection for sedimentation tank unit in water and waste water treatment plants.

  9. Evaluation of removal efficiency of residual diclofenac in aqueous solution by nanocomposite tungsten-carbon using design of experiment.

    PubMed

    Salmani, M H; Mokhtari, M; Raeisi, Z; Ehrampoush, M H; Sadeghian, H A

    2017-09-01

    Wastewater containing pharmaceutical residual components must be treated before being discharged to the environment. This study was conducted to investigate the efficiency of tungsten-carbon nanocomposite in diclofenac removal using design of experiment (DOE). The 27 batch adsorption experiments were done by choosing three effective parameters (pH, adsorbent dose, and initial concentration) at three levels. The nanocomposite was prepared by tungsten oxide and activated carbon powder in a ratio of 1 to 4 mass. The remaining concentration of diclofenac was measured by a spectrometer with adding reagents of 2, 2'-bipyridine, and ferric chloride. Analysis of variance (ANOVA) was applied to determine the main and interaction effects. The equilibrium time for removal process was determined as 30 min. It was observed that the pH had the lowest influence on the removal efficiency of diclofenac. Nanocomposite gave a high removal at low concentration of 5.0 mg/L. The maximum removal for an initial concentration of 5.0 mg/L was 88.0% at contact time of 30 min. The results of ANOVA showed that adsorbent mass was among the most effective variables. Using DOE as an efficient method revealed that tungsten-carbon nanocomposite has high efficiency in the removal of residual diclofenac from the aqueous solution.

  10. A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch.

    PubMed

    Jin, Pengkang; Wang, Xianbao; Wang, Xiaochang; Ngo, Huu Hao; Jin, Xin

    2015-12-01

    Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Efficiency promotion and its mechanisms of simultaneous nitrogen and phosphorus removal in stormwater biofilters.

    PubMed

    Zhou, Zijun; Xu, Peng; Cao, Xiuyun; Zhou, Yiyong; Song, Chunlei

    2016-10-01

    Stromwater biofilter technology was greatly improved through adding iron-rich soil, plant detritus and eutrophic lake sediment. Significant ammonium and phosphate removal efficiencies (over 95%) in treatments with iron-rich soil were attributed to strong adsorption capability resulting in high available phosphorus (P) in media, supporting the abundance and activity of nitrifiers and denitrifiers as well as shaping compositions, which facilitated nitrogen (N) removal. Aquatic and terrestrial plant detritus was more beneficial to nitrification and denitrification by stimulating the abundance and activity of nitrifiers and denitrifiers respectively, which increased total nitrogen (TN) removal efficiencies by 17.6% and 22.5%. In addition, bioaugmentation of nitrifiers and denitrifiers from eutrophic sediment was helpful to nutrient removal. Above all, combined application of these materials could reach simultaneously maximum effects (removal efficiencies of P, ammonium and TN were 97-99%, 95-97% and 60-63% respectively), suggesting reasonable selection of materials has important contribution and application prospect in stormwater biofilters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Removal of several pesticides in a falling water film DBD reactor with activated carbon textile: Energy efficiency.

    PubMed

    Vanraes, Patrick; Ghodbane, Houria; Davister, Dries; Wardenier, Niels; Nikiforov, Anton; Verheust, Yannick P; Van Hulle, Stijn W H; Hamdaoui, Oualid; Vandamme, Jeroen; Van Durme, Jim; Surmont, Pieter; Lynen, Frederic; Leys, Christophe

    2017-06-01

    Bio-recalcitrant micropollutants are often insufficiently removed by modern wastewater treatment plants to meet the future demands worldwide. Therefore, several advanced oxidation techniques, including cold plasma technology, are being investigated as effective complementary water treatment methods. In order to permit industrial implementation, energy demand of these techniques needs to be minimized. To this end, we have developed an electrical discharge reactor where water treatment by dielectric barrier discharge (DBD) is combined with adsorption on activated carbon textile and additional ozonation. The reactor consists of a DBD plasma chamber, including the adsorptive textile, and an ozonation chamber, where the DBD generated plasma gas is bubbled. In the present paper, this reactor is further characterized and optimized in terms of its energy efficiency for removal of the five pesticides α-HCH, pentachlorobenzene, alachlor, diuron and isoproturon, with initial concentrations ranging between 22 and 430 μg/L. Energy efficiency of the reactor is found to increase significantly when initial micropollutant concentration is decreased, when duty cycle is decreased and when oxygen is used as feed gas as compared to air and argon. Overall reactor performance is improved as well by making it work in single-pass operation, where water is flowing through the system only once. The results are explained with insights found in literature and practical implications are discussed. For the used operational conditions and settings, α-HCH is the most persistent pesticide in the reactor, with a minimal achieved electrical energy per order of 8 kWh/m 3 , while a most efficient removal of 3 kWh/m 3 or lower was reached for the four other pesticides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Electrophoretic deposition of carbon nanotube on reticulated vitreous carbon for hexavalent chromium removal in a biocathode microbial fuel cell.

    PubMed

    Fei, Kangqing; Song, Tian-Shun; Wang, Haoqi; Zhang, Dalu; Tao, Ran; Xie, Jingjing

    2017-10-01

    For Cr(VI)-removal microbial fuel cell (MFC), a more efficient biocathode in MFCs is required to improve the Cr(VI) removal and electricity generation. RVC-CNT electrode was prepared through the electrophoretic deposition of carbon nanotube (CNT) on reticulated vitreous carbon (RVC). The power density of MFC with an RVC-CNT electrode increased to 132.1 ± 2.8 mW m -2 , and 80.9% removal of Cr(VI) was achieved within 48 h; compared to only 44.5% removal of Cr(VI) in unmodified RVC. Cyclic voltammetry, energy-dispersive spectrometry and X-ray photoelectron spectrometry showed that the RVC-CNT electrode enhanced the electrical conductivity and the electron transfer rate; and provided more reaction sites for Cr(VI) reduction. This approach provides process simplicity and a thickness control method for fabricating three-dimensional biocathodes to improve the performance of MFCs for Cr(VI) removal.

  14. Electrophoretic deposition of carbon nanotube on reticulated vitreous carbon for hexavalent chromium removal in a biocathode microbial fuel cell

    PubMed Central

    Fei, Kangqing; Wang, Haoqi; Zhang, Dalu; Tao, Ran; Xie, Jingjing

    2017-01-01

    For Cr(VI)-removal microbial fuel cell (MFC), a more efficient biocathode in MFCs is required to improve the Cr(VI) removal and electricity generation. RVC-CNT electrode was prepared through the electrophoretic deposition of carbon nanotube (CNT) on reticulated vitreous carbon (RVC). The power density of MFC with an RVC-CNT electrode increased to 132.1 ± 2.8 mW m−2, and 80.9% removal of Cr(VI) was achieved within 48 h; compared to only 44.5% removal of Cr(VI) in unmodified RVC. Cyclic voltammetry, energy-dispersive spectrometry and X-ray photoelectron spectrometry showed that the RVC-CNT electrode enhanced the electrical conductivity and the electron transfer rate; and provided more reaction sites for Cr(VI) reduction. This approach provides process simplicity and a thickness control method for fabricating three-dimensional biocathodes to improve the performance of MFCs for Cr(VI) removal. PMID:29134084

  15. Comparison of coagulation, ozone and ferrate treatment processes for color, COD and toxicity removal from complex textile wastewater.

    PubMed

    Malik, Sameena N; Ghosh, Prakash C; Vaidya, Atul N; Waindeskar, Vishal; Das, Sera; Mudliar, Sandeep N

    2017-09-01

    In this study, the comparative performance of coagulation, ozone, coagulation + ozone + coagulation and potassium ferrate processes to remove chemical oxygen demand (COD), color, and toxicity from a highly polluted textile wastewater were evaluated. Experimental results showed that ferrate alone had no effect on COD, color and toxicity removal. Whereas, in combination with FeSO 4 , it has shown the highest removal efficiency of 96.5%, 83% and 75% for respective parameters at the optimal dose of 40 mgL -1 + 3 ml FeSO 4 (1 M) in comparison with other processes. A seed germination test using seeds of Spinach (Spinacia oleracea) also indicated that ferrate was more effective in removing toxicity from contaminated textile wastewater. Potassium ferrate also produces less sludge with maximum contaminant removal, thereby making the process more economically feasible. Fourier transform infrared spectroscopy (FTIR) analysis also shows the cleavage of the chromophore group and degradation of textile wastewater during chemical and oxidation treatment processes.

  16. Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil.

    PubMed

    Pei, Guangpeng; Zhu, Yuen; Cai, Xiatong; Shi, Weiyu; Li, Hua

    2017-10-01

    Surfactant-enhanced remediation is used to treat dichlorobenzene (DCB) contaminated soil. In this study, soil column experiments were conducted to investigate the removal efficiencies of o-dichlorobenzene (o-DCB) and p-dichlorobenzene (p-DCB) from contaminated soil using micellar solutions of biosurfactants (saponin, alkyl polyglycoside) compare to a chemically synthetic surfactant (Tween 80). Leachate was collected and analyzed for o-DCB and p-DCB content. In addition, soil was analyzed to explore the effect of surfactants on soil enzyme activities. Results showed that the removal efficiency of o-DCB and p-DCB was highest for saponin followed by alkyl polyglycoside and Tween 80. The maximum o-DCB and p-DCB removal efficiencies of 76.34% and 80.43%, respectively, were achieved with 4 g L -1 saponin solution. However, an opposite result was observed in the cumulative mass of o-DCB and p-DCB in leachate. The cumulative extent of o-DCB and p-DCB removal by the biosurfactants saponin and alkyl polyglycoside was lower than that of the chemically synthetic surfactant Tween 80 in leachate. Soil was also analyzed to explore the effect of surfactants on soil enzyme activities. The results indicated that surfactants were potentially effective in facilitating soil enzyme activities. Thus, it was confirmed that the biosurfactants saponin and alkyl polyglycoside could be used for remediation of o-DCB and p-DCB contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Pilot plant demonstration of stable and efficient high rate biological nutrient removal with low dissolved oxygen conditions.

    PubMed

    Keene, Natalie A; Reusser, Steve R; Scarborough, Matthew J; Grooms, Alan L; Seib, Matt; Santo Domingo, Jorge; Noguera, Daniel R

    2017-09-15

    Aeration in biological nutrient removal (BNR) processes accounts for nearly half of the total electricity costs at many wastewater treatment plants. Even though conventional BNR processes are usually operated to have aerated zones with high dissolved oxygen (DO) concentrations, recent research has shown that nitrification can be maintained using very low-DO concentrations (e.g., below 0.2 mg O 2 /L), and therefore, it may be possible to reduce energy use and costs in BNR facilities by decreasing aeration. However, the effect of reduced aeration on enhanced biological phosphorus removal (EBPR) is not understood. In this study, we investigated, at the pilot-scale level, the effect of using minimal aeration on the performance of an EBPR process. Over a 16-month operational period, we performed stepwise decreases in aeration, reaching an average DO concentration of 0.33 mg O 2 /L with stable operation and nearly 90% phosphorus removal. Under these low-DO conditions, nitrification efficiency was maintained, and nearly 70% of the nitrogen was denitrified, without the need for internal recycling of high nitrate aeration basin effluent to the anoxic zone. At the lowest DO conditions used, we estimate a 25% reduction in energy use for aeration compared to conventional BNR operation. Our improved understanding of the efficiency of low-DO BNR contributes to the global goal of reducing energy consumption during wastewater treatment operations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparison of the decomposition characteristics of aromatic VOCs using an electron beam hybrid system

    NASA Astrophysics Data System (ADS)

    Son, Youn-Suk; Kim, Ki-Joon; Kim, Ji-Yong; Kim, Jo-Chun

    2010-12-01

    We applied a hybrid technique to assess the decomposition characteristics of ethylbenzene and toluene that annexed the catalyst technique with existing electron beam (EB) technology. The removal efficiency of ethylbenzene in the EB-catalyst hybrid turned out to be 30% greater than that of EB-only treatment. We concluded that ethylbenzene was decomposed more easily than toluene by EB irradiation. We compared the independent effects of the EB-catalyst hybrid and catalyst-only methods, and observed that the efficiency of the EB-catalyst hybrid demonstrated approximately 6% improvement for decomposing toluene and 20% improvement for decomposing ethylbenzene. The G-values for ethylbenzene increased with initial concentration and reactor type: for example, the G-values by reactor type at 2800 ppmC were 7.5-10.9 (EB-only) and 12.9-25.7 (EB-catalyst hybrid). We also observed a significant decrease in by-products as well as in the removal efficiencies associated with the EB-catalyst hybrid technique.

  19. Lignin: A sustainable biosorbent for heavy metal adsorption from wastewater, a review

    NASA Astrophysics Data System (ADS)

    Nasrullah, Asma; Bhat, A. H.; Isa, Mohamed Hasnain

    2016-11-01

    With the recent advancements in science and technology, environmental pollution is a challenging problem due to increased activities in domestic, industrial, and agricultural sector. These activities have led to the release of various types of micropollutants such as heavy metal ions, organic and inorganic ions (detergents, and dye) etc into ground water which badly affects the ecosystem. Among various types of pollutants, heavy metals are the most reported in the recent decade. Water pollution is the most challenging problem, and needs to be controlled for better and healthy ecosystem which requires a healthy, eco-friendly and cheaper technology. In this context. lignin is abundantly available, cheaper and environmentally friendly. For efficient removal of heavy metals, lignin can be modified chemically or thermally to increased its biosorption capacity. In this review merits of adsorption and demerits of other separation technologies are compared. This paper presents the recent state of research on the efficient utilization of lignin, its modification and its adsorption efficiency for heavy metal removal from wastewater.

  20. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O3 generation was approximate 4 mg kJ-1 moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  1. High Efficient Visible-Light Photocatalytic Performance of Cu/ZnO/rGO Nanocomposite for Decomposing of Aqueous Ammonia and Treatment of Domestic Wastewater.

    PubMed

    He, Shiying; Hou, Pengfu; Petropoulos, Evangelos; Feng, Yanfang; Yu, Yingliang; Xue, Lihong; Yang, Linzhang

    2018-01-01

    Photocatalytic removal of ammonium-nitrogen ( NH 4 + -N) from water using solar energy is an approach of high interest and applicability due to the convenience in application. ZnO has a great potential in photocatalytic decomposition of NH 4 + -N and conversion of this nutrient to under visible light irradiations. However the applicability of pristine ZnO though is limited due to its reduced capacity to utilize light from natural light. Herein, we report a two-step ZnO-modified strategy (Cu-doped ZnO nanoparticles, immobilized on reduced graphene oxide (rGO) sheets) for the promotion of photocatalytic degradation of NH 4 + -N under visible light. UV-Vis spectra showed that the Cu/ZnO/rGO can be highly efficient in the utilization of photons from the visible region. Hence, Cu/ZnO/rGO managed to demonstrate adequate photocatalytic activity and effective NH 4 + -N removal from water under visible light compared to single ZnO. Specifically, up to 83.1% of NH 4 + -N (initial concentration 50 mg·L -1 , catalyst dosage 2 g·L -1 , pH 10) was removed within 2 h retention time under Xe lamp irradiation. From the catalysis, the major by-product was N 2 . The high ammonia degradation efficiency from the ZnO/Cu/rGO is attributed to the improvement of the reactive oxygen species (ROSs) production efficiency and the further activation of the interfacial catalytic sites. This study also demonstrated that such nanocomposite is a recyclable agent. Its NH 4 + -N removal capacity remained effective even after five batch cycles. In addition, Cu/ZnO/rGO was applied to treat real domestic wastewater, and it was found that chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal efficiencies can reach 84.3, 80.7, and 90.3%, respectively. Thus, Cu/ZnO/rGO in the presence of solar light can be a promising photocatalyst in the field of wastewater treatment.

  2. Removal of acidic pharmaceuticals by small-scale constructed wetlands using different design configurations.

    PubMed

    Zhang, Xiaomeng; Jing, Ruiying; Feng, Xu; Dai, Yunyu; Tao, Ran; Vymazal, Jan; Cai, Nan; Yang, Yang

    2018-10-15

    To better understand the performance of constructed wetlands (CWs) to remove acidic pharmaceuticals (APs) in wastewaters in subtropical areas and to optimize CW design criteria, six small-scale CWs under different design configurations were operated. The factors (environmental parameters, water quality, and seasonality) influencing the APs removal were also analyzed to illustrate the removal mechanisms. The results indicated that the best performances of CWs were up to 80-90%. Subsurface flow (SSF) CWs showed high removal efficiency for ibuprofen, gemfibrozil and naproxen, but surface flow (SF) CWs performed better for ketoprofen and diclofenac. The positive relationship between the removal efficiencies of ibuprofen, gemfibrozil, and naproxen with dissolved oxygen and ammonia nitrogen reveals that SSF CWs under aerobic conditions benefit the biodegradation, while the favorable conditions created by SF CWs for receiving solar radiation promote the effective photolysis of ketoprofen and diclofenac. Planted SSF CWs had significantly higher removal efficiencies of ibuprofen and gemfibrozil than the unplanted controls had in all seasons. The removal of all APs was higher in summer and autumn than those in winter. Furthermore, an inverse relationship between removal efficiency and the distribution coefficient (logDow) was observed in SF CWs. Overall, CWs that provide aerobic degradation and photolysis would benefit APs removal in subtropical areas in the south of China. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Removal of corallivorous snails as a proactive tool for the conservation of acroporid corals

    PubMed Central

    Miller, Margaret W.; Bright, Allan J.; Cameron, Caitlin M.

    2014-01-01

    Corallivorous snail feeding is a common source of tissue loss for the threatened coral, Acropora palmata, accounting for roughly one-quarter of tissue loss in monitored study plots over seven years. In contrast with larger threats such as bleaching, disease, or storms, corallivory by Coralliophila abbreviata is one of the few direct sources of partial mortality that may be locally managed. We conducted a field experiment to explore the effectiveness and feasibility of snail removal. Long-term monitoring plots on six reefs in the upper Florida Keys were assigned to one of three removal treatments: (1) removal from A. palmata only, (2) removal from all host coral species, or (3) no-removal controls. During the initial removal in June 2011, 436 snails were removed from twelve 150 m2 plots. Snails were removed three additional times during a seven month “removal phase”, then counted at five surveys over the next 19 months to track recolonization. At the conclusion, snails were collected, measured and sexed. Before-After-Control-Impact analysis revealed that both snail abundance and feeding scar prevalence were reduced in removal treatments compared to the control, but there was no difference between removal treatments. Recolonization by snails to baseline abundance is estimated to be 3.7 years and did not differ between removal treatments. Recolonization rate was significantly correlated with baseline snail abundance. Maximum snail size decreased from 47.0 mm to 34.6 mm in the removal treatments. The effort required to remove snails from A. palmata was 30 diver minutes per 150 m2 plot, compared with 51 min to remove snails from all host corals. Since there was no additional benefit observed with removing snails from all host species, removals can be more efficiently focused on only A. palmata colonies and in areas where C. abbreviata abundance is high, to effectively conserve A. palmata in targeted areas. PMID:25469321

  4. Removal of Pb and Zn from contaminated soil by different washing methods: the influence of reagents and ultrasound.

    PubMed

    Wang, Jiaming; Jiang, Jianguo; Li, Dean; Li, Tianran; Li, Kaimin; Tian, Sicong

    2015-12-01

    Pb and Zn contamination in agricultural soils has become an important issue for human health and the environment. Washing is an effective method for remediating polluted soil. Here, we compare several washing materials and methods in the treatment of Pb- and Zn-polluted farmland soil. We examined four washing reagents, hydrochloric acid, citric acid, Na2EDTA, and tartaric acid, all of which independently removed Zn at rates >65 %. Combining washing reagents markedly enhanced heavy metal removal, by using Na2EDTA and either tartaric acid or lactate in sequence: Pb and Zn removal rates improved to 84.1 and 82.1 % for Na2EDTA-tartaric acid; and to 88.3 and 89.9 % for Na2EDTA-lactate, respectively. Additionally, combining ultrasound with conventional washing methods markedly improved washing efficiency, by shortening washing duration by 96 %. We achieved similar removal rates using ultrasound for 10 min, compared with traditional mechanical vibration alone for 4 h. We concluded that treating Pb- and Zn-contaminated soil with appropriate washing reagents under optimal conditions can greatly enhance the remediation of polluted farmland soils.

  5. Effective organics degradation from pharmaceutical wastewater by an integrated process including membrane bioreactor and ozonation.

    PubMed

    Mascolo, G; Laera, G; Pollice, A; Cassano, D; Pinto, A; Salerno, C; Lopez, A

    2010-02-01

    The enhanced removal of organic compounds from a pharmaceutical wastewater resulting from the production of an anti-viral drug (acyclovir) was obtained by employing a membrane bioreactor (MBR) and an ozonation system. An integrated MBR-ozonation system was set-up by placing the ozonation reactor in the recirculation stream of the MBR effluent. A conventional treatment set-up (ozonation as polishing step after MBR) was also used as a reference. The biological treatment alone reached an average COD removal of 99%, which remained unvaried when the ozonation step was introduced. An acyclovir removal of 99% was also obtained with the MBR step and the ozonation allowed to further remove 99% of the residual concentration in the MBR effluent. For several of the 28 organics identified in the wastewater the efficiency of the MBR treatment improved from 20% to 60% as soon as the ozonation was placed in the recirculation stream. The benefit of the integrated system, with respect to the conventional treatment set-up was evident for the removal of a specific ozonation by-product. The latter was efficiently removed in the integrated system, being its abundance in the final effluent 20-fold lower than what obtained when ozonation was used as a polishing step. In addition, if the conventional treatment configuration is employed, the same performance of the integrated system in terms of by-product removal can only be obtained when the ozonation is operated for longer than 60 min. This demonstrates the effectiveness of the integrated system compared to the conventional polishing configuration. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  6. Evaluation of the suitability of a plant virus, pepper mild mottle virus, as a surrogate of human enteric viruses for assessment of the efficacy of coagulation-rapid sand filtration to remove those viruses.

    PubMed

    Shirasaki, N; Matsushita, T; Matsui, Y; Yamashita, R

    2018-02-01

    Here, we evaluated the removal of three representative human enteric viruses - adenovirus (AdV) type 40, coxsackievirus (CV) B5, and hepatitis A virus (HAV) IB - and one surrogate of human caliciviruses - murine norovirus (MNV) type 1 - by coagulation-rapid sand filtration, using water samples from eight water sources for drinking water treatment plants in Japan. The removal ratios of a plant virus (pepper mild mottle virus; PMMoV) and two bacteriophages (MS2 and φX174) were compared with the removal ratios of human enteric viruses to assess the suitability of PMMoV, MS2, and φX174 as surrogates for human enteric viruses. The removal ratios of AdV, CV, HAV, and MNV, evaluated via the real-time polymerase chain reaction (PCR) method, were 0.8-2.5-log 10 when commercially available polyaluminum chloride (PACl, basicity 1.5) and virgin silica sand were used as the coagulant and filter medium, respectively. The type of coagulant affected the virus removal efficiency, but the age of silica sand used in the rapid sand filtration did not. Coagulation-rapid sand filtration with non-sulfated, high-basicity PACls (basicity 2.1 or 2.5) removed viruses more efficiently than the other aluminum-based coagulants. The removal ratios of MS2 were sometimes higher than those of the three human enteric viruses and MNV, whereas the removal ratios of φX174 tended to be smaller than those of the three human enteric viruses and MNV. In contrast, the removal ratios of PMMoV were similar to and strongly correlated with those of the three human enteric viruses and MNV. Thus, PMMoV appears to be a suitable surrogate for human enteric viruses for the assessment of the efficacy of coagulation-rapid sand filtration to remove viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor

    PubMed Central

    Radjenovic, Jelena; Barceló, Damiá

    2006-01-01

    Much attention has recently been devoted to the life and behaviour of pharmaceuticals in the water cycle. In this study the behaviour of several pharmaceutical products in different therapeutic categories (analgesics and anti-inflammatory drugs, lipid regulators, antibiotics, etc.) was monitored during treatment of wastewater in a laboratory-scale membrane bioreactor (MBR). The results were compared with removal in a conventional activated-sludge (CAS) process in a wastewater-treatment facility. The performance of an MBR was monitored for approximately two months to investigate the long-term operational stability of the system and possible effects of solids retention time on the efficiency of removal of target compounds. Pharmaceuticals were, in general, removed to a greater extent by the MBR integrated system than during the CAS process. For most of the compounds investigated the performance of MBR treatment was better (removal rates >80%) and effluent concentrations of, e.g., diclofenac, ketoprofen, ranitidine, gemfibrozil, bezafibrate, pravastatin, and ofloxacin were steadier than for the conventional system. Occasionally removal efficiency was very similar, and high, for both treatments (e.g. for ibuprofen, naproxen, acetaminophen, paroxetine, and hydrochlorothiazide). The antiepileptic drug carbamazepine was the most persistent pharmaceutical and it passed through both the MBR and CAS systems untransformed. Because there was no washout of biomass from the reactor, high-quality effluent in terms of chemical oxygen demand (COD), ammonium content (N-NH4), total suspended solids (TSS), and total organic carbon (TOC) was obtained. PMID:17115140

  8. Reductions of dissolved organic matter and disinfection by-product precursors in full-scale wastewater treatment plants in winter.

    PubMed

    Xue, Shuang; Jin, Wujisiguleng; Zhang, Zhaohong; Liu, Hong

    2017-07-01

    The reductions of dissolved organic matter (DOM) and disinfection byproduct precursors in four full-scale wastewater treatment plants (WWTPs) (Liaoning Province, China) where different biological treatment processes were employed in winter were investigated. The total removal efficiencies of dissolved organic carbon (DOC), ultraviolet light at 254 nm (UV-254), trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) were in the range of 70.3-76.0%, 49.6-57.3%, 54.4-65.0%, and 53.7-63.8% in the four WWTPs, respectively. The biological treatment was the predominant process responsible for the removal of DOC, THMFP, and HAAFP in WWTPs. Differences in the reduction of UV-254 were not significant (p > 0.05) among biochemical reaction pool, secondary sedimentation tank, and disinfection tank. Biological aerated filter and suspended carrier activated sludge processes achieved higher DOM removal than the conventional active sludge and anaerobic-anoxic-oxic processes. Hydrophobic neutral and hydrophilic fraction were removed to a higher degree through biological treatment than the other three DOM fractions. HAAFP removal was more efficient than THMFP reduction during biological treatment. During primary treatment, fluorescent materials in secondary sedimentation tanks were preferentially removed, as compared to the bulk DOM. Humic-like fluorescent compounds were not readily eliminated during biological treatment. The fluorescent materials were more susceptible to chlorine than nonfluorescent compounds. Copyright © 2017. Published by Elsevier Ltd.

  9. Performance evaluation of a dual-flow recharge filter for improving groundwater quality.

    PubMed

    Samuel, Manoj P; Senthilvel, S; Mathew, Abraham C

    2014-07-01

    A dual-flow multimedia stormwater filter integrated with a groundwater recharge system was developed and tested for hydraulic efficiency and pollutant removal efficiency. The influent stormwater first flows horizontally through the circular layers of planted grass and biofibers. Subsequently, the flow direction changes to a vertical direction so that water moves through layers of pebbles and sand and finally gets recharged to the deep aquifers. The media in the sequence of vegetative medium:biofiber to pebble:sand were filled in nine proportions and tested for the best performing combination. Three grass species, viz., Typha (Typha angustifolia), Vetiver (Chrysopogon zizanioides), and St. Augustine grass (Stenotaphrum secundatum), were tested as the best performing vegetative medium. The adsorption behavior of Coconut (Cocos nucifera) fiber, which was filled in the middle layer, was determined by a series of column and batch studies.The dual-flow filter showed an increasing trend in hydraulic efficiency with an increase in flowrate. The chemical removal efficiency of the recharge dual-flow filter was found to be very high in case of K+ (81.6%) and Na+ (77.55%). The pH normalizing efficiency and electrical conductivity reduction efficiency were also recorded as high. The average removal percentage of Ca2+ was moderate, while that of Mg2+ was very low. The filter proportions of 1:1 to 1:2 (plant:fiber to pebble:sand) showed a superior performance compared to all other proportions. Based on the estimated annual costs and returns, all the financial viability criteria (internal rate of return, net present value, and benefit-cost ratio) were found to be favorable and affordable to farmers in terms of investing in the developed filtration system.

  10. Constraints on the utility of MnO2 cartridge method for the extraction of radionuclides: A case study using 234Th

    USGS Publications Warehouse

    Baskaran, M.; Swarzenski, P.W.; Biddanda, B.A.

    2009-01-01

    [1] Large volume (102-103 L) seawater samples are routinely processed to investigate the partitioning of particle reactive radionuclides and Ra between solution and size-fractionated suspended particulate matter. One of the most frequently used methods to preconcentrate these nuclides from such large volumes involves extraction onto three filter cartridges (a prefilter for particulate species and two MnO2-coated filters for dissolved species) connected in series. This method assumes that the extraction efficiency is uniform for both MnO2-coated cartridges, that no dissolved species are removed by the prefilter, and that any adsorbed radionuclides are not desorbed from the MnO2-coated cartridges during filtration. In this study, we utilized 234Th-spiked coastal seawater and deionized water to address the removal of dissolved Th onto prefilters and MnO2-coated filter cartridges. Experimental results provide the first data that indicate (1) a small fraction of dissolved Th (<6%) can be removed by the prefilter cartridge; (2) a small fraction of dissolved Th (<5%) retained by the MnO2 surface can also be desorbed, which undermines the assumption of uniform extraction efficiency for Th; and (3) the absolute and relative extraction efficiencies can vary widely. These experiments provide insight on the variability of the extraction efficiency of MnO 2-coated filter cartridges by comparing the relative and absolute efficiencies and recommend the use of a constant efficiency on the combined activity from two filter cartridges connected in series for future studies of dissolved 234Th and other radionuclides in natural waters using sequential filtration/extraction methods. ?? 2009 by the American Geophysical Union.

  11. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate.

    PubMed

    Kashitarash, Zahra Esfahani; Taghi, Samadi Mohammad; Kazem, Naddafi; Abbass, Afkhami; Alireza, Rahmani

    2012-12-27

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants.

  12. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate

    PubMed Central

    2012-01-01

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants. PMID:23369361

  13. Heavy metal tolerance and removal potential in mixed-species biofilm.

    PubMed

    Grujić, Sandra; Vasić, Sava; Čomić, Ljiljana; Ostojić, Aleksandar; Radojević, Ivana

    2017-08-01

    The aim of the study was to examine heavy metal tolerance (Cd 2+ , Zn 2+ , Ni 2+ and Cu 2+ ) of single- and mixed-species biofilms (Rhodotorula mucilaginosa and Escherichia coli) and to determine metal removal efficiency (Cd 2+ , Zn 2+ , Ni 2+ , Cu 2+ , Pb 2+ and Hg 2+ ). Metal tolerance was quantified by crystal violet assay and results were confirmed by fluorescence microscopy. Metal removal efficiency was determined by batch biosorption assay. The tolerance of the mixed-species biofilm was higher than the single-species biofilms. Single- and mixed-species biofilms showed the highest sensitivity in the presence of Cu 2+ (E. coli-MIC 4 mg/ml, R. mucilaginosa-MIC 8 mg/ml, R. mucilaginosa/E. coli-MIC 64 mg/ml), while the highest tolerance was observed in the presence of Zn 2+ (E. coli-MIC 80 mg/ml, R. mucilaginosa-MIC 161 mg/ml, R. mucilaginosa-E. coli-MIC 322 mg/ml). The mixed-species biofilm exhibited better efficiency in removal of all tested metals than single-species biofilms. The highest efficiency in Cd 2+ removal was shown by the E. coli biofilm (94.85%) and R. mucilaginosa biofilm (97.85%), individually. The highest efficiency in Cu 2+ (99.88%), Zn 2+ (99.26%) and Pb 2+ (99.52%) removal was shown by the mixed-species biofilm. Metal removal efficiency was in the range of 81.56%-97.85% for the single- and 94.99%-99.88% for the mixed-species biofilm.

  14. Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes.

    PubMed

    Domínguez, Joaquín R; Muñoz-Peña, Maria J; González, Teresa; Palo, Patricia; Cuerda-Correa, Eduardo M

    2016-10-01

    The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO - . The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.

  15. Denitrification-Efficiencies of Alternate Carbon Sources

    DTIC Science & Technology

    1984-07-01

    carbon source evaluated, while sweet whey, corn steep liquor , acid whey and soluble potato solids followed in order of decreasing efficiency. Three of...denitrification and total organic carbon removal with ’I. sweet whey 11 3. Percent denitrification and total organic carbon removal with corn steep liquor ...and total organic carbon removal with hydrolyzed sludge 18 10. Percent denitrification and total organic carbon removal with fish stick 19 11

  16. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.

    PubMed

    Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying

    2011-01-01

    A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.

  17. Enhanced performance of crumb rubber filtration for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2009-03-01

    Waste-tire-derived crumb rubber was utilized as filter media to develop an efficient filter for ballast water treatment. In this study, the effects of coagulation, pressure filtration and dual-media (gravity) filtration on the performance of the crumb rubber filtration were investigated. The removal efficiencies of turbidity, phytoplankton and zooplankton, and head loss development were monitored during the filtration process. The addition of a coagulant enhanced the removal efficiencies of all targeted matter, but resulted in substantial increase of head loss. Pressure filtration increased filtration rates to 220 m(3)h(-1)m(-2) for 8-h operation and improved the zooplankton removal. Dual-media (crumb rubber/sand) gravity filtration also improved the removal efficiencies of phytoplankton and zooplankton over mono-media gravity crumb rubber filtration. However, these filtration techniques alone did not meet the criteria for removing indigenous organisms from ballast water. A combination of filtration and disinfection is suggested for future studies.

  18. Performances of two biotrickling filters in treating H₂S-containing waste gases and analysis of corresponding bacterial communities by pyrosequencing.

    PubMed

    Li, Jianjun; Ye, Guangyun; Sun, Duanfang; Sun, Guoping; Zeng, Xiaowei; Xu, Jian; Liang, Shizhong

    2012-09-01

    Two identical biotrickling filters named BTFa and BTFb were run in parallel to examine their performances in removing hydrogen sulfide. BTFa was filled with ceramic granules, and BTFb was filled with volcanic rocks. The results showed that BTFb was more robust than BTFa under acidic conditions. At empty bed residence times (EBRTs) of 20 and 15 s, the removal efficiency of BTFa was close to 100%. At EBRTs of 10 and 5 s, the removal efficiency of BTFa slightly decreased. The removal efficiencies of BTFa decreased by different degrees at the end of each stage, dropping to 94%, 81%, 60%, and 71%, respectively. However, the H(2)S removal efficiency in BTFb consistently reached 99% throughout the experiment. Pyrosequencing analyses indicated that members of Thiomonas dominated in both BTFs, but the relative abundance of Acidithiobacillus was higher in BTFb than in BTFa.

  19. Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr(6+) and Cd(2+) from aqueous solution.

    PubMed

    Kong, Xiangke; Han, Zhantao; Zhang, Wei; Song, Le; Li, Hui

    2016-03-15

    Zeolite-supported microscale zero-valent iron (Z-mZVI) was synthesized and used to remove heavy metal cation (Cd(2+)) and anion (Cr(6+)) from aqueous solution. Transmission electron microscope (TEM) confirmed that mZVI (100-200 nm) has been successfully loaded and efficiently dispersed on zeolite. Atomic absorption Spectroscopy (AAS) revealed the amount of stabilized mZVI was about 1.3 wt.%. The synthesized Z-mZVI has much higher reduction ability and adsorption capacity for Cr(6+) and Cd(2+) compared to bare nanoscale zero-valent iron (nZVI) and zeolite. Above 77% Cr(6+) and 99% Cd(2+) were removed by Z-mZVI, while only 45% Cr(6+) and 9% Cd(2+) were removed by the same amount iron of nZVI, and 1% Cr(6+) and 39% Cd(2+) were removed by zeolite alone with an initial concentration of 20 mg/L Cr(6+) and 200 mg/L Cd(2+). The removal of Cr(6+) by Z-mZVI follows the pseudo first-order kinetics model, and X-ray photoelectron spectroscopy (XPS) analysis confirmed that Cr(6+) was reduced to Cr(3+) and immobilized on the surface of Z-mZVI. The removal mechanisms for Cr(6+) include reduction, adsorption of Cr(3+) hydroxides and/or mixed Fe(3+)/Cr(3+) (oxy)hydroxides. The pseudo-second-order kinetic model indicated that chemical sorption might be rate-limiting in the sorption of Cd(2+) by Z-mZVI. This synthesized Z-mZVI has shown the potential as an efficient and promising reactive material for removing various heavy metals from wastewater or polluted groundwater. Copyright © 2015. Published by Elsevier Ltd.

  20. Euphorbia milii-native bacteria interactions under airborne formaldehyde stress: Effect of epiphyte and endophyte inoculation in relation to IAA, ethylene and ROS levels.

    PubMed

    Khaksar, Gholamreza; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2017-02-01

    Better understanding of plant-bacteria interactions under stress is of the prime importance for enhancing airborne pollutant phytoremediation. No studies have investigated plant-epiphyte interactions compared to plant-endophyte interactions under airborne formaldehyde stress in terms of plant Indole-3-acetic acid (IAA), ethylene, reactive oxygen species (ROS) levels and pollutant removal efficiency. Euphorbia milii was inoculated with native plant growth-promoting (PGP) endophytic and epiphytic isolates individually to investigate plant-endophyte compared to plant-epiphyte interactions under continuous formaldehyde fumigation. Under airborne formaldehyde stress, endophyte interacts with its host plant closely and provides higher levels of IAA which protected the plant against formaldehyde phytotoxicity by lowering intracellular ROS, ethylene levels and maintaining shoot epiphytic community; hence, higher pollutant removal. However, plant-epiphyte interactions could not provide enough IAA to confer protection against formaldehyde stress; thus, increased ROS and ethylene levels, large decrease in shoot epiphytic population and lower pollutant removal although epiphyte contacts with airborne pollutant directly (has greater access to gaseous formaldehyde). Endophyte-inoculated plant synthesized more tryptophan as a signaling molecule for its associated bacteria to produce IAA compared to the epiphyte-inoculated one. Under stress, PGP endophyte interacts with its host closely; thus, better protection against stress and higher pollutant removal compared to epiphyte which has limited interactions with the host plant; hence, lower pollutant removal. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Evaluation of adsorbent and ion exchange resins for removal of organic matter from petroleum refinery wastewaters aiming to increase water reuse.

    PubMed

    de Abreu Domingos, Rodrigo; da Fonseca, Fabiana Valéria

    2018-05-15

    The oil refinery industry seeks solutions to reduce its water uptake and consumption by encouraging the reuse of internal streams and wastewater from treatment systems. After conventional treatment the petroleum refinery wastewater still contains a considerable quantity of recalcitrant organics and the adsorption on activated carbon is currently used in Brazilian refineries, although it is still expensive due to the difficulty of its regeneration. This study evaluated the use of adsorbent and ion exchange resins for the removal of organic matter from refinery wastewater after conventional treatment in order to verify its feasibility, applying successive resin regenerations and comparing the results with those obtained for activated carbon process. Adsorption isotherms experiments were used to evaluate commercial resins, and the most efficient was subjected to column experiments, where absorbance (ABS) and total organic carbon (TOC) removal were measured. The adsorption isotherm of the best resin showed an adsorptive capacity that was 55% lower than that of activated carbon. On the other hand, the column experiments indicated good removal efficiency, and the amount of TOC in the treated wastewater was as good as has been reported in the literature for activated carbon. The regeneration efficiency of the retained organics ranged from 57 to 94%, while regenerant consumption ranged from 12 to 79% above the amount recommended by the resin supplier for the removal of organic material from natural sources, showing the great resistance of these recalcitrant compounds to desorption. Finally, an estimate of the service life of the resin using intermediate regeneration conditions found it to be seven times higher than that of activated carbon when the latter is not regenerated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. [Fluorine removal efficiency of organic-calcium during coal combustion].

    PubMed

    Liu, Jing; Liu, Jian-Zhong; Zhou, Jun-Hu; Xiao, Hai-Ping; Cen, Ke-Fa

    2006-08-01

    Effectiveness of calcium magnesium acetate (CMA) and calcium acetate(CA) as feasible HF capture were studied by means of fixed bed tube furnaces. The effects of temperature, particle diameter and Ca/S molar ratio on the fluorine removal efficiency were studied. By contract with CaCO3 at the same condition, we find that the HF capture effectiveness of those sorbents is superior to CaCO3, especially at high temperature. At 1 000 - 1 100 degrees C, the efficiency of fluorine removal during coal combustion of CMA is 1.68 - 1.74 times as that of CaCO3; the efficiency of fluorine removal during coal combustion of CA is 1.28 - 1.37 times as that of CaCO3.

  3. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    PubMed

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  4. Degradation of anti-inflammatory drugs in municipal wastewater by heterogeneous photocatalysis and electro-Fenton process.

    PubMed

    Villanueva-Rodríguez, Minerva; Bello-Mendoza, Ricardo; Hernández-Ramírez, Aracely; Ruiz-Ruiz, Edgar J

    2018-03-01

    Non-steroidal anti-inflammatory drugs (NSAID) are compounds frequently found in municipal wastewater and their degradation by conventional wastewater treatment plants (WWTP) is generally incomplete. This study compared the efficiency of two advanced oxidation processes (AOP), namely heterogeneous photocatalysis (HP) and electro-Fenton (EF), in the degradation of a mixture of common NSAID (diclofenac, ibuprofen and naproxen) dissolved in either deionized water or effluent from a WWTP. Both processes were effective in degrading the NSAID mixture and the trend of degradation was as follows, diclofenac > naproxen > ibuprofen. EF with a current density of 40 mA cm -2 and 0.3 mmol Fe 2+  L -1 was the most efficient process to mineralize the organic compounds, achieving up to 92% TOC removal in deionized water and 90% in the WWTP effluent after 3 h of reaction. HP with 1.4 g TiO 2  L -1 at pH 7 under sunlight, produced 85% TOC removal in deionized water and 39% in WWTP effluent also after 3 h treatment. The lower TOC removal efficiency shown by HP with the WWTP effluent was attributed mainly to the scavenging of reactive species by background organic matter in the wastewater. On the contrary, inorganic ions in the wastewater may produce oxidazing species during the EF process, which contributes to a higher degradation efficiency. EF is a promising option for the treatment of anti-inflammatory pharmaceuticals in municipal WWTP at competitive electrical energy efficiencies.

  5. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    PubMed Central

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  6. Ensemble engineering and statistical modeling for parameter calibration towards optimal design of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Sun, Hongyue; Luo, Shuai; Jin, Ran; He, Zhen

    2017-07-01

    Mathematical modeling is an important tool to investigate the performance of microbial fuel cell (MFC) towards its optimized design. To overcome the shortcoming of traditional MFC models, an ensemble model is developed through integrating both engineering model and statistical analytics for the extrapolation scenarios in this study. Such an ensemble model can reduce laboring effort in parameter calibration and require fewer measurement data to achieve comparable accuracy to traditional statistical model under both the normal and extreme operation regions. Based on different weight between current generation and organic removal efficiency, the ensemble model can give recommended input factor settings to achieve the best current generation and organic removal efficiency. The model predicts a set of optimal design factors for the present tubular MFCs including the anode flow rate of 3.47 mL min-1, organic concentration of 0.71 g L-1, and catholyte pumping flow rate of 14.74 mL min-1 to achieve the peak current at 39.2 mA. To maintain 100% organic removal efficiency, the anode flow rate and organic concentration should be controlled lower than 1.04 mL min-1 and 0.22 g L-1, respectively. The developed ensemble model can be potentially modified to model other types of MFCs or bioelectrochemical systems.

  7. Comparison of the treatment performance of hybrid constructed wetlands treating stormwater runoff.

    PubMed

    Choi, J Y; Maniquiz-Redillas, M C; Hong, J S; Lee, S Y; Kim, L H

    2015-01-01

    This study was conducted to compare the treatment performance of two hybrid constructed wetlands (CWs) in treating stormwater runoff. The hybrid CWs were composed of a combination of free water surface (FWS) and horizontal subsurface flow (HSSF) CWs. Based on the results, strong correlation exists between potential runoff impacts and stormwater characteristics; however, the low correlations also suggest that not only the monitored parameters contribute to stormwater event mean concentrations (EMC) of pollutants, but other factors should also be considered as well. In the hydraulic and treatment performance of the hybrid CWs, a small surface area to catchment area (SA/CA) ratio, receiving a high concentration of influent EMC, will find it hard to achieve great removal efficiency; also a large SA/CA ratio, receiving low concentration of influent EMC, will find it hard to achieve great removal efficiency. With this, SA/CA ratio and influent characteristics such as EMC or load should be considered among the design factors of CWs. The performance data of the two CWs were used to consider the most cost-effective design of a hybrid CW. The optimum facility capacity (ratio of total runoff volume to storage volume) that is applicable for a target volume reduction and removal efficiency was provided in this study.

  8. Influence of earthworm Eisenia fetida on Iris pseudacorus's photosynthetic characteristics, evapotranspiration losses and purifying capacity in constructed wetland systems.

    PubMed

    Xu, Defu; Li, Yingxue; Fan, Xiaolong; Guan, Yidong; Fang, Hua; Zhao, Xiaoli

    2013-01-01

    Four constructed wetland systems were studied to investigate the effects of adding Eisenia fetida on the purifying capacity of constructed wetlands. Addition of E. fetida increased the photosynthetic rate (Pn), transpiration rate (Tr) and chlorophyll meter value of leaves of Iris pseudacorus L. in the constructed wetlands by 16, 35 and 7%, respectively. Compared with the substrate only system, evapotranspiration losses were increased by 8, 48 and 56% for the wetland systems with substrate and E. fetida, with substrate and I. pseudacorus, and with substrate, I. pseudacorus and E. fetida, respectively. Addition of E. fetida to the substrate only and substrate and plant wetland systems decreased the substrate bulk density by 3 and 6%, respectively. The addition of E. fetida to the system with substrate and plants increased the removal efficiency of chemical oxygen demand (CODMn), total nitrogen (TN) and total phosphorus by 5, 7 and 22%, respectively. Evapotranspiration losses were significantly positively correlated with the removal efficiency of CODMn (P < 0.01). The significantly negative correlation between the removal efficiency TN and bulk density was found (P < 0.05). Therefore, E. fetida could stimulate I. pseudacorus growth and improve the substrate bulk density in the constructed wetland, resulting in enhanced purifying capacity.

  9. Performance of hybrid constructed wetland systems for treating septic tank effluent.

    PubMed

    Cui, Li-hua; Liu, Wen; Zhu, Xi-zhen; Ma, Mei; Huang, Xi-hua; Xia, Yan-yang

    2006-01-01

    The integrated wetland systems were constructed by combining horizontal-flow and vertical-flow bed, and their purification efficiencies for septic tank effluent were detected when the hydraulic retention time (HRT) was 1 d, 3 d, 5 d under different seasons. The results showed that the removal efficiencies of the organics, phosphorus were steady in the hybrid systems, but the removal efficiency of total nitrogen was not steady due to high total nitrogen concentration in the septic tank effluent. The average removal rates of COD (chemical oxygen demand) were 89%, 87%, 83%, and 86% in summer, autumn, winter and spring, respectively, and it was up to 88%, 85%, 73%, and 74% for BOD5 (5 d biochemical oxygen demand) removal rate in four seasons. The average removal rates of TP (total phosphorous) could reach up to 97%, 98%, 95%, 98% in four seasons, but the removal rate of TN (total nitrogen) was very low. The results of this study also indicated that the capability of purification was the worst in winter. Cultivating with plants could improve the treated effluent quality from the hybrid systems. The results of the operation of the horizontal-flow and vertical-flow cells (hybrid systems) showed that the removal efficiencies of the organics, TP and TN in horizontal-flow and vertical-flow cells were improved significantly with the extension of HRT under the same season. The removal rate of 3 d HRT was obviously higher than that of 1 d HRT, and the removal rate of 5 d HRT was better than that of 3 d HRT, but the removal efficiency was not very obvious with the increment of HRT. Therefore, 3 d HRT might be recommended in the actual operation of the hybrid systems for economic and technical reasons.

  10. Comparative analysis of methods for concentrating venom from jellyfish Rhopilema esculentum Kishinouye

    NASA Astrophysics Data System (ADS)

    Li, Cuiping; Yu, Huahua; Feng, Jinhua; Chen, Xiaolin; Li, Pengcheng

    2009-02-01

    In this study, several methods were compared for the efficiency to concentrate venom from the tentacles of jellyfish Rhopilema esculentum Kishinouye. The results show that the methods using either freezing-dry or gel absorption to remove water to concentrate venom are not applicable due to the low concentration of the compounds dissolved. Although the recovery efficiency and the total venom obtained using the dialysis dehydration method are high, some proteins can be lost during the concentrating process. Comparing to the lyophilization method, ultrafiltration is a simple way to concentrate the compounds at high percentage but the hemolytic activities of the proteins obtained by ultrafiltration appear to be lower. Our results suggest that overall lyophilization is the best and recommended method to concentrate venom from the tentacles of jellyfish. It shows not only the high recovery efficiency for the venoms but high hemolytic activities as well.

  11. Comparative study of the degradation of carbamazepine in water by advanced oxidation processes.

    PubMed

    Dai, Chao-Meng; Zhou, Xue-Fei; Zhang, Ya-Lei; Duan, Yan-Ping; Qiang, Zhi-Min; Zhang, Tian C

    2012-06-01

    Degradation of carbamazepine (CBZ) using ultraviolet (UV), UV/H2O2, Fenton, UV/Fenton and photocatalytic oxidation with TiO2 (UV/TiO2) was studied in deionized water. The five different oxidation processes were compared for the removal kinetics of CBZ. The results showed that all the processes followed pseudo-first-order kinetics. The direct photolysis (UV alone) was found to be less effective than UV/H2O2 oxidation for the degradation of CBZ. An approximate 20% increase in the CBZ removal efficiency occurred with the UV/Fenton reaction as compared with the Fenton oxidation. In the UV/TiO2 system, the kinetics of CBZ degradation in the presence of different concentrations of TiO2 followed the pseudo-first order degradation, which was consistent with the Langmuir-Hinshelwood (L-H) model. On a time basis, the degradation efficiencies ofCBZ were in the following order: UV/Fenton (86.9% +/- 1.7%) > UV/TiO2 (70.4% +/- 4.2%) > Fenton (67.8% +/- 2.6%) > UV/H2O2 (40.65 +/- 5.1%) > UV (12.2% +/- 1.4%). However, the lowest cost was obtained with the Fenton process.

  12. Effects of aeration and natural zeolite on ammonium removal during the treatment of sewage by mesocosm-scale constructed wetlands.

    PubMed

    Araya, F; Vera, I; Sáez, K; Vidal, G

    2016-01-01

    The objective was to evaluate the effects of intermittent artificial aeration cycles and natural zeolite as a support medium, in addition to the contribution of plants (Schoenoplectus californicus) on NH4(+)-N removal during sewage treatment by Constructed Wetlands (CW). Two lines of Mesocosm Constructed Wetland (MCW) were installed: (a) gravel line (i.e. G-Line) and (b) zeolite line (i.e. Z-Line). Aeration increased the NH4(+)-N removal efficiency by 20-45% in the G-Line. Natural zeolite increased the NH4(+)-N removal efficiency by up to 60% in the Z-Line. Plants contributed 15-30% of the NH4(+)-N removal efficiency and no difference between the G-Line and the Z-Line. Conversely, the NH4(+)-N removal rate was shown to only increase with the use of natural zeolite. However, the MCW with natural zeolite, the NH4(+)-N removal rate showed a direct relationship only with the NH4(+)-N influent concentration. Additionally, relationship between the oxygen, energy and area regarding the NH4(+)-N removal efficiency was established for 2.5-12.5 gO2/(kWh-m(2)) in the G-Line and 0.1-2.6 gO2/(kWh-m(2)) in the Z-Line. Finally, it was established that a combination of natural zeolite as a support medium and the aeration strategy in a single CW could regenerate the zeolite's adsorption sites and maintain a given NH4(+)-N removal efficiency over time.

  13. Further evaluation of the NWF filter for the purification of Plasmodium vivax-infected erythrocytes.

    PubMed

    Li, Jiangyan; Tao, Zhiyong; Li, Qian; Brashear, Awtum; Wang, Ying; Xia, Hui; Fang, Qiang; Cui, Liwang

    2017-05-17

    Isolation of Plasmodium-infected red blood cells (iRBCs) from clinical blood samples is often required for experiments, such as ex vivo drug assays, in vitro invasion assays and genome sequencing. Current methods for removing white blood cells (WBCs) from malaria-infected blood are time-consuming or costly. A prototype non-woven fabric (NWF) filter was developed for the purification of iRBCs, which showed great efficiency for removing WBCs in a pilot study. Previous work was performed with prototype filters optimized for processing 5-10 mL of blood. With the commercialization of the filters, this study aims to evaluate the efficiency and suitability of the commercial NWF filter for the purification of Plasmodium vivax-infected RBCs in smaller volumes of blood and to compare its performance with that of Plasmodipur ® filters. Forty-three clinical P. vivax blood samples taken from symptomatic patients attending malaria clinics at the China-Myanmar border were processed using the NWF filters in a nearby field laboratory. The numbers of WBCs and iRBCs and morphology of P. vivax parasites in the blood samples before and after NWF filtration were compared. The viability of P. vivax parasites after filtration from 27 blood samples was examined by in vitro short-term culture. In addition, the effectiveness of the NWF filter for removing WBCs was compared with that of the Plasmodipur ® filter in six P. vivax blood samples. Filtration of 1-2 mL of P. vivax-infected blood with the NWF filter removed 99.68% WBCs. The densities of total iRBCs, ring and trophozoite stages before and after filtration were not significantly different (P > 0.05). However, the recovery rates of schizont- and gametocyte-infected RBCs, which were minor parasite stages in the clinical samples, were relatively low. After filtration, the P. vivax parasites did not show apparent morphological changes. Culture of 27 P. vivax-infected blood samples after filtration showed that parasites successfully matured into the schizont stage. The WBC removal rates and iRBC recovery rates were not significantly different between the NWF and Plasmodipur ® filters (P > 0.05). When tested with 1-2 mL of P. vivax-infected blood, the NWF filter could effectively remove WBCs and the recovery rates for ring- and trophozoite-iRBCs were high. P. vivax parasites after filtration could be successfully cultured in vitro to reach maturity. The performance of the NWF and Plasmodipur ® filters for removing WBCs and recovering iRBCs was comparable.

  14. Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges.

    PubMed

    Wiest, Laure; Chonova, Teofana; Bergé, Alexandre; Baudot, Robert; Bessueille-Barbier, Frédérique; Ayouni-Derouiche, Linda; Vulliet, Emmanuelle

    2018-04-01

    It is well known that pharmaceuticals are not completely removed by conventional activated sludge wastewater treatment plants. Hospital effluents are of major concern, as they present high concentrations of pharmaceutically active compounds. Despite this, these specific effluents are usually co-treated with domestic wastewaters. Separate treatment has been recommended. However, there is a lack of information concerning the efficiency of separate hospital wastewater treatment by activated sludge, especially on the removal of pharmaceuticals. In this context, this article presents the results of a 2-year monitoring of conventional parameters, surfactants, gadolinium, and 13 pharmaceuticals on the specific study site SIPIBEL. This site allows the characterization of urban and hospital wastewaters and their separate treatment using the same process. Flow proportional sampling, solid-phase extraction, and liquid chromatography coupled with tandem mass spectrometry were used in order to obtain accurate data and limits of quantification consistent with ultra-trace detection. Thanks to these consolidated data, an in-depth characterization of urban and hospital wastewaters was realized, as well as a comparison of treatment efficiency between both effluents. Higher concentrations of organic carbon, AOX, phosphates, gadolinium, paracetamol, ketoprofen, and antibiotics were observed in hospital wastewaters compared to urban wastewaters. Globally higher removals were observed in the hospital wastewater treatment plant, and some parameters were shown to be of high importance regarding removal efficiencies: hydraulic retention time, redox conditions, and ambient temperature. Eleven pharmaceuticals were still quantified at relevant concentrations in hospital and urban wastewaters after treatment (e.g., up to 1 μg/L for sulfamethoxazole). However, as the urban flow was about 37 times higher than the hospital flow, the hospital contribution appeared relatively low compared to domestic discharges. Thanks to the SIPIBEL site, data obtained from this 2-year program are useful to evaluate the relevance of separate hospital wastewater treatment.

  15. Effects of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in integrated wastewater treatment systems.

    PubMed

    Zhao, Zhimiao; Song, Xinshan; Zhang, Yinjiang; Zhao, Yufeng; Wang, Bodi; Wang, Yuhui

    2017-12-01

    In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe 3+ (5.6 mg L -1 ), iron powder (2.8 mg L -1 ), and CaCO 3 powder (0.2 mg L -1 ) in influent as the adjusting agents, initial phosphorus source (PO 4 3- ) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO 3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe 3+ and iron powder produced Fe 2+ , which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs-spiked soil.

    PubMed

    Košnář, Zdeněk; Mercl, Filip; Tlustoš, Pavel

    2018-05-30

    A 120-day pot experiment was conducted to compare the ability of natural attenuation and phytoremediation approaches to remove polycyclic aromatic hydrocarbons (PAHs) from soil amended with PAHs-contaminated biomass fly ash. The PAH removal from ash-treated soil was compared with PAHs-spiked soil. The removal of 16 individual PAHs from soil ranged between 4.8% and 87.8% within the experiment. The natural attenuation approach led to a negligible total PAH removal. The phytoremediation was the most efficient approach for PAH removal, while the highest removal was observed in the case of ash-treated soil. The content of low molecular weight (LMW) PAHs and the total PAHs in this treatment significantly decreased (P <.05) over the whole experiment by 47.6% and 29.4%, respectively. The tested level of PAH soil contamination (~1600 µg PAH/kg soil dry weight) had no adverse effects on maize growth as well on the biomass yield. In addition, the PAHs were detected only in maize roots and their bioaccumulation factors were significantly lower than 1 suggesting negligible PAH uptake from soil by maize roots. The results showed that PAHs of ash origin were similarly susceptible to removal as spiked PAHs. The presence of maize significantly boosted the PAH removal from soil and its aboveground biomass did not represent any environmental risk. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Comparison of phthalic acid removal from aqueous solution by electrochemical methods: Optimization, kinetic and sludge study.

    PubMed

    Sandhwar, Vishal Kumar; Prasad, Basheshwar

    2017-12-01

    In this work, comparative study between electrochemical processes such as electrocoagulation (EC), peroxi-coagulation (PC) and peroxi-electrocoagulation (PEC) was performed for the removal of phthalic acid (PA) and chemical oxygen demand (COD) from aqueous medium. Initially, acid treatment was studied at various pH (1-3) and temperature (10-55 °C). Subsequently, the supernatant was re-treated by electrochemical processes such as EC, PC and PEC separately. Independent parameters viz. pH, current density (CD), electrolyte concentration (m), electrode gap (g), H 2 O 2 concentration and electrolysis time (t) were optimized by Central Composite Design (CCD) for these electrochemical processes. All three processes were compared based on removal, energy consumption, kinetic analysis, operating cost and sludge characteristics. In this study, PEC process was found more efficient among EC, PC and PEC processes in order to get maximum removal, minimum energy consumption and minimum operating cost. Maximum removal of PA- 68.21%, 74.36%, 82.25% & COD- 64.79%, 68.15%, 75.21% with energy consumption - 120.95, 97.51, 65.68 (kWh/kg COD removed) were attained through EC, PC and PEC processes respectively at their corresponding optimum conditions. Results indicated that PA and COD removals are in order of PEC > PC > EC under optimum conditions. First order kinetic model was found able to describe the degradation kinetics and provided best correlation for the removal rate within the acceptable error range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. PCDD/F adsorption and destruction in the flue gas streams of MWI and MSP via Cu and Fe catalysts supported on carbon.

    PubMed

    Chang, Shu Hao; Yeh, Jhy Wei; Chein, Hung Min; Hsu, Li Yeh; Chi, Kai Hsien; Chang, Moo Been

    2008-08-01

    Catalytic destruction has been applied to control polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) emissions from different facilities. The cost of carbon-based catalysts is considerably lower than that of the metal oxide or zeolite-based catalysts used in the selective catalytic reduction (SCR) system. In this study, destruction and adsorption efficiencies of PCDD/Fs achieved with Cu/C and Fe/C catalysts from flue gas streams of a metal smelting plant (MSP) and a large-scale municipal waste incinerator (MWI), respectively, are evaluated via the pilot-scale catalytic reactor system (PCRS). The results indicate that Cu and Fe catalysts supported on carbon surface are capable of decomposing and adsorbing PCDD/ Fs from gas streams. In the testing sources of MSP and MWI, the PCDD/F removal efficiencies achieved with Cu/C catalyst at 250 degrees C reach 96%, however, the destruction efficiencies are negative (-1,390% and -112%, respectively) due to significant PCDD/F formation on catalyst promoted by copper. In addition, Fe/C catalyst is of higher removal and destruction efficiencies compared with Cu/C catalyst in both testing sources. The removal efficiencies of PCDD/Fs achieved with Fe/C catalyst are 97 and 94% for MSP and MWI, respectively, whereas the destruction efficiencies are both higher than 70%. Decrease of PCDD/F destruction efficiency and increase of adsorption efficiency with increasing chlorination of dioxin congeners is also observed in the test via three-layer Fe/C catalyst. Furthermore, the mass of 2,3,7,8-PCDD/Fs retained on catalyst decreases on the order of first to third layer of catalyst. Each gram Fe/C catalyst in first layer adsorbs 10.9, 6.91, and 3.04 ng 2,3,7,8-PCDD/Fs in 100 min testing duration as the operating temperature is controlled at 150, 200, and 250 degrees C, respectively.

  19. A systematic review on the efficiency of cerium-impregnated activated carbons for the removal of gas-phase, elemental mercury from flue gas.

    PubMed

    Sowlat, Mohammad Hossein; Kakavandi, Babak; Lotfi, Saeedeh; Yunesian, Masud; Abdollahi, Mohammad; Rezaei Kalantary, Roshanak

    2017-05-01

    In the present systematic review, we aimed to collect and analyze all the relevant evidence on the efficiency of cerium-impregnated versus virgin-activated carbons (ACs) for the removal of gas-phase elemental mercury (Hg 0 ) from the flue gas of coal-fired power plants and to assess the effect of different calcination and operational parameters on their efficiency. A total of eight relevant papers (out of 1193 hits produced by the search) met the eligibility criteria and were included in the study. Results indicated that the Hg 0 adsorption capacity of cerium-impregnated ACs is significantly higher than that of virgin ACs, depending highly on the impregnation and operational parameters. It was noticed that although cerium-impregnated ACs possessed smaller surface areas and pore volumes, their Hg 0 removal efficiencies were still higher than their virgin counterparts. An increased Hg 0 removal efficiency was in general found by increasing the operational adsorption temperature as high as 150-170 °C. Studies also indicated that NO, SO 2 , and HCl have promoting impacts on the Hg 0 removal efficiency of Ce-impregnated ACs, while H 2 O has an inhibitory effect.

  20. Nitrate removal from drinking water with a focus on biological methods: a review.

    PubMed

    Rezvani, Fariba; Sarrafzadeh, Mohammad-Hossein; Ebrahimi, Sirous; Oh, Hee-Mock

    2017-05-31

    This article summarizes several developed and industrial technologies for nitrate removal from drinking water, including physicochemical and biological techniques, with a focus on autotrophic nitrate removal. Approaches are primarily classified into separation-based and elimination-based methods according to the fate of the nitrate in water treatment. Biological denitrification as a cost-effective and promising method of biological nitrate elimination is reviewed in terms of its removal process, applicability, efficiency, and associated disadvantages. The various pathways during biological nitrate removal, including assimilatory and dissimilatory nitrate reduction, are also explained. A comparative study was carried out to provide a better understanding of the advantages and disadvantages of autotrophic and heterotrophic denitrification. Sulfur-based and hydrogen-based denitrifications, which are the most common autotrophic processes of nitrate removal, are reviewed with the aim of presenting the salient features of hydrogenotrophic denitrification along with some drawbacks of the technology and research areas in which it could be used but currently is not. The application of algae-based water treatment is also introduced as a nature-inspired approach that may broaden future horizons of nitrate removal technology.

  1. Decorin content and near infrared spectroscopy analysis of dried collagenous biomaterial samples.

    PubMed

    Aldema-Ramos, Mila L; Castell, Joan Carles; Muir, Zerlina E; Adzet, Jose Maria; Sabe, Rosa; Schreyer, Suzanne

    2012-12-14

    The efficient removal of proteoglycans, such as decorin, from the hide when processing it to leather by traditional means is generally acceptable and beneficial for leather quality, especially for softness and flexibility. A patented waterless or acetone dehydration method that can generate a product similar to leather called Dried Collagenous Biomaterial (known as BCD) was developed but has no effect on decorin removal efficiency. The Alcian Blue colorimetric technique was used to assay the sulfated glycosaminoglycan (sGAG) portion of decorin. The corresponding residual decorin content was correlated to the mechanical properties of the BCD samples and was comparable to the control leather made traditionally. The waterless dehydration and instantaneous chrome tanning process is a good eco-friendly alternative to transforming hides to leather because no additional effects were observed after examination using NIR spectroscopy and additional chemometric analysis.

  2. A comparison of mango seed kernel powder, mango leaf powder and Manilkara zapota seed powder for decolorization of methylene blue dye and antimicrobial activity.

    PubMed

    Sundararaman, B; Muthuramu, K L

    2016-11-01

    The waste mango seed generated from mango pulp industry in India is a major problem in handling the waste and hence, conversion of mango seed kernel. Mango seeds were collected and processed for oil extraction. Decolorization of methylene blue was achieved by mango seed kernel powder, mango leaf powder and Manilkara zapota seed powder. Higher efficiency was attained in mango seed kernel powder when compared to mango leaf powder and Manilkara zapota seed powder. A 60 to 95 % of removal efficiency was achieved by varying concentration. Effect of pH, dye concentration, adsorbent dosage and temperature were studied. Mango seed kernel powder is a better option that can be used as an adsorbent for the removal of methylene blue and basic red dye from its aqueous solutions.

  3. Surface modification of polymeric foams for oil spills remediation.

    PubMed

    Pinto, Javier; Athanassiou, Athanassia; Fragouli, Despina

    2018-01-15

    In the last decade, a continuous increasing research activity is focused on the surface functionalization of polymeric porous materials for the efficient removal of oil contaminants from water. This work reviews the most significant recent studies on the functionalization of polyurethane and melamine foams, materials commonly reported for oil-water separation applications. After the identification of the key features of the foams required to optimize their oil removal performance, a wide variety of physicochemical treatments are described together with their effect on the oil absorption selectivity and oil absorption capacity, both critical parameters for the application of the foams in the remediation of oil spills. The efficiencies of the different functionalization processes on the same type of foams are compared, determining the main advantages and potentialities of each treatment and remediation procedure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mitigation and treatment of pollutants from railway and highway runoff by pocket wetland system; A case study.

    PubMed

    Senduran, Cem; Gunes, Kemal; Topaloglu, Duygu; Dede, Omer Hulusi; Masi, Fabio; Kucukosmanoglu, Ozen Arli

    2018-08-01

    This study performed in Sapanca Lake catchment area, used as a drinking water resource. Two highways located at northern and southern shores, and a railway at its south are significant sources of pollution. As a possible solution for protecting water quality a pocket wetland constructed and operated. Performances statistically interpreted by Spearman's Correlation test and univariate analysis of variance on collected data. The mean removal efficiencies obtaited were 52% (TSS), 4% (Nitrate), 26% (TN), -5% (TOC), 63% (TP), 4.5% (Chloride), 3% (Sulfate), 33% (Cr), 39% (Co), -19.5% (Ni), 7% (Cu), 55% (Zn), 36% (As), 38% (Cd) and 18% (Pb). TSS removal was in positive significant medium correlation with Co, Cu, Zn, and Pb removal respectively (p < 0.05). Other statistically significant positive high correlations calculated between removal efficiency of Nitrate-TN, Chloride-Sulfate, Cr-Co-Cu-As-Cd. According to ANOVA and Kruskal-Wallis test results, removal efficiencies of TSS and TOC partially affected by different temperature (p < 0.1 for TSS and p < 0.05 for TOC) and pH ranges (p < 0.1 for both removal efficiencies), TP removal efficiency significantly affected by different pH ranges (p < 0.001), and Chloride and Sulfate removal efficiencies were significantly (p < 0.001) affected by different temperature ranges. Regardless of geographical location and climatic factors, pocket wetland systems can be relied upon for minimizing heavy metals such as Cr, Co, Zn, As, Cd and Pb and critical pollutants such as TP and TSS caused by highway runoff. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater.

    PubMed

    Lee, Minhee; Yang, Minjune

    2010-01-15

    The uranium removal efficiencies of rhizofiltration in the remediation of groundwater were investigated in lab-scale experiments. Sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) were cultivated and an artificially uranium contaminated solution and three genuine groundwater samples were used in the experiments. More than 80% of the initial uranium in solution and genuine groundwater, respectively, was removed within 24h by using sunflower and the residual uranium concentration of the treated water was lower than 30 microg/L (USEPA drinking water limit). For bean, the uranium removal efficiency of the rhizofiltration was roughly 60-80%. The maximum uranium removal via rhizofiltration for the two plant cultivars occurred at pH 3-5 of solution and their uranium removal efficiencies exceeded 90%. The lab-scale continuous rhizofiltration clean-up system delivered over 99% uranium removal efficiency, and the results of SEM and EDS analyses indicated that most uranium accumulated in the roots of plants. The present results suggested that the uranium removal capacity of two plants evaluated in the clean-up system was about 25mg/kg of wet plant mass. Notably, the removal capacity of the root parts only was more than 500 mg/kg.

  6. Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil.

    PubMed

    Meng, Fansheng; Xue, Hao; Wang, Yeyao; Zheng, Binghui; Wang, Juling

    2018-02-01

    Electrokinetic experiments were conducted on chromium-residue-contaminated soils collected from a chemical plant in China. Acidification-electrokinetic remediation technology was proposed in order to solve the problem of removing inefficient with ordinary electrokinetic. The results showed that electrokinetic remediation removal efficiency of chromium from chromium-contaminated soil was significantly enhanced with acidizing pretreatment. The total chromium [Cr(T)] and hexavalent chromium [Cr(VI)] removal rate of the group acidized by citric acid (0.9 mol/L) for 5 days was increased from 6.23% and 19.01% in the acid-free experiments to 26.97% and 77.66% in the acidification-treated experiments, respectively. In addition, part of chromium with the state of carbonate-combined will be converted into water-soluble state through acidification to improve the removal efficiency. Within the appropriate concentration range, the higher concentration of acid was, the more chromium was released. So the removal efficiency of chromium depended on the acid concentration. The citric acid is also a kind of complexing agent, which produced complexation with Cr that was released by the electrokinetic treatment and then enhanced the removal efficiency. The major speciation of chromium that was removed from soils by acidification-electrokinetics remediation was acid-soluble speciation, revivification speciation and oxidation speciation, which reduced biological availability of chromium.

  7. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes.

    PubMed

    Gao, Pin; Ding, Yunjie; Li, Hui; Xagoraraki, Irene

    2012-06-01

    Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Coupled nutrient removal and biomass production with mixed algal culture: impact of biotic and abiotic factors.

    PubMed

    Su, Yanyan; Mennerich, Artur; Urban, Brigitte

    2012-08-01

    The influence of biotic (algal inoculum concentration) and abiotic factors (illumination cycle, mixing velocity and nutrient strength) on the treatment efficiency, biomass generation and settleability were investigated with selected mixed algal culture. Dark condition led to poor nutrient removal efficiency. No significant difference in the N, P removal and biomass settleability between continuous and alternating illumination was observed, but a higher biomass generation capability for the continuous illumination was obtained. Different mixing velocity led to similar phosphorus removal efficiencies (above 98%) with different retention times. The reactor with 300 rpm mixing velocity had the best N removal capability. For the low strength wastewater, the N rates were 5.4±0.2, 9.1±0.3 and 10.8±0.3 mg/l/d and P removal rates were 0.57±0.03, 0.56±0.03 and 0.72±0.05 mg/l/d for reactors with the algal inoculum concentration of 0.2, 0.5 and 0.8 g/l, respectively. Low nutrient removal efficiency and poor biomass settleability were obtained for high strength wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Reverse osmosis followed by activated carbon filtration for efficient removal of organic micropollutants from river bank filtrate.

    PubMed

    Kegel, F Schoonenberg; Rietman, B M; Verliefde, A R D

    2010-01-01

    Drinking water utilities in Europe are faced with a growing presence of organic micropollutants in their water sources. The aim of this research was to assess the robustness of a drinking water treatment plant equipped with reverse osmosis and subsequent activated carbon filtration for the removal of these pollutants. The total removal efficiency of 47 organic micropollutants was investigated. Results indicated that removal of most organic micropollutants was high for all membranes tested. Some selected micropollutants were less efficiently removed (e.g. the small and polar NDMA and glyphosate, and the more hydrophobic ethylbenzene and napthalene). Very high removal efficiencies for almost all organic micropollutants by the subsequent activated carbon, fed with the permeate stream of the RO element were observed except for the very small and polar NDMA and 1,4-dioxane. RO and subsequent activated carbon filtration are complementary and their combined application results in the removal of a large part of these emerging organic micropollutants. Based on these experiments it can be concluded that the robustness of a proposed treatment scheme for the drinking water treatment plant Engelse Werk is sufficiently guaranteed.

  10. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review.

    PubMed

    Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu; Vepsäläinen, Mikko

    2018-01-01

    Natural organic matter (NOM) is a complex matrix of organic substances produced in (or channeled to) aquatic ecosystems via various biological, geological and hydrological cycles. Such variability is posing a serious challenge to most water treatment technologies, especially the ones designed to treat drinking water supplies. Lately, in addition to the fluctuating composition of NOM, a substantial increase of its concentration in fresh waters, and also municipal wastewater effluents, has been reported worldwide, which justifies the urgent need to develop highly efficient and versatile water treatment processes. Coagulation is among the most applied processes for water and wastewater treatment. The application of coagulation to remove NOM from drinking water supplies has received a great deal of attention from researchers around the world because it was efficient and helped avoiding the formation of disinfection by products (DBPs). Nonetheless, with the increased fluctuation of NOM in water (concentration and composition), the efficiency of conventional coagulation was substantially reduced, hence the need to develop enhanced coagulation processes by optimizing the operating conditions (mainly the amount coagulants and pH), developing more efficient inorganic or organic coagulants, as well as coupling coagulation with other water treatment technologies. In the present review, recent research studies dealing with the application of coagulation for NOM removal from drinking water supplies are presented and compared. In addition, integration schemes combining coagulation and other water treatment processes are presented, including membrane filtration, oxidation, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites.

    PubMed

    Mota, Rita; Rossi, Federico; Andrenelli, Luisa; Pereira, Sara Bernardes; De Philippis, Roberto; Tamagnini, Paula

    2016-09-01

    Bioremediation of heavy metals using microorganisms can be advantageous compared to conventional physicochemical methods due to the use of renewable resources and efficiencies of removal particularly cations at low concentrations. In this context, cyanobacteria/cyanobacterial extracellular polymeric substances (EPS) emerge as a valid alternative due to the anionic nature and particular composition of these polymers. In this work, various culture fractions of the unicellular cyanobacterium Cyanothece sp. CCY 0110 were employed in bioremoval assays using three of the most common heavy metal pollutants in water bodies-copper, cadmium, and lead-separately or in combined systems. Our study showed that the released polysaccharides (RPS) were the most efficient fraction, removing the metal(s) by biosorption. Therefore, this polymer was subsequently used to evaluate the interactions between the metals/RPS binding sites using SEM-EDX, ICP-OES, and FTIR. Acid and basic pretreatments applied to the polymer further improve the process efficiency, and the exposure to an alkaline solution seems to alter the RPS conformation. The differences observed in the specific metal bioremoval seem to be mainly due to the RPS organic functional groups available, mainly carboxyl and hydroxyl, than to an ion exchange mechanism. Considering that Cyanothece is a highly efficient RPS-producer and that RPS can be easily separated from the culture, immobilized or confined, this polymer can be advantageous for the establishment/improvement of heavy metal removal systems.

  12. The role of heterotrophic microorganism Galactomyces sp. Z3 in improving pig slurry bioleaching.

    PubMed

    Zhou, Jun; Zheng, Guanyu; Zhou, Lixiang; Liu, Fenwu; Zheng, Chaocheng; Cui, Chunhong

    2013-01-01

    The feasibility of removing heavy metals and eliminating pathogens from pig slurry through bioleaching involving the fungus Galactomyces sp. Z3 and two acidophilic thiobacillus (A. ferrooxidans LX5 and A. thiooxidans TS6) was investigated. It was found that the isolated pig slurry dissolved organic matter (DOM) degrader Z3 was identified as Galactomyces sp. Z3, which could grow well at pH 2.5-7 and degrade pig slurry DOM from 1973 to 942 mg/l within 48 h. During the successive multi-batch bioleaching systems, the co-inoculation of pig slurry degrader Galactomyces sp. Z3 and the two Acidithiobacillus species could improve pig slurry bioleaching efficiency compared to the single system without Galactomyces sp. Z3. The removal efficiency of Zn and Cu exceeded 94% and 85%, respectively. In addition, the elimination efficiencies of pathogens, including both total coliform and faecal coliform counts, exceeded 99% after bioleaching treatment. However, the counts of Galactomyces sp. Z3 decreased with the fall of pH and did not restore to the initial level during successive multi-batch bioleaching systems, and it is necessary to re-inoculate Galactomyces sp. Z3 cells into the bioleaching system to maintain its role in degrading pig slurry DOM. Therefore, a bioleaching technique involving both Galactomyces sp. Z3 and Acidithiobacillus species is an efficient method for removing heavy metals and eliminating pathogens from pig slurry.

  13. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system.

    PubMed

    Zhang, Xiangling; Guo, Lu; Huang, Hualing; Jiang, Yinghe; Li, Meng; Leng, Yujie

    2016-06-01

    Constructed rapid infiltration systems (CRIS) are a reasonable option for treating wastewater, owing to their simplicity, low cost and low energy consumption. Layered double hydroxides (LDHs), novel materials with high surface area and anion exchange capacity, faced the problem of the application in CRIS due to the powdered form. To overcome this shortcoming, Zn-LDHs (FeZn-LDHs, CoZn-LDHs, AlZn-LDHs) were prepared by co-precipitation method and in-situ coated on the surface of the natural bio-ceramic to synthesize the core-shell bio-ceramic/Zn-LDHs composites. Characterization by Scanning Electron Microscope (SEM) and X-ray Fluorescence Spectrometer (XRFS) indicated that the Zn-LDHs were successful loaded on the natural bio-ceramic. Column tests experiments indicated that the bio-ceramic/Zn-LDHs efficiently enhanced the removal performance of phosphorus. The efficiently removal rates of bio-ceramic/FeZn-LDHs were 71.58% for total phosphorous (TP), 74.91% for total dissolved phosphorous (TDP), 82.31% for soluble reactive phosphorous (SRP) and 67.58% for particulate phosphorus (PP). Compared with the natural bio-ceramic, the average removal rates were enhanced by 32.20% (TP), 41.33% (TDP), 49.06% (SRP) and 10.50% (PP), respectively. Adsorption data of phosphate were better described by the Freundlich model for the bio-ceramic/Zn-LDHs and natural bio-ceramic, except for the bio-ceramic/CoZn-LDHs. The maximum adsorption capacity of bio-ceramic/AlZn-LDHs (769.23 mg/kg) was 1.77 times of the natural bio-ceramic (434.78 mg/kg). The effective desorption of phosphate could achieve by using a mixed solution of 5 M NaCl + 0.1 M NaOH, it outperformed the natural bio-ceramic of 18.95% for FeZn-LDHs, 7.59% for CoZn-LDHs and 12.66% for AlZn-LDHs. The kinetic data of the bio-ceramic/Zn-LDHs were better described by the pseudo-second-order equation. Compared the removal amount of phosphate by the natural bio-ceramic, the physical effects were improved little, but the chemical effects were enhanced for 112.49% for FeZn-LDHs, 111.89% for CoZn-LDHs and 122.67% for AlZn-LDHs. Therefore, the way of coating Zn-LDHs on the bio-ceramic efficiently improved the chemical effects in phosphate removal, supporting that it can use as potential substrates for the removal of phosphorus in CRIS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Synergic treatment for monosodium glutamate wastewater by Saccharomyces cerevisiae and Coriolus versicolor.

    PubMed

    Jia, Cuiying; Kang, Ruijuan; Zhang, Yuhui; Cong, Wei; Cai, Zhaoling

    2007-03-01

    Biodegradation and decolorization of monosodium glutamate wastewater were carried out by using an acidophilus yeast strain of Saccharomyces cerevisiae and Coriolus versicolor. For the yeast treatment, the highest COD removal and reducing sugar removal efficiency were 76.6% and 80.2%, respectively. The color removal was only 2%. For C. versicolor treatment, the highest COD removal, color removal and reducing sugar removal efficiencies were 78.7%, 56.5% and 90.9%, respectively. The synergic treatment process, in which the yeast and C. versicolor were successively applied,exhibited great advantage over the individual process.

  15. Comparison of coagulation pretreatment of produced water from natural gas well by polyaluminium chloride and polyferric sulphate coagulants.

    PubMed

    Zhai, Jun; Huang, Zejin; Rahaman, Md Hasibur; Li, Yue; Mei, Longyue; Ma, Hongpu; Hu, Xuebin; Xiao, Haiwen; Luo, Zhiyong; Wang, Kunping

    2017-05-01

    This study aimed to optimise coagulation pretreatment of the produced water (PW) collected from a natural gas field. Two coagulants, polyferric sulphate (PFS) and polyaluminium chloride (PACl), were applied separately for the organics, suspended solids (SS), and colour removal. Treatment performance at different coagulant dosages, initial pH values, stirring patterns, and the addition of cationic polyacrylamide (PAM) was investigated in jar tests. The optimal coagulation conditions were dosage of PACl 25 g/L or PFS 20 g/L with that of PAM 30 mg/L, initial pH of 11, and fast mixing of 1.5 min (for PACl) or 2 min (for PFS) at 250 rpm followed by slow mixing of 15 min at 50 rpm for both coagulants. PACl performed better than PFS to remove chemical oxygen demand (COD), total organic carbon (TOC), SS, and colour, and achieved a removal efficiency of 90.1%, 89.4%, 99.0%, and 99.9%, respectively, under the optimal condition; while PFS efficiency was 86.1%, 86.1%, 99.0%, and 98.2%, respectively. However, oil removal was higher in PFS coagulation compared to PACl and showed 98.9% and 95.3%, respectively. Biodegradability, ratio of the biological oxygen demand (five-day) (BOD 5 )/COD, of the PW after pretreatment increased from 0.08 to 0.32 for PFS and 0.43 for PACl. Zeta potential (Z-potential) analysis at the optimum coagulant dosage of PACl and PFS suggests that charge neutralisation was the predominant mechanism during coagulation. Better efficiency was observed at higher pH. The addition of PAM and starring pattern had a minor influence on the removal performance of both coagulants. The results suggest that PACl or PFS can be applied for the pretreatment of PW, which can provide substantial removal of carbon, oil, and colour, a necessary first step for subsequent main treatment units such as chemical oxidation or biological treatment.

  16. The changes of bacterial communities and antibiotic resistance genes in microbial fuel cells during long-term oxytetracycline processing.

    PubMed

    Yan, Weifu; Guo, Yunyan; Xiao, Yong; Wang, Shuhua; Ding, Rui; Jiang, Jiaqi; Gang, Haiyin; Wang, Han; Yang, Jun; Zhao, Feng

    2018-05-28

    Microbial fuel cell (MFC) is regarded as a promising alternative for enhancing the removal of antibiotic pollutants. In this study, oxytetracycline served as an electron donor in the anode chamber of MFCs, and after continuous operation for 330 days, the efficiency of removal of 10 mg/L oxytetracycline in MFCs increased to 99.00% in 78 h, whereas removal efficiency of only 58.26% was achieved in microbial controls. Compared to microbial controls, higher ATP concentration and persistent electrical stimulation mainly contributed to bioelectrochemical reactions more rapidly to enhance oxytetracycline removal in MFCs. In addition, the analysis of bacterial communities revealed that Eubacterium spp.-as the main functional bacterial genus responsible for oxytetracycline biodegradation-flourished starting from merely 0.00%-91.69% ± 0.27% (mean ± SD) in MFCs. High-throughput quantitative PCR showed that the normalized copy numbers of total antibiotic resistance genes (ARGs) and mobile genetic elements in MFCs were 1.7364 and 0.0065 copies/cell respectively, which were markedly lower than those in the microbial controls. Furthermore, there was no significant correlation between oxytetracycline concentration in the influent and abundance of ARGs in effluent from MFCs. Nevertheless, Tp614, a transposase gene, was found to be enriched in both MFCs and microbial reactors, suggesting that it may be a common challenge for different biological processes for wastewater treatment. This study therefore showed a lower probability of upregulation and transmission of ARGs in MFCs when compared to a traditional anaerobic microbial treatment. Copyright © 2018. Published by Elsevier Ltd.

  17. Performance of combined persulfate/aluminum sulfate for landfill leachate treatment.

    PubMed

    Abu Amr, Salem S; Alkarkhi, Abbas F M; Alslaibi, Tamer M; Abujazar, Mohammed Shadi S

    2018-08-01

    Although landfilling is still the most suitable method for solid waste disposal, generation of large quantity of leachate is still considered as one of the main environmental problem. Efficient treatment of leachate is required prior to final discharge. Persulfate (S 2 O 8 2- ) recently used for leachate oxidation, the oxidation potential of persulfate can be improved by activate and initiate sulfate radical. The current data aimed to evaluate the performance of utilizing Al 2 SO4 reagent for activation of persulfate to treat landfill leachate. The data on chemical oxygen demand (COD), color, and NH 3 -H removals at different setting of the persulfate, Al 2 SO 4 dosages, pH, and reaction time were collected using a central composite design (CCD) were measured to identify the optimum operating conditions. A total of 30 experiments were performed, the optimum conditions for S 2 O 8 2- /Al 2 SO 4 oxidation process was obtained. Quadratic models for chemical oxygen demand (COD), color, and NH 3 -H removals were significant with p-value < 0.0001. The experimental results were in agreement with the optimum results for COD and NH 3 -N removal rates to be 67%, 81%, and 48%, respectively). The results obtained in leachate treatment were compared with those from other treatment processes, such as S 2 O 8 2- only and Al 2 SO 4 only, to evaluate its effectiveness. The combined method (i.e., /S 2 O 8 2- /Al 2 SO 4 ) showed higher removal efficiency for COD, color, and NH 3 -N compared with other studied applications.

  18. Simultaneous removal of 2,4,6-tribromophenol from water and bromate ion minimization by ozonation.

    PubMed

    Gounden, Asogan N; Singh, Sooboo; Jonnalagadda, Sreekantha B

    2018-06-02

    The study investigates the degradation of 2,4,6-tribromophenol (2,4,6-TBP) and the influence of solution pH, alkalinity, H 2 O 2 and O 3 dosage. Debromination efficiency of 2,4,6-TBP was the highest in basic water (pH = 10.61). The extent of TOC removal compared favourably with the amount of substrate converted, suggesting favourable mineralization of oxygenated by-products (OBPs). Ozonation in basic water favoured the formation of toxicBrO 3 - , while in acidic water (pH = 2.27) BrO 3 - yield was lowest. In acidic water the presence of CO 3 2- showed negligible effect on conversion, TOC and  BrO 3 - yield compared to ozonation alone. In basic water both 2,4,6-TBP conversion and TOC removal decreased with an increase in CO 3 2- , hence minimizing BrO 3 - formation. The O 3 /H 2 O 2 process showed an improvement in the debromination efficiency and TOC data revealed that total mineralization of OBP's was achieved. However, only 10% H 2 O 2 was able to effectively decrease BrO 3 - formation. Increasing the ozone concentration from 20 to 100 ppm enhanced the conversion of 2,4,6-TBP and TOC removal. At low ozone concentrations poor mineralization of OBP's occurred, while complete mineralization was achieved at higher ozone dose. The reaction pathways for ozone degradation of 2,4,6-TBP in acidic and basic waters is proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains.

    PubMed

    Lakshmi, M Veera; Merrylin, J; Kavitha, S; Kumar, S Adish; Banu, J Rajesh; Yeom, Ick-Tae

    2014-02-01

    Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.

  20. Start-up of an UASB-septic tank for community on-site treatment of strong domestic sewage.

    PubMed

    Al-Shayah, Mohammad; Mahmoud, Nidal

    2008-11-01

    Two community on-site UASB-septic tanks were operated in parallel over a six months period under two different hydraulic retention times (HRT) of 2 days for R1 and 4 days for R2 at mean sewage temperature of 24 degrees C. The sewage was characterised by a high COD(tot) concentration of 1189 mg/L, with a large fraction of COD(sus), viz. 54%. The achieved removal efficiencies in R1 and R2 for COD(tot), COD(sus), BOD5 and TSS were "56%, 87%, 59% and 81%" and "58%, 90%, 60% and 82%" for both systems, respectively. R2 achieved a marginal but significant (p<0.05) better removal efficiencies of those parameters as compared to R1. The COD(col) and COD(dis) removals in R1 and R2 were respectively 31% and 20%, and 34% and 22%. The sludge accumulation was very low suggesting that the desludging frequency will be of several years. Accordingly, the reactor can be adequately designed at 2 days HRT.

  1. Utilization of Waste Biomass (Kitchen Waste) Hydrolysis Residue as Adsorbent for Dye Removal: Kinetic, Equilibrium, and Thermodynamic Studies.

    PubMed

    Li, Panyu; Chen, Xi; Zeng, Xiaotong; Zeng, Yu; Xie, Yi; Li, Xiang; Wang, Yabo; Xie, Tonghui; Zhang, Yongkui

    2018-02-02

    Kitchen waste hydrolysis residue (KWHR), which is produced in the bioproduction process from kitchen waste (KW), is usually wasted with potential threats to the environment. Herein, experiments were carried out to evaluate the potential of KWHR as adsorbent for dye (methylene blue, MB) removal from aqueous solution. The adsorbent was characterized using FT-IR and SEM. Adsorption results showed that the operating variables had great effects on the removal efficiency of MB. Kinetic study indicated pseudo-second-order model was suitable to describe the adsorption process. Afterwards, the equilibrium data were well fitted by using Langmuir isotherm model, suggesting a monolayer adsorption. The Langmuir monolayer adsorption capacity was calculated to be 110.13 mg/g, a level comparable to some other low-cost adsorbents. It was found that the adsorption process of MB onto KWHR was spontaneous and exothermic through the estimation of thermodynamic parameters. Thus, KWHR was of great potential to be an alternative adsorbent material to improve the utilization efficiency of bioresource (KW) and lower the cost of adsorbent for color treatment.

  2. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission.

    PubMed

    Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz

    2015-08-01

    Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Phenol Contaminated Water Treatment on Several Modified Dimensionally Stable Anodes.

    PubMed

    Jayathilaka, Pavithra Bhakthi; Hapuhinna, Kushani Umanga Kumari; Bandara, Athula; Nanayakkara, Nadeeshani; Subasinghe, Nalaka Deepal

    2017-08-01

      Phenolic compounds are some of the most common hazardous organics in wastewater. Removal of these pollutants is important. Physiochemical method such as electrochemical oxidation on dimensionally stable anodes is more convenient in removing such organic pollutants. Therefore, this study focuses on development of three different anodes for phenol contaminated water treatment. The performances of steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes were tested and compared. Nearly 50, 76, and 84% of chemical oxygen demand removal efficiencies were observed for steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes, respectively. The formation of intermediates was monitored for three anodes and the Ti/IrO2-Sb2O3 anode showed the most promising results. Findings suggest that the developed anode materials can enhance phenol oxidation efficiency and that mixed metal oxide layer has major influence on the anode. Among the selected metal oxide mixtures IrO2-Sb2O3 was the most suitable under given experimental conditions.

  4. [Influencing factors and mechanism of arsenic removal during the aluminum coagulation process].

    PubMed

    Chen, Gui-Xia; Hu, Cheng-Zhi; Zhu, Ling-Feng; Tong, Hua-Qing

    2013-04-01

    Aluminum coagulants are widely used in arsenic (As) removal during the drinking water treatment process. Aluminium chloride (AlCl3) and polyaluminium chloride (PACl) which contains high content of Al13 were used as coagulants. The effects of aluminum species, pH, humic acid (HA) and coexisting anions on arsenic removal were investigated. Results showed that AlCl3 and PACl were almost ineffective in As(II) removal while the As(V) removal efficiency reached almost 100%. pH was an important influencing factor on the arsenic removal efficiency, because pH influenced the distribution of aluminum species during the coagulation process. The efficiency of arsenic removal by aluminum coagulants was positively correlated with the content of Al13 species. HA and some coexisting anions showed negative impact on arsenic removal because of the competitive adsorption. The negative influence of HA was more pronounced at low coagulant dosages. PO4(3-) and F(-) showed marked influence during arsenic removal, but there was no obvious influence when SiO3(2-), CO3(2-) and SO4(2-) coexisted. The present study would be helpful to direct arsenic removal by enhanced coagulation during the drinking water treatment.

  5. Nitrogen removal via nitrite from seawater contained sewage.

    PubMed

    Peng, Yongzhen; Yu, De-Shuang; Liang, Dawei; Zhu, Guibing

    2004-01-01

    Under the control of both pH and the concentration of free ammonia (FA), the nitrification-denitrification via nitrite pathway was accomplished in SBR to achieve enhanced biological nitrogen removal from seawater contained wastewater, which is used to flush toilet, under relatively high salinity. Several parameters including salinity, temperature, pH, and NH4+-N loading rate were studied to evaluate their effects. The results indicate that at different salinity the nitrogen removal efficiency is relative to ammonia-nitrogen loading rate. The nitrogen removal efficiency reaches above 90% when the NH4+-N loading does not exceed 0.15 kg NH4+-N/kg MLSS d. With the salinity increasing, the ammonia-nitrogen loading rate should be lowered to obtain high removal efficiency. The evaluation of temperature effect shows that nitrogen removal efficiency is promoted twice when reaction temperature is elevated from 20 to 30 degrees C. Moderately high pH in the range of 7.5-8.5 has advantage to achieve effective nitrification-denitrification via nitrite, the process of which is caused by the selective inhibition of free ammonia (FA).

  6. The catalytic destruction of antibiotic tetracycline by sulfur-doped manganese oxide (S-MgO) nanoparticles.

    PubMed

    Moussavi, Gholamreza; Mashayekh-Salehi, Ali; Yaghmaeian, Kamyar; Mohseni-Bandpei, Anoshiravan

    2018-03-15

    The present study evaluates the efficacy of S-doped MgO (S-MgO) as compared with the plain MgO as a catalyst for destructive removal of tetracycline (TTC) in aqueous solutions. The S-MgO had around 6% S in its structure. Doping MgO with S caused increase in surface oxygen vacancy defects. Adding S-MgO (12 g/L) to a TTC aqueous solution (50 mg/L) caused removal of around 99% TTC at the neutral pH (ca. 5.1) and a short reaction time of 10 min. In comparison, plain MgO could remove only around 15% of TTC under similar experimental conditions. Diffusing O 2 into the TTC solution under the reaction with S-MgO resulted in a considerable improvement of TTC removal as compared to diffusing N 2 . Complete removal of TTC and 86.4% removal of its TOC could be obtained using 2 g/L S-MgO nanoparticles. The removal of TTC increased with the increase in solution temperature. The presence of nitrate, sulfate and chloride did not considerably affect the removal of TTC using S-MgO while TTC removal significantly decreased at the presence of bicarbonate and phosphate. The S-MgO was a stable and reusable catalyst exhibiting much higher catalytic activity than plain MgO for the TTC destruction. Accordingly, S-MgO is an emerging and efficient catalyst for catalytic decomposition and mineralization of such pharmaceutical compounds as TTC under atmospheric temperature and pressure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. 76 FR 11407 - Review of Wireline Competition Bureau Data Practices, Computer III Further Remand Proceedings...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... removal of the narrowband comparably efficient interconnection (CEI) and open network architecture (ONA... and copying during normal business hours in the FCC Reference Information Center, Portals II, 445 12th... addition, pursuant to the Small Business Paperwork Relief Act of 2002, we will seek specific comment on how...

  8. Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Dosseto, Anthony; Richardson, Christopher; Price, William E; Nghiem, Long D

    2016-06-01

    Laccase was immobilized on granular activated carbon (GAC) and the resulting GAC-bound laccase was used to degrade four micropollutants in a packed-bed column. Compared to the free enzyme, the immobilized laccase showed high residual activities over a broad range of pH and temperature. The GAC-bound laccase efficiently removed four micropollutants, namely, sulfamethoxazole, carbamazepine, diclofenac and bisphenol A, commonly detected in raw wastewater and wastewater-impacted water sources. Mass balance analysis showed that these micropollutants were enzymatically degraded following adsorption onto GAC. Higher degradation efficiency of micropollutants by the immobilized compared to free laccase was possibly due to better electron transfer between laccase and substrate molecules once they have adsorbed onto the GAC surface. Results here highlight the complementary effects of adsorption and enzymatic degradation on micropollutant removal by GAC-bound laccase. Indeed laccase-immobilized GAC outperformed regular GAC during continuous operation of packed-bed columns over two months (a throughput of 12,000 bed volumes). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Modeling of biosorption of Cu(II) by alkali-modified spent tea leaves using response surface methodology (RSM) and artificial neural network (ANN)

    NASA Astrophysics Data System (ADS)

    Ghosh, Arpita; Das, Papita; Sinha, Keka

    2015-06-01

    In the present work, spent tea leaves were modified with Ca(OH)2 and used as a new, non-conventional and low-cost biosorbent for the removal of Cu(II) from aqueous solution. Response surface methodology (RSM) and artificial neural network (ANN) were used to develop predictive models for simulation and optimization of the biosorption process. The influence of process parameters (pH, biosorbent dose and reaction time) on the biosorption efficiency was investigated through a two-level three-factor (23) full factorial central composite design with the help of Design Expert. The same design was also used to obtain a training set for ANN. Finally, both modeling methodologies were statistically compared by the root mean square error and absolute average deviation based on the validation data set. Results suggest that RSM has better prediction performance as compared to ANN. The biosorption followed Langmuir adsorption isotherm and it followed pseudo-second-order kinetic. The optimum removal efficiency of the adsorbent was found as 96.12 %.

  10. Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.

    PubMed

    Tong, Xuejiao; Xu, Renkou

    2013-04-01

    The removal efficiency of copper (Cu(II)) from an actual acidic electroplating effluent by biochars generated from canola, rice, soybean and peanut straws was investigated. The biochars simultaneously removed Cu(II) from the effluent, mainly through the mechanisms of adsorption and precipitation, and neutralized its acidity. The removal efficiency of Cu(II) by the biochars followed the order: peanut straw char > soybean straw char > canola straw char > rice straw char > a commercial activated carbonaceous material, which is consistent with the alkalinity of the biochars. The pH of the effluent was a key factor determining the removal efficiency of Cu(II) by biochars. Raising the initial pH of the effluent enhanced the removal of Cu(II) from it. The optimum pyrolysis temperature was 400 degrees C for producing biochar from crop straws for acidic wastewater treatment, and the optimum reaction time was 8 hr.

  11. Removal of toluene from water by photocatalytic oxidation with activated carbon supported Fe(3+)-doped TiO2 nanotubes.

    PubMed

    Yuan, Rongfang; Zhou, Beihai; Ma, Li

    2014-01-01

    In this work, activated carbon (AC)-supported TiO2 containing 1.0% (mass percent) of 1.0 at.% (atomic percent) Fe(3+)-doped TiO2 nanotubes (Fe-TNTs) were successfully synthesized. The catalyst was used to effectively decompose toluene in water under O3/UV conditions, and some properties including the morphology, X-ray photoelectron spectroscopy, X-ray diffraction patterns, specific surface area and UV-visible diffuse reflectance spectroscopy were analyzed. A removal efficiency of 90.7% was achieved in the presence of fresh AC-supported Fe-TNTs calcined at 550 °C, with a pseudo-first-order rate constant of 0.038/min. The removal efficiency of toluene was reduced when the catalysts were repeatedly used, since the amount of adsorption sites of the supporting substrates decreased. However, even after AC-supported catalyst was used four times, the removal efficiency of toluene was still sufficient in water treatment. The enhanced photocatalytic activity of AC-supported Fe-TNTs was related to the synergistic effect of AC adsorption and Fe-TNTs photocatalytic ozonation. The water from a petrochemical company in China was used to obtain the removal efficiency of the pollutants, and the toluene and total organic carbon removal efficiencies were 69.9% and 58.3%, respectively.

  12. Process optimization via response surface methodology in the treatment of metal working industry wastewater with electrocoagulation.

    PubMed

    Guvenc, Senem Yazici; Okut, Yusuf; Ozak, Mert; Haktanir, Birsu; Bilgili, Mehmet Sinan

    2017-02-01

    In this study, process parameters in chemical oxygen demand (COD) and turbidity removal from metal working industry (MWI) wastewater were optimized by electrocoagulation (EC) using aluminum, iron and steel electrodes. The effects of process variables on COD and turbidity were investigated by developing a mathematical model using central composite design method, which is one of the response surface methodologies. Variance analysis was conducted to identify the interaction between process variables and model responses and the optimum conditions for the COD and turbidity removal. Second-order regression models were developed via the Statgraphics Centurion XVI.I software program to predict COD and turbidity removal efficiencies. Under the optimum conditions, removal efficiencies obtained from aluminum electrodes were found to be 76.72% for COD and 99.97% for turbidity, while the removal efficiencies obtained from iron electrodes were found to be 76.55% for COD and 99.9% for turbidity and the removal efficiencies obtained from steel electrodes were found to be 65.75% for COD and 99.25% for turbidity. Operational costs at optimum conditions were found to be 4.83, 1.91 and 2.91 €/m 3 for aluminum, iron and steel electrodes, respectively. Iron electrode was found to be more suitable for MWI wastewater treatment in terms of operational cost and treatment efficiency.

  13. Degradation of caffeine by conductive diamond electrochemical oxidation.

    PubMed

    Indermuhle, Chloe; Martín de Vidales, Maria J; Sáez, Cristina; Robles, José; Cañizares, Pablo; García-Reyes, Juan F; Molina-Díaz, Antonio; Comninellis, Christos; Rodrigo, Manuel A

    2013-11-01

    The use of Conductive-Diamond Electrochemical Oxidation (CDEO) and Sonoelectrochemical Oxidation (CDSEO) has been evaluated for the removal of caffeine of wastewater. Effects of initial concentration, current density and supporting electrolyte on the process efficiency are assessed. Results show that caffeine is very efficiently removed with CDEO and that depletion of caffeine has two stages depending on its concentration. At low concentrations, opposite to what it is expected in a mass-transfer controlled process, the efficiency increases with current density very significantly, suggesting a very important role of mediated oxidation processes on the removal of caffeine. In addition, the removal of caffeine is faster than TOC, indicating the formation of reaction intermediates. The number and relative abundance of them depend on the operating conditions and supporting electrolyte used. In chloride media, removal of caffeine is faster and more efficiently, although the occurrence of more intermediates takes place. CDSEO does not increase the efficiency of caffeine removal, but it affects to the formation of intermediates. A detailed characterization of intermediates by liquid chromatography time-of-flight mass spectrometry seems to indicate that the degradation of caffeine by CDEO follows an oxidation pathway similar to mechanism proposed by other advanced oxidation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Phenol remediation by peroxidase from an invasive mesquite: Turning an environmental wound into wisdom.

    PubMed

    Singh, Savita; Mishra, Ruchi; Sharma, Radhey Shyam; Mishra, Vandana

    2017-07-15

    The present study examines mesquite (Prosopis juliflora), an invasive species, to yield peroxidase that may reduce hazards of phenolics to living organisms. As low as 0.3U of low-purity mesquite peroxidase (MPx) efficiently remove phenol and chlorophenols (90-92%) compared with Horseradish peroxidase (HRP) (40-60%). MPx shows a very high removal efficiency (40-50%) at a wide range of pH (2-9) and temperature (20-80°C), as opposed to HRP (15-20%). At a high-level of the substrate (2.4mM) and without the addition of PEG, MPx maintains a significant phenolic removal (60-≥92%) and residual activity (∼25%). It proves the superiority of MPx over HRP, which showed insignificant removal (10-12%) under similar conditions, and no residual activity even with PEG addition. The root elongation and plant growth bioassays confirm phenolic detoxification by MPx. Readily availability of mesquite across the countries and easy preparation of MPx from leaves make this tree as a sustainable source for a low-technological solution for phenol remediation. This study is the first step towards converting a biological wound of invasive species into wisdom and strength for protecting the environment from phenol pollution. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A novel solid-state fractionation of naphthenic acid fraction components from oil sands process-affected water.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Shah, Jaimin R; Bailey, Jon; Peru, Kerry M; Headley, John V

    2015-10-01

    Various sorbent materials were evaluated for the fractionation of naphthenic acid fraction components (NAFCs) from oil sand process-affected water (OSPW). The solid phase materials include activated carbon (AC), cellulose, iron oxides (magnetite and goethite), polyaniline (PANI) and three types of biochar derived from biomass (BC-1; rice husks, BC-2; acacia low temperature and BC-3; acacia high temperature). NAFCs were semi-quantified using electrospray ionization high resolution Orbitrap mass spectrometry (ESI-MS) and the metals were assessed by inductively coupled plasma optical emission spectrometry (ICP-OES). The average removal efficacy of NAFCs by AC was 95%. The removal efficacy decreased in the following order: AC, BC-1>BC-2, BC-3, goethite>PANI>cellulose, magnetite. The removal of metals did not follow a clear trend; however, there was notable leaching of potassium by AC and biochar samples. The bound NAFCs by AC were desorbed efficiently with methanol. Methanol regeneration and recycling of AC revealed 88% removal on the fourth cycle; a 4.4% decrease from the first cycle. This fractionation method represents a rapid, cost-effective, efficient, and green strategy for NAFCs from OSPW, as compared with conventional solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biological sulfate removal from construction and demolition debris leachate: effect of bioreactor configuration.

    PubMed

    Kijjanapanich, Pimluck; Do, Anh Tien; Annachhatre, Ajit P; Esposito, Giovanni; Yeh, Daniel H; Lens, Piet N L

    2014-03-30

    Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75-85% was achieved at a hydraulic retention time (HRT) of 15.5h. A high calcium concentration up to 1,000 mg L(-1) did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Removal efficiency of nickel and lead from industrial wastewater using microbial desalination cell

    NASA Astrophysics Data System (ADS)

    Mirzaienia, Fariba; Asadipour, Ali; Jafari, Ahmad Jonidi; Malakootian, Mohammad

    2017-11-01

    Microbial desalination cell (MDC) is a new method of desalination. Its energy is supplied through microbial metabolism of organic materials. In this study, synthetic samples were provided with concentration of 25, 50, 75, 100 mg/L Ni and Pb. Removal efficiency of each metal was analyzed after 60, 90, 120 min, psychrophilic, mesophilic, thermophilic and 3-4, 4-5, 5-6 mg/L dissolved oxygen. Optimum conditions for removing Ni and Pb were achieved in 100, 4.5 and 4.6 mg/L dissolved oxygen, respectively, 26 °C and 120 min. Nickel and led were removed from wastewaters of Isfahan electroplating industry and steel company. The maximum removal efficiencies of Ni and Pb in real samples were 68.81 and 70.04%. MDC can be considered as a good choice for removing Ni and Pb from industrial wastewater. Due to microorganisms for decomposing organic material in municipal wastewater, metals from industrial wastewater can be removed simultaneously.

  18. [Treatment of Urban Runoff Pollutants by a Multilayer Biofiltration System].

    PubMed

    Wang, Xiao-lu; Zuo, Jian-e; Gan, Li-li; Xing, Wei; Miao, Heng-feng; Ruan, Wen-quan

    2015-07-01

    In order to control the non-point source pollution from road runoff in Wuxi City effectively, a multilayer biofiltration system was designed to remove a variety of pollutants according to the characteristics of road runoff in Wuxi, and the experimental research was carried out to study the effect on rainwater pollution purification. The results show that the system has a good performance on removing suspended solids (SS), organic pollutant (COD), nitrogen and phosphorus: all types of multilayer biofiltration systems have a high removal rate for SS, which can reach 90%. The system with activated carbon (GAC) has higher removal rates for COD and phosphorus. The system with zeolite (ZFM) has a relatively better removal efficiency for nitrogen. The addition of wood chips in the system can significantly improve the system efficiency for nitrogen removal. Between the two configurations of layered and distributed wood chips, configurations of distributed wood chips reach higher COD, phosphorus and nitrogen pollutants removal efficiencies since they can reduce the release of wood chips dissolution.

  19. Hexavalent chromium removal by using synthesis of polyaniline and polyvinyl alcohol.

    PubMed

    Riahi Samani, Majid; Ebrahimbabaie, Parisa; Vafaei Molamahmood, Hamed

    2016-11-01

    Over the past few years, heavy metals have been proved to be one of the most important contaminants in industrial wastewater. Chromium is one of these heavy metals, which is being utilized in several industries such as textile, finishing and leather industries. Since hexavalent chromium is highly toxic to human health, removal of it from the wastewater is essential for human safety. One of the techniques for removing chromium (VI) is the use of different adsorbents such as polyaniline. In this study, composites of polyaniline (PANi) were synthesized with various amounts of polyvinyl alcohol (PVA). The results showed that PANi/PVA removed around 76% of chromium at a pH of 6.5; the PVA has altered the morphology of the composites and increased the removal efficiency. Additionally, synthesis of 20 mg/L of PVA by PANi composite showed the best removal efficiency, and the optimal stirring time was calculated as 30 minutes. Moreover, the chromium removal efficiency was increased by decreasing the pH, initial chromium concentration and increasing stirring time.

  20. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid.

    PubMed

    Gümüş, Dilek; Akbal, Feryal

    2017-05-01

    This study compares ozonation (O 3 ), iron coated zeolite catalyzed ozonation (ICZ-O 3 ) and granular activated carbon catalyzed ozonation (GAC-O 3 ) for removal of humic acid from an aqueous solution. The results were evaluated by the removal of DOC that specifies organic matter, UV 254 absorbance, SUVA (Specific Ultraviolet Absorbance at 254 nm) and absorbance at 436 nm. When ozonation was used alone, DOC removal was 21.4% at an ozone concentration of 10 mg/L, pH 6.50 and oxidation time of 60 min. The results showed that the use of ICZ or GAC as a catalyst increased the decomposition of humic acid compared to ozonation alone. DOC removal efficiencies were 62% and 48.1% at pH 6.5, at a catalyst loading of 0.75 g/L, and oxidation time of 60 min for ICZ and GAC, respectively. The oxidation experiments were also carried out using <100 kDa and <50 kDa molecular size fractions of humic acid in the presence of ICZ or GAC. Catalytic ozonation also yielded better DOC and UV 254 reduction in both <50 kDa and <100 kDa fractions of HA compared to ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top